2019届江苏省句容市九年级上学期期中学情分析考试数学试卷【含答案及解析】

合集下载

江苏省句容市二中片区合作共同体2019届九年级上学期第一次学情测试数学试题

江苏省句容市二中片区合作共同体2019届九年级上学期第一次学情测试数学试题

九年级数学学科阶段调研试卷(考试时间120分钟,试卷总分120分)一、填空题:(本大题共12题,每题2分,共24分) 1.一元二次方程x 2﹣x=0的根是 .2.一个等腰三角形的两条边长分别是方程x 2—7 x +10=0的两个根,则该等腰三角形的周长是 . 3.写一个你喜欢的实数n 的值 ,使关于x 的一元二次方程24=0x x n -+有两个不相等的实数根.4.若m 是方程2x 2﹣3x ﹣1=0的一个根,则6m 2﹣9m+2015的值为 . 5.若2222()(2)3a b a b ++-=,则22a b += .6.若,m n 是一元二次方程x 2-2 x -8=0的两根,则+m n = .7.在⊙O 中,直径AB =4,弦CD ⊥AB 于P ,OPCD 的长为 .8.如图,在直角坐标系中,点A 、B 、C 的坐标分别为(0,6)、(8,6)、(0,﹣2),则△ABC 外接圆的圆心坐标为___________.9.某公司在商场购买某种比赛服装,商店经理给出了如下优惠条件:如果一次性购买10件,单价为80元:如果一次性购买多于10件,那么每增加1件,购买的所有服装的单价降价2元,但单价不得低于50元,按此优惠条件,该公司一次性购买这种比赛服装x 件(10<x ≤25), 则单价为_____________元. 10.如图,已知过A 、C 、D 三点的圆的圆心为E ,过B 、E 、F 三点的圆的圆心为D ,如果∠ABC =24°,那么∠A= °.11.若关于x 的一元二次方程2210x x --=的一个实数根是,则代数式2272m m --的值等于 .F(第10题图)(第17题图)二、选择题:(本大题共6题,每题3分,共18分)13.某市2015年旅游收入为2亿元. 2017年旅游收入达到2.88亿元,则该市2016年、2017年旅游收入的年平均增长率为( )A .2%B .4.4%C .20%D .44%14.关于x 的一元二次方程(k+1)x 2﹣x+1=0有两个实数根,则整数k 的最大值是( )A .1B .0C .﹣1D .﹣215.若⊙O 的半径为10 cm ,且两平行弦AC ,BD 的长分别为12 cm ,16 cm ,则两弦间的距离是( ) A. 2 cm B. 14 cm C. 2 cm 或14 cm D. 6 cm 或8 cm16.下列命题中正确的个数是( )个. ①相等的弦所对的圆心角相等,②圆是中心对称图形,③相等的圆心角所对的弧相等,④相等的弦所对的弧相等,⑤△ABC 中,AB=AC ,BC=8,△ABC 的外接圆的圆心O 到BC 的距离OD=3,则△ABC 的面积为32.A . 1B .2C .3D .417.如图,在一次函数5+-=x y 的图象上取点P ,作P A ⊥轴于A ,P B ⊥轴于B ,O 为坐标原点,且矩形O A P B 的面积为6,则这样的点P 共有( )个.A .1B .2C .3D .4 18.如图,已知函数3y x =与k y x =的图像在第一象限交于点A (m,y 1),点B (m+1,y 2)在ky x=的图像上,且点B 在以O 点为圆心,OA 为半径的⊙O 上,则k 的值为( ). A .34B .1C .32D .2三、解答题:(本大题共9题,共78分) 19.解方程:(本题16分,每小题4分)(1)2(1)2x -= ; (2)212+270x x -=;(3)2+4+10x x -= ; (4)(x ﹣2)(x ﹣4)=3.20.(本题6分)已知关于的方程2220x mx m ++-=的一个根为3,求的值及另一个根.21.(本题6分)如图,在⊙O 中,D 、E 分别是半径OA 、OB 的中点,C 是»AB 上一点,CD=CE.(1)求证:»AC =»BC;22.(本题6分)如图,破残的圆形轮片上,弦AB 的垂直平分线交»AB 于点C ,交弦AB 于点.已知12AB =cm , 4CD = c m.(1)求作此残片所在的圆;(不写作法,保留作图痕迹) (2)求(1)中所作圆的半径.23.(本题6分)已知关于 x 的一元二次方程 x 2 +( m −3)x − 3m = 0 (1)求证:该方程有两个实数根;(2)若该方程的两个实数根1x 、2x 满足221225x x +=,求 m 的值.24.(本题6分)某商品进价为20元/千克,售价不低于24元/千克,且不超过32元/千克,根据销售情况,发现该商品一天的销售量y (千克)与该天的售价x (元/千克)满足如下表所示的一次函数关系.25.(本题8分)阅读材料:各类方程的解法求解一元二次方程,把它转化为两个一元一次方程来解.求解分式方程,把它转化为整式方程来解,由于“去分母”可能产生增根,所以解分式方程必须检验.各类方程的解法不尽相同,但是它们有一个共同的基本数学思想“转化”,把未知转化为已知.用“转化”的数学思想,我们还可以解一些新的方程.例如,一元三次方程x 3﹣x 2﹣2 x =0,可以通过因式分解把它转化为x (x 2﹣x ﹣2)=0,解方程x =0和x 2﹣x ﹣2=0,可得方程 x 3﹣x 2﹣2 x =0的解.(1)问题:方程x 3﹣x 2﹣2 x =0的解是x 1=0,x 2= ,x 3= ;(2x =的解.26.(本题12分)如图,一次函数y=k x ﹣2(k ≠0)的图象与y 轴交于点A ,与反比例函数3y x =(x >0)的图象交于点B (3,b ).点C 是线段AB 上的动点(与点A 、B 不重合),过点C 且平行于y 轴的直线CD 交这个反比例函数的图象于点D ,O 为坐标原点. (1) 求△OCD 面积为32时,点D 的坐标;(2)求△OCD 面积的最大值;(3)当△OCD 面积最大时,以点O 为圆心,r 为半径画⊙O ,是否存在r 的值,使得A 、B 、C 、D 四个点中恰好有2个在圆内,如果存在,求出r 的取值范围,如果不存在,请说明理由.27.(本题12分)如图,⊙O 的半径为r,点A 为⊙O 上一动点,平行四边形OACB 中,已知25OB r =-,将△OAB 沿AB 翻折至△O ’AB.(1) 若点O ’与点C 重合,则点B 与⊙O 的位置关系是____________, 此时r=___________. (2)连结O ’C.① 若O ’C=5,△AO’C 是直角三角形,求r 的值; ② 若点O ’在⊙O 上,求∠AO ’C 的度数.九年级数学参考答案及评分 一 、填空题(每题2分,共24分)1. 1x =0, 2x =12.123. 不唯一,如04.20185. 36.27. (4,2) 9.(100-2x)或 []802(10)x -- 10. 54° 11.4 12. 916y y xx==或二 选择题(每题3分,共18分)三,解答题(共7819.解方程:(本题16分,每小题4分)(1)2(1)2x -= ; (2)212+270x x -=;1x =, 2x = 1x =3, 2x =9 (3)2+4+10x x -= ; (4)(x ﹣2)(x ﹣4)=3.1x =, 2x =1x =1, 2x =5 20.(本题6分)=﹣1,另一个根为﹣1 (各3分) 21.(本题6分)(2)OA=2(各3分,(2)未证明∠CDO=90∘扣2分) 22.(本题6分) (各3分) 半径为13223.(本题6分)(各3分) m=±424.(本题6分)一次函数关系为:y=-x+50 1分列出方程:(-x+50)(x-20)=200 3分 解得 1x =30, 2x =40 5分售价为30元 6分 25.(本题8分)(1)x 2=2,x 3=-1;(每空2分,共4分) (2)x 2﹣3x ﹣4=0 6分1x =4, 2x =-1 7分 x =4 8分26.(本题12分)(1)点D 的坐标为(2,1.5) 4分 (2)△OCD 面积的最大值为2 . 8分 (3)存在,2r <分27.(本题12分)(1)位置关系是点在⊙O 上,此时r=5. (如图1) 每空2分,共4分 (2)③ 求r 的值;若∠O’A C=90∘,(如图2) , r=4 共6分 若∠AO’ C=90∘,(如图3) , r=203共8分若∠AO’ C 若∠AO’ C=90∘,无解 共9分 以上不画图不扣分④ ∠AO ’C 的度数为30∘. (如图4或图5选一种说明即可,未证明AB//O ’C ,扣2分)共12分图2图3图5。

2019届九年级上学期期中联考数学试题(附答案)

2019届九年级上学期期中联考数学试题(附答案)

九年级数学期中测试(试卷总分150分 测试时间120分钟)一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,恰有一项是符合题目要求的,请将正确选项的字母代号填涂在答题卡相应位置.......上) 1. 下列手机手势解锁图案中,是中心对称图形的是( )A B C D 2.下列方程中是关于x 的一元二次方程的是( )A .210x x+= B . 20ax bx c ++= C .(1)(2)0x x --=D .222322(1)x x x +=+-3.如图,在⊙O 中,∠ABC=50°,则∠AOC 等于( ) A .50° B .80° C .90° D .100°4.如图1,将△AOB 绕点O 按逆时针方向旋转48°后得到△A ′OB ′,若∠AOB=18°,则∠AOB ′的度数是( )A .24°B .30°C .38°D .48°5.如图2,在方格纸中,△ABC 经过变换得到△DEF ,正确的变换是( ) A .把△ABC 绕点C 逆时针方向旋转90°,再向下平移2格图1 图图2 图OCBAB.把△ABC绕点C顺时针方向旋转90°,再向下平移5格C.把△ABC向下平移4格,再绕点C逆时针方向旋转180°D.把△ABC向下平移5格,再绕点C顺时针方向旋转180°6.关于方程285(2)95x-=的两根,则下列叙述正确的是()A.一根小于1,另一根大于3 B.一根小于-2,另一根大于2C.两根都小于0 D.两根都大于27. 已知(-1,y1),(-2,y2),(-4,y3)是抛物线y=-2x2-8x+m上的点,则( ) A.y1<y2<y3B.y3<y2<y1C.y3<y1<y2D.y2<y3<y18.已知⊙O的半径为1,点P到圆心O的距离为d,若抛物线22=-+与x轴有两个不y x x d同的交点,则点P().A.在⊙O的内部B.在⊙O的外部C.在⊙O上D.无法确定9.在同一坐标系中一次函数y=ax﹣b和二次函数y=ax2+bx的图象可能为()A.B.C.D.10.如图所示,已知二次函数y=ax2+bx+c的图象与x轴交于A、B两点,与y轴交于点C对称轴为直线x=1.直线y=﹣x+c与抛物线y=ax2+bx+c交于C、D两点,D点在x轴下方且横坐标小于3,则下列结论:①2a+b+c>0;②a﹣b+c<0;③x(ax+b)≤a+b;④a<﹣1.其中正确的有()A.4个B.3个C.2个D.1个二、填空题(本大题共8小题,每小题3分,共24分.不需写出解答过程,请把答案直接填写在答题卡相应位置.......上)11.平面直角坐标系中,点A(-3,5)关于原点对称点的坐标为_______12 已知一个多边形的每一个内角都等于144°,则这个多边形的边数是_______13. 设m,n是一元二次方程x2+2x-7=0的两个根,则m2+3m+n=_______.14.用一个圆心角为120°,半径为4的扇形作一个圆锥的侧面,这个圆锥的底面圆的半径是______15. 已知函数2-2-3y x x =,当-1x a ≤≤时,函数的最小值是-4,则实数a 的取值范围是 . 16.如图,⊙O 的直径AB 长为10,弦AC 的长为6,∠ACB 的角平分线交⊙O 于D ,则CD 长为 .17.如图,等边三角形OAB 的边长为2,P 是线段OA 上任意一点(不含端点O ,A ),过O 、P 两点的抛物线和过A ,P 两点的抛物线的顶点分别在OB ,AB 上,则这两个二次函数的最大值之和等于 .18.二次函数y=x 2的图象如图所示,自原点开始依次向上作内角为60度、120度的菱形(其中两个顶点在抛物线上另两个顶点在y 轴上,相邻的菱形在y 轴上有一个公共点),则第2018个菱形的周长= . 三、解答题(本大题共10小题,共96分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤) 19.解方程(10分)(1)22)52()2(+=-x x (2) x x 7322=+ (用配方法解)20.(9分) 已知:△ABC 在坐标平面内,三个顶点的坐标分别为A (0,3),B (3,4),C (2,2).(正方形网格中,每个小正方形的边长是1个单位长度)(1)画出△ABC 向下平移4个单位,再向左平移1个单位得到的△A 1B 1C 1,并直接写出C 1点的坐标;(2)画出△ABC 绕点A 顺时针方向旋转90°后得到的△A 2B 2C 2,并直接写出C 2点的坐标. (3)请求出(2)中△ABC 旋转过程中 所扫过的面积为_______21.(8分)已知关于x 的一元二次方程x 2-2(m +1)x +m 2+5=0有两个不相等的实数根. (1)求m 的取值范围;(2)若原方程的两个实数根为x 1,x 2,且满足x 21+x 22=|x 1|+|x 2|+2x 1x 2,求m 的值.22.(8分)如图,在平面直角坐标系xOy 中,边长为2的正方形OABC 的顶点A 、C 分别在x 轴的正半轴和y 轴的负半轴上,二次函数223y x bx c =++的图象经过B 、C 两点.(1)求该二次函数的解析式;(2)结合函数的图象探索:当y>0时,x 的取值范围.23. (8分)如图,AB 是⊙O 的直径,弦CD ⊥AB 于点E ,AM 是△ACD 的外角∠DAF 的平分线. (1)求证:AM 是⊙O 的切线;(2)若∠D=60°,AD=2,射线CO 与AM 交于N 点,求ON 的长.24. (10分)在Rt △ABC 中,∠ACB=90°,AC=BC=D 是斜边AB 上一动点(点D 与点A 、B 不重合),连接CD ,将CD 绕点C 顺时针旋转90°得到CE ,连接AE ,DE . (1)求△ADE 的周长的最小值; (2)若CD=4,求AE 的长度.25. (10分) 如图,AB 是⊙O 的直径,弧ED=弧BD ,连接ED 、BD ,延长AE 交BD 的延长线于点M ,过点D 作⊙O 的切线交AB 的延长线于点C. (1)若OA =CD =22,求阴影部分的面积; (2)求证:DE =DM.26.(10分)某商品的进价为每件40元,如果售价为每件50元,每个月可卖出210件;如果售价超过50元但不超过80元,每件商品的售价每上涨1元,则每个月少卖1件;如果售价超过80元后,若再涨价,则每涨1元每月少卖3件.设每件商品的售价为x 元,每个月的销售量为y 件.(1)求y 与x 的函数关系式并直接写出自变量x 的取值范围; (2)设每月的销售利润为W ,请直接写出W 与x 的函数关系式;(3)每件商品的售价定为多少元时,每个月可获得最大利润?最大的月利润是多少元?27.(10分)对于平面直角坐标系xOy 中的点P ,给出如下定义:记点P 到x 轴的距离为1d ,到y 轴的距离为2d ,若12d d ≤,则称1d 为点P 的“引力值”;若12d d >,则称2d 为点P 的“引力值”.特别地,若点P 在坐标轴上,则点P 的“引力值”为0.例如,点P (2-,3)到x 轴的距离为3,到y 轴的距离为2,因为23<,所以点P 的“引力值”为2.(1)①点A (1,4-)的“引力值”为________;②若点B (a ,3)的“引力值”为2,则a 的值为_ (2)若点C 在直线24y x =-+上,且点C 的“引力值”为2,求点C 的坐标;(3)已知点M 是以D (3,4)为圆心,半径为2的圆上的一个动点,那么点M 的“引力值”d 的取值范围是______.28.(13分)如图1,抛物线y=ax 2+bx+c 经过点A (-4,0),B (1,0),C (0,3),点P 在抛物线y=ax 2+bx+c 上,且在x 轴的上方,点P 的横坐标记为t . (1)求抛物线的解析式;(2)如图2,过点P 作y 轴的平行线交直线AC 于点M ,交x 轴于点N ,若MC 平分∠PMO ,求t 的值;(3)点D 在直线AC 上,点E 在y 轴上,且位于点C 的上方,那么在抛物线上是否存在点P ,使得以点C ,D ,E ,P 为顶点的四边形是菱形?若存在,请求出该菱形的面积;若不存在,请说明理由.图1图2备用图九年级数学期中考试参考答案一、选择题:1.B2.C3.D4.B5.B6.A7.C8.A9.C 10.A 二、填空题:11.(3,-5) 12. 10 13. 5 14. 4315. a ≥116. 717. . 18. 8072三、解答题: 19.(5+5)(1)-1 , -7 (2)12,3 20. 解:(本题9分)(1)(1+2分)如图所示,△A 1B 1C 1即为所求;由图可知,点C 1点的坐标为(1,﹣2);(2)(1+2分)如图所示,△A 2B 2C 2即为所求,其中C 2(﹣1,1). (3) (3分)5522π+ 21. 解:(本题8分)(1)Δ=8m -16>0,得m >2.(3分)(2)x 1+x 2=2(m +1),x 1·x 2=m 2+5.∵m >2,∴x 1+x 2>0,x 1·x 2>0,∴x 1>0,x 2>0.∵x 21+x 22=(x 1+x 2)2-2x 1·x 2=|x 1|+|x 2|+2x 1x 2,∴4(m +1)2-2(m 2+5)=2(m +1)+2(m2+5),即6m -18=0,解得m =3.(5分)22. (本题8分)解:(1)由题意得B (2,−2),C (0,−2) 代入223y x bx c =++得 82232b c c ⎧++=-⎪⎨⎪=-⎩,解得432b c ⎧=-⎪⎨⎪=-⎩∴二次函数的解析式为224233y x x =--;(4分)(2)令y=0,得2242033x x --=,解得x 1=−1,x 2=3, 结合图象可知:当x <−1或x >3时,y >0. (8分)23. (本题8分) 解:(1)∵AB 是⊙O 的直径,弦CD ⊥AB 于点E , ∴AB 垂直平分CD , ∴AC =AD ,∴∠BAD =∠CAD ,∵AM 是△ACD 的外角∠DAF 的平分线,∴∠DAM =∠F AD ,∴∠BAM =(∠CAD +∠F AD )=90°, ∴AB ⊥AM ,∴AM 是⊙O 的切线;(4分) (2)∵AC =AD ,∠D =60°, ∴△ACD 是等边三角形,∴CD =AD =2,∴CG =DG =1,∴OC =OA =,∵∠3=∠4=30°,∴ON =2OA =.(4分)24.(本小题10分)解:(1)证明△ACE ≌△BCD (过程略) ∴AE =BD过点C 作CF ⊥AB 于点F在Rt △CDF 中,DF当CD ⊥AB 时,CD 最短,等于3,此时DE=∴△ADE 的周长的最小值是6+ (5分)(2)点D 在CF 的右侧,AE =BD=点D 在CF 的左侧,AE =BD(5分) 25. (本题10分)(1)解:连接OD∵CD 是⊙O 切线∴OD ⊥CD ∵OA =CD =22 OA =OD ∴OD =CD =22∴△OCD 为等腰直角三角形 ∠DOC =∠C =45°ABCDEFS阴影=S△OCD-S扇OBDx#k#b#1π-=4(5分)(2)方法一证明:连接AD.∵AB是⊙O直径∴∠ADB=∠ADM= 90°又∵ED=BD∴ED=BD ∠MAD=∠BAD∴△AMD≌△ABD∴DM=BD∴DE=DM.方法二证明:连接BE.∵AB是⊙O直径∴∠AEB=90°∴∠MEB=90°∴∠DEM+∠BED=90°∠M+∠MBE=90°又∵ED=BD∴∠DBE=∠BED∴∠DEM=∠M∴DE=DM. (5分)26.解:(本题10分)(2分)(1)当50≤x≤80时,y=210﹣(x﹣50),即y=260﹣x,当80<x<140时,y=210﹣(80﹣50)﹣3(x﹣80),即y=420﹣3x.则,(2)(4分)由利润=(售价﹣成本)×销售量可以列出函数关系式w=﹣x2+300x﹣10400(50≤x≤80)w=﹣3x2+540x﹣16800(80<x<140),(3)(4分)当50≤x≤80时,w=﹣x2+300x﹣10400,⌒⌒⌒⌒()36022452222212⨯-⨯⨯=π当x=80有最大值,最大值为7200,当80<x<140时,w=﹣3x2+540x﹣16800,当x=90时,有最大值,最大值为7500,故售价定为90元.利润最大为7500元.27.(本题10分)(1)(1+2分) ①1, ②2±; (2)解:设点C 的坐标为(x ,y ).由于点C 的“引力值”为2,则2x =或2y =,即2x =±,或2y =±. 当2x =时,240y x =-+=,此时点C 的“引力值”为0,舍去; 当2x =-时,248y x =-+=,此时C 点坐标为(-2,8);当2y =时,242x -+=,解得1x =,此时点C 的“引力值”为1,舍去; 当2y =-时,242x -+=-,3x =,此时C 点坐标为(3,-2); 综上所述,点C 的坐标为(2-,8)或(3,2-) (4分) (3)712d ≤≤……………(3分) 注:答对一边给2分;两端数值正确,少等号给2分;一端数值正确且少等号给1分.28.(本小题满分13分) (1)一般式:239344y x x =--+ 、交点式3(4)(1)4y x x =-+- 都可以…………4分 (2) ∵MC 平分∠ PMO ∴∠PMC =∠CMO ∵PN ∥OC ∴∠PMC =∠MCO ∴∠CMO =∠MCO ∴OM =OC …………6分 直线AC 的解析式334y x =+ 点M 的坐标为(t ,334t +) …………7分在Rt △MNO 中,t 2+(334t +)2=32,解这个方程得 t= 7225- …9分(3)两种情况,图2第一种情况以CE 为边,此时CD =DP ,求出t =73-,PD =3512,菱形的面积24536…11分第二种情况以CE 为对角线,点P 与点D 关于y 轴对称,P (t ,239344t t --+),则点D 的坐标(—t ,239344t t --+)代入解析式y =334x +,t =-2,菱形的面积6. …13分备用图图1。

2019九年级上期中数学试卷含解析

2019九年级上期中数学试卷含解析

2021-2021 年九年级上期中数学试卷含答案解析一、选择题〔本大题共8 小题,每题3 分,共 24 分.每题所给的四个选项,只有一个符合题意,请将正确答案的序号填入答题纸的相应表格中〕1.以下方程为一元二次方程的是〔 〕A . ax 2﹣bx+c=0 〔 a 、b 、 c 为常数〕B . x 〔 x+3〕 =x 2﹣1C . x 〔 x ﹣ 2〕 =3D . x 2+ +1=02.圆是轴对称图形,它的对称轴有〔〕A .1 条B .2 条C .3 条D .无数条3.关于 x 的一元二次方程 x 2﹣2ax ﹣ 1=0〔其中 a 为常数〕的根的情况是〔 〕A .有两个不相等的实数根B .可能有实数根,也可能没有C .有两个相等的实数根D .没有实数根及方差 S 24.甲、乙、丙、丁四名射击运发动参加射击预选赛,他们射击成绩的平均环数以下表所示:甲 乙 丙 丁 S 289981假设要选出一个成绩较好且状态牢固的运发动去参赛,那么应选运发动〔〕A .甲B .乙C .丙D .丁5.如图, △ ABC 内接于⊙ O , OD ⊥BC 于 D ,∠ A=50 °,那么∠ OCD 的度数是〔〕A . 40°B . 45°C . 50°D . 60°6.股票每天的涨、 跌幅均不能够高出 10%,即当涨了原价的10%后,便不能够再涨, 叫做涨停;当跌了原价的 10% 后,便不能够再跌,叫做跌停.一只股票某天跌停,此后两节气间又 涨回到原价.假设这两天此股票股价的平均增添率为x ,那么 x 满足的方程是〔 〕 A .〔 1+x 〕 2=B .〔 1+x 〕 2=C . 1+2x=D .1+2x=2222〕 =8 2 2的值为〔 〕7.〔 x +y +1〕〔x +y +3 ,那么 x +y A .﹣5或 1 B .5或﹣1 C .5 D . 18.如图,直线y= x ﹣3 与 x 轴、 y 轴分别交于 A 、 B 两点, P 是以 C 〔 0, 1〕为圆心,1 为半径的圆上一动点,连接PA 、 PB .那么 △ PAB 面积的最大值是〔〕A .8B .12C .D .二、填空题〔本大题共有 10 小题,每题3 分,共 30 分.不需写出解答过程,请把答案直接写在答题纸相应地址上〕9.一元二次方程〔 x ﹣ 2.1〕 =4 的解为10.某班七个兴趣小组人数分别为 4, 4,5 , x , 6, 6, 7.这组数据的平均数是 5,那么这组数据的方差是.11.假设矩形 ABCD 的两邻边长分别为一元二次方程 x 2﹣ 6x+4=0 的两个实数根, 那么矩形ABCD 的周长为 .12.直角三角形的两直角边分别为 5, 12,那么它的外接圆半径 R= .13.假设非零实数a 、b 、c 满足 4a ﹣ 2b+c=0,那么关于 x 的一元二次方程 ax 2+bx+c=0 必然有一个根为.14.边长为 1cm 的正六边形面积等于cm 2.15.直径为 10cm 的⊙ O 中,弦 AB=5cm ,那么弦 AB 所对的圆周角是 .16.圆锥的母线长为 30,侧面张开后所得扇形的圆心角为 120°,那么该圆锥的底面半径 为 . 17.一块 △ABC 余料, AB=8cm , BC=15cm , AC=17cm ,现将余料裁剪成一个圆形材 料,那么该圆的最大面积是.18.如图,⊙ O 的半径为 2, AB , CD 是互相垂直的两条直径,点 与 A ,B , C , D 不重合〕,过点 P 作 PM ⊥ AB 于点 M ,PN ⊥CD点,当点 P 沿着圆周转过 45°时,点 Q 走过的路径长为P 是⊙ O 上任意一点〔 P 于点 N ,点 Q 是MN 的中.三 .解答题〔本大题共 10 小题,共 96 分,解答时应写出文字说明、证明过程或演算步骤〕 19.解以下方程( 1〕 3x 2﹣ 2x ﹣ 1=0( 2〕 x 2﹣ 5x+3=0 〔用配方法解〕20.先化简,再求值:〔﹣〕÷,其中,a是方程x2+3x+1=0的根.21.:关于 x 的方程 4x 2﹣〔 k+2 〕x+k ﹣ 3=0.〔1〕求证:无论 k 取何值时,方程总有两个不相等实数根;〔2〕试说明无论 k 取何值,方程都不存在有一根x=1 的情况.22.某学习小组想认识南京市 “迎青奥 〞健身活动的张开情况, 准备采用以下检查方式中的一 种进行检查: ① 从一个社区随机采用 200 名居民; ② 从一个城镇的不同样住处楼中随机采用 200 名居民; ③ 从该市公安局户籍管理处随机抽取 200 名城乡居民作为检查对象.〔1〕在上述检查方式中,你认为最合理的是〔填序号〕;( 2〕由一种比较合理的检查方式所获取的数据制成了以以下图的频数分布直方图,请直接写出这 200 名居民健身时间的众数、中位数;( 3〕小明在求这 200 名居民每人健身时间的平均数时,他是这样解析的:小明的解析正确吗?若是不正确,央求出正确的平均数; 〔4〕假设我市有800 万人,估计我市每天锻炼 2 小时及以上的人数是多少?23.如图,在平面直角坐标系中,网格中小正方形的边长为 1 个单位长度,过格点A ,B ,C 作一圆弧.〔1〕请写出该圆弧所在圆的圆心D 的坐标;〔2〕过点 B 画一条直线,使它与该圆弧相切〔保存作图过程中的印迹〕 ;〔3〕假设画出该圆弧所在圆,那么在整个平面直角坐标系网格中共经过个格点.24.如图,在 △ ABC 中, AB=AC ,以 AC 为直径的⊙ O 交 AB 于点 D ,交 BC 于点 E .( 1〕求证: BE=CE ;( 2〕假设 BD=2 , BE=3 ,求 AC 的长.25.如图,点 B 、C 、D 都在⊙ O 上,过 C 点作 CA ∥ BD 交 OD 的延长线于点∠B= ∠A=30 °, BD=2 .A ,连接BC ,( 1〕求证: AC 是⊙ O 的切线;( 2〕求由线段 AC 、 AD 与弧 CD 所围成的阴影局部的面积. 〔结果保存 π〕26.如图, 为美化校园环境,某校方案在一块长为 60 米,宽为 40 米的长方形空地上修建一 个长方形花园,并将花园四周余下的空地修建成同样宽的通道,设通道宽为 a 米. 〔1〕用含 a 的式子表示花园的面积;〔2〕若是通道所占面积是整个长方形空地面积的,求出此时通道的宽;( 3〕假设按上述要求施工,同时校长希望长方形花园的形状与原长方形空地的形状相似,聪颖的你想一想能不能够满足校长的要求?假设能,求出此时通道的宽;假设不能够,那么说明原由.27.如图 1,在平面直角坐标系 xoy 中, M 是 x 轴正半轴上一点, ⊙ M 与 x 轴的正半轴交于 A ,B 两点, A 在 B 的左侧,且 OA , OB 的长是方程 x 2﹣12x+27=0 的两根, ON 是⊙ M 的切线, N为切点, N 在第四象限.( 1〕求⊙ M 的直径的长.( 2〕如图 2,将 △ONM 沿 ON 翻转 180°至 △ ONG ,求证 △ OMG 是等边三角形.( 3〕求直线 ON 的解析式.28.⊙ O 的半径为2,∠ AOB=120 °.〔1〕点 O 到弦 AB 的距离为;.(2〕假设点 P 为优弧 AB 上一动点〔点 P 不与 A 、B 重合〕,设∠ ABP= α,将△ABP 沿 BP 折叠,获取 A 点的对称点为 A ′;①假设∠α=30 °,试判断点 A ′与⊙ O 的地址关系;②假设 BA ′与⊙ O 相切于 B 点,求 BP 的长;③假设线段 BA ′与优弧 APB 只有一个公共点,直接写出α的取值范围.2021-2021 学年江苏省扬州市江都区七校联考九年级〔上〕期中数学试卷参照答案与试题解析一、选择题〔本大题共 8 小题,每题 3 分,共 24 分.每题所给的四个选项,只有一个吻合题意,请将正确答案的序号填入答题纸的相应表格中〕 1.以下方程为一元二次方程的是〔〕A . ax 2﹣bx+c=0 〔 a 、b 、 c 为常数〕B . x 〔 x+3〕 =x 2﹣1 C . x 〔 x ﹣ 2〕 =3 D . x 2+ +1=0【考点】 一元二次方程的定义.【解析】 依照一元二次方程必定满足四个条件: 〔 1〕未知数的最高次数是 2;〔 2〕二次项系数不为 0;〔 3〕是整式方程; 〔 4〕含有一个未知数进行考据可得答案.【解答】 解: A 、方程二次项系数可能为 0,故错误;B 、整理后不含 2 次项,故错误;C 、吻合一元二次方程的定义,正确;D 、不是整式方程,故错误. 应选 C .2.圆是轴对称图形,它的对称轴有〔 〕A .1 条B .2 条C .3 条D .无数条【考点】 生活中的轴对称现象.【解析】 依照圆的性质: 沿经过圆心的任何一条直线对折,圆的两局部都能重合, 即可获取经过圆心的任何一条直线都是圆的对称轴,据此即可判断. 【解答】 解:圆的对称轴是经过圆心的直线,有无数条. 应选 D .3.关于 x 的一元二次方程 x 2﹣2ax ﹣ 1=0〔其中 a 为常数〕的根的情况是〔 〕A .有两个不相等的实数根B .可能有实数根,也可能没有C .有两个相等的实数根D .没有实数根【考点】 根的鉴识式.2222>0,即 △ >0,然【解析】 先计算 △ =〔﹣ 2a 〕 ﹣4×〔﹣ 1〕=4a +4,由于 4a ≥0,那么 4a+4 后依照根的鉴识式的意义进行判断即可.22【解答】 解: △ =〔﹣ 2a 〕 ﹣ 4×〔﹣ 1〕 =4a +4 ,∴ 4a 2+4> 0,即 △ > 0,∴方程有两个不相等的实数根.应选 A .4.甲、乙、丙、丁四名射击运发动参加射击预选赛,他们射击成绩的平均环数及方差S 2以下表所示:甲 乙 丙 丁 S 2 89981假设要选出一个成绩较好且状态牢固的运发动去参赛,那么应选运发动〔〕A .甲B .乙C .丙D .丁【考点】 方差.【解析】 先比较平均数,乙丙的平均成绩好且相等,再比较方差即可解答.【解答】 解:由图可知,乙、丙的平均成绩好,22由于 S 乙 < S 丙 ,故丙的方差大,颠簸大.5.如图, △ ABC 内接于⊙ O , OD ⊥BC 于 D ,∠ A=50 °,那么∠ OCD 的度数是〔 〕A . 40°B . 45°C . 50°D . 60° 【考点】 圆周角定理;垂径定理.【解析】 第一连接 OB ,由在同圆或等圆中,同弧或等弧所对的圆周角等于这条弧所对的圆 心角的一半,即可求得∠ BOC 的度数,又由 OB=OC ,依照等边同等角的性质,即可求得∠OCD 的度数.【解答】 解:连接 OB , ∵∠ A=50 °,∴∠ BOC=2 ∠ A=100 °, ∵OB=OC ,∴∠ OCD= ∠ OBC==40 °.应选:A .6.股票每天的涨、 跌幅均不能够高出 10%,即当涨了原价的 10%后,便不能够再涨, 叫做涨停;当跌了原价的 10% 后,便不能够再跌,叫做跌停.一只股票某天跌停,此后两节气间又涨回到原价.假设这两天此股票股价的平均增添率为x ,那么 x 满足的方程是〔〕22D .1+2x=A .〔 1+x 〕 =B .〔 1+x 〕 =C . 1+2x=【考点】 由实责问题抽象出一元二次方程.【解析】 股票一次跌停就跌到原来价格的 90%,再从 90%的基础上涨到原来的价格,且涨幅只能 ≤10%,所以最少要经过两天的上涨才能够.设平均每天涨 x ,每天相关于前一天就上涨到 1+x .【解答】 解:设平均每天涨 x .2即〔 1+x 〕 2= ,应选 B .7.〔 x 2+y 2+1〕〔x 2+y 2+3〕 =8,那么 x 2+y 2的值为〔〕A .﹣5或 1B .5或﹣1C .5D . 1 【考点】 换元法解一元二次方程.【解析】 设 a=x 2+y 2,原方程变为〔 a+1〕〔 a+3〕 =8 ,进一步化为一般形式,利用因式分解 求得方程的解即可.【解答】 解:设 a=x 2+y 2,原方程变为〔 a+1〕〔 a+3〕 =8,整理得 a 2+4a ﹣5=0 ( a ﹣ 1〕〔 a+5〕 =0解得: a=1,或 a=﹣ 5,∵ x 2+y 2≥0,∴x 2+y 2=1.应选: D .8.如图,直线y= x ﹣3 与x 轴、 y轴分别交于 A 、B 两点, P 是以 C 〔 0, 1〕为圆心,1 为半径的圆上一动点,连接PA 、 PB .那么 △ PAB面积的最大值是〔〕A . 8B . 12C .D .【考点】 圆的综合题.【解析】 求出 A 、 B 的坐标,依照勾股定理求出AB ,求出点C 到AB 的距离,即可求出圆C 上点到AB 的最大距离,依照面积公式求出即可.【解答】 解:∵直线 y= x ﹣3 与x 轴、 y轴分别交于A 、B 两点,∴A点的坐标为〔4, 0〕,B 点的坐标为〔0,﹣ 3〕, 3x ﹣ 4y ﹣ 12=0 ,即 OA=4 , OB=3 ,由勾股定理得: AB=5 ,过 C 作 CM⊥AB 于 M,连接 AC,那么由三角形面积公式得:×AB ×CM=×OA×OC+×OA×OB,∴5×CM=4 ×1+3 ×4,∴C M= ,∴圆 C 上点到直线 y= x﹣3 的最大距离是1+=,∴△ PAB 面积的最大值是×5× =,应选: C.二、填空题〔本大题共有10 小题,每题 3 分,共 30分.不需写出解答过程,请把答案直接写在答题纸相应地址上〕9.一元二次方程〔 x﹣ 1〕2=4 的解为x1=3, x2=﹣1.【考点】解一元二次方程 -直接开平方法.【解析】依照直接开方法求一元二次方程的步骤先进行开方,获取两个一元一次方程,再分别求解即可.【解答】解:〔 x﹣ 1〕2=4,x﹣ 1=±2,x1=3 , x2=﹣1.故答案为: x1=3, x2=﹣ 1.10.某班七个兴趣小组人数分别为4, 4, 5, x, 6, 6, 7.这组数据的平均数是5,那么这组数据的方差是.【考点】方差;加权平均数.【解析】先由平均数的公式计算出x 的值,再依照方差的公式计算.【解答】解:∵这组数据的平均数是5,∴〔 4+4+5+x+6+6+7 〕÷7=5 ,解得: x=3那么这组数据的方差是:[2×〔4﹣ 5〕2+〔 5﹣ 5〕2+〔3﹣ 5〕2+2 ×〔 6﹣5〕2+〔 7﹣ 5〕2]=.故答案为:.11.假设矩形 ABCD 的两邻边长分别为一元二次方程 x2﹣ 6x+4=0 的两个实数根, 那么矩形ABCD的周长为 12 . 【考点】 根与系数的关系;矩形的性质.【解析】 利用根与系数的关系得出两根和为 6,即是矩形 ABCD 的两邻边长, 尔后利用周长计算公式求得答案即可.【解答】 解:∵设矩形 ABCD 的两邻边长分别为 α、 β是一元二次方程x 2﹣ 6x+4=0 的两个实数根, ∴α+β=6 ,∴矩形 ABCD 的周长为 6×2=12. 故答案为: 12 .12.直角三角形的两直角边分别为5,12,那么它的外接圆半径 R=6.5 .【考点】 三角形的外接圆与外心;勾股定理.【解析】 利用勾股定理能够求得该直角三角形的斜边长为 13,尔后由 “直角三角形的外接圆是以斜边中点为圆心,斜边长的一半为半径的圆 〞来求该直角三形外接圆半径. 【解答】 解:∵直角三角形的两条直角边分别为 5和 12,∴依照勾股定理知,该直角三角的斜边长为 =13;∴其外接圆半径长为; 故答案是: .13.假设非零实数 a 、 b 、 c 满足 4a ﹣ 2b+c=0,那么关于 x 的一元二次方程ax 2+bx+c=0 必然有一 个根为 x=﹣ 2 . 【考点】 一元二次方程的解.【解析】 把 x= ﹣ 2 代入方程 ax 2+bx+c=0 能得出 4a ﹣2b+c=0 ,即可得出答案.【解答】 解:当把 x=﹣ 2 代入方程 ax 2+bx+c=0 能得出 4a ﹣ 2b+c=0,即方程必然有一个根为 x= ﹣ 2,故答案为: x= ﹣ 2.14.边长为 1cm 的正六边形面积等于cm 2.【考点】 正多边形和圆.【解析】 求得边长是 1 的等边三角形的面积,正六边形的面积是等边三角形的面积的 6 倍,据此即可求解.【解答】 解:边长是 1 的等边三角形的面积是:,那么正六边形的面积是:×6=cm 2.故答案是:.15.直径为 10cm 的⊙ O 中,弦 AB=5cm ,那么弦 AB 所对的圆周角是 30°或 150° .【考点】 圆周角定理;含 30 度角的直角三角形;垂径定理.【解析】连接 OA 、 OB ,依照等边三角形的性质,求出∠AOB的度数,再依照圆周定理求出∠ C 的度数,再依照圆内接四边形的性质求出∠ D 的度数.【解答】解:连接 OA 、 OB,∵AB=OB=OA ,∴∠ AOB=60 °,∴∠ C=30°,∴∠ D=180 °﹣ 30°=150°.故答案为: 30°或 150°.16.圆锥的母线长为30,侧面张开后所得扇形的圆心角为120°,那么该圆锥的底面半径为10.【考点】弧长的计算.【解析】圆锥的母线长为30 即张开所得扇形半径是30,弧长是=20 π,圆锥的底面周长等于侧面张开图的扇形弧长,所以圆锥的底面周长是20π,设圆锥的底面半径是r,列出方程求解即可.【解答】解:弧长==20 π,依照圆锥的底面周长等于侧面张开图的扇形弧长得2πr=20 π,解得: r=10 .该圆锥的底面半径为10.17.一块△ABC 余料,AB=8cm , BC=15cm , AC=17cm ,现将余料裁剪成一个圆形材料,那么该圆的最大面积是9π .【考点】三角形的内切圆与内心.【解析】先利用勾股定理的逆定理证明△ABC 为直角三角形,尔后利用面积法求得圆的半径,最后利用圆的面积公式求解即可.【解答】解:∵ AB=8cm , BC=15cm , AC=17cm ,222∴AC =AB +BC .设△ ABC的内切圆的半径为r,那么,即.解得: r=3.∴圆的最大面积是9π.故答案为: 9π.18.如图,⊙ O 的半径为 2, AB , CD 是互相垂直的两条直径,点与 A ,B , C , D 不重合〕,过点 P 作 PM ⊥ AB 于点 M ,PN ⊥CDP 是⊙ O 上任意一点〔 P于点 N ,点 Q 是MN 的中点,当点P 沿着圆周转过45°时,点Q 走过的路径长为.【考点】 轨迹.【解析】 依照 OP 的长度不变,向来等于半径,那么依照矩形的性质可得 角度代入弧长公式即可.【解答】 解:∵ PM ⊥AB 于点 M ,PN ⊥CD 于点 N , ∴四边形 ONPM 是矩形, 又∵点 Q 为 MN 的中点,∴点 Q 为 OP 的中点,又 OP=2,那么 OQ=1 ,OQ=1 ,再由走过的点 Q 走过的路径长==.故答案为:.三 .解答题〔本大题共 10 小题,共 96 分,解答时应写出文字说明、证明过程或演算步骤〕 19.解以下方程( 1〕 3x 2﹣ 2x ﹣ 1=0( 2〕 x 2﹣ 5x+3=0 〔用配方法解〕【考点】 解一元二次方程 -因式分解法;解一元二次方程 -配方法.【解析】〔 1〕利用因式分解法解方程;2〔2〕先利用配方法获取〔x ﹣ 〕 = ,尔后利用直接开平方法解方程.3x+1=0 或 x ﹣ 1=0 ,所以 x 1=﹣ , x 2=1;( 2〕 x 2﹣ 5x=﹣ 3,x 2﹣5x+ 〔 〕 2=﹣ 3+〔 〕 2,〔x ﹣ 〕 2= ,x ﹣ =± ,所以 x 1=, x 2=.20.先化简,再求值: 〔 ﹣〕 ÷2,其中, a 是方程 x +3x+1=0 的根.【考点】 分式的化简求值;一元二次方程的解.【解析】 原式括号中两项通分并利用同分母分式的减法法那么计算,同时利用除法法那么变形,约分获取最简结果,将a 代入方程求出 a 2+3a 的值,代入计算即可求出值.【解答】 解:原式=[+] ÷=〔 + 〕?= ?=,2∵ a 是方程 x +3x+1=0 的根,∴a 2+3a= ﹣ 1,那么原式 =﹣.21.:关于x 的方程 4x 2﹣〔 k+2 〕x+k ﹣ 3=0. 〔1〕求证:无论 k 取何值时,方程总有两个不相等实数根;〔2〕试说明无论 k 取何值,方程都不存在有一根 x=1 的情况.【考点】 根的鉴识式;一元二次方程的解.【解析】〔 1〕依照 △=[ ﹣〔 k+2 〕 ]2﹣ 4×4×〔 k ﹣ 3〕 =〔 k ﹣ 6〕 2+16 > 0,即可得出无论k 取何值,关于 x 的方程 4x 2﹣〔 k+2〕 x+k ﹣3=0 都有两个不相等的实数根;〔2〕把 x=1 代入原方程坐标得出: 4﹣〔 k+2 〕 +k ﹣ 3= ﹣ 1≠0,即可证明无论 k 取何值,方程都不存在有一根 x=1 的情况.【解答】〔 1〕证明:∵△ =[ ﹣〔 k+2〕 ] 2﹣ 4×4×〔 k ﹣ 3〕 =〔 k ﹣ 6〕2+16> 0,所以无论 k 取何值时,方程总有两个不相等实数根;〔2〕证明:把 x=1 代入原方程左侧得:所以无论 k 取何值,方程都不存在有一根4﹣〔 k+2〕 +k ﹣ 3=﹣1≠0,x=1 的情况.22.某学习小组想认识南京市 “迎青奥 〞健身活动的张开情况, 准备采用以下检查方式中的一种进行检查: ① 从一个社区随机采用 200 名居民; ② 从一个城镇的不同样住处楼中随机采用200 名居民; ③ 从该市公安局户籍管理处随机抽取〔1〕在上述检查方式中,你认为最合理的是200 名城乡居民作为检查对象.③ 〔填序号〕;(2〕由一种比较合理的检查方式所获取的数据制成了以以下图的频数分布直方图,请直接写出这 200 名居民健身时间的众数、中位数;(3〕小明在求这 200 名居民每人健身时间的平均数时,他是这样解析的:小明的解析正确吗?若是不正确,央求出正确的平均数;〔4〕假设我市有800 万人,估计我市每天锻炼 2 小时及以上的人数是多少?【考点】条形统计图;用样本估计整体;加权平均数.【解析】〔 1〕依照检查方式要合理,即可得出答案;(2〕依照众数的定义即众数是一组数据中出现次数最多的数和中位数的定义立刻一组数据从小到大依次排列,把中间数据〔或中间两数据的平均数〕叫做中位数即可得出答案;(3〕依照加权平均数的计算公式列式计算即可;(4〕用总人数乘以每天锻炼 2 小时及以上的人数所占的百分比即可得出答案.【解答】解:〔 1〕①、② 两种检查方式拥有片面性,故③ 比较合理;故答案为:③ .〔2〕 1 出现的次数最多,出现了94 次,那么众数是1 小时;∵共有 200 个数,因其中位数是第100、101 个数的平均数,∴中位数是 2 小时;〔3〕不正确,正确的平均数:=〔小时〕.〔4〕依照题意得:800×〔 52+38+16〕÷200=424 〔万人〕,答:我市每天锻炼 2 小时及以上的人数是424 万人.23.如图,在平面直角坐标系中,网格中小正方形的边长为 1 个单位长度,过格点 A , B ,C作一圆弧.〔1〕请写出该圆弧所在圆的圆心 D 的坐标〔2,0〕;〔2〕过点 B 画一条直线,使它与该圆弧相切〔保存作图过程中的印迹〕;〔3〕假设画出该圆弧所在圆,那么在整个平面直角坐标系网格中共经过8 个格点.【考点】切线的判断;坐标与图形性质;垂径定理.【解析】〔 1〕利用网格特点,画弦 AB 和 BC 的垂直均分线,依照垂径定理获取它们的交点坐标即为 D 点坐标;〔2〕作直线BD ,尔后利用网格特点,过点B 画该圆弧所在圆的圆心 D 的坐标直线EF 垂直于 BD 即可;〔3〕⊙ D 的半径为,在x轴上方可获取 4 个满足条件的格点,利用对称可获取在x 轴下方有 4 个格点满足条件.【解答】解:〔 1〕该圆弧所在圆的圆心 D 的坐标为〔 2, 0〕;〔2〕如图, EF 为所作;〔3〕⊙ D 经过的格点有〔〔 0, 1〕,〔0,﹣ 1〕,〔1,2〕,〔 1,﹣ 2〕,〔 3,2〕,〔 3,﹣ 2〕,〔 4,1〕,〔 4,﹣ 1〕.故答案为〔 2, 0〕, 8.24.如图,在△ ABC 中, AB=AC ,以 AC 为直径的⊙ O 交 AB 于点 D,交 BC 于点 E.(1〕求证: BE=CE ;(2〕假设 BD=2 , BE=3 ,求 AC 的长.【考点】相似三角形的判断与性质;等腰三角形的性质;圆周角定理.【解析】〔 1〕连接 AE ,如图,依照圆周角定理,由AC 为⊙ O 的直径获取∠AEC=90 °,然后利用等腰三角形的性质即可获取BE=CE ;〔2〕连接 DE,如图,证明△BED ∽△ BAC ,尔后利用相似比可计算出AB 的长,进而获取AC 的长.【解答】〔 1〕证明:连接AE ,如图,∵AC 为⊙ O 的直径,∴∠ AEC=90 °,∴AE ⊥BC,而 AB=AC ,∴B E=CE ;(2〕连接 DE,如图,∵BE=CE=3 ,∴BC=6 ,∵∠ BED= ∠BAC ,而∠ DBE= ∠CBA ,∴△ BED ∽△ BAC ,∴=,即=,∴B A=9 ,∴A C=BA=9 .25.如图,点 B、C、D 都在⊙ O 上,过 C 点作 CA ∥ BD 交 OD 的延长线于点 A ,连接 BC,∠B= ∠A=30 °, BD=2 .(1〕求证: AC 是⊙ O 的切线;(2〕求由线段 AC 、 AD 与弧 CD 所围成的阴影局部的面积.〔结果保存π〕【考点】切线的判断;扇形面积的计算.【解析】〔 1〕连接 OC,依照圆周角定理求出∠ COA ,依照三角形内角和定理求出∠ OCA ,依照切线的判断推出即可;(2〕求出 DE,解直角三角形求出 OC,分别求出△ ACO 的面积和扇形 COD 的面积,即可得出答案.【解答】〔 1〕证明:连接 OC,交 BD 于 E,∵∠ B=30 °,∠ B=∠COD,∴∠ COD=60 °,∵∠ A=30 °,∴∠ OCA=90 °,即 OC⊥AC ,∴AC 是⊙ O 的切线;〔2〕解:∵ AC ∥ BD ,∠ OCA=90 °,∴∠ OED= ∠ OCA=90 °,∴DE= BD=,∵sin ∠COD=,∴OD=2 ,在 Rt△ ACO 中, tan∠ COA=,∴AC=2,∴S 阴影=×2×2﹣=2﹣.26.如图,为美化校园环境,某校方案在一块长为 60 米,宽为 40 米的长方形空地上修建一个长方形花园,并将花园四周余下的空地修建成同样宽的通道,设通道宽为 a 米.〔1〕用含 a 的式子表示花园的面积;〔2〕若是通道所占面积是整个长方形空地面积的,求出此时通道的宽;(3〕假设按上述要求施工,同时校长希望长方形花园的形状与原长方形空地的形状相似,聪颖的你想一想能不能够满足校长的要求?假设能,求出此时通道的宽;假设不能够,那么说明原由.【考点】一元二次方程的应用.【解析】〔 1〕用含 a 的式子先表示出花园的长和宽后利用其矩形面积公式列出式子即可;〔2〕依照通道所占面积是整个长方形空地面积的,列出方程进行计算即可;〔3〕依照题意得:= ,求得 a 值后即可判断可否满足要求.【解答】解:〔 1〕由图可知,花园的面积为〔40﹣ 2a〕〔 60﹣ 2a〕;(2〕由可列式: 60×40﹣〔 40﹣ 2a〕〔 60﹣ 2a〕= ×60×40,解以上式子可得: a1=5, a2=45 〔舍去〕,答:所以通道的宽为5 米;〔3〕假设能满足要求,那么= ,解得: a=0,由于 a=0 不吻合实质情况,所以不能够满足其要求.27.如图 1,在平面直角坐标系 xoy 中, M 是 x 轴正半轴上一点, ⊙ M 与 x 轴的正半轴交于 A ,B 两点, A 在 B 的左侧,且 OA , OB 的长是方程 x 2﹣12x+27=0 的两根, ON 是⊙ M 的切线, N 为切点, N 在第四象限.( 1〕求⊙ M 的直径的长.( 2〕如图 2,将 △ONM 沿 ON 翻转 180°至 △ ONG ,求证 △ OMG 是等边三角形.( 3〕求直线 ON 的解析式.【考点】 圆的综合题.【解析】〔 1〕第一解一元二次方程的得出 OA , OB 的长,进而得出 OM 〔2〕利用翻折变换的性质得出 MN=GN=3 , OG=OM=6 ,进而得出答案; 〔3〕第一求出 CM 的长,进而得出 CN 的长,即可得出OC 的长,求出出 ON 的解析式.2【解答】 解:〔 1〕解方程 x ﹣12x+27=0 ,的长;N 点坐标,即可得( x ﹣ 9〕〔 x ﹣ 3〕 =0, 解得: x 1=9, x 2=3, ∵A 在 B 的左侧,∴ O A=3 , OB=9 , ∴ A B=OB ﹣ OA=6 ,∴ O M 的直径为 6;( 2〕由得: MN=GN=3 , OG=OM=6 ,∴OM=OG=MN=6 , ∴△ OMG 是等边三角形.( 3〕如图 2,过 N 作 NC ⊥OM ,垂足为 C ,连接 MN ,那么 MN ⊥ON ,∵△ OMG 是等边三角形.∴∠ CMN=60 °,∠ CNM=30 °,∴CM= MN=×3=,在 Rt△ CMN 中,CN===,∴,∴N的坐标为,设直线ON的解析式为y=kx ,∴,∴,∴直线ON的解析式为.28.⊙ O 的半径为2,∠ AOB=120 °.〔1〕点 O 到弦 AB 的距离为 1 ;.(2〕假设点 P 为优弧 AB 上一动点〔点 P 不与 A 、B 重合〕,设∠ ABP= α,将△ABP 沿 BP 折叠,获取 A 点的对称点为 A ′;①假设∠α=30 °,试判断点 A ′与⊙ O 的地址关系;②假设 BA ′与⊙ O 相切于 B 点,求 BP 的长;③假设线段 BA ′与优弧 APB 只有一个公共点,直接写出α的取值范围.【考点】翻折变换〔折叠问题〕;垂径定理.【解析】〔 1〕如图,作辅助线;证明∠AOC=60 °,获取 OC=1 .〔2〕①证明∠ PAB=90 °,获取 PB 是⊙ O 的直径;证明∠P A′B=90 °,即可解决问题.②证明∠ A ′B P= ∠ABP=60 °;借助∠ APB=60 °,获取△ PAB 为正三角形,求出 AB 的长即可解决问题.③ 直接写出α的取值范围即可解决问题.【解答】解:〔 1〕如图,过点O 作 OC⊥ AB 于点 C;∵OA=OB ,那么∠ AOC= ∠ BOC=×120°=60°,∵O A=2 ,∴OC=1 .故答案为 1.〔2〕① ∵∠ AOB=120 °∴∠ APB=∠ AOB=60°,∵∠ PBA=30 °,∴∠ PAB=90 °,∴PB 是⊙ O 的直径,由翻折可知:∠P A′B=90 °,∴点 A′在⊙O 上.②由翻折可知∠ A ′B P=∠ ABP ,∵BA ′与⊙ O 相切,∴∠ OB A ′=90 °,∴∠ AB A ′=120°,∴∠ A ′B P=∠ ABP=60 °;∵∠ APB=60 °,∴△ PAB 为正三角形,∴B P=AB ;如图,∵OC⊥AB ,∴AC=BC ;而 OA=2 , OC=1 ,∴AC=,∴BP=AB=2.③α的取值范围为0°<α< 30°或 60°≤α<120°.2021年4月13日。

2019届江苏省九年级上学期期中模拟数学试卷【含答案及解析】

2019届江苏省九年级上学期期中模拟数学试卷【含答案及解析】

2019届江苏省九年级上学期期中模拟数学试卷【含答案及解析】姓名___________ 班级____________ 分数__________一、选择题1. 关于x的一元二次方程(m-1)x2+x+m2-1=0的一个根为0,则m的值为()A.0 B.1 C.-1 D.1或-12. 一元二次方程2x(x-3)=5(x-3)的根为()A.x=B.x=3C.x1=3,x2=-D.x1=3,x2=3. 若c(c≠0)为关于x的一元二次方程x2+bx+c=0的根,则c+b的值为()A.1 B.-1 C.2 D.-24. 方程x2+3x-6=0与x2-6x+3=0所有根的乘积等于()A.-18 B.18 C.-3 D.35. 利用墙的一边,再用13m的铁丝网,围成一个面积为20的长方形场地,求这个长方形场地的两边长,设墙的对边长为,可列方程为()A. B.C. D.6. 已知⊙O中,弦AB长为2,OD⊥AB于点D,交劣弧AB于点C,CD=1,则⊙O的半径是()A.1 B.2 C.3 D.47. 如图所示,已知线段OA交⊙O于点B,且OB=AB,点P是⊙O上的一个动点,那么∠OAP 的最大值是()A.30° B.45° C.60° D.90°8. 顺次连接圆内两条相交直径的4个端点,围成的四边形一定是()A.梯形 B.菱形 C.矩形 D.正方形9. 如图,在平面直角坐标系中,过格点A、B、C作一圆弧,点B与下列格点的连线中,能够与该圆弧相切的是()A.点(0,3) B.点(2,3) C.点(5,1) D.点(6,1)10. 如图,⊙O的半径为2,点O到直线l的距离为3,点P是直线l上的一个动点,PQ 切⊙O于点Q,则PQ的最小值为A. B.5 C.3 D.二、填空题11. 若关于的方程是一元二次方程,则的值是.12. 写一个你喜欢的实数m的值,使关于x的一元二次方程x2-3x+m=0有两个不相等的实数.13. 已知一元二次方程x2-(4k-2)x+4k2=0有两个不相等的实数根,则k的最大整数值为.14. 圆的弦长等于半径,则这条弦所对的圆周角是.15. 若实数a、b、c满足9a-3b+c=0,则方程ax2+bx+c=0必有一个根是.16. 如图,量角器外沿上有A、B两点,它们的读数分别是70°、40°,则∠1的度数为度.17. 如图,A、B、C是⊙O上的三个点,∠ABC=130°,则∠AOC的度数是.18. 已知,如图与的度数之差为20°(>),弦AB与CD交于点E,∠CEB=60°,则∠CAB=______ °.19. 如图,⊙O是的外接圆,,,则⊙O的半径为.20. 如图,在梯形ABCD中,AB∥DC,AB⊥BC,AB=2,CD=4.以BC上的一点O为圆心的圆经过A,D两点,且∠AOD=90°,则圆心O到弦AD的距离是.三、解答题21. (每小题4分,共8分)用适当的方法解下列方程。

精选镇江市句容市2019年10月九年级上月考数学试卷(有答案)

精选镇江市句容市2019年10月九年级上月考数学试卷(有答案)

2019-2020学年江苏省镇江市句容市九年级(上)月考数学试卷(10月份)一、填空题(本题共有12小题,每小题2分,共24分.)1.若关于x的一元二次方程x2﹣ax+a+1=0有一个根为0,则a= .2.把方程3x2=5x+2化为一元二次方程的一般形式是.3.已知一元二次方程x2﹣4x+c=0有两个相等的实数根,则实数c= .4.设一元二次方程x2﹣5x+2=0的两个实数根分别为x1和x2,则x12x2+x1x22= .5.已知四条线段满足a=,将它改写成为比例式为(写出你认为正确的一个).6.如图,在6×6的正方形网格中,连结两格点A,B,线段AB与网格线的交点为M、N,则AM:MN:NB为.7.如图,△ABC和△A1B1C1是以点O为位似中心的位似三角形,若C1为OC的中点,AB=4,则A 1B1的长为.8.将三角形纸片(△ABC)按如图所示的方式折叠,使点B落在边AC上,记为点B′,折痕为EF.已知AB=AC=3,BC=4,若以点B′、F、C为顶点的三角形与△ABC相似,那么BF的长度是.9.从3,0,﹣1,﹣2,﹣3这五个数中抽取一个数,作为函数y=(5﹣m2)x和关于x的一元二次方程(m+1)x2+mx+1=0中m的值.若恰好使函数的图象经过第一、三象限,且使方程有实数根,则满足条件的m的值是.10.如图,在△ABC中,∠BAC=60°,∠ABC=90°,直线l1∥l2∥l3,l1与l2之间距离是1,l2与l3之间距离是2,且l1,l2,l3分别经过点A,B,C,则边AC的长为.11.如果关于x的一元二次方程ax2+bx+c=0有两个实数根,且其中一个根为另一个根的2倍,则称这样的方程为“倍根方程”.以下关于倍根方程的说法,正确的是.(写出所有正确说法的序号).①方程x2﹣x﹣2=0是倍根方程;②若方程x2﹣px+2=0是倍根方程,则p=3;③若(x﹣2)(mx+n)=0是倍根方程,则(4m+n)(m+n)=0;④若点(p,q)在反比例函数y=的图象上,则关于x的方程px2+3x+q=0是倍根方程.12.设△ABC的面积为1,如图①,将边BC、AC分别2等分,BE1、AD1相交于点O,△AOB的面积记为S1;如图②将边BC、AC分别3等分,BE1、AD1相交于点O,△AOB的面积记为S2;…,依此类推,则Sn可表示为.(用含n的代数式表示,其中n为正整数)二、选择题(本题共有6小题,每小题3分,共18分.)13.已知0和﹣1都是某个方程的解,此方程是()A.x2﹣1=0 B.x(x+1)=0 C.x2﹣x=0 D.x2=x+114.已知一元二次方程x2+4x﹣3=0,下列配方正确的是()A.(x+2)2=3 B.(x﹣2)2=3 C.(x+2)2=7 D.(x﹣2)2=715.下列关于x的方程中一定有实数根的是()A.x2﹣x+2=0 B.x2+x﹣2=0 C.x2+x+2=0 D.x2+1=016.如图,小明同学用自制的直角三角形纸板DEF测量树的高度AB,他调整自己的位置,设法使斜边DF保持水平,并且边DE与点B在同一直线上,已知纸板的两条直角边DE=50cm,EF=25cm,测得边DF离地面的高度AC=1.6m,CD=10m,则树高AB=()m.A.4 m B.5m C.6.6m D.7.7m17.若关于x的一元二次方程(k﹣1)x2+2x﹣2=0有实数根,则k的取值范围是()A.k>B.k≥C.k>且k≠1 D.k≥且k≠118.如图,一个斜边长为10cm的红色三角形纸片,一个斜边长为6cm的蓝色三角形纸片,一张黄色的正方形纸片,拼成一个直角三角形,则红、蓝两张纸片的面积之和是()A.60cm2B.50cm2C.40cm2D.30cm2三、解答题(本大题共有10小题,共78分)19.解方程:(1)(x﹣2)2﹣4=0(2)x2﹣4x﹣3=0(3)2x2﹣4x﹣1=0(配方法)(4)(x+1)2=6x+6.20.已知:关于x的方程x2﹣6x+m﹣5=0的一个根是﹣1,求m值及另一根.21.已知关于x的方程a2x2+(2a﹣1)x+1=0有两个实数根x1,x2.(1)当a为何值时,x1≠x2;(2)是否存在实数a,使方程的两个实数根互为相反数?如果存在,求出a的值;如果不存在,说明理由.22.如图,在6×8的网格图中,每个小正方形边长均为1,原点O和△ABC的顶点均为格点.(1)以O为位似中心,在网格图中作△A′B′C′,使△A′B′C′与△ABC位似,且位似比为1:2;(保留作图痕迹,不要求写作法和证明)(2)若点C和坐标为(2,4),则点A′的坐标为(,),点C′的坐标为(,),S△A′B′C′:S△ABC= .23.如图,四边形ABCD中,AC平分∠DAB,∠ADC=∠ACB=90°,E为AB中点.(1)求证:AC2=AB•AD;(2)若AD=4,AB=6,求的值.24.某市为了打造森林城市,树立城市新地标,实现绿色、共享发展理念,在城南建起了“望月阁”及环阁公园.小亮、小芳等同学想用一些测量工具和所学的几何知识测量“望月阁”的高度,来检验自己掌握知识和运用知识的能力.他们经过观察发现,观测点与“望月阁”底部间的距离不易测得,因此经过研究需要两次测量,于是他们首先用平面镜进行测量.方法如下:如图,小芳在小亮和“望月阁”之间的直线BM上平放一平面镜,在镜面上做了一个标记,这个标记在直线BM上的对应位置为点C,镜子不动,小亮看着镜面上的标记,他来回走动,走到点D时,看到“望月阁”顶端点A在镜面中的像与镜面上的标记重合,这时,测得小亮眼睛与地面的高度ED=1.5米,CD=2米,然后,在阳光下,他们用测影长的方法进行了第二次测量,方法如下:如图,小亮从D点沿DM方向走了16米,到达“望月阁”影子的末端F点处,此时,测得小亮身高FG的影长FH=2.5米,FG=1.65米.如图,已知AB⊥BM,ED⊥BM,GF⊥BM,其中,测量时所使用的平面镜的厚度忽略不计,请你根据题中提供的相关信息,求出“望月阁”的高AB的长度.25.某工厂生产的某种产品按质量分为10个档次,第1档次(最低档次)的产品一天能生产95件,每件利润6元.每提高一个档次,每件利润增加2元,但一天产量减少5件.(1)若生产第x档次的产品一天的总利润为y元(其中x为正整数,且1≤x≤10),求出y 关于x的函数关系式;(2)若生产第x档次的产品一天的总利润为1120元,求该产品的质量档次.26.已知关于x的一元二次方程x2﹣(2k+3)x+k2+3k+2=0(1)试判断上述方程根的情况.(2)已知△ABC的两边AB、AC的长是关于上述方程的两个实数根,BC的长为5.①当k为何值时,△ABC是以BC为斜边的直角三角形?②当k为何值时,△ABC是等腰三角形?请求出此时△ABC的周长.27.如图,在矩形ABCD中,AB=6cm,BC=8cm,如果点E由点B出发沿BC方向向点C匀速运动,同时点F由点D出发沿DA方向向点A匀速运动,它们的速度分别为每秒2cm和1cm,FQ⊥BC,分别交AC、BC于点P和Q,设运动时间为t秒(0<t<4).(1)连接EF,若运动时间t=秒时,求证:△EQF是等腰直角三角形;(2)连接EP,设△EPC的面积为S cm2,求S与t的关系式,并求当S的值为3cm2时t的值;(3)若△EPQ与△ADC相似,求t的值.2019-2020学年江苏省镇江市句容市九年级(上)月考数学试卷(10月份)参考答案与试题解析一、填空题(本题共有12小题,每小题2分,共24分.)1.若关于x的一元二次方程x2﹣ax+a+1=0有一个根为0,则a= ﹣1 .【考点】一元二次方程的解.【分析】把x=0代入方程x2﹣ax+a+1=0,列出关于a的新方程,通过解该方程可以求得a的值.【解答】解:把x=0代入方程得到:a+1=0,解得:a=﹣1.故答案为﹣1.2.把方程3x2=5x+2化为一元二次方程的一般形式是3x2﹣5x﹣2=0 .【考点】一元二次方程的一般形式.【分析】一元二次方程的一般形式是:ax2+bx+c=0(a,b,c是常数且a≠0),据此即可求解.【解答】解:一元二次方程3x2=5x+2的一般形式是3x2﹣5x﹣2=0.故答案为:3x2﹣5x﹣2=0.3.已知一元二次方程x2﹣4x+c=0有两个相等的实数根,则实数c= 4 .【考点】根的判别式.【分析】根据判别式的意义得到△=(﹣4)2﹣4×1×c=0,然后解方程即可.【解答】解:根据题意得△=(﹣4)2﹣4×1×c=0,解得c=4.故答案为4.4.设一元二次方程x2﹣5x+2=0的两个实数根分别为x1和x2,则x12x2+x1x22= 10 .【考点】根与系数的关系.【分析】根据根与系数的关系得到x1+x2=5,x1•x2=2,再把x12x2+x1x22变形为x1•x2(x1+x2),然后利用整体代入的方法计算.【解答】解:根据题意得x1+x2=5,x1•x2=2,所以原式=x1•x2(x1+x2)=2×5=10.故答案为:10.5.已知四条线段满足a=,将它改写成为比例式为=(写出你认为正确的一个).【考点】比例线段.【分析】根据比例的基本性质:两外项之积等于两内项之积.对选项一一分析,选出正确答案.【解答】解:∵四条线段满足a=,∴ab=cd,∴=.故答案为: =.6.如图,在6×6的正方形网格中,连结两格点A,B,线段AB与网格线的交点为M、N,则AM:MN:NB为1:3:2 .【考点】平行线分线段成比例.【分析】根据平行线分线段成比例定理得出即可.【解答】解:∵=, =,∴AM:MN:NB=1:3:2,故答案为:1:3:2;7.如图,△ABC和△A1B1C1是以点O为位似中心的位似三角形,若C1为OC的中点,AB=4,则A 1B1的长为 2 .【考点】位似变换.【分析】直接利用位似图形的性质得出A1B1=AB,进而得出答案.【解答】解:∵△ABC和△A1B1C1是以点O为位似中心的位似三角形,C1为OC的中点,AB=4,∴A1B1=AB=2.故答案为:2.8.将三角形纸片(△ABC)按如图所示的方式折叠,使点B落在边AC上,记为点B′,折痕为EF.已知AB=AC=3,BC=4,若以点B′、F、C为顶点的三角形与△ABC相似,那么BF的长度是或2 .【考点】相似三角形的性质.【分析】由于折叠前后的图形不变,要考虑△B′FC与△ABC相似时的对应情况,分两种情况讨论.【解答】解:根据△B′FC与△ABC相似时的对应关系,有两种情况:①△B′FC∽△ABC时, =,又∵AB=AC=3,BC=4,B′F=BF,∴=,解得BF=;②△B′CF∽△BCA时, =,AB=AC=3,BC=4,B′F=CF,BF=B′F,而BF+FC=4,即2BF=4,解得BF=2.故BF的长度是或2.故答案为:或2.9.从3,0,﹣1,﹣2,﹣3这五个数中抽取一个数,作为函数y=(5﹣m2)x和关于x的一元二次方程(m+1)x2+mx+1=0中m的值.若恰好使函数的图象经过第一、三象限,且使方程有实数根,则满足条件的m的值是﹣2 .【考点】一次函数图象与系数的关系;根的判别式.【分析】确定使函数的图象经过第一、三象限的m的值,然后确定使方程有实数根的m值,找到同时满足两个条件的m的值即可.【解答】解:∵函数y=(5﹣m2)x的图象经过第一、三象限,∴5﹣m2>0,解得:﹣<m<,∵关于x的一元二次方程(m+1)x2+mx+1=0有实数根,∴m2﹣4(m+1)≥0,∴m≥2+2或m≤2﹣2,∴使函数的图象经过第一、三象限,且使方程有实数根的m的值有为﹣1,﹣2,∵是关于x的一元二次方程,∴m+1不等于0,即m不等于﹣1,∴m的值为﹣2,故答案为:﹣2.10.如图,在△ABC中,∠BAC=60°,∠ABC=90°,直线l1∥l2∥l3,l1与l2之间距离是1,l2与l3之间距离是2,且l1,l2,l3分别经过点A,B,C,则边AC的长为.【考点】相似三角形的判定与性质;平行线之间的距离;勾股定理.【分析】过点B 作EF ⊥l 2,交l 1于E ,交l 3于F ,在Rt △ABC 中运用三角函数可得=,易证△AEB ∽△BFC ,运用相似三角形的性质可求出FC ,然后在Rt △BFC 中运用勾股定理可求出BC ,再在Rt △ABC 中运用三角函数就可求出AC 的值.【解答】解:如图,过点B 作EF ⊥l 2,交l 1于E ,交l 3于F ,如图. ∵∠BAC=60°,∠ABC=90°, ∴tan ∠BAC==.∵直线l 1∥l 2∥l 3, ∴EF ⊥l 1,EF ⊥l 3, ∴∠AEB=∠BFC=90°. ∵∠ABC=90°,∴∠EAB=90°﹣∠ABE=∠FBC , ∴△BFC ∽△AEB , ∴==.∵EB=1,∴FC=.在Rt △BFC 中, BC===.在Rt △ABC 中,sin ∠BAC==,AC===.故答案为.11.如果关于x 的一元二次方程ax 2+bx+c=0有两个实数根,且其中一个根为另一个根的2倍,则称这样的方程为“倍根方程”.以下关于倍根方程的说法,正确的是 ③④ .(写出所有正确说法的序号).①方程x 2﹣x ﹣2=0是倍根方程;②若方程x 2﹣px+2=0是倍根方程,则p=3;③若(x ﹣2)(mx+n )=0是倍根方程,则(4m+n )(m+n )=0;④若点(p ,q )在反比例函数y=的图象上,则关于x 的方程px 2+3x+q=0是倍根方程. 【考点】反比例函数图象上点的坐标特征;根的判别式. 【分析】①解得方程后即可利用倍根方程的定义进行判断;②直接利用定义得出(2x )2﹣2px+2=0,进而求出x 的值,即可得出答案;③根据(x ﹣2)(mx+n )=0是倍根方程,且x 1=2,x 2=﹣得到=﹣1,或=﹣4,从而得到m+n=0,4m+n=0,进而得到(4m+n )(m+n )=0正确;④根据点(p ,q )在反比例函数y=的图象上得到pq=2,然后解方程px 2+3x+q=0即可得到正确的结论.【解答】解:①解方程x 2﹣x ﹣2=0得:x 1=2,x 2=﹣1, ∴方程x 2﹣x ﹣2=0不是倍根方程,故①错误;②∵方程x 2﹣px+2=0是倍根方程, ∴(2x )2﹣2px+2=0, 整理得:2x 2﹣px+1=0,则x 2﹣px+2﹣(2x 2﹣px+1)=0, 整理得:﹣x 2+1=0, 解得:x=±1, 当x=1,则p=3,当x=﹣1,p=﹣3,故此选项错误;③∵(x ﹣2)(mx+n )=0是倍根方程,且x 1=2,x 2=﹣, ∴=﹣1,或=﹣4, ∴m+n=0,4m+n=0,∵4m 2+5mn+n 2=(4m+n )(m+n )=0,故②正确;④∵点(p ,q )在反比例函数y=的图象上, ∴pq=2,解方程px2+3x+q=0得:x1=﹣,x2=﹣,∴x2=2x1,故③正确;故答案为:③④.12.设△ABC的面积为1,如图①,将边BC、AC分别2等分,BE1、AD1相交于点O,△AOB的面积记为S1;如图②将边BC、AC分别3等分,BE1、AD1相交于点O,△AOB的面积记为S2;…,依此类推,则Sn可表示为.(用含n的代数式表示,其中n为正整数)【考点】相似三角形的判定与性质.【分析】连接D1E1,设AD1、BE1交于点M,先求出S△ABE1=,再根据==得出S△ABM :S△ABE1=(n+1):(2n+1),最后根据S△ABM: =(n+1):(2n+1),即可求出Sn.【解答】解:如图,连接D1E1,设AD1、BE1交于点M,∵AE1:AC=1:(n+1),∴S△ABE1:S△ABC=1:(n+1),∴S△ABE1=,∵==,∴=,∴S△ABM :S△ABE1=(n+1):(2n+1),∴S△ABM: =(n+1):(2n+1),∴Sn=.故答案为:.二、选择题(本题共有6小题,每小题3分,共18分.)13.已知0和﹣1都是某个方程的解,此方程是()A.x2﹣1=0 B.x(x+1)=0 C.x2﹣x=0 D.x2=x+1【考点】一元二次方程的解.【分析】一元二次方程的根就是一元二次方程的解,就是能够使方程左右两边相等的未知数的值.即用这个数代替未知数所得式子仍然成立.【解答】解:把0和﹣1分别代入上面的方程,符合条件的是x(x+1)=0,故选B.14.已知一元二次方程x2+4x﹣3=0,下列配方正确的是()A.(x+2)2=3 B.(x﹣2)2=3 C.(x+2)2=7 D.(x﹣2)2=7【考点】解一元二次方程-配方法.【分析】方程常数项移到右边,两边加上4配方得到结果,即可做出判断.【解答】解:方程移项得:x2+4x=3,配方得:x2+4x+4=7,即(x+2)2=7,故选C.15.下列关于x的方程中一定有实数根的是()A.x2﹣x+2=0 B.x2+x﹣2=0 C.x2+x+2=0 D.x2+1=0【考点】根的判别式.【分析】根据根的判别式△=b2﹣4ac的值的符号就可以判断下列方程有无实数解.【解答】解:A、△=1﹣8=﹣7<0,所以没有实数解,故本选项错误;B、△=1+8=9>0,所以有实数解,故本选项正确;C、△=1﹣8=﹣7<0,原方程没有实数解;故本选项错误;D、△=0﹣4=﹣4<0,原方程有实数解,故本选项正确.故选B.16.如图,小明同学用自制的直角三角形纸板DEF测量树的高度AB,他调整自己的位置,设法使斜边DF保持水平,并且边DE与点B在同一直线上,已知纸板的两条直角边DE=50cm,EF=25cm,测得边DF离地面的高度AC=1.6m,CD=10m,则树高AB=()m.A.4 m B.5m C.6.6m D.7.7m【考点】相似三角形的应用.【分析】利用直角三角形DEF和直角三角形BCD相似求得BC的长后加上小明同学的身高即可求得树高AB.【解答】解:∵∠DEF=∠BCD=90°∠D=∠D∴△DEF∽△DCB∴=,∵DE=50cm=0.5m,EF=25cm=0.25m,AC=1.6m,CD=10m,∴=,∴BC=5米,∴AB=AC+BC=1.6+5=6.6米.故选C.17.若关于x的一元二次方程(k﹣1)x2+2x﹣2=0有实数根,则k的取值范围是()A.k>B.k≥C.k>且k≠1 D.k≥且k≠1【考点】根的判别式;一元二次方程的定义.【分析】根据根的判别式和一元二次方程的定义可得4﹣4(k﹣1)(﹣2)=8k﹣4≥0且k≠1,求出k的取值范围即可.【解答】解:∵关于x的一元二次方程(k﹣1)x2+2x﹣2=0有实数根,∴△≥0且k≠1,∴△=4﹣4(k﹣1)(﹣2)=8k﹣4≥0且k≠1,∴k≥且k≠1,故选:D.18.如图,一个斜边长为10cm的红色三角形纸片,一个斜边长为6cm的蓝色三角形纸片,一张黄色的正方形纸片,拼成一个直角三角形,则红、蓝两张纸片的面积之和是()A.60cm2B.50cm2C.40cm2D.30cm2【考点】相似三角形的应用.【分析】标注字母,根据两直线平行,同位角相等可得∠B=∠AED,然后求出△ADE和△EFB相似,根据相似三角形对应边成比例求出=,即=,设BF=3a,表示出EF=5a,再表示出BC、AC,利用勾股定理列出方程求出a的值,再根据红、蓝两张纸片的面积之和等于大三角形的面积减去正方形的面积计算即可得解.【解答】解:如图,∵正方形的边DE∥CF,∴∠B=∠AED,∵∠ADE=∠EFB=90°,∴△ADE∽△EFB,∴===,∴=,设BF=3a,则EF=5a,∴BC=3a+5a=8a,AC=8a×=a,在Rt△ABC中,AC2+BC2=AB2,即(a)2+(8a)2=(10+6)2,解得a2=,红、蓝两张纸片的面积之和=×a×8a﹣(5a)2,=a2﹣25a2,=a2,=×,=30cm2.故选D.三、解答题(本大题共有10小题,共78分)19.解方程:(1)(x﹣2)2﹣4=0(2)x2﹣4x﹣3=0(3)2x2﹣4x﹣1=0(配方法)(4)(x+1)2=6x+6.【考点】解一元二次方程-因式分解法;解一元二次方程-直接开平方法;解一元二次方程-配方法.【分析】(1)直接开平方法可得;(2)公式法求解可得;(3)配方法求解可得;(4)因式分解法求解可得.【解答】解:(1)∵(x﹣2)2=4,∴x﹣2=±2,即x=2±2,则x1=4,x2=0;(2)∵a=1,b=﹣4,c=﹣3,∴△=16﹣4×1×(﹣3)=28>0,则x==2,即x1=+2,x2=﹣+2;(3)∵2x2﹣4x=1,∴x 2﹣2x=,∴x 2﹣2x+1=,即(x ﹣1)2=, 则x ﹣1=,x=1±,∴x 1=+1,x 2=﹣+1;(4)∵(x+1)2﹣6(x+1)=0, ∴(x+1)(x ﹣5)=0, ∴x+1=0或x ﹣5=0, 解得:x=﹣1或x=5.20.已知:关于x 的方程x 2﹣6x+m ﹣5=0的一个根是﹣1,求m 值及另一根. 【考点】根与系数的关系;一元二次方程的解.【分析】设方程的另一个根为n ,根据根与系数的关系即可得出关于m 、n 的二元一次方程组,解之即可得出m 、n 的值,此题得解. 【解答】解:设方程的另一个根为n , ∵方程x 2﹣6x+m ﹣5=0的两个根为﹣1和n , ∴, 解的:.∴m 的值为﹣2,方程的另一根是7.21.已知关于x 的方程a 2x 2+(2a ﹣1)x+1=0有两个实数根x 1,x 2. (1)当a 为何值时,x 1≠x 2;(2)是否存在实数a ,使方程的两个实数根互为相反数?如果存在,求出a 的值;如果不存在,说明理由.【考点】根与系数的关系;根的判别式.【分析】(1)根据方程有两个不相等的实数根,利用根的判别式结合二次项系数非0即可得出关于a 的一元二次不等式,解不等式即可得出a 的取值范围;(2)根据根与系数的关系可得出x 1+x 2=﹣,结合方程的两个实数根互为相反数即可得出关于a 的分式方程,解方程经检验后即可得出a 值,结合(1)的结论即可得出不存在a 的值使方程的两个实数根x 1与x 2互为相反数.【解答】解:(1)∵方程a 2x 2+(2a ﹣1)x+1=0有两个实数根x 1,x 2,且x 1≠x 2, ∴,解得:a <且a ≠0,∴当a <且a ≠0时,方程有两个不相等的实数根. (2)不存在,理由如下:∵方程的两个实数根x 1,x 2互为相反数, ∴x 1+x 2=﹣=0,解得:a=,经检验,a=是方程﹣=0的根.由①知:a ≤且a ≠0时,方程才有两个实数根, ∵>,∴不存在a 的值使方程的两个实数根x 1与x 2互为相反数.22.如图,在6×8的网格图中,每个小正方形边长均为1,原点O 和△ABC 的顶点均为格点.(1)以O 为位似中心,在网格图中作△A′B′C′,使△A′B′C′与△ABC 位似,且位似比为1:2;(保留作图痕迹,不要求写作法和证明)(2)若点C 和坐标为(2,4),则点A′的坐标为( ﹣1 , 0 ),点C′的坐标为( 1 , 2 ),S △A′B′C′:S △ABC = 1:4 .【考点】作图-位似变换.【分析】(1)利用△A′B′C′与△ABC位似,且位似比为1:2,进而将对应点坐标乘以得出即可;(2)利用所画图形得出对应点坐标进而利用相似三角形的性质得出面积比.【解答】解:(1)如图所示:△A′B′C′即为所求;(2)A′(﹣1,0),C′(1,2),S△A′B′C′:S△ABC=1:4.故答案为:﹣1,0;1,2;1:4.23.如图,四边形ABCD中,AC平分∠DAB,∠ADC=∠ACB=90°,E为AB中点.(1)求证:AC2=AB•AD;(2)若AD=4,AB=6,求的值.【考点】相似三角形的判定与性质.【分析】(1)由AC平分∠DAB,∠ADC=∠ACB=90°,可证得△ADC∽△ACB,然后由相似三角形的对应边成比例,证得AC2=AB•AD;(2)易证得△AFD∽△CFE,然后由相似三角形的对应边成比例,求得的值.【解答】(1)证明:∵AC平分∠DAB,∴∠DAC=∠CAB,∵∠ADC=∠ACB=90°,∴△ADC∽△ACB,∴AD:AC=AC:AB,∴AC2=AB•AD;(2)解:∵∠ACB=90°,E为AB中点,∴AE=CE,∴∠CAE=∠ECA,∵AC平分∠DAB,∴∠DAC=∠EAC,∴∠DAC=∠ACE,∴CE∥AD,∴△AFD∽△CFE,∴AD:CE=AF:CF,∵CE=AB,∴CE=×6=3,∵AD=4,∴,∴=.24.某市为了打造森林城市,树立城市新地标,实现绿色、共享发展理念,在城南建起了“望月阁”及环阁公园.小亮、小芳等同学想用一些测量工具和所学的几何知识测量“望月阁”的高度,来检验自己掌握知识和运用知识的能力.他们经过观察发现,观测点与“望月阁”底部间的距离不易测得,因此经过研究需要两次测量,于是他们首先用平面镜进行测量.方法如下:如图,小芳在小亮和“望月阁”之间的直线BM上平放一平面镜,在镜面上做了一个标记,这个标记在直线BM上的对应位置为点C,镜子不动,小亮看着镜面上的标记,他来回走动,走到点D时,看到“望月阁”顶端点A在镜面中的像与镜面上的标记重合,这时,测得小亮眼睛与地面的高度ED=1.5米,CD=2米,然后,在阳光下,他们用测影长的方法进行了第二次测量,方法如下:如图,小亮从D点沿DM方向走了16米,到达“望月阁”影子的末端F点处,此时,测得小亮身高FG的影长FH=2.5米,FG=1.65米.如图,已知AB⊥BM,ED⊥BM,GF⊥BM,其中,测量时所使用的平面镜的厚度忽略不计,请你根据题中提供的相关信息,求出“望月阁”的高AB的长度.【考点】相似三角形的应用.【分析】根据镜面反射原理结合相似三角形的判定方法得出△ABC∽△EDC,△ABF∽△GFH,进而利用相似三角形的性质得出AB的长.【解答】解:由题意可得:∠ABC=∠EDC=∠GFH=90°,∠ACB=∠ECD,∠AFB=∠GHF,故△ABC∽△EDC,△ABF∽△GFH,则=, =,即=, =,解得:AB=99,答:“望月阁”的高AB的长度为99m.25.某工厂生产的某种产品按质量分为10个档次,第1档次(最低档次)的产品一天能生产95件,每件利润6元.每提高一个档次,每件利润增加2元,但一天产量减少5件.(1)若生产第x档次的产品一天的总利润为y元(其中x为正整数,且1≤x≤10),求出y 关于x的函数关系式;(2)若生产第x档次的产品一天的总利润为1120元,求该产品的质量档次.【考点】二次函数的应用;一元二次方程的应用.【分析】(1)每件的利润为6+2(x﹣1),生产件数为95﹣5(x﹣1),则y=[6+2(x﹣1)][95﹣5(x﹣1)];(2)由题意可令y=1120,求出x的实际值即可.【解答】解:(1)∵第一档次的产品一天能生产95件,每件利润6元,每提高一个档次,每件利润加2元,但一天生产量减少5件.∴第x 档次,提高的档次是x ﹣1档.∴y=[6+2(x ﹣1)][95﹣5(x ﹣1)],即y=﹣10x 2+180x+400(其中x 是正整数,且1≤x ≤10);(2)由题意可得:﹣10x 2+180x+400=1120整理得:x 2﹣18x+72=0解得:x 1=6,x 2=12(舍去).答:该产品的质量档次为第6档.26.已知关于x 的一元二次方程x 2﹣(2k+3)x+k 2+3k+2=0(1)试判断上述方程根的情况.(2)已知△ABC 的两边AB 、AC 的长是关于上述方程的两个实数根,BC 的长为5.①当k 为何值时,△ABC 是以BC 为斜边的直角三角形?②当k 为何值时,△ABC 是等腰三角形?请求出此时△ABC 的周长.【考点】根的判别式;解一元二次方程-因式分解法;等腰三角形的判定.【分析】(1)根据方程的系数结合根的判别式即可得出△=1>0,由此即可得出方程有两个不相等的实数根;(2)利用分解因式法可求出x 1=k+1,x 2=k+2.①不妨设AB=k+1,AC=k+2,根据BC=5利用勾股定理即可得出关于k 的一元二次方程,解方程即可得出k 的值;②根据(1)结论可得出AB ≠AC ,由此可找出△ABC 是等腰三角形分两种情况,分AB=BC 、AC=BC 两种情况考虑,根据两边相等找出关于k 的一元一次方程,解方程求出k 值,进而可得出三角形的三边长,再根据三角形的周长公式即可得出结论.【解答】解:(1)∵在方程x 2﹣(2k+3)x+k 2+3k+2=0中,△=b 2﹣4ac=[﹣(2k+3)]2﹣4(k 2+3k+2)=1>0,∴方程有两个不相等的实数根.(2)∵x 2﹣(2k+3)x+k 2+3k+2=(x ﹣k ﹣1)(x ﹣k ﹣2)=0,∴x 1=k+1,x 2=k+2.①不妨设AB=k+1,AC=k+2,∴斜边BC=5时,有AB 2+AC 2=BC 2,即(k+1)2+(k+2)2=25,解得:k 1=2,k 2=﹣5(舍去).∴当k=2时,△ABC 是直角三角形②∵AB=k+1,AC=k+2,BC=5,由(1)知AB≠AC,故有两种情况:(Ⅰ)当AC=BC=5时,k+2=5,∴k=3,AB=3+1=4,∵4、5、5满足任意两边之和大于第三边,∴此时△ABC的周长为4+5+5=14;(II)当AB=BC=5时,k+1=5,∴k=4,AC=k+2=6,∵6、5、5满足任意两边之和大于第三边,∴此时△ABC的周长为6+5+5=16.综上可知:当k=3时,△ABC是等腰三角形,此时△ABC的周长为14;当k=4时,△ABC是等腰三角形,此时△ABC的周长为16.27.如图,在矩形ABCD中,AB=6cm,BC=8cm,如果点E由点B出发沿BC方向向点C匀速运动,同时点F由点D出发沿DA方向向点A匀速运动,它们的速度分别为每秒2cm和1cm,FQ⊥BC,分别交AC、BC于点P和Q,设运动时间为t秒(0<t<4).(1)连接EF,若运动时间t=秒时,求证:△EQF是等腰直角三角形;(2)连接EP,设△EPC的面积为S cm2,求S与t的关系式,并求当S的值为3cm2时t的值;(3)若△EPQ与△ADC相似,求t的值.【考点】相似形综合题.【分析】(1)通过计算发现EQ=FQ=6,由此即可证明;(2)构建二次函数,解方程即可得到结论;(3)分两种情形讨论,Ⅰ、如图1中,点E在Q的左侧.①当△EPQ∽△ACD时,②当△EPQ ∽△CAD时,列出方程分别求解即可.Ⅱ、如图2中,点E在Q的右侧,只存在△EPQ∽△CAD 列出方程即可解决.【解答】(1)证明:若运动时间t=秒,则BE=2×=(cm),DF=(cm),∵四边形ABCD是矩形∴AD=BC=8(cm),AB=DC=6(cm),∠D=∠BCD=90°∵∠D=∠FQC=∠QCD=90°,∴四边形CDFQ也是矩形,∴CQ=DF,CD=QF=6(cm),∴EQ=BC﹣BE﹣CQ=8﹣﹣=6(cm),∴EQ=QF=6(cm),又∵FQ⊥BC,∴△EQF是等腰直角三角形,(2)解:∵∠FQC=90°,∠B=90°,∴∠FQC=∠B,∴PQ∥AB,∴△CPQ∽△CAB,∴=,即=,∴PQ=t,∵S△EPC=•EC•PQ,∴S=(8﹣2t)•t=﹣t2+3t当S=3时,﹣t2+3t=3,解之得:t1=t2=2∴当S=3时t的值为2(3)解:分两种情况讨论:Ⅰ.如图1中,点E在Q的左侧.①当△EPQ∽△ACD时,可得,即=,解得 t=2.②当△EPQ∽△CAD时,可得=,即=,解得t=.Ⅱ.如图2中,点E在Q的右侧.∵0<t<4,∴点E不能与点C重合,∴只存在△EPQ∽△CAD可得=,即=,解得t=,故若△EPQ与△ADC相似,则t的值为2或或.。

初中数学江苏省镇江市句容市九年级上期中数学考试卷含答案解析 .docx

初中数学江苏省镇江市句容市九年级上期中数学考试卷含答案解析  .docx

xx学校xx学年xx学期xx试卷姓名:_____________ 年级:____________ 学号:______________题型选择题填空题简答题xx题xx题xx题总分得分一、xx题(每空xx 分,共xx分)试题1:已知关于x的方程x2+mx+m﹣2=0(1)若该方程的一个根为1,求m的值及该方程的另一根;(2)求证:不论m取何实数,该方程都有两个不相等的实数根.试题2:已知:如图,l1∥l2∥l3,AB=3,BC=5,DF=12.求DE和EF的长.试题3:﹣3x2+4x+1=0.试题4:(x﹣3)2+2(x﹣3)=0试题5:x2+2x=1__________试题6:有两个一元二次方程M:ax2+bx+c=0;N:cx2+bx+a=0,其中ac≠0,a≠c.下列四个结论中:正确的个数有( ) 评卷人得分①如果方程M有两个相等的实数根,那么方程N也有两个相等的实数根;②如果ac<0,方程M、N都有两个不相等的实数根;③如果2是方程M的一个根,那么是方程N的一个根;④如果方程M和方程N有一个相同的根,那么这个根必是x=1.A.4个 B.3个 C.2个 D.1个试题7:如图,在△ABC中,D、E分别是AB、BC上的点,且DE∥AC,若=,则的值等于( )A.1:5 B.1:9 C.1:12 D.1:16试题8:下列条件不能判定△ABC与△DEF相似的是( )A. B.,∠A=∠DC.∠A=∠D,∠B=∠E D.,∠B=∠E试题9:)A.m<﹣1 B.m>1 C.m<1且m≠0 D.m>﹣1且m≠0试题10:一元二次方程x(x﹣2)=2﹣x的根是( )A.﹣1 B.2 C.1和2 D.﹣1和2试题11:若m,n是方程x2+x+2=0的两个实数根,则m2+2m+n的值为__________.试题12:如图,线段CD两个端点的坐标分别为C(3,3),D(4,1),以原点O为位似中心,在第一象限内将线段CD扩大为原来的两倍,得到线段AB,则线段AB的中点E的坐标为__________.试题13:如图,为测量学校旗杆的高度,小东用长为3.2m的竹竿做测量工具.移动竹竿使竹竿,旗杆顶端的影子恰好落在地面的同一点,此时,竹竿与这一点相距8m,与旗杆相距22m,则旗杆的高为__________m.试题14:若关于x的一元二次方程x2﹣(m+3)x+3m=0的两个实数根分别为﹣1和n,则n=__________.试题15:将代数式x2+6x+3配方成(x+m)2+n的形式,则m﹣n=__________.试题16:如图,在▱ABCD中,点E是边AD的中点,EC交对角线BD于点F,则=__________.试题17:已知x1、x2是一元二次方程x2﹣4x+1=0的两个根,则x1x2=__________.试题18:关于x的方程kx2﹣4x+3=0有实数根,k的取值范围__________.试题19:如图,在△ABC中,DE∥BC,=,则=__________.试题20:如果线段c是a、b的比例中项,且a=4,b=9,则c=__________.试题21:已知x=1是方程x2﹣mx+2=0的一个根,则m的值是__________.试题22:已知=,则=__________.试题23:如图,在平面直角坐标系中,△ABC的三个顶点坐标分别为A(﹣2,1),B(﹣1,4),C(﹣3,2).(1)以原点O为位似中心,位似比为1:2,在y轴的左侧,画出△ABC放大后的图形△A1B1C1,并直接写出C1点坐标;(2)若点D(a,b)在线段AB上,请直接写出经过(1)的变化后点D的对应点D1坐标.试题24:为了测量校园水平地面上一棵树的高度,数学兴趣小组利用一根标杆、皮尺,设计如图所示的测量方案.已知测量同学眼睛A、标杆顶端F、树的顶端E在同一直线上,此同学眼睛距地面1.6米,标杆高为3.2米,且BC=2米,CD=6米,求树ED的高.试题25:等腰三角形边长分别为a、b、2,且a,b是关于x的一元二次方程x2﹣6x+n﹣1=0的两根,求n的值.试题26:如图,梯形ABCD中.AB∥CD.且AB=2CD,E,F分别是AB,BC的中点.EF与BD相交于点M.(1)求证:△EDM∽△FBM;(2)若DB=9,求BM.试题27:某校园商店经销甲、乙两种文具.现有如下信息:信息1:甲、乙两种文具的进货单价之和是3元;信息2:甲文具零售单价比进货单价多1元,乙文具零售单价比进货单价的2倍少1元.信息3:某同学按零售单价购买甲文具3件和乙文具2件,共付了12元.请根据以上信息,解答下列问题:(1)甲、乙两种文具的零售单价分别为__________元和__________元.(直接写出答案)(2)该校园商店平均每天卖出甲文具50件和乙文具120件.经调查发现,甲种文具零售单价每降0.1元,甲种文具每天可多销售10件.为了降价促销,使学生得到实惠,商店决定把甲种文具的零售单价下降m(m>0)元.在不考虑其他因素的条件下,当m定为多少时,可以使商店每天销售甲、乙两种文具获取的利润保持不变?试题28:(1)问题如图1,在四边形ABCD中,点P为AB上一点,∠DPC=∠A=∠B=90°,求证:AD•BC=AP•BP.(2)探究如图2,在四边形ABCD中,点P为AB上一点,当∠DPC=∠A=∠B=θ时,上述结论是否依然成立?说明理由.(3)应用请利用(1)(2)获得的经验解决问题:如图3,在△ABD中,AB=6,AD=BD=5,点P以每秒1个单位长度的速度,由点A出了,沿边AB向点B运动,且满足∠DPC=∠A,设点P的运动时间为t(秒),当以D为圆心,以DC为半径的圆与AB相切时,求t的值.试题1答案:【考点】根的判别式;一元二次方程的解.【分析】(1)直接把x=1代入方程x2+mx+m﹣2=0求出m的值,故可得出方程,求出方程的解即可;(2)求出△的值,再比较出其大小即可.【解答】解:(1)∵该方程的一个根为1,∴1+m+m﹣2=0,解得m=,∴方程为x2+x﹣=0,解得x1=1,x2=﹣,∴该方程的另一根为﹣;(2)∵△=m2﹣4(m﹣2)=(m﹣2)2+4>0,∴不论m取何实数,该方程都有两个不相等的实数根.【点评】本题考查的是根的判别式,熟知一元二次方程的根与△的关系是解答此题的关键.试题2答案:【考点】平行线分线段成比例.【分析】根据行线分线段成比例的性质,得3:5=DE:(12﹣DE),先解出DE的长,就可以得到EF的长.【解答】解:∵l1∥l2∥l3,∴AB:BC=DE:EF,∵AB=3,BC=5,DF=12,∴3:5=DE:(12﹣DE),∴DE=4.5,∴EF=12﹣4.5=7.5.【点评】主要考查了平行线分线段成比例的性质,要掌握该定理:两条直线被平行线所截,对应线段成比例.试题3答案:﹣3x2+4x+1=0,3x2﹣4x﹣1=0,b2﹣4ac=(﹣4)2﹣4×3×(﹣1)=28,x=,x1=,x2=.试题4答案:(x﹣3)2+2(x﹣3)=0,(x﹣3)(x﹣3+2)=0,x﹣3=0,x﹣3+2=0,x1=3,x2=1;试题5答案:x2+2x=1,x2+2x+1=2,(x+1)2=2,x+1=,x1=﹣1+,x2=﹣1﹣;__________试题6答案:B【考点】根的判别式;一元二次方程的解.【分析】①方程ax2+bx+c=0有两个相等的实数根,则△=b2﹣4ac=0,对于方程cx2+bx+a=0,△=b2﹣4ac=0,则方程N也有两个相等的实数根;②利用ac<0和根的判别式进行判断即可;③把x=2代入ax2+bx+c=0得:4a+2b+c=0,等式的两边通除以4得到c+b+a=0,于是得到结论正确;④如果方程M和方程N有一个相同的根,那么这个根可能是x=±1.【解答】解:①∵方程M有两个相等的实数根,∴△=b2﹣4ac=0,∵方程N的△=b2﹣4ac=0,∴方程N也有两个相等的实数根,故正确;②∵ac<0,∴b2﹣4ac>0,∴程M、N都有两个不相等的实数根;故正确;③∵把x=2代入ax2+bx+c=0得:4a+2b+c=0,∴c+b+a=0,∴是方程N的一个根;故正确;④如果方程M和方程N有一个相同的根,那么这个根可能是x=±1;故错误.故选B.【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2﹣4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.试题7答案:C【考点】相似三角形的判定与性质.【分析】证明BE:EC=1:3,得出BE:BC=1:4;由DE∥AC,于是得到△BDE∽△ABC,根据相似三角形的性质得到=()2=,根据三角形面积的和差即可得到结论.【解答】解:∵=,∴=,∵DE∥AC,∴△BDE∽△ABC,∴=()2=,∴=.故选C.【点评】本题主要考查了相似三角形的判定及其性质的应用问题;解题的关键是灵活运用形似三角形的判定及其性质来分析、判断、推理或解答.试题8答案:B【考点】相似三角形的判定.【分析】相似的判定有三种方法:①三边法:三组对应边的比相等的两个三角形相似;②两边及其夹角法:两组对应边的比相等且夹角对应相等的两个三角形相似;③两角法:有两组角对应相等的两个三角形相似,逐项分析即可.【解答】解:A、利用三边法可以判定△ABC与△DEF相似;B、不能判定相似,因为∠B、∠D不是这两组边对应的夹角;C、∠A=∠D,∠B=∠F,可以判定△ABC与△DEF相似;D、利用两边及其夹角的方法可判定△ABC与△DEF相似;故选B.【点评】本题考查了相似三角形的判定,掌握相似三角形判定的三种方法是解答本题的关键.试题9答案:D【考点】根的判别式;一元二次方程的定义.【分析】由关于x的一元二次方程mx2+2x﹣1=0有两个不相等的实数根,根据一元二次方程的定义和根的判别式的意义可得m≠0且△>0,即22﹣4•m•(﹣1)>0,两个不等式的公共解即为m的取值范围.【解答】解:∵关于x的一元二次方程mx2+2x﹣1=0有两个不相等的实数根,∴m≠0且△>0,即22﹣4•m•(﹣1)>0,解得m>﹣1,∴m的取值范围为m>﹣1且m≠0.∴当m>﹣1且m≠0时,关于x的一元二次方程mx2+2x﹣1=0有两个不相等的实数根.故选D.【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2﹣4ac:当△>0,方程有两个不相等的实数根;当△<0,方程有两个相等的实数根;当△=0,方程没有实数根;也考查了一元二次方程的定义.试题10答案:D【考点】解一元二次方程-因式分解法.【专题】计算题.【分析】先移项得到x(x﹣2)+(x﹣2)=0,然后利用提公因式因式分解,最后转化为两个一元一次方程,解方程即可.【解答】解:x(x﹣2)+(x﹣2)=0,∴(x﹣2)(x+1)=0,∴x﹣2=0或x+1=0,∴x1=2,x2=﹣1.故选D.【点评】本题考查了运用因式分解法解一元二次方程的方法:利用因式分解把一个一元二次方程化为两个一元一次方程.试题11答案:﹣3.【考点】一元二次方程的解.【分析】由于m、n是方程x2+x+2=0的两个实数根,根据根与系数的关系可以得到m+n=﹣1,并且m2+m+2=0,然后把m2+2m+n 可以变为m2+m+m+n,把前面的值代入即可求出结果.【解答】解:∵m、n是方程x2+x+2=0的两个实数根,∴m+n=﹣1,并且m2+m+2=0,∴m2+m=﹣2,∴m2+2m+n=m2+m+m+n=﹣2﹣1=﹣3.故答案为:﹣3.【点评】此题主要考查了根与系数的关系,将根与系数的关系与代数式变形相结合解题是一种经常使用的解题方法.试题12答案:(7,4).【考点】位似变换;坐标与图形性质.【分析】直接利用位似图形的性质得出对应点坐标乘以2得出A、B两点坐标,再求中点即可.【解答】解:∵C(3,3),D(4,1),以原点O为位似中心,在第一象限内将线段CD扩大为原来的两倍,∴A(6,6),B(8,2),∵E是AB中点,∴E(7,4),故答案为:(7,4).【点评】此题主要考查了位似变换,正确把握位似比与对应点坐标的关系是解题关键.试题13答案:12m.【考点】相似三角形的应用.【分析】易证△AEB∽△ADC,利用相似三角形的对应边成比例,列出方程求解即可.【解答】解:因为BE∥CD,所以△AEB∽△ADC,于是=,即=,解得:CD=12m.旗杆的高为12m.【点评】本题只要是把实际问题抽象到相似三角形中,利用相似三角形的相似比,列出方程,通过解方程即可求出旗杆的高度.试题14答案:3.【考点】根与系数的关系;一元二次方程的解.【分析】由根与系数的关系得到:﹣1+n=m+3,﹣n=3m,两者联立方程组求得答案即可.【解答】解:∵关于x的一元二次方程x2﹣(m+3)x+3m=0的两个实数根分别为﹣1和n,∴,解得:,则n=3.故答案为:3.【点评】此题考查了根与系数的关系.x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x1+x2=﹣,x1x2=.试题15答案:9.【考点】配方法的应用.【分析】运用配方法把代数式进行变形求出m、n的值,代入计算即可.【解答】解:x2+6x+3=(x+3)2﹣6,∴m=3,n=﹣6,则m﹣n=9.故答案为:9.【点评】本题考查的是配方法的应用,配方法的关键是:先将一元二次方程的二次项系数化为1,然后在方程两边同时加上一次项系数一半的平方.试题16答案:.【考点】相似三角形的判定与性质.【专题】计算题.【分析】先根据平行四边形的性质得到AD∥BC,AD=BC,再由点E是边AD的中点得到DE=BC,接着证明△DEF∽△BCF,然后根据相似三角形的性质求解.【解答】解:∵四边形ABCD为平行四边形,∴AD∥BC,AD=BC,∵点E是边AD的中点,∴DE=BC,∵DE∥BC,∴△DEF∽△BCF,∴=()2=()2=.故答案为.【点评】本题考查了相似三角形的判定与性质:在判定两个三角形相似时,应注意利用图形中已有的公共角、公共边等隐含条件,以充分发挥基本图形的作用,寻找相似三角形的一般方法是通过作平行线构造相似三角形.在利用相似三角形的性质时,注意通过相似比计算相应线段的长或对应角线段.解决本题的关键是利用平行四边形的性质对边平行而构建相似三角形.试题17答案:1.【考点】根与系数的关系.【专题】计算题.【分析】直接根据根与系数的关系求解.【解答】解:根据题意得x1x2=1.故答案为1.【点评】本题考查了根与系数的关系:若二次项系数不为1,则常用以下关系:x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x1+x2=,x1x2=.试题18答案:k≤.【考点】根的判别式.【分析】分类讨论:当k=0,方程变形为﹣4x+3=0,此一元一次方程有解;当k≠0,△=16﹣4k×3≥0,方程有两个实数解,得到k≤且k≠0,然后综合两种情况即可得到实数k的取值范围.【解答】解:当k=0,方程变形为﹣4x+3=0,此一元一次方程的解为x=;当k≠0,△=16﹣4k×3≥0,解得k≤,且k≠0时,方程有两个实数根,综上所述实数k的取值范围为k≤.故答案为:k≤.【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2﹣4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.也考查了一元二次方程的定义和一元一次方程的解.试题19答案:.【考点】平行线分线段成比例.【分析】由在△ABC中,DE∥BC,=,根据平行线分线段成比例定理,即可求得答案.【解答】解:∵=,∴=,∵在△ABC中,DE∥BC,∴==.故答案为:.【点评】此题考查了平行线分线段成比例定理.注意掌握线段的对应关系.试题20答案:6.【考点】比例线段.【专题】计算题.【分析】根据比例中项的概念,得c2=ab,再利用比例的基本性质计算得到c的值.【解答】解:∵c是a、b的比例中项,∴c2=ab,又∵a=4,b=9,∴c2=ab=36,解得c=±6.又c为线段的长度,故c=﹣6舍去;即c=6.【点评】理解比例中项的概念:当比例式中的两个内项相同时,即叫比例中项.根据比例的基本性质进行计算.试题21答案:3.【考点】一元二次方程的解.【专题】计算题.【分析】根据一元二次方程的解,把把x=1代入方程x2﹣mx+2=0得到关于m的一次方程,然后解此一次方程即可.【解答】解:把x=1代入x2﹣mx+2=0得1﹣m+2=0,解得m=3.故答案为3.【点评】本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.试题22答案:.【考点】比例的性质.【分析】根据比例的性质,可用m表示n,根据分式的性质,可得答案.【解答】解:由=,得n=,==,故答案为:.【点评】本题考查了比例的性质,利用比例的性质得出n=是解题关键.试题23答案:【考点】作图-位似变换.【专题】作图题.【分析】(1)连接OB并延长,截取BB1=OB,连接OA并延长,截取AA1=0A,连接OC并延长,截取CC1=OC,确定出△A1B1C1,并求出C1点坐标即可;(2)根据A与A1坐标,B与B1坐标,以及C与C1坐标的关系,确定出变化后点D的对应点D1坐标即可.【解答】解:(1)根据题意画出图形,如图所示:则点C1的坐标为(﹣6,4);(2)变化后D的对应点D1的坐标为:(2a,2b).【点评】此题考查了作图﹣位似变换,画位似图形的一般步骤为:①确定位似中心,②分别连接并延长位似中心和能代表原图的关键点;③根据相似比,确定能代表所作的位似图形的关键点;顺次连接上述各点,得到放大或缩小的图形.试题24答案:【考点】相似三角形的应用.【分析】过A作AH垂直ED,垂足为H,交线段FC与G,可得△AFG∽△AEH,进而求出EH的长,进而求出ED的长.【解答】解:如图,过A作AH垂直ED,垂足为H,交线段FC与G,由题知,∵FG∥EH,∴△AFG∽△AEH,∴=,又因为AG=BC=2,AH=BD=2+6=8,FG=FC﹣GC=3.2﹣1.6=1.6,所以=,解得:EH=6.4,则ED=EH+HD=6.4+1.6=8(m).答:树ED的高为8米.【点评】此题主要考查了相似三角形的应用,根据题意得出△AFG∽△AEH是解题关键.试题25答案:【考点】一元二次方程的应用.【分析】由三角形是等腰三角形,得到①a=2,或b=2,②a=b①当a=2,或b=2时,得到方程的根x=2,把x=2代入x2﹣6x+n﹣1=0即可得到结果;②当a=b时,方程x2﹣6x+n﹣1=0有两个相等的实数根,由△=(﹣6)2﹣4(n﹣1)=0可的结果.【解答】解:∵三角形是等腰三角形,∴①a=2,或b=2,②a=b两种情况,①当a=2,或b=2时,∵a,b是关于x的一元二次方程x2﹣6x+n﹣1=0的两根,∴x=2,把x=2代入x2﹣6x+n﹣1=0得,22﹣6×2+n﹣1=0,解得:n=9,当n=9,方程的两根是2和4,而2,4,2不能组成三角形,故n=9不合题意,②当a=b时,方程x2﹣6x+n﹣1=0有两个相等的实数根,∴△=(﹣6)2﹣4(n﹣1)=0解得:n=10,综上所述,n=10.【点评】本题考查了等腰直角三角形的性质,一元二次方程的根,一元二次方程根的判别式,注意分类讨论思想的应用.试题26答案:【考点】梯形;平行四边形的判定与性质;相似三角形的判定与性质.【专题】几何综合题.【分析】(1)能够根据已知条件证明四边形BCDE是平行四边形,从而得到DE∥BC,即可证明相似;(2)根据相似三角形的性质求得相似比,即可求得线段的长.【解答】(1)证明:∵点E、F分别是AB、BC的中点且AB=2CD,∴BE=CD.∵AB∥CD,∴四边形BEDC是平行四边形.∴DE∥BF.∴∠EDM=∠FBM.∵∠DME=∠BMF,∴△EDM∽△FBM.(2)解:∵△EDM∽△FBM,∴BF=DE.∵,∴DM=2BM.∵BD=DM+BM=9,∴BM=3.【点评】此题考查了相似三角形的判定与性质,平行四边形的判定与性质,以及比例的性质,要证明比例问题常常把各边放入两三角形中,利用相似解决问题,证明相似的方法有:两对对应边相等的两三角形相似;两边对应成比例且夹角相等的两三角形相似;三边对应成比例的两三角形相似等,此外学生在做第二问时要注意借助已证的结论.试题27答案:【考点】一元二次方程的应用.【专题】销售问题.【分析】(1)设甲商品的零售单价为x元,乙商品的零售单价为y元,根据题意表示出两商品的进货单价,然后根据按零售单价购买甲商品3件和乙商品2件,共付了15元,列方程组求解;(2)先求出该校园商店平均每天卖出甲文具50件和乙文具120件时,获取的利润,再根据降价后甲每天卖出(50+10×)件,每件降价后每件利润为:(1﹣m)元;即可得出总利润,利用一元二次方程解法求出即可.【解答】解:(1)假设甲、种商品的进货单价为x,y元,乙种商品的进货单价为y元,根据题意可得:,解得:.答:甲、乙零售单价分别为2元和3元.故答案为2,3;(2)该校园商店平均每天卖出甲文具50件和乙文具120件时,获取的利润为:50×1+120(3﹣2)=170(元).根据题意得出:(1﹣m)(50+10×)+1×120=170,即2m2﹣m=0,解得m=0.5或m=0(舍去).答:当m定为0.5元时,可以使商店每天销售甲、乙两种文具获取的利润保持不变.【点评】此题主要考查了一元二次方程的应用,此题比较典型也是近几年中考中热点题型,注意表示总利润时表示出商品的单件利润和所卖商品件数是解决问题的关键.试题28答案:【考点】相似形综合题;切线的性质.【专题】压轴题;探究型.【分析】(1)如图1,由∠DPC=∠A=∠B=90°可得∠ADP=∠BPC,即可证到△ADP∽△BPC,然后运用相似三角形的性质即可解决问题;(2)如图2,由∠DPC=∠A=∠B=θ可得∠ADP=∠BPC,即可证到△ADP∽△BPC,然后运用相似三角形的性质即可解决问题;(3)如图3,过点D作DE⊥AB于点E,根据等腰三角形的性质可得AE=BE=3,根据勾股定理可得DE=4,由题可得DC=DE=4,则有BC=5﹣4=1.易证∠DPC=∠A=∠B.根据AD•BC=AP•BP,就可求出t的值.【解答】解:(1)如图1,∵∠DPC=∠A=∠B=90°,∴∠ADP+∠APD=90°,∠BPC+∠APD=90°,∴∠ADP=∠BPC,∴△ADP∽△BPC,∴=,∴AD•BC=AP•BP;(2)结论AD•BC=AP•BP仍然成立.理由:如图2,∵∠BPD=∠DPC+∠BPC,∠BPD=∠A+∠ADP,∴∠DPC+∠BPC=∠A+∠ADP.∵∠DPC=∠A=∠B=θ,∴∠BPC=∠ADP,∴△ADP∽△BPC,∴=,∴AD•BC=AP•BP;(3)如图3,过点D作DE⊥AB于点E.∵AD=BD=5,AB=6,∴AE=BE=3.由勾股定理可得DE=4.∵以点D为圆心,DC为半径的圆与AB相切,∴DC=DE=4,∴BC=5﹣4=1.又∵AD=BD,∴∠A=∠B,∴∠DPC=∠A=∠B.由(1)、(2)的经验可知AD•BC=AP•BP,∴5×1=t(6﹣t),解得:t1=1,t2=5,∴t的值为1秒或5秒.【点评】本题是对K型相似模型的探究和应用,考查了相似三角形的判定与性质、切线的性质、等腰三角形的性质、勾股定理、等角的余角相等、三角形外角的性质、解一元二次方程等知识,以及运用已有经验解决问题的能力,渗透了特殊到一般的思想.。

2018-2019学年江苏省镇江市句容市九年级(上)期中数学试卷_0

2018-2019学年江苏省镇江市句容市九年级(上)期中数学试卷_0

2018-2019学年江苏省镇江市句容市九年级(上)期中数学试卷一、填空题(每小题2分,共24分.)1.(2分)方程x2=2x的根为.2.(2分)已知一元二次方程x2+kx﹣4=0有一个根为1,则k的值为.3.(2分)若一元二次方程x2﹣2x+k=0有两个不相等的实数根,则k的取值范围是.4.(2分)一个三角形的两边长分别为3和5,第三边长是方程x2﹣6x+8=0的根,则三角形的周长为.5.(2分)如图,点B是⊙O上的一点.若∠AOC=60°,∠ABC=.6.(2分)如图,四边形ABCD内接于⊙O,若∠BOD=160°,则∠BCD=.7.(2分)如图所示是某校中学部篮球兴趣小组年龄结构条形统计图,该小组年龄最小为13岁,最大为17岁,根据统计图所提供的数据,该小组组员年龄的中位数为岁.8.(2分)如图,点P为⊙O外一点,P A为⊙O的切线,A为切点,PO交⊙O 于点B,BP=2,P A=2,则OB=.9.(2分)若m是方程2x2﹣3x﹣1=0的一个根,则6m2﹣9m+2018的值为.10.(2分)一组数据2、3、5、6、x的平均数正好也是这组数据的中位数,那么正整数x为.11.(2分)如图,从一块直径为2米的圆形铁皮上剪出一个圆心角为90°的扇形.则用剪成的这个扇形围成圆锥的底面圆的半径为.(剪成的扇形的面积正好等于围成的圆锥的侧面积)12.(2分)如图,正方形ABCD的边长为4,M是AB的中点,P是BC边上的动点,连结PM,以点P为圆心,PM长为半径作⊙P.当⊙P与正方形ABCD 的边相切时,BP的长为.二、选择题(本大题共有5小题,每小题3分,共15分.)13.(3分)用配方法解一元二次方程x2+2x﹣1=0,配方后得到的方程是()A.(x﹣1)2=2B.(x﹣1)2=3C.(x+1)2=2D.(x+1)2=3 14.(3分)如图,AB是⊙O的直径,AC是⊙O的弦,过点C的切线交AB的延长线于点D.若∠D=20°,则∠A的度数为()A.20°B.30°C.35°D.40°15.(3分)下表是某校合唱团成员的年龄分布:年龄/岁13141516频数515x10﹣x对于不同的x,下列关于年龄的统计量不会发生改变的是()A.众数、中位数B.中位数、方差C.平均数、中位数D.平均数、方差16.(3分)观察表格中的数据得出方程x2﹣2x﹣4=0的一个根的十分位上的数字应是()x﹣2﹣1.4﹣1.3﹣1.2﹣1.10x2﹣2x﹣4=040.760.29﹣0.16﹣0.59﹣4A.0B.1C.2D.317.(3分)如图,在矩形ABCD中,AB=10,BC=8,以CD为直径作⊙O.将矩形ABCD绕点C旋转,使所得矩形A′B′CD′的边A′B′与⊙O相切,切点为E,则A′E的长为()A.5B.6C.7D.8三、解答题(本大题共有10题,共81分.)18.(5分)解下列方程(1)x2+6x+4=0(2)2x2﹣x﹣3=0(3)3x(x﹣2)=10﹣5x19.(7分)甲、乙两人5场10次投篮命中次数如图:(1)填写表格:平均数众数中位数方差甲80.4乙89(2)如果教练根据选手5场投篮成绩的稳定程度来决定谁来参加下一次比赛,那他应该决定哪位选手参加?说出理由.20.(8分)已知关于x的方程x2﹣ax+a﹣3=0.(1)求证:不论a取何实数,该方程都有两个不相等的实数根;(2)若x=2是方程的一个根,求a的值及该方程的另一根.21.(8分)如图,AB是⊙O的直径,D是弦AC的延长线上一点,且CD=AC,DB的延长线交⊙O于点E.(1)求证:CD=CE;(2)连结AE,若∠D=25°,求∠BAE的度数.22.(8分)如图,正方形ABCD的外接圆为⊙O,点P在劣弧BC上(不与B、C点重合).(1)求∠BPC的度数;(2)若正方形ABCD的边长为2cm,求⊙O的半径及阴影部分的面积.23.(8分)如图,学校要用长24米的篱笆围成一个长方形生物园ABCD,EF 是ABCD内用篱笆做成的竖直隔断.为了节约材料,场地的一边CD借助原有的一面墙,墙长为12米,长方形生物园ABCD的面积为45平方米,求长方形场地的边AD的长.24.(8分)阅读:已知△ABC,用直尺与圆规,在直线BC上方的平面内作一点M(不与点A重合),使∠BMC=∠BAC(如图1).小明利用“同弧所对的圆周角相等”这条性质解决了这个问题,下面是他的作图过程:第一步:分别作AB、BC的中垂线(虚线部分),设交点为O;第二步:以O为圆心,OA为半径画圆(即△ABC的外接圆)第三步:在弦BC上方的弧上(异于A点)取一点M,连结MB、MC,则∠BMC =∠BAC.(如图2)思考:如图2,在矩形ABCD中,BC=6,CD=10,E是CD上一点,DE=2.(1)请利用小明上面操作所获得的经验,在矩形ABCD内部用直尺与圆规作出一点P.点P满足:∠BPC=∠BEC,且PB=PC.(要求:用直尺与圆规作出点P,保留作图痕迹.)(2)求PC的长.25.(9分)某天猫店销售某种规格学生软式排球,成本为每个30元.以往销售大数据分析表明:当每只售价为40元时,平均每月售出600个;若售价每上涨1元,其月销售量就减少20个,若售价每下降1元,其月销售量就增加200个.(1)若售价上涨m元,每月能售出个排球(用m的代数式表示).(2)为迎接“双十一”,该天猫店在10月底备货1300个该规格的排球,并决定整个11月份进行降价促销,问售价定为多少元时,能使11月份这种规格排球获利恰好为8400元.26.(10分)△ABC内接于⊙O,BC是⊙O的直径,点D是BC延长线上的一点,AD=AB,且∠ACB=2∠D,CD=2(如图1).(1)求证:AD是⊙O的切线;(2)AD=;(3)若点E是⊙O上的一点,AE与BC交于点F,且点E等分半圆BC时(如图2),求CF的长.2018-2019学年江苏省镇江市句容市九年级(上)期中数学试卷参考答案一、填空题(每小题2分,共24分.)1.x1=0,x2=2;2.3;3.k<1;4.12;5.30°;6.100°;7.15.5;8.2;9.2021;10.4或9;11.;12.或2;二、选择题(本大题共有5小题,每小题3分,共15分.)13.C;14.C;15.A;16.B;17.B;三、解答题(本大题共有10题,共81分.)18.;19.8;8;9;3.2;20.;21.;22.;23.;24.;25.600﹣20m;26.2;。

_江苏省镇江市句容市2019届九年级上学期数学10月月考试卷(含答案解析)

_江苏省镇江市句容市2019届九年级上学期数学10月月考试卷(含答案解析)

第1页,总22页…………○…………外…………○…………装…………○…………订…………○…………线…………○…………姓名:____________班级:____________学号:___________…………○…………内…………○…………装…………○…………订…………○…………线…………○…………江苏省镇江市句容市2019届九年级上学期数学10月月考试卷考试时间:**分钟 满分:**分姓名:____________班级:____________学号:___________题号 一 二 三 四 总分 核分人 得分注意事项:1、填写答题卡的内容用2B铅笔填写2、提前 15 分钟收取答题卡第Ⅰ卷 客观题第Ⅰ卷的注释评卷人 得分一、单选题(共5题)1. 如图,点A,B,C 均在坐标轴上,AO=BO=CO=1,过A,O,C 作⊙D ,E 是⊙D 上任意一点,连结CE, BE ,则的最大值是( )A . 4B . 5C . 6D .2. 八年级(2)班学生积极参加献爱心活动,该班50名学生的捐款情况统计如表,则该班学生捐款金额的平均数和中位数分别是( )金额/元 5 10 20 50 100 人数 4 16 15 9 6A . 20.6元和10元B . 20.6元和20元C . 30.6元和10元D . 30.6元和20元3. 一元二次方程 配方后可化为( )A .B .C .D .4. 已知α、β是方程x 2﹣2x ﹣4=0的两个实数根,则α3+8β+6的值为( ) A . ﹣1 B . 2 C . 22 D . 30答案第2页,总22页………○…………外…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※………○…………内…………○…………装…………○…………订…………○…………线…………○…………5. 在纸上剪下一个圆形和一个扇形纸片,使之恰好能够围成一个圆锥模型,若圆的半径为r ,扇形的半径为R ,扇形的圆心角等于120°(如图),则r 与R 之间的关系是( )A . R=2rB . R= rC . R=3rD . R=4r第Ⅱ卷 主观题第Ⅱ卷的注释评卷人 得分一、填空题(共12题)1. 一组数据2,x ,4,3,3的平均数是3,则这组数据的中位数是__.2. 如图,正六边形ABCDEF 的边长为1,以点A 为圆心,AB 的长为半径,作扇形ABF,则图中阴影部分的面积为 (结果保留根号和 ).3. 方程x 2-5x =0的解是 .4. 下列方程中,①x 2=0;②x 2=y+4;③ax 2+2x ﹣3=0(其中a 是常数);④x (2x ﹣3)=2x (x ﹣1);⑤ (x 2+3)=x ,一定是一元二次方程的有 (填序号).5. 已知a 是方程x 2﹣2018x+1=0的一个根a ,则a 2﹣2017a+的值为 .6. 若关于x 的一元二次方程 x 2﹣2mx ﹣4m+1=0有两个相等的实数根,则(m ﹣2)2﹣2m (m ﹣1)的。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2019届江苏省句容市九年级上学期期中学情分析考试
数学试卷【含答案及解析】
姓名___________ 班级____________ 分数__________
一、填空题
1. 已知,则= .
2. 已知是方程的一个根,则的值是.
3. 已知线段是线段、的比例中项,且,,则.
4. 如图,在△ABC中,DE∥BC,,则= .
5. 若关于x的一元二次方程kx2-4x+3=0有实数根,则k的取值范围是.
6. 已知是一元二次方程的两个根,则等于.
7. 如图,在□ABCD中,点E是边AD的中点,EC交对角线BD于点F,则= .
8. 将代数式x2+6x+3配方成(x+m)2+n的形式,则= .
9. 若关于x的一元二次方程的两个实数根分别为-1和,则
n= .
10. 如图,为测量学校旗杆的高度,小东用长为3.2m的竹竿作测量工具,移动竹竿,使
竹竿顶端与旗杆顶端的影子恰好落在地面的同一点,此时,竹竿与这一点相距8m,与旗杆相距22m,则旗杆的高为 m.
11. 如图,线段CD两个端点的坐标分别为C(3,3),D(4,1),以原点O为位似中心,在第一象限内将线段CD扩大为原来的两倍,得到线段AB,则线段AB的中点E的坐标
为.
12. 若m,n是方程的两个实数根,则的值为.
二、选择题
13. 一元二次方程的根是()
A.-1 B.0 C.1和2 D.-1和2
14. 已知关于x的一元二次方程有两个不相等的实数根,则的取值范围是()
A.<-1
B.>1
C.>-1且≠0
D.<-1且≠0
15. 下列条件不能判定△ABC与△DEF相似的是()
A.
B.,
C.∠A=∠D,∠B=∠E
D.,∠B=∠E
16. 如图,在△ABC中,D、E分别是AB、BC上的点,且DE∥AC,若,则的值()
A.1∶5 B.1∶9 C.1∶12 D.1∶16
17. 有两个一元二次方程M:;N:,其中
.下列四个结论中:
①如果方程M有两个相等的实数根,那么方程N也有两个相等的实数根;
②如果,方程M、 N都有两个不相等的实数根;
③如果2是方程M的一个根,那么是方程N的一个根;
④如果方程M和方程N有一个相同的根,那么这个根必是x=1
正确的个数有()
A.4个 B.3个 C.2个 D.1个
三、解答题
18. 解下列方程
(1)
(2)
(3)
19. 如图,∥∥,AB=3,BC=5,DF=12,求DE和EF的长。

20. 已知关于x的方程+ax+a-2=0.
(1)若该方程的一个根为1,求a的值及该方程的另一根;
(2)求证:不论a取何实数,该方程都有两个不相等的实数根.
21. 如图,D是△ABC外一点,E是BC边上一点,∠1=∠2,∠3=∠4.
(1)写出图中两对相似三角形(不得添加字母和线);
(2)请分别说明两对三角形相似的理由.
22. 为了测量校园水平地面上一棵树的高度,数学兴趣小组利用一根标杆、皮尺,设计如图所示的测量方案.已知测量同学眼睛A、标杆顶端F、树的顶端E在同一直线上,此同学眼睛距地面1.6米,标杆高为3.2米,且BC=2米,CD=6米,求树ED的高.
23. 等腰三角形边长分别为a、b、2,且a,b是关于x的一元二次方程
的两根,求n的值.
24. 如图,梯形ABCD中,AB//CD,且AB=2CD,E,F分别是AB,BC的中点.
EF与BD相交于点M.
(1)求证:△EDM∽△FBM;
(2)若DB=9,求BM.
25. 某校园商店经销甲、乙两种文具.现有如下信息:
请根据以上信息,解答下列问题:
(1)甲、乙两种文具的零售单价分别为元和元.(直接写出答案)
(2)该校园商店平均每天卖出甲文具50件和乙文具120件.经调查发现,甲种文具零售单价每降0.1元,甲种文具每天可多销售10件.为了降价促销,使学生得到实惠,商店决定把甲种文具的零售单价下降m(m>0)元.在不考虑其他因素的条件下,当m定为多少时,可以使商店每天销售甲、乙两种文具获取的利润保持不变?
26. (1)问题:如图1,在四边形ABCD中,点P为AB上一点,∠DPC=∠A=∠B=90°.求证:AD·BC=AP·BP.
(2)探究:如图2,在四边形ABCD中,点P为AB上一点,当∠DPC=∠A=∠B=θ时,上述结论是否依然成立?说明理由.
(3)应用:请利用(1)(2)获得的经验解决问题:
如图3,在△ABD中,AB=6,AD=BD=5.点P以每秒1个单位长度的速度,由点A 出发,沿边AB向点B运动,且满足∠DPC=∠A.设点P的运动时间为t(秒),当DC的长与△ABD 底边上的高相等时,求t的值.
参考答案及解析
第1题【答案】
第2题【答案】
第3题【答案】
第4题【答案】
第5题【答案】
第6题【答案】
第7题【答案】
第8题【答案】
第9题【答案】
第10题【答案】
第11题【答案】
第12题【答案】
第13题【答案】
第14题【答案】
第15题【答案】
第16题【答案】
第17题【答案】
第18题【答案】
第19题【答案】
第20题【答案】
第21题【答案】
第22题【答案】
第23题【答案】
第24题【答案】
第25题【答案】
第26题【答案】。

相关文档
最新文档