九年级下册平行四边形和特殊的平行四边形测试题

合集下载

初三数学中考总复习 特殊的平行四边形 专题复习练习 含答案

初三数学中考总复习  特殊的平行四边形  专题复习练习 含答案

2019 初三数学中考总复习 特殊的平行四边形 专题复习练习1.下列命题中,真命题是( C )A .对角线相等的四边形是矩形B .对角线互相垂直的四边形是菱形C .对角线互相平分的四边形是平行四边形D .对角线互相垂直平分的四边形是正方形2.如图,四边形ABCD 是菱形,AC =8,DB =6,DH ⊥AB 于点H ,则DH 等于( A )A.245B.125C .5D .4 3.如图,四边形ABCD 为平行四边形,延长AD 到E ,使DE =AD ,连接EB ,EC ,DB ,添加一个条件,不能使四边形DBCE 成为矩形的是( B )A .AB =BE B .BE ⊥DC C .∠ADB =90°D .CE ⊥DE4.如图,四边形ABCD 和四边形BEFD 都是矩形,且点C 恰好在EF 上.若AB =1,AD =2,则S △BCE 为( D )A .1 B.255 C.23 D.455.如图,在矩形ABCD 中(AD >AB),点E 是BC 上一点,且DE =DA ,AF ⊥DE ,垂足为点F ,在下列结论中,不一定正确的是( B )A .△AFD ≌△DCEB .AF =12AD C .AB =AF D .BE =AD -DF 6.如图,E 是边长为1的正方形ABCD 的对角线BD 上一点,且BE =BC ,P 为CE 上任意一点,PQ ⊥BC 于点Q ,PR ⊥BE 于点R ,则PQ +PR 的值是( D )A.23B.12C.32D.227.如图,菱形ABCD 的边长为2,∠ABC =45°,则点D 的坐标为.8.如图,在正方形ABCD 外作等腰直角△CDE,DE =CE ,连接BE ,则tan ∠EBC=__13__. 9.将矩形纸片ABCD 按如图所示的方式折叠,得到菱形AECF.若AB =3,则BC的长为.10.如图,在矩形ABCD 中,点E 、F 分别在边CD ,BC 上,且DC =3DE =3a.将矩形沿直线EF 折叠,使点C 恰好落在AD 边上的点P 处,则FP =.11.如图,A ,B ,C 三点在同一条直线上,AB =2BC ,分别以AB ,BC 为边做正方形ABEF 和正方形BCMN ,连接FN ,EC.求证:FN =EC.证明:在正方形ABEF 和正方形BCMN 中,AB =BE =EF ,BC =BN ,∠FEN =∠EBC=90°,∵AB =2BC ,即BC =BN =12AB ,∴BN =12BE ,即N 为BE 的中点,∴EN =NB =BC ,∴△FEN ≌△EBC(SAS),∴FN =EC12.如图,在菱形ABCD 中,对角线AC 与BD 相交于点O ,MN 过点O 且与边AD ,BC 分别交于点M 和点N.(1)请你判断OM 和ON 的数量关系,并说明理由;(2)过点D 作DE∥AC 交BC 的延长线于点E ,当AB =6,AC =8时,求△BDE 的周长.解:(1)∵四边形ABCD 是菱形,∴AD ∥BC ,AO =OC ,∴OM ON =AO OC=1,∴OM =ON (2)∵四边形ABCD 是菱形,∴AC ⊥BD ,AD =BC =AB =6,∴BO =AB 2-AO 2=62-(8÷2)2=25,∴BD =2BO =2×25=45,∵DE ∥AC ,AD ∥CE ,∴四边形ACED 是平行四边形,∴DE =AC =8,∴△BDE 的周长是:BD +DE +BE =BD +AC +(BC +CE)=45+8+(6+6)=20+45,即△BDE 的周长是20+4 513.如图1,四边形ABCD 是正方形,M 是BC 边上的一点,E 是CD 边的中点,AE 平分∠DAM.(1)证明:AM =AD +MC ;(2)AM =DE +BM 是否成立?若成立,请给出证明;若不成立,请说明理由;(3)若四边形ABCD 是长与宽不相等的矩形,其他条件不变,如图2,探究展示(1)、(2)中的结论是否成立?请分别作出判断,不需要证明.解:(1)过点E 作EF⊥AM 交AM 于F 点,连接EM ,由角平分线性质易得AD =AF ,EF =DE =EC ,由HL 易证△EFM≌△ECM,所以FM =MC ,AM =AF +FM =AD +MC(2)AM =DE +BM 成立,证明:将△ADE 绕点A 顺时针旋转90°,得到新△ABF,∴BF =DE ,∠F =∠AED.∵AB∥DC,∴∠AED =∠BAE.∵∠FAB=∠EAD=∠EAM,∴∠AED =∠BAE=∠BAM+∠EAM=∠BAM+∠FAB=∠FAM.∴∠F=∠FAM.∴AM =FM.∴AM=FB +BM =DE +BM(3)①结论AM =AD +MC 仍然成立.②结论AM =DE +BM 不成立14. 如图,正方形ABCD 的对角线AC ,BD 相交于点O ,延长CB 至点F ,使CF =CA ,连接AF ,∠ACF 的平分线分别交AF ,AB ,BD 于点E ,N ,M ,连接EO.(1)已知EO =2,求正方形ABCD 的边长;(2)猜想线段EM 与CN 的数量关系并加以证明.解:(1) ∵四边形ABCD 是正方形,∴CA =2BC 2=2BC ,∵CF =CA ,CE 是∠ACF 的角平分线,∴E 是AF 的中点,∵E ,O 分别是AF ,AC 的中点,∴EO ∥BC ,且EO =12CF ,∴△EOM ∽△CBM ,∴EO CB =EM CM,∵CF =CA =2CB , ∴EO CB =12×2CB CB =22,∵EO =2,∴BC =2,∴正方形ABCD 的边长为2(2) EM =12CN.证明:∵CF =CA ,CE 是∠ACF 的平分线,∴CE ⊥AF , ∴∠AEN =∠CBN =90°,∵∠ANE =∠CNB ,∴∠BAF =∠BCN ,在△ABF 和△CBN 中,⎩⎪⎨⎪⎧∠BAF =∠BCN ,∠ABF =∠CBN =90°,AB =BC ,∴△ABF ≌△CBN(AAS ),∴AF =CN ,∵∠BAF =∠BCN ,∠ACN =∠BCN ,∴∠BAF =∠OCM , ∵四边形ABCD 是正方形,∴AC ⊥BD ,∴∠ABF =∠COM =90°,∴△ABF ∽△COM ,∴CM AF =OC AB ,∴CM CN =OC AB =22,即CM =22CN , 由(1)知EO CB =EM CM =22,∴EM =22CM =22×22CN =12CN。

北师大九年级数学特殊的平行四边形证明题

北师大九年级数学特殊的平行四边形证明题

1.如图,已知E,F,G,H分别是四边形ABCD四边形的中点;(1)当满足条件四边形EFGH是矩形;(2)当满足条件四边形EFGH是菱形;(3)当满足条件四边形EFGH是正方形.2已知,如图,四边形ABCD是菱形,∠B是锐角,AF⊥BC于点F,CH⊥AD于点H,在AB边上取点E,使得AE=AH,在CD边上取点G,使得CG=CF,连接EF、FG、GH、HE.(1)求证:四边形EFGH是矩形;(2)当∠B为多少度时,四边形EFGH是正方形?并证明.3如图,根据图形解答下列问题(1)如图,以△ABC三边向外分别作等边△ACD、△ABE、△BCF,证明四边形ADFE是平行四边形.(2)△ABC满足什么条件时,四边形ADFE是矩形?(3)△ABC满足什么条件时,四边形ADFE是菱形?(4)△ABC满足什么条件时,四边形ADFE是正方形?4)如图(1),Rt△ABC中,∠ACB=90°,中线BE、CD相交于点O,点F、G分别是OB、OC的中点.(1)求证:四边形DFGE是平行四边形;(2)如果把Rt△ABC变为任意△ABC,如图(2),通过你的观察,第(1)问的结论是否仍然成立(不用证明);(3)在图(2)中,试想:如果拖动点A,通过你的观察和探究,在什么条件下四边形DFGE是矩形,并给出证明;(4)在第(3)问中,试想:如果拖动点A,是否存在四边形DFGE是正方形或菱形?如果存在,画出相应的图形(不用证明).5如图1,正方形ABCD的对角线相交于点M,正方形MNPQ与正方形ABCD全等,MN、MQ分别交正方菜ABCD的边于E、F两点.(1)试判断ME与MF之间的数量关系,并给出证明.(2)若将题中的“正方形MNPQ与正方形ABCD”改为“矩形MNPQ与矩形ABCD”,且BC=2AB,其他条件不变,当矩形MNPQ与矩形ABCD的位置如图2所示时,请判断ME与MF之间的数量关系,并给出证明.6如图1,在正方形ABCD中,点E、F分别为边BC、CD的中点,AF、DE相交于点G,则可得结论:①AF=DE,②AF⊥DE(不须证明).(1)如图②,若点E、F不是正方形ABCD的边BC、CD的中点,但满足CE=DF,则上面的结论①、②是否仍然成立;(请直接回答“成立”或“不成立")(2)如图③,若点E、F分别在正方形ABCD的边CB的延长线和DC的延长线上,且CE=DF,此时上面的结论①、②是否仍然成立?若成立,请写出证明过程;若不成立,请说明理由.(3)如图④,在(2)的基础上,连接AE和EF,若点M、N、P、Q分别为AE、EF、FD、AD的中点,请先判断四边形MNPQ 是“矩形、菱形、正方形”中的哪一种,并写出证明过程.7如图,E是矩形ABCD边BC的中点,P是AD边上一动点,PF⊥AE,PH⊥DE,垂足分别为F,H.(1)当矩形ABCD的长与宽满足什么条件时,四边形PHEF是矩形?请予以证明;(2)在(1)中,动点P运动到什么位置时,矩形PHEF变为正方形?为什么?8)如图,在正方形纸片ABCD中,对角线AC,BD交于点O,折叠正方形纸片ABCD,使AD落在BD上,点A恰好与BD上的点F重合.展开后,折痕DE分别交AB,AC于点G,E,连接GF.(1)求∠AGD的度数;(2)证明四边形AEFG是菱形;9已知:如图,在矩形ABCD中,M,N分别是边AD,BC的中点,E,F分别是线段BM,CM的中点.(1)求证:△ABM≌△DCM;(2)判断四边形MENF是什么特殊四边形,并证明你的结论;(3)当AD:AB= :时,四边形MENF是正方形(只写结论,不需证明).10如图①,在正方形ABCD中,P是对角线AC上的一点,点E在BC的延长线上,且PE=PB,PE交CD于点F,连接DE.(1)请判断△PDE的形状,并给予证明;(2)把正方形ABCD改为菱形,其它条件不变(如图②),若∠ABC=56°,求∠DPE的度数.11.在综合实践活动课中,王老师出了这样一道题:如图1,在矩形ABCD中,M是BC的中点,过点M作ME∥AC交BD于点E,作MF∥BD交AC于点F.求证:四边形OEMF 是菱形.做完题后,同学们按照老师的要求进行变式或拓展,提出新的问题让其它同学解答.(1)小明同学说:“我把条件中的‘矩形ABCD'改为‘菱形ABCD’,如图2所示,发现四边形OEMF是矩形."请给予证明;(2)小芳同学说:“我把条件中的‘点M是BC的中点’改为‘点M是BC延长线上的一个动点’,发现点F落在AC的延长线上,如图3所示,此时OB、ME、MF三条线段之间存在某种数量关系.”请你写出这个结论,并说明理由.12在菱形ABCD和正三角形BGF中,∠ABC=60°,P是DF的中点,连接PG、PC.(1)如图1,当点G在BC边上时,易证:PG=PC.(不必证明)(2)如图2,当点F在AB的延长线上时,线段PC、PG有怎样的数量关系,写出你的猜想,并给与证明;(3)如图3,当点F在CB的延长线上时,线段PC、PG又有怎样的数量关系,写出你的猜想(不必证明).13(1)如图,正方形ABCD中,点E,F分别在边BC,CD上,∠EAF=45°,延长CD到点G,使DG=BE,连结EF,AG.求证:EF=FG.(2)如图,等腰直角三角形ABC中,∠BAC=90°,AB=AC,点M,N在边BC上,且∠MAN=45°,若BM=1,CN=3,求MN的长.14已知:如图,△ABC中,∠BAC的平分线交BC于点D,E是AB上一点,且AE=AC,EF∥BC交AD于点F,求证:四边形CDEF是菱形.14解:∵AD是∠BAC的平分线,∴∠CAD=∠DAE,在△ABD和△ADE中, AE=AB ∠CAD=∠DAE AD=AD ,∴△ABD≌△ADE,∴BD=DE,同理△BAF≌△EAF,∴BF=EF,在△BFD和△EDF中, BD=DE DF=DF BF=EF ,∴△BFD≌△EDF,∴∠BFD=∠DFE,又∵EF∥BC,∴∠DFE=∠FDC,∴∠BFD=∠BDF,∴BF=BD,∴BF=BD=EF=DE,∴四边形BDEF是菱形.13(1)证明:在正方形ABCD中,∴∠ABE=∠ADG,AD=AB,在△ABE和△ADG中,∴△ABE≌△ADG(SAS),∴∠BAE=∠DAG,AE=AG,∴∠EAG=90°,在△FAE和△GAF中,,∴△FAE≌△GAF(SAS),∴EF=FG(2)解:如图2,过点C作CE⊥BC,垂足为点C,截取CE,使CE=BM.连接AE、EN.∵AB=AC,∠BAC=90°,∴∠B=∠C=45°.∵CE⊥BC,∴∠ACE=∠B=45°.在△ABM和△ACE中,∴△ABM≌△ACE(SAS).∴AM=AE,∠BAM=∠CAE.∵∠BAC=90°,∠MAN=45°,∴∠BAM+∠CAN=45°.于是,由∠BAM=∠CAE,得∠MAN=∠EAN=45°.在△MAN和△EAN中,∴△MAN≌△EAN(SAS).∴MN=EN.在Rt△ENC中,由勾股定理,得EN2=EC2+NC2.∴MN2=BM2+NC2.∵BM=1,CN=3,∴MN2=12+32,∴MN=12解答:(1)提示:如图1:延长GP交DC于点E,利用△PED≌△PGF,得出PE=PG,DE=FG,∴CE=CG,∴CP是EG的中垂线,在RT△CPG中,∠PCG=60°,∴PG=PC.(2)如图2,延长GP交DA于点E,连接EC,GC,∵∠ABC=60°,△BGF正三角形∴GF∥BC∥AD,∴∠EDP=∠GFP,在△DPE和△FPG中∴△DPE≌△FPG(ASA)∴PE=PG,DE=FG=BG,∵∠CDE=CBG=60°,CD=CB,在△CDE和△CBG中,∴△CDE≌△CBG(SAS)∴CE=CG,∠DCE=∠BCG,∴∠ECG=∠DCB=120°,∵PE=PG,∴CP⊥PG,∠PCG=∠ECG=60°∴PG=PC.11)证明:∵ME∥AC,MF∥BD,∴四边形OEMF是平行四边形.又∵四边形ABCD是菱形,∴AC⊥BD,即∠EOF=90°,∴四边形OEMF是矩形.(2)结论:OB=ME—MF.理由如下:∵ME∥AC,MF∥BD,∴四边形OEMF 是平行四边形,∴OE=MF,又∵四边形ABCD是矩形,∴OB=1 2 BD,OC=1 2 AD,且AC=BD,∴OB=OC,∴∠OBC=∠OCB,由ME∥AC可知,∠OCB=∠EMB,∴BE=ME,∴OB=BE—OE=ME—MF.10(1)∴△PDE为等腰直角三角形证明:在正方形ABCD中,BC=DC,∠BCP=∠DCP=45°,在△BCP和△DCP中,BC=DC ∠BCP=∠DCP PC=PC ∴△BCP≌△DCP(SAS);∴∠CBP=∠CDP,PD=PB∵PE=PB,∴∠CBP=∠CEP,PD=PE∵∠CFE=∠PFD(对顶角相等)∴180°-∠PFD—∠CDP=180°-∠CFE-∠CEP 即∠DPE=∠DCE=90°∴△PDE为等腰直角三角形.(2)解:∵AB∥CD∴∠DCE=∠ABC,∠DPE=∠DCE∴∠DPE=∠ABC∵∠ABC=56°∴∠DPE=56°.9(1)证明:∵四边形ABCD是矩形,∴AB=CD,∠A=∠D=90°,又∵M是AD的中点,∴AM=DM.在△ABM和△DCM中,AB=CD ∠A=∠D AM=DM ,∴△ABM≌△DCM(SAS).(2)解:四边形MENF是菱形.证明如下:∵E,F,N分别是BM,CM,CB的中点,∴NE∥MF,NE=MF.∴四边形MENF 是平行四边形.由(1),得BM=CM,∴ME=MF.∴四边形MENF是菱形.(3)解:2:1.当AD:AB=2:1时,四边形MENF是正方形.理由:∵M为AD中点,∴AD=2AM.∵AD:AB=2:1,∴AM=AB.∵∠A=90,∴∠ABM=∠AMB=45°.同理∠DMC=45°,∴∠EMF=180°-45°-45°=90°.∵四边形MENF是菱形,∴菱形MENF是正方形.8:(1)根据折叠的对称性,可知∠ADG=∠BDG=22。

2022-2023学年九年级数学特殊的平行四边形综合练习题(含答案,教师版)

2022-2023学年九年级数学特殊的平行四边形综合练习题(含答案,教师版)

特殊的平行四边形综合练习题1.如图,以正方形ABCD的顶点A为坐标原点,直线AB为x轴建立平面直角坐标系,对角线AC与BD相交于点E,P为BC上一点,点P坐标为(a,b),则点P绕点E顺时针旋转90°得到的对应点P′的坐标是(D)A.(a-b,a) B.(b,a) C.(a-b,0) D.(b,0)2.如图,菱形ABCD边长为6,∠BAD=120°,点E,F分别在AB,AD上且BE=AF,则EF的最小值为(A).A.B.C.D3.如图,在边长为2的菱形ABCD中,∠A=60°,M是AD边的中点,N是AB边上的一动点,将△AMN沿MN所在直线翻折得到△A′MN,连接A′C,则A′C4.如图,在边长为1的菱形ABCD 中,∠ABC =60°,将△ABD 沿射线BD 的方向平移得到△A ′B ′D ′,分别连接A ′C ,A ′D ,B ′C ,则A ′C+B ′C5.菱形OBCD 在平面直角坐标系中的位置如图所示,顶点B(2,0),∠DOB =60°,点P 是对角线OC 上一个动点,E(0,-1),当EP +BP 最短时,点P6.如图,在平面直角坐标系中,矩形OABC 的两边OA ,OC 分别在x 轴和y 轴上,并且OA =5,OC =3.若把矩形OABC 绕着点O 逆时针旋转,使点A 恰好落在BC 边上的A 1处,则点C 的对应点C 1的坐标为(-95,125).7.如图,∠MON =90°,矩形ABCD 的顶点A ,B 分别在边OM ,ON上,当B在边ON上运动时,A随之在边OM上运动,矩形ABCD 的形状保持不变,其中AB=4,BC=1,在运动过程中,点D到点O8.如图,在矩形纸片ABCD中,AB=8,BC=6,点E是AD的中点,点F是AB上一动点.将△AEF沿直线EF折叠,点A落在点A′处.在EF上任取一点G,连接GC,GA′,CA′,则△CGA′周长的最小值为79.如图,在△ABC中,∠ABC=90°,BD为AC的中线,过点C作CE ⊥BD于点E,过点A作BD的平行线,交CE的延长线于点F,在AF的延长线上截取FG=BD,连接BG,DF.(1)求证:四边形BDFG为菱形;(2)若AG=13,CF=6,则四边形BDFG的周长为20.证明:∵∠ABC=90°,BD为AC的中线,∴BD=12 AC.∵AG ∥BD ,BD =FG ,∴四边形BDFG 是平行四边形.∵CF ⊥BD ,∴CF ⊥AG.又∵点D 是AC 中点,∴DF =12AC.∴BD =DF. ∴四边形BDFG 是菱形.10.如图,E ,F 分别是矩形ABCD 的边AD ,AB 上的点,EF =EC ,且EF ⊥EC.(1)求证:AE =DC ;(2)若DC =2,则BE =2.证明:在矩形ABCD 中,∠A =∠D =90°,∴∠EFA +∠AEF =90°.∵EF ⊥EC ,∴∠FEC =90°.∴∠AEF +∠CED =90°.∴∠EFA =∠CED.在△AEF 和△DCE 中,⎩⎪⎨⎪⎧∠A =∠D ,∠EFA =∠CED ,EF =CE ,∴△AEF ≌△DCE(AAS).∴AE =DC.11.已知:在矩形ABCD 中,BD 是对角线,AE ⊥BD 于点E ,CF ⊥BD 于点F.(1)如图1,求证:AE =CF ;(2)如图2,当∠ADB =30°时,连接AF ,CE ,在不添加任何辅助线的情况下,请直接写出图2中四个三角形,使写出的每个三角形的面积都等于矩形ABCD 面积的18.解:(1)证明:∵四边形ABCD 是矩形,∴AB =CD ,AB ∥CD ,AD ∥BC.∴∠ABE =∠CDF.∵AE ⊥BD ,CF ⊥BD ,∴∠AEB =∠CFD =90°.在△ABE 和△CDF 中,⎩⎪⎨⎪⎧∠ABE =∠CDF ,∠AEB =∠CFD ,AB =CD ,∴△ABE ≌△CDF(AAS).∴AE =CF.(2)S △ABE =S △CDF =S △BCE =S △ADF =18S 矩形ABCD . 12.如图,在四边形ABCD 中,BC ∥AD ,BC =12AD ,点E 为AD 的中点,点F 为AE 的中点,AC ⊥CD ,连接BE ,CE ,CF.(1)判断四边形ABCE 的形状,并说明理由;(2)如果AB =4,∠D =30°,点P 为BE 上的动点,求△PAF 周长的最小值.解:(1)四边形ABCE 是菱形,理由如下:∵点E 是AD 的中点,∴AE =12AD. ∵BC =12AD ,∴AE =BC. ∵BC ∥AD ,∴四边形ABCE 是平行四边形.∵AC ⊥CD ,点E 是AD 的中点,∴CE =AE =DE.∴四边形ABCE 是菱形.(2)∵四边形ABCE 是菱形.∴AE =EC =AB =4,点A ,C 关于BE 对称.∵点F 是AE 的中点,∴AF =12AE =2. ∴当PA +PF 最小时,△PAF 的周长最小,即点P 为CF 与BE 的交点时,△PAF 的周长最小.此时△PAF 的周长为PA +PF +AF =CF +AF.∵CE =DE ,∴∠ECD =∠D =30°,∠ACE =90°-30°=60°.∴△ACE 是等边三角形.∴AC =AE =CE =4.∵AF =EF ,∴CF ⊥AE.∴CF =AC 2-AF 2=2 3.△PAF 周长的最小值为CF +AF =23+2. 13.如图,在Rt △ABC 中,∠ACB =90°,过点C 的直线MN ∥AB ,D 为AB 边上一点,过点D 作DE ⊥BC ,垂足为F ,交直线MN 于点E ,连接CD ,BE.(1)求证:CE =AD ;(2)当D为AB的中点时,四边形CDBE是什么特殊四边形?说明你的理由;(3)若D为AB的中点,则当∠A的大小满足什么条件时,四边形CDBE是正方形?请说明你的理由.解:(1)证明:∵DE⊥BC,∴∠DFB=90°.∵∠ACB=90°,∴∠ACB=∠DFB.∴AC∥DE.∵MN∥AB,即CE∥AD,∴四边形ADEC是平行四边形.∴CE=AD.(2)四边形CDBE是菱形.理由:∵D为AB的中点,∴AD=BD.∵CE=AD,∴BD=CE.∵BD∥CE,∴四边形CDBE是平行四边形.∵∠ACB=90°,D为AB的中点,∴CD=BD.∴四边形CDBE是菱形.(3)当∠A=45°时,四边形CDBE是正方形.理由:∵∠ACB=90°,∠A=45°,∴∠ABC=∠A=45°.∴AC=BC.∵D为AB的中点,∴CD⊥AB.∴∠CDB=90°.又∵四边形CDBE是菱形,∴四边形CDBE是正方形.14.如图,在矩形ABCD中,E是AB边的中点,沿EC对折矩形ABCD,使B点落在点P处,折痕为EC,连接EC,连接AP并延长交CD于点F,连接BP,交CE于点H.(1)若∠PBA∶∠PBC=1∶2,判断△PBC的形状,并说明理由;(2)求证:四边形AECF为平行四边形.解:(1)△PBC是等边三角形,理由如下:在矩形ABCD中,∠ABC=90°,∵∠PBA∶∠PBC=1∶2,∴∠PBC=60°.由折叠的性质,得PC=BC.∴△PBC是等边三角形.(2)证明:由折叠的性质,得△EBC ≌△EPC.∴BE =PE.∴∠EBP =∠EPB.∵E 为AB 的中点,∴BE =AE.∴AE =PE.∴∠EPA =∠EAP .∵∠EBP +∠EPB +∠EPA +∠EAP =180°,∴∠EPB +∠EPA =90°.∴∠BPA =90°,即BP ⊥AF.由折叠的性质,得BP ⊥CE ,∴AF ∥CE.∵四边形ABCD 是矩形,∴AE ∥CF.∴四边形AECF 为平行四边形.15.如图,将一张矩形纸片ABCD 沿直线MN 折叠,使点C 落在点A 处,点D 落在点E 处,直线MN 交BC 于点M ,交AD 于点N.(1)求证:CM =CN ;(2)若△CMN 的面积与△CDN 的面积比为3∶1,求MN DN的值.解:(1)证明:由折叠的性质,得∠ENM =∠DNM ,又∵∠ANE =∠CND ,∴∠ANM =∠CNM.∵四边形ABCD 是矩形,∴AD ∥BC.∴∠ANM =∠CMN.∴∠CMN =∠CNM.∴CM =CN.(2)过点N 作NH ⊥BC 于点H ,则四边形NHCD 是矩形, ∴HC =DN ,NH =DC.∵S △CMN S △CDN =12MC ·NH 12ND ·NH =MC ND =3, ∴MC =3ND =3HC.∴MH =2HC.设DN =x ,则HC =x ,MH =2x.∴CM =CN =3x.在Rt △CDN 中,DC =CN 2-DN 2=22x. 在Rt △MNH 中,MN =MH 2+HN 2=23x.∴MN DN =23x x =2 3.16.在正方形ABCD 中,点E ,F 分别在边BC ,AD 上,DE =EF ,过点D 作DG ⊥EF 于点H ,交AB 边于点G.(1)如图1,求证:DE =DG ;(2)如图2,将EF 绕点E 逆时针旋转90°得到EK ,点F 对应点K ,连接KG ,EG.若H 为DG 的中点,在不添加任何辅助线及字母的情况下,请直接写出图中所有与EG 长度相等的线段(不包括EG).解:(1)证明:∵四边形ABCD 是正方形,∴AD =DC ,AD ∥BC ,∠DAG =∠DCE =90°.∴∠DEC =∠EDF.∵DE =EF ,∴∠EFD =∠EDF.∴∠EFD =∠DEC.∵DG ⊥EF ,∴∠GHF =90°.∴∠DGA +∠AFH =180°.∵∠AFH +∠EFD =180°, ∴∠DGA =∠EFD =∠DEC.在△DAG 和△DCE 中,⎩⎪⎨⎪⎧∠DGA =∠DEC ,∠DAG =∠DCE ,DA =DC ,∴△DAG ≌△DCE(AAS).∴DG =DE.(2)与线段EG 相等的线段有:DE ,DG ,GK ,KE ,EF.17.如图,BD 是正方形ABCD 的对角线,线段BC 在其所在的直线上平移,将平移得到的线段记为PQ ,连接PA ,过点Q 作QO ⊥BD ,垂足为O ,连接OA ,OP .(1)如图1所示,求证:AP =2OA ;(2)如图2所示,PQ 在BC 的延长线上,如图3所示,PQ 在BC 的反向延长线上,猜想线段AP ,OA 之间有怎样的数量关系?请直接写出你的猜想,不需证明.解:(1)证明:∵四边形ABCD 是正方形,∴AB =BC ,∠ABD =∠CBD =45°.∵QO ⊥BD ,∴∠BOQ =90°.∴∠BQO =∠CBD =45°.∴OB =OQ.∵PQ =BC ,∴AB =PQ.在△ABO 和△PQO 中,⎩⎪⎨⎪⎧OB =OQ ,∠ABO =∠PQO ,AB =PQ ,∴△ABO ≌△PQO(SAS).∴OA =OP ,∠AOB =∠POQ.∵∠BOP +∠POQ =90°,∴∠BOP +∠AOB =90,即∠AOP =90°.∴△AOP 是等腰直角三角形.∴AP =2OA.(2)当PQ 在BC 的延长线上时,线段AP ,OA 之间的数量关系为AP =2OA ;当PQ 在BC 的反向延长线上时,线段AP ,OA 之间的数量关系为AP =2OA.。

北师大版九年级数学下册 专项训练一 特殊平行四边形(含答案)

北师大版九年级数学下册 专项训练一 特殊平行四边形(含答案)

专项训练一特殊平行四边形一、选择题1.(益阳中考)如图,在矩形ABCD中,对角线AC,BD交于点O,以下说法错误的是() A.∠ABC=90°B.AC=BD C.OA=OB D.OA=AD第1题图第2题图第3题图2.(2016·遵义中考)如图,在▱ABCD中,对角线AC与BD交于点O,若增加一个条件,使▱ABCD成为菱形,下列给出的条件不正确的是()A.AB=AD B.AC⊥BD C.AC=BD D.∠BAC=∠DAC3.(2016·宁夏中考)如图,菱形ABCD的对角线AC,BD相交于点O,E,F分别是AD,CD边上的中点,连接EF.若EF=2,BD=2,则菱形ABCD的面积为() A.2 2 B. 2 C.6 2 D.8 2第4题图第5题图第6题图4.(日照中考)小明在学习了正方形之后,给同桌小文出了道题,从下列四个条件:①AB =BC;②∠ABC=90°;③AC=BD;④AC⊥BD中,选两个作为补充条件,使▱ABCD成为正方形(如图).现有下列四种选法,你认为其中错误的是()A.①②B.②③C.①③D.②④5.(2016·黔东南州中考)如图,在菱形ABCD中,对角线AC与BD相交于点O,若AB =2,∠ABC=60°,则BD的长为()A.2 B.3 C. 3 D.2 36.如图,在正方形ABCD的外侧,作等边三角形ADE,AC,BE相交于点F,则∠BFC 的度数为CA.45°B.55°C.60°D.75°7.如图,菱形ABCD的边长为4,过点A,C作对角线AC的垂线,分别交CB和AD 的延长线于点E,F,AE=3,则四边形AECF的周长为()A.22 B.18 C.14 D.11第7题图第8题图8.(临沂中考)如图,四边形ABCD为平行四边形,延长AD到E,使DE=AD,连接EB,EC,DB.添加一个条件,不能使四边形DBCE成为矩形的是()A.AB=BE B.BE⊥DC C.∠ADB=90°D.CE⊥DE9.(安徽中考)如图,矩形ABCD中,AB=8,BC=4,点E在AB上,点F在CD上,点G ,H 在对角线AC 上,若四边形EGFH 是菱形,则AE 的长是( )A .2 5B .3 5C .5D .6第9题图 第10题图10.★(深圳中考)如图,正方形ABCD 中,AB =12,点E 在边BC 上,BE =EC ,将△DCE 沿DE 对折至△DFE ,延长EF 交边AB 于点G ,连接DG ,BF .给出以下结论:①△DAG ≌△DFG ;②BG =2AG ;③△EBF ∽△DEG ;④S △BEF =725.其中所有正确结论的个数是( )A .1个B .2个C .3个D .4个二、填空题11.(2016·扬州中考)如图,菱形ABCD 的对角线AC ,BD 相交于点O ,E 为AD 的中点,若OE =3,则菱形ABCD 的周长为________.第11题图 第12题图 第13题图12.如图,在矩形ABCD 中,∠BOC =120°,AB =5,则BD 的长为________.13.13.如图,在菱形ABCD 中,AC ,BD 相交于点O ,若∠BCO =55°,则∠ADO =________.14.(2016·巴中中考)如图,延长矩形ABCD 的边BC 至点E ,使CE =BD ,连接AE ,如果∠ADB =30°,则∠E =________°.第14 题图 第15题图 第16题图15.(2016·青岛中考)如图,在正方形ABCD 中,对角线AC 与BD 相交于点O ,E 为BC 上一点,CE =5,F 为DE 的中点.若△CEF 的周长为18,则OF 的长为________.16.(玉林中考)如图,已知正方形ABCD 边长为3,点E 在AB 边上,BE =1,点P ,Q 分别是边BC ,CD 上的动点(均不与顶点重合),当四边形AEPQ 的周长最小时,四边形AEPQ 的面积是________.三、解答题17.(2016·聊城中考)如图,在Rt △ABC 中,∠B =90°,点E 是AC 的中点,AC =2AB ,∠BAC 的平分线AD 交BC 于点D ,作AF ∥BC ,连接DE 并延长交AF 于点F ,连接FC .求证:四边形ADCF 是菱形.18.(青岛中考)如图,在△ABC中,AB=AC,AD是BC边上的中线,AE∥BC,CE⊥AE,垂足为点E.(1)求证:△ABD≌△CAE;(2)连接DE,线段DE与AB之间有怎样的位置和数量关系?请证明你的结论.19.★(泰州中考)如图,正方形ABCD的边长为8cm,E,F,G,H分别是AB,BC,CD,DA上的动点,AE=BF=CG=DH.(1)求证:四边形EFGH是正方形;(2)判断直线EG是否经过某一定点,说明理由;(3)求四边形EFGH面积的最小值.参考答案与解析1.D 2.C 3.A 4.B 5.D 6.C7.A8.B9. C 解析:连接EF 交AC 于O .∵四边形EGFH 是菱形,∴EF ⊥AC ,OE =OF .∵四边形ABCD 是矩形,∴∠B =∠D =90°,AB ∥CD ,∴∠ACD =∠CAB .在△CFO 与△AEO 中,⎩⎪⎨⎪⎧∠FCO =∠EAO ,∠FOC =∠EOA ,OF =OE ,∴△CFO ≌△AEO ,∴AO =CO .∵AC =AB 2+BC 2=45,∴AO =12AC =2 5.∵∠CAB =∠CAB ,∠AOE =∠B =90°,∴△AOE ∽△ABC ,∴AO AB =AE AC ,∴258=AE 45,∴AE =5.故选C. 10.C 解析:由折叠的性质可知DF =DC =DA ,∠DFE =∠C =90°,∴∠DFG =∠A =90°.又∵DG =DG ,∴Rt △DAG ≌Rt △DFG ,∴①正确;∵正方形ABCD 的边长为12,∴BE =EC =EF =6.设AG =GF =x ,则EG =x +6,BG =12-x .由勾股定理得EG 2=BE 2+BG 2,即(x +6)2=62+(12-x )2,解得x =4,∴AG =GF =4,BG =8,∴BG =2AG ,∴②正确;∵BE =EF =6,∴△BEF 为等腰三角形,易知△GDE 不是等腰三角形,∴③错误;∵BE=6,∴BG =8,∴EG =BE 2+BG 2=10,S △BEG =12×6×8=24,∴S △BEF =EF EG ·S △BEG =610×24=725,∴④正确.故选C. 11.24 12.10 13.35° 14.1515.72解析:∵CE =5,△CEF 的周长为18,∴CF +EF =18-5=13.∵F 为DE 的中点,∴DF =EF .∵∠BCD =90°,∴CF =12DE ,∴EF =CF =12DE =6.5,∴DE =2EF =13,∴CD =DE 2-CE 2=132-52=12.∵四边形ABCD 是正方形,∴BC =CD =12,O 为BD 的中点,∴OF 是△BDE 的中位线,∴OF =12(BC -CE )=12(12-5)=72. 16.4.5 解析:作点A 关于CD 的对称点A ′,作点E 关于BC 的对称点E ′,连接A ′E ′,交BC ,CD 于点P ,Q ,此时所得四边形AEPQ 的周长最短,易求得其面积为4.5.17.证明:∵AF ∥CD ,∴∠AFE =∠CDE .∵点E 是AC 的中点,∴AE =CE .在△AFE和△CDE 中,⎩⎪⎨⎪⎧∠AFE =∠CDE ,∠AEF =∠CED ,AE =CE ,∴△AEF ≌△CED ,∴AF =CD .∵AF ∥CD ,∴四边形ADCF 是平行四边形.∵∠B =90°,AC =2AB ,∴∠ACB =30°,∴∠CAB =60°.∵AD 平分∠CAB ,∴∠DAC =∠DAB =30°=∠ACD ,∴DA =DC ,∴四边形ADCF 是菱形.18.(1)证明:∵AB =AC ,AD 是BC 边上的中线,∴AD ⊥BC ,BD =CD ,∴∠ADB =∠ADC =90°.∵AE ∥BC ,CE ⊥AE ,∴∠E =∠DCE =90°,∴四边形ADCE 是矩形,∴AD=CE .在Rt △ABD 与Rt △CAE 中,⎩⎪⎨⎪⎧AD =CE ,AB =CA ,∴Rt △ABD ≌Rt △CAE (HL); (2)解:DE ∥AB ,DE =AB .证明如下:∵四边形ADCE 是矩形,∴AE =CD =BD ,AE ∥BD ,∴四边形ABDE 是平行四边形,∴DE ∥AB ,DE =AB .19.(1)证明:∵四边形ABCD是正方形,∴∠A=∠B=90°,AB=DA.∵AE=DH,∴BE =AH.又∵AE=BF,∴△AEH≌△BFE,∴EH=FE,∠AHE=∠BEF.同理:FE=GF=HG,∴EH=FE=GF=HG,∴四边形EFGH是菱形.∵∠A=90°,∴∠AHE+∠AEH=90°,∴∠BEF+∠AEH=90°,∴∠FEH=90°,∴四边形EFGH是正方形;(2)解:直线EG经过正方形ABCD的中心.理由如下:连接BD交EG于点O.∵四边形ABCD是正方形,∴AB∥DC,AB=DC,∴∠EBD=∠GDB.∵AE=CG,∴BE=DG.又∵∠EOB=∠GOD,∴△EOB≌△GOD,∴BO=DO,即点O为BD的中点,∴直线EG经过正方形ABCD的中心;(3)解:设AE=DH=x,则AH=8-x.在Rt△AEH中,EH2=AE2+AH2=x2+(8-x)2=2x2-16x+64=2(x-4)2+32,∴四边形EFGH面积的最小值为32cm2.。

2021年九年级中考数学一轮复习《平行四边形》基础复习卷

2021年九年级中考数学一轮复习《平行四边形》基础复习卷

2021年中考数学一轮复习《平行四边形》基础复习卷一、选择题1.能判定四边形是平行四边形的条件是( )A.一组对边平行,另一组对边相等;B.一组对边相等,一组邻角相等;C.一组对边平行,一组邻角相等;D.一组对边平行,一组对角相等。

2.如图,在▱ABCD中,∠ODA=90°,AC=10cm,BD=6cm,则AD的长为()A.4cm B.5cm C.6cm D.8cm3.如图,□ABCD的对角线AC,BD相交于O,EF过点O与AD,BC分别相交于E,F,若AB=4,BC=5,OE=1.5,那么四边形EFCD的周长为()A.16B.14C.12D.104.如图,将边长为2cm的菱形ABCD沿边AB所在的直线翻折得到四边形ABEF.若∠DAB=30°,则四边形CDFE的面积为( )A.2cm2B.3cm2C.4cm2D.6cm25.如图,菱形ABCD周长为20,对角线AC、BD相交于点O,E是CD的中点,则OE的长是( )A.2.5 B.3 C.4 D.56.如图,在菱形ABCD中,M,N分别在AB,CD上,且AM=CN,MN与AC交于点O,连接BO.若∠DAC=28°,则∠OBC的度数为( )A.28°B.52°C.62°D.72°7.如图,矩形ABCD中,AB=3,BC=5.过对角线交点O作OE⊥AC交AD于E,则AE长是()A.1.6B.2.5C.3D.3.48.如图,P是矩形ABCD的对角线AC的中点,E是AD的中点.若AB=6,AD=8,则四边形ABPE的周长为()A.14B.16C.17D.189.如图,矩形ABCD中,E在AD上,EF⊥EC,EF=EC,DE=2,矩形周长为16,则AE长是( )A.3B.4C.5D.710.如图,将边长为3a的正方形沿虚线剪成两块正方形和两块长方形.若拿掉边长为2b的小正方形后,再将剩下的三块拼成一块矩形,则这块矩形较长的边长为 ( )A.3a+2bB.3a+4bC.6a+2bD.6a+4b11.菱形、矩形、正方形都具有的性质是()A.对角线相等B.对角线互相垂直C.对角线互相平分D.对角线平分一组对角12.如图,正方形ABCD的面积为16,△ABE是等边三角形,点E在正方形ABCD内,在对角线BD 上有一点P,使PC+PE的和最小,则这个最小值为()A.4B.2C.2D.2二、填空题13.如图,四边形ABCD的对角线相交于点O,AO=CO,请添加一个条件________(只添一个即可),使四边形ABCD是平行四边形.14.如图,四边形ABCD的对角线互相平分,要使它变为菱形,需要添加的条件是(只填一个你认为正确的即可).15.如图,要使平行四边形ABCD是矩形,则应添加的条件是__________(添加一个条件即可).16.如图,连接四边形ABCD各边中点,得到四边形EFGH,还要添加条件,才能保证四边形EFGH是矩形.17.如图,在正方形ABCD的外侧,作等边△ADE,则∠BED的度数是.18.如图是“赵爽弦图”,△ABH、△BCG、△CDF和△DAE是四个全等的直角三角形,四边形ABCD 和EFGH都是正方形,如果AB=10,EF=2,那么AH为a,BH为b,则ab= .三、解答题19.如图,四边形ABCD中,对角线AC,BD相交于点O,点E,F分别在OA,OC上(1)给出以下条件:①OB=OD,②∠1=∠2,③OE=OF,请你从中选取两个条件证明△BEO≌△DFO;(2)在(1)条件中你所选条件的前提下,添加AE=CF。

沪科版九年级数学中考:4.6 特殊的平行四边形专题 习题(含答案)

沪科版九年级数学中考:4.6 特殊的平行四边形专题 习题(含答案)

4.6 特殊的平行四边形一、历年安徽中考:1.如图,在矩形ABCD中,AB=5,AD=3,动点P满足S△PAB =31S矩形ABCD,则点P到A,B两点距离之和PA+PB的最小值为()A.29B.34C.52D.412.如图,在矩形ABCD中,AB=8,BC=4,点E在AB上,点F在CD上,点G、H在对角线AC上,若四边形EGFH是菱形,则AE的长是()A.25B.35C.5D.63.矩形ABCD中,AB=6,BC=8,点P在矩形ABCD的内部,点E在边BC上,满足△PBE∽△DBC。

若△APD是等腰三角形,则PE的长为。

4.如图,在矩形ABCD中,AB=6,BC=10.点E在CD上,将△BCE沿BE折叠,点C 恰好落在边AD上的点F处;点G在AF上,将△ABG沿BG折叠,点A恰落在线段BF上的点H处,有下列结论:①∠EBG=45°;②△DEF∽△ABG;③S△ABC =23S△FGH;④AG+DF=FG。

其中正确的是。

(把所有正确结论的序号都选上)二、历年全国中考:1.如图,在矩形ABCD中,点F在AD上,点E在BC上,把这个矩形沿EF折叠后,使点D恰好落在BC边上的G点处,若矩形面积为43且∠AFG=60°,GE=2BG,则折痕EF的长为()A.1B.3C.2D.232.如图,四边形ABCD为平行四边形,延长AD到E,使DE=AD,连接EB,EC,DB。

添加一个条件,不能使四边形DBCE成为矩形的是()A.AB=BEB.BE⊥DCC.∠ADB=90°D.CE⊥DE3.如图,在矩形ABCD中,AD=3,将矩形ABCD绕点A逆时针旋转,得到矩形AEFG,点B的对应点E落在CD上,且DE=EF,则AB的长为。

4.如图,矩形ABCD中,对角线AC=23,E为BC边上一点,BC=3BE,将矩形ABCD沿AE所在的直线折叠,B点恰好落在对角线AC上的B’处,则AB= 。

5.如图,矩形ABCD中,AB=6,AD=8,P,E分别是线段AC,BC上的点,且四边形PEFD为矩形。

九年级中考数学专题复习-平行四边形专题

九年级中考数学专题复习-平行四边形专题

四边形的判定专题1.如图,在△ABC中,过点C作CD∥AB,E是AC的中点,连接DE并延长,交AB于点F,交CB的延长线于点G,连接AD,CF.(1)求证:四边形AFCD是平行四边形.(2)若GB=3,BC=6,BF =,求AB的长.2.如图,在▱ABCD中,过B点作BM⊥AC于点E,交CD于点M,过D点作DN⊥AC于点F,交AB 于点N.(1)求证:四边形BMDN是平行四边形;(2)已知AF=12,EM=5,求AN的长.3.如图,在Rt△ABC中,∠ACB=90°,D、E分别是AB、AC的中点,连接CD,过E作EF∥DC交BC的延长线于F.(1)证明:四边形CDEF是平行四边形;(2)若四边形CDEF的周长是25cm,AC 的长为5cm,求线段AB的长度.4.如图,在△ABC中,∠ACB=90°,∠CAB=30°,以线段AB为边向外作等边△ABD,点E是线段AB的中点,连接CE并延长交线段AD于点F.(1)求证:四边形BCFD为平行四边形;(2)若AB=6,求平行四边形BCFD的面积.5.如图,四边形ABCD为平行四边形,∠BAD和∠BCD的平分线AE,CF分别交DC,BA的延长线于点E,F,交边BC,AD于点H,G.(1)求证:四边形AECF是平行四边形.(2)若AB=5,BC=8,求AF+AG的值.6.如图,在菱形ABCD中,对角线AC与BD交于点O.过点C作BD的平行线,过点D作AC的平行线,两直线相交于点E.(1)求证:四边形OCED是矩形;(2)若CE=1,DE=2,则菱形ABCD的面积是.7.如图,在△ABC中,点O是边AC上一个动点,过点O作直线EF∥BC分别交∠ACB、外角∠ACD 的平分线于点E、F.(1)若CE=8,CF=6,求OC的长;(2)连接AE、AF.问:当点O在边AC上运动到什么位置时,四边形AECF是矩形?并说明理由.8.如图,在▱ABCD中,点O是边BC的中点,连接DO并延长,交AB延长线于点E,连接BD,EC.(1)求证:四边形BECD是平行四边形;(2)若∠A=50°,则当∠BOD =°时,四边形BECD 是矩形.9.如图,菱形ABCD的对角线AC与BD交于点O,∠ABC:∠BAD=1:2,BE∥AC,CE∥BD.(1)求tan∠DBC的值;(2)求证:四边形OBEC是矩形.10.如图,在△ABC中,AB=BC,BD平分∠ABC.四边形ABED是平行四边形,DE交BC于点F,连接CE.求证:四边形BECD是矩形.11.如图,△ABC中,AB=AC,AD是∠BAC的角平分线,点O为AB的中点,连接DO并延长到点E,使OE=OD,连接AE,BE.(1)求证:四边形AEBD是矩形;(2)当△ABC满足什么条件时,矩形AEBD是正方形,并说明理由.12.如图,矩形ABCD中,过对角线BD中点O的直线分别交AB,CD边于点E、F.(1)求证:四边形BEDF是平行四边形;(2)只需添加一个条件,即,可使四边形BEDF为菱形.13.如图,矩形ABCD中,E是AD的中点,延长CE,BA交于点F,连接AC,DF.(1)求证:四边形ACDF是平行四边形;(2)当CF平分∠BCD时,写出BC与CD的数量关系,并说明理由.14.如图,在矩形ABCD中,对角线AC的垂直平分线EF分别交AD、AC、BC于点E、O、F,连接CE 和AF.(1)求证:四边形AECF为菱形;(2)若AB=4,BC=8,求菱形AECF的周长.15.如图,在四边形ABCD中,AD∥BC,BA=BC,BD平分∠ABC.(1)求证:四边形ABCD是菱形;(2)过点D作DE⊥BD,交BC的延长线于点E,若BC=5,BD=8,求四边形ABED的周长.16.如图,在△ABC中,∠ACB=90°,O、D分别是边AC、AB的中点,过点C作CE∥AB交DO的延长线于点E,连接AE.(1)求证:四边形AECD是菱形;(2)若四边形AECD的面积为24,tan∠BAC =,求BC的长.17.如图,在四边形ABCD中,∠BAC=90°,E是BC的中点,AD∥BC,AE∥DC,EF⊥CD于点F.(1)求证:四边形AECD是菱形;(2)若AB=6,BC=10,求EF的长.18.如图,在平行四边形ABCD中,DB=DA,点F是AB的中点,连接DF并延长,交CB的延长线于点E,连接AE.(1)求证:四边形AEBD是菱形;(2)若DC =,tan∠DCB=3,求菱形AEBD 的面积.19.如图,在▱ABCD中,E,F分别是AD,BC上的点,且DE=BF,AC⊥EF.求证:四边形AECF是菱形.20.如图,在▱ABCD中,作对角线BD的垂直平分线EF,垂足为O,分别交AD,BC于E,F,连接BE,DF.求证:四边形BFDE是菱形.21.如图,在△ABC中,∠ACB=90°,点D,E分别是边BC,AB上的中点,连接DE并延长至点F,使EF=2DE,连接CE、AF.(1)证明:AF=CE;(2)当∠B=30°时,试判断四边形ACEF的形状并说明理由.22.如图,已知四边形ABCD是菱形,DF⊥AB于点F,BE⊥CD于点E.(1)求证:AF=CE;(2)若DE=2,BE=4,求sin∠DAF的值.23.如图,已知▱ABCD中,AB=AC,CO⊥AD,垂足为点O,延长CO、BA交于点E,联结DE.(1)求证:四边形ACDE是菱形;(2)联结OB,交AC于点F,如果OF=OC,求证:2AB2=BF•BO.24.如图,在▱ABCD中,过点A作AE⊥BC于点E,AF⊥DC于点F,且AE=AF.(1)求证:▱ABCD是菱形;(2)若∠EAF=60°,CF=2,求菱形ABCD的面积.25.如图,菱形ABCD 的边长为,对角线AC、BD交于O,且DE∥AC,AE∥BD.(1)判断四边形AODE的形状并给予证明;(2)若四边形AODE的周长为14,求四边形AODE的面积.26.如图,AD是△ABC的中线,AE∥BC,BE交AD于点F,F是AD的中点,连接EC.(1)求证:四边形ADCE是平行四边形;27.如图,矩形ABCD的对角线AC,BD交于点O,以OC,OD为邻边作平行四边形OCED,连接OE.(1)求证:四边形OBCE是平行四边形;(2)连接BE交AC于点F.若AB=2,∠AOB=60°,求BF的长.。

2023年九年级中考数学一轮专题练习 特殊平行四边形2 (3)(含解析)

2023年九年级中考数学一轮专题练习 特殊平行四边形2 (3)(含解析)

2023年中考数学一轮专题练习——点、直线、圆的位置关系2(解答题部分)一、解答题(本大题共22小题)1. (辽宁省大连市2022年)AB是O的直径,C是O上一点,OD BC,垂足为D,过点A作O的切线,与DO的延长线相交于点E.(1)如图1,求证B E∠=∠;(2)如图2,连接AD,若O的半径为2,3OE=,求AD的长.2. (辽宁省抚顺本溪辽阳市2022年)如图,在Rt ABC中,90ACB∠=︒,ODEF的顶点O,D在斜边AB上,顶点E,F分别在边,BC AC上,以点O为圆心,OA长为半径的O恰好经过点D和点E.(1)求证:BC与O相切;(2)若3sin,65BAC CE∠==,求OF的长.3. (江苏省扬州市2022年)如图,AB为O的弦,OC OA⊥交AB于点P,交过点B的直线于点C,且CB CP=.(1)试判断直线BC与O的位置关系,并说明理由;(2)若sin 8A OA ==,求CB 的长. 4. (湖北省荆州市2022年)如图1,在矩形ABCD 中,AB =4,AD =3,点O 是边AB 上一个动点(不与点A 重合),连接OD ,将△OAD 沿OD 折叠,得到△OED ;再以O 为圆心,OA 的长为半径作半圆,交射线AB 于G ,连接AE 并延长交射线BC 于F ,连接EG ,设OA =x .(1)求证:DE 是半圆O 的切线;(2)当点E 落在BD 上时,求x 的值;(3)当点E 落在BD 下方时,设△AGE 与△AFB 面积的比值为y ,确定y 与x 之间的函数关系式;(4)直接写出....:当半圆O 与△BCD 的边有两个交点时,x 的取值范围. 5. (湖北省恩施州2022年)如图,P 为⊙O 外一点,PA 、PB 为⊙O 的切线,切点分别为A 、B ,直线PO 交⊙O 于点D 、E ,交AB 于点C .(1)求证:∠ADE =∠PAE .(2)若∠ADE =30°,求证:AE =PE .(3)若PE =4,CD =6,求CE 的长.6. (湖南省湘潭市2022年)已知()3,0A 、()0,4B 是平面直角坐标系中两点,连接AB .(1)如图①,点P在线段AB上,以点P为圆心的圆与两条坐标轴都相切,求过点P的反比例函数表达式;(2)如图②,点N是线段OB上一点,连接AN,将AON沿AN翻折,使得点O与线段AB上的点M重合,求经过A、N两点的一次函数表达式.7. (湖南省娄底市2022年)如图,已知BD是Rt ABC的角平分线,点O是斜边AB上的动点,以点O为圆心,OB长为半径的O经过点D,与OA相交于点E.(1)判定AC与O的位置关系,为什么?(2)若3BC=,32 CD=,①求sin DBC∠、sin ABC∠的值;②试用sin DBC∠和cos DBC∠表示sin ABC∠,猜测sin2α与sinα,cosα的关系,并用30α=︒给予验证.8. (湖南省郴州市2022年)如图,在ABC中,AB AC=.以AB为直径的O与线段BC交于点D,过点D作DE AC⊥,垂足为E,ED的延长线与AB的延长线交于点P.(1)求证:直线PE是O的切线;(2)若O的半径为6,30P∠=︒,求CE的长.9. (湖南省衡阳市2022年)如图,AB为⊙O的直径,过圆上一点D作⊙O的切线CD 交BA的延长线与点C,过点O作//OE AD交CD于点E,连接BE.(1)直线BE与⊙O相切吗?并说明理由;(2)若2CA=,4CD=,求DE的长.10. (四川省雅安市2022年)如图,在Rt△ABC中,∠ACB=90°,AO是△ABC的角平分线,以O为圆心,OC为半径作⊙O与直线AO交于点E和点D.(1)求证:AB是⊙O的切线;(2)连接CE,求证:△ACE∽△ADC;(3)若AEAC=12,⊙O的半径为6,求tan∠OAC.11. (天津市2022年)已知AB为O的直径,6AB=,C为O上一点,连接,CA CB.(1)如图①,若C为AB的中点,求CAB∠的大小和AC的长;(2)如图②,若2,AC OD=为O的半径,且OD CB⊥,垂足为E,过点D作O的切线,与AC的延长线相交于点F,求FD的长.12. (湖北省十堰市2022年)如图,ABC中,AB AC=,D为AC上一点,以CD为直⊥,垂足为G.径的O与AB相切于点E,交BC于点F,FG AB(1)求证:FG是O的切线;(2)若1BG=,3BF=,求CF的长.13. (四川省遂宁市2022年)如图,O是ABC的外接圆,点O在BC上,BAC∠的角平分线交O于点D,连接BD,CD,过点D作BC的平行线与AC的延长线相交于点P.(1)求证:PD是O的切线;(2)求证:ABD△∽DCP;(3)若6AC=,求点O到AD的距离.AB=,814. (四川省内江市2022年)如图,△ABC内接于⊙O,AB是⊙O的直径,⊙O的切线PC交BA的延长线于点P,OF∥BC交AC于点E,交PC于点F,连接AF.(1)判断直线AF与⊙O的位置关系并说明理由;AC的长;(2)若⊙O的半径为6,AF=(3)在(2)的条件下,求阴影部分的面积.15. (湖北省黄冈市、孝感市、咸宁市2022年)如图,O是ABC的外接圆,AD是O的直径,BC与过点A的切线EF平行,BC,AD相交于点G.(1)求证:AB AC=;(2)若16DG BC==,求AB的长.16. (四川省南充市2022年)如图,AB为O的直径,点C是O上一点,点D是O外一点,BCD BAC∠=∠,连接OD交BC于点E.(1)求证:CD是O的切线.(2)若4,sin5CE OA BAC=∠=,求tan CEO∠的值.17. (四川省眉山市2022年)如图,AB为O的直径,点C是O上一点,CD与O相切于点C,过点B作BD DC⊥,连接AC,BC.(1)求证:BC是ABD∠的角平分线;(2)若3BD=,4AB=,求BC的长;(3)在(2)的条件下,求阴影部分的面积.18. (四川省泸州市2022年)如图,点C在以AB为直径的O上,CD平分ACB∠交O 于点D,交AB于点E,过点D作O的切线交CO的延长线于点F.(1)求证:FD AB∥;(2)若AC=BC FD的长.19. (2022年四川省乐山市)如图,线段AC为⊙O的直径,点D、E在⊙O上,CD= DE,过点D作DF⊥AC,垂足为点F.连结CE交DF于点G.(1)求证:CG=DG;(2)已知⊙O的半径为6,3sin5ACE∠=,延长AC至点B,使4BC=.求证:BD是⊙O的切线.20. (湖北省鄂州市2022年)如图,△ABC内接于⊙O,P是⊙O的直径AB延长线上一点,∠PCB=∠OAC,过点O作BC的平行线交PC的延长线于点D.(1)试判断PC与⊙O的位置关系,并说明理由;(2)若PC=4,tan A=12,求△OCD的面积.21. (四川省凉山州2022年)如图,已知半径为5的⊙M经过x轴上一点C,与y轴交于A、B两点,连接AM、AC,AC平分∠OAM,AO+CO=6(1)判断⊙M 与x 轴的位置关系,并说明理由;(2)求AB 的长;(3)连接BM 并延长交圆M 于点D ,连接CD ,求直线CD 的解析式.22. (湖南省株洲市2022年)如图所示,ABC 的顶点A 、B 在⊙O 上,顶点C 在⊙O 外,边AC 与⊙O 相交于点D ,45BAC ∠=︒,连接OB 、OD ,已知∥OD BC .(1)求证:直线BC 是⊙O 的切线;(2)若线段OD 与线段AB 相交于点E ,连接BD .①求证:ABD DBE ∽;②若6AB BE ⋅=,求⊙O 的半径的长度.参考答案1. 【答案】(1)见解析(2)【分析】(1)证明90ODB OAE ∠=∠=︒,DOB AOE ∠=∠,即可得出B E ∠=∠; (2)证明ODB∆OAE ∆,求出OD ,由勾股定理求出DB ,由垂径定理求出BC ,进而利用勾股定理求出AC ,AD .(1)解:∵ OD BC ,∴90ODB ∠=︒,∵ AE 是O 的切线,∴90OAE ∠=︒,在ODB ∆和OAE ∆中,90ODB OAE ∠=∠=︒,DOB AOE ∠=∠,∴B E ∠=∠;(2)解:如图,连接AC .∵ O 的半径为2,∴2OA OB ==,4AB =,∵ 在ODB ∆和OAE ∆中,90ODB OAE ∠=∠=︒,DOB AOE ∠=∠,∴ODB∆OAE ∆, ∴OD OB OA OE=,即223OD =, ∴43OD =, 在Rt ODB ∆中,由勾股定理得:222OD DB OB +=,∴DB ==∵ OD BC ,OD 经过O 的圆心, ∴253CD DB ,∴2BC DB ==. ∵AB 是O 的直径,C 是O 上一点,∴90ACB ∠=︒,在Rt ACB ∆中,由勾股定理得:222AC BC AB +=,∴83AC ==. 在Rt ACD ∆中,由勾股定理得:222AC CD AD +=,∴AD == 2. 【答案】(1)见解析(2)【分析】(1)连接OE ,先证明四边形AOEF 是平行四边形,得到OE AC ∥,即可证明∠OEB =∠ACB =90°,由此即可证明结论;(2)过点F 作FH OA 于点H ,先解直角△CEF 求出EF 的长,再证明四边形AOEF 是菱形,得到OA ,AF 的长,再解直角△AHF ,求出AH ,FH ,进而求出OH ,即可利用勾股定理求出OF .(1)证明:连接OE ,∵四边形ODEF 是平行四边形,∴EF OD ∥;EF OD =,∵OA OD =,∴EF OD ∥;EF OA =,∴四边形AOEF 是平行四边形,∴OE AC ∥,∴OEB ACB ∠=∠,∵90ACB ∠=︒∴90OEB ∠=︒,∴OE BC ⊥,∵OE 是O 的半径,∴BC 与O 相切;(2)解:过点F 作FH OA 于点H , ∵四边形AOEF 是平行四边形∴EF OA ∥,∴CFE CAB ∠=∠,∴3sin sin 5CFE CAB ∠=∠=, 在Rt CEF 中,90ACB ∠=︒, ∵6,sin CE CE CFE EF =∠=, ∴6103sin 5CE EF CFE ===∠, ∵四边形AOEF 是平行四边形,且OA OE =,∴AOEF 是菱形,∴10AF AO EF ===,在Rt AFH 中,90AHF ∠=︒, ∵10,sin FH AF CAB AF=∠=, ∴3sin 1065FH AF CAB =⋅∠=⨯=, ∵222AH AF FH =-,∴8AH ,∴1082OH AO AH =-=-=,在Rt OFH 中,90FHO ∠=︒,∵222OF OH FH =+,∴OF3. 【答案】(1)相切,证明见详解(2)6【分析】(1)连接OB ,根据等腰三角形的性质得出A OBA ∠=∠,CPB CBP ∠=∠,从而求出90AOC OBC ∠=∠=︒,再根据切线的判定得出结论;(2)分别作OM AB ⊥交AB 于点M ,CN AB ⊥交AB 于N ,根据sin 8A OA ==求出OP ,AP 的长,利用垂径定理求出AB 的长,进而求出BP 的长,然后在等腰三角形CPB 中求解CB 即可.(1)证明:连接OB ,如图所示:CP CB OA OB ==,,∴A OBA ∠=∠,CPB CBP ∠=∠,APO CPB ∠=∠,APO CBP ∴∠=∠,OC OA ⊥,即90AOP ︒=∠,90A APO OBA CBP OBC ∴∠+∠=︒=∠+∠=∠,OB BC ∴⊥, OB 为半径,经过点O ,∴直线BC 与O 的位置关系是相切.(2)分别作OM AB ⊥交AB 于点M ,CN AB ⊥交AB 于N ,如图所示:AM BM ∴=,CP CB AO CO =⊥,,A APO PCN CPN ∴∠+∠=∠+∠,PN BN =,PCN BCN ∠=∠A PCN BCN ∴∠=∠=∠sin A =,8OA =,sin OM OP A OA AP ∴===4OM AM OP AP ∴====,2AB AM ∴==111()222PN BN PB AB AP ∴===-=⨯=sin sin BN A BCN CB ∴=∠==,6CB ∴===. 4. 【答案】(1)见详解(2)32 (3)2293(0)4362x y x x =<<+ (4)332x <≤或2548x <≤ 【分析】(1)根据切线的判定定理求解即可;(2)如图,在Rt OEB ∆,根据勾股定理列方程求解即可;(3)先证DAO AEG ∆∆∽,求出AE ,然后证明AEG ABF ∆∆∽,根据相似三角形面积比等于相似比的平方即可求解;(4)结合图形,分情况讨论即可求出x 的取值范围.(1)证明:在矩形ABCD 中,90DAB ∠=︒,△OED 是△OAD 沿OD 折叠得到的,90OED DAB ∴∠=∠=︒,即OE DE ⊥,∴ DE 是半圆O 的切线;(2)解:△OED 是△OAD 沿OD 折叠得到的,3,DE AD OA OE x ∴====,4OB AB OA x ∴=-=-,在Rt DAB ∆中,5DB ,532EB DB DE ∴=-=-=,在Rt OEB ∆中,222OE EB OB +=,()22224x x ∴+=-,解得32x =, 答:x 的值为32.(3)解:在Rt DAO ∆中,DO△OED 是△OAD 沿OD 折叠得到的,AE OD ∴⊥, AG 是O 的直径,90AEG ∴∠=︒,即AE EG ⊥,OD EG ∴∥,90DAO AEG ∠=∠=︒AOD EGA ∴∠=∠,DAO AEG ∴∆∆∽,DO DA AG AE∴= ,3,AE AE ==, 90,AEG ABC EAG BAF ∠=∠=︒∠=∠,AEG ABF ∴∆∆∽,2AGEAFB S AE S AB ∆∆⎛⎫∴= ⎪⎝⎭,即()222949x y x ==+ ⎪⎝⎭, 229436x y x ∴=+ (302x <<)(4)解:由(2)知,当E 在DB 上时, 32x =, 如图,当点E 在DC 上时, 3x = ,∴当332x <≤时,半圆O 与△BCD 的边有两个交点; 当半圆O 经过点C 时,半圆O 与△BCD 的边有两个交点,连接OC ,在Rt OBC ∆中,4,,3OB x OC x BC =-==,222OB BC OC +=,()22243x x ∴-+= ,解得258x =, ∴当2548x ≤≤时,半圆O 与△BCD 的边有两个交点;综上所述,当半圆O 与△BCD 的边有两个交点时,x 的取值范围为:332x <≤或2548x <≤. 5. 【答案】(1)见解析(2)见解析(3)CE 的长为2.【分析】(1)连接OA,根据切线的性质得到∠OAE+∠PAE=90°,根据圆周角定理得到∠OAE+∠DAO=90°,据此即可证明∠ADE=∠PAE;(2)由(1)得∠ADE=∠PAE =30°,∠AED =60°,利用三角形外角的性质得到∠APE=∠AED-∠PAE =30°,再根据等角对等边即可证明AE=PE;(3)证明Rt△EAC∽Rt△ADC,Rt△OAC∽Rt△APC,推出DC×CE=OC×PC,设CE=x,据此列方程求解即可.(1)证明:连接OA,∵PA为⊙O的切线,∴OA⊥PA,即∠OAP=90°,∴∠OAE+∠PAE=90°,∵DE为⊙O的直径,∴∠DAE=90°,即∠OAE+∠DAO=90°,∴∠DAO=∠PAE,∵OA=OD,∴∠DAO=∠ADE,∴∠ADE=∠PAE;(2)证明:∵∠ADE=30°,由(1)得∠ADE=∠PAE =30°,∠AED=90°-∠ADE=60°,∴∠APE=∠AED-∠PAE =30°,∴∠APE=∠PAE =30°,∴AE=PE;(3)解:∵PA、PB为⊙O的切线,切点分别为A、B,直线PO交AB于点C.∴AB⊥PD,∵∠DAE=90°,∠OAP=90°,∴∠DAC+∠CAE=90°,∠OAC+∠PAC=90°,∵∠DAC+∠D=90°,∠OAC+∠AOC=90°,∴∠CAE=∠D,∠PAC=∠AOC,∴Rt△EAC∽Rt△ADC,Rt△OAC∽Rt△APC,∴AC2=DC×CE,AC2=OC×PC,即DC ×CE =OC ×PC ,设CE =x ,则DE =6+x ,OE =3+2x ,OC =3+2x -x =3-2x ,PC =4+x , ∴6x =(3-2x )( 4+x ), 整理得:x 2+10x -24=0,解得:x =2(负值已舍).∴CE 的长为2.6. 【答案】(1)14449y x= (2)1322y x =-+ 【分析】(1)根据,A B 的坐标,可得直线AB 的解析式,根据题意点P 为y x =与AB 的交点,求得交点P 的坐标,即可求解;(2)设()0,N n ,04n ≤≤,根据题意求得5AB =,根据轴对称的性质结合图形求得,,BM MN BN ,在Rt BMN △中,222BN BM NM =+即可求得n 的值,进而待定系数法求解析式即可求解.(1)()3,0A 、()0,4B设直线AB 的解析式为y kx b =+,则304k b b +=⎧⎨=⎩, 解得434k b ⎧=-⎪⎨⎪=⎩, 则直线AB 的解析式为443y x =-+, 以点P 为圆心的圆与两条坐标轴都相切,则P P x y =,∴点P 为y x =与AB 的交点,443y x y x⎧=-+⎪∴⎨⎪=⎩, 解得127127x y ⎧=⎪⎪⎨⎪=⎪⎩, 则1212,77P ⎛⎫ ⎪⎝⎭, 设点P 的反比例函数表达式为2k y x =,则214449k =,∴14449y x=; (2) 设()0,N n ,04n ≤≤将AON 沿AN 翻折,使得点O 与线段AB 上的点M 重合,ON OM ∴=,OA AM =()3,0A 、()0,4B3,4OA OB ∴==Rt AOB △中,5AB2BM AB AM AB AO ∴=-=-=,MN ON n ==,4BN n =-在Rt BMN △中,222BN BM NM =+即()22242n n -=+ 解得32n = 则30,2N ⎛⎫ ⎪⎝⎭设直线AN 的解析式为y sx t =+ 则3032s t t +=⎧⎪⎨=⎪⎩ 解得1232s t ⎧=-⎪⎪⎨⎪=⎪⎩ ∴直线AN 的解析式为1322y x =-+. 7. 【答案】(1)相切,原因见解析(2)①sin DBC ∠=4sin 5ABC ∠=;②sin 22sin cos ααα=,验证见解析 【分析】(1)连接OD ,根据角之间的关系可推断出//OD BC ,即可求得ODA ∠的角度,故可求出圆与边的位置关系为相切;(2)①构造直角三角形,根据角之间的关系以及边长可求出sin DBC ∠,sin ABC ∠的值;②先表示出来sin DBC ∠、cos DBC ∠和sin ABC ∠的关系,进而猜测sin 2α与sin α,cos α的关系,然后将30α=︒代入进去加以验证. (1)解:连接OD ,如图所示∵BD 为ABC ∠的角平分线∴ABD CBD ∠=∠又∵O 过点B 、D ,设O 半径为r∴OB =OD =r∴ODB OBD CBD ∠=∠=∠∴//OD BC (内错角相等,两直线平行)∵OD AC ⊥∴AC 与O 的位置关系为相切.(2)①∵BC =3,32CD =∴BD ==∴sin CD DBC BD ∠== 过点D 作DF AB ⊥交于一点F ,如图所示∴CD =DF (角平分线的性质定理)∴BF =BC =3∴OF =BF -OB =3-r ,32OF CD == ∴222OD OF DF =+即2223(3)()2r r =-+ ∴158r = ∵//OD BC∴ABC FOD ∠=∠∴4sin sin 5DF ABC FOD OD ∠=∠==∴4sin 5DBC ABC ∠=∠=;②cos CB DBC BD ∠==∴2sin cos 5DBC DBC ∠⨯∠== ∴sin 2sin cos ABC DBC DBC ∠=∠⨯∠猜测sin 22sin cos ααα=当30α=︒时260α=︒∴sin 2sin 60α=︒=1sin sin 302α=︒=cos cos30α=︒=∴1sin 22sin cos 2sin 22αααα==⨯== ∴sin 22sin cos ααα=.8. 【答案】(1)见解析(2)3【分析】(1)连接AD 、OD ,根据等腰三角形的性质可证得2C ∠=∠,根据平行线的判定与性质可证得PE OD ⊥,然后根据切线的判定即可证得结论;(2)根据含30°角的直角三角形的性质求得CD 、CE 即可.(1)证明:连接AD 、OD ,记1ABD ∠=∠,2ODB ∠=∠,∵DE AC ⊥,∴90CED ∠=︒.∵AB AC =,∴1C ∠=∠.∵OB OD =,∴12∠=∠,∴2C ∠=∠,∴OD AC ∥,∴90ODE CED ∠=∠=︒,∴PE OD ⊥,又∵OD 是⊙O 的半径,∴直线PE 是⊙O 的切线.(2)连接AD ,∵AB 是直径,∴90ADB ∠=︒,∴AD BC ⊥.又∵AB AC =, ∴12CD BC =, ∵30P ∠=︒,90PEA ∠=︒,∴60PAE ∠=︒,又∵AB AC =,∴ABC 为等边三角形,∴60C ∠=°,12==BC AB , ∴126CD BC ==, 在Rt CDE △中,∵cos CE C CD =, ∴1cos60632CE CD =︒=⨯=.9. 【答案】(1)相切,见解析(2)6DE =【分析】(1)先证得:90ODC ODE ∠=∠=︒,再证ODE OBE ≌,得到90OBE ODE ∠=∠=︒,即可求出答案;(2)设半径为r ;则:2224(2)r r +=+,即可求得半径,再在直角三角形CBE 中,利用勾股定理222BC BE CE +=,求解即可.(1)证明:连接OD .∵CD 为O 切线,∴90ODC ODE ∠=∠=︒,又∵OE AD ∥,∴DAO EOB ∠=∠,ADO EOD ∠=∠,且ADO DAO ∠=∠,∴EOD EOB ∠=∠,在ODE 与OBE △中;∵OD OB EOD EOB OE OE =⎧⎪∠=∠⎨⎪=⎩,∴ODE OBE ≌,∴90OBE ODE ∠=∠=︒,∴直线BE 与O 相切.(2)设半径为r ;则:2224(2)r r +=+,得3r =;在直角三角形CBE 中,222BC BE CE +=,222(233)(4)DE DE +++=+,解得6DE = 10. 【答案】(1)证明见解析(2)证明见解析(3)tan ∠OAC 34=【分析】(1)如图,过O 作OH AB ⊥于,H 证明,OC OH 即可得到结论;(2)证明,ACE OCD ODC 再结合,CAE DAC 从而可得结论;(3)由相似三角形的性质可得1,2AE AC AC AD == 设,AE x = 则2,4,AC x AD x 而12,ADAE DE x 从而建立方程求解x ,从而可得答案.(1) 证明:如图,过O 作OH AB ⊥于,H∠ACB =90°,AO 是△ABC 的角平分线,,OC OHO 为圆心,OC 为半径,AB ∴是⊙O 的切线.(2)如图,连结CE ,DE 为O 的直径,90,DCE DCO OCE 90,ACB ACE BCE ,DCO ACE ,OD OC =,ODC OCD ∴∠=∠,ACE ADC ,CAE DAC .ACE ADC ∽(3) ,ACE ADC ∽1,2AE AC =1,2AE AC AC AD 设,AE x = 则2,4,AC x AD x 而12,AD AE DE x412,x x 解得4,x =4,8,16,AE AC AD∴ tan ∠OAC 63=.84OCAC11. 【答案】(1)45CAB ∠=︒,AC =(2)FD =【分析】(1)由圆周角定理得90ACB ∠=︒,由C 为AB 的中点,得AC BC =,从而AC BC =,即可求得CAB ∠的度数,通过勾股定理即可求得AC 的长度; (2)证明四边形ECFD 为矩形,FD =CE =12CB ,由勾股定理求得BC 的长,即可得出答案.(1)∵AB 为O 的直径,∴90ACB ∠=︒,由C 为AB 的中点,得AC BC =,∴AC BC =,得ABC CAB ∠=∠,在Rt ABC 中,90ABC CAB ∠+∠=︒,∴45CAB ∠=︒;根据勾股定理,有222AC BC AB +=,又6AB =,得2236AC =,∴AC =(2)∵FD 是O 的切线,∴OD FD ⊥,即90ODF ∠=︒, ∵OD CB ⊥,垂足为E ,∴190,2CED CE CB ∠=︒=,同(1)可得90ACB ∠=︒,有90FCE ∠=︒,∴90FCE CED ODF ∠=∠=∠=︒,∴四边形ECFD 为矩形,∴FD CE =,于是12FD CB =,在Rt ABC 中,由6,2AB AC ==,得CB =,∴FD =12. 【答案】(1)见解析(2) 【分析】(1)连接,DF OF ,设ODF OFD ∠=∠β=,OFC α∠=,根据已知条件以及直径所对的圆周角相等,证明90αβ+=︒,进而求得,DFG DFO αβ∠=∠=,即可证明FG 是O 的切线;(2)根据已知条件结合(1)的结论可得四边形GEOF 是正方形,进而求得DC 的长,根据BFG FDC β∠=∠=,sin GB FC BF DCβ==,即可求解. (1)如图,连接,DF OF , OF OD =,则ODF OFD ∠=∠,设ODF OFD ∠=∠β=,OFC α∠=,OF OC =,OFC OCF α∴∠=∠=, DC 为O 的直径,90DFC ∴∠=︒,90DFO OFC DFC ∴∠+=∠=︒,即90αβ+=︒,AB AC =,B ACB α∴∠=∠=,FG AB ⊥,9090GFB B αβ∴∠=︒-∠=︒-=,90DFB DFC ∠=∠=︒,9090DFG GFB βα∴∠=︒-∠=︒-=,90GFO GFD DFO αβ∴∠=+=+=︒, OF 为O 的半径,FG ∴是O 的切线; (2)如图,连接OE ,AB 是O 的切线,则OE AB ⊥,又,OF FG FG AB ⊥⊥,∴四边形GEOF 是矩形,OE OF =,∴四边形GEOF 是正方形,12GF OF DC ∴==, 在Rt GFB △中,1BG =,3BF =,FG ∴DC ∴=由(1)可得BFG FDC β∠=∠=,,FG AB DF FC ⊥⊥,sin GB FC BF DC β∴==, ∴13解得FC =. 13. 【答案】(1)见解析(2)见解析(3)点O 到AD 的距离为【分析】(1)连接OD ,证明OD BC ,则OD DP ⊥,即可得证;(2)由BC DP ∥,ACB ADB ∠=∠,可得P ADB ∠=∠,根据四边形ABDC 为圆内接四边形,又180∠+∠=︒DCP ACD ,可得ABD DCP ∠=∠,即可证明ABD △∽DCP ;(3)过点O 作OE AD ⊥于点E ,由ABD △∽DCP ,根据相似三角形的性质可求得CP ,证明BAD ∽DAP ,继而求得,AD ED ,在Rt OED 中,利用勾股定理即可求解.(1)证明:连接OD ,∵AD 平分BAC ∠,∴BAD DAC =∠,∴BD DC =.又∵BC 为直径,∴O 为BC 中点,∴OD BC .∵BC DP ∥,∴OD DP ⊥.又∵OD 为半径,∴PD 是O 的切线; (2)证明:∵BC DP ∥,∴ACB P ∠=∠.∵ACB ADB ∠=∠,∴P ADB ∠=∠.∵四边形ABDC 为圆内接四边形,∴180ABD ACD ∠+∠=︒.又∵180∠+∠=︒DCP ACD ,∴ABD DCP ∠=∠,∴ABD △∽DCP .(3)过点O 作OE AD ⊥于点E ,∵BC 为直径,∴90BAC ∠=︒.∵6AB =,8AC =,∴10BC =.又∵BD DC =,∴22222BD DC BD BC +==,∴BD DC ==由(2)知ABD △∽DCP , ∴AB BD DC CP=, ∴502563BD DC CP AB ⋅===, ∴2549833AP AC CP =+=+=. 又∵ADB ACB P ∠=∠=∠,BAD DAP ∠=∠,∴BAD ∽DAP , ∴AB AD AD AP=, ∴298AD AB AP =⋅=,∴AD =∵OE AD ⊥,∴12ED AD ==.在Rt OED 中,OE =,∴点O 到AD 的距离为.14. 【答案】(1)直线AF 与⊙O 相切.理由见解析(2)66π.【分析】(1)连接OC ,证明△AOF ≌△COF (SAS ),由全等三角形的判定与性质得出∠OAF =∠OCF =90°,由切线的判定可得出结论;(2)由直角三角形的性质求出∠AOF =30°,可得出AE =12OA =3,则可求出答案;(3)证明△AOC 是等边三角形,求出∠AOC =60°,OC =6,由三角形面积公式和扇形的面积公式可得出答案.(1)直线AF 与⊙O 相切.理由如下:连接OC ,∵PC 为圆O 切线,∴CP ⊥OC ,∴∠OCP =90°,∵OF ∥BC ,∴∠AOF =∠B ,∠COF =∠OCB ,∵OC =OB ,∴∠OCB =∠B ,∴∠AOF =∠COF ,∵在△AOF 和△COF 中,OA OC AOF COF OF OF =⎧⎪∠=∠⎨⎪=⎩,∴△AOF ≌△COF (SAS ),∴∠OAF =∠OCF =90°,∴AF ⊥OA ,又∵OA 为圆O 的半径,∴AF 为圆O 的切线;(2)∵△AOF ≌△COF ,∴∠AOF =∠COF ,∵OA =OC ,∴E 为AC 中点, 即1,2AE CE AC OE AC ==⊥,∵∠90,6,OAF OA AF ︒===∴tan AF AOF OA ∠===, ∴∠AOF =30°, ∴132AE OA ==,∴26AC AE ==;(3)∵AC =OA =6,OC =OA ,∴△AOC 是等边三角形,∴∠AOC =60°,OC =6,∵∠OCP =90°,∴CP ==∴S △OCP=2116066622360AOC OC CP S ππ⋅⨯⋅=⨯⨯==扇形, ∴阴影部分的面积=S △OCP ﹣S 扇形AOC=6π.15. 【答案】(1)证明见解析(2)【分析】(1)由切线的性质和BC EF ∥可得AD BC ⊥,由垂径定理可得BG CG =,从而得到AD 垂直平分BC ,最后利用垂直平分线的性质即可得证;(2)先利用勾股定理得到BD =AGB BGD △∽△,从而得到AB BG BD DG =,代入数据计算即可. (1)证明:∵直线EF 切O 于点A ,AD 是O 的直径, ∴AD EF ⊥,∴90DAE DAF ∠=∠=︒,∵BC EF ∥,∴90DGB DAE ∠=∠=︒,∴AD BC ⊥,∴BG CG =,∴AD 垂直平分BC ,∴AB AC =;(2)如图,连接BD ,由(1)知:AD BC ⊥,BG CG =,∴90DGB AGB ∠=∠=︒,∵16DG BC ==, ∴182BG BC ==,在Rt DGB 中,BD == ∵AD 是O 的直径,∴90ABD ∠=︒, ∴90ABG DBG ∠+∠=︒,又∵90BDG DBG ,∴ABG BDG ∠=∠,又∵90DGB AGB ∠=∠=︒∴AGB BGD △∽△, ∴AB BG BD DG =, 即816,∴AB =即AB 的长为16. 【答案】(1)见解析;(2)3【分析】(1)连接OC ,根据圆周角定理得到∠ACB =90°,根据OA =OC 推出∠BCD =∠ACO ,即可得到∠BCD +∠OCB =90°,由此得到结论;(2)过点O 作OF ⊥BC 于F ,设BC =4x ,则AB =5x ,OA =CE =2.5x ,BE =1.5x ,勾股定理求出AC ,根据OF ∥AC ,得到1BF OB CF OA==,证得OF 为△ABC 的中位线,求出OF 及EF ,即可求出tan CEO ∠的值.(1)证明:连接OC ,∵AB 为O 的直径,∴∠ACB =90°,∴∠ACO +∠OCB =90°,∵OA =OC ,∴∠A =∠ACO ,∵BCD BAC ∠=∠,∴∠BCD =∠ACO ,∴∠BCD +∠OCB =90°,∴OC ⊥CD ,∴CD 是O 的切线. (2)解:过点O 作OF ⊥BC 于F , ∵4,sin 5CE OA BAC =∠=, ∴设BC =4x ,则AB =5x ,OA =CE =2.5x ,∴BE =BC -CE =1.5x ,∵∠C =90°,∴AC3x =,∵OA =OB ,OF ∥AC , ∴1BF OB CF OA==, ∴CF =BF =2x ,EF =CE -CF =0.5x ,∴OF 为△ABC 的中位线,∴OF =1 1.52AC x =, ∴tan CEO ∠=1.530.5OF x EF x ==.17. 【答案】(1)见解析(2)BC =(3)23π【分析】(1)连接OC ,先证明OC BD ∥,然后由平行线的性质和等腰三角形的性质,即可证明结论成立;(2)证明△ABC ∽△CBD 即可,根据题目中的条件,可以得到∠ABC =∠CBD ,∠ACB =∠D ,从而可以得到△ABC ∽△CBD ,即可求出BC 的长度;.(3)先证明△AOC 是等边三角形,然后求出扇形AOC 和△AOC 的面积,即可得到答案(1)证明:连接OC ,如图∵CD 与O 相切于点C ,∴OC CD ⊥∵BD CD ⊥,∴OC BD ∥∴OCB DBC ∠=∠.又∵OC OB =,∴OCB OBC ∠=∠,∴DBC OBC ∠=∠,∴BC 平分ABD ∠.(2)解:根据题意,∵线段AB 是直径,∴90ACB D ∠=︒=∠,∵BC 平分ABD ∠,∴∠ABC =∠CBD ,∴△ABC ∽△CBD , ∴AB BC CB BD=, ∵3BD =,4AB =,∴23412BC =⨯=,∴BC =(3)解:作CE ⊥AO 于E ,如图:在直角△ABC 中,2AC ==,∴2AO AC CO ===,∴△AOC 是等边三角形,∴60AOC ∠=︒,1OE =, ∴CE∴阴影部分的面积为:260212236023S ππ⨯⨯=-⨯= 18. 【答案】(1)见解析(2)15 8【分析】(1)连接OD,由CD平分∠ACB,可知AD BD=,得∠AOD=∠BOD=90°,由DF是切线可知∠ODF=90°=∠AOD,可证结论;(2)过C作CM⊥AB于M,已求出CM、BM、OM的值,再证明△DOF∽△MCO,得CM OMOD FD,代入可求.(1)证明:连接OD,如图,∵CD平分∠ACB,∴AD BD=,∴∠AOD=∠BOD=90°,∵DF是⊙O的切线,∴∠ODF=90°∴∠ODF=∠BOD,∴DF∥AB.(2)解:过C作CM⊥AB于M,如图,∵AB是直径,∴∠ACB=90°,∴AB2222(25)(5)5BC.∴1122AB CM AC BC=,即115255 22CM,∴CM=2,∴2222(5)21BM BC CM,∴OM=OB-BM=135122,∵DF∥AB,∴∠OFD=∠COM,又∵∠ODF=∠CMO=90°,∴△DOF∽△MCO,∴CM OM OD FD,即32252FD,∴FD=158.19. 【答案】(1)见解析(2)见解析【分析】(1)连接AD,得到∠ADF+∠FDC=90°,由DF⊥AC,得到∠ADF+∠DAF=90°,再由CD=DE,可推出∠DCE=∠FDC,即可证明CG=DG;(2)要证明BD是⊙O的切线,只要证明OD⊥BD,只要证明BD∥CE,通过计算求得sin∠B=35,即可证明结论.(1)证明:连接AD,∵AC为⊙O的直径,∴∠ADC=90°,则∠ADF+∠FDC=90°,∵DF⊥AC,∴∠AFD=90°,则∠ADF+∠DAF=90°,∴∠FDC=∠DAF,∵CD=DE,∴∠DCE=∠DAC,∴∠DCE=∠FDC,∴CG=DG;(2)证明:连接OD,设OD与CE相交于点H,∵CD=DE,∴OD⊥EC,∵DF⊥AC,∴∠ODF=∠OCH=∠ACE,∵3 sin5ACE∠=,∴sin∠ODF=sin∠OCH=35,即OF OHOD OC==35,∴OF=185,由勾股定理得DF=245,FC=OC-OF=125,∴FB= FC+BC=325,由勾股定理得DB=405=8,∴sin∠B=2458DFBD==35,∴∠B=∠ACE,∴BD∥CE,∵OD⊥EC,∴OD⊥BD,∵OD是半径,∴BD是⊙O的切线.20. 【答案】(1)PC与⊙O相切,理由见解析(2)9【分析】(1)先证明∠ACB=90°,然后推出∠PCB=∠OCA,即可证明∠PCO=90°即可;(2)先证明12BC AC =,再证明△PBC ∽△PCA ,从而求出=41PA PB =,,AB =3,32OC OB ==,52OP =,最后证明△PBC ∽△POD ,求出10PD =,则CD =6,由此求解即可.(1)解:PC 与⊙O 相切,理由如下:∵AB 是圆O 的直径,∴∠ACB =90°,∴∠OCB +∠OCA =90°,∵OA =OC ,∴∠OCA =∠OAC ,∵∠PCB =∠OAC ,∴∠PCB =∠OCA ,∴∠PCB +∠OCB =∠OCA +∠OCB =90°,即∠PCO =90°,∴PC 与⊙O 相切;(2)解:∵∠ACB =90°,1tan =2A , ∴12BC AC =, ∵∠PCB =∠OAC ,∠P =∠P ,∴△PBC ∽△PCA , ∴1=2PC PB BC PA PC CA ==, ∴=82PA PB =,,∴AB =6,∴3OC OB ==,∴5OP =,∵BC OD ∥,∴△PBC ∽△POD , ∴PB PC OP PD =,即245PD=, ∴10PD =,∴CD =6, ∴192OCD S OC CD =⋅=. 21. 【答案】(1)⊙M 与x 轴相切,理由见解析(2)6(3)122y x=-+【分析】(1)连接CM,证CM⊥x即可得出结论;(2)过点M作MN⊥AB于N,证四边形OCMN是矩形,得MN=OC,ON=OM=5,设AN=x,则OA=5-x,MN=OC=6-(5-x)=1+x,利用勾股定理求出x值,即可求得AN 值,再由垂径定理得AB=2AN即可求解;(3)连接BC,CM,过点D作DP⊥CM于P,得直角三角形BCD,由(2)知:AB=6,OA=2,OC=4,所以OB=8,C(4,0),在Rt△BOC中,∠BOC=90°,由勾股定理,求得BC=Rt△BCD中,∠BCD=90°,由勾股定理,即可求得CD,在Rt△CPD和在Rt△MPD中,由勾股定理,求得CP=2,PD=4,从而得出点D坐标,然后用待定系数法求出直线CD解析式即可.(1)解:⊙M与x轴相切,理由如下:连接CM,如图,∵MC=MA,∴∠MCA=∠MAC,∵AC平分∠OAM,∴∠MAC=∠OAC,∴∠MCA=∠OAC,∵∠OAC+∠ACO=90°,∴∠MCO=∠MCA+∠ACO=∠OAC+∠ACO=90°,∵MC是⊙M的半径,点C在x轴上,∴⊙M与x轴相切;(2)解:如图,过点M作MN⊥AB于N,由(1)知,∠MCO=90°,∵MN⊥AB于N,∴∠MNO=90°,AB=2AN,∵∠CON=90°,∴∠CMN=90°,∴四边形OCMN是矩形,∴MN=OC,ON=C M=5,∵OA+OC=6,设AN=x,∴OA=5-x,MN=OC=6-(5-x)=1+x,在Rt△MNA中,∠MNA=90°,由勾股定理,得x2+(1+x)2=52,解得:x1=3,x2=-4(不符合题意,舍去),∴AN=3,∴AB=2AN=6;(3)解:如图,连接BC,CM,过点D作DP⊥CM于P,由(2)知:AB=6,OA=2,OC=4,∴OB=8,C(4,0)在Rt△BOC中,∠BOC=90°,由勾股定理,得BC===∵BD是⊙M的直径,∴∠BCD =90°,BD =10,在Rt △BCD 中,∠BCD =90°,由勾股定理,得CD=CD 2=20,在Rt △CPD 中,由勾股定理,得PD 2=CD 2-CP 2=20-CP 2,在Rt △MPD 中,由勾股定理,得PD 2=MD 2-MP 2=MD 2-(MC -CP )2=52-(5-CP )2=10CP -CP 2,∴20-CP 2=10CP -CP 2,∴CP =2,∴PD 2=20-CP 2=20-4=16,∴PD =4,即D 点横坐标为OC +PD =4+4=8,∴D (8,-2),设直线CD 解析式为y =kx +b ,把C (4,0),D (8,-2)代入,得4082k b k b +=⎧⎨+=-⎩,解得:122k b ⎧=-⎪⎨⎪=⎩, ∴直线CD 的解析式为:122y x =-+. 22. 【答案】(1)见解析(2)①见解析;【分析】 (1)根据圆周角定理可得∠BOD =2∠BAC =90°,再由OD ∥BC ,可得CB ⊥OB ,即可求证;(2)①根据∠BOD =2∠BAC =90°,OB =OD ,可得∠BAC =∠ODB ,即可求证;②根据ABD DBE ∽,可得2BD AB BE =⋅,即26BD =,再由勾股定理,即可求解. (1)证明∶∵∠BAC =45°,∴∠BOD =2∠BAC =90°,∴OD ⊥OB ,∵OD ∥BC ,∴CB ⊥OB ,∵OB 为半径,∴直线BC 是⊙O 的切线;(2)解:①∵∠BAC =45°,∴∠BOD =2∠BAC =90°,OB =OD ,∴∠ODB =45°,∴∠BAC =∠ODB ,∵∠ABD =∠DBE ,∴ABD DBE ∽; ②∵ABD DBE ∽, ∴AB BD BD BE =, ∴2BD AB BE =⋅, ∵6AB BE ⋅=, ∴26BD =, ∵22222OD OB OB BD +==, ∴23=OB ,∴OB =即⊙O 的半径的长为。

2020浙教版九年级数学下册《四边形》基础测试+答案

2020浙教版九年级数学下册《四边形》基础测试+答案

【文库独家】(一)选择题(每小题3分,共30分)1.内角和与外角和相等的多边形是………………………………………………()(A)三角形(B)四边形(C)五边形(D)六边形2.顺次连结等腰梯形各边中点所得的四边形一定是……………………………()(A)菱形(B)矩形(C)梯形(D)两条对角线相等的四边形3.观察下列四个平面图形,其中中心对称图形有……………………………()(A)2个(B)1个(C)4个(D)3个4.已知下列四个命题:(1)对角线互相垂直平分的四边形是正方形;(2)对角线垂直相等的四边形是菱形;(3)对角线相等且互相平分的四边形是矩形;(4)四边都相等的四边形是正方形.其中真命题的个数是………………()(A)1 (B)2 (C)3 (D)05.菱形的一条对角线与它的边相等,则它的锐角等于…………………………()(A)30°(B)45°(C)60°(D)75°6.下列命题中的真命题是………………………………………………………()(A)一组对边平行,另一组对边相等的四边形是平行四边形(B)有一组对边和一组对角分别相等的四边形是平行四边形(C)两组对角分别相等的四边形是平行四边形(D)两条对角线互相垂直且相等的四边形是正方形7.如图,DE是△ABC的中位线,若AD=4,AE=5,BC=12,则△ADE的周长是……()(A)7.5 (B)30 (C)15 (D)24(第9题)8.矩形的边长为10 cm和15 cm,其中一内角平分线分长边为两部分,这两部分的长为……………………………………………………………………………()(A)6 cm和9 cm (B)5 cm和10 cm(C)4 cm和11 cm(D)7 cm和8 cm 9.如图,在等腰梯形ABCD中,AD∥BC,AC、BD相交于点O,则图中全等三角形共有…()(A)1对(B)3对(C)2对(D)4对10.菱形周长为20 cm,它的一条对角线长6 cm,则菱形的面积为……………()(A)6 (B)12 (C)18 (D)24(二)填空题(每小题3分,共24分)11.如图,在□ABCD中,则对角线AC、BD相交于O,图中全等的三角形共有____对.(14)(16)12.如果一个多边形的每个内角都等于108°,那么这个多边形是_____边形.13.梯形的上底边长为5,下底边长为9,中位线把梯形分成上、下两部分,则这两部分的面积的比为_______.14.如图,等腰梯形ABCD中,AD∥BC,∠B=45°,AE⊥BC于点E,AE=AD=2 cm,则这个梯形的中位线长为_____cm.15.请画出把下列矩形的面积二等分的直线,并填空(一个矩形只画一条直线,不写画法).在一个矩形中,把此矩形面积二等分的直线最多有_____条,这些直线都必须经过此矩形的_____点.16.如图,在梯形ABCD中,AD∥BC,中位线EF分别与BD、AC交于点G、H.若AD=6,BC=10,则GH的长是______.17.如图,矩形ABCD中,O是两对角线的交点AE⊥BD,垂足为E.若OD=2 OE,AE=3,则DE的长为______.(17)(18)18.如图,在□ABCD中,AE⊥BC于E,AF⊥CD于F,若AE=4,AF=6,□ABCD 的周长为40,则S□ABCD为______.(三)证明题(每小题5分,共20分)19.已知:如图,在梯形ABCD中,AD∥BC,AB=DC,P是AD中点.求证:BP =PC.20.已知:如图,AD∥BC,ED∥BF,且AF=CE.求证:四边形ABCD是平行四边形.21.已知:如图,矩形ABCD中,E、F是AB上的两点,且AF=BE.求证:∠ADE=∠BCF.22.证明等腰梯形判定定理:在同一底上的两个角相等的梯形是等腰梯形.(要求:画出图形,写出已知、求证、证明.)(四)计算题(每小题6分,共12分)23.已知:如图,在□ABCD中,BE、CE分别平分∠ABC、∠BCD,E在AD上,BE=12 cm,CE=5 cm.求□ABCD的周长和面积.24.如图,在梯形ABCD中,AD∥BC,AB=DC,BD⊥DC于D,且∠C=60°,若AD=5 cm,求梯形的腰长.(五)解答题(每小题7分,共14分)25.如图,在正方形ABCD中,点E、F分别在BC、CD上移动,但A到EF的距离AH始终保持与AB长相等,问在E、F移动过程中:(1)∠EAF的大小是否有变化?请说明理由.(2)△ECF的周长是否有变化?请说明理由.26.已知:如图,在四边形ABCD中,E为AB上一点,△ADE和△BCE都是等边三角形,AB、BC、CD、DA的中点分别为P、Q、M、N,试判断四边形PQMN为怎样的四边形,并证明你的结论.《四边形》基础测试答案(一)选择题(每小题3分,共30分)1.内角和与外角和相等的多边形是………………………………………………()(A)三角形(B)四边形(C)五边形(D)六边形【答案】B.2.顺次连结等腰梯形各边中点所得的四边形一定是…………………………()(A)菱形(B)矩形(C)梯形(D)两条对角线相等的四边形【答案】A.3.观察下列四个平面图形,其中中心对称图形有………………………()(A)2个(B)1个(C)4个(D)3个【提示】第一个图形不是中心对称图形.【答案】D.4.已知下列四个命题:(1)对角线互相垂直平分的四边形是正方形;(2)对角线垂直相等的四边形是菱形;(3)对角线相等且互相平分的四边形是矩形;(4)四边都相等的四边形是正方形.其中真命题的个数是………………()(A)1 (B)2 (C)3 (D)0【提示】(3)正确.【答案】A.5.菱形的一条对角线与它的边相等,则它的锐角等于…………………………()(A)30°(B)45°(C)60°(D)75°【答案】C.6.下列命题中的真命题是……………………………………………………()(A)一组对边平行,另一组对边相等的四边形是平行四边形(B)有一组对边和一组对角分别相等的四边形是平行四边形(C)两组对角分别相等的四边形是平行四边形(D)两条对角线互相垂直且相等的四边形是正方形【答案】C.7.如图,DE是△ABC的中位线,若AD=4,AE=5,BC=12,则△ADE的周长是………………………………………………()(A)7.5 (B)30 (C)15 (D)24【答案】C.8.矩形的边长为10 cm和15 cm,其中一内角平分线分长边为两部分,这两部分的长为………………………………………………………………………()(A)6 cm和9 cm (B)5 cm和10 cm(C)4 cm和11 cm (D)7 cm和8 cm【提示】长边被分成的两部分之中,有一部分与矩形短边相等.【答案】B.9.如图,在等腰梯形ABCD中,AD∥BC,AC、BD相交于点O,则图中全等三角形共有…………………………………………………………………()(A)1对(B)3对(C)2对(D)4对【提示】以AB和CD为对应边的两个三角形.【答案】B.10.菱形周长为20 cm,它的一条对角线长6 cm,则菱形的面积为………()(A)6 (B)12 (C)18 (D)24【提示】若菱形两对角线为a和b,则S菱形=2ab.【答案】D.(二)填空题(每小题3分,共24分)11.如图,在□ABCD中,则对角线AC、BD相交于O,图中全等的三角形共有____对.【提示】考察以AB、CD为对应边的三角形,有3对全等三角形;抹去AB、CD两边,又有1对全等三角形.【答案】4.12.如果一个多边形的每个内角都等于108°,那么这个多边形是_____边形.【提示】360°÷每个外角的度数.【答案】5.13.梯形的上底边长为5,下底边长为9,中位线把梯形分成上、下两部分,则这两部分的面积的比为_______.【提示】先算出中位线的长,然后用梯形面积公式计算.【答案】43.14.如图,等腰梯形ABCD中,AD∥BC,∠B=45°,AE⊥BC于点E,AE=AD=2cm,则这个梯形的中位线长为_____cm.【提示】BC=6 cm.【答案】4.15.请画出把下列矩形的面积二等分的直线,并填空(一个矩形只画一条直线,不写画法).在一个矩形中,把此矩形面积二等分的直线最多有_____条,这些直线都必须经过此矩形的_____点.【答案】无数;对称中心(或两条对角线的交点).16.如图,在梯形ABCD中,AD∥BC,中位线EF分别与BD、AC交于点G、H.若AD=6,BC=10,则GH的长是______.【答案】2.17.如图,矩形ABCD中,O是两对角线的交点AE⊥BD,垂足为E.若OD=2 OE,AE=3,则DE的长为______.【提示】OA=OD=2 OE,用勾股定理求出OE和OA的长.【答案】3.18.如图,在□ABCD中,AE⊥BC于E,AF⊥CD于F,若AE=4,AF=6,□ABCD的周长为40,则S□ABCD为______.【提示】在□ABCD中,AE·BC=AF·CD=S□ABCD,BC+CD=20,求BC或CD.【答案】48.(三)证明题(每小题5分,共20分)19.已知:如图,在梯形ABCD中,AD∥BC,AB=DC,P是AD中点.求证:BP=PC.【提示】证明△ABP≌△DCP.【答案】在梯形ABCD中,AD∥BC,∵AB=DC,∴∠A=∠D.∵P是AD中点,∴AP=DP.在△ABP和△DCP中,⎪⎩⎪⎨⎧=∠=∠=.,,DPAPDADCAB∴△ABP≌△DCP.∴PB=PC.20.已知:如图,AD∥BC,ED∥BF,且AF=CE.求证:四边形ABCD是平行四边形.【提示】证明△ADE≌△CBF,得到AD=BC即可.【答案】在△ADE和△CBF中,∵AD∥BC,∴∠DAE=∠BCF.∵ED∥BF,∴∠DEF=∠BFE.∴∠DEA=∠BFC.∵AF=CE,∴AE=CF.∴△ADE≌△CBF.∴AD=BC.又AD∥BC,∴四边形ABCD是平行四边形.21.已知:如图,矩形ABCD中,E、F是AB上的两点,且AF=BE.求证:∠ADE=∠BCF.【提示】证明Rt△ADE≌Rt△BCF.【答案】在矩形ABCD中,∠A=∠B=90°,AD=BC.又AF=BE,∴AF-EF=BE-EF,即AE=BF.∴Rt△ADE≌Rt△BCF.∴∠ADE=∠BCF.22.证明等腰梯形判定定理:在同一底上的两个角相等的梯形是等腰梯形.(要求:画出图形,写出已知、求证、证明.)【提示】作辅助线,构造等腰三角形.【答案】已知:在梯形ABCD中,AD∥BC,∠B=∠C(图(1)).求证:AB=DC.【证法一】如图(1),过点D作DE∥AB,交BC于E.图(1)∴∠B=∠1.又∠B=∠C,∴∠C=1.∴DE=DC.又AB∥DE,AD∥BE,∴四边形ABED为平行四边形,∴AB=DE.∴AB=DC.【证法二】如图(2),分别延长BA、CD,交于点E.图(2)∵∠B=∠C,∴BE=CE.∵AD∥BC,∴∠B=∠1,∠C=∠2.∴∠1=∠2.∴AE=DE.∴BE-AE=CE-DE,即AB=DC.(四)计算题(每小题6分,共12分)23.已知:如图,在□ABCD中,BE、CE分别平分∠ABC、∠BCD,E在AD上,BE=12 cm,CE=5 cm.求□ABCD的周长和面积.【提示】证明BE⊥EC和E为AD中点.【答案】在□ABCD中,∵AB∥CD,∴∠ABC+∠BCD=180°.∵∠ABE=∠EBC,∠BCE=∠ECD,∴∠EBC+∠BCE=21(∠ABC+∠BCD)=90°.∴∠BEC=90°.∴BC2=BE2+CE2=122+52=132.∴BC=13.∵AD∥BC,∴∠AEB=∠EBC.∴∠AEB=∠ABE.∴AB=AE.同理CD=ED.∵AB=CD,∴AB=AE=CD=ED=21BC=6.5.∴□ABCD的周长=2(AB+BC)=2(6.5+13)=39.S□ABCD=2 S△BCE=2·21BE·EC=12×5=60.24.如图,在梯形ABCD中,AD∥BC,AB=DC,BD⊥DC于D,且∠C=60°,若AD=5 cm,求梯形的腰长.【提示】求出∠CBD,∠ABD和∠ADC的度数,证明AB=AD,或者过D点作DE ⊥BC于E,CE为下底与上底的差的一半,又是CD的一半,CD又是BC的一半.从中找出CD与AD的关系.【解法一】∵BD⊥CD,∠C=60°,∴ ∠CBD =30°.在等腰梯形ABCD 中,∠ABC =∠C =60°, ∴ ∠ABD =∠CBD =30°. ∵ AD ∥BC ,∴ ∠ADB=∠CBD . ∴ ∠ABD =∠ADB . ∴ AB =AD =5(cm ).【解法二】过D 点作DE ⊥BC ,垂足为E 点.∵ 在Rt △CDE 中,∠CDE =30°,∴ CE =21CD . 又 CE =21(BC -AD ),∴ CD =BC -AD . 即 BC =CD +AD .又 在Rt △BCD 中,∠CBD =30°,∴CD =21BC . ∴ CD =2 CD -AD . 即 CD =AD =5(cm ).(五)解答题(每小题7分,共14分)25.如图,在正方形ABCD 中,点E 、F 分别在BC 、CD 上移动,但A 到EF 的距离AH 始终保持与AB 长相等,问在E 、F 移动过程中: (1)∠EAF 的大小是否有变化?请说明理由. (2)△ECF 的周长是否有变化?请说明理由.【提示】证明△EAH ≌△EAB ,△F AH ≌△F AD .【答案】(1)∠EAF 始终等于45°.证明如下:在△EAH 和△EAB 中,∵ AH ⊥EF ,∴ ∠AHE =90°=∠B .又 AH =AB ,AE =AE ,∴ Rt △EAH ≌Rt △EAB . ∴ ∠EAH =∠EAB .同理 ∠HAF =∠DAF .∴ ∠EAF =∠EAH +∠F AH=∠EAB +∠F AD =21∠BAD =45°. 因此,当EF 在移动过程中,∠EAF 始终为45°角. (2)△ECF 的周长不变.证明如下: ∵ △EAH ≌△EAB , ∴ EH =EB . 同理 FH =FD .∴ △ECF 周长=EC +CF +EH +HF=EC +CF +BE +DF =BC +CD =定长.26.已知:如图,在四边形ABCD 中,E 为AB 上一点,△ADE 和△BCE 都是等边三 角形,AB 、BC 、CD 、DA 的中点分别为P 、Q 、M 、N ,试判断四边形PQMN 为怎样的四边形,并证明你的结论.【提示】连结AC 和CD ,首先利用中位线定理和平行四边形判定定理,证明四边形PQMN 为平行四边形,然后证明△AEC ≌△DEB ,得到AC =BD ,再证明□PQMN 为菱形.【答案】四边形PQMN 为菱形.证明如下:如图,连结AC 、BD .∵ PQ 为△ABC 的中位线,∴ PQ21AC . 同理 MN 21AC .∴ MN PQ ,∴ 四边形PQMN 为平行四边形. 在△AEC 和△DEB 中,AE =DE ,EC =EB ,∠AED =60°=∠CEB , 即 ∠AEC =∠DEB . ∴ △AEC ≌△DEB . ∴ AC =BD . ∴ PQ =21AC =21BD =PN . ∴ □PQMN 为菱形.。

九年级中考数学平行四边形专题复习(含答案)

九年级中考数学平行四边形专题复习(含答案)

九年级中考数学平行四边形专题复习一、选择题:1.已知四边形ABCD是平行四边形,再从①AB=BC;②∠ABC=90°;③AC=BD;④AC⊥BD.四个条件中,选两个作为补充条件后,使得四边形ABCD是正方形,现有下列四种选法,其中错误的是( ) A.选①② B.选②③ C.选①③ D.选②④2.如图,把矩形纸片ABCD纸沿对角线折叠,设重叠部分为△EBD,那么下列说法错误的是( )A.△EBD是等腰三角形,EB=ED B.折叠后∠ABE和∠CBD一定相等C.折叠后得到的图形是轴对称图形 D.△EBA和△EDC一定是全等三角形3.有下列说法:①由许多条线段连接而成的图形叫做多边形;②多边形的边数是不小于4的自然数;③从一个多边形(边数为n)的同一个顶点出发,分别连接这个顶点与其余与之不相邻的各顶点,可以把这个多边形分割成(n-2)个三角形;④半圆是扇形.其中正确的结论有( )A.1个 B.2个 C.3个 D.4个4.如图,四边形ABCD中,点M,N分别在AB,BC上,将△BMN沿MN翻折,得△FMN,若MF∥AD,FN∥DC,则∠D的度数为( )95°D D.85°105°C C.95°A.115°115°B B.105°5.如图,在矩形ABCD中,AB=4,BC=6,点E为BC的中点,将△ABE沿AE折叠,使点B落在矩形内点F处,连接CF,则CF的长为( )A.1.8B.2.4C.3.2D.3.66.现有纸片:4张边长为a的正方形,3张边长为b的正方形,8张宽为a、长为b的长方形,用这15张纸片重新拼出一个长方形,那么该长方形的长为( )A.2a+3b B.2a+b C.a+3b D.无法确定7.如图,菱形ABCD的对角线AC=3cm,把它沿对角线AC方向平移1cm得到菱形EFGH,则图中阴影部分图形的面积与四边形 ENCM 的面积之比为( )A.9:4 B.12:5 C.3:1 D.5:28.如图,正方形ABCD的面积为1,则以相邻两边中点连线EF为边正方形EFGH的周长为( )A. B.2 C. +1 D.2+19.如图,在周长为12的菱形ABCD中,AE=1,AF=2,若P为对角线BD上一动点,则EP+FP的最小值为( )A.1 B.2 C.3 D.410.如图,已知矩形ABCD中,AB=3cm,AD=9cm,将此矩形折叠,使点D与点B重合,折痕为EF,则△ABE的面积为( )A.6cm2 B.8cm2 C.10cm2 D.12cm2二、填空题:11.如图,矩形ABCD中,点E在线段AD延长线上,AD=DE,连接BE与DC相交于点F,连接AF,请从图中找出一个等腰三角形______.12.如图,在▱ABCD中,点E在BC边上,且AE⊥BC于点E,ED平分∠CDA,若BE:EC=1:2,则∠BCD度数为 .13.如图,为一块面积为1.5m2的直角三角形模板,其中∠B=90°,AB=1.5m,现要把它加工成正方形DEFG 木板(EF在AC上,点D和点G分别在AB和BC上),则该正方形木板的边长为______m.14.如图,正方形ABCD的长为8cm,E、F、G、H分别是AB、BC、CD、DA上的动点,且AE=BF=CG=DH,则四边形EFGH面积的最小值是 cm2.15.在中,,其面积为,则的最大值是.16.已知平行四边形ABCD的两边AB,AD的长是关于x的方程x2﹣mx+0.5m-0.25=0的两个实数根.当m= 时,四边形ABCD是菱形.三、解答题:17.如图,在平行四边形ABCD中,BE、CE分别平分∠ABC、∠BCD,E在AD上,BE=12cm,CE=5cm.求平行四边形ABCD的周长.18.如图,已知在□ABCD中,E是CD的中点,F是AE的中点,FC与BE交于G.求证:GF=GC.19.如图,△ABC为锐角三角形,AD是BC边上的高,正方形EFGH的一边FG在BC上, 顶点E、H分别在AB、AC上,已知BC=40cm,AD=30cm.(1)求证:△AEH∽△ABC;(2)求这个正方形的边长与面积.20.如图,已知矩形ABCD的边长AB=3cm,BC=6cm.某一时刻,动点M从A点出发沿AB方向以1cm/s的速度向B点匀速运动;同时,动点N从D点出发沿DA方向以2cm/s的速度向A点匀速运动,问:(1)经过多少时间,△AMN的面积等于矩形ABCD面积的九分之一?(2)是否存在时刻t,使以A,M,N为顶点的三角形与△ACD相似?若存在,求t的值;若不存在,请说明理由.21.下列网格中的六边形ABCDEF是由边长为6的正方形左上角剪去边长为2的正方形所得,该六边形按一定的方法可剪拼成一个正方形.(1)根据剪拼前后图形的面积关系求出拼成的正方形的边长为 ;(2)在图中画出两条裁剪线,并画出将此六边形剪拼成的正方形.22.如图,在正方形ABCD中,E为直线AB上的动点(不与A,B重合),作射线DE并绕点D逆时针旋转45°,交直线BC边于点F,连结EF.探究:当点E在边AB上,求证:EF=AE+CF.应用:(1)当点E在边AB上,且AD=2时,则△BEF的周长是 .(2)当点E不在边AB上时,EF,AE,CF三者的数量关系是 .参考答案1.B2.B3.B4.C5.D6.A7.D8.B9.C10.A11.答案为:△AFE(答案不唯一).12.答案为:120°.13.答案为:.14.答案为:32.15.答案为:16.答案为:1.17.解:在平行四边形ABCD中,∵AB∥CD,∴∠ABC+∠BCD=180°,∵∠ABE=∠EBC,∠BCE=∠ECD.,∴∠EBC+∠BCE=90°,∴∠BEC=90°, ∴BC22=BE22+CE22=1222+522=1322∴BC=13cm,∵AD∥BC,∴∠AEB=∠EBC,∴∠AEB=∠ABE,∴AB=AE,同理CD=ED,∵AB=CD,∴AB=AE=CD=ED=0.5BC=6.5cm,∴平行四边形ABCD的周长=2(AB+BC)=2(6.5+13)=39cm18.提示:取BE的中点P,证明四边形EFPC是平行四边形.19.(1)证明:∵四边形EFGH是正方形,∴EH∥BC,∴∠AEH=∠B,∠AHE=∠C,∴△AEH∽△ABC.(2)解:如图设AD与EH交于点M.∵∠EFD=∠FEM=∠FDM=90°,∴四边形EFDM是矩形,∴EF=DM,设正方形EFGH的边长为x,∵△AEH∽△ABC,∴=,∴=,∴x=,∴正方形EFGH的边长为cm,面积为cm2.20.21.答案为:(1);(2)如图:22.探究:证明:如图,延长BA到G,使AG=CF,连接DG,∵四边形ABCD 是正方形,∴DA=DC ,∠DAG=∠DCF=90°, ∴△DAG ≌△DCF (SAS ),∴∠1=∠3,DG=DF ,∵∠ADC=90°,∠EDF=45°,∴∠EDG=∠1+∠2=∠3+∠2=45°2=45°==∠EDF , ∵DE=DE ,∴△GDE ≌△FDE (SAS ),∴EF=EG=AE+AG=AE+CF ; 应用:解:(1)△BEF 的周长=BE+BF+EF ,由探究得:EF=AE+CF , ∴△BEF 的周长=BE+BF+AE+CF=AB+BC=2+2=4,故答案为:4; (2)当点E 不在边AB 上时,分两种情况:①点E 在BA 的延长线上时,如图2,EF=CF ﹣AE ,理由是:在CB 上取CG=AE ,连接DG , ∵∠DAE=∠DCG=90°,AD=DC ,∴△DAE ≌△DCG (SAS )∴DE=DG ,∠EDA=∠GDC ∵∠ADC=90°,∴∠EDG=90°∴∠EDF+∠FDG=90°,∵∠EDF=45°,∴∠FDG=90°﹣45°45°=45°=45°,∴∠EDF=∠FDG=45°, 在△EDF 和△GDF 中,∵,∴△EDF ≌△GDF (SAS ),∴EF=FG ,∴EF=CF ﹣CG=CF ﹣AE ;②当点E 在AB 的延长线上时,如图3,EF=AE ﹣CF ,理由是:把△DAE 绕点D 逆时针旋转90°至△DCG ,可使AD 与DC 重合,连接DG , 由旋转得:DE=DG ,∠EDG=90°,AE=CG ,∵∠EDF=45°,∴∠GDF=90°﹣45°45°=45°=45°,∴∠EDF=∠GDF , ∵DF=DF ,∴△EDF ≌△GDF ,∴EF=GF ,∴EF=CG ﹣CF=AE ﹣CF ;综上所述,当点E 不在边AB 上时,EF ,AE ,CF 三者的数量关系是:EF=CF ﹣AE 或EF=AE ﹣CF ;故答案为:EF=CF ﹣AE 或EF=AE ﹣CF .。

北师大版九年级上学期第1章《特殊的平行四边形》单元测练习(含答案)

北师大版九年级上学期第1章《特殊的平行四边形》单元测练习(含答案)

《特殊的平行四边形》单元测试卷一.选择题1.如图,菱形ABCD中,对角线AC,BD相交于点O,若AB=5,AC=6,则BD的长是()A.8 B.7 C.4 D.32.如图,在菱形ABCD中,E是AC的中点,EF∥CB,交AB于点F,如果EF=3,那么菱形ABCD的周长为()A.24 B.18 C.12 D.93.菱形不具备的性质是()A.四条边都相等B.对角线一定相等C.是轴对称图形D.是中心对称图形4.如图,在▱ABCD中,对角线AC,BD相交于点O,添加下列条件不能判定▱ABCD是菱形的只有()A.AC⊥BD B.AB=BC C.AC=BD D.∠1=∠25.矩形ABCD与CEFG如图放置,点B,C,E共线,点C,D,G共线,连接AF,取AF的中点H,连接GH.若BC=EF=2,CD=CE=1,则GH=()A .1B .C .D .6.矩形具有而平行四边形不一定具有的性质是( ) A .对边相等 B .对角相等C .对角线相等D .对角线互相平分7.如图,矩形ABCD 中,O 为AC 中点,过点O 的直线分别与AB 、CD 交于点E 、F ,连结BF 交AC 于点M ,连结DE 、BO .若∠COB =60°,FO =FC ,则下列结论:①FB 垂直平分OC ;②△EOB ≌△CMB ;③DE =EF ;④S △AOE :S △BCM =2:3.其中正确结论的个数是( )A .4个B .3个C .2个D .1个8.已知平行四边形ABCD ,下列条件中,不能判定这个平行四边形为矩形的是( ) A .∠A =∠BB .∠A =∠CC .AC =BDD .AB ⊥BC9.在△ABC 中,点D 是边BC 上的点(与B ,C 两点不重合),过点D 作DE ∥AC ,DF ∥AB ,分别交AB ,AC 于E ,F 两点,下列说法正确的是( )A .若AD ⊥BC ,则四边形AEDF 是矩形B .若AD 垂直平分BC ,则四边形AEDF 是矩形 C .若BD =CD ,则四边形AE DF 是菱形 D .若AD 平分∠BAC ,则四边形AEDF 是菱形10.如图,平行四边形ABCD 中,∠B =60°.G 是CD 的中点,E 是边AD 上的动点,EG 的延长线与BC 的延长线交于点F ,连结CE ,DF ,下列说法不正确的是( )A .四边形CEDF 是平行四边形B .当CE ⊥AD 时,四边形CEDF 是矩形C .当∠AEC =120°时,四边形CEDF 是菱形D .当AE =ED 时,四边形CEDF 是菱形11.如图,正方形ABCD 的边长为1,点E ,F 分别是对角线AC 上的两点,EG ⊥AB .EI ⊥AD ,FH ⊥AB ,FJ ⊥AD ,垂足分别为G ,I ,H ,J .则图中阴影部分的面积等于 ( )A .1B .C .D .12.如图,在正方形ABCD 中,AC 为对角线,E 为AB 上一点,过点E 作EF ∥AD ,与AC 、DC 分别交于点G ,F ,H 为CG 的中点,连接DE ,EH ,DH ,FH .下列结论:①EG =DF ;②∠AEH +∠ADH =180°;③△EHF ≌△DHC ;④若=,则3S △EDH =13S △DHC ,其中结论正确的有( )A .1个B .2个C .3个D .4个13.在平面直角坐标系中,正方形A 1B 1C 1D 1、D 1E 1E 2B 2、A 2B 2C 2D 2、D 2E 3E 4B 3、A 3B 3C 3D 3…按如图所示的方式放置,其中点B 1在y 轴上,点C 1、E 1、E 2、C 2、E 3、E 4、C 3…在x 轴上,已知正方形A 1B 1C 1D 1的边长为1,∠B 1C 1O =60°,B 1C 1∥B 2C 2∥B 3C 3…则正方形A 2015B 2015C 2015D 2015的边长是( )A .()2014B .()2015C .()2015D .()201414.关于▱ABCD 的叙述,正确的是( )A.若AB⊥BC,则▱ABCD是菱形B.若AC⊥BD,则▱ABCD是正方形C.若AC=BD,则▱ABCD是矩形D.若AB=AD,则▱ABCD是正方形15.如图,在△ABC中,∠ACB=90°,BC的垂直平分线EF交BC于点D,交AB于点E,且BE=BF,添加一个条件,仍不能证明四边形BECF为正方形的是()A.BC=AC B.CF⊥BF C.BD=DF D.AC=BF16.如图,两把完全一样的直尺叠放在一起,重合的部分构成一个四边形,这个四边形一定是()A.矩形B.菱形C.正方形D.无法判断二.填空题17.如图,四边形ABCD是菱形,AC=16,DB=12,DH⊥AB于H,则DH等于.18.在菱形ABCD中,∠A=60°,其所对的对角线长为4,则菱形ABCD的面积是.19.顺次连接四边形ABCD各边中点形成一个菱形,则原四边形对角线AC、BD的关系是.20.如图,在∠MON的两边上分别截取OA、OB,使OA=OB;分别以点A、B为圆心,OA长为半径作弧,两弧交于点C;连接AC、BC、AB、OC.若AB=2cm,四边形OACB的面积为4cm2.则OC的长为cm.21.如图,在矩形ABCD中,AB=3,AD=4,P为AD上一动点,PE⊥AC于E,PF⊥BD于F,则PE+PF的值为.22.如图,矩形ABCD的对角线AC、BD相交于点O,DE∥AC,CE∥BD,若BD=5,则四边形DOCE的周长为.23.如图,矩形ABCD中, AE平分∠BAD交BC于E,∠CAE=15°,则下列结论:①△ODC是等边三角形;②BC=2AB;③∠AOE=135°;④S△AOE =S△COE,其中正确的结论的序号是.24.如图,连接四边形ABCD各边中点,得到四边形EFGH,还要添加条件,才能保证四边形EFGH是矩形.25.在△ABC中,AB=6cm,AC=8cm,BC=10cm,P为边BC上一动点,PE⊥AB于E,PF⊥AC 于F,连接EF,则EF的最小值为cm.26.如图,在矩形ABCD中,BC=20cm,点P和点Q分别从点B和点D出发,按逆时针方向沿矩形ABCD的边运动,点P和点Q的速度分别为3cm/s和2cm/s,则最快s后,四边形ABPQ成为矩形.27.如图,点A,B,E在同一条直线上,正方形ABCD,BEFG的边长分别为3,4,H为线段DF的中点,则BH=.28.如图,正方形ABCD的边长为1,以对角线AC为边作第二个正方形ACEF,再以对角线AE为边作第三个正方形AEGH,如此下去第n个正方形的边长为.29.▱ABCD的对角线AC与BD相交于点O,且AC⊥BD,请添加一个条件:,使得▱ABCD 为正方形.30.如图,在四边形ABCD中,AD∥BC(BC>AD),∠D=90°,∠ABE=45°,BC=CD,若AE=5,CE=2,则BC的长度为.31.如图,在四边形ABCD中,∠ADC=∠ABC=90°,AD=CD,DP⊥AB于P.若四边形ABCD 的面积是18,则DP的长是.三.解答题32.在Rt△ABC中,∠BAC=90°,D是BC的中点,E是AD的中点,过点A作AF∥BC交BE 的延长线于点F.(1)求证:△AEF≌△DEB;(2)证明四边形ADCF是菱形;(3)若AC=4,AB=5,求菱形ADCF的面积.33.如图,在四边形ABCD中,AB∥DC,AB=AD,对角线AC,BD交于点O,AC平分∠BAD,过点C作CE⊥AB交AB的延长线于点E,连接OE.(1)求证:四边形ABCD是菱形;(2)若AB=,BD=2,求OE的长.34.如图,在菱形ABCD中,对角线AC与BD交于点O.过点C作BD的平行线,过点D作AC 的平行线,两直线相交于点E.(1)求证:四边形OCED是矩形;(2)若CE=1,DE=2,则菱形ABCD的面积是.35.如图,菱形ABCD的对角线AC,BD相交于点O,且DE∥AC,AE∥BD.求证:四边形AODE 是矩形.36.在正方形ABCD中,对角线BD所在的直线上有两点E、F满足BE=DF,连接AE、AF、CE、CF,如图所示.(1)求证:△ABE≌△ADF;(2)试判断四边形AECF的形状,并说明理由.37.如图,在△ABC中,点O是边AC上一个动点,过点O作直线EF∥BC分别交∠ACB、外角∠ACD的平分线于点E、F.(1)若CE=8,CF=6,求OC的长;(2)连接AE、AF.问:当点O在边AC上运动到什么位置时,四边形AECF是矩形?并说明理由.38.如图,在平行四边形ABCD中,以点A为圆心,AB长为半径画弧交AD于点F,再分别以点B、F为圆心,大于长为半径画弧,两弧交于一点P,连接AP并延长交BC于点E,连接EF.(1)四边形ABEF是;(选填矩形、菱形、正方形、无法确定)(直接填写结果)(2)AE,BF相交于点O,若四边形ABEF的周长为40,BF=10,则AE的长为,∠ABC=°.(直接填写结果)39.如图,已知正方形ABCD中,边长为10厘米,点E在AB边上,BE=6厘米.(1)如果点P在线段BC上以4厘米/秒的速度由B点向C点运动,同时,点Q在线段CD 上由C点向D点运动.①若点Q的运动速度与点P的运动速度相等,经过1秒后,△BPE与△CQP是否全等,请说明理由;②若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为多少时,能够使△BPE与△CQP全等?(2)若点Q以②中的运动速度从点C出发,点P以原来的运动速度从点B同时出发,都逆时针沿正方形ABCD四边运动,求经过多长时间点P与点Q第一次在正方形ABCD边上的何处相遇?40.如图,△ABC的中线AD、BE、CF相交于点G,H、I分别是BG、CG的中点.(1)求证:四边形EFHI是平行四边形;(2)①当AD与BC满足条件时,四边形EFHI是矩形;②当AG与BC满足条件时,四边形EFHI是菱形.参考答案1.解:∵四边形ABCD是菱形,∴OA=OC=3,OB=OD,AC⊥BD,在Rt△AOB中,∠AOB=90°,根据勾股定理,得:OB===4,∴BD=2OB=8,故选:A.2.解:∵E是AC中点,∵EF∥BC,交AB于点F,∴EF是△ABC的中位线,∴EF=BC,∴BC=6,∴菱形ABCD的周长是4×6=24.故选:A.3.解:菱形的四条边相等,是轴对称图形,也是中心对称图形,对角线垂直不一定相等,故选:B.4.解:A、正确.对角线垂直的平行四边形的菱形.B、正确.邻边相等的平行四边形是菱形.C、错误.对角线相等的平行四边形是矩形,不一定是菱形.D、正确.可以证明平行四边形ABCD的邻边相等,即可判定是菱形.故选:C.5.解:如图,延长GH交AD于点P,∵四边形ABCD和四边形CEFG都是矩形,∴∠ADC=∠ADG=∠CGF=90°,AD=BC=2、GF=CE=1,∴AD∥GF,∴∠GFH=∠PAH,又∵H是AF的中点,∴AH=FH,在△APH和△FGH中,∵,∴△APH≌△FGH(ASA),∴AP=GF=1,GH=PH=PG,∴PD=AD﹣AP=1,∵C G=2、CD=1,∴DG=1,则GH=PG=×=,故选:C.6.解:矩形的对角线相等,而平行四边形的对角线不一定相等.故选:C.7.解:①∵矩形ABCD中,O为AC中点,∴OB=OC,∵∠COB=60°,∴△OBC是等边三角形,∴OB=BC,∵FO=FC,∴FB垂直平分OC,故①正确;②∵△BOC为等边三角形,FO=FC,∴BO⊥EF,BF⊥OC,∴∠CMB=∠EOB=90°,∴BO≠BM,∴△EOB与△CMB不全等;故②错误;③易知△ADE≌△CBF,∠1=∠2=∠3=30°,∴∠ADE=∠CBF=30°,∠BEO=60°,∴∠CDE=60°,∠DFE=∠BEO=60°,∴∠CDE=∠DFE,∴DE=EF,故③正确;④易知△AOE≌△COF,∴S△AOE =S△COF,∵S△COF =2S△CMF,∴S△AOE :S△BCM=2S△CMF:S△BCM=,∵∠FCO=30°,∴FM=,BM=CM,∴=,∴S△AOE :S△BCM=2:3,故④正确;所以其中正确结论的个数为3个;故选:B.8.解:A、∠A=∠B,∠A+∠B=180°,所以∠A=∠B=90°,可以判定这个平行四边形为矩形,正确;B、∠A=∠C不能判定这个平行四边形为矩形,错误;C、AC=BD,对角线相等,可推出平行四边形ABCD是矩形,故正确;D、AB⊥BC,所以∠B=90°,可以判定这个平行四边形为矩形,正确;故选:B.9.解:若AD⊥BC,则四边形AEDF是平行四边形,不一定是矩形;选项A错误;若AD垂直平分BC,则四边形AEDF是菱形,不一定是矩形;选项B错误;若BD=CD,则四边形AEDF是平行四边形,不一定是菱形;选项C错误;若AD平分∠BAC,则四边形AEDF是菱形;正确;故选:D.10.解:A、∵四边形ABCD是平行四边形,∴CF∥ED,∴∠FCG=∠EDG,∵G是CD的中点,∴CG=DG,在△FCG和△EDG中,,∴△FCG≌△EDG(ASA)∴FG=EG,∵CG=DG,∴四边形CEDF是平行四边形,正确;B、∵四边形CEDF是平行四边形,∵CE⊥AD,∴四边形CEDF是矩形,正确;C 、∵四边形CEDF 是平行四边形,∵∠AEC =120°,∴∠CED =60°,∴△CDE 是等边三角形,∴CE =DE ,∵四边形CEDF 是平行四边形,∴四边形CEDF 是菱形,正确;D 、当AE =ED 时,不能得出四边形CEDF 是菱形,错误;故选:D .11.解:∵四边形ABCD 是正方形,∴直线AC 是正方形ABCD 的对称轴,∵EG ⊥AB .EI ⊥AD ,FH ⊥AB ,FJ ⊥AD ,垂足分别为G ,I ,H ,J .∴根据对称性可知:四边形EFHG 的面积与四边形EFJI 的面积相等,△AIE 的面积=△AEG 的面积,∴S 阴=S 正方形ABCD =,故选:B .12.解:①∵四边形ABCD 为正方形,EF ∥AD ,∴EF =AD =CD ,∠ACD =45°,∠GFC =90°,∴△CFG 为等腰直角三角形,∴GF =FC ,∵EG =EF ﹣GF ,DF =CD ﹣FC ,∴EG =DF ,故①正确;②∵△CFG 为等腰直角三角形,H 为CG 的中点,∴FH =CH ,∠GFH =∠GFC =45°=∠HCD ,在△EHF 和△DHC 中,,∴△EHF ≌△DHC (SAS ),∴∠HEF =∠HDC , ∴∠AEH +∠ADH =∠AEF +∠HEF +∠ADF ﹣∠HDC =∠AEF +∠ADF =180°,故②正确;③∵△CFG 为等腰直角三角形,H 为CG 的中点,∴FH =CH ,∠GFH =∠GFC =45°=∠HCD ,在△EHF 和△DHC 中,,∴△EHF ≌△DHC (SAS ),故③正确;④∵=, ∴AE =2BE ,∵△CFG 为等腰直角三角形,H 为CG 的中点,∴FH =GH ,∠FHG =90°,∵∠EGH =∠FHG +∠HFG =90°+∠HFG =∠HFD ,在△EGH 和△DFH 中,, ∴△EGH ≌△DFH (SAS ),∴∠EHG =∠DHF ,EH =DH ,∠DHE =∠EHG +∠DHG =∠DHF +∠DHG =∠FHG =90°, ∴△EHD 为等腰直角三角形,过H 点作HM 垂直于CD 于M 点,如图所示:设HM =x ,则DM =5x ,DH =x ,CD =6x ,则S △DHC =×HM ×CD =3x 2,S △EDH =×DH 2=13x 2,∴3S △EDH =13S △DHC ,故④正确;故选:D .13.方法一:解:如图所示:∵正方形A 1B 1C 1D 1的边长为1,∠B 1C 1O =60°,B 1C 1∥B 2C 2∥B 3C 3… ∴D 1E 1=B 2E 2,D 2E 3=B 3E 4,∠D 1C 1E 1=∠C 2B 2E 2=∠C 3B 3E 4=30°,∴D 1E 1=C 1D 1sin30°=,则B 2C 2=()1,同理可得:B 3C 3==()2,故正方形A n B n ∁n D n 的边长是:()n ﹣1.则正方形A 2015B 2015C 2015D 2015的边长是:()2014. 故选:D .方法二:∵正方形A 1B 1C 1D 1的边长为1,∠B 1C 1O =60°,∴D 1E 1=B 2E 2=,∵B 1C 1∥B 2C 2∥B 3C 3…∴∠E 2B 2C 2=60°,∴B 2C 2=,同理:B 3C 3=×=…∴a 1=1,q =,∴正方形A 2015B 2015C 2015D 2015的边长=1×. 14.解:∵▱ABCD 中,AB ⊥BC ,∴四边形ABCD 是矩形,不一定是菱形,选项A 错误;∵▱ABCD 中,AC ⊥BD ,∴四边形ABCD 是菱形,不一定是正方形,选项B 错误;∵▱ABCD 中,AC =BD ,∴四边形ABCD 是矩形,选项C 正确;∵▱ABCD 中,AB =AD ,∴四边形ABCD 是菱形,不一定是正方形,选项D 错误.故选:C .15.解:∵EF 垂直平分BC ,∴BE=EC,BF=CF,∵BF=BE,∴BE=EC=CF=BF,∴四边形BECF是菱形;当BC=AC时,∵∠ACB=90°,则∠A=45°时,菱形BECF是正方形.∵∠A=45°,∠ACB=90°,∴∠EBC=45°∴∠EBF=2∠EBC=2×45°=90°∴菱形BECF是正方形.故选项A正确,但不符合题意;当CF⊥BF时,利用正方形的判定得出,菱形BECF是正方形,故选项B正确,但不符合题意;当BD=DF时,利用正方形的判定得出,菱形BECF是正方形,故选项C正确,但不符合题意;当AC=BF时,无法得出菱形BECF是正方形,故选项D错误,符合题意.故选:D.16.解:过点D作DE⊥AB于E,DF⊥BC于F.∵两张长方形纸条的宽度相等,∴DE=DF.又∵平行四边形ABCD的面积=AB•DE=BC•DF,∴AB=BC,∴平行四边形ABCD为菱形.故选:B.二.填空题(共15小题)17.解:∵四边形ABCD是菱形,∴OA=OC=8,OB=OD=6,AC⊥BD,在Rt△AOB中,AB==10,=•AC•BD,∵S菱形ABCDS=DH•AB,菱形ABCD∴DH•10=×12×16,∴DH=.故答案为:.18.解:如图所示:∵在菱形ABCD中,∠BAD=60°,其所对的对角线长为4,∴可得AD=AB,故△ABD是等边三角形,则AB=AD=4,故BO=DO=2,则AO==2,故AC=4,则菱形ABCD的面积是:×4×4=8.故答案为:8.19.解:∵EFGH为菱形∴EH=EF又∵E、F、G、H为四边中点∴AC=2EH,BD=2FE∴AC=BD.故答案为AC=BD.20.解:根据作图,AC =BC =OA , ∵OA =OB ,∴OA =OB =BC =AC ,∴四边形OACB 是菱形,∵AB =2cm ,四边形OACB 的面积为4cm 2,∴AB •OC =×2×OC =4,解得OC =4cm .故答案为:4.21.解:连接OP ,∵四边形ABCD 是矩形,∴∠BAD =90°,AC =BD ,OA =OC ,OB =OD ,∴OA =OD =BD ,S △AOD =S △AOB ,∵AB =3,AD =4,∴S 矩形ABCD =3×4=12,BD =5,∴S △AOD =S 矩形ABCD =3,OA =OC =,∵S △AOD =S △AOP +S △DOP =OA •PE +OD •PF =××PE +××PF =(PE +PF )=3, ∴PE +PF =.故答案为.22.解:∵CE ∥BD ,DE ∥AC ,∴四边形CODE 是平行四边形,∵四边形ABCD是矩形,∴AC=BD=4,OA=OC,OB=OD,∴OC=OD=BD=,∴四边形CODE是菱形,∴四边形CODE的周长为:4OC=4×=10.故答案为:10.23.解:∵矩形ABCD中,AE平分∠BAD,∴∠BAE=45°,∵∠CAE=15°,∴∠BAO=∠BAE+∠CAE=45°+15°=60°,又∵矩形中OA=OB=OC=OD,∴△AOB是等边三角形,∴∠AOB=∠COD=60°,∴△ODC是等边三角形,故①正确;由等边三角形的性质,AB=OA,∴AC=2AB,由垂线段最短BC<AC,∴BC<2AB,故②错误;∵∠BAE=45°,∠ABE=90°,∴△ABE是等腰直角三角形,∴AB=BE,∴BO=BE,∵∠COB=180°﹣60°=120°,∴∠BOE=(180°﹣30°)=75°,∴∠AOE=∠AOB+∠BOE=60°+75°=135°,故③正确;∵△AOE和△COE的底边AO=CO,点E到AC的距离相等,∴S△AOE =S△COE,故④正确;综上所述,正确的结论是①③④.故答案为:①③④.24.解:∵G、H、E分别是BC、CD、AD的中点,∴HG∥BD,EH∥AC,∴∠EHG=∠1,∠1=∠2,∴∠2=∠EHG,∵四边形EFGH是矩形,∴∠EHG=90°,∴∠2=90°,∴AC⊥BD.故还要添加AC⊥BD,才能保证四边形EFGH是矩形.25.解:∵AB=6cm,AC=8cm,BC=10cm,∴AB2+AC2=BC2,∴△ABC为直角三角形,∠A=90°,∵PE⊥AB于E,PF⊥AC于F,∴∠AEP=∠AFP=90°,∴四边形AEPF为矩形,连接AP,如图,EF=AP,当AP的值最小时,EF的值最小,当AP⊥BC时,AP的值最,此时AP==,∴EF的最小值为.故答案为.26.解;设最快x秒,四边形ABPQ成为矩形,由BP=AQ得3x=20﹣2x.解得x=4,故答案为:4.27.解:连接BD、BF,∵四边形ABCD,BEFG是正方形,且边长分别为3和4,∴∠DBC=∠GBF=45°,BD=3,BF=4,∴∠DBF=90°,由勾股定理得:DF==5,∵H为线段DF的中点,∴BH=DF=.故答案为:.28.解:∵四边形ABCD为正方形,∴AB=BC=1,∠B=90°,∴AC2=12+12,AC=同理可得:AE=()2,AG=()3…,∴第n个正方形的边长a n=()n﹣1.故答案为()n﹣1.29.解:∵▱ABCD的对角线AC与BD相交于点O,且AC⊥BD,∴▱ABCD是菱形,当∠BAD=90°时,▱ABCD为正方形.故答案为:∠BAD=90°.30.解:过点B作BF⊥AD于点F,延长DF使FG=EC,∵AD∥BC,∠D=90°,∴∠C=∠D=90°,BF⊥AD∴四边形CDFB是矩形∵BC=CD∴四边形CDFB是正方形∴CD=BC=DF=BF,∠CBF=90°=∠C=∠BFG,∵BC=BF,∠BFG=∠C=90°,CE=FG∴△BCE≌△BFG(SAS)∴BE=BG,∠CBE=∠FBG∵∠ABE=45°,∴∠CBE+∠ABF=45°,∴∠ABF+∠FBG=45°=∠ABG∴∠ABG=∠ABE,且AB=AB,BE=BG∴△ABE≌△ABG(SAS)∴AE=AG=5,∴A F=AG﹣FG=5﹣2=3在Rt△ADE中,AE2=AD2+DE2,∴25=(DF﹣3)2+(DF﹣2)2,∴DF=6∴BC=6故答案为:631.解:如图,过点D作DE⊥DP交BC的延长线于E,∵∠ADC=∠ABC=90°,∴四边形DPBE是矩形,∵∠CDE+∠CDP=90°,∠ADC=90°,∴∠ADP+∠CDP=90°,∴∠ADP=∠CDE,∵DP⊥AB,∴∠APD=90°,∴∠APD=∠E=90°,在△ADP和△CDE中,,∴△ADP≌△CDE(AAS),∴DE=DP,四边形ABCD的面积=四边形DPBE的面积=18,∴矩形DPBE是正方形,∴DP==3.故答案为:3.三.解答题(共9小题)32.(1)证明:∵AF∥BC,∴∠AFE=∠DBE,∵E是AD的中点,∴AE=DE,在△AFE和△DBE中,∴△AFE≌△DBE(AAS);(2)证明:由(1)知,△AFE≌△DBE,则AF=DB.∵AD为BC边上的中线∴DB=DC,∴AF=CD.∵AF∥BC,∴四边形ADCF是平行四边形,∵∠BAC=90°,D是BC的中点,E是AD的中点,∴AD=DC=BC,∴四边形ADCF是菱形;(3)连接DF,∵AF∥BD,AF=BD,∴四边形ABDF是平行四边形,∴DF=AB=5,∵四边形ADCF是菱形,=AC▪DF=×4×5=10.∴S菱形ADCF33.解:(1)∵AB∥CD,∴∠OAB=∠DCA,∵AC为∠DAB的平分线,∴∠OAB=∠DAC,∴∠DCA=∠DAC,∴CD=AD=AB,∵AB∥CD,∴四边形ABCD是平行四边形,∵AD=AB,∴▱ABCD是菱形;(2)∵四边形ABCD是菱形,∴OA=OC,BD⊥AC,∵CE⊥AB,∴OE=OA=OC,∵BD=2,∴OB=BD=1,在Rt△AOB中,AB=,OB=1,∴OA==2,∴OE=OA=2.34.(1)证明:∵四边形ABCD是菱形,∴AC⊥BD,∴∠COD=90°.∵CE∥OD,DE∥OC,∴四边形OCED是平行四边形,又∠COD=90°,∴平行四边形OCED是矩形;(2)由(1)知,平行四边形OCED是矩形,则CE=OD=1,DE=OC=2.∵四边形ABCD是菱形,∴AC=2OC=4,BD=2OD=2,∴菱形ABCD的面积为: AC•BD=×4×2=4.故答案是:4.35.证明:∵四边形ABCD为菱形,∴AC⊥BD,∴∠AOD=90°,∵DE∥AC,AE∥BD,∴四边形AODE为平行四边形,∴四边形AODE是矩形.36.证明:(1)∵正方形ABCD,∴AB=AD,∴∠ABD=∠ADB,∴∠ABE=∠ADF,在△ABE与△ADF中,∴△ABE≌△ADF(SAS);(2)连接AC,四边形AECF是菱形.理由:∵正方形ABCD,∴OA=OC,OB=OD,AC⊥EF,∴OB+BE=OD+DF,即OE=OF,∵OA=OC,OE=OF,∴四边形AECF是平行四边形,∵AC⊥EF,∴四边形AECF是菱形.37.(1)证明:∵EF交∠ACB的平分线于点E,交∠ACB的外角平分线于点F,∴∠OCE=∠BCE,∠OCF=∠DCF,∵EF∥BC,∴∠OEC=∠BCE,∠OFC=∠DCF,∴∠OEC=∠OCE,∠OFC=∠OCF,∴OE=OC,OF=OC,∴OE=OF;∵∠OCE+∠BCE+∠OCF+∠DCF=180°,∴∠ECF=90°,在Rt△CEF中,由勾股定理得:EF==10,∴OC=OE=EF=5;(2)解:当点O在边AC上运动到AC中点时,四边形AECF是矩形.理由如下:连接AE、AF,如图所示:当O为AC的中点时,AO=CO,∵EO=FO,∴四边形AECF是平行四边形,∵∠ECF=90°,∴平行四边形AECF是矩形.38.解:(1)在△AEB和△AEF中,,∴△AEB≌△AEF,∴∠EAB=∠EAF,∵AD∥BC,∴∠EAF=∠AEB=∠EAB,∴BE=AB=AF.∵AF∥BE,∴四边形ABEF是平行四边形∵AB=AF,∴四边形ABEF是菱形.故答案为菱形.(2)∵四边形ABEF是菱形,∴AE⊥BF,BO=OF=5,∠ABO=∠EBO,∵AB=10,∴AB=2BO,∵∠AOB=90°∴∠BA0=30°,∠ABO=60°,∴AO=BO=5,∠ABC=2∠ABO=120°.故答案为,120.39.解:(1)①∵t=1秒,∴BP=CQ=4×1=4厘米,(1分)∵正方形ABCD中,边长为10厘米∴PC=BE=6厘米,(1分)又∵正方形ABCD,∴∠B=∠C,(1分)∴△BPE≌△CQP(1分)②∵V P≠V Q,∴BP≠CQ,又∵△BPE≌△CQP,∠B=∠C,则BP=PC,而BP=4t,CP=10﹣4t,∴4t=10﹣4t(2分)∴点P,点Q运动的时间秒,(1分)∴厘米/秒.(1分)(2)设经过x秒后点P与点Q第一次相遇,由题意,得4.8x﹣4x=30,(1分)解得秒.(1分)∴点P共运动了厘米(1分)∴点P、点Q在A点相遇,∴经过秒点P与点Q第一次在A点相遇.(1分)40.(1)证明:∵BE,CF是△ABC的中线,∴EF是△ABC的中位线,∴EF∥BC且EF=BC.∵H、I分别是BG、CG的中点.,∴HI是△BCG的中位线,∴HI∥BC且HI=BC,∴EF∥HI且EF=HI.∴四边形EFHI是平行四边形.(2)解:①当AD与BC满足条件AD⊥BC时,四边形EFHI是矩形;理由如下:同(1)得:FH是△ABG的中位线,∴FH∥AG,FH=AG,∴FH∥AD,∵EF∥BC,AD⊥BC,∴EF⊥FH,∴∠EFH=90°,∵四边形EFHI是平行四边形,∴四边形EFHI是矩形;故答案为:AD⊥BC;②当AG=BC时,四边形DEFI是菱形.理由:∵△ABC的两条中线BE与CF交于点G、H、I分别是BG、CG的中点,∴FH=AG,∵EF=BC,∴当AG=BC时,FH=EF,∵四边形EFHI为平行四边形,∴▱EFHI为菱形;故答案为:AG=BC.。

平行四边形及特殊平行四边形含答案

平行四边形及特殊平行四边形含答案

平行四边形、菱形、矩形、正方形测试题一、选择题(每题3分,共30分)。

1.平行四边形ABCD 中,∠A=50°,则∠D=( )A. 40°B. 50°C. 130°D. 不能确定2.下列条件中,能判定四边形是平行四边形的是( )A. 一组对边相等B. 对角线互相平分C. 一组对角相等D. 对角线互相垂直3.在平行四边形ABCD 中,EF 过对角线的交点O ,若AB=4,BC=7,OE=3,则四边形EFCD 周长是( )A .14 B. 11 C. 10 D. 174.菱形具有的性质而矩形不一定有的是( )A . 对角相等且互补B . 对角线互相平分C . 一组对边平行另一组相等D . 对角线互相垂直5.已知菱形的周长为40cm ,两条对角线的长度比为3:4,那么两条对角线的长分别为( )A .6cm ,8cm B. 3cm ,4cm C. 12cm ,16cm D. 24cm ,32cm6.如图在矩形ABCD 中,对角线AC 、BD 相交于点O ,则以下说法错误的是( )A .AB=21ADB .AC=BDC . 90===∠=∠CDA BCD ABC DABD .AO=OC=BO=OD7.如图5连结正方形各边上的中点,得到的新四边形是 ( ) A .矩形 B.正方形 C.菱形 D.平行四边形8. 一矩形两对角线之间的夹角有一个是600, 且这角所对的边长5cm,则对角线长为( )A. 5 cmB. 10cmC. 52cmD. 无法确定 9. 当矩形的对角线互相垂直时, 矩形变成( )A. 菱形B. 等腰梯形C. 正方形D. 无法确定.10.如图所示,在 ABCD 中,E 、F 分别AB 、CD 的中点,连结DE 、EF 、BF ,则图中平行四边形共有( )A .2个B .4个C .6个D .8个二、填空题(每题3分,共24分 )11.□ABCD 中, AB :BC=1:2,周长为24cm, 则AB=_____cm, AD=_____cm. 12.已知:四边形ABCD 中,AB =CD ,要使四边形ABCD 为平行四边形,需要增加__________,(只需填一个你认为正确的条件即可)你判断的理由是:_____________________________。

北师大版数学九年级上册《特殊的平行四边形》单元测试卷(含答案)

北师大版数学九年级上册《特殊的平行四边形》单元测试卷(含答案)

《特殊的平行四边形》单元测试卷一.选择题(每小题3分,满分36分)1.下列说法正确的是()A.有两边和一角分别相等的两个三角形全等B.有一组对边平行,且对角线相等的四边形是矩形C.如果一个角的补角等于它本身,那么这个角等于45°D.点到直线的距离就是该点到该直线的垂线段的长度2.下列说法中不正确的是()A.四边相等的四边形是菱形B.对角线垂直的平行四边形是菱形C.菱形的对角线互相垂直且相等D.菱形的邻边相等3.如图,菱形ABCD周长为20,对角线AC、BD相交于点O,E是CD的中点,则OE的长是()A.2.5B.3C.4D.54.如图,在正方形ABCD的外侧,作等边△ABE,则∠BED为()A.15°B.35°C.45°D.55°5.如图,在矩形ABCD中,AB=6,BC=8,过对角线交点O作EF⊥AC交AD于点E,交BC 于点F,则DE的长是()A.1B.C.2D.6.如图,正方形ABCD中,点E、F分别在边CD,AD上,BE与CF交于点G.若BC=4,DE =AF=1,则GF的长为()A.B.C.D.7.一个菱形的边长为6,面积为28,则该菱形的两条对角线的长度之和为()A.8B.12C.16D.328.把边长分别为1和2的两个正方形按如图的方式放置.则图中阴影部分的面积为()A.B.C.D.9.如图,在平面直角坐标系中,四边形OABC为菱形,O(0,0),A(4,0),∠AOC=60°,则对角线交点E的坐标为()A.(2,)B.(,2)C.(,3)D.(3,)10.如图,在矩形ABCD中,AD=6,对角线AC与BD交于点O,AE⊥BD,垂足为点E,且AE 平分∠BAO,则AB的长为()A.3B.4C.D.11.如图,在菱形ABCD中,AB=5,对角线AC与BD相交于点O,且AC:BD=3:4,AE⊥CD 于点E,则AE的长是()A.4B.C.5D.12.如图,在正方形ABCD中,点E,F分别在BC,CD上,AE=AF,AC与EF相交于点G.下列结论:①AC垂直平分EF;②BE+DF=EF;③当∠DAF=15°时,△AEF为等边三角形;④当∠EAF=60°时,S△ABE =S△CEF.其中正确的是()A.①③B.②④C.①③④D.②③④二.填空题(每小题3分,满分12分)13.如图,矩形ABCD中,AC、BD交于点O,M、N分别为BC、OC的中点.若MN=4,则AC 的长为.14.如图,已知菱形ABCD的对角线AC,BD交于点O,E为BC的中点,若OE=3,则菱形的周长为.15.如图,E,F是正方形ABCD的对角线AC上的两点,AC=8,AE=CF=2,则四边形BEDF 的周长是.16.如图,矩形OABC的顶点A,C分别在坐标轴上,B(8,7),D(5,0),点P是边AB或边BC上的一点,连接OP,DP,当△ODP为等腰三角形时,点P的坐标为.三.解答题(17题—20题,每题7分,21题—23题,每题8分,满分52分)17.如图,四边形ABCD中,对角线AC、BD相交于点O,AO=OC,BO=OD,且∠AOB=2∠OAD.(1)求证:四边形ABCD是矩形;(2)若∠AOB:∠ODC=4:3,求∠ADO的度数.18.如图,在矩形ABCD中,E,F分别是BC,AD边上的点,且AE=CF.(1)求证:△ABE≌△CDF;(2)当AC⊥EF时,四边形AECF是菱形吗?请说明理由.19.如图,在矩形ABCD中,AB=3,BC=4.M、N在对角线AC上,且AM=CN,E、F分别是AD、BC的中点.(1)求证:△ABM≌△CDN;(2)点G是对角线AC上的点,∠EGF=90°,求AG的长.20.如图,矩形ABCD中,AB=8,AD=6,点O是对角线BD的中点,过点O的直线分别交AB、CD边于点E、F.(1)求证:四边形DEBF是平行四边形;(2)当DE=DF时,求EF的长.21.如图,已知正方形ABCD的边长为1,正方形CEFG的面积为S1,点E在DC边上,点G在BC的延长线上,设以线段AD和DE为邻边的矩形的面积为S2,且S1=S2.(1)求线段CE的长;(2)若点H为BC边的中点,连接HD,求证:HD=HG.22.如图,矩形EFGH的顶点E,G分别在菱形ABCD的边AD,BC上,顶点F,H在菱形ABCD 的对角线BD上.(1)求证:BG=DE;(2)若E为AD中点,FH=2,求菱形ABCD的周长.23.如图,在正方形ABCD中,点E是BC的中点,连接DE,过点A作AG⊥ED交DE于点F,交CD于点G.(1)证明:△ADG≌△DCE;(2)连接BF,证明:AB=FB.参考答案一.选择题(共12小题)1.下列说法正确的是()A.有两边和一角分别相等的两个三角形全等B.有一组对边平行,且对角线相等的四边形是矩形C.如果一个角的补角等于它本身,那么这个角等于45°D.点到直线的距离就是该点到该直线的垂线段的长度【解答】解:A.有两边和一角分别相等的两个三角形全等;不正确;B.有一组对边平行,且对角线相等的四边形是矩形;不正确;C.如果一个角的补角等于它本身,那么这个角等于45°;不正确;D.点到直线的距离就是该点到该直线的垂线段的长度;正确;故选:D.2.下列说法中不正确的是()A.四边相等的四边形是菱形B.对角线垂直的平行四边形是菱形C.菱形的对角线互相垂直且相等D.菱形的邻边相等【解答】解:A.四边相等的四边形是菱形;正确;B.对角线垂直的平行四边形是菱形;正确;C.菱形的对角线互相垂直且相等;不正确;D.菱形的邻边相等;正确;故选:C.3.如图,菱形ABCD周长为20,对角线AC、BD相交于点O,E是CD的中点,则OE的长是()A.2.5B.3C.4D.5【解答】解:∵四边形ABCD为菱形,∴CD=BC==5,且O为BD的中点,∵E为CD的中点,∴OE为△BCD的中位线,∴OE=CB=2.5,故选:A.4.如图,在正方形ABCD的外侧,作等边△ABE,则∠BED为()A.15°B.35°C.45°D.55°【解答】解:在正方形ABCD中,AB=AD,∠BAD=90°,在等边△ABE中,AB=AE,∠BAE=∠AEB=60°,在△AD E中,AD=AE,∠DAE=∠BAD+∠BAE=90°+60°=150°,所以,∠AED=(180°﹣150°)=15°,所以∠BED=∠AEB﹣∠AED=60°﹣15°=45°.故选:C.5.如图,在矩形ABCD中,AB=6,BC=8,过对角线交点O作EF⊥AC交AD于点E,交BC 于点F,则DE的长是()A.1B.C.2D.【解答】解:连接CE,如图所示:∵四边形ABCD是矩形,∴∠ADC=90°,CD=AB=6,AD=BC=8,OA=OC,∵EF⊥AC,∴AE=CE,设DE=x,则CE=AE=8﹣x,在Rt△CDE中,由勾股定理得:x2+62=(8﹣x)2,解得:x=,即DE=;故选:B.6.如图,正方形ABCD中,点E、F分别在边CD,AD上,BE与CF交于点G.若BC=4,DE =AF=1,则GF的长为()A.B.C.D.【解答】解:正方形ABCD中,∵BC=4,∴BC=CD=AD=4,∠BCE=∠CDF=90°,∵AF=DE=1,∴DF=CE=3,∴BE=CF=5,在△BCE和△CDF中,,∴△BCE≌△CDF(SAS),∴∠CBE=∠DCF,∵∠CBE+∠CEB=∠ECG+∠CEB=90°=∠CGE,cos∠CBE=cos∠ECG=,∴,CG=,∴GF=CF﹣CG=5﹣=,故选:A.7.一个菱形的边长为6,面积为28,则该菱形的两条对角线的长度之和为()A.8B.12C.16D.32【解答】解:如图所示:∵四边形ABCD是菱形,∴AO=CO=AC,DO=BO=BD,AC⊥BD,∵面积为28,∴AC•BD=2OD•AO=28①∵菱形的边长为6,∴OD2+OA2=36②,由①②两式可得:(OD+AO)2=OD2+OA2+2OD•AO=36+28=64.∴OD+AO=8,∴2(OD+AO)=16,即该菱形的两条对角线的长度之和为16.故选:C.8.把边长分别为1和2的两个正方形按如图的方式放置.则图中阴影部分的面积为()A.B.C.D.【解答】解:如图,设BC=x,则CE=1﹣x易证△ABC∽△FEC∴===解得x==××1=∴阴影部分面积为:S△ABC故选:A.9.如图,在平面直角坐标系中,四边形OABC为菱形,O(0,0),A(4,0),∠AOC=60°,则对角线交点E的坐标为()A.(2,)B.(,2)C.(,3)D.(3,)【解答】解:过点E作EF⊥x轴于点F,∵四边形OABC为菱形,∠AOC=60°,∴=30°,∠FAE=60°,∵A(4,0),∴OA=4,∴=2,∴,EF===,∴OF=AO﹣AF=4﹣1=3,∴.故选:D.10.如图,在矩形ABCD中,AD=6,对角线AC与BD交于点O,AE⊥BD,垂足为点E,且AE 平分∠BAO,则AB的长为()A.3B.4C.D.【解答】解:∵四边形ABCD是矩形∴AO=CO=BO=DO,∵AE平分∠BAO∴∠B AE=∠EAO,且AE=AE,∠AEB=∠AEO,∴△ABE≌△AOE(ASA)∴AO=AB,且AO=OB∴AO=AB=BO=DO,∴BD=2AB,∵AD2+AB2=BD2,∴36+AB2=4AB2,∴AB=2故选:C.11.如图,在菱形ABCD中,AB=5,对角线AC与BD相交于点O,且AC:BD=3:4,AE⊥CD于点E,则AE的长是()A.4B.C.5D.【解答】解:∵四边形ABCD是菱形,∴AO=AC,OB=BD,AC⊥BD,∵AC:BD=3:4,∴AO:OB=3:4,设AO=3x,OB=4x,则AB=5x,∵AB=5,∴5x=5,x=1,∴AC=6,BD=8,S菱形ABCD=,∴,AE=,故选:B.12.如图,在正方形ABCD中,点E,F分别在BC,CD上,AE=AF,AC与EF相交于点G.下列结论:①AC垂直平分EF;②BE+DF=EF;③当∠DAF=15°时,△AEF为等边三角形;④当∠EAF=60°时,S△ABE =S△CEF.其中正确的是()A.①③B.②④C.①③④D.②③④【解答】解:①四边形ABCD是正方形,∴AB═AD,∠B=∠D=90°.在Rt△ABE和Rt△ADF中,,∴Rt△ABE≌Rt△ADF(HL),∴BE=DF∵BC=CD,∴BC﹣BE=CD﹣DF,即CE=CF,∵AE =AF ,∴AC 垂直平分EF .(故①正确).②设BC =a ,CE =y ,∴BE +DF =2(a ﹣y )EF =,∴BE +DF 与EF 关系不确定,只有当y =()a 时成立,(故②错误).③当∠DAF =15°时,∵Rt△ABE ≌Rt△ADF ,∴∠DAF =∠BAE =15°,∴∠EAF =90°﹣2×15°=60°,又∵AE =AF∴△AEF 为等边三角形.(故③正确).④当∠EAF =60°时,设EC =x ,BE =y ,由勾股定理就可以得出:∴x 2=2y (x +y )∵S △CEF =x 2,S △ABE =,∴S △ABE =S △CEF .(故④正确).综上所述,正确的有①③④,故选:C .二.填空题(共4小题)13.如图,矩形ABCD 中,AC 、BD 交于点O ,M 、N 分别为BC 、OC 的中点.若MN =4,则AC 的长为16.【解答】解:∵M 、N 分别为BC 、OC 的中点,∴BO =2MN =8.∵四边形ABCD 是矩形,∴AC=BD=2BO=16.故答案为16.14.如图,已知菱形ABCD的对角线AC,BD交于点O,E为BC的中点,若OE=3,则菱形的周长为24.【解答】解:∵四边形ABCD是菱形,∴AB=BC=CD=AD,BO=DO,∵点E是BC的中点,∴OE是△BCD的中位线,∴CD=2OE=2×3=6,∴菱形ABCD的周长=4×6=24;故答案为:24.15.如图,E,F是正方形ABCD的对角线AC上的两点,AC=8,AE=CF=2,则四边形BEDF的周长是8.【解答】解:如图,连接BD交AC于点O,∵四边形ABCD为正方形,∴BD⊥AC,OD=OB=OA=OC,∵AE=CF=2,∴OA﹣AE=OC﹣CF,即OE=OF,∴四边形BEDF为平行四边形,且BD⊥EF,∴四边形BEDF为菱形,∴DE=DF=BE=BF,∵AC=BD=8,OE=OF==2,由勾股定理得:DE===2,∴四边形BEDF的周长=4DE=4×=8,故答案为:8.16.如图,矩形OABC的顶点A,C分别在坐标轴上,B(8,7),D(5,0),点P是边AB或边BC上的一点,连接OP,DP,当△ODP为等腰三角形时,点P的坐标为(8,4)或(,7).【解答】解:∵四边形OABC是矩形,B(8,7),∴OA=BC=8,OC=AB=7,∵D(5,0),∴OD=5,∵点P是边AB或边BC上的一点,∴当点P在AB边时,OD=DP=5,∵AD=3,∴PA==4,∴P(8,4).当点P在边BC上时,只有PO=PD,此时P(,7).综上所述,满足条件的点P坐标为(8,4)或(,7).故答案为(8,4)或(,7).三.解答题(共7小题)17.如图,四边形ABCD中,对角线AC、BD相交于点O,AO=OC,BO=OD,且∠AOB=2∠OAD.(1)求证:四边形ABCD是矩形;(2)若∠AOB:∠ODC=4:3,求∠ADO的度数.【解答】(1)证明:∵AO=OC,BO=OD,∴四边形ABCD是平行四边形,∵∠AOB=∠DAO+∠ADO=2∠OAD,∴∠DAO=∠ADO,∴AO=DO,∴AC=BD,∴四边形ABCD是矩形;(2)解:∵四边形ABCD是矩形,∴AB∥CD,∴∠ABO=∠CDO,∵∠AOB:∠ODC=4:3,∴∠AOB:∠ABO=4:3,∴∠BAO:∠AOB:∠ABO=3:4:3,∴∠ABO=54°,∵∠BAD=90°,∴∠ADO=90°﹣54°=36°.18.如图,在矩形ABCD中,E,F分别是BC,AD边上的点,且AE=CF.(1)求证:△ABE≌△CDF;(2)当AC⊥EF时,四边形AECF是菱形吗?请说明理由.【解答】(1)证明:∵四边形ABCD是矩形,∴∠B=∠D=90°,AB=CD,AD=BC,AD∥BC,在Rt△ABE和Rt△CDF中,,∴Rt△ABE≌Rt△CDF(HL);(2)解:当AC⊥EF时,四边形AECF是菱形,理由如下:∵△ABE≌△CDF,∴BE=DF,∵BC=AD,∴CE=AF,∵CE∥AF,∴四边形AECF是平行四边形,又∵AC⊥EF,∴四边形AECF是菱形.19.如图,在矩形ABCD中,AB=3,BC=4.M、N在对角线AC上,且AM=CN,E、F分别是AD、BC的中点.(1)求证:△ABM≌△CDN;(2)点G是对角线AC上的点,∠EGF=90°,求AG的长.【解答】(1)证明∵四边形ABCD是矩形,∴AB∥CD,∴∠MAB=∠NCD.在△ABM和△CDN中,,∴△ABM≌△CDN(SAS);(2)解:如图,连接EF,交AC于点O.在△AEO和△CFO中,,∴△AEO≌△CFO(AAS),∴EO=FO,AO=CO,∴O为EF、AC中点.∵∠EGF=90°,OG=EF=,∴AG=OA﹣OG=1或AG=OA+OG=4,∴AG的长为1或4.20.如图,矩形ABCD中,AB=8,AD=6,点O是对角线BD的中点,过点O的直线分别交AB、CD边于点E、F.(1)求证:四边形DEBF是平行四边形;(2)当DE=DF时,求EF的长.【解答】(1)证明:∵四边形ABCD是矩形,∴AB∥CD,∴∠DFO=∠BEO,又因为∠DOF=∠BOE,OD=OB,∴△DOF≌△BOE(ASA),∴DF=BE,又因为DF∥BE,∴四边形BEDF是平行四边形;(2)解:∵DE=DF,四边形BEDF是平行四边形∴四边形BEDF是菱形,∴DE=BE,EF⊥BD,OE=OF,设AE=x,则DE=BE=8﹣x在Rt△ADE中,根据勾股定理,有AE2+AD2=DE2∴x2+62=(8﹣x)2,解之得:x=,∴DE=8﹣=,在Rt△ABD中,根据勾股定理,有AB2+AD2=BD2∴BD=,∴OD=BD=5,在Rt△DOE中,根据勾股定理,有DE2﹣OD2=OE2,∴OE=,∴EF=2OE=.21.如图,已知正方形ABCD的边长为1,正方形CEFG的面积为S1,点E在DC边上,点G在BC的延长线上,设以线段AD和DE为邻边的矩形的面积为S2,且S1=S2.(1)求线段CE的长;(2)若点H为BC边的中点,连接HD,求证:HD=HG.【解答】解:(1)设正方形CEFG的边长为a,∵正方形ABCD的边长为1,∴DE=1﹣a,∵S1=S2,∴a2=1×(1﹣a),解得,(舍去),,即线段CE的长是;(2)证明:∵点H为BC边的中点,BC=1,∴CH=0.5,∴DH==,∵CH=0.5,CG=,∴HG=,∴HD=HG.22.如图,矩形EFGH的顶点E,G分别在菱形ABCD的边AD,BC上,顶点F,H在菱形ABCD 的对角线BD上.(1)求证:BG=DE;(2)若E为AD中点,FH=2,求菱形ABCD的周长.【解答】解:(1)∵四边形EFGH是矩形,∴EH=FG,EH∥FG,∴∠GFH=∠EHF,∵∠BFG=180°﹣∠GFH,∠DHE=180°﹣∠EHF,∴∠BFG=∠DHE,∵四边形ABCD是菱形,∴AD∥BC,∴∠GBF=∠EDH,∴△BGF≌△DEH(AAS),∴BG=DE;(2)连接EG,∵四边形ABCD是菱形,∴AD=BC,AD∥BC,∵E为AD中点,∴AE=ED,∵BG=DE,∴AE=BG,AE∥BG,∴四边形ABGE是平行四边形,∴AB=EG,∵EG=FH=2,∴AB=2,∴菱形ABCD的周长=8.23.如图,在正方形ABCD中,点E是BC的中点,连接DE,过点A作AG⊥ED交DE于点F,交CD于点G.(1)证明:△ADG≌△DCE;(2)连接BF,证明:AB=FB.【解答】解:(1)∵四边形ABCD是正方形,∴∠ADG=∠C=90°,AD=DC,又∵AG⊥DE,∴∠DAG+∠ADF=90°=∠CDE+∠ADF,∴∠DAG=∠CDE,∴△ADG≌△DCE(ASA);(2)如图所示,延长DE交AB的延长线于H,∵E是BC的中点,∴BE=CE,又∵∠C=∠HBE=90°,∠DEC=∠HEB,∴△DCE≌△HBE(ASA),∴BH=DC=AB,即B是AH的中点,又∵∠AFH=90°,∴Rt△AFH中,BF=AH=AB.。

特殊平行四边形单元检测题(含答案)

特殊平行四边形单元检测题(含答案)

北师大版九年级数学上第1章 《特殊平行四边形》单元试题120分)分钟,120(100分钟,(一、选择题1.下列给出的条件中,不能判断四边形ABCD是平行四边形的是( )CD,∥CD,ADAD∥AB∥∥BC,∠B=B=∠D C.ABA.AB∥CD,AD=BC B.∠A=∠.∠A=A=∠C,∠B=∠,AD=BCAB=CD,D.AB=CD、BD、2.如图,在平行四边形ABCD中,对角线AC、BD相交于点O,若BDAC、,△AOB:3,△13cm,那么,那么BC的长DA=2:AOB的周长为13cmAC的和为18cm18cm,,CD:DA=2CD:是( )A.6cm B.9cm C.3cm D.12cm3.如图,把一个长方形纸片沿EF折叠后,点D、C分别落在D′、C′的位置,若∠EFB=65°,则∠AED′等于( )A.50° B.55° C.60° D.65°4.给出以下三个命题:①对角线相等的四边形是矩形;②对角线互相垂直的四边形是菱形;③对角线互相垂直的矩形是正方形;④菱形对角线的平方和等于边长平方的4倍.其中真命题的是( )A .③.③B B B.①②.①②C .②③D .③④5.如图,矩形ABCD 中,中,E E 在AD 上,且EF EF⊥⊥EC EC,,EF=EC EF=EC,,DE=2DE=2,矩形,矩形的周长为1616,则,则AE 的长是( )A .3B .4C .5D .76.已知一矩形的两边长分别为10cm 和15cm 15cm,其中一个内角的平分,其中一个内角的平分线分长边为两部分,这两部分的长为( )A .6 cm 和9 cm 9 cmB B .5 cm 和10 cmC .4 cm 和11 cmD .7 cm 和8 cm7.如图,四边形ABCD 的对角线互相平分,要使它成为矩形,那么需要添加的条件是( )A .AB=CDB AB=CD B..AD=BC C AD=BC C..AB=BC AB=BCD D .AC=BD8.如图为菱形ABCD 与△与△ABE ABE 的重叠情形,其中D 在BE 上.若AB=17AB=17,,BD=16BD=16,,AE=25AE=25,则,则DE 的长度为何?( )A .8B .9C .11 11D D .129.如图,边长为1的正方形ABCD 绕点A 逆时针旋转45度后得到正方形AB′C′D′,边B′C′与DC 交于点O ,则四边形AB′OD 的周长是( )A .2B .3C .D D..1+1010.如图,正方形.如图,正方形ABCD 的面积为4,△,△ABE ABE 是等边三角形,点E 在正方形ABCD 内,在对角线AC 上有一点P ,使PD+PE 的和最小,则这个最小值为( )A .2B .3C .D .二、填空题 1111.等边三角形、平行四边形、矩形、正方形四个图形中,既是轴对.等边三角形、平行四边形、矩形、正方形四个图形中,既是轴对称图形又是中心对称图形的是 矩形、正方形 .1212.已知菱形的两条对角线长分别为.已知菱形的两条对角线长分别为2cm 2cm,,3cm 3cm,则它的面积是,则它的面积是 3 cm 2.【解答】解:∵菱形的两条对角线长分别为2cm ,3cm ,∴它的面积是:×2×3=3(cm 2).1313.如图,在正方形.如图,在正方形ABCD 的外侧,作等边△的外侧,作等边△ADE ADE ADE,则∠,则∠,则∠BED BED 的度数是 45° .【解答】解:∵四边形ABCD 是正方形,∴AB=AD ,∠BAD=90°.∵等边三角形ADE ,∴AD=AE ,∠DAE=∠AED=60°.∠BAE=∠BAD+∠DAE=90°+60°=150°,AB=AE ,∠AEB=∠ABE=(180°﹣∠BAE )÷2=15°,∠BED=∠DAE ﹣∠AEB=60°﹣15°=45°,故答案为:45°.1414.如图,在菱形.如图,在菱形ABCD 中,对角线AC AC、、BD 相交于点O ,H 为AD 边中点,菱形ABCD 的周长为2828,则,则OH 的长等于 3.5 .【解答】解:∵四边形ABCD 是菱形,∴AB=BC=CD=DA ,AC ⊥BD ,∴∠AOD=90°,∵AB+BC+CD+DA=28,∴AD=7,∵H 为AD 边中点,∴OH=AD=3.5;1515..如图,点E 在正方形ABCD 的边CD 上.若△若△ABE ABE 的面积为8,CE=3CE=3,,则线段BE 的长为 5 .【解答】解:过E 作EM ⊥AB 于M ,∵四边形ABCD 是正方形,∴AD=BC=CD=AB ,∴EM=AD ,BM=CE ,∵△ABE 的面积为8,∴×AB ×EM=8,解得:EM=4,即AD=DC=BC=AB=4,∵CE=3,由勾股定理得:BE===5,三、解答题(15题12分,16题12分,17题16分)1616.如图,在矩形.如图,在矩形ABCD 中,对角线AC AC、、BD 相交于点O ,点E 、F 分别是AO AO、、AD 的中点,若AB=6cm AB=6cm,,BC=8cm BC=8cm,求△,求△,求△AEF AEF 的周长。

九年级最新数学中考一轮复习测试题初三数学复习检测题带图文答案100篇一轮复习9期四边形同步练习

九年级最新数学中考一轮复习测试题初三数学复习检测题带图文答案100篇一轮复习9期四边形同步练习

中考一轮复习:四边形同步练习平行四边形同步练习(答题时间:30分钟)1.(广东)如图,平行四边形ABCD 中,下列说法一定正确的是( )A. AC =BDB. AC ⊥BDC. AB =CDD. AB =BC2.(新疆)四边形ABCD 中,对角线AC 与BD 交于点O ,下列条件不能判定这个四边形是平行四边形的是( )A. OA =OC ,OB =ODB. AD ∥BC ,AB ∥DCC. AB =DC ,AD =BCD. AB ∥DC ,AD =BC*3.(孝感)如图,在平行四边形ABCD 中,对角线AC 、BD 相交成的锐角为α,若AC =a ,BD =b ,则平行四边形ABCD 的面积是( )A. 21ab sinαB. ab sinαC. ab cosαD. 21ab cosα **4.(浙江湖州)在连接A 地与B 地的线段上有四个不同的点D 、G 、K 、Q ,下列四幅图中的实线分别表示某人从A 地到B 地的不同行进路线(箭头表示行进的方向),则路程最长的行进路线图是( )A BC D**5.(襄阳)在平行四边形ABCD 中,BC 边上的高为4,AB =5,AC =25,则平行四边形ABCD 的周长等于__________。

**6. (安徽)如图,在平行四边形ABCD 中,AD =2AB ,F 是AD 的中点,作CE ⊥AB ,垂足E 在线段AB 上,连接EF 、CF ,则下列结论中一定成立的是__________。

(把所有正确结论的序号都填在横线上)①∠DCF=12∠BCD;②EF=CF;③S△BEC=2S△CEF;④∠DFE=3∠AEF。

7. (广西贺州)如图,四边形ABCD是平行四边形,E、F是对角线BD上的点,∠1=∠2。

(1)求证:BE=DF;(2)求证:AF∥CE。

8. (广东汕尾)如图,在平行四边形ABCD中,E是AD边上的中点,连接BE,并延长BE交CD的延长线于点F。

2022年北师大版九年级数学中考复习《特殊平行四边形》考点分类练习题

2022年北师大版九年级数学中考复习《特殊平行四边形》考点分类练习题

2022年春北师大版九年级数学中考复习《特殊平行四边形》考点分类练习题(附答案)一.矩形的性质1.如图,已知点P是矩形ABCD内一点(不含边界),设∠P AD=θ1,∠PBA=θ2,∠PCB =θ3,∠PDC=θ4,若∠APB=80°,∠CPD=50°,则()A.(θ1+θ4)﹣(θ2+θ3)=30°B.(θ2+θ4)﹣(θ1+θ3)=40°C.(θ1+θ2)﹣(θ3+θ4)=70°D.(θ1+θ2)+(θ3+θ4)=180°2.如图,点E,点F分别在矩形ABCD的边AB,AD上,连接AC,CE,CF,若CE是△ABC的角平分线,CF是△ACD的中线,且∠BCE=∠FCD,则=.3.如图,在矩形ABCD中对角线AC,BD交于点O,DE平分∠ADC交AB于点E,连接OE,若AD=6,AB=8,则OE=.4.如图,矩形ABCD的对角线AC,BD相交于点O,作DE∥AC,CE∥BD,DE,CE相交于点E.(1)求证:四边形OCED是菱形.(2)若矩形ABCD的面积为50,sin∠EDC=,求点E到直线AB的距离.二.矩形的判定5.如图,在平行四边形ABCD中,E、F分别是AD、BC的中点,连接AF、BE交于点G,连接CE、DF交于点H.(1)求证:四边形EGFH为平行四边形;(2)当AB与BC满足什么条件时,四边形EGFH为矩形?并说明理由.6.如图,在平行四边形ABCD中,对角线AC、BD交于点O.(1)若DE⊥AC于点E,BF⊥AC于点F,求证:AE=CF;(2)若DO=AC,求证:四边形ABCD为矩形.三.菱形的性质7.如图,菱形ABCD中,∠A=60°,点E为边AD上一点,连接BE,CE,CE交对角线BD于点F.若AB=2,AE=DF,则AE=.8.如图,在菱形ABCD中,点G在边CD上,∠DAG=∠DBC,且DG:CG=2:3,则sin ∠ABC=.9.如图,在菱形ABCD中,对角线AC,BD相交于点O,AB=6,sin∠DBC=.(1)求对角线BD的长;(2)若E是BC的中点,连接AE,交BD于点F,求△BEF的面积.10.如图,在菱形ABCD中,BE⊥CD于点E,DF⊥BC于点F.(1)求证:BE=DF;(2)若∠A=45°,求的值.四.菱形的判定11.如图,在四边形ABCD中,对角线AC与BD相交于点O,AC⊥BD,AC平分∠BAD.(1)给出下列四个条件:①AB=AD,②OB=OD,③∠ACB=∠ACD,④AD∥BC,上述四个条件中,选择一个合适的条件,使四边形ABCD是菱形,这个条件是(填写序号);(2)根据所选择的条件,证明四边形ABCD是菱形.12.如图,点E、F分别在▱ABCD的边AB、CD的延长线上,且BE=DF,连接AC、EF、AF、CE,AC与EF交于点O.(1)求证:AC、EF互相平分;(2)若EF平分∠AEC,求证:四边形AECF是菱形.五.正方形的性质13.如图,在正方形ABCD中,点E,F分别在边AD,CD上,且AE=DF,连接并延长AF,分别交BE于点G,BC延长线于点H.(1)请判断BE与AF的位置关系,并说明理由.(2)连接EH,若EB=EH,求证BG=2GE.14.如图,E,F是正方形ABCD的对角线AC上的两点,且AE=CF.(1)求证:四边形BEDF是菱形;(2)若正方形边长为2,AE=1,求菱形BEDF的面积.15.如图,在正方形ABCD中,AB=12,G是BC延长线上一点,AG交BD于点M,交CD 于点H,OG交CD于点N.(1)若BC=CG,①证明:△ADH≌△GCH;②求tan∠MAO;(2)若MN∥AC,求ON的长.16.如图,点P是正方形ABCD边AB上一点(不与点A,B重合),连接PD并将线段PD 绕点P顺时针方向旋转90°得到线段PE,PE交边BC于点F,连接BE,DF.(1)求证:∠ADP=∠EPB;(2)求∠CBE的度数;(3)当的值等于多少时,△PFD∽△BFP?并说明理由.17.如图,在正方形ABCD中,点E为对角线AC,BD交点,AF平分∠DAC交BD于点G,交DC于点F.(1)求证:△AEG∽△ADF.(2)判断△DGF的形状.(3)若AG=1,求GF的长.18.如图,正方形ABCD中,点E是边AB上一动点,点F在边AD的延长线上,且BE=DF.连接CE,CF,EF,AC,EF与AC交于点M.(1)求证:CE=CF.(2)若AM=AC,试求∠BCE的度数.(3)设EF的中点为P,连接DP.在点E的运动过程中,的值是否会发生变化?若不变,请求出它的值;若变化,请求出它的取值范围.19.如图,正方形ABCD中,点E在边AB上运动(不与点A,B重合),连结EC,过点E 作EF⊥EC,EF=EC,过点F作FP⊥直线AB,P为垂足,连结CF,与AD相交于点G.(1)求证:PF=BE;(2)当E是AB的中点时,求的值;(3)设x=,y=,求y关于x的函数关系式.六.正方形的判定20.下列说法正确的是()A.一组对边平行,另一组对边相等的四边形是平行四边形B.对角线相等的四边形是矩形C.每一条对角线都平分一组对角的四边形是菱形D.对角线互相垂直且相等的四边形是正方形21.如图,在四边形ABCD中,∠A=∠B=90°,AB=BC=4,AD=3,E是边AB上一点,且∠DCE=45°,则DE的长度是()A.3.2B.3.4C.3.6D.4七.折叠专题22.如图是一张矩形纸片ABCD,点M是对角线AC的中点,点E在BC边上,把△DCE 沿直线DE折叠,使点C落在对角线AC上的点F处,连接DF,EF.若MF=AB,则∠DAF=度.23.如图是一张矩形纸片,点E在AB边上,把△BCE沿直线CE对折,使点B落在对角线AC上的点F处,连接DF.若点E,F,D在同一条直线上,AE=2,则DF=,BE=.24.如图,把某矩形纸片ABCD沿EF,GH折叠(点E,H在AD边上,点F,G在BC边上),使点B和点C落在AD边上同一点P处,A点的对称点为A′点,D点的对称点为D′点,若∠FPG=90°,△A′EP的面积为4,△D′PH的面积为1,则矩形ABCD的面积等于.25.折叠矩形纸片ABCD时,发现可以进行如下操作:①把△ADE翻折,点A落在DC边上的点F处,折痕为DE,点E在AB边上;②把纸片展开并铺平;③把△CDG翻折,点C落在线段AE上的点H处,折痕为DG,点G在BC边上,若AB=AD+2,EH=1,则AD=.26.如图,在矩形ABCD中,AB=2,点E在边CD上,把△ADE沿直线AE翻折,使点D 落在对角线AC上的点F处,联结BF.如果点E、F、B在同一条直线上,那么DE的长是.八.综合27.在Rt△ABC中,∠BAC=90°,D是BC的中点,E是AD的中点,过点A作AF∥BC 交BE的延长线于点F.(1)证明:四边形ADCF是菱形;(2)若AC=3,AB=4,求菱形ADCF的面积.28.如图,在菱形ABCD中,点O是对角线AC的中点,过点O的直线EF与边AD、BC 交于点E、F,∠CAE=∠FEA,连接AF、CE.(1)求证:四边形AFCE是矩形;(2)若AB=5,AC=2,直接写出四边形AFCE的面积.29.在平行四边形ABCD中,∠BAD的平分线交直线BC于点E,交直线DC的延长线于点F,以EC、CF为邻边作平行四边形ECFG.(1)如图1,证明平行四边形ECFG为菱形;(2)如图2,若∠ABC=90°,M是EF的中点,求∠BDM的度数;(3)如图3,若∠ABC=120°,请直接写出∠BDG的度数.参考答案一.矩形的性质1.解:∵矩形ABCD,∴∠BAD=∠BCD=90°,∴∠BAP=90°﹣θ1,∠DCP=90°﹣θ3,∴△ABP中,90°﹣θ1+θ2+80°=180°,即θ2﹣θ1=10°,①△DCP中,90°﹣θ3+θ4+50°=180°,即θ4﹣θ3=40°,②由②﹣①,可得(θ4﹣θ3)﹣(θ2﹣θ1)=30°,即(θ1+θ4)﹣(θ2+θ3)=30°,故选:A.2.解:法一、如图,过点E作EG⊥AC于点G,设DF=a,DC=b,∵CF是△ACD的中线,∴AD=2DF=2a,∴BC=2a,∵∠BCE=∠FCD,∠B=∠D=90°,∴△BCE∽△DCF,∴,即,∴BE=,∵CE是△ABC的角平分线,∠B=90°,EG⊥AC∴EG=BE=,CG=BC=2a,∵AB∥CD,∴∠BAC=∠ACD,∵∠EGA=∠D=90°,∴△EAG∽△ACD,∴,即,解得AG=a,∴AC=AG+CG=3a,在Rt△ACD中,(3a)2=(2a)2+b2,解得,b=a,∴==.故答案为:.法二、如图,延长AD至点M,使DM=FD,设AF=FD=DM=a,MC=b,可得,∠MCD=∠FCD=∠ACE=∠BCE,∠MAC=∠ACB=∠MCF=2∠FCD,∴△MAC∽△MCF,∴,即,∴b=a,∴AB=CD==a,∴=.故答案为:.3.解:过点O作OM⊥AB于点M,∵四边形ABCD是矩形,∴∠ADC=∠DAB=90°,OA=OB=OC=OD,又∵DE平分∠ADC,∴∠ADE=45°,∴△DAE为等腰直角三角形,∴AE=DA,∵AD=6,AB=8,∴AE=6,BE=2,在Rt△DAB中,AC===10,∴OA=OB=5,∵OM⊥AB,∴AM=MB=4,∴OM===3,又∵ME=MB﹣EB=4﹣2=2,在Rt△OME中,OE===,故答案为:.4.解:(1)∵DE∥AC,CE∥BD,∴四边形OCED是平行四边形.∵ABCD为矩形,∴AC=BD,OB=OD,AO=CO,∴OC=OD,∴四边形OCED是菱形.(2)连接EO并延长交CD于G交AB于F,∵四边形OCED是菱形,∴EO⊥CD,且EO=2EG,∠EDC=∠BDC,∵四边形ABCD为矩形,∴EF⊥AB,设EG=m,∵sin∠EDC=,∴DE=3EG=3m,DG=,∴CD=2DG=4m,∵EG=GO=OF,∴GF=2EG=2m,∴矩形ABCD的面积为CD•GF,即2m•4m=50,解得m=或m=﹣(舍).∴点E到AB的距离为3m=.解法二:依据菱形的性质得出sin∠EDC=sin角BDC=BC比BD,从而得出BC长度,再根据中位线定理得出OG,从而得出EF.二.矩形的判定5.(1)证明:连接EF,如图所示:∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC.∵点E、F分别是AD、BC的中点∴AE=ED=AD,BF=FC=BC,∴AE∥FC,AE=FC.∴四边形AECF是平行四边形.∴GF∥EH.同理可证:ED∥BF且ED=BF.∴四边形BFDE是平行四边形.∴GE∥FH.∴四边形EGFH是平行四边形.(2)解:当BC=2AB时,平行四边形EGFH是矩形.理由如下:由(1)同理易证四边形ABFE是平行四边形,当BC=2AB时,AB=BF,∴四边形ABFE是菱形,∴AF⊥BE,即∠EGF=90°,∴平行四边形EGFH是矩形.6.证明:(1)∵四边形ABCD是平行四边形,∴AD=CB,AD∥BC,∴∠DAE=∠BCF,∵DE⊥AC,BF⊥AC,∴∠DEA=∠BFC=90°,在△DEA与△BFC中,,∴△DEA≌△BFC(AAS),∴AE=CF;(2)∵四边形ABCD是平行四边形,∴OA=OC,OB=OD,∴OA=BD,∴OA=OC=OB=OD,∴AC=BD,∴平行四边形ABCD是矩形.三.菱形的性质7.解:∵四边形ABCD是菱形,∠A=60°∴AB=AD=CD=BC,∠A=∠BCD=60°,AD∥BC,∴△ABD和△CBD是等边三角形,∴AD=BD=AB=2,∵AD∥BC,∴△DEF∽△BCF,∴,∴,∴AE=3±,∵2﹣AE>0,∴AE=3﹣,故答案为:3﹣.8.解:设AG与BD交于点E,过G点作GF⊥AD交AD于点F,∵四边形ABCD为菱形,∴∠ABC=∠ADG,∴AB=AD=CD=BC,AB∥CD,AD∥BC,∴△ABE∽△GDE,∵,设DG=2x,∵DG:CG=2:3,∴CG=3x,∴AB=AD=CD=BC=5x,设AE=y,∵AD∥BC,∴∠ADB=∠DBC,∵∠DAG=∠DBC,∴∠ADB=∠DAG,∴AE=DE,∴DE=AE=y,∴,∴BE=y,GE=y,∴AG=y,∵四边形ABCD为菱形,∴BD平分∠ADG,∴∠ADG=2∠ADB,∵∠DEG=∠ADB+∠DAG=2∠ADB,∴∠ADG=∠DEG,∵∠AGD=∠DGE,∴△ADG∽△DEG,∴,∴,∴y,设AF=t,则DF=5x﹣t,∵FG2=AG2﹣AF2=DG2﹣DF2,∴(y)2﹣t2=(2x)2﹣(5x﹣t)2,∴t=,∴DF=5x﹣x=,∴FG==x,∴sin∠ABC=.解法二:过点A作AF⊥BC于F,设AG交BD于E,连接AC交BD于O.∵四边形ABCD是菱形,∴AB=BC=CD=AD,∠ADB=∠BDC=∠ABD=∠CBD,∵∠DAG=∠CBD,∴∠DAE=∠ADE,∴AE=ED,设AE=ED=x.菱形的边长为a,∵AB∥DG,DG:GC=2:3,CD=AB,∴==,∴BE=x,BD=x,∵∠EAD=∠EDA=∠CBD=∠CDB,∴△AED∽△BCD,∴=,∴=,∴a=x,∵OB=OD=x,∴OE=OD﹣DE=x,∴OA===x,∴AC=2AO=x,∵•AC•BO=•BC•AF,∴AF==x,∴sin∠ABC===.故答案为:.9.解:(1)∵四边形ABCD是菱形,AB=6,∴BC=AB=6,AC⊥BD,BO=DO,∵sin∠DBC==,∴CO=2,由勾股定理得:BO===4,∴BD=2BO=8;(2)过E作EM⊥BD于M,∵AC⊥BD,∴∠EMB=90°,EM∥AC,∵E为BC的中点,∴M为OB的中点,∴BM=OM=OB==2,ME=OC==1,∵ME∥AC,∴△EMF∽△AOF,∴=,∵AO=OC=2,∴=,解得:MF=,即BF=BM+MF=2+=,∴△BEF的面积是=×1=.10.证明:(1)∵四边形ABCD是菱形,∴BC=CD,在△BCE和△DCF中,,∴△BCE≌△DCF(AAS),∴BE=DF;(2)∵∠A=45°=∠C,BE⊥CD,∴∠C=∠EBC=45°,∴BE=EC,∴BC=EC=DC,∴DE=EC﹣EC,∴=﹣1.四.菱形的判定11.解:(1)这个条件是④;故答案为:④;(2)∵AC⊥BD,AC平分∠BAD,∴∠BAO=∠DAO,∠AOB=∠AOD=90°,∵AO=AO,∴△ABO≌△ADO,∴AB=AD,∵AD∥BC,∴∠ACB=∠DAC,∴∠BAC=∠ACB,∴AB=BC,∴AD=BC,∴四边形ABCD是菱形;12.证明:(1)∵四边形ABCD是平行四边形,∴AB=DC,AB∥DC,又∵BE=DF,∴AB+BE=DC+DF,即AE=CF,∵AE=CF,AE∥CF,∴四边形AECF是平行四边形.∴AC、EF互相平分;(2)∵AB∥DC,∴∠AEO=∠CFO,∵EF平分∠AEC,∴∠AEO=∠CEO,∴∠CEO=∠CFO∴CE=CF,由(1)可知,四边形AECF是平行四边形,∴平行四边形AECF是菱形.五.正方形的性质13.解:(1)AF⊥BE,理由如下:∵四边形ABCD是正方形,∴AB=AD,∠BAE=∠ADF=90°,在△ABE和△DAF中,,∴△ABE≌△DAF(SAS),∴∠DAF=∠ABE,∵∠AEB+∠ABE=90°,∴∠DAF+∠AEB=90°,∴∠AGE=90°,∴BE⊥AF;(2)如图,过点E作EM⊥BC于M,∵EB=EH,EM⊥BC,∴BM=MH=BH,∵EM⊥BC,∠ABC=∠BAD=90°,∴四边形ABME是矩形,∴AE=BM,∴BH=2AE,∵AD∥BC,∴△AEG∽△HBG,∴,∴BG=2GE.14.(1)证明:连接BD,交AC于点O,∵四边形ABCD是正方形,∴AO=CO,BO=DO,AC⊥BD,又∵AE=CF,∴AO﹣AE=CO﹣CF,∴OE=OF,∵OB=OD,∴四边形BEDF是平行四边形,∵AC⊥BD,∴四边形BEDF是菱形;(2)解∵四边形ABCD是正方形,∴∠ABC=90°,AB=AC=2,∴AC=BD===4,∵AE=1,∴CF=AE=1,∴EF=AC﹣AE﹣CF=4﹣1﹣1=2,∴菱形BEDF的面积=×EF×BD=×2×4=4.15.解:(1)①∵AD=BC=CG,∠ADH=∠HCG=90°,∠AHD=∠CHG,∴△ADH≌△GCH;②∵AD∥BC,∴△AMD∽△GMB,∴==,设OM=x,∵AB=12,∴BO=OD==6,DM=6﹣x,BM=6+x,∴=,12﹣2x=6+x,得x=2,∵AO⊥OM,∴tan∠MAO===,故tan∠MAO=;(2)∵MN∥AC,∴∠OMN=∠AOM=90°,∵∠BDC=45°,∴DM=MN=DN,设OM=y,∴DM=6﹣y=MN,∴DN=(6﹣y)=12﹣y,∴CN=12﹣(12﹣y)=y,设CG=Z,作OP⊥BC于P,∴△OPG∽△NCG,∴=,∴=,3Z=y(6+Z),y=,∴AMD∽△GMB,∴=,=,整理得y=,∴=,Z+24=2(Z+6),得Z=12,∴CG=BC,∴OM=2,MN=DM=4,∴ON==2.16.(1)证明:∵四边形ABCD是正方形.∴∠A=∠PBC=90°,AB=AD,∴∠ADP+∠APD=90°,∵∠DPE=90°,∴∠APD+∠EPB=90°,∴∠ADP=∠EPB;(2)解:过点E作EQ⊥AB交AB的延长线于点Q,则∠EQP=∠A=90°,又∵∠ADP=∠EPB,PD=PE,∴△P AD≌△EQP,∴EQ=AP,AD=AB=PQ,∴AP=EQ=BQ,∴∠CBE=∠EBQ=45°;(3)解:=.理由:∵△PFD∽△BFP,∴=∵∠ADP=∠EPB,∠CBP=∠A∴△DAP∽△PBF∴=∴P A=PB∴当=时,△PFD∽△BFP.17.(1)证明:∵四边形ABCD是正方形,∴AC⊥BD,∠ADF=90°,∴∠AEG=∠ADF=90°,∵AF平分∠DAC,∴∠DAF=∠EAG,∴△AEG∽△ADF.(2)解:结论:△DFG是等腰三角形.理由:∵四边形ABCD是正方形,∴∠ADB=∠DAE=45°,∠ADF=90°,∵AF平分∠DAC,∴∠DAG=∠DAC=22.5°,∴∠DGF=∠ADG+∠DAG=67.5°,∠DFG=90°﹣22.5°=67.5°,∴∠DGF=∠DFG,∴DG=DF.∴△DFG是等腰三角形.(3)解:∵四边形ABCD是正方形,∴AC⊥BD,EA=ED,∴△AED是等腰直角三角形,∴AD=AE,∵△AEG∽△ADF,∴==,∵AG=1,∴AF=,∴GF=AF﹣AG=﹣1.18.(1)证明:∵四边形ABCD是正方形,∴∠CBE=∠CDF=90°,BC=DC,∵BE=DF,∴△CBE≌△CDF(SAS),∴CE=CF.(2)解:设EF交CD于T,设AE=a,BE=DF=b,则AD=AB=CD=a+b,∵AE∥CT,∴==,∴CT=2a,DT=a+b﹣2a=b﹣a,∵DT∥AE,∴=,∴=,整理得,2b2﹣2ba﹣a2=0,∴b=a(舍弃)或b=a,∴=,∴tan∠BCE===,∴∠BCE=30°.解法二:设AB=3a,AC=3根号2a,可以证明△CAE相似与△CEM,得出EC的长度,再利用角BCE余弦值得出∠BCE=30°.(3)解:结论:=.理由:连接PC,过点P作PH⊥AD于H.∵△CBE≌△CDF,∴∠BCE=∠DCF,∵CE=CF,PE=PF,∴PC⊥EF,∠CFE=45°,∴∠CPT=∠FDT=90°,∵∠CTP=∠DTF,∴△CPT∽△FDT,∴=,∴=,∵∠PTD=∠CTF,∴△PTD∽△CTF,∴∠PDT∠CFT=45°,∵∠ADC=90°,∴∠PDH=90°,∵PH⊥DH,∴PD=PH,∵PE=PF,AE∥PH,∴AH=HF,∴PH=AE,∴PD=×AE,∴=.解法二:连接P A,由P A=PC,DA=DC,推出DP垂直平分线段AC,推出∠ADP=∠CDP=45°,可得结论.19.解:(1)∵正方形ABCD,∴∠B=90°,∴∠BEC+∠BCE=90°,∵EF⊥EC,∴∠PEF=∠BCE,∵FP⊥AB,∴∠EPF=90°,∴∠EPF=∠B,∵EF=EC,∴△PEF≌△BCE(AAS),∴PF=BE;(2)如图1,过点F作FH⊥AD于H,设正方形ABCD的边长为a,∵E是AB的中点,∴AE=BE=AB=a,由(1)知△PEF≌△BCE,∴PF=BE=AB=a,PE=BC=a,∴P A=PE﹣AE=a﹣a=a,∵∠P AD=∠APF=∠AHF=90°,P A=PF,∴四边形APFH是正方形,∴AH=PF=a,FH=P A=a,∴DH=a,∵∠FHG=∠D=90°,∠FGH=∠CGD,∴△FGH∽△CGD,∴===,∴=,∴GD=DH=×a=a,∴AG=AD﹣DG=a,∴==2;(3)设BE=b,则AE=bx,AB=b+bx,∴PE=BC=CD=AB=b+bx,AP=BE=PF=AH=FH=b,∴DH=AE=bx,∵△FGH∽△CGD,∴===1+x,∴DG=(1+x)GH,∵GH+DG=DH,∴GH+(1+x)GH=bx,∴GH=,∴AG=AH+GH=b+=,DG=(1+x)GH=,∴y===,∴y关于x的函数关系式为y=.六.正方形的判定20.解:A、一组对边平行,另一组对边相等四边形可能是等腰梯形,故本选项不符合题意;B、对角线相等的平行四边形是矩形,故本选项不符合题意;C、∵在△ADB和△CDB中,∴△ADB≌△CDB(ASA),∴AD=CD,AB=CB,同理△ACD≌△ACB,∴AB=AD,BC=DC,即AB=BC=CD=AD,∴四边形ABCD是菱形,故本选项符合题意;D、对角线相等且垂直的平行四边形是正方形,故本选项不符合题意;故选:C.21.解:如图,过C作CG⊥AD于G,并延长DG至F,使GF=BE,∵∠A=∠B=∠CGA=90°,AB=BC,∴四边形ABCG为正方形,∴AG=BC=4,∠BCG=90°,BC=CG,∵AD=3,∴DG=4﹣3=1,∵BC=CG,∠B=∠CGF,BE=FG,∴△EBC≌△FGC(SAS),∴CE=CF,∠ECB=∠FCG,∵∠DCE=45°,∴∠BCE+∠DCG=∠DCG+∠FCG=45°,∴∠DCE=∠DCF,∵CE=CF,∠DCF=∠DCE,DC=DC,∴△ECD≌△FCD(SAS),∴ED=DF,设ED=x,则EB=FG=x﹣1,∴AE=4﹣(x﹣1)=5﹣x,Rt△AED中,AE2+AD2=DE2,∴(5﹣x)2+32=x2,解得:x=3.4,∴DE=3.4.故选:B.七.折叠专题22.解:连接DM,如图:∵四边形ABCD是矩形,∴∠ADC=90°.∵M是AC的中点,∴DM=AM=CM,∴∠F AD=∠MDA,∠MDC=∠MCD.∵DC,DF关于DE对称,∴DF=DC,∴∠DFC=∠DCF.∵MF=AB,AB=CD,DF=DC,∴MF=FD.∴∠FMD=∠FDM.∵∠DFC=∠FMD+∠FDM,∴∠DFC=2∠FMD.∵∠DMC=∠F AD+∠ADM,∴∠DMC=2∠F AD.设∠F AD=x°,则∠DFC=4x°,∴∠MCD=∠MDC=4x°.∵∠DMC+∠MCD+∠MDC=180°,∴2x+4x+4x=180.∴x=18.故答案为:18.23.解:∵四边形ABCD是矩形,∴AD=BC,∠ADC=∠B=∠DAE=90°,∵把△BCE沿直线CE对折,使点B落在对角线AC上的点F处,∴CF=BC,∠CFE=∠B=90°,EF=BE,∴CF=AD,∠CFD=90°,∴∠ADE+∠CDF=∠CDF+∠DCF=90°,∴∠ADF=∠DCF,∴△ADE≌△FCD(ASA),∴DF=AE=2;∵∠AFE=∠CFD=90°,∴∠AFE=∠DAE=90°,∵∠AEF=∠DEA,∴△AEF∽△DEA,∴,∴=,∴EF=﹣1(负值舍去),∴BE=EF=﹣1,方法二:∵AB∥CD,∴S△ACD=S△DCE,∴S△ACD﹣S△DCF=S△DCE﹣S△DCF,∴S△ADF=S△ECF,由题意知,BC=CF,S△ACD=S△ABC,S△ECF=S△BCE,∴S△ACD﹣S△ADF=S△ABC﹣S△CEF=S△ABC﹣S△BCE,∴S△DCF=S△ACE,∴×DF•CF=AE•BC,∵CF=BC,∴DF=AE=2,设BE=x,∵AE∥CD,∴△AEF∽△CDF,∴=,∴=,解得:x=﹣1(负值舍去),∴BE=﹣1.故答案为:2,﹣1.24.解:∵四边形ABCD是矩形,∴AB=CD,AD=BC,设AB=CD=x,由翻折可知:P A′=AB=x,PD′=CD=x,∵△A′EP的面积为4,△D′PH的面积为1,又∵△A′EP∽△D′PH,∴A′P:D′H=2,∵P A′=x,∴D x,∵•x•x=1,∴x=2(负根已经舍弃),∴AB=CD=2,PE==2,PH==,∴AD=4+2++1=5+3,∴矩形ABCD的面积=2(5+3)=10+6.故答案为10+625.解:设AD=x,则AB=x+2,∵把△ADE翻折,点A落在DC边上的点F处,∴DF=AD,EA=EF,∠DFE=∠A=90°,∴四边形AEFD为正方形,∴AE=AD=x,∵把△CDG翻折,点C落在直线AE上的点H处,折痕为DG,点G在BC边上,∴DH=DC=x+2,∵HE=1,当AH=AE﹣HE=x﹣1,在Rt△ADH中,∵AD2+AH2=DH2,∴x2+(x﹣1)2=(x+2)2,整理得x2﹣6x﹣3=0,解得x1=3+2,x2=3﹣2(舍去),即AD的长为3+2.故答案为:3+2.26.解:∵四边形ABCD是矩形,∴AB∥CD,AB=CD=2,∠D=90°,∴∠DEA=∠EAB,设DE=a,则CE=2﹣a,∵把△ADE沿直线AE翻折,使点D落在对角线AC上的点F处,∴DE=EF=a,∠DEA=∠FEA,∵∠EAB=∠FEA,∴AB=BE=2,∴BF=BE﹣EF=2﹣a,∵AB∥CD,∴△CEF∽△ABF,∴,∴,∴a=3+(舍去),a=3﹣,∴DE=3﹣,故答案为:3﹣八.综合27.(1)证明:∵E是AD的中点,∴AE=DE,∵AF∥BC,∴∠AFE=∠DBE,在△AEF和△DEB中,,∴△AEF≌△DEB(AAS);∴AF=DB,又∵AF∥BC,∴四边形ADCF是平行四边形,∵∠BAC=90°,D是BC的中点,∴AD=BC=CD,∴平行四边形ADCF是菱形;(2)解:∵D是BC的中点,∴△ACD的面积=△ABD的面积=△ABC的面积,∵四边形ADCF是菱形,∴菱形ADCF的面积=2△ACD的面积=△ABC的面积=AC×AB=×3×4=6.28.(1)证明:∵∠OAE=∠OEA,∴OA=OE,∵四边形ABCD是菱形,∴AD∥BC,∴∠OCF=∠OAE,∠OFC=∠OEA,∴∠OFC=∠OCF,∵OF=OC,∵O为AC的中点,∴OA=OC,∴OA=OC=OE=OF,∴四边形AFCE是平行四边形,AC=EF,∴四边形AFCE是矩形;(2)解:设CF=x,∵四边形ABCD是菱形,AB=5,∴BC=AB=5,∴BF=5﹣x,∵四边形AFCE是矩形,∴∠AFC=90°=∠AFB,在Rt△AFB和Rt△AFC中,由勾股定理得:AF2=AB2﹣BF2=AC2﹣CF2,即52﹣(5﹣x)2=(2)2﹣x2,解得:x=2,即CF=2,则AF===4,∴四边形AFCE的面积是AF×CF=2×4=8.29.解:(1)证明:∵AF平分∠BAD,∴∠BAF=∠DAF,∵四边形ABCD是平行四边形,∴AD∥BC,AB∥CD,∴∠DAF=∠CEF,∠BAF=∠CFE,∴∠CEF=∠CFE,∴CE=CF,又∵四边形ECFG是平行四边形,∴四边形ECFG为菱形.(2)如图,连接BM,MC,∵∠ABC=90°,四边形ABCD是平行四边形,∴四边形ABCD是矩形,又由(1)可知四边形ECFG为菱形,∠ECF=90°,∴四边形ECFG为正方形.∵∠BAF=∠DAF,∴BE=AB=DC,∵M为EF中点,∴∠CEM=∠ECM=45°,∴∠BEM=∠DCM=135°,在△BME和△DMC中,∵,∴△BME≌△DMC(SAS),∴MB=MD,∠DMC=∠BME.∴∠BMD=∠BME+∠EMD=∠DMC+∠EMD=90°,∴△BMD是等腰直角三角形,∴∠BDM=45°;(3)∠BDG=60°,延长AB、FG交于H,连接HD.∵AD∥GF,AB∥DF,∴四边形AHFD为平行四边形,∵∠ABC=120°,AF平分∠BAD,∴∠DAF=30°,∠ADC=120°,∠DF A=30°,∴△DAF为等腰三角形,∴AD=DF,∴平行四边形AHFD为菱形,∴△ADH,△DHF为全等的等边三角形,∴DH=DF,∠BHD=∠GFD=60°,∵FG=CE,CE=CF,CF=BH,∴BH=GF,在△BHD与△GFD中,∵,∴△BHD≌△GFD(SAS),∴∠BDH=∠GDF∴∠BDG=∠BDH+∠HDG=∠GDF+∠HDG=60°.。

初三特殊平行四边形练习题

初三特殊平行四边形练习题

初三特殊平行四边形练习题题一:已知平行四边形ABCD,AB=10cm,BC=8cm,BD垂直于BC,求BD的长度。

解:由于ABCD为平行四边形,所以AB ∥ CD 且 AD ∥ BC。

根据垂直平行四边形定理可知,垂直于平行边的连线所对应的边长相等。

因此,BD = AC = AB = 10cm。

答案:BD的长度为10cm。

题二:已知平行四边形EFGH,EH=12cm,HF=6cm,EF垂直于HF,求EF的长度。

解:由于EFGH为平行四边形,所以EF ∥ GH 且 EG ∥ FH。

根据垂直平行四边形定理可知,垂直于平行边的连线所对应的边长相等。

因此,EF = GH = HF = 6cm。

答案:EF的长度为6cm。

题三:在平行四边形IJKL中,LJ=12cm,IK=16cm,LK垂直于LJ,求LK的长度。

解:由于IJKL为平行四边形,所以IJ ∥ LK 且 IL ∥ KJ。

根据垂直平行四边形定理可知,垂直于平行边的连线所对应的边长相等。

因此,LK = IJ = LK = 12cm。

答案:LK的长度为12cm。

题四:在平行四边形MNOP中,MN=8cm,NO=6cm,MP垂直于MN,求MP的长度。

解:由于MNOP为平行四边形,所以MN ∥ OP 且 MP ∥ NO。

根据垂直平行四边形定理可知,垂直于平行边的连线所对应的边长相等。

因此,MP = NO = 6cm。

答案:MP的长度为6cm。

题五:已知平行四边形QRST,QT=14cm,RS=10cm,符合B呼W=QW,求QW的长度。

解:在平行四边形QRST中,根据B呼W=QW的性质可知,比例相等的边与对角线共线。

因此,BW ∥ TR 且 BQ ∥ ST。

与TR平行的边的长度为QS。

根据比例B呼W = QW,可以得到QS/QW = TR/BW= QT/QS。

解方程得到QS^2= QW^2,即QS = QW。

由QS = QT - TS 可知,QS = 14cm - 10cm = 4cm。

青岛大学附属中学数学初中九年级平行四边形选择题易错题压轴难题练习

青岛大学附属中学数学初中九年级平行四边形选择题易错题压轴难题练习

青岛大学附属中学数学初中九年级平行四边形选择题易错题压轴难题练习一、易错压轴选择题精选:平行四边形选择题1.如图,在菱形ABCD 中,5AB cm =,120ADC =∠︒,点E 、F 同时由A 、C 两点出发,分别沿AB 、CB 方向向点B 匀速移动(到点B 为止),点E 的速度为1/cm s ,点F 的速度为2/cm s ,经过t 秒DEF ∆为等边三角形,则t 的值为( )A .34B .43C .32D .532.如图所示,四边形ABCD 是边长为1的正方形,E 为BC 边的中点,沿AP 折叠使D 点落在AE 上的点H 处,连接PH 并延长交BC 于点F ,则EF 的长为( )A .525-B .55-C .353-D .143.如图,在正方形ABCD 中,E 是BC 边上的一点,BE=4,EC=8,将正方形边AB 延AE 折叠刀AF ,延长EF 交DC 于G ,连接AG ,现在有如下结论:①∠EAG=45°;②GC=CF ;③FC ∥AG ;④S △GFC =14.4;其中结论正确的个数是( )A .1B .2C .3D .44.如图,矩形ABCD 中,,AC BD 相交于点O ,过点B 作BF AC ⊥交CD 于点F ,交AC 于点M ,过点D 作//DE BF 交AB 于点E ,交AC 于点N ,连接,FN EM .则下列结论:①DN BM =;②//EM FN ;③AE FC =;④当AO AD =时,四边形DEBF 是菱形.其中,正确结论的个数是( )A .1个B .2个C .3个D .4个5.如图,正方形ABCD 的边长为4,E 为BC 上一点,且BE =1,F 为AB 边上的一个动点,连接EF ,以EF 为边向右侧作等边△EFG ,连接CG ,则CG 的最小值为( )A .0.5B .2.5C .2D .16.如图,ABCD 的对角线AC 、BD 相较于点O ,AE 平分∠BAD 交BC 于点E ,∠ADC =60°,AB =12BC ,连接OE ,下列结论:①∠CAD =30°;②·ABCD A S AB C =;③OA =OB ;④OE =14B C .其中成立的个数是( )A .1B .2C .3D .4 7.将矩形纸片 ABCD 按如图所示的方式折叠,得到菱形 AECF .若 AB =3,则 BC 的长为( )A 2B .2C .1.5D 38.如图,ABCD 的对角线,AC BD 交于点,O DE 平分ADC ∠交BC 于点,60,E BCD ∠=︒2,AD AB =连接OE .下列结论:ABCD SAB BD =⋅①;DB ②平分ADE ∠;AB DE =③;CDE BOC S S =④,其中正确的有( )A .1个B .2个C .3个D .4个9.如图,正方形ABCD 中,延长CB 至E 使2CB EB =,以EB 为边作正方形EFGB ,延长FG 交DC 于M ,连接AM ,AF ,H 为AD 的中点,连接FH 分别与AB ,AM 交于点,N K .则下列说法:①ANH GNF △≌△;②DAM NFG ∠=∠;③2FN NK =;④:2:7AFN DMKH S S =△四边形.其中正确的有( )A .4个B .3个C .2个D .1个10.如图,在菱形ABCD 中,AB =BD ,点E 、F 分别是AB 、AD 上任意的点(不与端点重合),且AE =DF ,连接BF 与DE 相交于点G ,连接CG 与BD 相交于点H .给出如下几个结论:①△AED ≌△DFB :②GC 平分∠BGD ;③S 四边形BCDG =3CG 2;④∠BGE 的大小为定值.其中正确的结论个数为( )A .1B .2C .3D .411.如图,在ABC 中,AB =AC =6,∠B =45°,D 是BC 上一个动点,连接AD ,以AD 为边向右侧作等腰ADE ,其中AD =AE ,∠ADE =45°,连接CE .在点D 从点B 向点C 运动过程中,CDE △周长的最小值是( )A .62B .626C .92D .92612.在ABCF 中,2BC AB =,CD AB ⊥于点D ,点E 为AF 的中点,若50ADE ∠=︒,则B 的度数是( )A .50︒B .60︒C .70︒D .80︒13.如图,在一张矩形纸片ABCD 中,4AB =,8BC =,点E ,F 分别在AD , BC 上,将纸片ABCD 沿直线EF 折叠,点C 落在AD 上的一点H 处,点D 落在点G 处,有以下四个结论:①四边形CFHE 是菱形;②EC 平分DCH ∠;③线段BF 的取值范围为34BF ≤≤;④当点H 与点A 重合时,25EF =. 以上结论中,你认为正确的有( )个.A .1B .2C .3D .4 14.如图,ABCD 中,点E 是AD 上一点,BE ⊥AB ,△ABE 沿BE 对折得到△BEG ,过点D 作DF ∥EG 交BC 于点F ,△DFC 沿DF 对折,点C 恰好与点G 重合,则AB AD的值为( )A .12B .33C .22D .3215.矩形纸片ABCD 中,AB =5,AD =4,将纸片折叠,使点B 落在边CD 上的点B '处,折痕为AE .延长B E '交AB 的延长线于点M ,折痕AE 上有点P ,下列结论中:①M DAB '∠∠=;②PB PB '=;③AE 55;④MB CD '=;⑤若B P CD '⊥,则EB B P ''=.正确的有( )个A .2B .3C .4D .516.如图,45A ABC C ∠=∠=∠=︒,E 、F 分别是AB 、BC 的中点,则下列结论:①EF BD ⊥,②12EF BD =,③ADC BEF BFE ∠=∠+∠,④AD DC =,其中正确有( )A .1个B .2个C .3个D .4个17.如图,△ABC 的周长为19,点D ,E 在边BC 上,∠ABC 的平分线垂直于AE ,垂足为N ,∠ACB 的平分线垂直于AD ,垂足为M ,若BC=7,则MN 的长度为( )A .32B .2C .52D .318.如图,在平行四边形ABCD 中,过点A 作AG BC ⊥于G ,作AH CD ⊥于H ,且45GAH ∠=︒,2AG =,3AH =,则平行四边形的面积是( )A .62B .122C .6D .1219.如图,矩形ABCD 中,4AB =,3AD =,折叠纸片使点D 落在AC 边上的D 处,折痕为AH ,则CH 的长为( )A .52B .2C .32D .120.如图,在ABCD 中,2,AB AD F =是CD 的中点,作BE AD ⊥于点E ,连接EF BF 、,下列结论:①CBF ABF ∠=∠;②FE FB =;③2EFB S S ∆=四边形DEBC ;④3BFE DEF ∠=∠;其中正确的个数是( )A .1B .2C .3D .4【参考答案】***试卷处理标记,请不要删除一、易错压轴选择题精选:平行四边形选择题1.D【分析】连接BD ,证出△ADE ≌△BDF ,得到AE=BF ,再利用AE=t ,CF=2t ,则BF=BC -CF=5-2t 求出时间t 的值.【详解】解:连接BD ,∵四边形ABCD 是菱形,∠ADC =120°,∴AB =AD ,∠ADB =12∠ADC =60°, ∴△ABD 是等边三角形,∴AD =BD ,又∵△DEF 是等边三角形,∴∠EDF =∠DEF =60°,又∵∠ADB =60°,∴∠ADE =∠BDF ,在△ADE 和△BDF 中,AD BD A DBC ADE BDF =⎧⎪∠=∠⎨⎪∠=∠⎩∴△ADE ≌△BDF (ASA ),∴AE =BF ,∵AE =t ,CF =2t ,∴BF =BC −CF =5−2t ,∴t =5−2t∴t =53, 故选:D.【点睛】本题考查全等三角形,等边三角形,菱形等知识,熟练掌握全等三角形的判定与性质,等边三角形的判定与性质,菱形的性质为解题关键.2.A 【分析】首先证明Rt △AFB ≌Rt △AFH ,推出BF=FH ,设EF=x ,则BF=FH=12x -,在Rt △FEH 中,根据222,EF EH FH =+构建方程即可解决问题;【详解】解:连接AF .∵四边形ABCD 是正方形, ∴AD=BC=1,∠B=90°,∵BE=EC=12, ∴2252AB BE += 由翻折不变性可知:AD=AH=AB=1,∴EH=512-, ∵∠B=∠AHF=90°,AF=AF ,AH=AB ,∴Rt △AFB ≌Rt △AFH ,∴BF=FH ,设EF=x ,则BF=FH=12x -, 在Rt △FEH 中,∵222,EF EH FH =+∴22215()(1),2x x =-+- ∴525.x -=故选:A .【点睛】 本题考查翻折变换、正方形的性质、全等三角形的判定和性质、勾股定理等知识,解题的关键是准确寻找全等三角形解决问题,学会利用参数构建方程解决问题,3.C【分析】选项①正确.证明∠GAF=∠GAD ,∠EAB=∠EAF 即可.选项②错误.可以证明DG=GC=FG ,显然△GFC 不是等边三角形,可得结论.选项③正确.证明CF ⊥DF ,AG ⊥DF 即可.选项④正确.证明FG :EG=3:5,求出△ECG 的面积即可.【详解】解:如图,连接DF .∵四边形ABCD 是正方形,∴AB=AD=BC=CD ,∠ABE=∠BAD=∠ADG=∠ECG=90°,由折叠可知:AB=AF ,∠ABE=∠AFE=∠AFG=90°,BE=EF=4,∠BAE=∠EAF ,∵∠AFG=∠ADG=90°,AG=AG ,AD=AF ,∴Rt △AGD ≌Rt △AGF (HL ),∴∠GAF=∠GAD ,∴∠EAG=∠EAF+∠GAF=12(∠BAF+∠DAF)=45°,故①正确, 设GD=GF=x ,在Rt △ECG 中,∵EG 2=EC 2+CG 2,∴(4+x )2=82+(12-x )2,∴x =6,∵CD=BC=BE+EC=12,∴DG=CG=6,∴FG=GC ,易知△GFC不是等边三角形,显然FG≠FC,故②错误,∵GF=GD=GC,∴∠DFC=90°,∴CF⊥DF,∵AD=AF,GD=GF,∴AG⊥DF,∴CF∥AG,故③正确,∵S△ECG=12×6×8=24,FG:FE=6:4=3:2,∴FG:EG=3:5,∴S△GFC=35×24=725=14.4,故④正确,故①③④正确,故选:C.【点睛】本题考查翻折变换,正方形的性质,全等三角形的判定和性质,勾股定理等知识,解题时设要求的线段长为x,然后根据折叠和轴对称的性质用含x的代数式表示其他线段的长度,选择适当的直角三角形,运用勾股定理列出方程求出答案.4.D【分析】通过判断△AND≌△CMB即可证明①,再判断出△ANE≌△CMF证明出③,再证明出△NFM≌△MEN,得到∠FNM=∠EMN,进而判断出②,通过 DF与EB先证明出四边形为平行四边形,再通过三线合一以及内角和定理得到∠NDO=∠ABD=30°,进而得到DE=BE,即可知四边形为菱形.【详解】∵BF⊥AC∴∠BMC=90°又∵//DE BF∴∠EDO=∠MBO,DE⊥AC∴∠DNA=∠BMC=90°∵四边形ABCD为矩形∴AD=BC,AD∥BC,DC∥AB∴∠ADB=∠CBD∴∠ADB-∠EDO=∠CBD-∠MBO即∠AND=∠CBM在△AND与△CMB∵90 DNA BMCAND CBMAD BC∠=∠=︒⎧⎪∠=∠⎨⎪=⎩∴△AND≌△CMB(AAS)∴AN=CM ,DN=BM ,故①正确.∵AB ∥CD∴∠NAE=∠MCF又∵∠DNA=∠BMC=90°∴∠ANE=∠CMF=90°在△ANE 与△CMF 中∵90ANE CMF AN CM NAE MCF ∠=∠=⎧⎪=⎨⎪∠=∠⎩∴△ANE ≌△CMF (ASA )∴NE=FM ,AE=CF ,故③正确.在△NFM 与△MEN 中∵90FM NE FMN ENM MN MN =⎧⎪∠=∠=︒⎨⎪=⎩∴△NFM ≌△MEN (SAS )∴∠FNM=∠EMN∴NF ∥EM ,故②正确.∵AE=CF∴DC-FC=AB-AE ,即DF=EB又根据矩形性质可知DF ∥EB∴四边形DEBF 为平行四边根据矩形性质可知OD=AO ,当AO=AD 时,即三角形DAO 为等边三角形∴∠ADO=60°又∵DN ⊥AC根据三线合一可知∠NDO=30°又根据三角形内角和可知∠ABD=180°-∠DAB-∠ADB=30°故DE=EB∴四边形DEBF 为菱形,故④正确.故①②③④正确故选D .【点睛】本题矩形性质、全等三角形的性质与证明、菱形的判定,能够找对相对应的全等三角形是解题关键.5.B【分析】由题意分析可知,点F 为主动点,G 为从动点,所以以点E 为旋转中心构造全等关系,得到点G 的运动轨迹,之后通过垂线段最短构造直角三角形获得CG 最小值.【详解】由题意可知,点F 是主动点,点G 是从动点,点F 在线段上运动,点G 也一定在直线轨迹上运动,如图,将ΔEFB 绕点E 旋转60°,使EF 与EG 重合,得到ΔEFB ≅ΔEHG ,从而可知ΔEBH 为等边三角形,点G 在垂直于HE 的直线HN 上,如图,作CM ⊥HN ,则CM 即为CG 的最小值,作EP ⊥CM ,可知四边形HEPM 为矩形,则1351=2.5222CM MP CP HE EC =+=+=+=. 故选B .【点睛】 本题考查了线段极值问题,构造图形计算,是极值问题中比较典型的类型.分清主动点和从动点,通过旋转构造全等,从而判断出点G 的运动轨迹,是解本题的关键. 6.C【分析】①先根据平行四边形的性质可得120,60,BAD ABC OA OC ∠=︒∠=︒=,再根据角平分线的定义可得60=︒∠BAE ,然后根据等边三角形的判定与性质可得AB AE BE ==,60AEB ∠=︒,又根据等腰三角形的性质、三角形的外角性质可得30ACE CAE ∠=∠=︒,最后根据角的和差即可得;②由①已推得90BAC ∠=︒,再根据2ABCD ABC S S =即可得;③在Rt AOB 中,根据直角边小于斜边即可得;④在ABC 中,利用三角形中位线定理可得12OE AB =,再根据12AB BC =即可得. 【详解】 四边形ABCD 是平行四边形,60ADC ∠=︒,120,60,BAD ABC OA OC ∴∠=︒∠=︒=,AE ∵平分BAD ∠,1602BAE BAD ∴∠=∠=︒, ABE ∴是等边三角形,,60AB AE BE AEB ∴==∠=︒, 12AB BC =, AB AE BE CE ∴===,ACE CAE ∴∠=∠,60AEB ACE CAE ∠=∠+∠=︒,30ACE CAE ∴∠=∠=︒,90,30BAC BAE CAE CAD BAD BAC ∴∠=∠+∠=︒∠=∠-∠=︒,则结论①成立, AB AC ∴⊥,122··2ABCD ABC AB AC AB AC S S ==⨯=∴,则结论②成立, 在Rt AOB 中,OA 是直角边,OB 是斜边,OA OB ∴<,则结论③不成立,,OA OC BE CE ==,OE ∴是ABC 的中位线,11112224OE AB BC BC ∴==⨯=,则结论④成立, 综上,结论成立的个数是3个,故选:C .【点睛】本题考查了平行四边形的性质、三角形中位线定理、等边三角形的判定与性质等知识点,熟练掌握并灵活运用各判定定理与性质是解题关键.7.D【分析】设BC x =,先根据矩形的性质可得90,B AD BC ∠=︒=,再根据折叠的性质可得,,90OA AD x OC BC x COE B ====∠=∠=︒,从而可得OA OC =,又根据菱形的性质可得AE CE =,然后根据三角形全等的判定定理与性质可得90AOE COE ∠=∠=︒,从而可得点,,A O C 共线,由此可得2AC x =,最后在Rt ABC 中,利用勾股定理即可得.【详解】设BC x =,四边形ABCD 是矩形,90,B AD BC x ∴∠=︒==,由折叠的性质得:,,90OA AD x OC BC x COE B ====∠=∠=︒,OA OC x ∴==,四边形AECF 是菱形,AE CE ∴=,在AOE △和COE 中,OA OC AE CE OE OE =⎧⎪=⎨⎪=⎩, ()AOE COE SSS ∴≅,90AOE COE ∴∠=∠=︒,即180AOE COE ∠+∠=︒,∴点,,A O C 共线,2AC OA OC x ∴=+=,在Rt ABC 中,222AB BC AC +=,即2223(2)x x +=,解得x =x =即BC =,故选:D .【点睛】本题考查了矩形与菱形的性质、折叠的性质、三角形全等的判定定理与性质、勾股定理等知识点,利用三角形全等的判定定理与性质证出90AOE COE ∠=∠=︒,从而得出点,,A O C 共线是解题关键.8.D【分析】求得∠ADB =90°,即AD ⊥BD ,即可得到S ▱ABCD =AD•BD ;依据∠CDE =60°,∠BDE =30°,可得∠CDB =∠BDE ,进而得出DB 平分∠CDE ;依据Rt △BCD 中,斜边上的中线DE =斜边BC 的一半,即可得到AD =BC =2DE ,进而得到AB =DE ;依据OE 是中位线,即可得到OE ∥CD ,因为两平行线间的距离相等,进而得到S △CDE =S △OCD ,再根据OC 是△BCD 的中线,可得S △BOC =S △COD ,即可得到S △CDE =S △BOC .【详解】∵∠BCD =60°,四边形ABCD 是平行四边形,∴∠ADC =180°-∠BCD =120°,BC//AD ,BC =AD ,∵DE 平分∠ADC ,∴∠CDE =∠CED =60°=∠BCD ,∴△CDE 是等边三角形,∴CE =CD = AD = BC ,∴E 是BC 的中点,∴DE =BE ,∴∠BDE = ∠CED =30°,∴∠CDB =90°,即CD ⊥BD ,∴S ▱ABCD =CD•BD =AB•BD ,故①正确;∵∠CDE =60°,∠BDE =30°,∴∠ADB =30°=∠BDE ,∴DB 平分∠CDE ,故②正确;∵△CDE 是等边三角形,∴DE =CD =AB ,故③正确;∵O 是BD 的中点,E 是BC 的中点,∴OE 是△CBD 的中位线,∴OE ∥CD ,∴S △OCD =S △CDE ,∵OC 是△BCD 的中线,∴S △BOC =S △COD ,∴S △CDE =S △BOC ,故④正确,故选D .【点睛】本题考查了平行四边形的性质、等边三角形的判定与性质、三角形中位线、平行线间的距离相等、直角三角形斜边上的中线等于斜边的一半等,综合性较强,熟练掌握和灵活运用相关性质与定理是解题的关键.9.A【分析】根据正方形的性质,以及中点的性质可得△FGN ≌△HAN ,即证①;利用角度之间的等量关系的转换可以判断②;根据△AKH ∽△MKF ,进而利用相似三角形的性质即可判断③;设AN=12AG=x ,则AH=2x ,FM=6x ,根据△AKH ∽△MKF 得出2163AH x MF x ==,再利用三角形的面积公式求出△AFN 的面积,再利用DHKM ADM AKH S SS =-即可求出四边形DHKM的面积,作比即可判断④.【详解】 ∵四边形EFGB 是正方形,CE=2EB ,四边形ABCD 是正方形∴G 为AB 中点,∠FGN=∠HAN=90°,AD=AB即FG=AG=GB=12AB 又H 是AD 的中点 AH=12AD ∴FG=HA又∠FNG=∠HNA∴△FGN ≌△HAN ,故①正确;∵∠DAM+∠GAM=90°又∠NFG+∠FNG=90°即∠FNG=∠GAM∵∠FNG+∠NFG+90°=180°∠AMD+∠DAM+90°=180°∠FNG=∠GAM=∠AMD∴DAM NFG ∠=∠,故②正确;由图可得:MF=FG+MG=3EB△AKH ∽△MKF ∴13KH AH KF MF == ∴KF=3KH又∵NH=NF且FH=KF+KH=4KH=NH+NF∴NH=NF=2KH∴KH=KN∴FN=2NK ,故③正确;∵AN=GN 且AN+GN=AG∴可设AN=12AG=x ,则AH=2x ,FM=6x 由题意可得:△AKH ∽△MKF 且相似比为:2163AH x MF x == ∴△AKH 以AH 为底边的高为:11242x x ⨯= ∴212AFN S AN FG x =⨯⨯= 112225DHKM ADM AKH S S S AD DM AH x =-=⨯⨯-⨯⨯ 211172422222x x x x x =⨯⨯-⨯⨯= ∴2:7AFN DHKM S S =,故④正确; 故答案选择A .【点睛】本题考查了矩形、全等三角形的判定与性质以及相似三角形的判定与性质,难度较大,需要熟练掌握相关基础知识.10.D【分析】①先证明△ABD 为等边三角形,根据“SAS”证明△AED≌△DFB;②证明∠BGE=60︒=∠BCD,从而得点B 、C 、D 、G 四点共圆,因此∠BGC=∠DGC=60︒; ③过点C 作CM⊥GB 于M,CN⊥GD 于N.证明△CBM≌△CDN,所以S 四边形BCDG =S 四边形CMGN ,易求后者的面积;④∠BGE=∠BDG+∠DB F =∠BDG+∠GDF=60︒,故为定值.【详解】解:①∵ABCD 为菱形,∴AB=AD,∵AB=BD,∴△ABD为等边三角形,∴∠A=∠BDF=60︒又∵AE=DF,AD=BD,∴△AED≌△DFB(SAS),故本选项正确;②∵∠BGE=∠BDG+∠DBF=∠BDG+∠GDF=60︒=∠BCD,即∠BGD+∠BCD=180︒,∴点B、C、D、G四点共圆,∴∠BGC=∠BDC=60︒,∠DGC=∠DBC=60︒,∴∠BGC=∠DGC=60︒,故本选项正确;③过点C作CM⊥GB于M,CN⊥GD于N(如图),则△CBM≌△CDN(AAS),∴S四边形BCDG=S四边形CMGNS四边形CMGN=2S△CMG,∵∠CGM=60︒,∴GM=12CG,CM=32CG,∴S四边形CMGN=2S△CMG=2×12×12CG×3232,故本选项正确;④∵∠BGE=∠BDG+∠DBF=∠BDG+∠GDF=60︒,为定值,故本选项正确;综上所述,正确的结论有①②③④,故选:D.【点睛】本题考查了菱形的性质、全等三角形的判定、等边三角形的判定与性质,解决本题的关键是掌握菱形的性质.11.B【分析】如图(见解析),先根据等腰直角三角形的判定与性质可得90,62,2BAC DAE BC DE∠=∠=︒==,再根据三角形全等的判定定理与性质可得BD CE =,从而可得CDE △周长为2BC AD +,然后根据垂线段最短可求出AD 的最小值,由此即可得. 【详解】 在ABC 中,6,45AB AC B ==∠=︒,ABC ∴是等腰直角三角形,2290,62BAC BC AB AC ∠=︒=+=,在ADE 中,,45AD AE ADE =∠=︒,ADE ∴是等腰直角三角形,2290,2DAE DE AD AE AD ∠=︒=+=,90BAD CAD CAE CAD ∴∠+∠=∠+∠=︒,BAD CAE ∴∠=∠,在ABD △和ACE △中,AB AC BAD CAE AD AE =⎧⎪∠=∠⎨⎪=⎩, ()ABD ACE SAS ∴≅,BD CE ∴=,CDE ∴周长为622CD CE DE CD BD DE BC DE AD ++=++=+=+, 则当AD 取得最小值时,CDE △的周长最小,由垂线段最短可知,当AD BC ⊥时,AD 取得最小值,AD ∴是BC 边上的中线(等腰三角形的三线合一),1322AD BC ∴==(直角三角形斜边上的中线等于斜边的一半), CDE ∴周长的最小值为62232626+⨯=+,故选:B .【点睛】本题考查了等腰直角三角形的判定与性质、直角三角形斜边上的中线、三角形全等的判定定理与性质、垂线段最短等知识点,正确找出两个全等三角形是解题关键.12.D【分析】连结CE ,并延长CE ,交BA 的延长线于点N ,根据已知条件和平行四边形的性质可证明△NAE ≌△CFE ,所以NE =CE ,NA =CF ,再由已知条件CD ⊥AB 于D ,∠ADE =50°,即可求出∠B 的度数.【详解】解:连结CE ,并延长CE ,交BA 的延长线于点N ,∵四边形ABCF 是平行四边形,∴AB ∥CF ,AB =CF ,∴∠NAE =∠F ,∵点E 是的AF 中点,∴AE =FE ,在△NAE 和△CFE 中,NAE F AE FE AEN FEC ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△NAE ≌△CFE (ASA ),∴NE =CE ,NA =CF ,∵AB =CF ,∴NA =AB ,即BN =2AB ,∵BC =2AB ,∴BC =BN ,∠N =∠NCB ,∵CD ⊥AB 于D ,即∠NDC =90°且NE =CE ,∴DE =12NC =NE , ∴∠N =∠NDE =50°=∠NCB ,∴∠B =80°.故选:D .【点睛】本题考查了平行四边形的性质,综合性较强,难度较大,解答本题的关键是正确作出辅助线,构造全等三角形,在利用等腰三角形的性质解答.13.C【分析】①先判断出四边形CFHE 是平行四边形,再根据翻折的性质可得CF=FH ,然后根据邻边相等的平行四边形是菱形证明,判断出①正确;②根据菱形的对角线平分一组对角线可得∠BCH=∠ECH ,然后求出只有∠DCE=30°时EC 平分∠DCH ,判断出②错误;③点H 与点A 重合时,设BF=x ,表示出AF=FC=8-x ,利用勾股定理列出方程求解得到BF 的最小值,点G 与点D 重合时,CF=CD ,求出最大值BF=4,然后写出BF 的取值范围,判断出③正确;④过点F 作FM ⊥AD 于M ,求出ME ,再利用勾股定理列式求解得到EF ,判断出④正确.【详解】解:①∵FH 与CG ,EH 与CF 都是矩形ABCD 的对边AD 、BC 的一部分,∴FH ∥CG ,EH ∥CF ,∴四边形CFHE 是平行四边形,由翻折的性质得,CF=FH ,∴四边形CFHE 是菱形,(故①正确);②∴∠BCH=∠ECH ,∴只有∠DCE=30°时EC 平分∠DCH ,(故②错误);③点H 与点A 重合时,此时BF 最小,设BF=x ,则AF=FC=8-x ,在Rt △ABF 中,AB 2+BF 2=AF 2,即42+x 2=(8-x )2,解得x=3,点G 与点D 重合时,此时BF 最大,CF=CD=4,∴BF=4,∴线段BF 的取值范围为3≤BF ≤4,(故③正确);过点F 作FM ⊥AD 于M ,则ME=(8-3)-3=2,由勾股定理得, 22MF ME +2242+25综上所述,结论正确的有①③④共3个,故选C .【点睛】本题考查了翻折变换的性质,菱形的判定与性质,勾股定理的应用,难点在于灵活运用菱形的判定与性质与勾股定理等其它知识有机结合.14.B【分析】根据平行线的性质和轴对称的性质,利用SAS 证明BEG DEG ≅,进而得到ADG 90∠=︒,设AB=x ,则AG=2x ,CD=x ,2243x x x -,即可求解.【详解】解:在ABCD中∵DF∥EG∴∠DEG=∠DFB∵△ABE沿BE对折得到△BEG∴∠DEG=2∠A∵∠DFB=∠C+∠CDF∠A=∠C∴∠CDF=∠A∵△DFC沿DF对折∴∠BGE=∠DGEBG=DGEG=EG∴BEG DEG≅∵BE⊥AB∴ADG90∠=︒设AB=x,则AG=2x,CD=x,AD=2243x x x-=∴333ABAD x==故选:B.【点睛】此题主要考查平行线的性质、轴对称的性质、全等三角形的判断和性质、勾股定理,熟练运用平行线的性质和轴对称的性质证明BEG DEG≅是解题关键.15.C【分析】①由翻折知∠ABE=∠AB'E=90º,再证∠M=∠CB'E=∠B'AD即可;②借助轴对称可知;③利用计算,勾股定理求B′D,构造方程,求EB,在构造勾股定理求MB′=55;④由相似CB':BM=CE:BE,BM=103,在计算B'M>5;⑤证△BEG≌△B′PG得BE=B′P,再证菱形即可.【详解】①由折叠性质知∠ABE=∠AB'E=90º,∴∠CB'E+∠AB'D=90º∵∠D=90º∴∠B'AD+∠AB'D=90º∴∠CB'E=∠B'AD,∵CD∥MB,∴∠M=∠CB'E=∠B'AD;②点P在对称轴上,则B'P=BP;③由翻折,AB=AB'=5,AD=4,由勾股定理DB'=3,∴CB'=5-3=2,设BE=x=B'E,CE=4-x,在Rt△B′CE中,∠C=90º,由勾股定理(4-x)2+22=x2,解得x=52,∴CE=4-52=32,在Rt△ABE中,∠ABE=90º,AE=22555+5=2⎛⎫⎪⎝⎭;④由BM∥CB′∴△ECB′∽△EBM,∴CB':BM=CE:BE,∴2:BM=32:52,∴BM=103,则221020+433⎛⎫⎪⎝⎭>5=CD;⑤连接BB′,由对称性可知,BG=B′G,EP⊥BB′,BE∥B′P,∴△BEG≌△B′PG,∴BE=B′P,∴四边形BPB′E 为平行四边形,又BE=EB′,所以四边形BPB′E 是菱形,所以PB′=B'E .故选择:C .【点睛】此题考查了矩形的性质、图形的翻折变换以及相似三角形的性质等知识的应用,此题的关键是能够发现△BEG ≌△B′PG .16.C【分析】根据三角形的中位线定理“三角形的中位线平行于第三边”可得//EF AC ,12EF AC =,再由45°角可证△ABQ 为等腰直角三角形,从而可得可得AQ BQ =,进而证明AQC BQDASA ≅△△(),利用三角形的全等性质求解即可. 【详解】解:如图所示:连接AC ,延长BD 交AC 于点M ,延长AD 交BC 于Q ,延长CD 交AB 于P .45ABC C ∠=∠=︒,CP AB ∴⊥,45ABC BAD ∠=∠=︒,AQ BC ∴⊥,点D 为两条高的交点,BM ∴为AC 边上的高,即:BM AC ⊥,由中位线定理可得//EF AC ,12EF AC =, BD EF ∴⊥,故①正确;45DBQ DCA ∠+∠=︒,45DCA CAQ ∠+∠=︒,DBQ CAQ ∴∠=∠,BAD ABC ∠=∠,AQ BQ ∴=,90BQD AQC ∠=∠=︒,∴根据以上条件得AQC BQD ASA ≅△△(),BD AC ∴=,12EF AC ∴=,故②正确; 45A ABC C ∠=∠=∠=︒,()18045DAC DCA BAD ABC BCD ∴∠+∠=︒-∠+∠+∠=︒,180135()180ADC DAC DCA BEF BFE ABC ∴∠=︒-∠+∠=︒=∠+∠=︒-∠,故③ ADC BEF BFE ∠=∠+∠成立;无法证明AD CD =,故④错误.综上所述:正确的是①②③,故选C .【点睛】本题考点在于三角形的中位线和三角形全等的判断及应用.解题关键是证明AQC BQD ASA ≅△△().17.C【分析】证明△BNA ≌△BNE ,得到BA=BE ,即△BAE 是等腰三角形,同理△CAD 是等腰三角形,根据题意求出DE ,根据三角形中位线定理计算即可.【详解】解:∵BN 平分∠ABC ,BN ⊥AE ,∴∠NBA=∠NBE ,∠BNA=∠BNE ,在△BNA 和△BNE 中,ABN EBN BN BNANB ENB ∠∠⎧⎪⎨⎪∠∠⎩=== , ∴△BNA ≌△BNE ,∴BA=BE ,∴△BAE 是等腰三角形,同理△CAD 是等腰三角形,∴点N 是AE 中点,点M 是AD 中点(三线合一),∴MN 是△ADE 的中位线,∵BE+CD=AB+AC=19-BC=19-7=12,∴DE=BE+CD-BC=5,∴MN=12DE=52. 故选C .【点睛】本题考查的是三角形中位线定理、等腰三角形的性质,掌握三角形的中位线平行于第三边,并且等于第三边的一半是解题的关键.18.A【分析】设B x ∠=,先根据平行四边形的性质可得,180,D B x BAD x AB CD ∠=∠=∠=︒-=,再根据直角三角形的两锐角互余、角的和差可得45x =︒,然后根据等腰直角三角形的判定与性质、勾股定理可得AB =CD =公式即可得.【详解】设B x ∠=,四边形ABCD 是平行四边形,,180180,D B x BAD B x AB CD ∴∠=∠=∠=︒-∠=︒-=,,AG BC AH CD ⊥⊥,9090,9090BAG B x DAH D x ∴∠=︒-∠=︒-∠=︒-∠=︒-,又180,45BAG DAH BAD GAH x GAH ∠+︒-∠+∠=∠∠=︒=,909100458x x x ︒-+︒-=∴︒+︒-,解得45x =︒,即45B ∠=︒,Rt ABG ∴是等腰直角三角形,2,BG AG AB ∴====CD ∴=,∴平行四边形ABCD 的面积是3AH CD ⋅=⨯=故选:A .【点睛】本题考查了平行四边形的性质、直角三角形的两锐角互余、等腰直角三角形的判定与性质、勾股定理等知识点,熟练掌握平行四边形的性质是解题关键.19.A【分析】先利用勾股定理求出AC=5,再令CH x =,则4DH x =-,利用勾股定理求出答案.【详解】∵四边形ABCD 为矩形,∴4AB DC ==,∵3AD =,在Rt ADC 中,由勾股定理得:222AD DC AC +=,得:5AC =,令CH x =,则4DH x =-,由折叠性质可知:4DH HD x '==-,3AD AD '==,故532D C AC AD ''=-=-=,在Rt HD C '△中,由勾股定理得:222HD D C HC ''+=,∴()22242x x -+=, ∴52x =. 故52CH =. 故选:A .【点睛】此题考查矩形的性质,勾股定理,折叠的性质,涉及直角三角形的边长的计算题时可多次进行勾股定理的计算.20.C【分析】由平行四边形的性质结合AB=2AD ,CD=2CF 可得CF=CB ,从而可得∠CBF=∠CFB ,再根据CD ∥AB ,得∠CFB=∠ABF ,继而可得CBF ABF ∠=∠,可以判断①正确;延长EF 交BC 的延长线与M ,证明△DFE 与△CFM(AAS),继而得EF=FM=12EM ,证明∠CBE=∠AEB=90°,然后根据直角三角形斜边中线的性质即可判断②正确;由上可得S △BEF =S △BMF ,S △DFE =S △CFM ,继而可得S △EBF =S △BMF =S △EDF +S △FBC ,继而可得2EFB S S ∆=四边形DEBC ,可判断③正确;过点F 作FN ⊥BE ,垂足为N ,则∠FNE=90°,则可得AD//FN ,则有∠DEF=∠EFN ,根据等腰三角形的性质可得∠BFE=2∠EFN ,继而得∠BFE=2∠DEF ,判断④错误.【详解】∵四边形ABCD 是平行四边形,∴AD=BC ,AB=CD ,AD//BC ,∵AB=2AD ,CD=2CF ,∴CF=CB ,∴∠CBF=∠CFB ,∵CD ∥AB ,∴∠CFB=∠ABF ,∴CBF ABF ∠=∠,故①正确;延长EF 交BC 的延长线与M ,∵AD//BC ,∴∠DEF=∠M ,又∵∠DFE=∠CFM ,DF=CF ,∴△DFE 与△CFM(AAS),∴EF=FM=12EM , ∵BF ⊥AD ,∴∠AEB=90°,∵在平行四边形ABCD 中,AD ∥BC ,∴∠CBE=∠AEB=90°,∴BF=12EM , ∴BF=EF ,故②正确;∵EF=FM ,∴S △BEF =S △BMF ,∵△DFE ≌△CFM ,∴S △DFE =S △CFM ,∴S △EBF =S △BMF =S △EDF +S △FBC ,∴2EFB S S ∆=四边形DEBC ,故③正确;过点F 作FN ⊥BE ,垂足为N ,则∠FNE=90°,∴∠AEB=∠FEN ,∴AD//EF ,∴∠DEF=∠EFN ,又∵EF=FB ,∴∠BFE=2∠EFN ,∴∠BFE=2∠DEF ,故④错误,所以正确的有3个,故选C.【点睛】本题考查了平行四边形的性质,直角三角形斜边中线的性质,等腰三角形的判断与性质等,综合性较强,有一定的难度,正确添加辅助线,熟练掌握和灵活运用相关知识是解题的关键.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

平行四边形和特殊的平行四边形试题
一、选择题(共9小题,每小题5分,合计45分)(时间:60分钟,满分:100分)
1. 下列图形中,是中心对称图形但不是轴对称图形的是( )
A. 平行四边形
B. 菱形
C. 正五边形
D. 正六边形
2. 用形状,大小完全相同的图形不能镶嵌成平面图案的是( )
A. 等腰三角形
B. 正方形
C. 正五边形
D. 正六边形
3. 如图,四边形ABCD 中,对角线AC 、BD 相交于点O ,已知AB ∥CD ,添加下列一个
条件,不能使四边形ABCD 为平行四边形的是( )
A. AD ∥BC
B. AD =BC
C.OA =OC
D. AB =CD
第3题图 第4题图 第5题图
4. 如图,在矩形ABCD 中,对角线AC 与BD 相交于点O ,AE ⊥BD ,垂足为E ,ED=3BE ,
则∠AOB 的度数为( )
A. 90°
B. 60°
C. 45°
D. 30°
5. 如图,菱形DOCP ,延长CO 至A ,使AO =OC ,延长DO 至B ,使BO =OD ,连接AB 、
BC 、CD 、DA . 已知∠P =120°,DP =2,则四边形ABCD 的面积为( )
A .32
B .4
C .34
D .8
6. 顺次连接正方形四边中点所得的四边形为( )
A. 平行四边形
B. 矩形
C. 菱形
D. 正方形
7. 如图,在菱形ABCD 中,∠A =60°,AD =4,点P 是AB 边上的一个动点,点E 、F 分
别是DP 、BP 的中点,则线段EF 的长为( )
A. 4
B. 32
C. 22
D. 2
第7题图 第8题图 都9题图
8.如图□ABCD ,E 是BC 上一点,BE :EC =2:3,AE 交BD 于F ,则BF :FD 等于( )
A. 2:3
B. 3:5
C. 2:5
D. 5:7
9.如图,在菱形ABCD 中,点O 在对角线AC 上,且AO =2CO ,连接OB 、OD ,若OB =OC ,
AC =3,则菱形的边长为( )
A. 3
B. 2
C.215
D.2
3
二、填空题(共5个小题,每小题5分,合计25分)
10.一个多边形的内角和与外角和相等,则这个多边形的边数为______.
11.如图,AC、AD是正五边形ABCDE的对角线,则∠CAD的度数为
_________.
第11题图第12题图第13题图第14题图
12.如图,在矩形A B C D中,A B=1,B C=3,将矩形A B C D绕点A逆时针旋转至矩
形AB'C'D',使得点B'恰好落在对角线BD上,连接DD',则DD'的长度为_________.
13.如图、6个形状、大小完全相同的菱形组成网格,菱形的顶点称为格点.已知菱形一个
角∠O=60°,点A、B、C都在格点上,则tan∠ABC的值是________.
14.如图,在边长为2的正方形A B C D中,动点F、E分别以相同的速度从D、C两点同
时出发向C和B运动(任何一个点到达即停止),连接AE,连接BF交AE于点P,过点P作PM∥CD交BC于M点,PN∥BC交CD于N点,连接MN,在运动过程中,下
列结论:①△A B E≌△B C F;②A E⊥B F;③BF
PE
CF⋅
=2;④线段M N的最小值为1
5-.其中正确的结论有_________________.
三、解答题(共4个小题,合计30分.请写出必要的文字说明和解题步骤)
15.(满分6分)已知:如图,E、F是平行四边形ABCD的对角线AC上的两点,AE=CF.
求证:FB∥DE.
16.(满分6分)如图,菱形ABCD中,对角线AC、BD相交于点O,BD=8,tan∠ABD=
4
3
.
求菱形ABCD的周长.
第16题图
第15题图
17.(满分8分)矩形ABCD中,AC为对角线,AC的中垂线交BC于E,交AD于F.(1)求证:四边形AECF为菱形;
(2)若AB=4,BC=8,求AE的长.
18.(满分10分)探究证明:
(1)如图1,正方形ABCD中,点M、N分别在边BC、CD上,AM⊥BN.求证:BN=AM;
(2)如图2,矩形ABCD中,点M在BC上,EF⊥AM,EF分别交AB、CD于点E、F.
求证:
AB
BC
AM
EF

(3)如图3,四边形ABCD中,∠ABC=90°,AB=AD=10,BC=CD=5,AM⊥DN,点M、
N分别在边BC、AB上,求
AM
DN
的值.
第17题图。

相关文档
最新文档