条件概率与独立事件 (1)
条件概率独立
条件概率独立条件概率和独立事件是概率论中的两个重要概念。
在实际应用中,我们常常需要针对某个条件下发生的事件计算概率,而条件概率就为我们提供了一种有效的工具。
而独立事件则是指两个事件之间的关系,这些事件之间互相独立发生,即一个事件的发生不会对另一个事件的发生产生影响。
下面我们将详细介绍条件概率和独立事件的相关内容。
在概率论中,条件概率是指一个事件在满足某个条件下的发生概率。
设A,B为两个事件,P(A)表示A的概率,P(B)表示B的概率,P(A|B)表示在B条件下A的概率。
根据概率的定义,我们可以得到以下公式:P(A|B) = P(AB) / P(B)其中,P(AB)表示A和B同时发生的概率,即交集的概率。
条件概率的计算方法可以通过树形图或者贝叶斯公式计算。
在实际应用中,条件概率通常用于处理具有先后顺序的事件,或者遇到一些限制条件时,以便更精细地描述发生事件的概率。
例如,假设A表示某个人生病,B表示这个人体内含有病毒A,C表示这个人体内含有病毒B,则P(A|B)表示在体内含有病毒A的条件下,这个人生病的概率。
P(A|C)表示在体内含有病毒B的条件下,这个人生病的概率。
这些条件概率在医学领域、生物领域等实际应用中有重要的意义。
独立事件在概率论中,独立事件是指两个事件之间没有影响关系,即一个事件的发生不会影响另一个事件的发生。
具体地说,如果事件A和事件B满足以下条件,则称事件A和事件B 是独立的:(1)P(A|B) = P(A),即B的发生与A的发生概率无关;如果事件A和B不满足独立条件,则称事件A和事件B是相关的。
在实际应用中,独立事件具有非常重要的应用价值。
在进行概率计算时,如果能够确定事件之间的独立性,那么可以大大简化计算的复杂度。
此外,对于一些求解难度较高的问题,如多重条件概率等,通过独立性的假设,可以将这些问题转化为多个单一条件概率的计算,从而更加简便明了。
例如,假设A表示抛掷一枚硬币出现正面,B表示抛掷一枚骰子出现3点,我们可以通过数学推导得到:由此可见,事件A和事件B是独立的。
概率与统计中的独立事件与条件概率
概率与统计中的独立事件与条件概率概率与统计是一门研究事物发生概率和规律的学科,独立事件和条件概率是其中的两个重要概念。
独立事件指的是两个或多个事件之间互不影响,而条件概率则是在已知某个事件发生的前提下,另一个事件发生的概率。
以下将对概率与统计中的独立事件和条件概率进行详细阐述。
一、独立事件独立事件是指两个或多个事件之间没有相互影响的情况。
在概率与统计中,我们用P(A)表示事件A发生的概率,P(B)表示事件B发生的概率。
如果两个事件A和B相互独立,那么事件A和B同时发生的概率就等于事件A发生的概率乘以事件B发生的概率,即P(A∩B) = P(A) × P(B)。
例如,假设有一枚公平的硬币,掷硬币的结果有两个可能性,正面和反面,分别记为事件A和事件B。
如果事件A表示掷硬币结果为正面的概率,事件B表示掷硬币结果为反面的概率,那么根据独立事件的定义,我们可以得到P(A∩B) = P(A) × P(B) = 1/2 × 1/2 = 1/4,即事件A和事件B同时发生的概率为1/4。
二、条件概率条件概率是在已知某个事件发生的条件下,另一个事件发生的概率。
条件概率用P(A|B)表示,读作“在事件B发生的条件下,事件A发生的概率”。
条件概率的计算公式为P(A|B) = P(A∩B)/P(B)。
举例来说,假设有一批产品,其中10%的产品有缺陷,现在随机抽取一件产品,事件A表示这件产品有缺陷,事件B表示这件产品是某个特定品牌的产品。
如果已知这件产品是该品牌的产品,我们想要知道它有缺陷的概率,即求解P(A|B)。
根据条件概率的定义,我们可以通过计算P(A∩B)/P(B)来得到答案。
假设该品牌的产品有总体占比为20%,即P(B) = 0.2。
又已知有缺陷的产品占总体的10%,即P(A∩B) = 0.1,将这些数据代入条件概率的计算公式,我们可以得到P(A|B) = P(A∩B)/P(B) = 0.1/0.2 = 0.5。
概率的条件与独立事件
概率的条件与独立事件概率是数学中一个重要的概念,用于衡量事件发生的可能性。
在概率理论中,条件概率和独立事件是两个关键概念。
本文将介绍条件概率和独立事件的概念和计算方法,并探讨它们在实际生活和统计学中的应用。
一、条件概率条件概率是指在某些已知条件下,另一个事件发生的概率。
在数学中,条件概率可以用以下公式表示:P(A|B) = P(A∩B) / P(B)其中,P(A|B)表示在事件B发生的情况下,事件A发生的概率;P(A∩B)表示事件A和B同时发生的概率;P(B)表示事件B发生的概率。
条件概率的计算可以通过具体问题进行实例化。
例如,假设有一个盒子,里面有20个红球和30个蓝球。
从中随机选取一个球,如果我们已经知道选中的球是红球,那么选中下一个红球的概率是多少?解答:已知选中的球是红球,表示在已经选中红球的前提下,再次选中红球的概率。
因此,事件A表示第一次选中红球,事件B表示第二次选中红球。
根据条件概率的定义,我们可以计算如下:P(A|B) = P(A∩B) / P(B)P(A|B) = (20/50) / (20/50)P(A|B) = 20/50P(A|B) = 0.4从上述计算可以看出,在已知选中的球是红球的情况下,再次选中红球的概率为0.4。
二、独立事件独立事件是指两个或多个事件之间不会相互影响的事件。
当两个事件A和B是独立事件时,它们的概率计算可以简化为乘法原理:P(A∩B) = P(A) * P(B)例如,假设有一副标准扑克牌,从中随机抽取两张牌,第一张是A,第二张是K。
如果我们已经知道第一张是A,那么第二张是K的概率是多少?解答:已知第一张牌是A,表示在已经知道第一张牌是A的前提下,第二张牌是K的概率。
根据独立事件的定义,我们可以计算如下:P(A∩B) = P(A) * P(B)P(A∩B) = (4/52) * (4/51)P(A∩B) = 1/663从上述计算可以看出,在已知第一张牌是A的情况下,第二张牌是K的概率为1/663。
概率与统计中的事件独立性与条件概率
概率与统计中的事件独立性与条件概率概率与统计是数学中的一个重要分支,用于研究随机现象和不确定性问题。
在概率与统计的基础概念中,事件的独立性与条件概率是两个核心概念。
本文将对这两个概念进行详细解释,并探讨它们在实际问题中的应用。
一、事件的独立性在概率与统计中,事件的独立性是指两个或多个事件之间的关联程度。
如果两个事件A和B相互独立,意味着事件A的发生与否不会对事件B的发生概率产生影响,反之亦然。
换句话说,事件A和B的发生概率是相互独立的,它们之间不存在任何关联。
为了判断两个事件A和B是否相互独立,可以通过下列公式进行计算:P(A∩B) = P(A) × P(B)其中,P(A∩B)表示事件A和B同时发生的概率,P(A)和P(B)分别表示事件A和B发生的概率。
如果上式成立,则事件A和B相互独立;如果不成立,则事件A和B不相互独立。
事件的独立性在实际问题中具有广泛的应用。
例如,假设有一批产品,每个产品的质量合格的概率为0.9。
如果从该批产品中随机选取两个产品,事件A表示第一个产品质量合格,事件B表示第二个产品质量合格。
根据事件的独立性,我们可以通过计算概率来判断同时选中两个质量合格产品的概率。
二、条件概率条件概率是指在已知某个事件发生的条件下,另一个事件发生的概率。
条件概率通常用P(B|A)表示,其中P(B|A)表示在事件A发生的条件下,事件B发生的概率。
条件概率的计算公式为:P(B|A) = P(A∩B) / P(A)其中,P(A∩B)表示事件A和B同时发生的概率,P(A)表示事件A发生的概率。
通过计算条件概率,我们可以得出在某种条件下发生某个事件的概率。
条件概率在实际问题中非常有用。
例如,假设有一个班级,其中40%的学生会参加音乐比赛,30%的学生参加体育比赛。
如果我们知道某个学生参加了音乐比赛,那么他参加体育比赛的概率是多少?根据条件概率的计算公式,我们可以得出这个概率。
三、事件独立性与条件概率的关系事件的独立性与条件概率密切相关。
事件的独立性与条件概率
事件的独立性与条件概率事件的独立性与条件概率是概率论中非常重要的概念,它们的理解与应用在各个领域都具有广泛的意义。
在本文中,我将探讨事件的独立性和条件概率的概念及其关系。
一、事件的独立性事件的独立性是指两个或多个事件之间的发生与否互不影响。
换句话说,当两个或多个事件独立发生时,它们的概率乘积等于它们各自发生的概率之积。
以掷硬币为例,假设我们掷两枚硬币,事件A表示第一枚硬币为正面,事件B表示第二枚硬币为正面。
如果两个事件相互独立,那么P(A∩B) = P(A)×P(B)。
也就是说,第一枚硬币为正面的概率与第二枚硬币为正面的概率乘积等于两枚硬币都为正面的概率。
二、条件概率条件概率是在已知一个或多个事件发生的条件下,另一个事件发生的概率。
通常表示为P(A|B),表示在事件B发生的条件下,事件A发生的概率。
仍以掷硬币为例,事件A表示第一枚硬币为正面,事件B表示两枚硬币都为正面。
如果已知第一枚硬币为正面,即事件A已经发生,那么事件B的概率会发生变化,变成了P(B|A)。
这时,我们可以用条件概率的公式计算出P(B|A)。
三、事件的独立性与条件概率的关系事件的独立性与条件概率有着密切的关系。
当两个事件A和B是相互独立的时候,P(A|B) = P(A),也就是说,当事件B已经发生的情况下,事件A发生的概率与事件B未发生时的概率相等。
反过来讲,如果已知事件B发生,且P(A|B) = P(A),那么事件A 与事件B就是相互独立的。
因此,可以通过条件概率的计算来判断事件之间的独立性。
四、应用举例事件的独立性与条件概率在实际应用中有许多重要的应用。
以下是几个常见的应用场景:1. 疾病诊断:在医学领域,独立性与条件概率可以用于判断多个疾病的共同发生概率。
例如,根据患者的症状,通过条件概率可以计算出某种疾病的患病概率。
2. 金融风险评估:在金融领域,独立性与条件概率可以用于评估投资组合的风险。
通过将不同资产之间的独立性与条件概率应用到投资组合的构建中,可以更准确地评估风险和收益。
事件的相互独立性与条件概率
TANJIUHEXINTIXING
探究核心题型
题型一 条件概率
例1 (1)某公司为方便员工停车,租了6个停车位,编号如图所示.公司规
定:每个车位只能停一辆车,每个员工只允许占用一个停车位.记事件A
为“员工小王的车停在编号为奇数的车位上”,事件B为“员工小李的
车停在编号为偶数的车位上”,则P(A|B)等于
思维升华
求相互独立事件同时发生的概率的方法 (1)相互独立事件同时发生的概率等于他们各自发生的概率 之积. (2)当正面计算较复杂或难以入手时,可从其对立事件入手 计算.
跟踪训练2 溺水、触电等与学生安全有关的问题越来越受到社会的关注
和重视,为了普及安全教育,某市组织了一次学生安全知识竞赛,规定
条件下,第二次拿到红球的概率为
√ 3
1
3
2
A.10 B.3 C.8 D.9
设A={甲第一次拿到白球}, B={甲第二次拿到红球}, 则 P(AB)=AA12A21013=115,P(A)=CC11120=15, 所以 P(B|A)=PPAAB=13.
思维升华
求条件概率的常用方法 (1)定义法:P(B|A)=PPAAB . (2)样本点法:P(B|A)=nAB .
判断下列结论是否正确(请在括号中打“√”或“×”)
(1)对于任意两个事件,公式P(AB)=P(A)P(B)都成立.( × ) (2)若事件A,B相互独立,则P(B|A)=P(B).( √ )
(3)抛掷2枚质地均匀的硬币,“第一枚为正面”为事件A,“第2枚为正
面”为事件B,则A,B相互独立.( √ )
第十章
考试要求
1.了解两个事件相互独立的含义. 2.理解随机事件的独立性和条件概率的关系,会利用全概率公式计算概率.
条件概率与独立事件例题和知识点总结
条件概率与独立事件例题和知识点总结在概率论中,条件概率和独立事件是两个非常重要的概念。
理解它们对于解决各种概率问题至关重要。
接下来,让我们通过一些具体的例题来深入理解这两个概念,并对相关知识点进行总结。
一、条件概率条件概率是指在事件 B 已经发生的条件下,事件 A 发生的概率,记作 P(A|B)。
其计算公式为:P(A|B) = P(AB) / P(B) (其中 P(AB) 表示事件 A 和事件 B 同时发生的概率)例题 1:一个盒子里有 5 个红球和 3 个白球。
先从中随机取出一个球,不放回,再取一个球。
已知第一次取出的是红球,求第二次取出红球的概率。
解析:第一次取出红球后,盒子里剩下 4 个红球和 3 个白球。
此时总球数为 7 个。
所以第二次取出红球的概率为 4/7。
知识点总结:1、条件概率的本质是在新的信息(即已知某个事件发生)的基础上,重新评估另一个事件发生的可能性。
2、计算条件概率时,要先确定已知条件所限制的样本空间,再计算在这个新样本空间中目标事件发生的概率。
二、独立事件如果事件 A 的发生不影响事件 B 发生的概率,事件 B 的发生也不影响事件 A 发生的概率,那么事件 A 和事件 B 称为相互独立事件。
即P(A|B) = P(A) 且 P(B|A) = P(B) 。
例题 2:掷一枚质地均匀的骰子两次,设事件 A =“第一次掷出的点数是1”,事件 B =“第二次掷出的点数是2”,判断事件 A 和事件 B是否独立。
解析:因为第一次掷骰子的结果不影响第二次掷骰子的结果,所以P(B|A) = P(B) = 1/6 ,P(A) = 1/6 ,满足独立事件的条件,所以事件A 和事件B 是独立事件。
知识点总结:1、独立事件的判断关键在于看一个事件的发生是否会改变另一个事件发生的概率。
2、对于两个独立事件 A 和 B ,它们同时发生的概率为 P(AB) =P(A)×P(B) 。
三、条件概率与独立事件的综合例题例题 3:一个家庭有两个孩子,已知其中一个是女孩,求另一个也是女孩的概率。
概率与统计中的独立事件和条件概率
概率与统计中的独立事件和条件概率概率与统计是现代数学的一个重要分支,主要研究事件发生的可能性和规律性。
其中,独立事件和条件概率是概率与统计中的两个基本概念,它们在实际应用中具有重要的意义。
本文将对独立事件和条件概率进行详细介绍和解释。
一、独立事件独立事件指的是两个或多个事件之间相互不影响的情况。
具体来说,若事件A和事件B的发生与对方无关,即事件A的发生概率不受事件B的发生与否的影响,事件B的发生概率也不受事件A的发生与否的影响,那么事件A和事件B就是独立事件。
独立事件的特性有两个重要的方面:互不影响和乘法法则。
互不影响指的是独立事件之间的发生与否不会相互影响。
比如,用点数来表示掷骰子的结果,事件A表示掷得点数为偶数,事件B表示掷得点数为奇数。
显然,事件A的发生与否与事件B的发生与否是互不影响的。
乘法法则是独立事件的核心原则。
根据乘法法则,如果事件A 和事件B是独立事件,那么事件A和事件B同时发生的概率等于事件A发生的概率乘以事件B发生的概率。
数学上可以表示为P(A∩B) = P(A) × P(B)。
二、条件概率条件概率是指在某个条件下的事件发生的概率。
具体来说,对于事件A和事件B,当已知事件B发生的条件下,事件A发生的概率即为条件概率。
条件概率的计算需要用到贝叶斯定理。
根据贝叶斯定理,对于事件A和事件B,P(A|B)表示在事件B已经发生的条件下,事件A发生的概率。
具体计算方式为:P(A|B) = P(A∩B) / P(B)其中,P(A∩B)表示事件A和事件B同时发生的概率,P(B)表示事件B发生的概率。
条件概率的应用广泛,例如在医学诊断中,根据某些症状判断患者是否患有某种疾病;在信息检索中,根据用户的查询条件给出相关的搜索结果等。
条件概率可以帮助我们更准确地做出判断和预测。
三、独立事件和条件概率的关系独立事件和条件概率之间存在一定的关系。
当事件A和事件B是独立事件时,条件概率P(A|B)等于事件A的概率P(A)。
条件概率与独立事件
条件概率与独立事件条件概率和独立事件是概率论中的重要概念,它们在许多实际问题的建模和分析中发挥着重要的作用。
本文将详细介绍条件概率和独立事件,探讨它们的定义、性质和应用。
一、条件概率的定义和性质条件概率是指在一个事件发生的条件下,另一个事件发生的概率。
设A、B为两个事件,且P(B)>0,则事件A在事件B发生的条件下发生的概率记作P(A|B),其定义为P(A|B)=P(A∩B)/P(B)。
针对条件概率,有以下两个重要性质:1. 乘法公式:对于两个事件A、B,有P(A∩B)=P(B)×P(A|B)。
这个公式可以从条件概率的定义中推导出来,对于事件A同时发生且B发生的概率,等于B先发生的概率乘以在B发生的条件下A发生的概率。
2. 全概率公式:对于一组互斥事件B1、B2、...、Bn,它们构成了一个样本空间的划分,即B1∪B2∪...∪Bn=Ω(Ω表示样本空间)。
则对于事件A,有P(A)=P(A|B1)×P(B1)+P(A|B2)×P(B2)+...+P(A|Bn)×P(Bn)。
全概率公式的作用在于利用条件概率进行事件概率的计算。
二、独立事件的定义和性质独立事件是指两个事件发生与否互不影响的事件。
设A、B为两个事件,如果P(A|B)=P(A),则称事件A与事件B相互独立。
同理,如果P(B|A)=P(B),也可以认为事件A与事件B相互独立。
独立事件有以下重要性质:1. 事件的独立性是一个对称的概念,即A与B独立等价于B与A独立。
2. 如果事件A与事件B相互独立,那么事件A与事件B的补集A'与B的补集B'也相互独立。
3. 如果事件A与事件B相互独立,那么事件A与B的并集A∪B的概率等于事件A的概率与事件B的概率之和减去事件A与B的交集的概率,即P(A∪B)=P(A)+P(B)-P(A∩B)。
三、条件概率和独立事件的应用条件概率和独立事件在实际问题中有着广泛的应用,例如医学诊断、网络安全、金融风险评估等领域。
条件概率与独立事件
条件概率与独立事件【要点梳理】要点一:条件概率1.概念设A 、B 为两个事件,求已知B 发生的条件下,A 发生的概率,称为B 发生时A 发生的条件概率,记为()|P A B ,读作:事件B 发生的条件下A 发生的概率。
要点诠释:我们用韦恩图能更好的理解条件概率,如图,我们将封闭图形的面积理解为相应事件的概率,那么由条件概率的概率,我们仅局限于B 事件这个范围来考察A 事件发生的概率,几何直观上,()|P A B 相当于B 在A 内的那部分(即事件AB )在A中所占的比例。
2.公式.要点诠释:(1)对于古典(几何)概型的题目,可采用缩减样本空间的办法计算条件概率: 古典概型:(|)AB P A B B =包含的基本事件数包含的基本事件数,即()()card (|)card AB P AB B =; 几何概型:(|)AB P A B B =的测度的测度. (2)公式()(|)()P AB P A B P B =揭示了()P B 、()|P AB 、()P AB 的关系,常常用于知二求一,即要熟练应用它的变形公式如,若()P B >0,则()()()=|P AB P A P B A ,该式称为概率的乘法公式.(3)类似地,当()0P A >时,A 发生时B 发生的条件概率为:()()()|=P AB P B A P A .3. 性质(1)非负性:()|0P A B ≥;(2)规范性:()|=1P B Ω(其中Ω为样本空间);(3)可列可加性:若两个事件A 、B 互斥,则()()()+||+|P A B C P A C P B C =.4.概率()P A |B 与()P AB 的联系与区别: 当()0P B >时,()()()|=P A B P A B P B .联系:事件A ,B 都发生了。
区别:①在()|P A B 中,事件A ,B 发生有时间上的差异,事件B 先发生,事件A 后发生;在()P AB 中,事件A ,B 同时发生;②基本事件空间不同在()|P A B 中,事件B 成为基本事件空间,即()()card (|)card AB P ABB =;在()P AB 中,基本事件空间保持不变,仍为原基本事件空间,即()()card ()card AB P AB =Ω。
概率的条件与独立事件
概率的条件与独立事件概率是数学中的一个分支,用于研究随机事件发生的可能性。
在概率理论中,条件和独立事件是两个重要的概念。
本文将详细探讨概率的条件和独立事件,以及它们在实际生活中的应用。
1. 条件概率条件概率是指在已知某个事件发生的条件下,另一个事件发生的概率。
设A、B为两个事件,P(A|B)表示在事件B发生的条件下事件A 发生的概率。
条件概率的计算公式如下:P(A|B) = P(A∩B) / P(B)其中,P(A∩B)表示事件A和事件B同时发生的概率,P(B)表示事件B发生的概率。
条件概率的应用十分广泛。
例如,在医学诊断中,医生根据病人的症状判断某种疾病的概率就是条件概率;在市场调查中,根据消费者的不同特征,预测其购买某种产品的概率也是条件概率的应用之一。
2. 独立事件独立事件是指两个或多个事件之间相互不影响的事件。
设A、B为两个事件,如果P(A|B) = P(A),则称事件A和事件B是独立事件。
换句话说,如果事件B的发生与事件A的发生无关,那么这两个事件就是独立事件。
独立事件在现实生活中也有很多应用。
例如,投掷一个标准的骰子,每个面出现的概率都是相等的,因此连续投掷两次,第一次投掷结果不会对第二次投掷结果产生影响,这就是独立事件的应用之一。
3. 条件独立事件条件独立事件是指在已知某个事件发生的条件下,另外两个事件是相互独立的事件。
设A、B、C为三个事件,如果P(A∩B|C) = P(A|C) × P(B|C),则称事件A和事件B在事件C的条件下是独立的。
对于条件独立事件来说,假设C事件发生的情况下,事件A和事件B之间的独立性保持不变。
条件独立事件在统计学和机器学习中有广泛的应用,例如朴素贝叶斯分类器是基于条件独立事件假设的。
4. 应用案例为了更好地理解条件和独立事件的概念以及其应用,我们举一个实际的例子。
假设某公司的销售记录表明,在晴天的情况下,销售手机的概率为0.8;而在雨天的情况下,销售手机的概率为0.3。
条件概率与独立事件(一)
问题4:怎样计算B发生时A发生的概率?
A
B
例1 在5道题中有3道理科题和2道文科题.如果不 放回地依次抽取2道题,求: (1)第1次抽到理科题的概率; (2)第1次和第2次都抽到理科题的概率; (3)在第1次抽到理科题的条件下,第2次抽到理科 题的概率.
跟踪训练1 一个盒子中有6个白球、4个黑球,每 次从中不放回地任取 1个,连取两次,求第一次取 到白球的条件下,第二次取到黑球的概率. 例2 一张储蓄卡的密码共有6位数字,每位数字 都可从0~9中任选一个.某人在银行自动提款机 上取钱时,忘记了密码的最后一位数字,求: (1)任意按最后一位数字,不超过2次就按对的概 率; (2)如果他记得密码的最后一位是偶数,不超过2 次就按对的概率.
选修2-3 第二章 概率
条件概率与独立事件(一)
问题一:3张奖券中只有一张能中奖,现分别由3名 同学无放回地抽取,问最后一名同学抽到中奖奖券 的概率是否比其他同学小?
问题二:如果已知第一名同学没有抽到中奖奖券, 那么最后一名同学抽到奖券的概率是多少?
条件概率
问题三:100件产品中有93件产品的长度合格,90 件产品的质量合格,85件产品的长度和质量都合格。 现在任取一件产品,若已知它的质量合格,那么它,从20道题中随机抽取 6 道题,若考生至少能答对其中的 4 道即可通过; 若至少能答对其中 5道就获得优秀.已知某考生能 答对其中 10 道题,并且知道他在这次考试中已经 通过,求他获得优秀成绩的概率.
条件概率及互相独立事件-高考数学知识点
条件概率及互相独立事件-高考数学知识点条件概率及互相独立事件一、条件概率
条件概率是一种带有附加条件的概率。
是指若事件A与事件B是相依事件,即事件A的概率随事件B是否发生而变化,同样,事件B的概率与随事件A是否发生而变化,则在事件A已发生的条件下,事件B出现的概率称为事件B的条件概率。
条件概率就是事件 A 在另外一个事件 B 已经发生条件下的发生概率。
条件概率表示为P(A|B),读作“在 B 条件下 A 的概率”。
P(A|B)=P(AB)/P(B),P(B|A)=P(AB)/P(A)
二、独立事件
相互独立事件: 事件A(或B)是否发生对事件B(A)发生的概率没有影响,这样的两个事件叫做相互独立事件。
三、热定预测
预测高考可能会对独立事件的概率、n次独立事件的概率、n次独立重复试验的概率、二项分布重点考察。
解答题仍会保持中等难度,分值约为10分。
条件概率与互相独立事件在高二的课程中就已经还是涉及。
概率计算中的事件独立与条件概率
概率计算中的事件独立与条件概率概率计算是数学中重要的分支之一,它研究的是随机事件发生的可能性。
在概率计算中,有两个重要的概念,即事件独立和条件概率。
本文将介绍这两个概念及其在概率计算中的应用。
一、事件独立在概率计算中,事件独立是指两个或多个事件之间的发生并不相互影响的性质。
具体地说,如果事件A和事件B是独立的,那么事件A的发生与否并不会影响事件B的发生概率,反之亦然。
数学上,事件A和事件B的独立性可以通过以下公式表示:P(A∩B) = P(A) × P(B)其中,P(A)表示事件A的发生概率,P(B)表示事件B的发生概率,P(A∩B)表示事件A和事件B同时发生的概率。
事件独立的概念在实际应用中有很大的意义。
例如,在投掷一枚硬币的情境中,事件A表示硬币正面朝上,事件B表示硬币反面朝上。
由于硬币的正反面朝上是相互独立的,所以投掷硬币正反面的概率都是1/2。
二、条件概率条件概率是指在已知某一事件发生的条件下,另一个事件发生的概率。
数学上,事件A在事件B发生的条件下的概率可以表示为P(A|B),读作“B发生的条件下A的概率”。
条件概率的计算可以通过以下公式求解:P(A|B) = P(A∩B) / P(B)其中,P(A∩B)表示事件A和事件B同时发生的概率,P(B)表示事件B的发生概率。
条件概率的概念在许多实际问题中具有重要意义。
例如,在一副扑克牌中,事件A表示从中抽出一张红色的牌,事件B表示从中抽出一张大王。
已知事件B发生的条件下,事件A发生的概率可以通过计算红色牌中大王的比例得出。
三、事件独立与条件概率的关系事件独立和条件概率之间存在一定的联系。
如果事件A和事件B是独立的,那么条件概率P(A|B)等于事件A的发生概率P(A),反之亦然。
数学上,可以通过以下公式表示独立事件的条件概率:P(A|B) = P(A)这一关系表明,当事件A和事件B相互独立时,事件B的发生并不会对事件A发生的概率产生影响。
概率论中的条件概率与独立性
概率论中的条件概率与独立性概率论是数学中的一个重要分支,研究随机事件发生的规律及其可能性大小。
在概率论中,条件概率与独立性是两个基本概念,它们在解决实际问题中起着重要作用。
一、条件概率条件概率是指在已知事件B发生的条件下,事件A发生的概率。
用P(A|B)表示事件A在事件B发生的条件下发生的概率。
条件概率的计算公式为:P(A|B) = P(A∩B) / P(B)其中,P(A∩B)表示事件A与事件B同时发生的概率,P(B)表示事件B发生的概率。
条件概率的计算方法可以通过实际问题进行理解。
例如,某班级中男生占总人数的60%,女生占总人数的40%。
已知某学生是男生的条件下,他退学的概率为5%;已知某学生是女生的条件下,她退学的概率为8%。
现在要求某个学生退学的概率,可根据条件概率公式计算:P(退学) = P(退学|男生) * P(男生) + P(退学|女生) * P(女生)= 0.05 * 0.6 + 0.08 * 0.4= 0.03 + 0.032= 0.062因此,某学生退学的概率为6.2%。
二、独立性独立性是指两个事件A和B,事件A的发生与否不会对事件B的发生产生影响,反之亦然。
如果事件A和事件B相互独立,那么它们的概率满足以下条件:P(A∩B) = P(A) * P(B)即事件A和事件B同时发生的概率等于事件A发生的概率乘以事件B发生的概率。
独立性的概念在实际问题中应用广泛。
例如,某班级中有60%的学生喜欢音乐,40%的学生喜欢运动。
已知某学生喜欢音乐的条件下,他喜欢运动的概率为50%;已知某学生喜欢运动的条件下,他喜欢音乐的概率为40%。
现在要求某学生既喜欢音乐又喜欢运动的概率,可根据独立性的概念计算:P(音乐∩运动) = P(音乐) * P(运动)= 0.6 * 0.4= 0.24因此,某学生既喜欢音乐又喜欢运动的概率为24%。
三、条件概率与独立性的关系条件概率与独立性是概率论中两个重要的概念,它们之间存在一定的关系。
第三讲 条件概率与独立事件
90 89 10 0.0826 100 99 98
许昌学院数学科学学院
12页
第三讲 条件概率与独立事件
例4:(罐子模型)设罐中有b个黑球,r个红球,每 次随机取出一个球,取出后将原球放回,还加进c 个同色球和d个异色球.记 Bi=“第i次取出的是 Rj 黑球”, =“第j次取出的是红球”.若连续从 罐中取出三个球,其中有两个红球,一个黑球, 则由乘法公式得
P( B1 R2 R3 ) P( B1 ) P( R2 B1 ) P ( R3 B1R2 )
b rd r d c b r b r c d b r 2c 2d
许昌学院数学科学学院
13页
第三讲 条件概率与独立事件
P( R1 B2 R3 ) P( R1 ) P( B2 R1 ) P ( R3 R1B2 )
许昌学院数学科学学院
20页
第三讲 条件概率与独立事件
由全概率公式可得 P(是)=P(白球)P(是1白球)+P(红球)P(是1红球) 由于 P(是)=已知 P(红球)=已知 P(白球)=已知 P(是1白球)=已知 故P(是1红球)可得。
许昌学院数学科学学院
21页
第三讲 条件概率与独立事件
1.4
性质4
贝叶斯公式
若事件B1, B2 , ··, Bn是样本空间的一个分割, ·· ·· 且P(A)>0, P(Bi)>0,则
P( Bi | A) P( Bi ) P( A | Bi )
P( B j ) P( A | B j ) j 1
许昌学院数学科学学院
n
条件概率与独立事件
85 85 100 P( A B) 90 90 P(B)
100
概括 求B发生的条件下,A发生的概率,称为B发
生时A发生的条件概率,记为 P( A B)。
当 P(B) 0 时,P( A B) P( A B) ,其中,
P( B)
A B 可记为 AB 。 类似地 P(A) 0 时,P(B A) P( AB) 。 P(A)
若A的发生与B的发生互不影响,称A、B相互 独立。A、B同时发生的概率:P( AB) P( A)P(B)
对于n个相互独立的事件 A1 , A2 , , An ,
则有 P( A1 A2 An ) P( A1 )P( A2 ) P( An )
例2. 甲、乙二人各进行1次射击比赛,如果2人击中目标的概率 都是0.6,计算: (1) 2 人都击中目标的概率; (2)其中恰有1人击中目标的概率; (3)至少有一人击中目标的概率。
思考讨论:
将一枚均匀硬币掷4次,有人认为:“第一次出现 正面,第二次出现反面,第三次出现正面,第四次出 现反面” 发生的概率比 “第四次出现正面” 的概率大, 你认为这种说法正确么??
小结
* 条件概率:
当事件B发生时,事件A发生的概率:
*
当 P(B) 0 时,P( A B) 独立事件的概率:
P( A B) 。 P( B)
概念 符号
互斥事件
不可能同时发生 的两个事件叫做 互斥事件.
相互独立事件
如果事件A(或B)是 否发生对事件B(或A) 发生的概率没有影响, 这样的两个事件叫做 相互独立事件 .
互斥事件A、B中 有一个发生,记 作A+B
相互独立事件A、B同 时发生记作 A ·B
计算公式 P(A+B)=P(A)+P(B) P(A·B)= P(A)·P(B)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
用A表示"取出牌“Q”",用B表示"取出的是红桃",是
P( AB) 1 P( A B ) P( B ) 13
4 1 我们知道52张牌中有4个Q ,所以: P( A) 52 13 易看出此时: 说明事件B的发生 P( A B) P( A) 不影响A的发生
而此时有:
P( AB ) P( A) P( B )
练习1.判断下列给出的每对事件,(1)是否为互斥 事件,(2)是否为对立事件,并说明理由.
从40张扑克牌(红桃、黑桃、方块、梅花,点数从1到10各4张) 中任取1张: (1)“抽出红桃”与“抽出黑桃”; (2)“抽出红色牌”与“抽出黑色牌”; (3)“抽出的牌点数为5的倍数”与“抽出的牌点数大于9”.
关于条件概率的计Байду номын сангаас, 往往采 用如下两种方法:(1) 在缩减的 样本空间上直接计算。(2) 利用 公式计算。
B
0.56 0.7
A
概率 P( A B ) 与 P( AB )的区别与联系
联系:事件 A , B 都发生了。 区别:
B 先 A 后;而在 P( AB ) 中,事件 A, B 同时发生。
(2)样本空间不同,在 P( A B ) 中,事件 B 成为样本 空间;在 P( AB )中,样本空间为所有事件的总和。 因而有
1 2 n 1 2 n
思考讨论:
将一枚均匀硬币掷4次,有人认为:“第一次出现
正面,第二次出现反面,第三次出现正面,第四次出
现反面” 发生的概率比 “第四次出现正面” 的概率大,
你认为这种说法正确么??
小结
* 条件概率: 当事件B发生时,事件A发生的概率: P( A B ) 当 P( B ) 0 时,P( A B ) 。 P( B ) * 独立事件的概率: 若A的发生与B的发生互不影响,称A、B相互 独立。A、B同时发生的概率:P( AB ) P( A) P( B ) 对于n个相互独立的事件 A1 , A 2 , , A n , 则有 P( A1 A2 An ) P( A1 ) P( A2 ) P( An )
解:
(1)是互斥事件 (2)是互斥事件 (3)不是互斥事件
不是对立事件 是对立事件 不是对立事件
Back
所以对立事件一定是互斥事件,而互斥事件不一定是对立事件.
1.3事件的并:
由事件A和B至少有一个发生(A发生,或B发生,或A、B都 发生)所构成的事件C,称为事件A与B的并事件(或和事件) 记作C=A∪B(或C=A+B).事件A∪B是由事件A或B所包含的 基本事件所组成的集合. 如图中阴影部分所表示的就是A∪B.
C.0.97 D.0.96
B.0.98
4.某射手射击一次击中10环、9环、8环的概率分别0.3,0.3,0.2, 那么他射击一次不够8环的概率是 0.2 。 5.某射手在一次射击中射中10环、9环、8环、7环、7环以下的概 率分别为0.24、0.28、0.19、0.16、0.13.计算这个射手在一次 射击中: 0.52 (1)射中10环或9环的概率; (2)至少射中7环的概率; 0.87 (3)射中环数不足8环的概率. 0.29
概括
求B发生的条件下,A发生的概率,称为B发
P( A B ) ,其中, P( B )
生时A发生的条件概率,记为 P( A B)。 当 P( B ) 0 时, P( A B )
A B 可记为 AB 。
P( AB) 类似地 P( A ) 0 时, P( B A) 。 P( A )
对立事件与互斥事 件
对立事件: 如果“事件A与B满足: A∩B=φ 且 A B Ω 则称事件A与B互为 对立事件。 又称互为逆事件. 互斥事件:
如果“事件A与B在一次试验中不能同时 发生”,即A∩B=φ,则称事件A与B互为互斥 事件。又称互不相容事件
例题选讲:
1:判断下列给出的事件是否为互斥事 件, 是否为对立事件,并说明道理. 从40张扑克牌(红桃,黑桃,方块,梅花点 数从1~10各10张)中,任取一张. (1)”抽出红桃”与”抽出黑桃”; (2)”抽出红色牌”与”抽出黑色牌” (3)”抽出牌点数为5的倍数”与”抽出 的牌点数大于9”.
1.2对立事件:
若A∩B为不可能事件,A∪B为必然事件,那么称事件A与 事件B互为对立事件,事件A的对立事件记作: A ,这里
BA
例如:抛掷一颗骰子,观察掷出的点数.设事件A为“出现 奇数点”,事件B为“出现偶数点”. A∩B为不可能事件,A∪B为必然事件,所以事件A和B互为 对立事件 问:互为对立的两个事件一定是互斥事件吗? 是
P(C)=P(A)+P(B)=1/2 (2)C与D也是互斥事件,又由于C∪D为必然事件,所以C 与D互为对立事件,所以
P(D)=1-P(C)=1/2
三、巩固练习
1 1 1.甲、乙2人下棋,下成和棋的概率是 ,乙获胜的概率是 3 2
则甲不胜的概率是(
B)
1 A. 2
5 B. 6
1 C. 6
2 D. 3
1.1互斥事件
一、基本概念
问题1:抛掷一颗骰子,观察掷出的点数.设事件A 为“出现奇数点”,B为“出现2点”.事件A和事 不可能同时发生 件B可以同时发生吗?
我们把不可能同时发生的两个事件A、B叫做互斥事 件.(或互不相容事件). 我们知道任何事件都可以看成是由基本事件为元素构 成的集合,如果A、B互斥,则A B _____ 事件A、B互斥 集合A、B的交为空集 判断
2.抽查10件产品,设事件A:至少有两件次品,则A的对立事件为 (
B)
A.至多两件次品 B.至多一件次品
C.至多两件正品
D.至少两件正品
3.某产品分甲、乙、丙三级,其中乙、丙两级均属次品,若生产中
出现乙级品的概率为0.03、丙级品的概率为0.01,则对成品抽查
一件抽得正品的概率为( A.0.09
D)
例2. 甲、乙二人各进行1次射击比赛,如果2人击中目标的概率
都是0.6,计算:
(1) 2 人都击中目标的概率;
(2)其中恰有1人击中目标的概率;
(3)至少有一人击中目标的概率。
互斥事件 概念
不可能同时发生 的两个事件叫做 互斥事件.
相互独立事件
A发生时B发生的概率
1.某种动物出生之后活到20岁的概率为0.7, 活到25岁的概率为0.56,求现年为20岁的这种 动物活到25岁的概率。 解 设A表示“活到20岁”(即≥20),B表示 “活到25岁” (即≥25) 则 P( A) 0.7, P(B) 0.56
P( AB) P( B) 0.8 所求概率为 P( B A) P( A) P( A)
① 篮球比赛的“罚球两次”中, 事件A:第一次罚球,球进了; 事件B:第二次罚球,球进了。
② 在三月份的月考较量中,
事件A:同学甲获得第一名;
事件B:同学乙获得第一名。
③ 袋中有三个红球,两个白球,采取不放回的取球, 事件A:第一次从中任取一个球是白球; 事件B:第二次从中任取一个球是白球。 ④ 甲坛子里有 3 个红球, 2 个黄球,乙坛子里也有 3
知它的质量合格,那么它的
长度合格的概率是多少?
分析:
在集合中,“都”代表着“交”,则A、 B同时发生为A∩B。 {产品的长度合格} A=
B={产品的质量合格}
100个产品中有93个产品的长度合格,90个产 品的质量合格,85个产品的长度、质量都合格。现 在任取一个产品,若已知它的质量合格,那么它的 长度合格的概率是多少? A∩B={产品的长度、质量都合格}
P( AB ) P( A) P( B ) 0.4 0.4 0.16
推广: 前面讨论了两个相互独立事件的概率公式,
若 A 、B 相互独立,则有 P( AB ) P( A) P( B )
事实上,对于多个独立事件,公式也是成立的。 对于n个相互独立的事件 A1 , A 2 , , A n , 则有 P( A A A ) P( A ) P( A ) P( A )
Ω的基本事件总数n=6,事件A、B、A∪B的基本事件数分 别为1,3,4. 1 3 4 2 P( A) , P( B) , P( A B) 6 6 6 3
即:P( A B) P( A) P( B)
大量实验证实,上述公式对任意两个互斥事件A、B都 成立.即:
P( A B) P( A) P( B)
任取一个产品,已知它的质量合格(即B发生), 则它的长度合格(即A发生)的概率是 85 。 90 考虑: 这个概率与事件A、B的概率有什么关系么?
93 90 85 P( A) , P( B) , P( A B) 由已知可得: 100 100 100
容易发现:
85 85 100 P( A B ) 90 90 P( B ) 100
(1)在 P( A B ) 中,事件 A , B发生有时间上的差异,
P( A B ) P( AB )
问题2: 从一副扑克牌(去掉大小王)中随机抽取1张,
否可以利用P ( B ), P ( AB ) 来计算 P( A B ) ??
13 1 分析: 剩余的52张牌中,有13张红桃,则 P( B ) 52 4 52张牌中红桃Q只有1张,则 P( AB ) 1 52 由条件概率公式知,当取出牌是红桃时为Q的概率为:
知识回顾 1.古典概型的概念
1)试验的所有可能结果(即基本事件)只 有有限个,每次试验只出现其中的一个结 果;2)每一个结果出现的可能性相同。
2.古典概型的概率公式
事件A包含的可能结果数 m P( A) 试验的所有可能结果 n
问题1:
100个产品中有93个产品的长度合格,90 个产品的质量合格,85个产品的长度、 质量都合格。现在任取一个产品,若已