光学测试技术复习资料
光学测量复习题
1.光学测量:对光学材料、零件及系统的参数和性能的测量。
2.直接测量:无需对被测的量与其他的实测的量进行函数关系的辅助计算,而直接得到被测值的测量。
3.间接测量:直接测量的量与被测的量之间有已知的函数关系,从而得到该被测量的测量。
4.测量误差原因:(测量装置误差)(环境误差)(方法误差)(人员误差)。
5.测量误差按其特点和性质,可分为(系统误差)、(偶然误差)和(粗大误差)。
6.精度:反应测量结果与真实值接近程度的量。
7.精度分为:①正确度:由系统误差引起的测量值与真值的偏离程度②由偶然误差引起......③由系统误差和偶然误差引起的......8.偶然误差的评价:(标准偏差)(极限误差)。
9.正态分布特征:(单峰性)(对称性)(有界性)(抵偿性)。
10.确定权的大小的方法:(根据测量次数确定)(由标准偏差确定)。
11.对准(横向对准)是指在垂直于瞄准轴方向上,使目标和比较标记重合或置中的过程,又称横向对准。
12.调焦(纵向对准)指目标和比较标记瞄准轴方向重合或置中的过程。
13..对准误差:对准残留的误差。
14.调焦误差:调焦残留的误差。
15.常用调焦方式:(清晰度法)、(消视差法)。
16.清晰度法:以目标象和比较标志同样清晰为准,其调焦误差由几何景深和物理景深决定。
17.消视差法:以眼睛垂直于瞄准轴摆动时看不出目标象和比较标志有相对错动为准,调焦误差受对准误差影响。
18.平行光管:是光学测量中最常用的部件,发出平行光,用来模拟无限远目标,主要由(望远物镜)和(安置在物镜焦平面上的分划板)构成。
19.调校平行光管的目的:是使分划板的分划面位于物镜焦平面上。
调校方法:(远物法)、(可调前置镜法)、(自准直法)、(五棱镜法)和(三管法)。
20.自准直仪:(自准直望远镜)(自准直显微镜)。
21.自准直目镜是一种带分划板和分划板照明装置的目镜。
一般不能单独使用,应与望远镜物镜配合构成自准直望远镜;与显微镜物镜配合构成自准直显微镜。
(光学测量技术)第2章常用光学测量仪器及基本部件
图 2.1 典型的平行光管光学原理图
第2章 用光学测量仪器及基本部件 二、 平行光管的基本结构及主要组成部分 图 2.2 所示为国内常用的 CPG — 550 型平行光管光路
结构示意图,并附有高斯目镜和可调式平面反射镜。
图 2.2 CPG — 550 型平行光管结构示意图
第2章 用光学测量仪器及基本部件
1. 物镜 物镜是平行光管中起折光作用的元件。它把自分划板上 的物点发出的发散光束变成平行光束射出,从而给出无限远 的“点”目标,即把有限远的物转化为无限远的目标。
第2章 用光学测量仪器及基本部件
根据使用要求的不同,物镜有多种形式,例如:孔径较 小,要求不太高时,使用一般的双胶合物镜;当孔径较大时, 胶合很困难,一般用双分离的形式,即两片互相分离的镜片 构成物镜;在某些应用场合,希望能调节(改变)物镜的焦距, 就要设计可调焦距物镜;对于要求较高的物镜,同时要求复 消色差,这时使用复消色差物镜;当要求大视场时,则可使 用照相物镜作为平行光管的物镜;在某些要求特大孔径、长 焦距的情况下,透射式常难于实现,就可采用反射面作为物 镜,即所谓的反射物镜。
第2章 用光学测量仪器及基本部件
1. 自准直法的调校原理 用自准直法调校平行光管,是将平行光管的分划板配上 带有分划板照明装置的目镜构成所谓自准直目镜(见 2.2 节), 该自准直目镜和平行光管物镜就构成了自准直前置镜。将 该准直前置镜对向一个标准平面反射镜,并用分划板的分划 对反射像调焦,实现自准直,从而达到校正的目的。其原理 见图 2.4 。 调焦完毕,就认为平行光管已调校好。
自准直法有较高的精度,并且除了标准平面反射镜外, 不需要其它标准设备,而在通常的孔径下,标准平面反射镜 也是不难找到的,因此自准直法是平行光管调校中的重要方 法。
光学测试技术-第2章-光学准直与自准直技术1
(-z-)--z处的光斑半径(光强下降到光斑中心光强的
1/ e处2 的光斑半径; ----激光波长; --n--传播空间的折
射率,在大气中传输时取为1。
第一节 激光束的准直与自准直技术
其中
2
(
z)
02
1
z 02n
2
(1)束腰处的波阵面为平面,此时 R(0) (取束腰位于
坐标原点),则有:
q0
与望远镜视放大率有关,此外还和高斯光束结构参数
( 10,)z1 有关。增大 (z束1 腰远离望远镜 )L,1 压缩比
也增大,光束准直性将更好些。
第一节 激光束的准直与自准直技术
总结:望远镜两透镜的距离为 D f1,f2其 中
f2 f1
如果有一高斯分布的激光光束,其发散角为 ,从左方
入射到倒置的望远系统,出射后的发散角 f1
第一节 激光束的准直与自准直技术
由于激光具有极好的方向性,一个经过准直的连续输出的 激光束,可以认为是一条粗细几乎不变的直线。因此可以用 激光束作为空间基准线,这样的激光准直仪能够测量直线度、 平面度、平行度、垂直度,也可以做三维空间的基准测量。
激光准直仪和平行光管、经纬仪等一般的准直仪相比, 具有工作距离长,测量精度高和便于自动控制、操作方便等 优点,可以广泛地用于隧道开凿、管道铺设、高层建筑建造、 造桥、修路、开矿以及大型设备的安装、定位等。
(例如中心斑直径 70m , 保持约1m范围内光强分布基本不变)
这一特点,在测量上可有许多用途。
图示为用于测量物 体表面轮廓的一个
扫描反射镜
CCD相机
例子。准直激光束
通过轴锥镜成为近
似的零阶贝塞尔光 束,经扫描反射镜。 光束在被测表面扫 一条细亮线。
光学总复习
第三章 几何光学的基本原理
一、几何光学的基本实验定律
光在均匀介质中的直线传播定律; 光通过两介质分界面的反射定律和折射定律; 光的独立传播定律和光路可逆原理。 二、费马原理
光沿着光程值为最小、最大或恒定的路程传播。
三、全反射现象
光从光密介质在界面折射到光疏介质,当入射
角增大到某一临界值
二、菲涅耳半波带
任何相邻两波带对应部 分
所发出次波到达P点光程 差为/2,这样环形带称 菲涅耳半波带。
三、菲涅耳圆孔衍射
半波带个数:
k k 2(R r0 ) k 2 ( 1 1 )
r0 R
r0 R
(1)k 为奇数,则合振幅为第一波带和第k 波带 的振幅之和—亮点;
(2)k 为偶数,则合振幅为第一波带与第k 波带 的振幅之差—暗点。
三、杨氏实验:明暗条纹公式、干涉花样特点
相长干涉:
y
j r0 d
, j=0,±1, ±2,...
相消干涉: y ( j 1) r0 ,j=0,±1, ±2,
2d
干涉条纹间距: y r0 。
d
杨氏实验的干涉花样特点:
1. 干涉花样为明暗相间等距离的直条纹,各级亮 纹的光强相等;
(。5)如果改变入射光的波长,则波长变大,圆环 将向中心移动,并不断“淹没”。
(6)白光作为光源,则观察到外紫内红的彩色同 心圆环条纹。
五、等厚干涉
明暗条纹公式:
h
(2 j
j
1) , 相 长
4n2 ,相消干涉
干
涉
2n2
干涉花样特点:
(1)干涉花样为平行于尖劈棱的直条纹,相邻两 明纹(暗纹)的间距l 都相等。
光学测试技术_光电技术
可选择带通滤波器提高信噪比。带宽Bf:ω0-Ω~ω0+Ω
光信号频率调制
在宽带调频时,m f 1
t 0 m sin 0t m f sin t
带宽 B f 2 2
光信号脉冲调制
将直流光通量用斩光盘调制,可得到连续的光脉冲载 波。这种脉冲调制可实现对光脉冲信号的幅度、重复 频率、脉宽、相位等参数或者它们的组合按调制信息 改变。 此外,还可其他参量进行调制,如对光信号的偏振特 性参数调制、对光信号传输方向调制等。
detector2
source
Target
作涉 探测或者光外差探测。它被广泛地应用到雷达监测中。 请叙述该检测技术的基本原理。
2、时变光信号的调制检测
对光信号进行调制,将待测信息加载到光信号中达 到测量目的。调制技术可改善光电系统的工作品质, 提高信噪比和灵敏度,是光电检测系统中常用的方 法。
t 0 1 m sin t m sin t
cos t 1 0 m sin t mm 2 cos t 可选择带通滤波器提高信噪比。带宽:ω-Ω~ω+Ω
连续波调制
t 0 m V t sin V t t V t FM AM PM 满足:0 m V t
0 m sin 0t m f cos 0t sin t 1 0 m sin 0t m m f 2 sin 0 t sin 0 t
光信号的频率测量
光学测试技术-第3章-光学测角技术1
率的测量,该测量方法标准不确定度一般可以达到10-5量级。
武汉大学 电子信息学院
30
§3.2 测角技术的应用
本方法实际上是通过测量角度来完成折射率的测量。偏折角的测量 误差包括下列因素: (1)度盘的刻线误差 ; (2)对准望远镜的对准误差 ; (3)读数显微镜的读数误差 。 偏折角的测量标准不确定度为:
d/2
调节望远镜俯仰调节螺钉向上 移动1/2d
望远镜主轴垂直于仪器转轴 -------用各 半调节法将绿十字像调至与上方叉丝重合, 反复调节,使两面的十字像均与上叉丝重 合。注意:此步以后望远镜水平调节螺丝 不可再动!
绿“十”反射像
上方叉丝
调节载物台
调节载物台水平 ----- 重新放置双面镜(与原位置 成90°)调节螺钉c使十字像与上方叉丝重合。
武汉大学 电子信息学院
18
§3.2 测角技术的应用
1、测量原理 精密测角仪上测量角度可以有两种不同的光路:方法一:只使用自
准直望远镜,用自准直望远镜分别对准构成棱镜角度的两个平面,测量
时工作台与度盘固定。当自准像与分划板本身刻线重合时,表示自准直
望远镜视轴与棱镜平面1法线重合。这时从度盘上可以得到一读数。转动
读数。
问题:使用前的调整?
武汉大学 电子信息学院
6
测角仪器使用前的调节
测量前应调节分光计满足三方面要求: ① 平行光管出射平行光,即提供无穷远目标 ② 望远镜调焦于无穷远 ③ 平行光管和望远镜的光轴共面,且应与载物台
旋转轴垂直
1、望远镜调焦到无穷远
①
目镜
调节要点
• 目测粗调: 望远镜与平行光管等高且其主轴 垂直于中心轴,载物台基本水平,各螺钉应 位于中间可调位置;
光学复习资料含答案
光学复习题3.设光栅平面、透镜均与屏幕平行.则当入射的平行单色光从垂直于光栅平面入射变为斜入射时,能观察到的光谱线的最高级次k(A) 变小.(B) 变大.(C) 不变.(D) 改变无法确定.5.一束光强为 I0的自然光,相继通过三个偏振片P1、P2、P3后,出射光的光强为 I= I 0 / 8.已知 P1和 P3的偏振化方向相互垂直,若以入射光线为轴,旋转P2,要使出射光的光强为零,P2最少要转过的角度是(A) 30 °.(B) 45 °.(C) 60 °.(D) 90 °.6.一束自然光自空气射向一块平板玻璃(如图 ),设入射角等于布儒斯特角i 0,则在界面2的反射光(A)是自然光.(B)是线偏振光且光矢量的振动方向垂直于入射面.(C)是线偏振光且光矢量的振动方向平行于入射面.(D)是部分偏振光.二.填空题1.如图所示,假设有两个同相的相干点光源S1和 S2,发出波长为的光. A 是它们连线的中垂线上的一点.若在S1与 A 之间插入厚度为 e、折射率为 n 的薄玻璃片,则两光源发出的光在 A 点的光程差= ________.若已知=500 nm,n=1.5,A点恰为第四级明纹中心,则 e= _____________nm .- 93 (1 nm =10 m) (n 1)e,4× 102.如图所示,在双缝干涉实验中SS1=SS2,用波长为的光照射双缝 S1和 S2,通过空气后在屏幕 E 上形成干涉条纹.已知 P 点处为第三级明条纹,则 S1和 S2到 P 点的光程差为 __________ .若将整个装置放于某种透明液体中,P 点为第四级明条纹,则该液体的折射率 n=____________ . 3 , 1.33三 .计算题2.一衍射光栅,每厘米200 条透光缝,每条透光缝宽为a= 2× 10-3cm,在光栅后放一焦距f= 1 m 的凸透镜,现以 = 600 nm (1i012eS1nAS2S1P SS2EAPOB fnm= 10-9 m)的单色平行光垂直照射光栅,求:(1)透光缝 a 的单缝衍射中央明条纹宽度为多少?(2)在该宽度内,有几个光栅衍射主极大?2.解: (1) a sin = k tg = x / f当 x<< f 时,tg sin, a x / f = k,取k= 1有x= f l / a= 0.03 m∴中央明纹宽度为x= 2x= 0.06 m(2)( a + b) sin kk( a+b) x / (f )= 2.5取 k = 2,共有 k = 0,± 1,± 2 等 5 个主极大﹣94.波长600nm(1nm=10 m)的单色光垂直入射到一光栅上,测得第二级主极大的衍射角为 30°,且第三级是缺级.(1)光栅常数 (a + b)等于多少?(2)透光缝可能的最小宽度 a 等于多少?(3) 在选定了上述 (a+b)和 a 之后,求在衍射角 -<<范围内可能观察到的全部主极大的级次.k 4.解: (1) 由光栅衍射主极大公式得 a + b =sin- 4=2.4× 10 cm(2) 若第三级不缺级,则由光栅公式得 a b sin3由于第三级缺级,则对应于最小可能的a,方向应是单缝衍射第一级暗纹:两式比较,得a sin- 4a = (a + b)/3=0.8 × 10 cm(3) a b s i n k ,(主极大)a sin k, (单缝衍射极小 )(k' =1, 2,3, ......)因此k=3, 6,9,缺级.又因为 k max=(a+ b) /4,所以实际呈现k=0,± 1,± 2 级明纹. (k= ±4 在/ 2 处看不到. )一.选择题1.有三种装置(1)完全相同的两盏钠光灯 ,发出相同波长的光 ,照射到屏上;(2)同一盏钠光灯 ,用黑纸盖住其中部将钠光灯分成上下两部分同时照射到屏上;(3)用一盏钠光灯照亮一狭缝 ,此亮缝再照亮与它平行间距很小的两条狭缝 ,此二亮缝的光照射到屏上 .以上三种装置,能在屏上形成稳定干涉花样的是(A)装置 (3).(B)装置 (2) .(C)装置 (1)(3) .(D)装置 (2)(3).2.在双缝干涉实验中,为使屏上的干涉条纹间距变大,可以采取的办法是(A)使屏靠近双缝 .(B)把两个缝的宽度稍微调窄 .(C)使两缝的间距变小 .(D)改用波长较小的单色光源 .3.如图 22.1所示 ,设 s1、 s2为两相干光源发出波长为的单色光 ,分别通过两种介质(折射率分别为 n1和 n2,且 n1>n2)射到介质的分界面上的P 点 ,己知 s1P = s2P = r ,则这两条光的几何路程 r ,光程差分别为(A)r = 0 ,= 0 .s1n1P(B)r = ( n1- n2) r ,=0 .s2n2(C)r =(n1- n2) r ,=( n1- n2) r .(D)r = 0 ,=( n1- n2) r .图 22.1二 .填空题2.如图 22.3所示 , s1、s2为双缝 ,s 是单色缝光源 ,当 s沿平行于 s1、和 s2的连线向上作微小移动时, 中央明条纹将向s1屏s1 后加一很薄的云母片,中央s2移动;若 s 不动 ,而在 s明条纹将向移动. 下, 上图 22.3三 .计算题1.在双缝干涉实验中 ,单色光源 s 到两缝 s1和 s2的距离分别为 l 1和 l 2,并且 l 1- l 2=3 ,为入射光的波长 ,双缝之间的l1s1d屏O距离为 d,双缝到屏幕的距离为D,如图 22.5,求s l2s2D(1) 零级明纹到屏幕中央O 点的距离;图 22.5(2)相邻明条纹间的距离 .1.光程差=(l2 +r2) (l 1+r1)=(l2 l 1)+(r 2 r1 )= l2 l1+xd/D = 3 +xd/D(1)零级明纹=0 有 x=3 D/d(2)明纹= k = 3 +x k d/D 有 x k= (3k )D/d x=x k+1-x k=D /d2. 双缝干涉实验装置如图 22.6 所示 ,双缝与屏之间的距离屏xD=120cm, 两缝之间的距离 d=0.50mm, 用波长 =5000 ? 的单色s 1ds 2DO光垂直照射双缝 .(1) 求原点 O(零级明条纹所在处)上方的第五级明条纹的图 22.6坐标 .2.(1)光程差 =r 2 r 1=xd/D=k因 k=5 有x 5=6mmx k =k D/d练习二十三薄膜干涉 劈尖 牛顿环一 .选择题1. 如图 23.1 所示 , 薄膜的折射率为 n 2, 入射介质的折射率为 n 1,透射介质为 n 3,且 n 1< n 2< n 3, 入射光线在两介质交界面的反射光线分(1)(2)别为 (1) 和 (2), 则产生半波损失的情况是n 1(A) (1) 光产生半波损失 , (2)光不产生半波损失 . n 2(B)(1) 光 (2) 光都产生半波损失 .n 3(C) (1) 光 (2) 光都不产生半波损失 .(D)(1) 光不产生半波损失 , (2) 光产生半波损失 .图 23.12. 波长为 的单色光垂直入射到厚度为 e 的平行膜上 ,如图 23.2,若反射光消失,则当 n 1< n 2< n 3 时 ,应满足条件 (1); 当 n 1< n 2> n 3 时应满足条件 (2) . 条件 (1),条件 (2)分别是(A) (1)2ne = k , (2) 2ne = k .(B) (1)2 ne = k+ /2, (2) 2ne = k +n 1/2.(C)(1)2 ne = k - /2, (2) 2ne = k .n 2 dn 3图 23.2(D) (1)2ne = k ,(2) 2 ne = k -/2.4.波长 = 5500 ? 的单色光垂直照射到光栅常数-4,可能观d= 2 ×10 cm 的平面衍射光栅上 察到的光谱线的最大级次为(A) 2. (B) 3. (C) 4. (D)5.二 .填空题3. 用平行的白光垂直入射在平面透射光栅上时,波长为 1 = 440nm的第 3 级光谱线,将与波长为 2 =nm 的第 2 级光谱线重叠. 660.练习二十五光的偏振一 .选择题1.一束由自然光和线偏光组成的复合光通过一偏振片,当偏振片转动时,最强的透射光是最弱的透射光光强的16 倍 ,则在入射光中 ,自然光的强度I1和偏振光的强度I2之比 I1: I2为(A)2: 15.(B)15: 2.(C)1: 15.(D)15: 1.3. 自然光以入射角i= 58 从真空入射到某介质表面时,反射光为线偏光,则这种物质的折射率为(A)cot58 .(B)tan58 .(C)sin58 .(D)cos58 .二.填空题3. 两平行放置的偏振化方向正交的偏振片P1与 P3之间平行地加入一块偏振片P2. P2以入射光线为轴以角速度匀速转动 ,如图 25.2.光强为 I0的自然光垂直入射到P1上 ,t = 0 时, P2与 P1的偏振化方向平行 ,.则 t 时刻透过 P1的光强 I1=, 透过 P2的光P1P2P3强 I2=, 透过 P3的光强 I3=.图 25.2I 0/2,I 0cos2t/2,I 0cos2tsin2t /2 (或 I 0sin2(2 t)/8).。
光学复习要点
光学复习一.反射,折射1.反射系数:2.透射系数:3.反射率:4.透射率:5.反射率与透射率关系:6.光的反射透射特性因素:入光的偏振态,入射角,折射率(1)偏振度:P=0时,为完全非偏振光;P=1时,为完全偏振光;(2)自然光反射率:(3)反射光偏振度:(4)折射光偏振度:(5)自然光正入射时,反射率为:(6)自然光斜入射时,反射率为:(7)反射光强:7.能量:8.全反射:9.布儒斯特角:二.光的干涉1.干涉总光强:2.光强极大值(亮):3.光强极小值(暗):4.干涉条纹可见度(对比度):5.二光束光强相等时:6.杨氏双缝干涉:光程差:二光相位差为:7.光强极大,干涉亮条纹:光强极小,干涉暗条纹:8.条纹间距ε:9.如果S1、S2到S的距离不同亮条纹:暗条纹:10.等倾干涉:光程差:平板的厚度为h,入射角和折射角分别为θ1和θ2(1)焦平面上的光强:(2)等倾圆环的条纹级数:(3)等倾亮圆环的半径:(4)等倾圆环相邻条纹的间距:(5)透射光和反射光的等倾干涉条纹是互补的11.等厚干涉:光程差:12.劈尖的等厚干涉条纹:(1)相应亮线位置的厚度h满足:(2)相应暗线位置的厚度h满足:(3)劈尖总厚度(N个条纹):(4)条纹间距:13.平行平板多光束干涉:(1)反射光强度:(2)透射光强度:(3)Ir+It=Ii(4)光强分布的极值条件:亮条纹:暗条纹:(5)光强分布与反射率R有关:R越大,亮文宽度越窄,ε愈小,条纹越尖锐。
(6)条纹半宽度(ε):(7)条纹精细度:(8)滤波带宽:(9)透射带的波长半宽度:14.F-P标准具:(1)能够分光的最大波长间隔—自由光谱范围(标准具常数):(2)能够分辨的最小波长差—分辨本领:瑞利判据(m是干涉级次,N是条纹的精细度):(3)使不同波长的光分开的程度—角色散:15.干涉滤光片:(1)中心波长:(2)透射带的波长半宽度:(3)峰值透射率:三.光的衍射1.夫朗和费矩形孔衍射:(1)主要特征:衍射亮斑集中分布在两互相垂直的方向上(X轴和Y轴)并且X轴上的亮斑宽度与y轴上的亮斑之比,恰与矩形孔在两个轴上的宽度关系相反。
光学测试技术-第6章-光学系统成像性能评测1
武汉大学 电子信息学院
2
§6.1 成像性能评测的基本理论
一、像质评价研究方法
成像光学系统可以看作是一个信息传递或信息转换系统:
PSF(u, v) h(u, v) / h(u, v)dudv
其傅里叶变换即为光学系统的传递函数:
OTF(r,s) PSF(u, v)exp[i2 (ru sv)]dudv
武汉大学 电子信息学院
10
§6.1 成像性能评测的基本理论
定义了光学系统的传递函数后,可以把成像过程在频率域中表 达为:
把物方信息按一定的要求传递或转换至像方。在传递或转换过 程中,伴随着信息的变化及附加的背景或其它衍生信息,因此 输出像与输入物之间仅存在相似性,不存在完全的一致性。
输入物信息
光学成像系统
输出像信息
利用等效于电学与通信系统的方法,一个光学或光电系统 可以被描述成是一个时间/空间滤波器。对于静态的成像光学系 统,通常可以用一个等效的空间滤波器来描述。对于成像系统, 最关心的是其物与像的辐照度分布一致性,以及光度或辐射度 性能和色度性能等三个基本问题。
武汉大学 电子信息学院
11
§6.1 成像性能评测的基本理论
4、复合系统的成像关系
对于由光学系统和光电传感器共同构成的复杂光电成像系统, 可以把整个成像系统视为若干子系统,成像特性既要考虑初始目 标的形状、漫反射特征、景深及光谱成份,也要考虑传输特性、 成像特性、光电传感器的光谱响应特征、噪声、各单元器件的响 应一致性、动态范围等,对完全相干耦合成像,可按光线追击和 光波传播衍射理论,做瞳函数的振幅连乘和波差代数叠加:
光电测试技术-第1章基本光学量的测试技术1
2
2024/7/13
11
第1章 基本光学量的测试技术
§1-1 光电系统的对准和调焦技术
1. 目视系统的对准和调焦
1.2 望远镜的对准不确定度和调焦不确定度 2)望远镜的调焦标准不确定度——消视差法 将人眼的消视差法调焦不确定度换算到望远镜物方
Γ 2b
注意:眼瞳的有效移动距离b不等于眼瞳的实际移动距 离t,而等于出瞳中心到进入眼瞳的光束中心的距离。 如图所示。
清晰度法是以目标与比较标志同样清晰为准。调焦不确定 度是由于存在几何焦深和物理焦深所造成的。
几何焦深是指当弥散圆直径等于人眼分辨极限时,目标至 标志的距离δx的两倍2δx。
由几何焦深造成的人眼调焦标准不确定度为
1'
1 l2
1 l1
ae De
单式位中为,ra1 'd。以m-1为单位,这时l1、l2和De的单位为m,αe的
λ/K(常取K=6)时,人眼仍分辨不出此时视网膜上的衍
射图像与艾里斑有什么差别。即如果目标与标志相距小于
dl时眼睛仍认为二者的像同样清晰,通常将2dl称为物理
焦深。由物理焦深造成的人眼调焦的标准不确定度由下式
求得
De2 De2
k 8l2 8l1
2 '
1 l2
1 l1
8
KDe2
式中,l2=l1±dl;De为眼瞳直径(De与波长λ的单位皆
光电对准分类: 光度式:普通光度式、差动光度式 相位式
2024/7/13
19
第1章 基本光学量的测试技术
§1-1 光电系统的对准和调焦技术
2. 光电对准
光敏电阻
鉴别器
放大器
指零仪表
测微器
光学检测技术考题
光学检测技术考题1.光电子器件的基本参数和特性是什么?(响应特性噪声特性量)⼦效率线性⼦工作温度)@响应特性分为电压响应、电流响应、频谱响应、积分响应、时间响应和频率响应@噪声分类:热噪声、散粒噪声产生-复合噪声、1/f噪声、S/N 噪声、等效功率NEP2.光电信息技术研究和开发光电信息的基础和主体是什么形成、传输、接收、转换、处理和响应。
(光电器件)3.光电检测系统的三个部分是什么(光转换、光电转换电路处理)4.光电效应是什么外部光电效应和内部光电效应)外部光电效应:物体在受到光照射后向外发射电流-主要是在金属和金属氧化物中。
内部光电效应:物体被照射后产生的光电效应仅在材料内部,不会逃逸到物体外部-主要是在半导体中。
内部光电效应分为光电导效应和光伏效应。
光电导效应:在被光照射后,半导体产生光和载流,这显著增加了半导体中载流的数量并降低了电阻。
光伏效应:当光照在半导体pn结或通用半导体触点上时,它将在pn结或普通半导体触点的两侧产生光电动势。
5.光电管是一种根据作用将光能转换为电能的装置,可分为什么样的?光电效应太阳光电池和测量光电池6.激光的定义是什么?生产激光的必要条件是什么?(定义:激光是具有受激辐射和粒子数反转的光泵谐振器)7.热释电装置必须在何种信号下工作才能输出电信号?(交替辐射)D是一种电荷耦合器件。
CCD的突出特点是什么是CCD的信号和基础这个函数是什么?(电荷CCD的基本功能是电荷存储和电荷转移。
)9根据检测原理,光电检测的四种方法是什么。
(直接测量、差动测量、补偿测量、脉冲测量)10.应包括哪三种光热效应。
(热电效应、测辐射热计效应、热电效应)。
光学测试技术-第1章-基本光学测量技术1
② 消视差法 其推导过程与清晰度法一致。对消视差法在像方的调焦不确定度
换算至物方,换算公式为:
x
'
nf
'2 eq
可得到调焦误差为:
x
2n e
D'1
f '2 eq
n e
f
' eq
NA
D' D'1
其单次调焦标准不确定度为 x / 3
列表比较经过不同光学系统后的对准误差与调焦误差
武汉大学 电子信息学院
23
武汉大学 电子信息学院
5
§1.1 光学测量中的对准与调焦技术
三、人眼的对准误差和调焦误差 1、人眼的对准误差
在正常照度下,人眼的对准误差主要取决于对准方式。 表1-1(p2)给出了5种不同对准方式下人眼的对准误差。 可见,随对准方式的不同,人眼对准误差在10″-120″之间。
2、人眼的调焦误差 要知道人眼的调焦误差,必须首先知道人眼是如何调
17
§1.1 光学测量中的对准与调焦技术
②消视差法 人眼通过望远镜调焦时,眼睛在出瞳面上摆动的最大距离受出瞳直径 的限制。同时,在视网膜上像的位置由进入眼瞳的成像光束的中心线 与视网膜的交点决定。因此眼瞳的有效移动距离为b,实际移动距离
为t,且: b t
b b
t
武汉大学 电子信息学院
18
§1.1 光学测量中的对准与调焦技术
焦的。人眼常用的调焦方式有两种:清晰度法、消视差法。
武汉大学 电子信息学院
6
x
§1.1 光学测量中的对准与调焦技术
清晰度法 以目标和比较标志同样清晰为准,这时的调焦误差由几何焦 深和物理焦深造成。 ①几何焦深 标志严格成像在视网膜上,则在视网膜上的像是一个几何点。 调焦时目标不一定与标志在同一平面上。但只要目标在视网 膜上生成的弥散圆直径小于人眼的极限分辨率,人眼仍然认 为所成的像是一个点,即认为目标和标志同样清晰,或目标 与标志在同一平面上。 当弥散圆直径等于人眼的极限分辨率时,目标与标志之间的 距离δx即为调焦极限误差。称2δx为几何焦深。可见几何焦深 的大小主要取决于人眼的极限分辨率αe。
第3章 光电测试技术常用光学系统
2
18
2.准直、自准直光学系统
准直技术 --- 利用光线做基准实现瞄准或角度测量的技术 --- 利用望远系统把视场光阑处分划板上的十字标记投射到某 一调焦位置的参考靶上,并使十字标记中心与参考靶中心重合 由两个中心所表述的参考直线 --- 准直或准线 参考直线的方向 --- 望远系统光轴的方向 自准直--- 物镜前面的平面反射镜
37
2)临界照明 ---光源发出的光通过聚光镜成像在物面上或其附近的照明方式
光源灯丝
成像
物平面
优点---视场范围内有最大的亮度,而且没有杂光 缺点---光源亮度的不均匀性将直接反映在物面上, 并且不满足光孔转接原则
38
3)远心柯勒照明
集光镜 --- 光源成像到聚光镜的前焦面上 孔径光阑 --- 聚光镜的物方焦面上(像方远心光路) 视场光阑 --- 成像到物面上(聚光镜) --- 消除了临界照明中物平面照度不均匀的缺点 孔径光阑---大小可调,经聚光镜成像于物镜的入瞳位置 (满足光孔转接原则,充分利用了光能) 孔径光阑大小 ---- 决定照明系统的孔径角、分辨力和对比度; 视场光阑 --- 控制照明视场的大小,避免杂光进入物镜
接收器的尺寸一定 --- 物镜焦距与视场角成反比
拍摄远方物体时,物方最大视场角为
tg max y' max / 2 f '
y´max---感光元件的对角线长度
24
2) 相对孔径和分辨力 D ---入瞳直径(或物镜口径)与物镜焦距之比 f' 影响着物镜的鉴别率和像面照度 光圈(F 数) --- 相对孔径的倒数
NA n sin u
n---物方介质的折射率; u --- 物方孔径角 与分辨本领的关系 --- 瑞利判据或道威判据(显微系统) 投影仪的分辨力经放大倍后应与人眼的分辨本领相适应
光电测试技术-第2章_基本光学量的测试技术(5/6)
2011-9-27
17
第2章 基本光学量的测试技术
图示为自准直刀口仪镜管的光路图。 图示为自准直刀口仪镜管的光路图。 为自准直刀口仪镜管的光路图 30° 30°
刀刃 刀片 滤光片 自准直刀口仪光路图
2011-9-27 14
第2章 基本光学量的测试技术
§2-5 刀口阴影法检验
1. 刀口阴影法基本原理
1.3 刀口仪的光路和结构 仪器的调整步骤: 仪器的调整步骤: (1)出射光束的调整。要求出射光束在相对孔径为1/2的 (1)出射光束的调整。要求出射光束在相对孔径为1/2的 出射光束的调整 被检系统整个入瞳面上造成均匀的照度; 被检系统整个入瞳面上造成均匀的照度; (2)光阑的选择。被检系统的实际波面具有轴对称性时, (2)光阑的选择。被检系统的实际波面具有轴对称性时, 光阑的选择 选用狭缝较有利,否则选用小孔较为有利。 选用狭缝较有利,否则选用小孔较为有利。根据被检 系统相对孔径大小和反射回来的光束的强弱来选用小 孔的直径和狭缝的宽度。相对孔径小而反射光弱的, 孔的直径和狭缝的宽度。相对孔径小而反射光弱的, 应选直径大的小孔或宽的狭缝; 应选直径大的小孔或宽的狭缝;
2011-9-27 5
第2章 基本光学量的测试技术
§2-5 刀口阴影法检验
1. 刀口阴影法基本原理
1.2 刀口阴影法的几何原理 前面叙述了刀口阴影法的基本概念,直观而定性地阐明 前面叙述了刀口阴影法的基本概念, 了被检验实际波面形状以及刀口位置对所形成阴影图的 影响和它们之间的关系。 影响和它们之间的关系。 下面进一步从几何光学的观点来讨论在刀口阴影法中, 下面进一步从几何光学的观点来讨论在刀口阴影法中, 被检实际波面的面形、 被检实际波面的面形、刀口位置与阴影图形状的解析关 系。
光学测试技术-第5章-偏振光分析法测量
武汉大学 电子信息学院
11
§5.1 偏振光分析法基本原理
可见,转动检偏器使β=φ/2,便能产生消光现象。即: 入射到试样上的线偏光振动方向与试样快轴方向成45°经 试样后变为椭圆偏振光,该椭圆偏振光再经过1/4波片,若 椭圆的长短轴分别与波片的快慢轴平行,则从波片出射的 将是线偏光,且振动方向与原来的线偏光振动方向之间的 夹角与被测试样双折射相位差成简单的线性关系。
垂直,则等倾线是暗十字;
武汉大学 电子信息学院
6
§5.1 偏振光分析法基本原理
等倾线与波长及待测样品的位相差无关。 φ=2nπ时也将出现消光现象,即试样上所有双折射光程差为波
长整数倍的点也将形成暗条纹,这种暗条纹被称为等色线。 等色线是双折射光程差相等的点的轨迹,其分布与被测点的应
力双折射分布有关。如果使用白光光源,则等色条纹也将呈现 不同颜色。 平面偏光仪可以同时产生等倾条纹和等色条纹,其中等倾条纹 反映了主方向的分布信息,等色条纹则反映双折射相位差的分 布。在分析中需要对它们进行分离并分别加以测量。
I I0 [1- cos(2 - )]
2
武汉大学 电子信息学院
14
§5.1 偏振光分析法基本原理
I I0 [1- cos(2 - )]
2
武汉大学 电子信息学院
15
§5.2 光学玻璃应力双折射测量
一、光学玻璃应力产生的原因 光学玻璃由高温熔炼而成。玻璃毛坯在退火冷却的过程中,
中心和边缘部分存在温差,导致玻璃各处受力不均匀而产生应力。 应力的存在使玻璃从各向同性变成各向异性,直接破坏了光学材 料的光学均匀性,对成像系统的像质有直接的影响,因此是光学 材料必须控制和检测的参量。 二、应力与双折射之间的关系
光学复习资料(波动光学部分)
一、双光束干涉:1. 如图所示,折射率2 1.2n =的油滴落在3 1.5n =的平板玻璃上,形成一上表面近似于球面的油膜测得油膜中心最高处的高度 1.1m d m μ=,用600nm λ=的单色光垂直照射油膜,求: (1) 油膜周边是暗环还是明环? (2) 整个油膜可看到几个完整暗环?解:(1)因为光在油膜的上下表面反射时,均发生半波损失,故光程差:22n d δ=在油膜的边缘处,0d =,故0δ=,为亮纹。
(2)产生暗纹的条件是()22212n d j λδ==+,(j 为整数),故2222113.922m n d n dj λλ=-≤-= 所以暗环最高级3j =,整个油膜可以看到4个完整暗环。
2. 如图所示,这是一种利用干涉条纹的移动来测量气体折射率的原理性结构。
在双缝之一1S 后面置放一长度为l 的透明容器,待测气体徐徐注入容器而使空气逐渐排出,在此过程中,观察者视场中的条纹就将移动,人们可由条纹移动的方向和数目,测定气体的折射率。
(1)若待测气体的折射率大于空气折射率,试预测干涉条纹怎样移动?(2)设l 为2cm ,光波长为589.3nm ,空气折射率为1.000276;往容器内充以氯气,观测到条纹移动了20个,求待测氯气的折射率。
λS1SS 2SPl解:(1) 条纹向上移动。
(2) 光程差变化为:120δλ=()20n n l δ=-根据题意,12δδ= 解得020 1.000865n n lλ=+=3. 如图所示的劳埃德镜装置中,各物理量的数值分别为:2a cm =,3b m =,5c cm =,0.5e mm =。
光波的波长为589.3nm λ=。
试求:(1) 屏上条纹间距; (2)解:(1)劳埃德镜为双光束干涉,两个光源的间距为:2d e = 条纹间距为:1.77a b cy r mm ddλλ++∆=== (2) 干涉区域的线度为:()122121tan tan y y y Oy Oy c b b αα==-=+-e O又2tan e a α=,1tan e a cα=+ 代入得54y mm =条纹数29.76yN y==∆ 可以看到29条条纹。
光学测试技术复习资料
光学检测原理复习提纲第一章 基本光学测量技术一、光学测量中的对准与调焦技术1、对准和调焦的概念(哪个是横向对准与纵向对准?) P1对准又称横向对准,指一个目标与比较标志在垂轴方向的重合。
调焦又称纵向对准,是指一个目标像与比较标志在瞄准轴方向的重合。
2、常见的五种对准方式。
P2 压线对准,游标对准。
3、常见的调焦方法最简便的调焦方法是:清晰度法和消视差法。
p2 二、光学测试装置的基本部件及其组合1、平行光管的组成、作用;平行光管的分划板的形式(abcd )。
P14 作用:提供无限远的目标或给出一束平行光。
组成:由一个望远物镜(或照相物镜)和一个安置在物镜 焦平面上的分划板。
二者由镜筒连在一起,焦距 1000mm 以上的平行光管一般都带有伸缩筒,伸缩筒 的滑动量即分划板离开焦面的距离,该距离可由伸 缩筒上的刻度给出,移动伸缩筒即能给出不同远近 距离的分划像(目标)。
2、什么是自准直目镜(P15)(可否单独使用?),自准直法?一种带有分划板及分划板照明装置的目镜。
Zz 自准直:利用光学成像原理使物和像都在同一平面上。
3、;高斯式自准直目镜(P16)、阿贝式自准直目镜(P16)、双分划板式自准直目镜(P17)三种自准直目镜的工作原理、特点。
P15—p17(概念,填空或判断)1高斯式自准直目镜缺点--分划板只能采用透明板上刻不透光刻线的形式,不能采用不透明板上刻透光刻线的形式,因而像的对比度较低,且分束板的光能损失大,还会产生较强的杂光。
2阿贝式自准直目镜---特点射向平面镜的光线不能沿其法线入射,否则看不到亮“+”字线像。
阿贝目镜大大改善了像的对比度,且目镜结构紧凑,焦距较短,容易做成高倍率的自准直仪。
主要缺点:直接瞄准目标时的视轴(“+”字刻度线中心与物镜后节点连线)与自准直时平面(a )"+"字或"+"字刻线分划板; (b )分辨率板; (c )星点板; (d )玻罗板镜的法线不重合;且视场被部分遮挡。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
光学检测原理复习提纲第一章 基本光学测量技术一、光学测量中的对准与调焦技术1、对准和调焦的概念(哪个是横向对准与纵向对准?) P1对准又称横向对准,指一个目标与比较标志在垂轴方向的重合。
调焦又称纵向对准,是指一个目标像与比较标志在瞄准轴方向的重合。
2、常见的五种对准方式。
P2 压线对准,游标对准。
3、常见的调焦方法最简便的调焦方法是:清晰度法和消视差法。
p2 二、光学测试装置的基本部件及其组合1、平行光管的组成、作用;平行光管的分划板的形式(abcd )。
P14 作用:提供无限远的目标或给出一束平行光。
组成:由一个望远物镜(或照相物镜)和一个安置在物镜 焦平面上的分划板。
二者由镜筒连在一起,焦距 1000mm 以上的平行光管一般都带有伸缩筒,伸缩筒 的滑动量即分划板离开焦面的距离,该距离可由伸 缩筒上的刻度给出,移动伸缩筒即能给出不同远近 距离的分划像(目标)。
2、什么是自准直目镜(P15)(可否单独使用?),自准直法?一种带有分划板及分划板照明装置的目镜。
Zz 自准直:利用光学成像原理使物和像都在同一平面上。
3、;高斯式自准直目镜(P16)、阿贝式自准直目镜(P16)、双分划板式自准直目镜(P17)三种自准直目镜的工作原理、特点。
P15—p17(概念,填空或判断)1高斯式自准直目镜缺点--分划板只能采用透明板上刻不透光刻线的形式,不能采用不透明板上刻透光刻线的形式,因而像的对比度较低,且分束板的光能损失大,还会产生较强的杂光。
2阿贝式自准直目镜---特点射向平面镜的光线不能沿其法线入射,否则看不到亮“+”字线像。
阿贝目镜大大改善了像的对比度,且目镜结构紧凑,焦距较短,容易做成高倍率的自准直仪。
主要缺点:直接瞄准目标时的视轴(“+”字刻度线中心与物镜后节点连线)与自准直时平面(a )"+"字或"+"字刻线分划板; (b )分辨率板; (c )星点板; (d )玻罗板镜的法线不重合;且视场被部分遮挡。
3双分划板式自准直目镜--要求两块分划板都要位于物镜焦面上,且二者刻线中心应位于同一条视轴上。
特点这种自准直目镜能实现视轴与平面镜法线重合,且像的对比度好。
但光能损失较阿贝目镜大,结构较复杂;其中一块分划板若有垂轴方向移动则造成自准时平面镜法线与视轴不重合,故不如高斯目镜可靠。
三、光学测量误差1、误差的来源归结为4个方面……;误差的分类3个:定义。
P20—P21误差的来源:a 、设备误差(标准器件误差、装置误差);b 、环境误差(温度、湿度、振动、照明等与标准状态不一致;电磁干扰;某些高能粒子对光电探测器干扰等);c 、人员误差(人眼分辨率有限,操作水平不高或固有习惯、感觉器官的生理变化等引起的操作和观测误差); d 、方法误差(采用的数学模型不完善,采用近似测量方法或由于对该项测量研究不充分等)。
误差的分类:a 、系统误差测量条件改变时,按照确定规律变化的误差称为系统误差。
包括仪器的制造误差、校准或调整误差、标准件的量值误差等。
b 、偶然误差(随机误差)在相同的测量条件下,多次测量同一量时,误差的绝对值和符号以不可预测的方式变化的误差称为偶然误差。
c 、粗大误差超出在规定条件下预期的误差称为粗大误差。
四、焦距和顶焦距的测量p321、测负透镜焦距时,焦距与显微镜工作距离关系。
由于负透镜成虚像,用测量显微镜观测这个像时, 显微镜的工作距离必须大于负透镜的焦 否则看不到刻线像。
若显微物镜的放大率为β,通过测量显微镜读得y ″,则得y ″=y ′*β, 即被测透镜的焦距:2、使用的分划板灵活应用公式进行焦距计算43、思考题:要测量一镜片的焦距,已知玻罗板上某刻线对的间距为30mm ,测量显微物镜放大倍率10x ,平行光管物镜的焦距1200mm ,通过测量显微镜的目镜测得玻罗板上刻线像的间距为4mm ,试求出该镜片的焦距。
(注经过显微镜后存在放大倍率问题)yy c f f ''-=βy yc f f ''''=第二章光学准直与自准直技术一、激光准直与自准直技术激光束有很高的亮度和相当好的方向性。
可利用倒装望远镜对激光束再进行细化和准直。
二、自准直法测量平面光学零件光学平行度1、第一光学平行度θⅠ、第二光学平行度θⅡ定义。
P48角度误差造成两平面在入射光轴截面内的不平行,称为第一光学平行度θI棱差则造成垂直于入射光轴截面内的不平行,称为第二光学平行度θII。
三、自准直法测量球面曲率半径和焦距1、自准球径仪(图2-12)的工作原理(要求会画原理图)。
P50—51一、自准直法测量球面曲率半径以抛光的被测球面作反射面,当投射到球面上的光线沿球面法线方向入射时,反射光线′上生成自身的清晰像。
2(夹持器作用)P53—54作业当自准直显微镜3调焦在被测透镜2的焦点F′上时,从自准直显微镜射出的光束经被测透镜后成平行光射向平面镜1.调节平面镜使它垂直于入射光束,则反射光按原路返回,在显微镜分划板上成清晰无视差的自准像,记下显微镜的位置度数B1;轴向移动自准直显微镜,到调焦在透镜表面顶点A上时又一次获得清晰无视差的自准像,再记下位置度数B2.当自准直显微镜调焦在被测透镜焦点F′上,并看到清晰无视差的自准直像时,绕垂直轴左右摆动透镜夹持器(摆动范围±5°以内),若看到自准直像左右移动,则轴向移动被测透镜,到夹持器摆动时,自准像不动,就说明后节点已位于垂直轴上了。
这时垂直轴中心到自准直1B-显微镜调焦点F′的距离就等于被测透镜的焦距。
测量焦距时,虽然少了一次调焦误差,但增加了确定节点位置的误差和确定夹持器垂直中心位置的误差。
第三章测角技术及其应用一、光学测量用的精密测角仪一般的精密测角仪的结构。
P60国内外著名的精密测角仪,其角度基准器几乎都是利用计量光栅制成的。
计量光栅还具有信号强、反差高、非接触、响应速度快和便于控制等特点,因此它广泛应用于角度的精密计量中。
关键部分圆分度器件(度盘、多面体、圆光栅、光学轴角编码器、感应同步器)二、测角技术的应用1、在精密测角仪上测量棱镜的角度的原理和计算公式。
P61 图3-61、使平行光管视轴和自准直望远镜视轴组成一锐角先使构成被测角A的一个工作面①转到图示位置,并调节到自准直望远镜中看到平行光管狭缝的像。
当狭缝像与自准直望远镜分划板刻线对准时,就表明平面①的法线正处在该锐角的角平分线上。
此时从度盘上可以取得一读数。
2在工作台上可以按图所示那样来放置被测棱镜。
这时转动调平螺丝3能使平面②倾斜,而对平面①的影响很小。
当转动调平螺钉2时而对平面②的影响很小。
2、折射率定义(p62);折射率:光在真空中的传播速度与在介质中的转播速度之比,但是要通过测量光速度来得到折射率显然是很难办到的,光学玻璃折射率的测量主要借助于折射定律,即通过测量光线在不同介质中传播时偏折的角度来实现的,测角技术是测量光学玻璃折射率的基础。
并要知道:光学玻璃折射率是通过测量光线在不同介质中传播时偏折的角度来换算的。
V棱镜法就是通过测量偏折角θ的准确值,计算出被测玻璃的折射率n 。
3、V棱镜法测量原理;对V棱镜的要求;对被测样品的要求;折射液的作用。
p62原理:以单色平行光垂直射入V棱镜的AB面。
如果被测样品的折射率n和已知的V棱镜折射率n0相同,则整个V 棱镜加上被测玻 璃样品就像一块平行平板玻璃一样,光线 在两接触面上不发生偏折,所以最后的出 射光线也将不发生任何偏折。
如果两者折射率不相等,则光线在接触面 上发生偏折,最后的出射光线相对于入射光线就要产生一偏折角θ。
偏折角θ的大小和被测玻璃样品的折射率n 有关。
(上原理图) V 棱镜法就是通过测量偏折角θ的准确值,计算出被测玻璃的折射率n 。
测得出射光线相对于最初入射光线方向的偏折角θ,根据已知的V 棱镜材料折射率n0,就可以计算出被测玻璃的折射率n 。
折射液的作用:防止光线在界面上发生全反射;即使样品加工90°角不准确,加上折射液之后,近似于一个准确的90°角; 样品表面只需细磨,免去抛光的麻烦。
5、精密测角法测量物镜长焦距的测量原理、公式(精密测角仪上测量)。
P66—67其中A 和B 是它上面的两条间隔为2y0的刻线。
两刻线对被测物镜主点的张角为2w ,则当刻线尺或者分划板被照亮后,刻线上A 和B 两点发出的光束经过被测物镜后,成为两束夹角为2w 的平行光。
用测角仪器上的望远镜先后对准刻线A 和B ,则望远镜转过的角度就是2w ,得出被测物镜的焦距为 f ′=y0/tg ω。
6、自聚焦透镜数值孔径测量时积分球作用。
第四章 光学干涉测量技术一、干涉测量基础1、样板检测原理 基于光波等厚干涉原理是一种接触的干涉检验法,它利用样板的标准面与零件的被检面重合在一起,由干涉条纹的122(sin n n θ=±2ωtan 0'yf =形状和数量及加压时条纹的移动方向判断面形偏差 玻璃样板法2、国标GB2813-81规定的光圈识别方法、并灵活应用。
P81(会读,会判断光圈高低,会计算象散差)补充:在利用玻璃样板法检验光学零件表面面型误差中,是利用光线在两接触面间的空气薄层中产生的干涉条纹来判断被检面相对于标准面的偏差的。
二、泰曼、斐索干涉测量1、泰曼、斐索干涉的测量原理(哪个共程,哪个不共程,适合测量的面型对比)2、斐索平面干涉仪如何消除杂散光的影响?p92—93 5、斐索型平面干涉仪光路P93 4-21 哪两个表面产生干涉现象第六章 光学系统成像性能评测一、星点检验1、定性评价光学系统的成像质量。
2、星点检验原理 p152通过考察一个点光源(即星点)经光学系统后在像面及像面前后不同截面所成的衍射像(即星点像)的光强分布,定性地评定光学系统的成像质量。
4、衍射受限系统星点像光强分布5、星点检验的光路原理图;最大星孔直径计算方法(公式)max 0.61'c d f Dλ=例题p154—156 二、分辨率测量1、定量评价光学系统成像质量,综合性指标。
2、三个判据各自认为准则。
3、理论分辨率随视场增大而下降,而且子午方向的分辨率比弧矢方向下降得更快。
4、线条宽度的计算5、不同类型的光学系统(望远、照相、显微)的分辨率的具体表达。
P159(1)望远系统:望远系统的物在无限远,用角距离表示刚能分辨的两点间的最小距离,即以望远物镜后焦面上两衍射斑的中心距σ0对物镜后主点的张角α表示分辨率 α=σ0/f ′=1.22λ/D (2)照相系统:照相系统以像面上刚能分辨的两衍射斑中心距的倒数表示分辨率 N=1/σ0=1/(1.22λF )=D/(1.22λf ′) (3)显微系统:显微系统中以刚能分辨开的两物点间的距离表示分辨率ε=σ0/β=0.61λ/NA β为显微物镜的垂轴放大率。