解二元一次方程组 课件

合集下载

(完整版)二元一次方程组优秀课件PPT

(完整版)二元一次方程组优秀课件PPT

矩阵法解二元一次方程组
总结词
利用矩阵的运算性质和逆矩阵的性质,将二元一次方程组转化为线性方程组进行求解。
详细描述
矩阵法的基本思路是将二元一次方程组转化为线性方程组,然后利用矩阵的运算性质和 逆矩阵的性质求解。具体步骤包括:将二元一次方程组写成矩阵形式,然后对矩阵进行 变换,将其化为行最简形式,得到线性方程组;然后利用逆矩阵的性质求解线性方程组
示例
x + y = 1, 2x - y = 3
二元一次方程组的解法概述
01
02
03
消元法
通过加减或代入法消去一 个未知数,将二元一次方 程组转化为一元一次方程 求解。
替换法
通过一个方程中的未知数 表示另一个未知数,然后 将其代入另一个方程求解 。
矩阵法
利用矩阵表示方程组,通 过矩阵运算求解。
二元一次方程组的应用场景
化学问题
在化学中,有些问题涉及到两种化学物质之间的反应,如反 应速率和反应物浓度等,这时也可以用二元一次方程组来表 示和解决。
04
二元一次方程组的扩展知识
二元一次方程组的几何意义
平面直角坐标系
二元一次方程组可以表示平面上的点集,通过坐标系将代数问题与几何问题相互 转换。
直线交点
二元一次方程组的解对应于直线交点,即两个方程的公共解。
二元一次方程组的解的个数与性质
解的个数
二元一次方程组可能有无数解、唯一 解或无解,取决于方程组中方程的系 数和常数项。
解的性质
解的个数与方程组系数矩阵的秩和增 广矩阵的秩有关,通过比较两者可以 判断解的情况。
二元一次方程组的解的判定定理
定理内容
如果二元一次方程组的系数矩阵的秩等于增广矩阵的秩,则该方程组有唯一解;如果秩不相等,则该 方程组无解或有无数解。

《求解二元一次方程组》二元一次方程组PPT课件

《求解二元一次方程组》二元一次方程组PPT课件

x7 2
所以,原方程组 的解是
x 7 2 y 1
3x 2y 4,
1.二元一次方程5组x 2y 6 ()
A.x 1,
y
1;
x 1,
B.
y
1 2
;
x 1,
C.
y
1 2
;
【解析】选C
的解是
x 1,
D.
y
1 2
.
2.(芜湖·中考)方程组
2x 3y 7,
x
3
y
8
① ②
的解是
C.
y
4
答案:选B
D.
x 4
y
1
3.已知(2x+3y-4)2+∣x+3y-7∣=0,则x= -3 ,
10
y= 3
.
4.(青岛·中考)解方程组:
3x 4 y
x
y
4.
19,
【解析】
3x 4 y 19, ①
x
y
4.

由②,得x=4+y ③
把③代入①,得12+3y+4y=19,
解得:y=1.
求解求出两个未知数的值 Nhomakorabea写解写出方程组的解
2. 二元一次方程组的解法有____代__入__法__、__加__减__法__ _.
解所得的一元一次方程④ ,得x=3
再把x=3代入③,得y=2
x+y=5
这样,我们就得到二元一次方程组 4x+3y=18
x=3 的解
y=2
因此,李明和妈妈共买了苹果3 kg,梨2 kg.
归纳
上面的解法是把二元一次方程组中的一个方程的某 个未知数用含有另一个未知数的代数式表示出来,并代 入另一个方程中,从而消去一个未知数,化二元一次方 程组为一元一次方程.这种解方程组的方法称为代入消元 法,简称代入法.

消元——解二元一次方程组 完整版课件

消元——解二元一次方程组  完整版课件

解得:x=20000
把x=20000代入 ③ 得:y=50000
x 20000
y
50000
答:这些消毒液应该分装20000大瓶和50000小瓶.
总结归纳
解二元一次方程组的步骤: 第一步:在已知方程组的两个方程中选择一个适当的方程 ,将它的某个未知数用含有另一个未知数的代数式表示出 来. 第二步:把此代数式代入没有变形的一个方程中,可得一 个一元一次方程. 第三步:解这个一元一次方程,得到一个未知数的值. 第四步:回代求出另一个未知数的值. 第五步:把方程组的解表示出来. 第六步:检验(口算或在草稿纸上进行笔算),即把求得的 解代入每一个方程看是否成立.
2m + n = 1 ① 3m – 2n = 1② 由①得 n = 1 –2m ③
把③代入②得:
3m – 2(1 – 2m)= 1
m 3 7
把m 3 代入③,得
:7
n 12 3
n1
7
7
m的值为 3 ,n的值为 1
7
7
二 代入法解二元一次方程组的简单应用
例2 根据市场调查,某种消毒液的大瓶装(500 g) 和小瓶装(250 g)两种产品的销售数量(按瓶计算 )比为2:5.某厂每天生产这种消毒液22.5t,这些消 毒液应该分装大、小瓶两种产品各多少瓶?
例1 解方程组 3 x - 8 y = 14. ②
转化 解:由①,得 x = y + 3 .③ 代入 把③代入②,得 3(y+3)-8y=14. 求解 解这个方程,得 y=-1.
思考:把③ 代入①可以吗?
回代 把y=-1代入③,得 x=2.
写解 所以这个方程组的解是
x = 2, y =-1.
注意:检验方程组的解

人教版数学七年级下册8.1 二元一次方程组 课件(共26张PPT)

人教版数学七年级下册8.1 二元一次方程组 课件(共26张PPT)
第八章 二元一次方程组
8.1 二元一次方程组
1.经历根据实际问题列二元一次方程(组)的过程,让学生体 会方程组是刻画现实世界中含有多个未知数的数学模型. 2.通过复习类比一元一次方程,探究掌握二元一次方程(组) 及其解的概念. 3.培养学生的数学类比思想,感受方程组的实际应用价值.
学习重点:二元一次方程(组)以及解的概念. 学习难点:二元一次方程组的解的概念.
写出二元一次方程3x+2y=19的正整数解. 解:ቊyx==81;, ቊyx==53;, ቊxy==25.,
例3 二元一次方程组ቊxx−+yy==180, 的解是( C )
A.ቊxy==35,
B.ቊxy==111,
C.ቊyx==−91,
D.ቊxy==16..55,
下列各组值中是二元一次方程组ቊxx−+yy==35,的解的 是( C )
我们已经学习了一元一次方程,并学会了用它解 决实际问题。 一元一次方程中只含有一个未知数,下面我们来 看下这些问题含有几个未知数?
篮球比赛不仅出现在奥运赛场上,在生活中也随处可见,请 同学们看下面这个问题:在某次篮球联赛中,每场比赛都要分 出胜负,每队胜1场得2分,负1场得1分.某队在10场比赛中得到 16分,那么这个队胜负场数分别是多少呢?
思考:这个问题中包含了 哪些必须同时满足的条件?
分析:胜的场数+负的场数=总场数,胜场积分+负场积分=
总积分.


合计
场数
x
y
10
积分
2x
y
16
解:设这个队胜的场数为x场,负的场数为y场. 依据题意,得x+y=10,2x+y=16.
学生活动一【一起探究】

消元——解二元一次方程组(第一课时)课件(共24张PPT)人教版数学七年级下册

消元——解二元一次方程组(第一课时)课件(共24张PPT)人教版数学七年级下册

【例题练习】
根据市场调查,某种消毒液的大瓶装(500 g)和小瓶装 (250 g)两种产品的销售数量(按瓶计算)比为2:5.某 厂每天生产这种消毒液22.5t,这些消毒液应该分装大、 小瓶两种产品各多少瓶?
等量关系: ①大瓶数∶小瓶数 = 2∶5; ②大瓶所装消毒液+小瓶所装消毒液 = 总生产量.
所以这个方程组的解是
x2
y
1
………………写解
Байду номын сангаас【注意】最后一定要把所得的解带入原方程组进行检验,看方程的
左右两边是否相等.
【例题练习】
尝试用代入法解该二元一次方程组
x y 3① 3x 8y 14②
方法二:解:由①,得 y = x - 3 . ③ ……………… 变形
把③代入②,得 3x-8(x-3) = 14. ………………代入
一般地,二元一次方程组的两个方程的公共解,叫做二元一次 方程组的解.
下面我们开始进行本章知识的学习
篮球联赛中,每场比赛都要分出胜负,每队胜1场得2分, 负1场得1分.某队在10场比赛中得到16分,那么这个队胜负 场数分别是多少?
应用上节所学的知识我们可以设两个未知数
解:设篮球队胜了 x,负了 y 场.得到一个方程组
8.2消元——解二元一次方程组 (第一课时)
——第八章二元一次方程组
教学目标
01.理解并掌握用代入消元法解二元一次 方程组 重难点
02.理解代入消元法的基本思想所体现的化归思想方 法 难点
同学们,在上一节我们学习的二元一次方程组,回顾一下什么是 二元一次方程组?什么是二元一次方程组的解?
方程组中有两个未知数,含有每个未知数的项的次数都是1, 并且一共有两个方程,像这样的方程组叫做二元一次方程组.

二元一次方程组的解法加减消元法全版ppt课件

二元一次方程组的解法加减消元法全版ppt课件

最新.
6
资金是运动的价值,资金的价值是随 时间变 化而变 化的, 是时间 的函数 ,随时 间的推 移而增 值,其 增值的 这部分 资金就 是原有 资金的 时间价 值
感悟规律 揭示本质
两个二元一次方程中同一未知数的 系数相反或相等时,将两个方程的两边 分别相加或相减,就能消去这个未知数, 得到一个一元一次方程,这种方法叫做 加减消元法,简称加减法.
解得:x=1
所以原方程组的解是 x=1
最新.
y=-1
9
资金是运动的价值,资金的价值是随 时间变 化而变 化的, 是时间 的函数 ,随时 间的推 移而增 值,其 增值的 这部分 资金就 是原有 资金的 时间价 值
运用新知 拓展创新
3x-2y= -1 ① 6x+7y=9 ② 分析:1、要想用加减法解二元一次方程组
解下面的二元一次方程组
3x5y 21 ① 2x5y 11 ②
把②变形得:
x 5y11 2
代入①,消去 x了!
最新.
标准的 代入消
元法
2
还有别的方法吗?
3x 5y 21 ①
2x 5y 11 ②
认真观察此方程组中各个未知数 的系数有什么特点,并分组讨论看 还有没有其它的解法.并尝试一下能 否求出它的解
1、解二元一次方程组的基本思路是什么?
基本思路: 消元: 二元
一元
2、用代入法解方程组的主要步骤是什么?
1.变
用含有一个未知数的代数式
表示另一个未知数
2.代
消去一个元
3.解
分别求出两个未知数的值
4.写
写出方程组的解
最新.
1
资金是运动的价值,资金的价值是随 时间变 化而变 化的, 是时间 的函数 ,随时 间的推 移而增 值,其 增值的 这部分 资金就 是原有 资金的 时间价 值

《二元一次方程组》ppt课件

《二元一次方程组》ppt课件
感谢您的观看
简化计算
在代数问题中,有时需要 通过复杂的运算来求解, 二元一次方程组可以简化 这些计算过程。
证明数学定理
在代数证明中,二元一次 方程组可以作为证明某些 数学定理的工具,例如 Cramer's Rule等。
几何问题中的应用
确定位置关系
在几何问题中,二元一次方程组 可以用来确定点、线、面的位置
关系。
05
习题与解答
基础习题
基础习题1:解方程组 2x + 3y = 10
3x - y = 4
基础习题
基础习题2:解方程组 3x + 4y = 12
x - 2y = 5
基础习题
基础习题3:解方程组
2x - y = 4
x + 2y = 7
进阶习题
进阶习题1:解方程组 3x + 4y = 15 x+y=4
详细描述
消元法是解二元一次方程组的一种常用方法。通过加减或代入的方式消去一个或多个变量,将二元一次方程组转 化为一元一次方程,然后求解这个一元一次方程即可得到原方程组的解。消元法可以分为加减消元法和代入消元 法两种。
矩阵法解二元一次方程组
总结词
利用矩阵的运算性质和逆矩阵求解二元一次方程组。
详细描述
在资源优化和分配问题中,二元 一次方程组可以用来找到最优的 方案,例如时间、成本、效益等
最小化或最大化。
交通和物流
在交通和物流领域,二元一次方 程组可以用来解车辆路线规划、
货物配载等问题。
04
二元一次方程组的扩展
二元一次方程组的变种
系数变种
在二元一次方程组中,可以通过改变方程的系数来形成新的方程 组,例如将常数项或系数乘以某个数,或将系数互换等。

二元一次方程组解法ppt课件

二元一次方程组解法ppt课件

x 1
所以原方程组的解是
y
1
3x 5y 21 ① 2x 5y -11 ②
解:由①+②得:
5x=10
x=2
把x=2代入①,得: y=3
x 2
所以原方程组的解是
y
3
直接加减消元法
3x 5y 21 ① 2x 5y -11 ②
由①+②得: 5x=10
2x-5y=7

2x+3y=-1 ②
4、写出方程组的解
随堂练习: 你解对了吗?
1、用代入消元法解下列方程组

y=2x x=4 x+y=12 y=8
x=y—2-5

x=5 y=15
4x+3y=65
x+y=11
3x-2y=9

x=9 ⑷
x=3
y=2 x-y=7
y=0
x+2y=3
能 力 检 验 解二元一次方程组
(1)
2a b 18, a 3b 2.
(2) 2x y 5, 3x 4y 2.
SUCCESS
THANK YOU
2024/10/21
1
1
2、若方程5x 2m+n + 4y 3m-2n = 9是关于x、y
的二元一次方程,求m 、n 的值.
解: 根据已知条件可
列方程组:
2m + n = ①
13m – 2n = ②
由①得:1 n = 1 – ③
by ay
3 3
的解是
x 2
y
1
,则 a b 的值是

7.已知关于x,y方程组
2x 3x
3y 5y

二元一次方程组课件(共31张PPT)

二元一次方程组课件(共31张PPT)

1.二元一次方程及二元一次方程组 篮球联赛中,每场比赛都要分出胜负,每队 胜一场得2分,负一场得1分.某队在10场比 赛中得到16分,那么这个队胜负分别是多少?
问题1 依据问题如何列一元一次方程?
解:设胜x场,则负(10-x)场. 2x+(10-x)=16.
1.二元一次方程及二元一次方程组
篮球联赛中,每场比赛都要分出胜负, 每队胜一场得2分,负一场得1分.如果某队 为了争取较好名次,想在全部10场比赛中 得16分,那么这个队胜负场数应分别是多 少?
含有两个未知数,每个未知数的项的次数 都是1,并且一共有两个方程,像这样的 方程组叫做二元一次方程组.
判断下列方程组哪些是二元一次方程组?
A.
x 2 y 5 3x 1 0 1B.x 3y 0 C.x 4 y 5
x y 0 3x 1 5 D.3y z 0E.2 y 3 0
x 0 1 2 3 4 5 6 7 8 9 10 y 10 9 8 7 6 5 4 3 2 1 0
使二元一次方程两边的值相等的两个未知数的值,叫
做二元一次方程的解。
X Y
2.二元一次方程、二元一次方程组的解
你能告诉 追还问可1以取如哪果些不值考?虑这方些程值表是示有的限实的际吗意?义,大检家验如它何们
相 1:未知数的个数都是2 同 2:含有未知数的项最高次数是1次 点 3:含有未知数的项是整式(即分母不含
有未知数)
➢含有两个未知数,并且所含未知数的项
的次数都是1的方程叫做二元一次方程.
请判断下列各方程中,哪些是二元 一次方程,哪些不是?并说明理由。
(1)2x+5y=10 (2) 2x+y+z=1
y y
8,的解: 10

解二元一次方程组-完整版课件

解二元一次方程组-完整版课件

解:由①,得3(x-2)=7+4(y-1). ③
把③代入②,得3[7+4(y-1)]-10(y-1)=-25.
解得y=-22. 所以y-1=-23. 将y-1=-23代入③,
得 x 26 1 .
3
∴原方程组的解为
x
26
1 3
,
y 22.
注意点:用代入法解二元一次方程组往往考虑用 整体思想进行换元,使得方程组简单化后再求解.

用代入法解方程组
2x-y=5,①
3x+5y=27.②
错答:由①,得y=2x-5. ③ 把③代入①,得2x-(2x-5)=5,得5=5. 所以原方程
无解.
正答:由①,得y=2x-5. ③ 把③代入②,得3x+5(2x-5)=27,解得x=4. 把x=4
x 4,
代入③,得y=3.
所以原方程组的解是
中一个方程变形,并力求变形后的方程比较简单,
这样代入另一个方程后就比较容易化简.
利用整体思想解二元一次方程组
例2
求方程组
3(x-2)-4(y-1)=7,①
9(x-2)-10(y-1)=-25②
的解.
分析:发现方程中x,y都是以x-2,y-1的形式出 现的,若将x-2,y-1看成整体,看成新的未知数, 解关于x-2,y-1的方程组就比较简便.注意点:用“代入法”解方程组时,选择由哪一个
方程变形代入到另一个方程中要注意技巧. 若方程
组中某个未知数在一个方程中的系数是1或-1时,
应用移项法则,变形为此未知数等于另一个未知数
的代数式,往往会给解题带来方便;若方程组的两
个方程中都没有系数是1或-1的未知数,就应将其
第2章 二元一次方程组 2.3 解二元一次方程组(第1课时)

7.2 二元一次方程组的解法课件(共20张PPT)

7.2 二元一次方程组的解法课件(共20张PPT)

3x 5y 5 3x 4y 23
① ②
等式性质
如果把这两个方程的左边与左边相减,右边与右边相减, 能得到什么结果?
分析: 3x 5y 3x 4y = 5 23
①左边
②左边 = ①右边 ②右边
解方程组:
3x 5y 5 3x 4y 23
① ②
分析: ①左边
②左边 = ①右边 ②右边
拓展
如何利用加减法解方程组35xx
6 4
y y
42 10
通过本节课的学习,你有哪 些收获?
通过本节课的学习,你还有 疑惑吗?
P32 练习:解下列方程组
谢谢!
两个方程
4x+6y=14
只要两边 分别相减就可以消去未知数 x
练一练
(二)用加减法解二元一次方程组。
⑴ 5x+y=7 3x-y=1
⑵ 4x-3y=5 4x+6y=14
答案:xy
1 2
答案:xy
2 1
练一练
3、已知
x 2
y
1
的解,则 a b
是二元一次方程aa组xx Fra bibliotekby by
7 1
的值为( -1 )
3x 5y 3x 4y = 5 23
3x 5y 3x 4y 18
注意符号
9y 18 y 2
将y=-2代入①,得 3x 5 2 5
x5
用括号将两个式子相减,注意减去前面是负 号的项,去括号要变号。
解方程组:
3x 3x
5 4
y y
5 23
① ②
解:由①-②得:
9y 18 y 2
问题:利用加减消元法直接解二元一
次方程组的前提条件是什么?

《二元一次方程组的解法》数学教学PPT课件(3篇)

《二元一次方程组的解法》数学教学PPT课件(3篇)

用一个未知数的代数式 表示另一个未知数 消去一个元 分别求出两个未知数的值
写出方程组的解
学习目标
1、理解解二元一次方程组的另一种常用方法——“加减 消元法” ; 2、熟练以及灵活应用加减消元法解二元一次方程组.
新知探究
想一想
为了解方程组
3x+2y=13 3x-2y=5
不用代入法能否消去其中的未知数y ?
旧校舍面积的4倍,那么应该拆除多少旧校舍,建造多少新校
舍?(单位:m2 )
拆 (x m2)
设应拆除旧校舍x m2 ,建 造新校舍y m2 .
根据题意列方程组
20000 m2
y=4x
y-x=20000× 30﹪.
y=4x 即
y-x=6000
新建 (y m2)
1.解方程组: x=3y+2, ① x+3y=8. ②
随堂练习
1、用代入消元法解下列方程组
y=2x ⑴
x=4
x=—y2-5
y=8 ⑵
x=5 y=15
x+y=12
4x+3y=65
x+y=11 x=9
3x-2y=9
x=3
⑶ x-y=7
y=2 ⑷ x+2y=3
y=0
2、若方程5x 2m+n + 4y 3m-2n = 9是关于x、y的二元 一次方程,求m 、n 的值.
把y=0.8代入①可得x=2
{ x=2
故原方程的解为 y=0.8
{7x+4y-10=0
例3 解方程组 4x+2y-5=0
{7x+4y=10 ①
解:原方程组可化为 4x+2y=5 ②
由方程②得y=(5-4x)/2 将上式带入①整理,得10- x =10
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

3 2
…无数个
太 费 劲
应先分别列出两个方程的解,然后,找出公共解 了
代入消元法 解二元一次方程组
简捷
温故求新
(用代入消元法)解方程组
(提醒:“走”两步
2017x 2016y 1 ① 2014x 2016y 4030 ②
即可)解:由①得x=
1 2016y 2017

把③代入②得
解:(代入消元)
解:(相加消元)
由①得
1 2016y x= 2017 ③
①+② , 得 4031x=4031
把③代入②得
解得
2014× 1 2016y ﹣2016y=4030 2017
……
X=1 ……


新知体验
解方程组(化二元为一元即可)
1.
x 2y 9 3x 2y 1
一次
一元三次X3 ﹣x2 – x +1 =0 三次 降次 二次
……….
消元或降次
复杂的方程(组)
一元一次方程
嫣然回眸
今天的这段研究数学的历程,
是从哪里开始的?
中途经历哪些曲折?
怎样解决的?
2017x 2016y 1 2014x 2016y 4030
直接加减消元
4x 5y 22 6x 7 y 4
2014× 1 2016y ﹣2016y=4030
2017
用代入消元法解二元一次方程组遇到困难了,
怎么办?
…寻找新方法(新的消元方法)
探索新知
解方程组
2017x 2016y 1 ① 2014x 2016y 4030 ②
解: ①+② , 得
(2017x+2016y) + (2014x ﹣2016y) = 1+4030 (等式的性质)
③+②,得 3a+4b=18 ⑤
三元
加消 减元
二元
总经验:遇到二元、多元的,通常采用消元,逐步 减少未知数的个数,最终化归为一元方程
展望未来
从“元”的方面发展,产生的方程(组)的问 题解决了,接下去,又该研究什么样的方程呢?
该研究从“次”的方面发展的方程
一元一次 x-1 =0
降次
一元二次x2 - 2x + 1= 0 二次
8.2解二元一次方程组(3)
方程的“昨天、今天、明 从天“”元”的方面的发展
去年学 一元一次 如: x+3=5
现在学 二元一次 如:m+n=5
将要学 三元一次 如:a+2b- 3c=10 …
从“次”的方面的发展
已经学 一元一次
将要学 一元二次 一元三次
如:x+ 3 = 5
如:x2 - 2x + 1= 0
多元
变形加减消元
代入消元有困难
消元 1.代入
一元
2.加减(快捷)
经验一:方程组中,如果某一未知数的系数 互为相反数时,可将两个方程相加,消去一 个未知数
经验二:方程组中,如果某一未知 数的系数相等时,可将两个方程相 减,消去一个未知数
经验三:方程组中,同一未知数系数不 相等、又不相反时,把方程变形,使某 个未知数系数变成相等或相反.
2017x+2016y + 2014x ﹣2016y = 4031
等量加等量,和相等
4031x=4031
等量减等量,差相等
X=1
把x=1代入① 得
y=﹣1
∴原方程组的解是
x

y
1 1
探索新知
解方程组
2017x 2016y 1 ① 2014x 2016y 4030 ②
二元


解:①+② , 得


经验一:方程组中, 如果某一未知数的系 数互为相反数时,可
4031x=4031 X=1
将两个方程相加,消 把x=1代入① 得
去一个未知数
y=﹣1
∴原方程组的解是 x 1 y 1
一元
解方程组
2017x 2016y 1 ① 2014x 2016y 4030 ②
① ②
2.
2a 3b 5 ① 2a 5b 11 ②
经验二:方程组中,如果某一未知
数的系数相等时,可将两个方程相减,
消去一个未知数
直接加减消元
易错点: 1.两方程相减时加括号()
2.减去负数时加括号()
系数相等或相反的都研究了, 接下来研究什么呢?
拾级而上 变形消元 经验三:方程组中,同
③﹣④, 得 ﹣29y =58
③+④,得
变成最小公倍数
注意点:
宁加不减
58x=174
巩固新知 解方程组(化二元为一元即可)
解题反思
1.
3x 2y 2 3y 2x 6
① ②
观察系数时, 是否同一未知数
解题反思
2.
5x 3x

2y 4y

25 15
①②(比一比谁更快)★★做 方题 程先 组观 中察 ,若某 一未知数的系数成
解方程组
一未知数系数不相等、
4x 5y 22 6x 7 y 4

又不相反时,把方程变
形,使某个未知数系数
② 变成相等或相反.
解:准备消x
解: 准备消y
①×3 ,得 12x -15y =66 ③ ①×7,得 28x-35y=154 ③
②×2, 得 12x+14y = 8 ④ ②×5,得 30x+35y=20 ④
解:①×2,得 10x+4y=50 ③
倍数,则消去该未
③-②, 得
7x=35
知数更快.
二元的问题解决了,又该研究什么呢?
迎接挑战
3a b c 4 ①
(1)解方程组 2a 3b c 12 ②
(化为二元即可)a b ②, 得 5a+2b=16 ④
探索与思考
3、在解方程组
ax by cx 3y
2 5
中,小张正确的解是xy
1 2
,小李由于看错
了方程组中的C得到方程组的解为
x 3

y

1
,试求方程组中的a、b、c的值。
如:X3 ﹣x2 – x +1 =0 …
方程的解
一元一次 x + 3=5的解 x=2 一个解
二元一次x
+
y
=
5的解
x 1 x

y

6

y
0 5
x y

3 2
…无数个
二二定元 元义一 一法次 次方x ﹣程根组y据二=1元xx的一解次yy方xy程15组40.的.的22 解解xy的意11义0x1y ,xy32
相关文档
最新文档