材料力学——第12章(压杆稳定计算)

合集下载

材料力学答案- 压杆稳定

材料力学答案- 压杆稳定

15-1 两端为球铰的压杆,当它的横截面为图示各种不同形状时,试问杆件会在哪个平面内失去稳定(即在失稳时,杆的截面绕哪一根轴转动)?解:(a),(b),(e)任意方向转动,(c),(d),(f)绕图示Z 轴转动。

15-2 图示各圆截面压杆,横截面积及材料都相同,直径d =1.6cm ,杆材A 3钢的弹性模量E =200MPa ,各杆长度及支承形式如图示,试求其中最大的与最小的临界力之值。

解:(a) 柔度: 2301500.4λ⨯== 相当长度:20.30.6l m μ=⨯=(b) 柔度: 1501250.4λ⨯== 相当长度:10.50.5l m μ=⨯=(c) 柔度: 0.770122.50.4λ⨯== 相当长度:0.70.70.49l m μ=⨯=(d) 柔度: 0.590112.50.4λ⨯== 相当长度:0.50.90.45l m μ=⨯=(e) 柔度: 145112.50.4λ⨯== 相当长度:10.450.45l m μ=⨯=由E=200Gpa 及各柔度值看出:各压杆的临界力可用欧拉公式计算。

即:()22cr EIF l πμ=各压杆的EJ 均相同,故相当长度最大的压杆(a)临界力最小,压杆(d)与(e)的临界力最大,分别为:()2948222320010 1.610640.617.6410cr EFF l N πππμ-⨯⨯⨯⨯⨯===⨯()2948222320010 1.610640.4531.3010cr EIF l Nπππμ-⨯⨯⨯⨯⨯===⨯15-3 某种钢材P σ=230MPa ,s σ=274MPa ,E =200GPa ,直线公式λσ22.1338-=cr ,试计算该材料压杆的P λ及S λ值,并绘制1500≤≤λ范围内的临界应力总图。

解:92.633827452.5p s s a λπσλ===--===15-4 6120型柴油机挺杆为45钢制成的空心圆截面杆,其外径和内径分别为,12mm 和10mm ,杆长为383mm ,两端为铰支座,材料的E =210GPa ,P σ=288MPa ,试求此挺杆的临界力cr F 。

材料力学压杆稳定概念欧拉公式计算临界力

材料力学压杆稳定概念欧拉公式计算临界力

材料力学压杆稳定概念欧拉公式计算临界力材料力学是研究物体受力及变形行为的一门学科。

压杆稳定是材料力学中重要的概念之一、当一个杆件受到作用力时,如果杆件不发生任何形状上的变化,我们称之为杆件处于稳定状态。

然而,当作用力超过一定临界值时,杆件就会发生失稳,产生形状上的变化。

因此,欧拉公式就是用来计算杆件临界力的一种方式。

欧拉公式由瑞士数学家欧拉于18世纪中叶首次提出。

它的基本假设是杆件是理想化的,即杆件是均匀、无缺陷、具有均匀截面的杆件。

根据欧拉公式,杆件临界力可通过以下公式计算:Pcr = (π^2 * E * I) / L^2其中,Pcr表示临界力,E表示杨氏模量,I表示截面惯性矩,L表示杆件的有效长度。

从上述公式中可以看出,临界力与材料的弹性模量有关,即材料越硬,临界力越大;同时临界力与截面的形状也有关,即截面惯性矩越大,临界力越大;临界力还与杆件长度有关,即杆件越短,临界力越大。

例子:假设有一根长为L的无缺陷的圆柱形杆件,其截面半径为r,杨氏模量为E。

根据材料力学的知识,该圆柱形杆件的截面惯性矩可计算为I=(π*r^4)/4Pcr = (π^2 * E * ((π * r^4) / 4) ) / L^2通过上述公式,可以计算出该无缺陷的圆柱形杆件的临界力。

这个临界力表示了该杆件能够承受的最大作用力。

如果作用力超过了临界力,该杆件将发生失稳,产生形状上的变化。

总结起来,材料力学中的压杆稳定概念是指杆件在受力作用下不发生形状上的变化。

欧拉公式是用来计算杆件临界力的一种常用公式,可以帮助工程师们确定杆件的最大承载能力。

材料力学第12章 能量法

材料力学第12章 能量法

范围内工作时,其轴线弯曲成为一段圆弧,如图12.5(a)所示。两端横截
面有相对转动,其夹角为θ ,由第7章求弯曲变形的方法可以求出
图12.5 与前面的情况相似,在线弹性范围内,当弯曲外力偶矩由零逐渐增加到M0时
,梁两端截面相对于转动产生的夹角也从零逐渐增加到θ ,M0与θ 的关系也
是斜直线,如图12.5(b)所示,所以杆件纯弯曲变形时的应变能为
dW在图12.2(a)中以阴影面积来表示。拉力从零增加到FP的整个加载过程
中所做的总功则为这种单元面积的总和,也就是说是△OAB的面积,即
可以将以上的分析推广到其他受力情况,因而静载荷下外力功的计算式可以
写为 式中的 F是广义力,它可以是集中力或集中力偶;Δ 是与广义力F相对应的
位移,称为广义位移,它可以是线位移或角位移。式(12.2)表明,当外力
在工程实际中,最常遇到的是横力弯曲的梁。这时梁横截面上同时有剪力和
弯矩,所以梁的应变能应包括两部分:弯矩产生的应变能和剪力产生的应变 能。在细长梁的情况下,剪切应变能与弯曲应变能相比,一般很小,可以不
计,常只计算弯曲应变能。另外,此时弯矩通常均随着截面位置的不同而变
化,类似于式(12.5)与式(12.9),梁的弯曲应变能为
表面上的剪力与相应的位移方向垂直,没有做功。因此,单元体各表面上的 剪切力在单元体变形过程中所做的功为
故单元体内积蓄的应变能为
则单元体内积蓄的应变比能为

这表明,vε 等于γ 直线
的面积。由剪切胡克定律=Gγ ,比能又可以写成下列形式
(3)扭转 如图12.4(a)所示的受扭圆轴,若扭转力偶矩由零开始缓慢增加到最终值T
,积蓄在弹性体内的应变能Vε 及能量耗损Δ E在数值上应等于载荷所做的功 ,既 如果在加载过程中动能和其他形式的能量耗损不计,应有

材料力学

材料力学

压杆的稳定条件(安全系数法)
F
F cr
n st
[Fst ]
n st ——稳定安全因数
F ——工作压力
[ Fst ] ——稳定许用压力
— [ st ]
材料力学
cr
n st
[st ]
——稳定许用应力
F A
工作应力
压杆稳定问题/压杆的稳定计算
压杆的稳定条件
n nst
— n Fcr cr
工作安全因数
F
2、由杆AC的强度条件确定 Fmax 。
1
FN1 A1
s ns
FN 2
A
F s A1 26.7KN
2ns
3、由杆AB的稳定条件确定 Fmax 。
材料力学
n
Fcr FN 2
nst
柔度: l2 1 0.6 80 i2 d2 / 4
0 < p 可用直线公式.
因此
FcrcrA2 (ab)A2 (30 1.4 1 2 8)0 160 4d22
(中柔度杆)
(p s)
粗短杆—不发生屈曲,而发生屈服(< 0)
(小柔度杆,按强度问题处理cr= s (b))
材料力学
压杆稳定问题/中、小柔度杆的临界应力
中长杆临界应力的经验公式
1) 直线公式
crab
a、b是与材料有关的常数。
直线公式的适用范围: 0 < p
ps
0
as
b
临界应力总图——临界应力随柔度变化的曲线
材料力学
压杆稳定问题/中、小柔度杆的临界应力
三、中、小柔度杆的临界应力
材料力学
压杆稳定问题/中、小柔度杆的临界应力
1、问题的提出

材料力学压杆稳定概念欧拉公式计算临界力课件

材料力学压杆稳定概念欧拉公式计算临界力课件

杆的长度远大于横截面尺 寸,且横截面尺寸保持不 变。
杆的材料需满足胡克定律 ,即应力与应变成线性关 系。
欧拉公式在压杆稳定中的应用
01
通过欧拉公式,可以计算出压杆在临界状态下的临界力,即压杆失稳 前的最大承载力。
02
临界力的大小与压杆的材料、截面形状、尺寸等因素有关,是评估压 杆稳定性能的重要指标。
通过优化载荷分布,可以改善压杆的受力状态,从而提高稳定性。
THANKS
感谢观看
详细描述
理想压杆的临界力不受压杆重量和惯性影响,因此在实际应用中 ,需要考虑这些因素对临界力的影响。
实际压杆临界力计算
总结词
实际压杆是指考虑自身重量和惯 性影响的压杆,其临界力计算需 考虑这些因素。
总结词
实际压杆的临界力受到自身重量 和惯性影响,因此需要考虑这些 因素对临界力的影响。
详细描述
在计算实际压杆的临界力时,需 要考虑压杆自重产生的挠度以及 横截面面积和长度等因素的影响 。
02
推导过程中,考虑了压杆的弯曲变形和轴向压缩变形,利用能
量守恒和弹性力学的基本方程,最终得到了欧拉公式。
推导过程涉及了数学和物理的相关知识,需要一定的专业背景
03
和理论基础。
欧拉公式应用条件
欧拉公式适用于理想弹性 材料制成的细长等截面直 杆。
杆的受力方式为两端受压 ,且轴向压力逐渐增加直 到临界状态。
材料力学压杆稳定概念欧 拉公式计算临界力课件
• 压杆稳定概念 • 欧拉公式 • 临界力计算 • 压杆稳定性的影响因素 • 提高压杆稳定性的措施
01
压杆稳定概念
压杆失稳现象
01
02
03
弯曲变形
当压杆受到压力时,可能 会发生弯曲变形,导致承 载能力下降。

材料力学习题第12章资料

材料力学习题第12章资料

材料力学习题第12章12-1一桅杆起重机,起重杆AB的横截面积如图所示。

钢丝绳的横截面面积为10mm2。

起重杆与钢丝的许用σ,试校核二者的强度。

力均为MPa[=]12012-2重物F=130kN悬挂在由两根圆杆组成的吊架上。

AC是钢杆,直径d1=30mm,许用应力[σ]st=160MPa。

BC是铝杆,直径d2= 40mm, 许用应力[σ]al= 60MPa。

已知ABC为正三角形,试校核吊架的强度。

12-3图示结构中,钢索BC由一组直径d =2mm的钢丝组成。

若钢丝的许用应力[σ]=160MPa,横梁AC单位长度上受均匀分布载荷q =30kN/m作用,试求所需钢丝的根数n。

若将AC改用由两根等边角钢形成的组合杆,角钢的许用应力为[σ] =160MPa,试选定所需角钢的型号。

12-4图示结构中AC为钢杆,横截面面积A1=2cm2;BC杆为铜杆,横截面面积A2=3cm2。

[σ]st = 160MPa,[σ]cop [F。

= 100MPa,试求许用载荷]12-5图示结构,杆AB为5号槽钢,许用应力[σ] = 160MPa,杆BC为bh= 2的矩形截面木杆,其截面尺寸为b = 5cm, h = 10cm,许用应力[σ] = 8MPa,承受载荷F = 128kN,试求:(1)校核结构强度;(2)若要求两杆的应力同时达到各自的许用应力,两杆的截面应取多大?12-6图示螺栓,拧紧时产生∆l = 0.10mm的轴向变形,试求预紧力F,并校核螺栓强度。

已知d1=8mm, d2=6.8mm, d3=7mm, l1=6mm, l2=29mm, l3=8mm; E=210GPa, [σ]=500MPa。

12-7图示传动轴的转速为n=500r/min,主动轮1输入功率P1=368kW,从动轮2和3分别输出功率P2=147kW 和P3=221kW。

已知[σ]=212MPa,[ ϕ]=1︒/m, G =80GPa。

(1)试按第四强度理论和刚度条件确定AB段的直径d1和BC段的直径d2。

材料力学课件(压杆稳定性)

材料力学课件(压杆稳定性)

2 EI
2 a2
改变力F指向,BD成为压杆,临界压力
F2
2 EI
2a 2
Fcr
比较:Fcr Fcr
1 2 EI
2FAB FBD 2 a 2
例9-4.一端固定一端自由压杆,长为 l,弯曲刚度
为EI,设挠曲线方程
w
2l 3
(3lx 2
x3)
,为自由
端挠度。试用能量法去定临界压力的近似值。
思考: P 3169-4,习题9-11,13,14,18
练习: P 319习题9-10,12,15,17
(3)合理稳定性设计
[ ]st

L
i
成反比
合理截面:约束性质接近时,iminimax ——组合截面 提高 i ——使截面积远离形心
增强约束:缩短相当长度
思考:含有压杆的超静定问题
温度变化引起的稳定性问题
、[]st与 成反比
值:木杆——式(9 11,12)
钢杆——表 92,3
(2)稳定性条件
F A
[ ]st
[ ]
稳定性r 或 与 或 i 为非线性关系,选择截面
尺寸时需用迭代法
例9-5. Q235钢连杆,工字型截面A=552mm2,Iz= 7.40×104mm4,Iy=1. 41×104mm4,有效长度l= 580mm,两端柱形铰约束,xy平面失稳μz=1,xz 平面失稳μy=0.6,属 a 类压杆,轴向压力F=35kN, [σ]=206MPa。试求稳定许用应力,并校核稳定性。
思考:比较一根杆的柔度与柔度的界限值
影响大柔度、中柔度和小柔度杆临 界应力因素的异同
3. 压杆的稳定性条件与合理设计
(1)稳定许用应力
实际压杆与理想压杆的差异:初曲率、压力偏心、 材料缺陷等

材料力学课件 压杆稳定

材料力学课件 压杆稳定
由边界条件x=0,w=0 得 B=-。
w 1 ck o x s (4)
x = l 时 w = , 由(4)式出
1co ksl
coksl0
coksl0
得 coskl = 0。kl的最小值为 kl = /2,亦即
Fcr l π EI 2 从而得到求此压杆临界力的欧拉公式:
QQ
QQ
轴压
压弯
恢复
直线平衡 曲线平衡 直线平衡
压弯
失稳
曲线平衡 曲线平衡
保持常态、稳定
失去常态、失稳
压杆失稳的现象: 1. 轴向压力较小时,杆件能保持稳定的直线平衡状态;
2. 轴向压力增大到某一特殊值时,直线不再是杆件唯 一的平衡状态;
稳定: 理想中心压杆能够保持稳定的(唯一的) (Stable) 直线平衡状态;
解: 1. 建立压杆挠曲的近似微分方程
M x F cr w
E w I M ( x ) F c r w
w F E c rw I F E c rI
(1)
2. 求解挠曲线的近似微分方程,并求临界力
令 k 2 F由cr(1)式得
Fcrπ42lE2 Iπ22lE2I
试推导下端固定、上端铰支 的等直细长中心压杆临界力的欧 拉公式。图(a)中的xy平面为杆 的最小弯曲刚度平面。
M x F c w r F y l x E w I [ F c w r F y l x ]
令 k2=Fcr /EI,将上式改写为
失稳: 理想中心压杆丧失稳定的(唯一的)直
(Unstable) 线平衡状态;
临界力
(Critical force)
压杆失稳时,两端轴向压力的特殊值

材料力学 第十二章 压杆稳定

材料力学 第十二章 压杆稳定

P ≤ Pcr
(1) P ≤ Pcr
干扰力去掉后, 干扰力去掉后,杆件由微小弯曲回到 直线位置,恢复原有的平衡状态,称压杆 直线位置,恢复原有的平衡状态, 稳定平衡。 直线状态的平衡是稳定平衡 直线状态的平衡是稳定平衡。
干扰力
P ≥ Pcr
P = Pcr
干扰力
干扰力
干扰力去掉后,杆件不能回到直线位置, (2) P ≥ Pcr ; 干扰力去掉后,杆件不能回到直线位置,而继 续弯曲失去承载能力,称压杆直线状态的平衡是不稳定平衡 不稳定平衡。 续弯曲失去承载能力,称压杆直线状态的平衡是不稳定平衡。 干扰力去掉后, (3) P = Pcr ; 干扰力去掉后,杆件在干扰力作用下的微弯位 置保持平衡,不再回到直线位置,称压杆是随遇平衡 随遇平衡。 置保持平衡,不再回到直线位置,称压杆是随遇平衡。
40 1.5 1.5m 100 z y
【解】
Iy
I = I min = I y
100 × 403 20 i= = = mm A 12 × 100 × 40 3 µ l 0.7 ×1.5 ×103 × 3 λ= = = 90.9 i 20
λP = π
E
σP
70 ×103 =π × = 62.8 175
σP=200MPa。试求可用欧拉公式计算临界力时杆的长度。 试求可用欧拉公式计算临界力时杆的长度 试求可用欧拉公式计算临界力时杆的长度。
P 【解】 λ P = π
µl
E
σP
200 ×103 =π × = 99.3 200
A π d 2 / 4 4l = µl =l = λ= i I π d 4 / 64 d
l
l
长度系数
µ =1
µ=2

材料力学压杆稳定公式

材料力学压杆稳定公式

材料力学压杆稳定公式材料力学是物理学的一个分支,研究物质的力学性质和物理性质以及它们之间的相互作用。

材料力学中的压杆稳定性问题,在工程中应用非常广泛,是一种典型的应用力学问题。

本文将对压杆稳定公式进行详细解析,并探讨它在实际应用场景中的应用。

一、压杆稳定公式的原理当压力作用于杆的轴向时,可能会导致杆件翻转或折断,这种失稳现象称为压杆稳定性。

压杆稳定性是压力元素设计过程中必须考虑的关键问题。

压杆稳定公式是工程师计算杆件失稳情况的重要工具。

压杆稳定公式由欧拉公式和Johnson公式组成。

欧拉公式是描述简单结构(如棒杆)失稳所必需满足的基本条件,它给出了压杆稳定的临界条件。

欧拉公式的表达式为:Pcr = π²EI/l²Pcr为极限荷载(稳定负荷),E为杨氏模量,I为惯性矩,l为杆的长度。

Johnson公式是实际应用中采用的压杆稳定公式,它考虑了杆的附加载荷和杆的弯曲刚度对稳定性的影响。

Johnson公式的表达式为:Pcr= σcA/{1+(σs/σc)[(A/A0)^2-1]}Pcr为极限荷载,σc为杆的材料弹性极限,σs为附加载荷产生的应力,A为杆的横截面积,A0为杆的理论横截面积。

Johnson公式是以欧拉公式为基础的,可以用于计算矩形截面、圆形截面和其他截面形状的杆件的极限稳定荷载。

二、压杆稳定公式的实际应用场景1.结构设计压杆稳定公式在结构设计中是至关重要的。

当设计师有多种杆件形状和材质可供选择时,可以利用压杆稳定公式计算每种形状和材质的极限荷载,以找到最适合的材质和形状。

2.建筑施工压杆稳定公式在建筑施工中也有广泛的应用。

在桥梁、塔和钢构建筑的建设中,压杆稳定公式可以帮助工程师确定结构的稳定性。

它们还可以检查杆件的尺寸和重量是否适当。

3.飞机制造在飞机制造中,压杆稳定公式可以用来计算气动稳定性问题,以确保飞机在不同高度和气压下的稳定性。

这对于飞行安全至关重要。

4.交通工程压杆稳定公式在交通工程中也有广泛应用。

工程力学材料力学杆的稳定计算与校核

工程力学材料力学杆的稳定计算与校核

17
HOHAI UNIVERSITY
§10-3 欧拉公式的适用范围
λP 为材料参数,不同的材料有不同的值。
如Q235钢, σP =200MPa E =200MPa
三、中小柔度杆的临界应力
λP =100
λ ≥ λP 为弹性失稳
λ < λP σcr >σP 压杆的失稳称为非弹性失稳
此时欧拉公式不再适用,工程上常以试验结果为依据的经验公 式来计算这类压杆的临界应力。如直线公式
HOHAI UNIVERSITY
工程中存在着很多受压杆件。
对于这些细长的压杆,其破坏并非由于强度不足,而是由 于荷载(压力)增大到一定数值后,不能保持原有直线平衡 形式而失效。
1
HOHAI UNIVERSITY
1. 两端铰支细长压杆,当F力较小时,杆在力F 作用下将保持原有直线平衡形式。 此时,在其侧向施加微小干扰力使其弯曲,当 干扰力撤除后,杆仍可回复到原来的直线形式。 可见这种直线平衡形式是稳定的。
两端固定细长压杆,长度0.5l范围内与两端铰支细长 压杆挠曲线形状相同。
π2EI Fcr = (0.5l)2
11
HOHAI UNIVERSITY
类比法
Fcr
l
Fcr 0.7l 0.3l
一端固定,另一端铰支的细长压杆,在0.7l范围内与两端铰支 细长压杆挠曲线形状相同。
Fcr =
π2EI (0.7l)2
σcr=a-b λ
a、b为与材料有关的常数,由试验确定。
x = l,w = 0
得 Asinkl = 0
由 Asinkl=0 得 A=0(不可能)
x Fcr
l
或 sinkl = 0 即 kl = nπ (n = 0,1,2…)

《材料力学》第十二章-求变形的能量法

《材料力学》第十二章-求变形的能量法

3 虚功的计算 外力:P1, P2,……, 虚位移:a1, a2,……., 外力虚功: 内力:N, M,… 虚变形:
We=P1a1+P2a2+……..
内力虚功:
由 We=Wi
虚功原理是最一般的功能原理
对于梁,施加单位力P=1, 力P产生的内力 则有:
莫尔定理
小结: 1 变形位能的概念 2 卡氏定理 3 莫尔定理 4 互等定理 5 虚功原理 作业:12.19, 12.20
2 ( x)
2G
L
dv
2 w ( x)
L
2E
dv
内力表达的变形位能
应力表达的变形位能


1. 变形位能是状态函数 (同最终的力和变形有关)
11
2. 变形位能的计算不能用叠加原理
如何解释交叉项? 单独作用时 则 交叉项是两个载荷相互作用的外力功
〈解释1〉
载荷
在载荷
引起的位移上做的功
⑤ 莫尔积分必须遍及整个结构

A
求等截面直梁C点的挠度和转角(例 12.3 [P356])
q B x a C
A
P0 =1
B
a
a
C
a
解:①画单位载荷图 ②求内力
qx2 M ( x ) aqx 2
③变形
q A x a C B A P0 =1 B
a
a
C
a
对称性
④求转角,重建坐标系(如图)
q
A
§12–3 莫尔定理 Mohr Theory
q(x)
A
在实载荷下得到
相应内力如弯矩为M(x) 如何计算任一点A的位移? 1、 在A点加虚单位力

材料力学第十二章压杆的稳定

材料力学第十二章压杆的稳定

Pcr
=
π 2 EI (µL)2
= π 2EI
L2e
- - - - Euler formula
where : Le = µ L - - effective length;
µ - - coefficient of length concerned with boundary conditions
12-2 Limitation of the Euler Formulas and Slenderness
3. Stability
n=Pcr/Pmax=406/42=9.7 >nallow=8
Being in stable
12-3 提高压杆稳定性的措施
●尽量减小压杆长度 对于细长杆,其临界载荷与杆长平方成反比。因此,减小杆长可以显著
地提高压杆承载能力。在某些情况下,通过改变结构或增加支点可以达到 减小杆长、提高压杆承载能力的目的。例如,图a、b所示的两种桁架,不难 分析,两种桁架中的杆①、④均为压杆,但图b中的压杆承载能力要远远高 于图a中的压干杆。
Find the shortest length L for a steel
column with pinned ends having a cross-sectional area of 60
by 100 mm, for which the elastic Euler formula applies. Let
●合理选用材料
在其它条件均相同的情形下,选用弹性模量E数值大的材料,可以提高大 柔度压杆的承载能力,例如钢杆临界载荷大于铜、铸铁或铝制压杆的临界 载荷。但是,普通碳素钢、合金钢以及高强度钢的弹性模量数值相差不 大。因此,对于细长杆,若选用高强度钢对压杆临界载荷影响甚微,意义不大, 反而造成材料的浪费。但对于粗短杆或中长杆,其临界载荷与材料的比例 极限σP,和屈服强度σYP有关,这时选用高强度钢会使临界载荷有所提高。

(建筑工程管理)第章压杆失稳与外压容器青岛科技大学机电工程学院

(建筑工程管理)第章压杆失稳与外压容器青岛科技大学机电工程学院

●外压容器失稳的实质,是容器由壹种平衡状态跃变到另壹种平衡状态。 ●外压容器的失稳是它的固有特性,和其它构件(例如:压杆)失稳壹样是独立于强度以外 的问题,更不能误判为是由于刚度不足而引起的。 ●使外压容器从在原有直线形状下的稳定平衡状态过渡到不稳定平衡状态的压力就是该外 压容器的临界压力,以表示。而筒体在临界压力作用下,筒壁内产生的环向压缩应力称为临 界应力,以表示。 ●外压筒体失稳时,圆筒壳由圆形可能跃变成俩个波,三个波,四个波……n=正整数的波 形(如图 4 所示)。 图 4 外压圆筒失稳时的形状 (3)外压容器的设计压力 设计压力 P 设:正常工作过程中可能产生的最大内外压差。 真空容器:有安全装置,取(1.25Pmax,0.1MPa)中的较小值;无有安全装置,取 0.1MPa 夹套容器:内部真空,真空容器设计压力+夹套设计压力;应考虑容器可能出现的最大压差 的危险工况。如内筒泄漏、夹套液压试验等工况 第二节外压圆筒环向稳定计算 1、临界压力的计算(calculationofcriticalpressure) (1)长圆筒(longcylinder) ①定义:筒端的俩个封头或其他刚性构件(如:加强圈)不能对整个筒体起加强作用。筒体 对俩端的刚性构件较远部分只能依靠自身来保持其形状,当它承受径向外压时,壳体有向内 变形的趋势,容易被压扁。变形时,波数 n=2。 ②临界压力计算 ,称为勃莱斯公式(1) --outsidediameterofcylinder,㎜; E—modulusofelasticity。 --effectivethicknessofcylinder,㎜。 从公式(1)可知:长圆筒的临界压力和长度无关,仅和圆筒厚和直径的比值有关。 (2)短圆筒(shortcylinders) ①定义当圆筒的长度和直径之比较小,失稳波数大于 2 时,称为短圆筒。 ②临界压力计算 ,拉默公式(2) 式中:L—筒体的计算长度,㎜。指筒体上俩个刚性构件如封头、法兰、加强圈之间的最大 距离。 图 5 外压圆筒的计算长度 对于凸形端盖:L=圆筒长+封头直边段+1/3 凸面高度; 对于法兰:L=俩法兰面之间的距离; 对于加强圈:L=加强圈中心线之间的距离; (3)临界长度 LCr 临界长度是划分长圆筒和短圆筒的界限,当圆筒的长度等于临界长度时, 用勃莱斯公式和拉默公式计算的结果,临界压力应该相等: ,进而解得: (3) 临界长度是封头或者其他刚性构件对筒体是否有支撑作用的分界线; 临界长度只和筒体的几何尺寸有关。 (4)临) 短圆筒:(6) 可是公式(5)和(6)仅在临界应力小于材料的比例极限时才成立。为了解决非弹性失稳时 临界应力的计算,取,此处的 E 为广义弹性模量。 长圆筒:(7) 短圆筒:(8) 临界应变和材料的 E 没有关系,仅是筒体几何尺寸的函数; 建立的临界压应变和 L/Do,Do/Se 的函数关系,是以于勃莱斯公式和拉默公式为基础的。因 此,只适用于仅存在周向应力、不存在轴向应力的情况。 先根据筒体的几何尺寸计算,如果,则能够利用公式(5)或(6)计算临界应力;如果,则 只有根据材料的应力—应变曲线查取相应的临界应力,利用公式(4)计算临界应力; 图 6 材料的应力—应变曲线 2、外压容器的设计计算 (1)许用外压的确定 在工程实际中:①长圆筒或者管子存在椭圆度,壹般压力达到 1/3~1/2 临界压力就会被压瘪; ②在操作时由于操作条件的破坏,壳体实际承受的压力会比计算的压力大。所以需要增加壹 个稳定系数 m,m 值根据我国设计规定取为 3.0。 (9) (2)图解法原理 ①,将其绘制如图 7 所示,利用图中的曲线,能够很方便地查出临界应变,即 A 的值。 图 7 曲线,用于所有的材料 钢制长圆筒,在图上是垂直于横坐标的直线部分。 钢制短圆筒:对应不同参数,ε不同。反映出米赛斯或拉默公式的适用范围,是壹条斜线。 本图和材料的 E 值无关。钢材取μ=0.3,普遍使用。 ②将材料的曲线改为, 因为所求为许用应力,(10) 为了查图更加方便,令,从而把材料的曲线改为 B—A 曲线,根据 A 的值直接查得B,则有: (11) 图 8B=f(A)曲线 如果在弹性范围内,能够采用计算,结果比图解法更为准确。 (3)设计计算步骤: 对于≥10 的圆筒: (1)假设,令,计算出; (2)查出ε=A。 (3)根据所用材料及设计温度查 B。若从图中查取的 A 值落在材料温度线左方,则 B 值查 不到,必须按公式计算: (4)按照公式(11)求出[P]; (5)比较 P 和[P],应使[P]略大于 P,否则必须再设,重复上述步骤。 第三节封头的稳定性计算 1、外压球壳的稳定计算 承受外压的凸形封头,稳定计算主要是以外压球壳的稳定计算为基础。 (1)外压球壳 按弹性小变形理论得球壳失稳得临界压力: (12)
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

cr a b s cr a b a s 0
b
0 P 的杆为中柔度杆,其临 界应力用经验公式求。 31
cr a b
( 0 P )
式中, a 和 b 是与材料性能有关的常数,单位为MPa。 几种常用工程材料的a、b数值已列于表 16—2。
2
0
式中,A、B为积分常数,可通过压杆挠曲线的边界条 21 件确定。
( 0 ) ( l ) 0
( x ) A sin kx B cos kx
0 1 A 0 B 0 0 即: sin kl cos kl A sin kl B cos kl 0
二、折减系数法
FP cr st A n st
稳定许用应力

st
n
st cr st
折减系数,与压杆材料和柔度有关,且小于1。
FP A
压杆的稳定计算,包括压杆稳定性校核、压杆截面设计 以及确定压杆及结构的许可荷载等三类问题。
35
36
37
[例12-2] Q235钢制成的矩形截面压杆,受力及两端约 束情况如图所示,在A、B两处为销钉连接。若已知l=2300mm, , b=40mm,h=60mm,材料的弹性模量E=206GPa,λ P=101。试求此 杆的临界力。
解:⑴确定压杆将首 先在哪个平面内屈曲。
bh 3 在xy平面, 1.0 , I z 12
§12-1 压杆稳定的概念 §12-2 确定细长压杆临界力的欧拉公式 §12-3 压杆的临界应力总图 §12-4 压杆的稳定性计算 §12-5 提高压杆稳定性措施
1
§12-1 压杆稳定的概念
①强度 构件的承载能力: ②刚度 ③稳定性
2
工程中有些 构件具有足够的 强度、刚度,却 不一定能安全可 靠地工作。
1 800 10 3 128 3 i 6.25 10
l
P
E
P
210 10 9 3.14 97 6 220 10
43
⑵求压杆的临界力
128 P 97 ∴可以用欧拉公式计算临界力。
FPcr
3.14 3.14 ( 210 10 ) ( 25 10 3 )4 64 3 2 1 800 10
工程中把承受轴 向压力的直杆称 为压杆
3
P
4
液压缸顶杆
5
脚手架中的压杆
6
桁架中的压杆
7
8
9
10
11
12
13
稳 定 平 衡 不 稳 定 平 衡
14
稳定性(稳定平衡) 构件在荷载作用下保持其初始平衡的构形的能力。
稳 定 平 衡
15
不稳定(不稳定平衡) 当荷载大于一定数值时,使其偏离初始平衡构形 的外界扰动除去后,构件不能回复到初始平衡构 形。则这种初始的平衡构形是不稳定的。
z y , 压 杆 将 先 在xy 平 面 内 屈 曲 。
39
⑵求杆的临界力
由于 z 136.2 P , 可用欧拉公式计算其临界力。
y
z
x
= 277×103N = 277 kN
40
§12-4 压杆的稳定计算
安全系数法 常用方法 折减系数法 一、安全系数法
工作 安全 系数
(a)
(b)
(b)放置不合理
27
二、细长压杆的临界应力
根据“临界力是使压杆原有的直线平衡构形保持稳定的 最大轴向压力”,定义压杆处于临界直线平衡构形时横截 面上的平均应力为临界应力σcr,,即
FPcr
cr
2 EI 2E 2 2 ( l ) A l
2 EI min ( l ) 2
判别弹性稳定 性的静力准则
不 稳 定 平 衡
16
失稳(屈曲) 构件丧失保持稳定平衡构形的能力的现象。 临界荷载 使构件由稳定平衡构形转化为不稳定平衡的荷载。
临界状态
稳 定 平 衡
对应的
过 度
压力
临界荷载:
FPcr
不 稳 定 平 衡
17
压杆的失稳
(直杆、压力作用在轴线上)
圆弧拱
薄壁杆
18
压杆失稳和强度破坏的区别 强度破坏是因构件横截面上的工作压力超过材 料的极限应力而失去承载能力。 压杆失稳破坏是因其轴向压力超过临界力,杆件 突然变弯而丧失承载能力。
2 9
2 EI 2 l
62000 N 62kN
⑶求压杆的轴向许可荷载
FPcr 62 F 12.4kN nst 5
44
[例12-4] 结构受力如图示,BC杆采用No18工字钢 (Iz=1660cm4,iz=7.36cm,Iy=122cm4,iy=2cm,A=30.6cm2)。材料的 弹性模量E=2×105Mpa,比例极限 p 200 Mpa ,稳定安全 系数nst=3。试确定容许荷载[F]。
32
②S< 时:
cr
S
P
0 的杆为小柔度杆,其临 界应力为屈服极限。
cr s
cr a b
③临界应力总图
2E cr 2
l
i
33
0 s a b

P 2E P
2.抛物线型经验公式 对于由结构钢、低合金结构钢等材料制成的非细长杆, 可采用抛物线型经验公式计算其临界应力
2 EI x
2 10 10 9 0.2 0.12 3
12 0.5 8
2
0.5l
2
l/2
177.6kN
z x
b h x
h
b
情况(b):I x=bh 3/12
FPcrb1
(a)
493.5kN
(b)
2 EI x 2 10 10 9 0.12 0.2 3
n FP sin kl 0 k l EI 临界力 FPcr 是微弯下的最小压力,故,只能取 n=1 ;且杆将绕惯性矩最小的轴弯曲。
FPcr
EI min
2
l
2
22
FPcr
2 EI min
l2
两端铰支压杆临界力的欧拉公式
此公式的应用条件: ①理想压杆; ②线弹性范围内; ③两端为球铰支座。
y
z
x
iz
z
l
iz
Iz h A 2 3
1.0 2300 10 3 2 3 132.6 3 60 10
38
hb 3 在xz平面, 0.5 , I y 12
iy
Iy A

b 2 3
y
z
x
y
l
iy
0.5 2300 10 3 2 3 99.48 3 40 10
二、其它杆端约束下细长压杆的临界力
FPcr
2 EI min ( l ) 2
压杆临界力欧拉公式的一般形式
—长度系数(或约束系数)。
23
24
在实际构件中,常常会遇到 一种称之为柱形铰的情况(如右 图所示)。可以看出,在垂直于 轴销的平面内( x 一 z 平面), 轴销对杆的约束相当于铰支,而 在轴销平面内( x 一 y 平面), 轴销对杆的约束接近于固定端约 束。 在工程实际问题中,支承约束程度与理想的支承约束 条件会有所差异,因此,长度系数μ 值应根据实际支承的 约束程度,以表 16 一 1 作为参考来加以选取。在有关的 设计规范中,对各种支承约束的压杆的μ 值都有具体的规 定。
FPcr cr A n nst FP FP
稳定安全系数
稳定安全系数一般大于强度安全系数。对于钢材,取 nst=1.8-3.0;对于铸铁,取nst=5.0-5.5,对于木材,取 nst=2.8-3.2。此外需要指出的是,稳定安全系数nst,不但与 材料有关,还与压杆的柔度有关,柔度越大,压杆失稳的几 率越大,因此所取的nst值应越大。 41
F
解: ⑴求λmax a.BC杆绕y失稳时,B端 可视为铰支,长度系数为:
45
F
b.BC杆绕z失稳时,B端可视 为自由端,长度系数为:
7
即可能首先绕y轴失稳
46
⑵确定BC杆的临界荷载
p
E
p
99 , max y p
BC杆的临界力可用欧拉公式计算
2 EI y 2 2 1011 122 108 FPcr 306kN 2 2 0.7 4 y l
cr a1 b12
式中, a1 和 b1也是与材料性能有关的常数。
cr s
C
当 C ( 细 长 杆 ) , 按 欧 拉 公 式 计算其临界应力。 当 C ( 非 细 长 杆 ) , 按 抛 物 线 公式计算其临界应力。
34
临界力计算的步骤
FPcr
a1 b1 2
屈曲导致构件失效具有突发性,给工程带来的后 果也是灾难性的。因此,结构设计除了保证足够的强 度和刚度外,还需保证结构具有足够的稳定性。
19
§12-2 确定细长压杆临界力的欧拉公式
本节将从压杆微弯平衡构形着手,应用梁的弯曲 变形公式,导出确定细长压杆临界力的欧拉公式。 一、两端球铰细长压杆的临界力
20
M ( x ) FP( x )
当杆内的应力不超 过比例极限时
EI ( x ) M ( x ) FP( x )
其中,I为压杆横截面的最小形心主惯性矩。
2 F P ( x ) k ( x ) 令 则 k EI 其通解为: ( x ) A sin kx B cos kx
相关文档
最新文档