高等代数 第四章 矩阵练习题参考答案
矩阵理论习题与答案
矩阵理论习题与答案矩阵理论习题与答案矩阵理论是线性代数中的重要内容之一,它在数学、工程、计算机科学等领域都有广泛的应用。
为了帮助读者更好地理解和掌握矩阵理论,本文将介绍一些常见的矩阵理论习题,并提供详细的答案解析。
一、基础习题1. 已知矩阵A = [[2, 3], [4, 5]],求A的转置矩阵。
答案:矩阵的转置是将其行和列互换得到的新矩阵。
所以A的转置矩阵为A^T = [[2, 4], [3, 5]]。
2. 已知矩阵B = [[1, 2, 3], [4, 5, 6]],求B的逆矩阵。
答案:逆矩阵是指与原矩阵相乘得到单位矩阵的矩阵。
由于B是一个2×3的矩阵,不是方阵,所以不存在逆矩阵。
3. 已知矩阵C = [[1, 2], [3, 4]],求C的特征值和特征向量。
答案:特征值是矩阵C的特征多项式的根,特征向量是对应于每个特征值的线性方程组的解。
计算特征值和特征向量的步骤如下:首先,计算特征多项式:det(C - λI) = 0,其中I是单位矩阵,λ是特征值。
解特征多项式得到特征值λ1 = 5,λ2 = -1。
然后,将特征值代入线性方程组 (C - λI)x = 0,求解得到特征向量:对于λ1 = 5,解得特征向量v1 = [1, -2]。
对于λ2 = -1,解得特征向量v2 = [1, -1]。
所以C的特征值为λ1 = 5,λ2 = -1,对应的特征向量为v1 = [1, -2],v2 = [1, -1]。
二、进阶习题1. 已知矩阵D = [[1, 2], [3, 4]],求D的奇异值分解。
答案:奇异值分解是将矩阵分解为三个矩阵的乘积,其中一个是正交矩阵,一个是对角矩阵。
计算奇异值分解的步骤如下:首先,计算D的转置矩阵D^T。
然后,计算D和D^T的乘积DD^T,得到一个对称矩阵。
接下来,求解对称矩阵的特征值和特征向量。
将特征值构成对角矩阵Σ,特征向量构成正交矩阵U。
最后,计算D^T和U的乘积D^TU,得到正交矩阵V。
高等代数第4章习题解
第四章习题解答习题4.11、计算(1)120313012410152(,,,)(,,,)(,,,)-+(2)15012101112(,,)(,,)(,,)+- 解:(1)15517203130124101532222(,,,)(,,,)(,,,)(,,,)-+=--- (2)195012101110922(,,)(,,)(,,)(,,)+-= 2、验证向量加法满足交换律、结合律。
证明:设121212(,,,),(,,,),(,,,),n n n a a a b b b c c c αβγ=== 则 12121122(,,,)(,,,)(,,,)n nnn a a a b b b a b a b a b αβ+=+=+++ 11221212(,,,)(,,,)(,,,)n n n n b a b a b a b b b a a a βα=+++=+=+ 121212()((,,,)(,,,))(,,,)n n n aa ab b bc c c αβγ++=++ 112212((,,,))(,,,)n n n a b a b a b c c c =++++111222(,,,)n n n a b c a b c a b c =++++++111222((),(),,())n n n a b c a b c a b c =++++++121122(,,,)((,,,))n n n a a a b c b c b c =++++121212(,,,)((,,,)(,,,))n n n a a a b b b c c c =++()αβγ=++3、证明性质4.1.5。
性质4.1.5的内容是:对任意n 维向量,αβ及数k ,有()()k k k ααα-=-=-,()k k k αβαβ-=-证明:设1212(,,,),(,,,)n n a a a b b b αβ==那么1212()()(,,,)((),(),,())n n k k a a a k a k a k a α-=-=---1212(,,,)((),(),,())n n ka ka ka k a k a k a =---=---1212((),(),,())((,,,))()n n k a a a k a a a k α=---=-=-其次1212()((,,,))(,,,)n n k k a a a k a a a k αα-=-=-=-最后:12121122112212121212()((,,,)(,,,))(,,,)(,,,)(,,,)(,,,)(,,,)(,,,)n n n n n n n n n n k k a a a b b b k a b a b a b ka kb ka kb ka kb ka ka ka kb kb kb k a a a k b b b k k αβαβ-=-=---=---=-=-=-4、设123101010001(,,),(,,),(,,)εεε===,求证:对任意的3F α∈,在F 中都有唯一的一组数123,,a a a 使112233a a a αεεε=++ 解:设α的坐标为123(,,)a a a ,那么123123123000000(,,)(,,)(,,)(,,)a a a a a a a a a α==+++=+123123000000000000(,,)(,,)(,,)(,,)(,,)a a a a a a =++++=++ 123112233100010001(,,)(,,)(,,)a a a a a a εεε=++=++由于给定向量的坐标是唯一的,所以上面等式中的数123,,a a a 是唯一的。
高等代数第四章矩阵练习题参考答案
高等代数第四章矩阵练习题参考答案第四章矩阵习题参考答案一、判断题1. 对于任意n 阶矩阵A ,B ,有A B A B +=+、错、2. 如果20,A =则0A =、错、如211,0,011A A A ??==≠--??但、3. 如果2A A E +=,则A 为可逆矩阵、正确、2()A A E A E A E +=?+=,因此A 可逆,且1A A E -=+、4. 设,A B 都就是n 阶非零矩阵,且0AB =,则,A B 的秩一个等于n ,一个小于n 、错、由0AB =可得()()r A r B n +≤、若一个秩等于n ,则该矩阵可逆,另一个秩为零,与两个都就是非零矩阵矛盾、只可能两个秩都小于n 、5.C B A ,,为n 阶方阵,若,AC AB = 则.C B = 错、如112132,,112132A B C===------,有,AC AB =但B C ≠、6.A 为n m ?矩阵,若,)(s A r =则存在m 阶可逆矩阵P 及n 阶可逆矩阵Q ,使.00=sI PAQ 正确、右边为矩阵A 的等价标准形,矩阵A 等价于其标准形、7.n 阶矩阵A 可逆,则*A 也可逆、正确、由A 可逆可得||0A ≠,又**||AA A A A E ==、因此*A 也可逆,且11(*)||A A A -=、8.设B A ,为n 阶可逆矩阵,则.**)*(A B AB = 正确、*()()||||||.AB AB AB E A B E ==又()(**)(*)*||*||*||||AB B A A BB A A B EA B AA A B E ====、因此()()*()(**)AB AB AB B A =、由B A ,为n 阶可逆矩阵可得AB 可逆,两边同时左乘式AB 的逆可得.**)*(A B AB = 二、选择题1.设A 就是n 阶对称矩阵,B 就是n 阶反对称矩阵()TB B =-,则下列矩阵中为反对称矩阵的就是(B )、(A) AB BA - (B) AB BA + (C) 2()AB (D) BAB (A)(D)为对称矩阵,(B)为反对称矩阵,(C)当,A B 可交换时为对称矩阵、 2、设A 就是任意一个n 阶矩阵,那么( A)就是对称矩阵、 (A) T A A (B) T A A - (C) 2A (D) TA A - 3.以下结论不正确的就是( C )、(A) 如果A 就是上三角矩阵,则2A 也就是上三角矩阵; (B) 如果A 就是对称矩阵,则 2A 也就是对称矩阵; (C) 如果A 就是反对称矩阵,则2A 也就是反对称矩阵; (D) 如果A 就是对角阵,则2A 也就是对角阵、4.A 就是m k ?矩阵, B 就是k t ?矩阵, 若B 的第j 列元素全为零,则下列结论正确的就是(B )(A ) AB 的第j 行元素全等于零; (B )AB 的第j 列元素全等于零; (C ) BA 的第j 行元素全等于零; (D ) BA 的第j 列元素全等于零; 5.设,A B 为n 阶方阵,E 为n 阶单位阵,则以下命题中正确的就是(D )(A) 222()2A B A AB B +=++ (B) 22()()A B A B A B -=+- (C) 222()AB A B = (D) 22()()A E A E A E -=+- 6.下列命题正确的就是(B )、(A) 若AB AC =,则B C = (B) 若AB AC =,且0A ≠,则B C = (C) 若AB AC =,且0A ≠,则B C = (D) 若AB AC =,且0,0B C ≠≠,则B C = 7、A 就是m n ?矩阵,B 就是n m ?矩阵,则( B)、 (A) 当m n >时,必有行列式0AB ≠; (B) 当m n >时,必有行列式0AB = (C) 当n m >时,必有行列式0AB ≠; (D) 当n m >时,必有行列式0AB =、AB 为m 阶方阵,当m n >时,(),(),r A n r B n ≤≤因此()r AB n m ≤<,所以0AB =、8.以下结论正确的就是( C )(A) 如果矩阵A 的行列式0A =,则0A =;(B) 如果矩阵A 满足20A =,则0A =;(C) n 阶数量阵与任何一个n 阶矩阵都就是可交换的; (D) 对任意方阵,A B ,有22()()A B A B A B -+=-9.设1234,,,αααα就是非零的四维列向量,1234(,,,),*A A αααα=为A 的伴随矩阵,已知0Ax =的基础解系为(1,0,2,0)T ,则方程组*0A x =的基础解系为( C )、(A)123,,ααα、(B)122331,,αααααα+++、(C)234,,ααα、(D)12233441,,,αααααααα++++、由0Ax =的基础解系为(1,0,2,0)T 可得12341310(,,,)0,2020αααααα?? ? ?=+= ? ???、因此(A),(B)中向量组均为线性相关的,而(D)显然为线性相关的,因此答案为(C)、由12341234**(,,,)(*,*,*,*)A A A A A A A O αααααααα===可得12,,αα34,αα均为*0A x =的解、10、设A 就是n 阶矩阵,A 适合下列条件( C )时,n I A -必就是可逆矩阵(A) nA A = (B) A 就是可逆矩阵 (C) 0nA = (B) A 主对角线上的元素全为零11.n 阶矩阵A 就是可逆矩阵的充分必要条件就是( D )(A) 1A = (B) 0A = (C) T A A = (D) 0A ≠ 12.,,A B C 均就是n 阶矩阵,下列命题正确的就是( A )(A) 若A 就是可逆矩阵,则从AB AC =可推出BA CA = (B) 若A 就是可逆矩阵,则必有AB BA = (C) 若0A ≠,则从AB AC =可推出B C =(D) 若B C ≠,则必有AB AC ≠13.,,A B C 均就是n 阶矩阵,E 为n 阶单位矩阵,若ABC E =,则有(C ) (A) ACB E = (B)BAC E = (C)BCA E = (D) CBA E = 14.A 就是n 阶方阵,*A 就是其伴随矩阵,则下列结论错误的就是( D )(A) 若A 就是可逆矩阵,则*A 也就是可逆矩阵; (B) 若A 就是不可逆矩阵,则*A 也就是不可逆矩阵; (C) 若*0A ≠,则A 就是可逆矩阵; (D)*.AA A =*.nAA A E A ==15.设A 就是5阶方阵,且0A ≠,则*A =( D )(A) A (B) 2A (C) 3A (D) 4A 16.设*A 就是()ij n n A a ?=的伴随阵,则*A A 中位于(,)i j 的元素为(B )(A)1njkki k aA =∑ (B)1nkjki k aA =∑ (C) 1n jk ik k a A =∑ (D) 1nki kj k a A =∑应为A 的第i 列元素的代数余子式与A 的第j 列元素对应乘积与、17、设1111n n nn a a A a a =??L L L L L, 1111n n nn A A B A A ??=LL L L L ,其中ij A 就是ij a 的代数余子式,则(C )(A) A 就是B 的伴随 (B)B 就是A 的伴随 (C)B 就是A '的伴随 (D)以上结论都不对18.设,A B 为方阵,分块对角阵00A C B ??=?,则*C = ( C ) (A) **00A C B ??=?(B)**00A A CB B ??=(C) **00B A C A B ??=?(D) **0A B A C A B B ??= 利用*||CC C E =验证、19.已知46135,12246A B==?-,下列运算可行的就是( C ) (A) A B + (B)A B - (C)AB (D)AB BA -20.设,A B 就是两个m n ?矩阵,C 就是n 阶矩阵,那么( D )(A) ()C A B CA CB +=+ (B) ()TTTTA B C A C B C +=+ (C) ()TTTC A B C A C B +=+ (D) ()A B C AC BC +=+21.对任意一个n 阶矩阵A ,若n 阶矩阵B 能满足AB BA =,那么B 就是一个( C )(A) 对称阵 (B)对角阵 (C)数量矩阵 (D)A 的逆矩阵与任意一个n 阶矩阵均可交换的矩阵为数量矩阵、22.设A 就是一个上三角阵,且0A =,那么A 的主对角线上的元素( C )(A) 全为零 (B)只有一个为零(C )至少有一个为零 (D)可能有零,也可能没有零23.设1320A ??=??,则1A -=( D ) (A) 1021136?-- (B)1031136??-???(C)1031126-(D)1021136?-24. 设111222333a b c A a b c a b c =??,若111222333222a c b AP a c b a c b ??=?,则P =( B ) (A) 100001020 (B)100002010 (C)001020100 (D)200001010??25.设(3)n n ≥阶矩阵1111a a a a a a A aa a aa a ??=??LL L L L L L L L ,若矩阵A 的秩为1,则a 必为(A )(A) 1 (B)-1 (C)11n - (D)11n -矩阵A 的任意两行成比例、26、设,A B 为两个n 阶矩阵,现有四个命题: ①若,A B 为等价矩阵,则,A B 的行向量组等价;②若,A B 的行列式相等,即||||,A B =则,A B 为等价矩阵; ③若0Ax =与0Bx =均只有零解,则,A B 为等价矩阵; ④若,A B 为相似矩阵,则0Ax =与0Bx =解空间的维数相同、以上命题中正确的就是( D )(A) ①, ③、(B) ②, ④、(C) ②,③、(D)③,④、当AP P B 1-=时,,A B 为相似矩阵。
(完整版)高等代数(北大版第三版)习题答案II
证 1)作变换 ,即
,
则
。
因为 是正定矩阵,所以 是负定二次型。
2) 为正定矩阵,故 对应的 阶矩阵也是正定矩阵,由1)知
或 ,
从而
,
令
,
则
。
由于 是正定的,因此它的 级顺序主子式 ,从而 的秩为 。
即证 。
3.设
。
其中 是 的一次齐次式,证明: 的正惯性指数 ,负惯性指数 。
证 设 ,
的正惯性指数为 ,秩为 ,则存在非退化线性替换
,
使得
。
下面证明 。采用反证法。设 ,考虑线性方程组
,
该方程组含 个方程,小于未知量的个数 ,故它必有非零解 ,于是
,
上式要成立,必有
, ,
这就是说,对于 这组非零数,有
, ,
这与线性替换 的系数矩阵非退化的条件矛盾。所以
。
同理可证负惯性指数 ,即证。
4.设
是一对称矩阵,且 ,证明:存在 使 ,其中 表示一个级数与 相同的矩阵。
证 只要令 ,则 ,
注意到
, ,
则有
。
即证。
5.设 是反对称矩阵,证明: 合同于矩阵
。
设 的秩为 ,作非退化线性替换 将原二次型化为标准型
,
其中 为1或-1。由已知,必存在两个向量 使
和 ,
故标准型中的系数 不可能全为1,也不可能全为-1。不妨设有 个1, 个-1,
且 ,即
,
这时 与 存在三种可能:
, ,
下面仅讨论 的情形,其他类似可证。
令 , , ,
则由 可求得非零向量 使
,
即证。
证 采用归纳法。当 时, 合同于 ,结论成立。下面设 为非零反对称矩阵。
(完整word)高等代数第四章矩阵练习题参考答案
第四章 矩阵习题参考答案一、 判断题1. 对于任意n 阶矩阵A ,B ,有A B A B +=+. 错.2. 如果20,A =则0A =. 错.如211,0,011A A A ⎛⎫==≠⎪--⎝⎭但.3. 如果2A A E +=,则A 为可逆矩阵.正确.2()A A E A E A E +=⇒+=,因此A 可逆,且1A A E -=+.4. 设,A B 都是n 阶非零矩阵,且0AB =,则,A B 的秩一个等于n ,一个小于n . 错.由0AB =可得()()r A r B n +≤.若一个秩等于n ,则该矩阵可逆,另一个秩为零,与两个都是非零矩阵矛盾.只可能两个秩都小于n . 5.C B A ,,为n 阶方阵,若,AC AB = 则.C B = 错.如112132,,112132A B C ⎛⎫⎛⎫⎛⎫===⎪ ⎪ ⎪------⎝⎭⎝⎭⎝⎭,有,AC AB =但B C ≠.6.A 为n m ⨯矩阵,若,)(s A r =则存在m 阶可逆矩阵P 及n 阶可逆矩阵Q ,使.000⎪⎪⎭⎫ ⎝⎛=sI PAQ 正确.右边为矩阵A 的等价标准形,矩阵A 等价于其标准形. 7.n 阶矩阵A 可逆,则*A 也可逆.正确.由A 可逆可得||0A ≠,又**||AA A A A E ==.因此*A 也可逆,且11(*)||A A A -=.8.设B A ,为n 阶可逆矩阵,则.**)*(A B AB = 正确.*()()||||||.AB AB AB E A B E ==又()(**)(*)*||*||*||||AB B A A BB A A B EA B AA A B E ====.因此()()*()(**)AB AB AB B A =.由B A ,为n 阶可逆矩阵可得AB 可逆,两边同时左乘式AB 的逆可得.**)*(A B AB = 二、 选择题1.设A 是n 阶对称矩阵,B 是n 阶反对称矩阵()TB B =-,则下列矩阵中为反对称矩阵的是(B ).(A) AB BA - (B) AB BA + (C) 2()AB (D) BAB(A)(D)为对称矩阵,(B )为反对称矩阵,(C )当,A B 可交换时为对称矩阵. 2. 设A 是任意一个n 阶矩阵,那么( A )是对称矩阵.(A) TA A (B) TA A - (C) 2A (D) TA A -3.以下结论不正确的是( C ).(A) 如果A 是上三角矩阵,则2A 也是上三角矩阵; (B) 如果A 是对称矩阵,则 2A 也是对称矩阵; (C) 如果A 是反对称矩阵,则2A 也是反对称矩阵; (D) 如果A 是对角阵,则2A 也是对角阵.4.A 是m k ⨯矩阵, B 是k t ⨯矩阵, 若B 的第j 列元素全为零,则下列结论正确的是(B )(A ) AB 的第j 行元素全等于零; (B )AB 的第j 列元素全等于零; (C ) BA 的第j 行元素全等于零; (D ) BA 的第j 列元素全等于零;5.设,A B 为n 阶方阵,E 为n 阶单位阵,则以下命题中正确的是(D ) (A) 222()2A B A AB B +=++ (B) 22()()A B A B A B -=+-(C) 222()AB A B = (D) 22()()A E A E A E -=+-6.下列命题正确的是(B ).(A) 若AB AC =,则B C =(B) 若AB AC =,且0A ≠,则B C = (C) 若AB AC =,且0A ≠,则B C = (D) 若AB AC =,且0,0B C ≠≠,则B C = 7. A 是m n ⨯矩阵,B 是n m ⨯矩阵,则( B ). (A) 当m n >时,必有行列式0AB ≠; (B) 当m n >时,必有行列式0AB = (C) 当n m >时,必有行列式0AB ≠; (D) 当n m >时,必有行列式0AB =.AB 为m 阶方阵,当m n >时,(),(),r A n r B n ≤≤因此()r AB n m ≤<,所以0AB =.8.以下结论正确的是( C )(A) 如果矩阵A 的行列式0A =,则0A =; (B) 如果矩阵A 满足20A =,则0A =;(C) n 阶数量阵与任何一个n 阶矩阵都是可交换的; (D) 对任意方阵,A B ,有22()()A B A B A B -+=-9.设1234,,,αααα是非零的四维列向量,1234(,,,),*A A αααα=为A 的伴随矩阵,已知0Ax =的基础解系为(1,0,2,0)T ,则方程组*0A x =的基础解系为( C ).(A )123,,ααα. (B )122331,,αααααα+++.(C )234,,ααα. (D )12233441,,,αααααααα++++.由0Ax =的基础解系为(1,0,2,0)T可得12341310(,,,)0,2020αααααα⎛⎫ ⎪ ⎪=+= ⎪ ⎪⎝⎭.因此(A ),(B )中向量组均为线性相关的,而(D )显然为线性相关的,因此答案为(C ).由12341234**(,,,)(*,*,*,*)A A A A A A A O αααααααα===可得12,,αα34,αα均为*0A x =的解.10.设A 是n 阶矩阵,A 适合下列条件( C )时,n I A -必是可逆矩阵(A) nA A = (B) A 是可逆矩阵 (C) 0nA = (B) A 主对角线上的元素全为零11.n 阶矩阵A 是可逆矩阵的充分必要条件是( D )(A) 1A = (B) 0A = (C) TA A = (D) 0A ≠ 12.,,ABC 均是n 阶矩阵,下列命题正确的是( A )(A) 若A 是可逆矩阵,则从AB AC =可推出BA CA = (B) 若A 是可逆矩阵,则必有AB BA = (C) 若0A ≠,则从AB AC =可推出B C = (D) 若B C ≠,则必有AB AC ≠13.,,A B C 均是n 阶矩阵,E 为n 阶单位矩阵,若ABC E =,则有(C ) (A) ACB E = (B )BAC E = (C )BCA E = (D) CBA E = 14.A 是n 阶方阵,*A 是其伴随矩阵,则下列结论错误的是( D )(A) 若A 是可逆矩阵,则*A 也是可逆矩阵; (B) 若A 是不可逆矩阵,则*A 也是不可逆矩阵;(C) 若*0A ≠,则A 是可逆矩阵; (D)*.AA A =*.nAA A E A ==15.设A 是5阶方阵,且0A ≠,则*A =( D )(A) A (B) 2A (C) 3A (D) 4A 16.设*A 是()ij n n A a ⨯=的伴随阵,则*A A 中位于(,)i j 的元素为(B )(A)1njkki k aA =∑ (B)1nkjki k aA =∑ (C) 1n jk ik k a A =∑ (D) 1nki kj k a A =∑应为A 的第i 列元素的代数余子式与A 的第j 列元素对应乘积和.17.设1111n n nn a a A a a ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦, 1111n n nn A A B A A ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦,其中ij A 是ij a 的代数余子式,则(C ) (A) A 是B 的伴随 (B)B 是A 的伴随 (C)B 是A '的伴随 (D)以上结论都不对18.设,A B 为方阵,分块对角阵00A C B ⎡⎤=⎢⎥⎣⎦,则*C = ( C ) (A) **00A C B ⎡⎤=⎢⎥⎣⎦ (B)**00A A CB B ⎡⎤=⎢⎥⎣⎦(C) **00B A C A B ⎡⎤=⎢⎥⎣⎦ (D) **0A B A C A B B ⎡⎤=⎢⎥⎣⎦利用*||CC C E =验证.19.已知46135,12246A B ⎡⎤⎡⎤==⎢⎥⎢⎥-⎣⎦⎣⎦,下列运算可行的是( C ) (A) A B + (B)A B - (C)AB (D)AB BA -20.设,A B 是两个m n ⨯矩阵,C 是n 阶矩阵,那么( D )(A) ()C A B CA CB +=+ (B) ()TTTTA B C A C B C +=+ (C) ()TTTC A B C A C B +=+ (D) ()A B C AC BC +=+21.对任意一个n 阶矩阵A ,若n 阶矩阵B 能满足AB BA =,那么B 是一个( C )(A) 对称阵 (B)对角阵 (C)数量矩阵 (D)A 的逆矩阵 与任意一个n 阶矩阵均可交换的矩阵为数量矩阵.22.设A 是一个上三角阵,且0A =,那么A 的主对角线上的元素( C )(A) 全为零 (B )只有一个为零(C )至少有一个为零 (D )可能有零,也可能没有零23.设1320A ⎡⎤=⎢⎥⎣⎦,则1A -=( D ) (A) 1021136⎡⎤⎢⎥⎢⎥⎢⎥--⎢⎥⎣⎦ (B )1031136⎡⎤-⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦ (C )1031126⎡⎤⎢⎥⎢⎥⎢⎥-⎢⎥⎣⎦(D )1021136⎡⎤⎢⎥⎢⎥⎢⎥-⎢⎥⎣⎦24. 设111222333a b c A a b c a b c ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦,若111222333222a c b AP a c b a c b ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦,则P =( B ) (A) 100001020⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦ (B )100002010⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦ (C )001020100⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦ (D )200001010⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦25.设(3)n n ≥阶矩阵1111a aa a a a A aa a aa a ⎡⎤⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎣⎦,若矩阵A 的秩为1,则a 必为(A )(A) 1 (B )-1 (C )11n - (D )11n -矩阵A 的任意两行成比例.26. 设,A B 为两个n 阶矩阵,现有四个命题: ①若,A B 为等价矩阵,则,A B 的行向量组等价;②若,A B 的行列式相等,即||||,A B =则,A B 为等价矩阵; ③若0Ax =与0Bx =均只有零解,则,A B 为等价矩阵; ④若,A B 为相似矩阵,则0Ax =与0Bx =解空间的维数相同. 以上命题中正确的是( D )(A) ①, ③. (B) ②, ④. (C) ②,③. (D)③,④.当AP P B 1-=时,,A B 为相似矩阵。
高等代数第四版习题答案
高等代数第四版习题答案【篇一:高等代数第四章矩阵练习题参考答案】xt>一、判断题1. 对于任意n阶矩阵a,b,有a?b?a?b.错.2. 如果a2?0,则a?0.错.如a11?2?,a?0,但a?0.1?1?23. 如果a?a?e,则a为可逆矩阵.正确.a?a2?e?a(e?a)?e,因此a可逆,且a?1?a?e.4. 设a,b都是n阶非零矩阵,且ab?0,则a,b的秩一个等于n,一个小于n. 错.由ab?0可得r(a)?r(b)?n.若一个秩等于n,则该矩阵可逆,另一个秩为零,与两个都是非零矩阵矛盾.只可能两个秩都小于n.5.a,b,c为n阶方阵,若ab?ac, 则b?c.错.如a11??21??32?,b?,c,有ab?ac,但b?c.1?1?2?1?3?2?6.a为m?n矩阵,若r(a)?s,则存在m阶可逆矩阵p及n阶可逆矩阵q,使?ispaq0?0??. 0??正确.右边为矩阵a的等价标准形,矩阵a等价于其标准形.7.n阶矩阵a可逆,则a*也可逆.*?a*a?|a|e正确.由a可逆可得|a|?0,又aa.因此a*也可逆,且(a*)?1?1a. |a|8.设a,b为n阶可逆矩阵,则(ab)*?b*a*.正确.(ab)(ab)*?|ab|e?|a||b|e.又(ab)(b*a*)?a(bb*)a*?a|b|ea*?|b|aa*?|a||b|e.因此(ab)(ab)*?(ab)(b*a*).由a,b为n阶可逆矩阵可得ab可逆,两边同时左乘式ab的逆可得(ab)*?b*a*.二、选择题1.设a是n阶对称矩阵,b是n阶反对称矩阵(bt??b),则下列矩阵中为反对称矩阵的是(b ).(a) ab?ba (b) ab?ba(c) (ab)2 (d) bab(a)(d)为对称矩阵,(b)为反对称矩阵,(c)当a,b可交换时为对称矩阵.2. 设a是任意一个n阶矩阵,那么( a)是对称矩阵.(a) aa (b) a?a (c)a(d) a?a3.以下结论不正确的是( c ).(a) 如果a是上三角矩阵,则a也是上三角矩阵;(b) 如果a是对称矩阵,则 a也是对称矩阵;(c) 如果a是反对称矩阵,则a也是反对称矩阵;(d) 如果a是对角阵,则a也是对角阵.4.a是m?k矩阵, b是k?t矩阵, 若b的第j列元素全为零,则下列结论正确的是(b )(a) ab的第j行元素全等于零;(b)ab的第j列元素全等于零;(c) ba的第j行元素全等于零; (d) ba的第j列元素全等于零;2222tt2t5.设a,b为n阶方阵,e为n阶单位阵,则以下命题中正确的是(d )(a) (a?b)2?a2?2ab?b2(b) a2?b2?(a?b)(a?b)(c) (ab)2?a2b2 (d) a2?e2?(a?e)(a?e)6.下列命题正确的是(b ).(a) 若ab?ac,则b?c(b) 若ab?ac,且a?0,则b?c(c) 若ab?ac,且a?0,则b?c(d) 若ab?ac,且b?0,c?0,则b?c7. a是m?n矩阵,b是n?m矩阵,则( b).(a) 当m?n时,必有行列式ab?0;(b) 当m?n时,必有行列式ab?0(c) 当n?m时,必有行列式ab?0;(d) 当n?m时,必有行列式ab?0.ab为m阶方阵,当m?n时,r(a)?n,r(b)?n,因此r(ab)?n?m,所以ab?0.8.以下结论正确的是( c)(a) 如果矩阵a的行列式a?0,则a?0;(b) 如果矩阵a满足a?0,则a?0;(c) n阶数量阵与任何一个n阶矩阵都是可交换的;(d) 对任意方阵a,b,有(a?b)(a?b)?a?b9.设?1?,2?,3?,4是非零的四维列向量,a?(?1,?2,?3,?4),a*为a的伴随矩阵,222已知ax?0的基础解系为(1,0,2,0)t,则方程组a*x?0的基础解系为( c ).(a)?1,?2,?3.(b)?1??2,?2??3,?3??1.(c)?2,?3,?4.(d)?1??2,?2??3,?3??4,?4??1.10t由ax?0的基础解系为(1,0,2,0)可得(?1,?2,?3,?4)0,?1?2?3?0. ?2?0?因此(a),(b)中向量组均为线性相关的,而(d)显然为线性相关的,因此答案为(c).由a*a?a*(?1,?2,?3,?4)?(a*?1,a*?2,a*?3,a*?4)?o可得?1,?2,?3,?4均为a*x?0的解.10.设a是n阶矩阵,a适合下列条件( c )时,in?a必是可逆矩阵nn(a) a?a (b) a是可逆矩阵 (c) a?0(b) a主对角线上的元素全为零11.n阶矩阵a是可逆矩阵的充分必要条件是( d)(a) a?1 (b) a?0 (c) a?a (d)a?012.a,b,c均是n阶矩阵,下列命题正确的是( a)(a) 若a是可逆矩阵,则从ab?ac可推出ba?ca(b) 若a是可逆矩阵,则必有ab?ba(c) 若a?0,则从ab?ac可推出b?c(d) 若b?c,则必有ab?ac13.a,b,c均是n阶矩阵,e为n阶单位矩阵,若abc?e,则有(c ) (a) acb?e (b)bac?e(c)bca?e (d) cba?e14.a是n阶方阵,a是其伴随矩阵,则下列结论错误的是( d )(a) 若a是可逆矩阵,则a也是可逆矩阵;(b) 若a是不可逆矩阵,则a也是不可逆矩阵;***t**(c) 若a?0,则a是可逆矩阵;(D)aa?a.aa*?ae?a.*15.设a是5阶方阵,且a?0,则a?(D)234n(a) a (b) a (c) a(d) a16.设a是a?(aij)n?n的伴随阵,则aa中位于(i,j)的元素为(B) (a) **?ak?1njkaki (b) ?ak?1nkjaki (c) ?ajkaik (d) ?akiakj k?1k?1nn应为a的第i列元素的代数余子式与a的第j列元素对应乘积和.a11a1na11a1n17.设a, b,其中aij是aij的代数余子式,则(c ) an1?ann???an1?ann??(a) a是b的伴随 (b)b是a的伴随(c)b是a?的伴随(d)以上结论都不对18.设a,b为方阵,分块对角阵ca0?*,则c? ( C ) ??0b?0? *?bb?0?? abb*??a*(a) c0?aa*0?(b)c??*?b??0?ba*(c)c0?aba*0?? (d) c??ab*??0利用cc*?|c|e验证.19.已知a46??135?,下列运算可行的是( c ) ,b1?2??246?(a) a?b (b)a?b (c)ab(d)ab?ba【篇二:高等代数第4章习题解】题4.11、计算(1)(2,0,3,1)?3(0,1,2,4)?1(1,0,1,5) 2(2)5(0,1,2)?(1,1,0)?(1,1,1) 215517(1,0,1,5)?(,?3,?,?) 2222解:(1)(2,0,3,1)?3(0,1,2,4)?(2)5(0,1,2)?(1,19,0)?(1,1,1)?(0,,9) 222、验证向量加法满足交换律、结合律。
第四章习题与复习题详解(线性空间)----高等代数
习题5. 11.判断全体n阶实对称矩阵按矩阵的加法与数乘是否构成实数域上的线性空间. 答是.因为是通常意义的矩阵加法与数乘,所以只需检验集合对加法与数乘运算的封闭性•由n阶实对称矩阵的性质知,n阶实对称矩阵加n阶实对称矩阵仍然是 n阶实对称矩阵,数乘n 阶实对称矩阵仍然是n阶实对称矩阵,所以集合对矩阵加法与数乘运算封闭,构成实数域上的线性空间•2 .全体正实数 R+,其加法与数乘定义为a 三b =ab k a =a k其中a,b三R ,k三R判断R+按上面定义的加法与数乘是否构成实数域上的线性空间答是.设,,」••R .因为;.■ a ,b∙-R =∙ a 二b= ab ■- R ,.三R, a 三R = ■ a = a '三R ,所以R •对定义的加法与数乘运算封闭下面 -- 验证八条线性运算规律(1) a^b=ab=ba =b^a;(2) a : J b :J C= ab :F c = ab c =abc =a bc =a:J b: J C ;(3) R •中存在零元素 1, - a ∙R [有a二1 =a 1 =a ;⑷对R冲任- 「元素a ,存在负元素a~ ≡ R n,使a㊉a」=aa」=1 ;(5) 1 a =a1=a ; ⑹∙∖A'a a J(7) ∣> - .■- f a - =a 'a' =a '二a" -,a 二「a ;(8) 工-'a 二b) i (ab )=ab =a b =a 二 b a - ∙ b.所以R+对定义的加法与数乘构成实数域上的线性空间3.全体实n阶矩阵,其加法定义为A :.门B=AB -BA按上述加法与通常矩阵的数乘是否构成实数域上的线性空间答否.TA 二 B =AB -BA , B 二 A=BA-AB= -(AB -BA)A 二B与B- A不一定相等故定义的加法不满足加法的交换律即运算规则(1)数乘不构成实数域上的线性空间• 4 .在P2渋中,W ={A∕∣A∣ =0, A乏P2邂},判断W是否是P2涙的子空间.答否.的线性相关性解设x1A1-X2A2- X3A3■ x4A4=O ,知, a = -3且a = 1时,方程组只有零解,这组向量线性无关;a =七或a =1时,方程组有非零解,这组向量线性相关2 •在R中,求向量:在基:-1, :-2, :-3, >4下的坐标.其中解设:∙ = X1■ X2■ x3=3 ■ X4M4,全体实n阶矩阵按定义的加法与例如'1 2和''1 1的行列式都为零, U 2丿13 3丿圭封闭.3的行列式不为零,也就是说集合对加法不5(ax1亠X2亠X3亠X4=0 即X i ' ax? X3 X4 =0 ∣X1■ X2■ ax3■ X4=0J X1X2X3 ax 4= 0 由系数行列式a III IaII IIaI IIIa=(a 3)( a -1)3由:'1 :2爲爲2 1 0 : ∖・0『10 0 0 :1 1 1 1 -0 初等行变换0 1 0 0 -0«)=≡ ------------- ⅛≡0 3 0 -1 -0 0 0 1 0 --1U 1 0 -1 「丿0 0 1 -0丿1—1-a—1 -A1得〉=X - ,3∙故向量:•在基?1 , :∙2, :'3, :• 4下的坐标为(1,0,- 1,0 )•得_7 二• 11〉2 -21: 3■ 30 :∙4.故向量:■在 基:∙1, :∙2, :∙3, :∙4下的坐标为(-7 , 11, -21 , 30)(1) 求由基(I )到基(∏)的过渡矩阵;<1、(2) 已知向量α在基of 1,α2,o (3下的坐标为 0 ,求α在基3下的坐标;C 1丿(3) 已知向量P 在基B 1,月,B 3下的坐标为-1求P 在基O 1,G 2,O 3下的坐标;3.在P 2 2中求解设Ot=X α +x c(十X α +x α则有( X l -.-0X 2 -「X 3 -「X 4 = 2X 1-X 2-X 3-.-Ox 4=3I x 1 -.-χ2 -.-Ox 3 -.-Ox 4 =4 X 1-.^0x 2-.^0x 3-.-Ox 4- -7L11 =2、(10 0 0 :-7 X -A 0a:3初等行变换10 :11≡--------- >a0 0:40 1 0 :-21 0 0 ≡ -7 I,01:30R =2 ,A3 ,A4I 1J1 1■1 0 4 •已知R 3的两组基(4)求在两组基下坐标互为相反数的向量解(1) C是由基()到基(∏)的过渡矩阵,由:1, :2, :3 - -'1^-2√-3 C 2厂3广1_2323-2(2)首先计算得C =0-10131(22)二Y=4k f52 —3k月=k 0 k为任意常数•√ J5 .已知P[x]4的两组基(I) :f1(x) =1 x X2■ X3, f2(x) = -X ■ X2, f3(x) =1 —X, f4(x) =12 3 2 3 3 2 (∏): g1(x)=x 亠X 亠X, g2(χ)=1 亠X 亠X, g3(χ)=1'χ'χ,(1) 求由基(I)到基(∏)的过渡矩阵;(2) 求在两组基下有相同坐标的多项式f(x).解(1 )设C是由基(I)到基(∏ )的过渡矩阵,由g1,g2,g3,g^ = f1, f2, f3, f4C 知基(I)到基(∏)的过渡矩阵为C(1 1 1、1 (1 2 3、广2 3 4、— 1 0 0 2 3 4 = 0 _1 01 _1 1 1 4 3丿_1 0 _1J J 于是:•在基:1, :2, :3下的坐标为C -(3)加在基J1,J2,-5下的坐标为C⑷设Y在基B l, 02, 03下的坐标为Y 2Iy3」*2 3 4 ' ,z-y1 X据题意有0 -1 0 y 2 =→2I-1 0-1J l√3丿l-y3 J 解此方程组可得Z y Iy 2 = kI y3」k为任意常数./10 1 1 :01 11、(10 0 -:1 1 1 0 X1 -1 -1 0 - :1 0 1 1 初等行变换0 1 0 0 :0 0 -1 1 11 0 0 -:1 1 0 10 0 1 0 :0 11 -20 -111丿I 00 1≡ :-1-A-13丿-2 -1(2)设多项式f(x)在基(I)下的坐标为(x 1, X 2,x 3, X 4)T•习题5.3证明线性方程组的解空间与实系数多项式空间I 3x 1∙χ2—6X 3 —4X 4 ∙2X 5 =02x 1■ 2 X 2—3X 3 —5X 4 "∙3X 5 =0X 1 -5x ? -6X 3 ι8 X 4 -6 X 5 — 0R[X ]3同构•有(1, x, x '01 1 1 ] q1 1 A 1 011 231 -1-1= (1,X, X , X )1 10 11 1 0 011°」a°」据题意有0 1 1 0 0 -1-11 因为I C -E =0 1 0 -2-1-1-121 1 01 1 0 = -1-1 1 = 0 0 1 =11-21-2所以方程组(*)只有零解,则f(χ)在基(I下的坐标为 (0, 0, 0, O)T,所以 f(x) = 0C .,χ3)X 2X3证明设线性方程组为 AX = 0,对系数矩阵施以初等行变换q-5-68-6'31-6-42初等行变换A =22-3-53------ >04375d-5-68-6 J0000■■■ R(A) =2.线性方程组的解空间的维数是5- R(A) =3 .实系数多项式空间 R[χ]3的维数也是3,所以此线性方程组的解空间与实系数多项式空 间R[ x]3同构.习题5.41.求向量〉=1, -1,2,3的长度.解 IGl = J l 2 +(_1)2 +22 +32 =曲.2.求向量= 1, -1,0,1与向量I= 2, 0,1, 3之间的距离.解 d( [J=:.—] =. (1 一2)2 • (_1 _0)2 • (0 -1)2 ■ (1 _3)2 = .. 7 . 3 .求下列向量之间的夹角 (1 ) :•=1,0,4,3 ,亠-1,2,1, -1(2) ? = 1,2,2,3 ,1 = 3,1,5,1(3) :•= 1,1,1, 2, 1 = 3,1, _1,0解(1) ; :-Λ =1(_1) 0 24 1 - 3 ( _1) =0, . a,.2(2)g , - -1 3 2 1 H-2 5 3 1 =18 ,18 6 18I α∣ = J +1 +1 +4 =J7 , IlPl = J9 +1 +1 +0 ,3.设:,'-,为n 维欧氏空间中的向量,证明:dG-,≤dC ∙, ) d(,')证明因为 I(X- - β∣∣2 =Ilet 一了 十了 - β∣∣2 =(a_Y + Y_B ,a_Y+Y_B)=1 3 T 1 亠1(一1) +2 汉0 =35IU . =arccos= (:•一,〉一)(•一,一J •(一一)W - ■-)= (:•一,「一)• 2(- J •(;:—「小—22「•一 - 22所以S卜-|)2,从而 d C- , J - dC∙ , ) ■ d( , ■).(2 )将∙1, ∙2, '-3单位化习题 5.51.在R4中,求一个单位向量使它与向量组、乂1 二1,1 ,- 1, -1I , 、2 2 二1, - 1,-1,1I , 、乂3 =1,-1,1, _1 正交. 解设向量:• = (x1, X2,X3, X4)与向量、右,∙√2,'^3正交,(:■,:■I)=0则有C-,>2 ) =0(二,:'3)=0I X1即X1X1X2- x3- X4= 0-X2 - X3∙ X4 = 0 (* ).-x2∙ X3- X4= 0齐次线性方程组(*)的一个解为X l= X2 = X3 =X4=1.取〉=(1,1,1,1),将向量「单位化所得向量:■1111=(-,-,-,-)即为所求.2 2 2 2将R3的一组基(1 )正交化,取=「3(it):L 1-O—- 0 - (_1) • (-1) 13 3T2Q2T2'、、2 J1;“1= .'11^√62√61J 46则■:1*, ζ,鳥为R 3的一组基标准正交基.3 •求齐次线性方程组f x 1 -.-χ2 —X 3 -「X4 —3x 5 = O的解空间的一组标准正交基分析因齐次线性方程组的一个基础解系就是其解空间的一组基, 再将其标准正交化即可•解对齐次线性方程组的系数矩阵施行初等行变换化为行最简阶梯形矩阵11-11-311-101 11-101* 0 01 ^4可得齐次线性方程组的一个基础解系由施密特正交化方法,取将'-1, ^-2, '-3单位化得单位正交向量组CP'1、S12 = 1,2 = 04I 0 J5I 1 J1S1/2一1/311/2—1/30 b 』2 +1β =1IP 3 =“3 —丄 3 + 丄 02 =1 /32234 I 0」<0 JJ 1 J"1:* _ 1 1- 2■3X 1亠 X 2- X 3亠 X 5 = 0所以只需求出一个基础解系因为齐次线性方程组的解向量的线性组合仍然是齐次线性方程组的解,所以是解空间的一组标准正交基3.设0f 1,α2,…^n是n维实列向量空间R n中的一组标准正交基,A是n阶正交矩阵证明:A]1,A:-,…,Ar也是R n中的一组标准正交基•证明因为α1,α2,…,αn是n维实列向量空间R n中的一组标准正交基,所以(0f j,α j) =o√α j = J ”0i 式j1 i = j(i ,匕17 2 ,n又因为A是n阶正交矩阵,所以A T A=E .则(A Ot i,Aαj) =(A a i)T(Ao(j)=ot T(A T A)Ot j ZT= Ot i O( j =■«p^0 i ≠j(i, j =1,2,…,n)1 i = j故A :1, A :2Λ , A - n也是R n中的一组标准正交基.5•设c(1, Ot2, α3是3维欧氏空间V的一组标准正交基,证明:1 =1(2 :1 • 2:匕-宀),:2 =1(2 :1 2 ∙ 2: 3), :3 =1(>1 -2〉2 -2亠)333也是V的一组标准止父基证明由题知,z22 1 '1(R,A,応)=(%企,。
高等代数第四章及其习题答案
α b11
A1 0
= B1 0
β a11b11 a11β + α B1
A1 B1
,
为上三角形矩阵, 由归纳法假设知 A1 B1 为上三角形矩阵,故 AB 为上三 角形矩阵。 角形矩阵。
2)设 A = ( aij ) 为一可逆的上三角形矩阵,则 ) 为一可逆的上三角形矩阵, nn
= ε iT A j L 0 L L L 0 L a jn i 行 . L 0 L L L 0
0 M 0 a1i AEij = ( B1 , L , Bn ) ε j = Bi ε j = M ( 0, L , 0,1, 0, L , 0 ) a 0 ni M 0 0 0 = L 0 L L L 0 0 0 a1i a2 i L ani 0 L L 0 . L L L 0 L 0 0 L
T
y1 n T T 2 ( Ax) Ax = y y = ( y1 ,L, yn ) M = ∑ yi = 0, y i =1 n
从而 yi = 0, i = 1, L, n , 即 y = Ax = 0 ,由
x 的任意性知 Aε j = 0, j = 1,L , n ,其中
为数量矩阵. 为数量矩阵 级矩阵可交换, 注:因 A 与所有 n 级矩阵可交换,故 A 一定与 可交换, E i j ( i , j = 1, L , n ) 可交换,于是 AEij = Eij A.
10、已知 A为实对称矩阵 且 A2 = 0 , 不妨设 A = aij 、 为实对称矩阵, 阶矩阵, 为 n 阶矩阵, = x
T
( )
nn
高等代数第四章矩阵练习题参考答案
第四章 矩阵习题参考答案一、 判断题1. 对于任意n 阶矩阵A ,B ,有A B A B +=+. 错.2. 如果20,A =则0A =. 错.如211,0,011A A A ⎛⎫==≠⎪--⎝⎭但.3. 如果2A A E +=,则A 为可逆矩阵.正确.2()A A E A E A E +=⇒+=,因此A 可逆,且1A A E -=+.4. 设,A B 都是n 阶非零矩阵,且0AB =,则,A B 的秩一个等于n ,一个小于n . 错.由0AB =可得()()r A r B n +≤.若一个秩等于n ,则该矩阵可逆,另一个秩为零,与两个都是非零矩阵矛盾.只可能两个秩都小于n . 5.C B A ,,为n 阶方阵,若,AC AB = 则.C B = 错.如112132,,112132A B C ⎛⎫⎛⎫⎛⎫===⎪ ⎪ ⎪------⎝⎭⎝⎭⎝⎭,有,AC AB =但B C ≠.6.A 为n m ⨯矩阵,若,)(s A r =则存在m 阶可逆矩阵P 及n 阶可逆矩阵Q ,使.000⎪⎪⎭⎫ ⎝⎛=sI PAQ 正确.右边为矩阵A 的等价标准形,矩阵A 等价于其标准形. 7.n 阶矩阵A 可逆,则*A 也可逆.正确.由A 可逆可得||0A ≠,又**||AA A A A E ==.因此*A 也可逆,且11(*)||A A A -=. 8.设B A ,为n 阶可逆矩阵,则.**)*(A B AB =正确.*()()||||||.AB AB AB E A B E ==又()(**)(*)*||*||*||||AB B A A BB A A B EA B AA A B E ====.因此()()*()(**)AB AB AB B A =.由B A ,为n 阶可逆矩阵可得AB 可逆,两边同时左乘式AB 的逆可得.**)*(A B AB =二、 选择题1.设A 是n 阶对称矩阵,B 是n 阶反对称矩阵()T B B =-,则下列矩阵中为反对称矩阵的是B .A AB BA - B AB BA +C 2()ABD BABAD 为对称矩阵,B 为反对称矩阵,C 当,A B 可交换时为对称矩阵. 2. 设A 是任意一个n 阶矩阵,那么 A 是对称矩阵. A T A A B T A A - C 2A D T A A - 3.以下结论不正确的是 C .(A) 如果A 是上三角矩阵,则2A 也是上三角矩阵; (B) 如果A 是对称矩阵,则 2A 也是对称矩阵; (C) 如果A 是反对称矩阵,则2A 也是反对称矩阵; (D) 如果A 是对角阵,则2A 也是对角阵.4.A 是m k ⨯矩阵, B 是k t ⨯矩阵, 若B 的第j 列元素全为零,则下列结论正确的是BA AB 的第j 行元素全等于零; B AB 的第j 列元素全等于零;C BA 的第j 行元素全等于零;D BA 的第j 列元素全等于零; 5.设,A B 为n 阶方阵,E 为n 阶单位阵,则以下命题中正确的是D A 222()2A B A AB B +=++ B 22()()A B A B A B -=+-C 222()AB A B =D 22()()AE A E A E -=+- 6.下列命题正确的是B . A 若AB AC =,则B C = B 若AB AC =,且0A ≠,则B C = (C) 若AB AC =,且0A ≠,则B C = D 若AB AC =,且0,0B C ≠≠,则B C = 7. A 是m n ⨯矩阵,B 是n m ⨯矩阵,则 B. (A)当m n >时,必有行列式0AB ≠; (B)当m n >时,必有行列式0AB = (C)当n m >时,必有行列式0AB ≠; (D)当n m >时,必有行列式0AB =.AB 为m 阶方阵,当m n >时,(),(),r A n r B n ≤≤因此()r AB n m ≤<,所以0AB =.8.以下结论正确的是 C(A)如果矩阵A 的行列式0A =,则0A =; (B)如果矩阵A 满足20A =,则0A =;(C)n 阶数量阵与任何一个n 阶矩阵都是可交换的; (D)对任意方阵,A B ,有22()()A B A B A B -+=-9.设1234,,,αααα是非零的四维列向量,1234(,,,),*A A αααα=为A 的伴随矩阵,已知0Ax =的基础解系为(1,0,2,0)T ,则方程组*0A x =的基础解系为 C .A 123,,ααα.B 122331,,αααααα+++.C 234,,ααα.D 12233441,,,αααααααα++++.由0Ax =的基础解系为(1,0,2,0)T 可得12341310(,,,)0,2020αααααα⎛⎫ ⎪ ⎪=+= ⎪ ⎪⎝⎭.因此A,B 中向量组均为线性相关的,而D 显然为线性相关的,因此答案为C.由可得12,,αα34,αα均为*0A x =的解.10.设A 是n 阶矩阵,A 适合下列条件 C 时,n I A -必是可逆矩阵(A) n A A = B A 是可逆矩阵 C 0n A = (B) A 主对角线上的元素全为零11.n 阶矩阵A 是可逆矩阵的充分必要条件是 D(A)1A = B 0A = C T A A = D 0A ≠12.,,A B C 均是n 阶矩阵,下列命题正确的是 A(A) 若A 是可逆矩阵,则从AB AC =可推出BA CA = (B) 若A 是可逆矩阵,则必有AB BA = (C) 若0A ≠,则从AB AC =可推出B C = (D) 若B C ≠,则必有AB AC ≠13.,,A B C 均是n 阶矩阵,E 为n 阶单位矩阵,若ABC E =,则有C (A) ACB E = B BAC E = C BCA E = D CBA E =14.A 是n 阶方阵,*A 是其伴随矩阵,则下列结论错误的是 D (A) 若A 是可逆矩阵,则*A 也是可逆矩阵; (B) 若A 是不可逆矩阵,则*A 也是不可逆矩阵; (C) 若*0A ≠,则A 是可逆矩阵; D*.AA A = 15.设A 是5阶方阵,且0A ≠,则*A = D(A)A B 2A C 3A D 4A16.设*A 是()ij n n A a ⨯=的伴随阵,则*A A 中位于(,)i j 的元素为BA 1n jk ki k a A =∑ B 1n kj ki k a A =∑ C 1n jk ik k a A =∑ D 1nki kj k a A =∑应为A 的第i 列元素的代数余子式与A 的第j 列元素对应乘积和.17.设1111n n nn a a A a a ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦, 1111n n nn A A B A A ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦,其中ij A 是ij a 的代数余子式,则C(A)A 是B 的伴随 B B 是A 的伴随 C B 是A '的伴随 D 以上结论都不对18.设,A B 为方阵,分块对角阵00A C B ⎡⎤=⎢⎥⎣⎦,则*C = C (A)**00A CB ⎡⎤=⎢⎥⎣⎦ B **00A A C B B ⎡⎤=⎢⎥⎣⎦ C **00B AC A B ⎡⎤=⎢⎥⎣⎦ D **0A B A C A B B ⎡⎤=⎢⎥⎣⎦ 利用*||CC C E =验证.19.已知46135,12246A B ⎡⎤⎡⎤==⎢⎥⎢⎥-⎣⎦⎣⎦,下列运算可行的是 C (A) A B + B A B - C AB D AB BA -20.设,A B 是两个m n ⨯矩阵,C 是n 阶矩阵,那么 D21.对任意一个n 阶矩阵A ,若n 阶矩阵B 能满足AB BA =,那么B 是一个 C(A)对称阵 B 对角阵 C 数量矩阵 D A 的逆矩阵 与任意一个n 阶矩阵均可交换的矩阵为数量矩阵.22.设A 是一个上三角阵,且0A =,那么A 的主对角线上的元素 C(A) 全为零 B 只有一个为零(C ) 至少有一个为零 D 可能有零,也可能没有零23.设1320A⎡⎤=⎢⎥⎣⎦,则1A-= D(A)121136⎡⎤⎢⎥⎢⎥⎢⎥--⎢⎥⎣⎦B131136⎡⎤-⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦C131126⎡⎤⎢⎥⎢⎥⎢⎥-⎢⎥⎣⎦D121136⎡⎤⎢⎥⎢⎥⎢⎥-⎢⎥⎣⎦24.设111222333a b cA a b ca b c⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦,若111222333222a c bAP a c ba c b⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦,则P= B(A)100001020⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦B100002010⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦C001020100⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦D200001010⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦25.设(3)n n≥阶矩阵1111a a aa a aA a a aa a a⎡⎤⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎣⎦,若矩阵A的秩为1,则a必为A(A)1 B-1 C11n-D11n-矩阵A的任意两行成比例.26. 设,A B为两个n阶矩阵,现有四个命题:①若,A B为等价矩阵,则,A B的行向量组等价;②若,A B的行列式相等,即||||,A B=则,A B为等价矩阵;③若0Ax=与0Bx=均只有零解,则,A B为等价矩阵;④若,A B为相似矩阵,则0Ax=与0Bx=解空间的维数相同.以上命题中正确的是 DA ①, ③.B ②, ④.C ②,③. D③,④.当APPB1-=时,,A B为相似矩阵;相似矩阵的秩相等;齐次线性方程组基础解系所含解的个数即为其解空间的维数;三、填空题1.设A 为三阶方阵,*A 为A 的伴随矩阵,有2A =,则11()2*3A A --=11*||2A A A A --==,111()33A A --=,因此11111311()2*34(1)32A A A A A A ------=-=-=-=-. 2.设,AB 为4阶方阵,且3A =,则1(3)A --= 1/27 , 21BA B -= 9 ; 3.设A 是一个m n ⨯矩阵,B 是一个n s ⨯矩阵,那么是()'AB 一个s m ⨯阶矩阵,它的第i 行第j 列元素为1njk ki k a b =∑.4.n 阶矩阵A 可逆A 非退化 ||0A ≠⇔ A 与单位矩阵等价 ⇔ A 可以表示为一系列初等矩阵的乘积 .4.三阶对角矩阵000000a A b c ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦,则A 的伴随矩阵*A = 000000bc ac ab ⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦. 5.设123023003A ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦,则*1()A -=16A . 6.设0,1,2,i a i n ≠=,矩阵12100000000000n na a a a -⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦的逆矩阵为 111121100000000000n n a a a a -----⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦. 7.设,A B 都是可逆矩阵,矩阵00A C B ⎡⎤=⎢⎥⎣⎦的逆矩阵为1100B A --⎡⎤⎢⎥⎣⎦.8.设121331,,342424A B C ⎡⎤⎡⎤⎡⎤===⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦,则(2)B A C -= . 9.A 既是对称矩阵,又是反对称矩阵,则A 为 零 矩阵.10.设方阵111222333b x c A b x c b x c ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦,111222333b y c B b y c b y c ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦,且2,3A B =-=则行列式A B += 4 .11.设A 为m 阶方阵,B 为n 阶方阵,已知,A a B b ==,则行列式00A B=ab mn )1(-.将A 的各列依次与B 的各列交换,共需要交换mn 次,化为00A B12.设A 为n 阶方阵,且0A ≠,则 在A 等价关系下的标准形为 n 阶 单位矩阵 .13. 设12221311A a -⎛⎫⎪=- ⎪ ⎪⎝⎭a为某常数,B 为43⨯的非零矩阵,且0BA =,则矩阵B 的秩为 1 .由0BA =可得A 的各列为齐次线性方程组0Bx =的解,A 的前两列线性无关,因此0Bx =的基础解系至少有两个解,因此()1r B ≤.又B 为非零矩阵,因此()1r B ≥.即() 1.r B =四、解答下列各题 1.求解矩阵方程1 25461321X -⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭;2 211113210432111X -⎛⎫-⎛⎫⎪= ⎪ ⎪⎝⎭ ⎪-⎝⎭; 3 142031121101X ⎛⎫⎛⎫⎛⎫= ⎪ ⎪ ⎪---⎝⎭⎝⎭⎝⎭;4 010100143100001201001010120X -⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪=- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭解:11254635462231321122108X -----⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=== ⎪ ⎪ ⎪⎪ ⎪-⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭ 212111132212104328/352/3111X --⎛⎫--⎛⎫⎛⎫ ⎪== ⎪ ⎪ ⎪--⎝⎭⎝⎭ ⎪-⎝⎭2.设033110123A ⎛⎫⎪= ⎪ ⎪-⎝⎭,2AB A B =+ ,求B 解:(2)A E B A -=.0332002332110020110123002121A E -⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪-=-=- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪--⎝⎭⎝⎭⎝⎭.22A E -=,因此2A E -可逆.3..设1P AP -=Λ,其中1411P --⎛⎫= ⎪⎝⎭,1002-⎛⎫Λ= ⎪⎝⎭,求11A . 解:1,A P P -=Λ4.设3级方阵,A B 满足124A B B E -=-,证明:2A E -可逆,并求其逆. 证明:124A B B E -=-两边同左乘以A 得到24B AB A =-.因此有(2)4A E B A -=.由A 可逆可得2A E -,且111(2).4A E BA ---=5.设A 是一个n 级方阵,且()R A r =,证明:存在一个n 级可逆矩阵P 使1PAP -的后n r -行全为零.证明:()R A r =,因此矩阵A 可以经过一系列行初等变换化为后n r -行全为零.也即存在初等矩阵11,,,m P P P ,使得21m P P P A 后n r -行全为零. 21mP P P P =,则PA 的后n r -行全为零.由矩阵乘法运算可得1PAP -的后n r -行全为零.6.设矩阵,m n n m A B ⨯⨯,且,m n AB E <=,证明:A 的行向量组线性无关. 证明:由,m n AB E <=可得()()m r AB r A m =≤≤,因此()r A m =.因此A 的行向量组线性无关.7.如果,2A A =称A 为幂等矩阵.设B A ,为n 阶幂等矩阵,证明:B A +是幂等矩阵的充要条件是0.AB BA +=证明:当B A +时幂等阵时, 因此0.AB BA +=反之,当0.AB BA +=时有 B A +是幂等矩阵.。
线性代数 (清华大学出版)课后习题部分解答(第四章)
第四章课后习题 及解答1. 证明:T )(1,1,1,11=α, T )(1,1,1,12--=α, T )(1,1,1,13--=α, T )(1,1,1,14--=α是4R 的一组基, 并求T )(1,1,2,1=β在这组基下的坐标.证明:0161111111111111111,,,4321≠-=------=)(αααα.R ,,,44321的一组基是αααα∴设β在这组基下的坐标为x ,则x )(4321,,,ααααβ=,从而 βαααα14321,,,-=)(x⎝⎛⎪⎪⎪⎪⎪⎭⎫--→→⎝⎛⎪⎪⎪⎪⎪⎭⎫------4141414510001000010000111211111111111111111⎪⎪⎪⎪⎪⎭⎫⎝⎛--=∴111541x 2. 已知3R 的两组基为.6,1,1,1,2,5,4,1,3,1,7,3,3,3,2,1,2,1T3T 2T 1T1T 2T 1)()()()()()(-======βββααα求:(1)向量T2,6,3)(=γ在基{}321,,ααα下的坐标; (2)基{}321,,ααα到基{}321,,βββ的过渡矩阵; (3)用公式(4.7)求γ在基{}321,,βββ下的坐标。
解:(1)设γ在基{}321,,ααα下的坐标为x ,则:x )(321,,αααγ=从而 γααα1321,,-=)(x⎪⎪⎪⎭⎫- ⎝⎛→→ ⎝⎛⎪⎪⎪⎭⎫112100010001263131732321 ⎪⎪⎪⎭⎫⎝⎛-=∴112x(2)设基{}321,,ααα到基{}321,,βββ的过渡矩阵为A ,则:A ,,,,321321)()(αααβββ=从而 )()(3211321,,,,A βββααα-= ⎪⎪⎪⎭⎫--- ⎝⎛→→ ⎝⎛⎪⎪⎪⎭⎫-8124920941712710010001614121153131732321 ⎪⎪⎪⎭⎫⎝⎛---=∴81249209417127A (3)设γ在基{}321,,βββ下的坐标为y ,则:x y 1A -= ⎪⎪⎪⎭⎫-⎝⎛→→ ⎝⎛⎪⎪⎪⎭⎫----4832534153100100111281249209417127⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=∴83106153414832534153y3. 已知4R 的两组基为.2,1,3,1,2,1,1,2,2,2,1,0,1,0,1,21,0,1,1,1,1,2,1,1,1,1,1,0,1,2,1T4T3T2T1T4T 3T 2T 1)()()()()()()()(=-===--=-=-=-=ββββαααα(1)求基{}4321,,,αααα到基{}4321,,,ββββ的过渡矩阵;若γ在基{}4321,,,αααα下的坐标为T 0,0,0,1)(,求γ在基{}4321,,,ββββ下的坐标.(2)求基{}4321,,,ββββ到基{}4321,,,αααα的过渡矩阵;若ξ在基{}4321,,,ββββ下的坐标为T 0,1,2,1)(-,求ξ在基{}4321,,,αααα下的坐标.(3)已知向量α在基{}4321,,,αααα下的坐标为T 0,1,2,1)(-,求它在基{}4321,,,ββββ下的坐标.解:(1)设基{}4321,,,αααα到基{}4321,,,ββββ的过渡矩阵为A ,则:A ,,,,,,43214321)()(ααααββββ=从而 )()(432114321,,,,,,A ββββαααα-=⎪⎪⎪⎪⎪⎭⎫⎝⎛→→⎝⎛⎪⎪⎪⎪⎪⎭⎫------0111101011100110001000010000122211120311112021110011112121111 ⎪⎪⎪⎪⎪⎭⎫⎝⎛=∴010111010111001A 设γ在基{}4321,,,ββββ下的坐标为y ,则:⎪⎪⎪⎪⎪⎭⎫⎝⎛=0001A 1-y⎪⎪⎪⎪⎪⎭⎫⎝⎛→→⎝⎛⎪⎪⎪⎪⎪⎭⎫101-01000100001000010001010111010111001 ⎪⎪⎪⎪⎪⎭⎫⎝⎛=∴101-0y(2) 设基{}4321,,,ββββ到基{}4321,,,αααα的过渡矩阵为B ,则:B ,,,,,,43214321)()(ββββαααα= ),,,(),,,(432114321B ααααββββ-=⎪⎪⎪⎪⎪⎭⎫----⎝⎛→→⎝⎛⎪⎪⎪⎪⎪⎭⎫------11111000001111101000100001000011110111121211112221112031111202⎪⎪⎪⎪⎪⎭⎫⎝⎛----=∴1111100000111110B设ξ在基{}4321,,,αααα下的坐标为x ,则:⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-⎪⎪⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=1131012101011101011100101-21A x(3)设α在基{}4321,,,ββββ下的坐标为z ,则:⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-⎪⎪⎪⎪⎪⎭⎫⎝⎛----=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=20130121111110000011111001-21B z 4. 在4R 中找一个向量γ,它在自然基{}4321,,,εεεε和基T4T3T2T13,1,6,6,1,2,3,5,0,1,3,0,1,1,1,2)()()()(===-=ββββ下有相同的坐标.解:设所求坐标为x ,则它满足:x x )()(43214321,,,,,,ββββεεεε= 即:0211111163216501=⎪⎪⎪⎪⎪⎭⎫⎝⎛-x⎪⎪⎪⎪⎪⎭⎫⎝⎛→→⎪⎪⎪⎪⎪⎭⎫⎝⎛-000110010101001211111163216501 ∴此齐次线性方程组的一般解为:⎪⎪⎪⎪⎪⎭⎫ ⎝⎛---=1111k x ⎪⎪⎪⎪⎪⎭⎫⎝⎛---==∴1111,,,4321k x )(可取εεεεγ 5. 已知)()()(2,2,1,1,1,1,3,2,1,1,2,1---=-=-=γβα。
高等代数(王萼芳石生明著)课后答案高等教育出版社
当D=0时若b=0无解若a=1时无解当a=1,b= 时方程有无穷多解。
20、(1)无穷多解
(2)无穷多解
(3)无穷多解
(4)无穷多解
21、(1)(4)
其中k为任意常数。 其中 为任意常数。
(6)
其中k为任意常数。
22、解:对方程的增广矩阵做行初等表换:
(2)同理可得 为所求极大线性无关组,且向量组的秩为3.
13、设 的秩为r n,因而 的秩为n,有题设和上题知n r
从而r=n。故 线性无关。
14、证:必要性。设 线性无关,但是n+1个n维向量 必线性相关,于是对于任意n维向量 ,他必可由 线性表出。
充分性:任意n维向量 可由线性表出,特别的单位向量 可由 线性表出,于是有上题结果即证 线性无关。
若向量组(1)中每一个向量都可以由向量组(2)线性表出,那么向量组(2)就是向量组(1)的极大线性无关组。否则,向量组(1)至少有一个向量 不能由向量组(2)线性表出,此时将 添加到向量组(2)中去,得到向量组(3),且向量组(3)是线性无关的。
进而,再检查向量组(1)中向量是否皆可由向量组(3)线性表出。若还不能,再把不能由向量组(3)线性表出的向量添加到向量组(3)中去,得到向量组(4)。继续这样下去,因为向量组(1)的秩有限,所以只需经过有限步后,即可得到向量组(1)的一个极大线性无关组。
高等代数习题答案(一至四章)
第一章多项式习题解答
1、(1)由带余除法,得
(2) ,
2、(1) ,(2)由 得 或 。
3、(1)
(2)q(x)= ,
4、(1)有综合除法:
(2)
(3)
第四章习题与复习题详细讲解(线性空间)----高等代数
习题5. 11. 判断全体n 阶实对称矩阵按矩阵的加法与数乘是否构成实数域上的线性空间. 答 是.因为是通常意义的矩阵加法与数乘, 所以只需检验集合对加法与数乘运算的封闭性. 由n 阶实对称矩阵的性质知,n 阶实对称矩阵加n 阶实对称矩阵仍然是n 阶实对称矩阵,数乘n 阶实对称矩阵仍然是n 阶实对称矩阵, 所以集合对矩阵加法与数乘运算封闭, 构成实数域上的线性空间.2.全体正实数R +, 其加法与数乘定义为 ,,k a b ab k a a a b R k R+⊕==∈∈其中 判断R +按上面定义的加法与数乘是否构成实数域上的线性空间. 答 是. 设,R λμ∈.因为,a b R a b ab R ++∀∈⇒⊕=∈,,R a R a a R λλλ++∀∈∈⇒=∈,所以R +对定义的加法与数乘运算封闭. 下面一一验证八条线性运算规律 (1) a b ab ba b a ⊕===⊕; (2)()()()()()a b c ab c ab c abc a bc a b c ⊕⊕=⊕====⊕⊕;(3) R +中存在零元素1, ∀a R +∈, 有11a a a ⊕=⋅=;(4) 对R +中任一元素a ,存在负元素1n a R -∈, 使111a a aa --⊕==; (5)11a a a ==; (6)()()a a a a a λμμλμλμλλμ⎛⎫==== ⎪⎝⎭;(7) ()a a a a a a a a λμμμλλλμλμ++===⊕=⊕;()(8)()().a b ab ab a b a b a b λλλλλλλλλ⊕====⊕=⊕所以R +对定义的加法与数乘构成实数域上的线性空间. 3. 全体实n 阶矩阵,其加法定义为A B AB BA ⊕=-按上述加法与通常矩阵的数乘是否构成实数域上的线性空间. 答 否.,()A B AB BA B A BA AB AB BA ⊕=-⊕=-=--A B B A ∴⊕⊕与不一定相等.故定义的加法不满足加法的交换律即运算规则(1), 全体实n 阶矩阵按定义的加法与数乘不构成实数域上的线性空间.4.在22P ⨯中,{}2222/0,,W A A A P W P ⨯⨯==∈判断是否是的子空间. 答 否.121123123345⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭例如和的行列式都为零,但的行列式不为零, 也就是说集合对加法不封闭.习题5.21.讨论22P ⨯中1234111111,,,111111a a A A A A a a ⎛⎫⎛⎫⎛⎫⎛⎫==== ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭的线性相关性.解 设11223344x A x A x A x A O +++=, 即123412341234123400ax x x x x ax x x x x ax x x x x ax +++=⎧⎪+++=⎪⎨+++=⎪⎪+++=⎩ . 由系数行列式3111111(3)(1)111111a a a a a a=+- 知, 3 1 , , a a ≠-≠且时方程组只有零解这组向量线性无关; 3 1 , , a a =-=或 时方程组有非零解这组向量线性相关. 2.在4R 中,求向量1234ααααα在基,,,下的坐标.其中1234010011001111ααααα⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪== ⎪ ⎪ ⎪ ⎪ ⎪- ⎪ ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭2111,=,=,=,3010解 设11223344x x x x ααααα=+++由()1234100110010111ααααα⎛⎫ ⎪⎪= ⎪- ⎪-⎝⎭2111301010001010000010100010⎛⎫ ⎪ ⎪−−−−→⎪- ⎪⎝⎭初等行变换得13ααα=-. 故向量1234ααααα在基,,,下的坐标为 ( 1, 0 , - 1 , 0 ).2212342347P ααααα⨯⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫= ⎪ ⎪ ⎪ ⎪⎪-⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭110-11-1103.在中求在基=,=,=,=下的坐标.11100000 解 设11223344x x x x ααααα=+++则有123412341234123402030040007x x x x x x x x x x x x x x x x +++=⎧⎪--+=⎪⎨+++=⎪⎪+++=-⎩.由101121000711103010011110040010211007000130-⎛⎫⎛⎫⎪ ⎪--⎪ ⎪−−−−→⎪⎪-⎪ ⎪-⎝⎭⎝⎭初等行变换 得12347112130ααααα=-+-+.故向量1234ααααα在基,,,下的坐标为(-7,11,-21,30). 4.已知3R 的两组基(Ⅰ): 123111ααα⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭11=,=0,=0-11(Ⅱ):123121βββ⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭23=,=3,=443(1) 求由基(Ⅰ)到基(Ⅱ)的过渡矩阵;(2) 已知向量123123,,,,,αααααβββ⎛⎫⎪⎪ ⎪⎝⎭1在基下的坐标为0求在基下的坐标-1;(3) 已知向量123123,,,,,βββββααα⎛⎫ ⎪⎪ ⎪⎝⎭1在基下的坐标为-1求在基下的坐标2;(4) 求在两组基下坐标互为相反数的向量γ.解(1)设C 是由基(Ⅰ)到基(Ⅱ)的过渡矩阵, 由 ()()321321,,,,αααβββ= C即123111234100143111C ⎛⎫⎛⎫ ⎪ ⎪= ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭,知基(Ⅰ)到基(Ⅱ)的过渡矩阵为1111123234100234010111143101C -⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪==- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪---⎝⎭⎝⎭⎝⎭.(2)首先计算得11322201013122C -⎛⎫-- ⎪⎪=- ⎪ ⎪ ⎪-⎝⎭, 于是α 在基321,,βββ 下的坐标为131200112C -⎛⎫ ⎪⎛⎫⎪ ⎪= ⎪ ⎪ ⎪ ⎪-⎝⎭ ⎪-⎝⎭.(3)β 在基321,,ααα 下的坐标为171123C ⎛⎫⎛⎫ ⎪ ⎪-= ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭.(4) 设γ在基321,,βββ 下的坐标为123y y y ⎛⎫ ⎪ ⎪ ⎪⎝⎭, 据题意有234010101⎛⎫ ⎪- ⎪⎪--⎝⎭123y y y ⎛⎫ ⎪ ⎪ ⎪⎝⎭123y y y -⎛⎫⎪=- ⎪ ⎪-⎝⎭, 解此方程组可得123y y y ⎛⎫ ⎪ ⎪ ⎪⎝⎭=043k k ⎛⎫ ⎪⎪ ⎪-⎝⎭,为任意常数.231430,7k k k k γββ-⎛⎫⎪∴=-= ⎪ ⎪⎝⎭为任意常数.5.已知P [x ]4的两组基(Ⅰ):2321234()1()()1()1f x x x x f x x x f x x f x =+++=-+=-=,,,(Ⅱ):2323321234()()1()1()1g x x x x x x x x x x x x x =++=++=++=++,g ,g ,g (1) 求由基(Ⅰ)到基(Ⅱ)的过渡矩阵; (2) 求在两组基下有相同坐标的多项式f (x ).解 ( 1 ) 设C 是由基(Ⅰ)到基(Ⅱ)的过渡矩阵, 由 ()()12341234,,,,,,g g g g f f f f =C有23230111101110111110(1,,,)(1,,)1101110011101000x x x x x x C ⎛⎫⎛⎫ ⎪ ⎪-- ⎪ ⎪= ⎪⎪ ⎪ ⎪⎝⎭⎝⎭,. 101101111000111011101011010000111100110100100112100111000011113⎛⎫⎛⎫⎪ ⎪--- ⎪ ⎪−−−−→⎪⎪-⎪ ⎪---⎝⎭⎝⎭初等行变换 1110001101121113C ⎛⎫ ⎪-⎪∴= ⎪- ⎪---⎝⎭. (2)设多项式f (x )在基(Ⅰ)下的坐标为1234(,,,)T x x x x .据题意有111222333444 ()x x x x x x C C E x x x x x x ⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪ ⎪ ⎪ ⎪=⇒-= ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭0 (*)因为01101101100111111001101021021021112C E ---==--==------所以方程组(*)只有零解,则f (x )在基(Ⅰ)下的坐标为(0,0,0,0)T,所以f (x ) = 0习题5.3证明线性方程组1234512345123453642022353056860x x x x x x x x x x x x x x x +--+=⎧⎪+--+=⎨⎪--+-=⎩ 的解空间与实系数多项式空间3[]R x 同构.证明 设线性方程组为AX = 0, 对系数矩阵施以初等行变换.316421568622353043751568600000A -----⎛⎫⎛⎫⎪ ⎪=--−−−−→ ⎪ ⎪ ⎪ ⎪---⎝⎭⎝⎭初等行变换()2()3R A R A =∴=线性方程组的解空间的维数是5-.实系数多项式空间3[]R x 的维数也是3, 所以此线性方程组的解空间与实系数多项式空间3[]R x 同构.习题5.41. 求向量()1,1,2,3α=- 的长度.解 α=.2. 求向量()()1,1,0,12,0,1,3αβ=-=与向量之间的距离.解 (,)d αβ=αβ-=3.求下列向量之间的夹角(1) ()()10431211αβ==--,,,,,,, (2) ()()12233151αβ==,,,,,,, (3)()()1,1,1,2311,0αβ==-,,, 解(1)(),1(1)02413(1)0,,2a παββ=⨯-+⨯+⨯+⨯-=∴=.(2)(),1321253118αβ=⨯+⨯+⨯+⨯=,6,αβ=,4πβ∴==.(3)(),13111(1)203αβ=⨯+⨯+⨯-+⨯=,α==β==,αβ∴=.3. 设αβγ,,为n 维欧氏空间中的向量,证明: (,)(,)(,)d d d αβαγγβ≤+. 证明 因为22(,)αβαγγβαγγβαγγβ-=-+-=-+--+-22(,)(,)(,)(,)(,)2(,)(,)2αγαγαγγβγβαγγβγβαγαγαγγβγβγβαγαγγβγβ=--+--+--+--=--+--+--≤-+-⋅-+-所以22()αβαγγβ-≤-+-, 从而(,)(,)(,)d d d αβαγγβ≤+.习题5.51. 在4R 中,求一个单位向量使它与向量组()()()1,1,1,11,1,1,11,1,1,1321--=--=--=ααα,, 正交.解 设向量1234123(,,,)x x x x αααα=与向量,,正交, 则有 112342123431234(0(,0(,)0x x x x x x x x x x x x αααααα=+--=⎧⎧⎪⎪=--+=⎨⎨⎪⎪=-+-=⎩⎩,)0)0即 (*). 齐次线性方程组(*)的一个解为 12341x x x x ====.取*1111(1,1,1,1), ,,,2222ααα=将向量单位化所得向量=()即为所求.2. 将3R 的一组基1231101,2,1111ααα⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪===- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭化为标准正交基.解 (1 )正交化, 取11111βα⎛⎫ ⎪== ⎪ ⎪⎝⎭ , 12221111311(,)111211221(,)11111131113βαβαβββ⎛⎫- ⎪⎛⎫⎛⎫ ⎪⨯+⨯+⨯ ⎪ ⎪ ⎪=-=-= ⎪ ⎪ ⎪⨯+⨯+⨯ ⎪ ⎪ ⎪⎝⎭⎝⎭⎪- ⎪⎝⎭ 132333122221122113121020(1)()1(,)(,)2333100121(,)(,)3()()()11333123βαβαβαββββββ⎛⎫-⎛⎫⎪- ⎪⎛⎫⎪-⨯+⨯-+-⨯ ⎪ ⎪ ⎪=--=---= ⎪ ⎪ ⎪ ⎪ ⎪-++- ⎪⎝⎭⎪ ⎪-⎝⎭ ⎪⎝⎭(2 ) 将123,,βββ单位化***123,,0βββ⎛⎛⎪=== ⎪⎪⎪⎪⎪⎪ ⎪ ⎪⎝⎭⎝则*1β,*2β,*3β为R3的一组基标准正交基.3.求齐次线性方程组12345123530x x x x xx x x x+-+-=⎧⎨+-+=⎩的解空间的一组标准正交基.分析因齐次线性方程组的一个基础解系就是其解空间的一组基,所以只需求出一个基础解系再将其标准正交化即可.解对齐次线性方程组的系数矩阵施行初等行变换化为行最简阶梯形矩阵11113111011110100014---⎛⎫⎛⎫−−→⎪ ⎪--⎝⎭⎝⎭可得齐次线性方程组的一个基础解系123111100,,010004001ηηη--⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪⎪ ⎪ ⎪⎪ ⎪ ⎪===⎪ ⎪ ⎪⎪ ⎪ ⎪⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.由施密特正交化方法, 取11221331211/21/311/21/3111,,011/3223004001βηβηββηββ--⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪-⎪ ⎪ ⎪⎪ ⎪ ⎪===+==-+=⎪ ⎪ ⎪⎪ ⎪ ⎪⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,将123,,βββ单位化得单位正交向量组***12311/21/311/21/3,,011/3004001βββ--⎛⎫⎛⎫⎛⎫⎪ ⎪⎪-⎪ ⎪⎪⎪⎪⎪===⎪⎪⎪⎪⎪⎪⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭因为齐次线性方程组的解向量的线性组合仍然是齐次线性方程组的解,所以*1β,*2β,*3β是解空间的一组标准正交基.3. 设1α,2α ,… ,n α 是n 维实列向量空间n R 中的一组标准正交基, A 是n 阶正交矩阵,证明: 1αA ,2αA ,… ,n A α 也是n R 中的一组标准正交基.证明 因为n ααα,,,21 是n 维实列向量空间n R 中的一组标准正交基, 所以⎩⎨⎧=≠==j i j i j T i j i 10),(αααα (,1,2,,)i j n =. 又因为A 是n 阶正交矩阵, 所以T A A E =. 则⎩⎨⎧=≠====j i j i A A A A A A j T i j T T i j T i j i10)()()(),(αααααααα (,1,2,,)i j n = 故n A A A ααα,,,21 也是n R 中的一组标准正交基. 5.设123,,ααα是3维欧氏空间V 的一组标准正交基, 证明112321233123111(22),(22),(22)333βαααβαααβααα=+-=-+=--也是V 的一组标准正交基. 证明 由题知()()1231232211,,,,2123122βββααα⎛⎫⎪=-- ⎪ ⎪--⎝⎭1232211,,2123122ααα⎛⎫ ⎪-- ⎪ ⎪--⎝⎭因为是一组标准正交基,且的行向量组是单位正交向量组.()1232211,,2123122ααα⎛⎫ ⎪-- ⎪ ⎪--⎝⎭所以和都是正交矩阵.()123,,.βββ从而也是正交矩阵123,,βββ所以是单位正交向量组, 构成V 的一组标准正交基.习题五(A)一、填空题1.当k 满足 时,()()()31211,2,1,2,3,,3,,3k k R ααα===为的一组基. 解 三个三维向量为3R 的一组基的充要条件是123,,0ααα≠, 即26k k ≠≠且. 2.由向量()1,2,3α=所生成的子空间的维数为 .解 向量()1,2,3α=所生成的子空间的维数为向量组α的秩, 故答案为1.3.()()()()3123,,1,3,5,6,3,2,3,1,0R αααα====中的向量371在基下的坐标为 . 解 根据定义, 求解方程组就可得答案.设所求坐标为123(,,)x x x , 据题意有112233x x x αααα=++. 为了便于计算, 取下列增广矩阵进行运算 ()3213613100154,,133701082025100133αααα⎛⎫⎛⎫⎪ ⎪=−−−−→- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭初等行变换, 所以123(,,)x x x = (33,-82,154). 4.()()()3123123,,2,1,3,1,0,1,2,5,1R εεεααα=-=-=---中的基到基的过渡矩阵为 .解 因为123123212(,,)(,,)105311αααεεε---⎛⎫ ⎪=- ⎪ ⎪-⎝⎭, 所以过渡矩阵为212105311---⎛⎫⎪- ⎪ ⎪-⎝⎭.5. 正交矩阵A 的行列式为 . 解 21T A A E A =⇒=⇒A =1±.6.已知5元线性方程组AX = 0的系数矩阵的秩为3, 则该方程组的解空间的维数为 . 解 5元线性方程组AX = 0的解集合的极大无关组(基础解系)含5 – 3 =2 个向量, 故解空间的维数为2.()()()()412342,1,1,1,2,1,,,3,2,1,,4,3,2,11,a a a R a αααα====≠7.已知不是的基且a 则满足 .解 四个四维向量不是4R 的一组基的充要条件是1234,,,0αααα=, 则12a =或1. 故答案为12a =. 二、单项选择题1.下列向量集合按向量的加法与数乘不构成实数域上的线性空间的是( ). (A ) (){}R x x x x V n n ∈=,,0,,0,111 (B ) (){}R x x x x x x x V i n n ∈=+++=,0,,,21212 (C ) (){}R x x x x x x x V i n n∈=+++=,1,,,21213(D) (){}411,0,,0,0V x x R =∈解 (C ) 选项的集合对向量的加法不封闭, 故选(C ).2.331,23P A ⨯⎛⎫ ⎪= ⎪ ⎪⎝⎭在中由生成的子空间的维数为( ). (A) 1 (B) 2 (C) 3 (D) 4 解 向量组A =123⎛⎫ ⎪⎪ ⎪⎝⎭生成的子空间的维数是向量组A 的秩, 故选(A ). 331231223311223311223123123123123,,( )() ,, ()2,23,3() ,,2 () ,2322,355R R A B C D ααααααααααααααααααααααααααααααα++-+++++++++-++-3.已知是的基,则下列向量组是的基.解 因 ( B )选项1223311231012,23,3=(,,) 220033ααααααααα⎛⎫⎪+++ ⎪ ⎪⎝⎭中(), 又因123101,,220033ααα⎛⎫⎪⎪ ⎪⎝⎭线性无关且可逆, 所以1223312,23,3αααααα+++线性无关.故选(B ).33123122313122331122313122313,, () ,, () 2,2,2() ,, () 2,2,2R R A B C D ααααααααααααααααααααααααααα++++++------4.已知是的基,则下列向量组()不是的基. 解 因122313 ()()()0αααααα-+---=, 所以( C )选项中向量组线性相关, 故选(C ). 5.n 元齐次线性方程组AX = 0的系数矩阵的秩为r , 该方程组的解空间的维数为s, 则( ).(A) s=r (B) s=n-r (C) s>r (D) s<r 选(B )6. 已知A, B 为同阶正交矩阵, 则下列( )是正交矩阵. (A) A+B (B) A-B (C) AB (D) kA (k 为数) 解 A, B 为同阶正交矩阵()T T T T AB AB ABB A AA E ⇒=== 故选(C ).7. 线性空间中,两组基之间的过渡矩阵( ).(A) 一定不可逆 (B) 一定可逆 (C) 不一定可逆 (D) 是正交矩阵 选(B )(B)1.已知4R 的两组基 (Ⅰ): 1234, αααα,,(Ⅱ):11234223433444,βααααβαααβααβα=+++=++=+=,, ( 1 )求由基(Ⅱ)到(Ⅰ)的过渡矩阵; ( 2 )求在两组基下有相同坐标的向量.解 (1)设C 是由基(Ⅰ)到基(Ⅱ)的过渡矩阵, 已知1234123410001100(,,,)(,,,)11101111ββββαααα⎛⎫ ⎪⎪= ⎪ ⎪⎝⎭, 所以由基(Ⅱ)到基(Ⅰ)的过渡矩阵为11000110001100011C -⎛⎫⎪-⎪= ⎪-⎪-⎝⎭. (2)设在两组基下有相同坐标的向量为α, 又设α在基(Ⅰ)和基(Ⅱ)下的坐标均为),,,(4321x x x x , 由坐标变换公式可得11223344x x x x C x x x x ⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪= ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭ , 即 1234()x x E C x x ⎛⎫ ⎪⎪-= ⎪ ⎪ ⎪⎝⎭0 (*) 齐次线性方程(*)的一个基础解系为(0,0,0,1)η=, 通解为(0,0,0,) ()X k k R *=∈. 故在基(Ⅰ)和基(Ⅱ)下有相同坐标的全体向量为12344000 ()k k k R αααααα=+++=∈.312312313123122323133123123123123123,, ,, ,, (1),, ,, ,, ;(3) 2 ,,R R αααβββββαααββααββααββββββαααααααβββ+=+++=++=+=+-2.已知是 的基,向量组满足证明 是的基;(2)求由基 到基的过渡矩阵求向量 在基 下的坐标.解 ( 1 ) 由题有123123110101(,,)011(,,)110101111βββααα⎛⎫⎛⎫⎪ ⎪= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⇒123123010(,,)(,,)-1-12100αααβββ⎛⎫⎪= ⎪ ⎪⎝⎭⇒123123001(,,)(,,)100111222βββααα⎛⎫ ⎪⎪= ⎪ ⎪ ⎪⎝⎭因 0011001112220≠,所以123,, βββ线性无关.故123,,βββ是3个线性无关向量,构成3 R 的基. (2 ) 因为123123010(,,)(,,)-1-12100αααβββ⎛⎫ ⎪= ⎪ ⎪⎝⎭所以从123123,,,,βββααα基到基的过渡矩阵为010-1-12100⎛⎫⎪⎪ ⎪⎝⎭(3) 123123123101012,,2,,-1-12211001αααααααβββ⎛⎫⎛⎫⎛⎫ ⎪ ⎪⎪=+-== ⎪ ⎪⎪ ⎪ ⎪⎪--⎝⎭⎝⎭⎝⎭()()1232,,-51βββ⎛⎫⎪= ⎪ ⎪⎝⎭()所以1232,,5.1αβββ⎛⎫ ⎪- ⎪ ⎪⎝⎭向量在基下的坐标为412341234123412341234123412002100,,,,0012002121001100,,,,003500121,,2 2R ααααββββααααββββααααααααα⎛⎫⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪=== ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎛⎫⎪⎪ ⎪ ⎪⎝⎭=++-3.设的两组基,与=,,且由基,到基,的过渡矩阵为()求基,;()求向量1234,,ββββ在基,下的坐标.解 (1) 因为12341234,,,,ααααββββ由基,到基,的过渡矩阵为C = 2100110000350012⎛⎫ ⎪⎪⎪ ⎪⎝⎭, 所以112341234(,,,)(,,,)12001-10013002100-120010000012002-5000100210-13037C ααααββββ-=-⎛⎫⎛⎫⎛⎫⎪⎪ ⎪ ⎪⎪ ⎪==⎪⎪ ⎪⎪⎪ ⎪-⎝⎭⎝⎭⎝⎭所以123413001000,,,00010037αααα-⎛⎫⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪==== ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭⎝⎭.(2 ) 11234123412341111 2(,,,)(,,,)1122C αααααααααββββ-⎛⎫⎛⎫⎪ ⎪ ⎪ ⎪=++-== ⎪ ⎪ ⎪ ⎪--⎝⎭⎝⎭123401(,,,)127ββββ⎛⎫⎪ ⎪= ⎪ ⎪-⎝⎭,12341234012,,,12-7αααααββββ⎛⎫ ⎪ ⎪∴=++- ⎪ ⎪⎝⎭向量在基下的坐标为.222123324. ()1,()12,()123[]()6914f x x x f x x x f x x x P x f x x x =++=++=++=++证明是线性空间的一组基,并求在这组基下的坐标.证明 设112233()()()0t f x t f x t f x ++=,则有222123(1)(12)(123)0t x x t x x t x x ++++++++= 即123123123011120*11210230123t t t t t t t t t ++=⎧⎪++==-≠⎨⎪++=⎩()因为系数行列式所以方程组(*)只有零解. 故123(),(),()f x f x f x 线性无关, 构成3[]P x 线性空间的一组基. 设112233()()()()f x y f x y f x y f x =++ 则有1231123212336129223143y y y y y y y y y y y y ++=⎧⎛⎫⎛⎫⎪ ⎪ ⎪++=⇒=⎨ ⎪ ⎪⎪ ⎪⎪++=⎝⎭⎩⎝⎭所以()f x 123(),(),()f x f x f x 在基下的坐标为(1, 2, 3).5.当a 、b 、c 为何值时,矩阵A = 020010a bc ⎫ ⎪⎪⎪⎪ ⎪ ⎪ ⎪⎝⎭是正交阵.解 要使矩阵A 为正交阵,应有 T AA E = 001002200100100010001a b a c bc ⎫ ⎪⎪⎛⎫⎪⎪ ⎪⇒=⎪⎪ ⎪ ⎪⎪ ⎪⎝⎭ ⎪⎪ ⎪⎪⎝⎭⎝⎭ 222101002201001000102a ac acbc ⎛⎫++ ⎪⎛⎫ ⎪ ⎪⇒=⎪ ⎪ ⎪⎪⎝⎭ ⎪++ ⎪⎝⎭⇒2221120 21a ac b c ⎧+=⎪⎪+=⇒⎨⎪+=⎪⎩①121212a b c ⎧=⎪⎪⎪=⎨⎪⎪=-⎪⎩;②121212a b c ⎧=⎪⎪⎪=-⎨⎪⎪=⎪⎩;③121212a b c ⎧=-⎪⎪⎪=⎨⎪⎪=⎪⎩;④121212a b c ⎧=-⎪⎪⎪=-⎨⎪⎪=-⎪⎩. 6.设 是n 维非零列向量, E 为n 阶单位阵, 证明:T T E A αααα)(/2-=为正交矩阵. 证明 因为是n 维非零列向量, T αα所以是非零实数.又22TTT T T T T A E E A αααααααα⎛⎫=-=-= ⎪⎝⎭,所以22 T T T T T A A AA E E αααααααα⎛⎫⎛⎫==-- ⎪⎪⎝⎭⎝⎭()()2224444()()T T T T T TTTTTE E Eαααααααααααααααααααα=-+=-+=故A 为正交矩阵.7.设TE A αα2-=, 其中12,,,Tn a a a α=(), 若 ααT = 1. 证明A 为正交阵.证明 因为A E E E A TT T T T T T =-=-=-=αααααα2)(2)2(,所以A 为对称阵.又(2)(2)T T T A A E E αααα=--244()T T T E E αααααα=-+=, 所以A 为正交阵.8. , , , 0.A B n A B A B =-+=设均为阶正交矩阵且证明证明 因为, ,A B n 均为阶正交矩阵 所以0T A A =≠且T T T T T T TA AB E A B B B A B B A BB A B B A B+=+=+=+⋅=+⋅=⋅+()。
第4章-矩阵练习题
⎛ B ⎞
18.设 A 为 n 阶方阵,且 A = 1 ,则 r ( A) = ______________. 19. 设 n 维向量 α = ( a,0,",0, a ) , a < 0, E 为 n 阶单位矩阵 , A = E − αα , B = E +
T
T
逆矩阵为 B ,则 a = ______.
7. 设 n 阶阵 A 可逆,且 f ( A) = 0 ,其中 f ( x) = am x + am −1 x
m m −1
+ " + a1 x + a0 是一非零多项式,求 A−1 .
2
⎛1 0 1⎞ ⎜ ⎟ 8.设 X = AX − A + E , 其中 A = 0 2 0 ,求矩阵 X . ⎜ ⎟ ⎜1 0 1⎟ ⎝ ⎠
* *
⎛k ⎜ 1 15. 设矩阵 A = ⎜ ⎜1 ⎜ ⎝1
1 k 1 1
1 1 k 1
1⎞ ⎟ 1⎟ ,且 r ( A) = 3, 则 k = ______ . 1⎟ ⎟ k⎠
*
16. 设 A 是 n(≥ 3) 阶方阵, A 的各行元素之和为 0 ,而 A ≠ 0 ,则 r ( A) = _____ . 17. 设 A, B 是 n 阶方阵,且 r ( A) = r , r ( B ) = s 则 r ( A, AB ) = ________, r ⎜ ⎜ AB ⎟ ⎟ = _______ . ⎝ ⎠
⎛1 ⎜ 0 * 4. 设矩阵 A 的伴随矩阵 A = ⎜ ⎜0 ⎜ ⎝2
0 1 0 2
0 0 1 2
0⎞ ⎟ 0⎟ −1 −1 ,且 ABA = BA + 3E ,求矩阵 B 0⎟ ⎟ 8⎠
高等代数(2017秋季)第四章自测题
第四章矩阵自测题一、填空题1.若矩阵A 的秩为2,则(2,3)(3,2(3))P AP -的秩为 .2.设55()ij A a ⨯=,则|-2A|= .3.若2(),20,ij n n A a A A E ⨯=--=可逆且则1A -= .4.设(),()(,,ij s n kj n m A a B b s n m ⨯⨯==互不相同)则,,,A B A B AB BA +-中有意义的是 .5.设A 、B 、C 都是n 阶可逆矩阵,且2,AC B CB =则1C -= .6. 已知212()32,23f A λλλ⎛⎫=-+= ⎪-⎝⎭, 则()f A = .. 二、选择题1.A 、B 为n 阶方阵,下列结论正确的是( )A.AB BA =B.,AB AC B C ==若则C.()AB B A '''=D. 0,00AB A B ===若则或2.若A 是3阶方阵,则12A A -'-=( ).A.3B.13C.1D.-8 3. ()ij n n A a ⨯=,*A A 是的伴随矩阵,则下列命题为假的是( )A.若*(),()A n A n ==秩则秩B.若*()1,()1A n A =-=秩则秩C.若*()1,()1A n A <-=秩则秩D. 若*()2,()0A n A =-=秩则秩4.设,A B n 为阶方阵,且0AB =,则下列结论错误的是( )A.()()A B n +≤秩秩B.()()()A B A B +≤+秩秩秩C.()()()A B A B -≤-秩秩秩D.()0()0A B ==秩或秩;三、已知矩阵311121130103114013A B -⎛⎫⎛⎫ ⎪ ⎪== ⎪ ⎪ ⎪ ⎪--⎝⎭⎝⎭,, 分别求下列矩阵方程的解:(1);(2).AX B XA B ==四、已知n阶矩阵,A B都是反对称矩阵,则AB和BA都是对称矩阵。
五、做过的作业;。
高等代数第四章矩阵练习试题参考包括答案.docx
第四章矩阵习题参考答案一、判断题1.对于任意 n 阶矩阵A,B,有A B A B .错.2.如果 A20, 则A0 .错 . 如A 110, 但A 0 . 1, A213.如果 A A2 E ,则 A 为可逆矩阵.正确 . A A2E A( E A) E ,因此A可逆,且A1 A E .4.设 A, B 都是 n 阶非零矩阵,且AB 0 ,则A, B的秩一个等于n,一个小于n.错 . 由AB0 可得r ( A)r (B)n .若一个秩等于 n ,则该矩阵可逆,另一个秩为零,与两个都是非零矩阵矛盾. 只可能两个秩都小于n .5.A, B, C为n阶方阵,若AB AC ,则 B C.错 . 如A 112132,有 AB AC ,但B C. 1, B2, C32116.A为m n矩阵,若r ( A)s, 则存在 m 阶可逆矩阵P及 n 阶可逆矩阵 Q ,使I s0PAQ.00正确 . 右边为矩阵A的等价标准形,矩阵 A 等价于其标准形.7.n阶矩阵A可逆,则A *也可逆 .正确 . 由A可逆可得| A |0 ,又 AA* A* A| A | E .因此 A *也可逆,且( A*) 11A . | A |8.设A, B为n阶可逆矩阵,则( AB)* B * A* .正确 . ( AB)( AB)*| AB | E| A || B | E. 又( AB)( B * A*) A( BB*) A* A | B | EA* | B | AA* | A || B | E .因此 ( AB)( AB)* ( AB)( B * A*) .由 A, B 为 n 阶可逆矩阵可得AB 可逆,两边同时左乘式 AB 的逆可得( AB)* B * A * .二、选择题1.设A是n阶对称矩阵,B是n阶反对称矩阵(B T B ),则下列矩阵中为反对称矩阵的是( B ).(A) AB BA (B)AB BA (C)( AB)2(D)BAB(A)(D) 为对称矩阵,( B)为反对称矩阵,( C)当A, B可交换时为对称矩阵.2.设 A 是任意一个n阶矩阵,那么(A)是对称矩阵.(A)A T A(B) A A T(C)A2(D)A T A3.以下结论不正确的是(C).(A)如果 A 是上三角矩阵,则 A2也是上三角矩阵;(B)如果 A 是对称矩阵,则 A2也是对称矩阵;(C)如果 A 是反对称矩阵,则 A2也是反对称矩阵;(D)如果 A 是对角阵,则 A2也是对角阵.4.A是m k 矩阵, B 是 k t 矩阵,若 B 的第 j 列元素全为零,则下列结论正确的是( B )( A)AB 的第 j 行元素全等于零;( B) AB的第j列元素全等于零;( C)BA 的第 j 行元素全等于零;( D)BA 的第 j 列元素全等于零;5 .设 A, B 为 n 阶方阵,E 为 n 阶单位阵,则以下命题中正确的是(D )(A)( A B)2 A 2 2 ABB 2 (B) A 2 B 2( A B)( A B)(C) ( AB) 2A 2B 2 (D) A 2E 2( A E)( A E)6.下列命题正确的是( B ) .(A) 若 AB AC ,则 B C(B) 若 AB AC ,且 A0 ,则 B C(C) 若 AB AC ,且 A 0 ,则 BC(D)若 ABAC ,且 B 0, C 0 ,则 B C7.A 是 m n 矩阵,B 是 n m 矩阵,则( B ) .(A) 当 m n 时,必有行列式 AB 0 ; (B) 当 m n 时,必有行列式 AB 0 (C) 当 nm 时,必有行列式 AB0 ;(D) 当 n m 时,必有行列式 AB 0 .AB 为 m 阶方阵,当 m n 时, r ( A) n, r ( B) n, 因此 r ( AB) n m ,所以AB 0 .8.以下结论正确的是( C )(A) 如果矩阵 A 的行列式 A 0 , 则 A 0 ; (B) 如果矩阵A 满足 A 2 0 ,则A 0;(C) n 阶数量阵与任何一个 n 阶矩阵都是可交换的;(D) 对任意方阵 A, B ,有 ( A B)( A B) A 2 B 29.设 1 , 2 , 3 ,4 是非零的四维列向量, A ( 1 ,2 ,3 ,4 ), A * 为 A 的伴随矩阵,已知 Ax0 的基础解系为 (1,0, 2,0) T ,则方程组 A * x0 的基础解系为( C ) .( A ) 1 , 2,3 .( B ) 12 ,23 ,31 .( C)2,3,4 .( D)1 2 ,2 3 , 3 4 , 4 1 .1由 Ax 0 的基础解系为(1,0, 2,0)T可得 ( 1 , 2 , 3 , 4 )00, 1 2 30 .2D)显然为线性相关的,因此答案因此( A),(B)中向量组均为线性相关的,而(为( C) . 由A* A A*( 1 , 2 ,3, 4 )( A *1, A* 2 , A* 3 , A * 4 )O 可得 1 , 2 , 3 , 4 均为A* x0 的解.10.设 A 是n阶矩阵, A 适合下列条件(C)时,I n A 必是可逆矩阵(A)A n A(B) A 是可逆矩阵(C)A n0(B) A 主对角线上的元素全为零11. n 阶矩阵A是可逆矩阵的充分必要条件是(D)(A) A 1 (B)A 0 (C) A A T(D)A012. A, B, C 均是 n 阶矩阵,下列命题正确的是(A)(A)若 A 是可逆矩阵,则从 AB AC 可推出 BA CA(B)若 A 是可逆矩阵,则必有 AB BA(C) 若A0 ,则从 AB AC 可推出 B C(D) 若B C ,则必有 AB AC13.A, B,C均是n阶矩阵,E为 n 阶单位矩阵,若ABC E ,则有(C)(A) ACB E (B) BAC E (C) BCA E (D)CBA E14.A是n阶方阵,A*是其伴随矩阵,则下列结论错误的是(D)(A)若 A 是可逆矩阵,则 A*也是可逆矩阵;(B) 若A是不可逆矩阵,则A*也是不可逆矩阵;(C) 若 A *0 ,则 A 是可逆矩阵;(D) AA *A .AA *A E nA .15.设 A 是 5 阶方阵,且A0 ,则 A * ( D)(A)A(B)A23 (D)4(C)AA16.设 A * 是 A(a ij )n n 的伴随阵,则 A * A 中位于 (i , j) 的元素为(B )nnnn(A)ajkA ki (B)a kjAki(C)a jkAik(D)a kiAkjk 1k 1k 1k 1应为 A 的第 i 列元素的代数余子式与 A 的第 j 列元素对应乘积和 .a11L a 1nA11L A1n17. 设 ALL L, BLL L, 其中 A ij 是 a ij 的代数余子式, 则( C )an1LannAn1LAnn(A)A 是B 的伴随 (B)B 是 A 的伴随 (C) B 是 A 的伴随(D) 以上结论都不对18.设 A, B 为方阵,分块对角阵CA 0*( C )0 , 则 CB(A)A *(B)A A *C0 B *CB B *(C)CB A *0 (D)A B A *A B *CA B B *利用 CC*| C | E 验证 .46 1 3 5 19.已知 A, B4 ,下列运算可行的是(C)122 6(A)A B (B)A B(C)AB (D) AB BA20.设A, B是两个m n 矩阵,C是 n 阶矩阵,那么(D)(A) C ( A B) CA CB(B)( A T B T )C A T C B T C(C) C T( A B) C T A C T B(D)( A B)C AC BC21.对任意一个n阶矩阵A,若n阶矩阵B能满足AB BA ,那么 B 是一个(C)(A)对称阵(B) 对角阵(C)数量矩阵(D) A 的逆矩阵与任意一个 n 阶矩阵均可交换的矩阵为数量矩阵.22.设A是一个上三角阵,且A0,那么 A 的主对角线上的元素(C)(A)全为零( B)只有一个为零( C)至少有一个为零( D)可能有零,也可能没有零23.设A 13D2,则 A 1()1111 2332(A)( B)( C)( D)1111111136362636a1b1 24.设A a2b2a3b31 00(A)0 0 10 2 0c1a1c12b1c2,若 AP a2c22b2,则 P( B)c3a3c32b3100001200( B)002( C)020(D)001 0101000101 a a L aa 1a L a25.设 n(n3) 阶矩阵 Aa a1 L a ,若矩阵 A 的秩为 1,则 a 必为( A )L L LL La aa L1(A) 1( B ) -1(C ) 1(D )1 nn 11矩阵 A 的任意两行成比例 .26. 设 A, B 为两个 n 阶矩阵 , 现有四个命题 :①若 A, B 为等价矩阵 , 则 A, B 的行向量组等价 ;②若 A, B 的行列式相等 , 即 | A | | B |, 则 A, B 为等价矩阵 ; ③若 Ax 0 与 Bx 0 均只有零解 , 则 A, B 为等价矩阵 ; ④若 A, B 为相似矩阵 , 则 Ax 0 与 Bx 0 解空间的维数相同 .以上命题中正确的是 ( D )(A) ① , ③. (B) ② , ④. (C) ② , ③ .(D)③ , ④ .当 BP 1 AP 时, A, B 为相似矩阵。
高等代数__课后答案__高等教育出版社
高等代数习题答案(一至四章)第一章 多项式 习题解答1、(1)由带余除法,得17(),39q x x =-262()99r x =--(2)2()1q x x x =+-,()57r x x =-+2、(1)2100p m q m ⎧++=⎨-=⎩ , (2)由22(2)010m p m q p m ⎧--=⎪⎨+--=⎪⎩得01m p q =⎧⎨=+⎩或212q p m =⎧⎨+=⎩。
3、(1)432()261339109,q x x x x x =-+-+()327r x =- (2)q (x )=22(52)x ix i --+,()98r x i =--4、(1)有综合除法:2345()15(1)10(1)10(1)5(1)(1)f x x x x x x =+-+-+-+-+- (2)234()1124(2)22(2)8(2)(2)f x x x x x =-+++-+++(3)234()24(75)5()(1)()2()()f x i x i i x i i x i x i =+-++--+-+++5、(1)x+1 (2)1 (3)21x -- 6、(1)u (x )=-x-1 ,v (x )=x+2 (2)11()33u x x =-+,222()133v x x x =-- (3)u (x )=-x-1, 32()32v x x x x =+--7、02u t =⎧⎨=⎩或23u t =-⎧⎨=⎩8、思路:根具定义证明证:易见d (x )是f (x )与g (x )的公因式。
另设()x ϕ是f (x )与g (x )的任意公因式,下证()()x d x ϕ。
由于d (x )是f (x )与g (x )的一个组合,这就是说存在多项式s (x )与t (x ),使 d (x )=s (x )f (x )+t (x )g (x )。
从而()()x f x ϕ,()()x g x ϕ,可得()()x d x ϕ。
高等代数第四章检测题
高等代数第四章检测题一、填空题1.设A 是四阶数量矩阵,==A A 则,16 ,A -1= ,A * .2.=⎪⎪⎭⎫ ⎝⎛=-A A 则,86421,|4A -1|= ,(A ˊ)-1= ,|A |= . 3.设实矩阵()==≠≠=⨯A a A A a a a A ij ij ij ij ij 则的代数余子式为且),(,0,01133 .4.若B =(1,2,1) ˊ, C =(2,-1,2);若A =BC ,则A 100= .5.设()12,300041003--⎪⎪⎪⎭⎫ ⎝⎛=I A A 则 .二、判断题1.若A 3=0,则A 2= A =0. ( )2.若A 、B 为同阶矩阵,则().A B B A '+'='+ ( )3.若A 、B 同为n 阶方阵,则(A-B )(A+B )=A 2-B 2. ( )4.A 与B 可交换的必要条件为A 、B 是同阶方阵. ( )5.若A 为n 阶方阵,则|n A *| =n n |A |. ( ) 三、选择题1.若由AB =AC 必能推出B =C (A 、B 、C 均为n 阶方阵),则A 必须满足( ).(A )A ≠0 (B )A =0 (C )|A |≠0 (D )|AB |≠02.设A 、B 为n 阶可逆方阵,且AB =BA ,则下面下述等式错误的是( ).(A )B -1A =AB -1 (B )AB -1=BA -1 (C )BA -1=A -1B (D )A -1B -1=B -1A -13.设A 、B 为n 阶方阵,且满足AB =0,则必有( ).(A )A =0或B =0 (B )|A |=0或|B |=0(C )(A +B )2=A 2+B 2 (D )A 与B 均不可逆4.若A 、B ,A +B ,A -1+B -1均为n 阶可逆矩阵,则(A -1+B -1)-1=( ).(A )A -1+B -1 (B )A+B (C )(A+B )-1 (D )A (A +B )-1B5.A 、B 都是n 阶方阵,且(AB )2=I ,则下列式中不成立的是( ).(A )A =B -1 (B )ABA =B -1 (C )BAB =A -1 (D )(BA )2=I四、计算题1.设A 是对称的可逆矩阵,且(A -B )2=I ,求111)()(----'+'BA I I B A . 2.已知().,31112111111-*-⎪⎪⎪⎭⎫ ⎝⎛=A A 求3.设A 为n 阶方阵,且AA ˊ=I , |A |<0, 求|A +I |.4.设A 是4×3矩阵,且A 的秩r (A )=2,而().,301020201AB r B 求⎪⎪⎪⎭⎫ ⎝⎛-=5.设分块矩阵X 为⎪⎪⎪⎭⎫ ⎝⎛=000000C B A X 其中A 为n 阶可逆矩阵,B 为r 阶可逆方阵,C 为s 阶可逆方阵,求X -1.五、证明题1.设A 为可逆矩阵,证明(A -1)*=(A *)-1.2.设A 为n 阶可逆矩阵,B =21(A +I ),试证B 2=B 的充要条件是A 2=I .3.若A 、B 为同阶可逆矩阵,证明(AB )*=B *A *.。
高等代数第四章矩阵知识点复习与相关练习
6. 证明关于秩的不等式: 1) r(A) + r(B) − n ≤ r(AB) ≤ min{r(A), r(B)}, r(A + B) ≤ r(A) + r(B); 2) 设 A, B ∈ P n×n, 且 AB = 0, 证明:r(A) + r(B) ≤ n;
()
(
)
对方程 Y C = B, C −初−等−−列−变−换→
E
.
B
Y = BC−1
4.2 相关练习
一. 填空题
1.设 A ∈ P n×m, B ∈ P m×s,则 r(AB) ≤
。
2
2.对一个 s × n 矩阵 A 作一次初等列变换就相当于在 A 的
边乘上一个相应的
初等矩阵。
3.设 A ∈ P n×n,写出 A 可逆的充要条件:
14. 设 A, B 是 n 级可逆方阵, A 0
=
0A
,
=
.
0 B
B0
k111
15.
设矩阵 A =
1 1
k 1
1 k
1 1
,
且
r(A) = 3,则 k =
.
111k
16. 设 A 为 3 级方阵,若 |A| = 2, 则 |2A| =
.
17. 设 A 是实对称矩阵,若 A2 = 0, 则 A =
7. 证明:若 A, B 分别为 n × m, m × n 矩阵,则 |λEn − AB| = λn−m|λEm − BA|.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第四章 矩阵习题参考答案一、 判断题1. 对于任意n 阶矩阵A ,B ,有A B A B +=+. 错.2. 如果20,A =则0A =. 错.如211,0,011A A A ⎛⎫==≠⎪--⎝⎭但.3. 如果2A A E +=,则A 为可逆矩阵.正确.2()A A E A E A E +=⇒+=,因此A 可逆,且1A A E -=+.4. 设,A B 都是n 阶非零矩阵,且0AB =,则,A B 的秩一个等于n ,一个小于n . 错.由0AB =可得()()r A r B n +≤.若一个秩等于n ,则该矩阵可逆,另一个秩为零,与两个都是非零矩阵矛盾.只可能两个秩都小于n . 5.C B A ,,为n 阶方阵,若,AC AB = 则.C B = 错.如112132,,112132A B C ⎛⎫⎛⎫⎛⎫===⎪ ⎪ ⎪------⎝⎭⎝⎭⎝⎭,有,AC AB =但B C ≠.6.A 为n m ⨯矩阵,若,)(s A r =则存在m 阶可逆矩阵P 及n 阶可逆矩阵Q ,使.000⎪⎪⎭⎫ ⎝⎛=sI PAQ 正确.右边为矩阵A 的等价标准形,矩阵A 等价于其标准形. 7.n 阶矩阵A 可逆,则*A 也可逆.正确.由A 可逆可得||0A ≠,又**||AA A A A E ==.因此*A 也可逆,且11(*)||A A A -=.8.设B A ,为n 阶可逆矩阵,则.**)*(A B AB = 正确.*()()||||||.AB AB AB E A B E ==又()(**)(*)*||*||*||||AB B A A BB A A B EA B AA A B E ====.因此()()*()(**)AB AB AB B A =.由B A ,为n 阶可逆矩阵可得AB 可逆,两边同时左乘式AB 的逆可得.**)*(A B AB = 二、 选择题1.设A 是n 阶对称矩阵,B 是n 阶反对称矩阵()TB B =-,则下列矩阵中为反对称矩阵的是(B ).(A) AB BA - (B) AB BA + (C) 2()AB (D) BAB(A)(D)为对称矩阵,(B )为反对称矩阵,(C )当,A B 可交换时为对称矩阵. 2. 设A 是任意一个n 阶矩阵,那么( A )是对称矩阵.(A) TA A (B) TA A - (C) 2A (D) TA A -3.以下结论不正确的是( C ).(A) 如果A 是上三角矩阵,则2A 也是上三角矩阵; (B) 如果A 是对称矩阵,则 2A 也是对称矩阵; (C) 如果A 是反对称矩阵,则2A 也是反对称矩阵; (D) 如果A 是对角阵,则2A 也是对角阵.4.A 是m k ⨯矩阵, B 是k t ⨯矩阵, 若B 的第j 列元素全为零,则下列结论正确的是(B )(A ) AB 的第j 行元素全等于零; (B )AB 的第j 列元素全等于零; (C ) BA 的第j 行元素全等于零; (D ) BA 的第j 列元素全等于零;5.设,A B 为n 阶方阵,E 为n 阶单位阵,则以下命题中正确的是(D ) (A) 222()2A B A AB B +=++ (B) 22()()A B A B A B -=+-(C) 222()AB A B = (D) 22()()A E A E A E -=+-6.下列命题正确的是(B ).(A) 若AB AC =,则B C =(B) 若AB AC =,且0A ≠,则B C = (C) 若AB AC =,且0A ≠,则B C = (D) 若AB AC =,且0,0B C ≠≠,则B C = 7. A 是m n ⨯矩阵,B 是n m ⨯矩阵,则( B ). (A) 当m n >时,必有行列式0AB ≠; (B) 当m n >时,必有行列式0AB = (C) 当n m >时,必有行列式0AB ≠; (D) 当n m >时,必有行列式0AB =.AB 为m 阶方阵,当m n >时,(),(),r A n r B n ≤≤因此()r AB n m ≤<,所以0AB =.8.以下结论正确的是( C )(A) 如果矩阵A 的行列式0A =,则0A =; (B) 如果矩阵A 满足20A =,则0A =;(C) n 阶数量阵与任何一个n 阶矩阵都是可交换的; (D) 对任意方阵,A B ,有22()()A B A B A B -+=-9.设1234,,,αααα是非零的四维列向量,1234(,,,),*A A αααα=为A 的伴随矩阵,已知0Ax =的基础解系为(1,0,2,0)T ,则方程组*0A x =的基础解系为( C ).(A )123,,ααα. (B )122331,,αααααα+++.(C )234,,ααα. (D )12233441,,,αααααααα++++.由0Ax =的基础解系为(1,0,2,0)T可得12341310(,,,)0,2020αααααα⎛⎫ ⎪ ⎪=+= ⎪ ⎪⎝⎭.因此(A ),(B )中向量组均为线性相关的,而(D )显然为线性相关的,因此答案为(C ).由12341234**(,,,)(*,*,*,*)A A A A A A A O αααααααα===可得12,,αα34,αα均为*0A x =的解.10.设A 是n 阶矩阵,A 适合下列条件( C )时,n I A -必是可逆矩阵(A) nA A = (B) A 是可逆矩阵 (C) 0nA = (B) A 主对角线上的元素全为零11.n 阶矩阵A 是可逆矩阵的充分必要条件是( D )(A) 1A = (B) 0A = (C) TA A = (D) 0A ≠ 12.,,ABC 均是n 阶矩阵,下列命题正确的是( A )(A) 若A 是可逆矩阵,则从AB AC =可推出BA CA = (B) 若A 是可逆矩阵,则必有AB BA = (C) 若0A ≠,则从AB AC =可推出B C = (D) 若B C ≠,则必有AB AC ≠13.,,A B C 均是n 阶矩阵,E 为n 阶单位矩阵,若ABC E =,则有(C ) (A) ACB E = (B )BAC E = (C )BCA E = (D) CBA E = 14.A 是n 阶方阵,*A 是其伴随矩阵,则下列结论错误的是( D )(A) 若A 是可逆矩阵,则*A 也是可逆矩阵; (B) 若A 是不可逆矩阵,则*A 也是不可逆矩阵;(C) 若*0A ≠,则A 是可逆矩阵; (D)*.AA A =*.nAA A E A ==15.设A 是5阶方阵,且0A ≠,则*A =( D )(A) A (B) 2A (C) 3A (D) 4A 16.设*A 是()ij n n A a ⨯=的伴随阵,则*A A 中位于(,)i j 的元素为(B )(A)1njkki k aA =∑ (B)1nkjki k aA =∑ (C) 1n jk ik k a A =∑ (D) 1nki kj k a A =∑应为A 的第i 列元素的代数余子式与A 的第j 列元素对应乘积和.17.设1111n n nn a a A a a ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦, 1111n n nn A A B A A ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦,其中ij A 是ij a 的代数余子式,则(C ) (A) A 是B 的伴随 (B)B 是A 的伴随 (C)B 是A '的伴随 (D)以上结论都不对18.设,A B 为方阵,分块对角阵00A C B ⎡⎤=⎢⎥⎣⎦,则*C = ( C ) (A) **00A C B ⎡⎤=⎢⎥⎣⎦ (B)**00A A CB B ⎡⎤=⎢⎥⎣⎦(C) **00B A C A B ⎡⎤=⎢⎥⎣⎦ (D) **0A B A C A B B ⎡⎤=⎢⎥⎣⎦利用*||CC C E =验证.19.已知46135,12246A B ⎡⎤⎡⎤==⎢⎥⎢⎥-⎣⎦⎣⎦,下列运算可行的是( C ) (A) A B + (B)A B - (C)AB (D)AB BA -20.设,A B 是两个m n ⨯矩阵,C 是n 阶矩阵,那么( D )(A) ()C A B CA CB +=+ (B) ()TTTTA B C A C B C +=+ (C) ()TTTC A B C A C B +=+ (D) ()A B C AC BC +=+21.对任意一个n 阶矩阵A ,若n 阶矩阵B 能满足AB BA =,那么B 是一个( C )(A) 对称阵 (B)对角阵 (C)数量矩阵 (D)A 的逆矩阵 与任意一个n 阶矩阵均可交换的矩阵为数量矩阵.22.设A 是一个上三角阵,且0A =,那么A 的主对角线上的元素( C )(A) 全为零 (B )只有一个为零(C )至少有一个为零 (D )可能有零,也可能没有零23.设1320A ⎡⎤=⎢⎥⎣⎦,则1A -=( D ) (A) 1021136⎡⎤⎢⎥⎢⎥⎢⎥--⎢⎥⎣⎦ (B )1031136⎡⎤-⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦ (C )1031126⎡⎤⎢⎥⎢⎥⎢⎥-⎢⎥⎣⎦(D )1021136⎡⎤⎢⎥⎢⎥⎢⎥-⎢⎥⎣⎦24. 设111222333a b c A a b c a b c ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦,若111222333222a c b AP a c b a c b ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦,则P =( B ) (A) 100001020⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦ (B )100002010⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦ (C )001020100⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦ (D )200001010⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦25.设(3)n n ≥阶矩阵1111a aa a a a A aa a aa a ⎡⎤⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎣⎦,若矩阵A 的秩为1,则a 必为(A )(A) 1 (B )-1 (C )11n - (D )11n -矩阵A 的任意两行成比例.26. 设,A B 为两个n 阶矩阵,现有四个命题: ①若,A B 为等价矩阵,则,A B 的行向量组等价;②若,A B 的行列式相等,即||||,A B =则,A B 为等价矩阵; ③若0Ax =与0Bx =均只有零解,则,A B 为等价矩阵; ④若,A B 为相似矩阵,则0Ax =与0Bx =解空间的维数相同. 以上命题中正确的是( D )(A) ①, ③. (B) ②, ④. (C) ②,③. (D)③,④.当AP P B 1-=时,,A B 为相似矩阵。
相似矩阵的秩相等。
齐次线性方程组基础解系所含解的个数即为其解空间的维数。
三、填空题1.设A 为三阶方阵,*A 为A 的伴随矩阵,有2A =,则11()2*3A A --=11*||2A A A A --==,111()33A A --=,因此11111311()2*34(1)32A A A A A A ------=-=-=-=-. 2.设,AB 为4阶方阵,且3A =,则1(3)A --= 1/27 , 21BAB -= 9 。