锐角三角函数的解题技巧

合集下载

求锐角三角函数值的常用方法

求锐角三角函数值的常用方法

求锐角三角函数值的常用方法作者:王小艳来源:《理科考试研究·初中》2013年第06期锐角三角函数是沟通代数与几何知识的桥梁,它剥去代数知识的外表转化为解直角三角形的问题,或以锐角三角函数知识为工具将几何知识转化为解代数问题,从而将平面几何中对直角三角形的研究转化为定量研究,达到化难为易的目的.多年来,锐角三角函数一直是中考命题的热点之一.从题型上看,选择题、填空题、解答题、综合题、压轴题,型型皆有.但是,课本上“解直角三角形”一节中这方面例题很少,因而一些同学对这类题的解答感到无从入手.为了解决这个问题,现将求锐角三角函数值的常用方法总结如下:一、直接用锐角三角函数的定义二、用同角三角函数间的关系我们知道,直角三角形的两锐角互余,两直角边的平方和等于斜边的平方,那么在直角三角形中,这些锐角三角函数之间又有怎样的关系呢?三、用等角来替代当直接用三角函数的定义求某锐角的三角函数值较为困难时,可通过相等角进行转换求值.四、构造直角三角形要解含有特殊角(或已知角的三角函数值)的锐角三角形,往往要作某条边上的高线,将其分成两个直角三角形,且使已知角成为构造的直角三角形的一个内角,以便展开推理和计算.求锐角三角函数值的方法较多,且方法灵活,是中考中常见的题型. 我们可以根据已知条件结合图形选用灵活的求解方法.当题目直接用定义求某锐角三角函数值不方便时,经常分析图形、条件,观察图中有没有与所求锐角相等的锐角,然后改求其相等角的三角函数值,这是一个非常重要的解题技巧.当题目直接用定义求其锐角三角函数值不方便时,还常分析图形,观察图形中有没有与这个锐角互余的锐角,然后利用互余两角的三角函数关系式,改求其余角的相应三角函数值.由于初中阶段求三角函数值常用方法是用定义,故若题目图形中所求锐角不在直角三角形中时,常用的处理手段是适当作垂线,使所求锐角含在直角三角形中.当然,如何作垂线应推敲一下,在有30,45或者60度角条件时,经常设法作出含30,45,60度角的直角三角形,这一常用解题思路在解题中的应用.。

锐角三角函数值的求解攻略

锐角三角函数值的求解攻略

锐角三角函数值的求解攻略浙江嘉善县泗洲中学(314100)杨晓霞[摘要]锐角三角函数是历年中考数学的重点和热点内容,研究锐角三角函数对中考应用题的复习备考乃至中考数学命题模式的把握都有非常重要的指导意义.[关键词]三角函数;锐角;求解[中图分类号]G633.6[文献标识码]A[文章编号]1674-6058(2021)08-0020-02一、定义法[例1]如图1,在Rt△ABC中,∠ACB=90°,BC=3,AC=15,AB的垂直平分线DE交BC的延长线于点D,垂足为E,求sin∠CAD的值.分析:在图1中,∠CAD为直角三角形CAD的一个内角,根据锐角的正弦的定义,可知sin∠CAD=CDAD.因此,本题的解题关键是求出∠CAD的对边CD和斜边AD的长度.根据线段的垂直平分线的性质易知AD=BD.已知条件BC=3,可表示出CD长.在Rt△CAD中运用勾股定理求解.当然,这里最好引入一个未知数,以简便表示相关线段长度.解:因为AB的垂直平分线DE交BC的延长线于点D,所以有AD=BD.不妨设AD=BD=x,又BC=3,则CD=x-3,而AC=15,在Rt△CAD中,根据勾股定理知AC2+CD2=AD2,即15+()x-32=x2,解得x=4.即AD=4,CD=1,所以sin∠CAD=CDAD=14.点评:本题主要考查锐角三角函数中正弦的定义,并检测学生对一元二次方程的求解的掌握程度,勾股定理在解题中起了关键作用.二、参数法[例2]如图2,在△ABC中,∠C=90°,sin A=25,求sin B的值.分析:根据已知条件中的sin A=25,可以结合锐角三角函数中正弦的定义,引入一个参数,设出角A的对边CB和斜边AB的长度,再运用勾股定理求得角A的邻边AC的长度后,问题得解.解:因为∠C=90°,sin A=25,根据此比值可设CB=2x,AB=5x,其中x>0,再由勾股定理得AC2=AB2-CB2=21x2,即AC=21x,结合锐角三角函数中正弦的定义可知,sin B=ACAB=21x5x=点评:熟练掌握锐角三角函数中正弦的定义是解决本题的关键所在,若已知条件中给出具体角的比值,通常的做法是引入一个大于0的参数,根据比值设出相应边的长度,然后根据勾股定理求解.三、构造法1.三角形中的构造[例3]如图3,在直角△BAD中,延长斜边BD到点C,使得DC=12BD,连接AC,若tan B=53,求tan∠CAD的值.分析:本题要求tan∠CAD,但由于∠CAD不在图中已知的直角三角形中,需要另外构造直角三角形,使得∠CAD置于其中.可以过点D作边AD的垂线,构造出直角三角形ADH来解决.解:过点D作边AD的垂线DH交AC于H,垂足为D,如图4所示,根据△BAD为直角三角形可知,∠BAD=∠ADH=90°,所以AB∥DH,易证得△CDH∽△CBA,进而得到DH AB=CD CB,因为已知条件中有DC=12BD,则DH AB=CD CB=13,又在Rt△BAD中,tan B=53,不妨设AD=5k,AB=3k,这样DH=k,故在Rt△ADH中,有tan∠CAD=DHAD=k5k=15.点评:如果在三角形中求相关角的三角函数值时,所求角并不在已知直角三角形中,这时我们就需要通过作垂线段来构造直角三角形,从而将所求角置于直角三角形中,再结合三角函数值的定义求解.本题还运用了相似三角形的相关性质.此外,本题亦可图1图2图3图4[基金项目]本文系全国教育科学“十三五”规划2017年度教育部重点课题“核心素养视角下的中学数学命题模式研究”(批准号:DHA17035)成果.数学·解题研究过点C 作直线AD 的垂线,通过构造出两个相似的直角三角形,利用相似比计算出相应的边长求解.2.圆中的构造[例4]如图5,在半径为3的圆O 中,直径AB 与弦CD 相交于点E ,连接AC ,BD ,若AC =2,求tan D 的值.分析:题中已知条件提及直径AB ,又要求角D 的正切值,自然联想到这里应该是要借助“直径AB 所对的圆周角为直角”这一性质来构造直角三角形,然后将角D 置于其中求解.解:连接BC ,如图6所示,因为AB 为直径,则∠ACB =90°,这样在直角三角形ACB 中,有tan A =BCAC,根据圆周角的性质,不难发现∠A =∠D ,故tan D =BCAC,又圆O 的半径为3,AC =2,那么BC =AB 2-AC 2=36-4=42,所以tan D =BCAC=422=22.点评:在圆中求锐角三角函数值时,利用直径来构造直角三角形是最常用的构造方法,一般还会利用“同弧(或等弧)所对的圆周角相等”这一性质,将目标角进行等量转化.3.网格中的构造[例5]如图7所示,已知△ABC 的三个顶点均在格点上,则cos A 的值为.图7图8分析:因为网格中无直角三角形,所以需要借助网格格点构造直角三角形,不妨通过点B 来构造,连接格点B 、D ,如图8所示,易知△ABD 为直角三角形.解:如图8所示,连接格点B 、D ,根据正方形的对角线的特征,易知△ABD 为直角三角形,可设小正方形的边长为1,则AB =10,AD =22,所以cos A =AD AB =2210=255.点评:在网格中求锐角三角函数值,一般都是借助网格中的格点去构造直角三角形,通常构造的方法也不是唯一的,本题也可以通过补网格,利用格点C 来构造直角三角形.四、等量转化法1.网格中的转化[例6]如图9,在边长相同的小正方形网格中,点A 、B 、C 、D 都在这些小正方形的顶点上,AB 、CD 相交于点P,则tan∠APD 的值为.图9图10分析:本题可将∠APD 转化为∠BPC ,然后通过小正方形的对角线构造直角三角形解决.解析:连接格点B 、Q ,交DC 于点H ,如图10所示,则BH ⊥DC ,所以tan∠APD =tan∠BPH =BHPH ,若设小正方形的边长为1,那么BH=易知△BDP ∽△ACP ,则DP PC =BD AC =13,所以DP =14DC=那么PH =DH -DP 故tan∠APD =BH PH =22=2.点评:在网格中,若对所求角直接构造直角三角形较困难,可以进行适当的等量转化.本题将∠APD 等量转化为∠BPC 是解题的关键.2.折叠中的转化[例7]如图11,在△ABC 中,∠ACB =90°,AC =BC =4,将△ABC 折叠,使点A 落在BC边上的点D 处,EF 为折痕,若AE =3,则sin∠BFD =.分析:根据折叠的性质,∠A =∠EDF =45°,注意到∠BFD =180°-∠B -∠BDF =135°-∠BDF ,∠CDE =180°-∠EDF -∠BDF =135°-∠BDF .这样将∠BFD 等量转化成∠CDE ,再在Rt△CDE 中求解.解析:由题意知,∠A =∠EDF =∠B =45°,在△BFD 中,∠BFD =180°-∠B -∠BDF =135°-∠BDF ,又因为∠CDE =180°-∠EDF -∠BDF =135°-∠BDF ,所以∠BFD =∠CDE ,易知CE =1,DE =3,故sin∠BFD =sin∠CDE =CE DE =13.点评:折叠问题中,要紧扣相关角、边之间的等量关系.将∠BFD 等量转化成∠CDE 是成功解决本题的关键一步.锐角三角函数值的求解是中考数学的必考题型,其涉及的题目类型多变,可采用的解题策略也较多,在平时的教学过程中,教师要注意归纳、小结各种解题方法,以便学生在解题时可以信手拈来.(责任编辑黄桂坚)图5图6图11数学·解题研究。

解锐角三角函数的技巧

解锐角三角函数的技巧
5. 三角函数的平方和差公式:利用三角函数的平方和差公式,将三角函数的平方转化为和 或差的形式。例如,sin^2θ=(1-cos2θ)/2,cos^2θ=(1+cos2θ)/2。
6. 三角函数的倒数关系:利用三角函数的倒数关系,将一个三角函数转化为另一个三角函 数的倒数形式。例如,tanθ=1/cotθ,cotθ=1/tanθ。
解锐角三角函数的技巧
解锐角三角函数的技巧主要包括以下几点:
1. 特殊角的数值:熟记30°、45°、60°三个特殊角的正弦、余弦和正切值。例如, sin30°=1/2,cos45°=1/√2,tan60°=√3。
2. 三角函数的性质:利用三角函数的周期性、对称性倒数关系等性质,将角度转化为在 特定范围内的等效角度。例如,sin(180°+θ)=-sinθ,cos(-θ)=cosθ,tan(θ+π)=-tanθ。
解锐角三角函数的技巧
7. 三角函数的逆函数:利用三角函数的逆函数,将一个三角函数的值转化为对应的角度。 例如,sin^(-1)(x)表示sinθ=x的解,cos^(-1)(x)表示cosθ=x的解。
通过掌握这些技巧,可以在解锐角三角函数的过程中更加灵活和高效地进行计算。同时, 多做练习和应用,加深对三角函数的理解和熟练度,也是提高解题能力的重要方法。
3. 三角函数的和差公式:利用三角函数的和差公式,将复杂的角度拆分为简单的角度的和 或差。例如,sin(A+B)=sinAcosB+cosAsinB,cos(A-B)=cosAcosB+sinAsinB。
解锐角三角函数的技巧
4. 三角函数的倍角公式:利用三角函数的倍角公式,将角度转化为两倍角度的三角函数。 例如,sin2θ=2sinθcosθ,cos2θ=cos^2θ-sin^2θ。

初中锐角三角函数知识点总结

初中锐角三角函数知识点总结

锐角三角函数及其应用榆林第六中学 高启鹏一、锐角三角函数中考考点归纳考点一、锐角三角函数 1、锐角三角函数的定义如图,在 Rt △ ABC 中,/ C 为直角, 有(1) 图表记忆法三角\角 函数、304560si na1 c亡222 cosa爲匹J222tana乜31(2) 规律记忆法:30 °、45 °、60°角的正弦值的分母都是 2,分 子依次为1、. 2、3 ;30°、45°、60°角余弦值恰好是 60°、45°、 30°角的正弦值。

/ A 的正弦: sin A A 的对边a 斜边 c / A 的余弦: cos A A 的邻边b 斜边c / A 的正切: tan AA 的对边a A 的邻边b2、特殊角的三角函数值则/ A ABC 中的一锐角,则(3)口诀记忆法口诀是:“一、二、三,三、二、一,三、九、二十七,弦比二,切比三,分子根号不能删.”前三句中的1,2,3;3,2,1;3,9,27,分别是30°,45 °,60°角的正弦、余弦、正切值中分子根号内的值.弦比二、切比三是指正弦、余弦的分母为2,正切的分母为3.最后一句,讲的是各函数值中分子都加上根号,不能丢掉.如tan60 °二旦 ,3,tan45 =— 1 .这种方法有趣、简单、3 3易记.考点二、解直角三角形1、由直角三角形中的已知元素求出其他未知元素的过程,叫做解直角三角形。

2、解直角三角形的类型和解法如下表:考点二、锐角二角函数的实际应用(咼频考点)仰角、俯角、坡度(坡比)、坡角、方向角仰角、俯角在视线与水平线所成的锐角中,视线在水平线上方的角叫仰角,视线在水平线下方的角叫俯角。

坡度(坡比)、坡角坡面的铅直高度h和水平宽度1的比叫坡度(坡比),用字母i表示;坡面与水平线的夹角叫坡角,i tan Pl指北或指南的方向线与目标方向线所成的小于90°的锐角叫做方向角.注意:东北方向指北偏东45方向,东南方向指南偏方向角东45 方向,西北方向指北偏西45方向,西南方向指南偏西45°方向.我们一般画图的方位为上北下南,左西右东.二、锐角三角函数常见考法(一)、锐角三角函数以选择题的形式出现.例1、(2016?陕西)已知抛物线y二-x2-2x+3与x轴交于A B两点,将这条抛物线的顶点记为C,连接AG BC则tan / CAB的值为()A.丄B . ■- C •」D ■ 2【考点】抛物线与x轴的交点;锐角三角函数的定义.CD:【解析】先求出A B、C坐标,作CDL AB于D,根据tan / ACD=-即可计算.o【解答】解:令y=0,则-x —2x+3=0,解得x=—3或1,不妨设A (—3,0),B (1, 0),2 2• y二—x - 2x+3=—( x+1) +4,「•顶点C (- 1, 4),如图所示,作CDL AB于D.故答案为D.(二)、锐角三角函数以填空题的形式出现例2、(2016?陕西)请从以下两个小题中任选一个作答,若多选,则按第一题计分.A. —个多边形的一个外角为45°,则这个正多边形的边数是8 .B. 运用科学计算器计算:3.「sin73 ° 52’〜11.9 .(结果精确到0.1 )【考点】计算器一三角函数;近似数和有效数字;计算器一数的开方;多边形内角与外角.【解析】(1)根据多边形内角和为360°进行计算即可;(2)先分别求得3. 7和sin73 ° 52 '的近似值,再相乘求得计算结果.【解答】解:(1)v正多边形的外角和为360° 二这个正多边形的边数为:360°宁45° =8(2) 3 i sin73 °52’ 〜12.369 x0.961 〜11.9故答案为:8, 11.9例3、(2015?陕西)如图,有一滑梯 AB,其水平宽度AC 为5.3米,铅直高 度BC 为2.8米,则/ A 的度数约为 27.8(用科学计算器计算,结果精【考点】解直角三角形的应用-坡度坡角问题. 【解析】直接利用坡度的定义求得坡角的度数即可. 【解答】 解:T tan / A 」"1〜0.5283 ,AC 5. 3•••/ A=27.8°, 故答案为:27.8 ° .【点评】本题考查了坡度坡角的知识,解题时注意坡角的正切值 等于铅直高度与水平宽度的比值,难度不大.例4、(2014?陕西)用科学计算器计算:一 一;+3tan56 °〜10.02 (结果精确到0.01 ) 计算器一三角函数;计算器一数的开方.先用计算器求出tan56°的值,再计算加减运解:「丨〜5.5678 , tan56 °〜1.4826 , 则-1 +3tan56 °〜5.5678+3 X 1.4826 〜10.02故答案是:10.02 .【点评】 本题考查了计算器的使用,要注意此题是精确到【考点】 【分析】0.01.例5、(2014?陕西)如图,在正方形 ABC [中, AD=1将厶ABD绕点B 顺时针旋转45 °得到△ A BD ,此时A D 与CD 交于【考点】 旋转的性质【分析】 利用正方形和旋转的性质得出 A D=A E ,进而利用 勾股定理得出BD 的长,进而利用锐角三角函数关系得出 DE 的长 即可.【解答】 解:由题意可得出:/ BDC=45,/ DA E=90° , •••/ DEA =45°,••• A D=A E ,•••在正方形ABCD 中AD=1 • AB=A B=1, • BD=:':, • A D 二;:-1,•••在 Rt △ DA E 中,DE备=2-五故答案为:2-血.【点评】此题主要考查了正方形和旋转的性质以及勾股定理、2~41锐角三角函数关系等知识,得出 A D 的长是解题关键.(三) 、锐角三角函数定义以解答题的形式出现例6、( 12分)(2015?陕西)如图,在每一个四边形 ABC 冲,均有AD// BC ;CDL BC / ABC=60 , AD=8 BC=12(1) 如图①,点M 是四边形ABCDi AD 上的一点,则厶BMC 勺面积为 24「;; (2) 如图②,点N 是四边形ABCD* AD 上的任意一点,请你求出△ BNC 周长 的最小值;(3) 如图③,在四边形ABCD 勺边AD 上,是否存在一点P,使得cos / BPC 的 值最小?若存在,求出此时cos / BPC 勺值;若不存在,请说明理由.【考点】四边形综合题.. 【专题】综合题.【解析】(1)如图①,过A 作AE ! BC 可得出四边形AECF 为矩形,得到EC=ADBE 二B G EC 在直角三角形 ABE 中,求出AE 的长,即为三角形 BMC 勺高,求 出三角形BMC 面积即可;(2) 如图②,作点C 关于直线AD 的对称点C ,连接C N, C D, C B 交AD 于点 N ,连接 CN ,贝卩 BN+NC 二BN+NO BC =BN +CN ,可得出厶 BNC 周长的最小值BN C 的周长=BN +CN +BC 二BC+BC 求出即可;(3) 如图③所示,存在点P,使得cos /BPC 的值最小,作BC 的中垂线PQ 交BC 于点Q 交AD 于点P,连接BP CP 作厶BPC 的外接圆Q 圆O 与直线PQ 交于点N,则PB=PC 圆心0在PN 上,根据AD 与BC 平行,得到圆0与AD 相AD圈②图①ACc图③切,根据PQ=DC判断得到PQ大于BQ可得出圆心0在BC上方,在AD上任取一点P',连接P‘ B, P C, P‘ B交圆0于点M连接MC可得/ BPC= / BM OZ BP C,即/ BPC最小,cos/ BPC的值最小,连接0B求出即可.【解答】解:(1)如图①,过A作AE±BC二四边形AEC助矩形,••• EC=AD=8 BE二B G EC=12- 8=4,在Rt△ ABE中, / ABE=60 , BE=4•AB=2BE=8 AE=:・,二=4 二则S A BM千BC? AE=24 -;;故答案为:24. -;;(2)如图②,作点C关于直线AD的对称点C,连接C N, C D, C B交AD于点N,连接CN,贝卩BN+NC二BN+NO BC =BN +CN ,•△ BNC周长的最小值为△ BN C的周长=BN +CN +BC=BC +BCv AD// BC AE! BC / ABC=60 ,•过点A 作AE! BC 则CE=AD=8•BE=4 AE=B? tan60 ° 二酣1,•CC =2CD=2AE=8,v BC=12•BC=血/+防2=4阿,•△ BNC周长的最小值为4 1+12;(3)如图③所示,存在点P,使得cos/ BPC的值最小,作BC的中垂线PQ交BC于点Q交AD于点P,连接BP, CR作厶BPC的外接精品文档圆Q 圆0与直线PQ交于点N,贝S PB=PC圆心0在PN上,v AD// BC•••圆0与AD相切于点P,v PQ=DC=4>6,•PQ> BQ•/BPG 90°,圆心O在弦BC的上方,在AD上任取一点P',连接P‘ B, P‘ C, P‘ B交圆0于点M连接MC•••/ BPC y BM OZ BP C,•/ BPC最大,cos / BPC的值最小,连接0B 贝卩/ BON=/BPN/ BPCv 0B=0P=4 - 0Q在Rt△ B0C中,根据勾股定理得:0Q+62二(砸-0Q 2,解得:0Q二:;,2•0B二:,2•cos / BPC二co/ B0Q==l,P厂则此时cos/ BPC的值为一.【点评】此题属于四边形综合题,涉及的知识有:勾股定理,矩形的判定与性质,对称的性质,圆的切线的判定与性质,以及锐角三角函数定义,熟练掌握定理及性质是解本题的关键.例7、(10分)(2014年陕西省)已知抛物线C: y二-x2+bx+c经过A (- 3, 0)和B (0, 3)两点,将这条抛物线的顶点记为M它的对称轴与x轴的交点记为N.(1)求抛物线C的表达式;(2)求点M的坐标;(3)将抛物线C平移到C,抛物线C的顶点记为M',它的对称轴与x轴的交点记为N'.如果以点M N M、N为顶点的四边形是面积为16的平行四边形,那么应将抛物线C怎样平移?为什么?新课标xk b1. c om【考点】二次函数图象与几何变换;二次函数的性质;待定系数法求二次函数解析式;平行四边形的性质.菁优网版权所有【分析】(1)直接把A(- 3, 0)和B(0, 3)两点代入抛物线y二-x2+bx+c, 求出b, c 的值即可;(2)根据(1)中抛物线的解析式可得出其顶点坐标;(3)根据平行四边形的定义,可知有四种情形符合条件,如解答图所示.需要分类讨论.【解答】解: (1)V抛物线y二-x2+bx+c经过A (- 3, 0)和B (0, 3)两占J \\、’解得仁2,故此抛物线的解析式为:y二-x2- 2x+3;(2)v由(1)知抛物线的解析式为:y二-x2- 2x+3,•••当x=- 一= - = - 1 时,y=4, xKb 1.C omSa 2X ( -1) ,‘,• M(- 1, 4).(3J由题意,以点MN、M、N为顶点的平行四边形的边MN勺对边只能是M‘ N, •MN/ M N 且MN二M N.•MN NN =16,•NN =4.i )当M、N M、N为顶点的平行四边形是? MNN M时,将抛物线C向左或向右平移4个单位可得符合条件的抛物线C ;ii )当M N M、N为顶点的平行四边形是? MNMN时,将抛物线C先向左或向右平移4个单位,再向下平移8个单位,可得符合条件的抛物线C . •上述的四种平移,均可得到符合条件的抛物线C .【点评】本题考查了抛物线的平移变换、平行四边形的性质、待定系数法及二次函数的图象与性质等知识点.第(3)问需要分类讨论,避免漏解.例8、(12分)(2014?陕西)问题探究(1)如图①,在矩形ABCD K AB=3 BC=4如果BC边上存在点巳使厶APD 为等腰三角形,那么请画出满足条件的一个等腰三角形△ APD并求出此时BP 的长;(2)如图②,在△ ABC中,/ ABC=60 , BC=12 AD是BC边上的高,E、F分别为边AB AC的中点,当AD=6时,BC边上存在一点Q 使/ EQF=90,求此时BQ 的长;问题解决(3)有一山庄,它的平面图为如图③的五边形ABCDE山庄保卫人员想在线段CD 上选一点M安装监控装置,用来监视边AB现只要使/ AMB大约为60°, 就可以让监控装置的效果达到最佳,已知/ A二/ E=Z D=90°, AB=270m AE=400mED=285m CD=340m问在线段CD上是否存在点M 使/ AMB=60 ? 若存在,请求出符合条件的DM的长,若不存在,请说明理由.A D團①图②團③【考点】圆的综合题;全等三角形的判定与性质;等边三角形的性质;勾股定理;三角形中位线定理;矩形的性质;正方形的判定与性质;直线与圆的位置关系;特殊角的三角函数值.菁优网版权所有【专题】压轴题;存在型.【分析】(1)由于△ PAD是等腰三角形,底边不定,需三种情况讨论,运用三角形全等、矩形的性质、勾股定理等知识即可解决问题.(2)以EF为直径作。

锐角三角函数的题型及解题技巧

锐角三角函数的题型及解题技巧

锐角三角函数的题型及解题技巧锐角三角函数是三角函数的基础,它应用广泛,解题技巧性强,下面归纳出锐角三角函数的常见题型,并结合例题介绍一些解题技巧。

一、 化简或求值例1 (1)已知tan 2cot 1a a -=,且a 是锐角,求22tan cot 2a a +-的值。

(2)化简()()22sin cos cos sin a b a b a a a a ++-。

分析分析 (1)由已知可以求出tan a 的值,化简22tan cot 2a a +-可用1tan cot a a =×;(2)先把平方展开,再利用22sin cos 1a a +=化简。

化简。

解 (1)由tan 2cot 1a a -=得2tan 2tan a a -=,解关于tan a 的方程得tan 2a =或tan 1a =-。

又a 是锐角,∴tan 2a =。

∴22tan cot 2a a +-=22tan 2tan cot cot a a a a -×+=2(tan cot )a a -=tan cot a a -。

由tan 2a =,得1cot 2a =,∴22tan cot 2a a +-=tan cot a a -=13222-=。

(2)()()22sin cos cos sin a b a b a a a a ++-=2222sin 2sin cos cos a ab b a a a a +××++2222cos 2cos sin sin a ab b a a a a -××+=()()222222sin cos sin cos a b a a a a +++=22a b +。

说明说明 在化简或求值问题中,经常用到“1”的代换,即22sin cos 1a a +=,tan cot 1a a ×=等。

等。

二、已知三角函数值,求角例2 在△ABC 中,若223cos sin 022A B æö-+-=ç÷ç÷èø(),A B ÐÐ均为锐角,求C Ð的度数。

中考总复习:锐角三角函数综合复习--知识讲解(提高)

中考总复习:锐角三角函数综合复习--知识讲解(提高)

中考总复习:锐角三角函数综合复习—知识讲解(提高)【考纲要求】1.理解锐角三角函数的定义、性质及应用,特殊角三角函数值的求法,运用锐角三角函数解决与直角三角形有关的实际问题.题型有选择题、填空题、解答题,多以中、低档题出现;2.命题的热点为根据题中给出的信息构建图形,建立数学模型,然后用解直角三角形的知识解决问题. 【知识网络】 【考点梳理】考点一、锐角三角函数的概念如图所示,在Rt △ABC 中,∠C =90°,∠A 所对的边BC 记为a ,叫做∠A 的对边,也叫做∠B 的邻边,∠B 所对的边AC 记为b ,叫做∠B 的对边,也是∠A 的邻边,直角C 所对的边AB 记为c ,叫做斜边.锐角A 的对边与斜边的比叫做∠A 的正弦,记作sinA ,即sin A a A c∠==的对边斜边;锐角A 的邻边与斜边的比叫做∠A 的余弦,记作cosA ,即cos A bA c∠==的邻边斜边;锐角A 的对边与邻边的比叫做∠A 的正切,记作tanA ,即tan A aA A b∠==∠的对边的邻边.同理sin B b B c ∠==的对边斜边;cos B aB c∠==的邻边斜边;tan B b B B a ∠==∠的对边的邻边.要点诠释:(1)正弦、余弦、正切函数是在直角三角形中定义的,反映了直角三角形边与角的关系,是两条线段的比值.角的度数确定时,其比值不变,角的度数变化时,比值也随之变化.(2)sinA ,cosA ,tanA 分别是一个完整的数学符号,是一个整体,不能写成,,,不能理解成sin 与∠A ,cos 与∠A ,tan 与∠A 的乘积.书写时习惯上省略∠A 的角的记号“∠”,但对三个大写字母表示成的角(如∠AEF),其正切应写成“tan ∠AEF ”,不能写成“tanAEF ”;另外,、、常写成、、.(3)任何一个锐角都有相应的锐角三角函数值,不因这个角不在某个三角形中而不存在.(4)由锐角三角函数的定义知:当角度在0°<∠A<90°之间变化时,,,tanA >0. 考点二、特殊角的三角函数值利用三角函数的定义,可求出0°、30°、45°、60°、90°角的各三角函数值,归纳如下: 要点诠释:(1)通过该表可以方便地知道0°、30°、45°、60°、90°角的各三角函数值,它的另一个应用就Ca bc是:如果知道了一个锐角的三角函数值,就可以求出这个锐角的度数,例如:若,则锐角.(2)仔细研究表中数值的规律会发现:sin0︒、、、、sin90︒的值依次为0、、、、1,而cos0︒、、、、cos90︒的值的顺序正好相反,、、的值依次增大,其变化规律可以总结为:当角度在0°<∠A<90°之间变化时,①正弦、正切值随锐角度数的增大(或减小)而增大(或减小)②余弦值随锐角度数的增大(或减小)而减小(或增大).考点三、锐角三角函数之间的关系如图所示,在Rt△ABC中,∠C=90°.(1)互余关系:,;(2)平方关系:;(3)倒数关系:或;(4)商数关系:.要点诠释:锐角三角函数之间的关系式可由锐角三角函数的意义推导得出,常应用在三角函数的计算中,计算时巧用这些关系式可使运算简便.考点四、解直角三角形在直角三角形中,由已知元素(直角除外)求未知元素的过程,叫做解直角三角形.在直角三角形中,除直角外,一共有5个元素,即三条边和两个锐角.设在Rt△ABC中,∠C=90°,∠A、∠B、∠C所对的边分别为a、b、c,则有:①三边之间的关系:a2+b2=c2(勾股定理).②锐角之间的关系:∠A+∠B=90°.③边角之间的关系:,,,,,.④,h为斜边上的高.要点诠释:(1)直角三角形中有一个元素为定值(直角为90°),是已知的值.(2)这里讲的直角三角形的边角关系指的是等式,没有包括其他关系(如不等关系).(3)对这些式子的理解和记忆要结合图形,可以更加清楚、直观地理解.考点五、解直角三角形的常见类型及解法已知条件解法步骤Rt△ABC 两边两直角边(a,b)由求∠A,∠B=90°-∠A,斜边,一直角边(如c,a)由求∠A,∠B=90°-∠A,一边一角一直角边和一锐角锐角、邻边(如∠A,b)∠B=90°-∠A,,锐角、对边(如∠A,a)∠B=90°-∠A,,斜边、锐角(如c,∠A)∠B=90°-∠A,,要点诠释:1.在遇到解直角三角形的实际问题时,最好是先画出一个直角三角形的草图,按题意标明哪些元素是已知的,哪些元素是未知的,然后按先确定锐角、再确定它的对边和邻边的顺序进行计算.2.若题中无特殊说明,“解直角三角形”即要求出所有的未知元素,已知条件中至少有一个条件为边.考点六、解直角三角形的应用解直角三角形的知识应用很广泛,关键是把实际问题转化为数学模型,善于将某些实际问题中的数量关系化归为直角三角形中的边角关系是解决实际应用问题的关键.解这类问题的一般过程是:(1)弄清题中名词、术语的意义,如仰角、俯角、坡度、坡角、方向角等概念,然后根据题意画出几何图形,建立数学模型.(2)将已知条件转化为几何图形中的边、角或它们之间的关系,把实际问题转化为解直角三角形的问题.(3)根据直角三角形(或通过作垂线构造直角三角形)元素(边、角)之间的关系解有关的直角三角形.(4)得出数学问题的答案并检验答案是否符合实际意义,得出实际问题的解.拓展:在用直角三角形知识解决实际问题时,经常会用到以下概念:(1)坡角:坡面与水平面的夹角叫做坡角,用字母表示.坡度(坡比):坡面的铅直高度h和水平距离的比叫做坡度,用字母表示,则,如图,坡度通常写成=∶的形式.(2)仰角、俯角:视线与水平线所成的角中,视线中水平线上方的叫做仰角,在水平线下方的叫做俯角,如图.(3)方位角:从某点的指北方向线按顺时针转到目标方向的水平角叫做方位角,如图①中,目标方向PA,PB,PC的方位角分别为是40°,135°,245°.(4)方向角:指北或指南方向线与目标方向线所成的小于90°的水平角,叫做方向角,如图②中的目标方向线OA,OB,OC,OD的方向角分别表示北偏东30°,南偏东45°,南偏西80°,北偏西60°.特别如:东南方向指的是南偏东45°,东北方向指的是北偏东45°,西南方向指的是南偏西45°,西北方向指的是北偏西45°.要点诠释:1.解直角三角形实际是用三角知识,通过数值计算,去求出图形中的某些边的长或角的大小,最好画出它的示意图.2.非直接解直角三角形的问题,要观察图形特点,恰当引辅助线,使其转化为直角三角形或矩形来解.例如:3.解直角三角形的应用题时,首先弄清题意(关键弄清其中名词术语的意义),然后正确画出示意图,进而根据条件选择合适的方法求解. 考点七、解直角三角形相关的知识如图所示,在Rt △ABC 中,∠C =90°, (1)三边之间的关系:222a b c +=; (2)两锐角之间的关系:∠A+∠B =90°; (3)边与角之间的关系:sin cos a A B c ==,cos cos a A B c ==,cos sin b A B c==,1tan tan a A b B==. (4) 如图,若直角三角形ABC 中,CD ⊥AB 于点D ,设CD =h ,AD =q ,DB =p ,则由△CBD ∽△ABC ,得a 2=pc ;由△CAD ∽△BAC ,得b 2=qc ;由△ACD ∽△CBD ,得h 2=pq ;由△ACD ∽△ABC 或由△ABC 面积,得ab =ch .(5)如图所示,若CD 是直角三角形ABC 中斜边上的中线,则 ①CD =AD =BD =12AB ; ②点D 是Rt △ABC 的外心,外接圆半径R =12AB . (6)如图所示,若r 是直角三角形ABC 的内切圆半径,则2a b c abr a b c+-==++. 直角三角形的面积: ①如图所示,111sin 222ABC S ab ch ac B ===△.(h 为斜边上的高) ②如图所示,1()2ABC S r a b c =++△. 【典型例题】类型一、锐角三角函数的概念与性质【高清课堂:锐角三角函数综合复习 ID :408468 播放点:例2】1.(1)如图所示,在△ABC中,若∠C=90°,∠B=50°,AB=10,则BC的长为( ).A.10·tan50° B.10·cos50° C.10·sin50° D.10 sin50°(2)如图所示,在△ABC中,∠C=90°,sinA=35,求cosA+tanB的值.(3)如图所示的半圆中,AD是直径,且AD=3,AC=2,则sinB的值等于________.【思路点拨】(1)在直角三角形中,根据锐角三角函数的定义,可以用某个锐角的三角函数值和一条边表示其他边.(2)直角三角形中,某个内角的三角函数值即为该三角形中两边之比.知道某个锐角的三角函数值就知道了该角的大小,可以用比例系数k表示各边.(3)要求sinB的值,可以将∠B转化到一个直角三角形中.【答案与解析】(1)选B.(2)在△ABC,∠C=90°,3sin5 BCAAB==.设BC=3k,则AB=5k(k>0).由勾股定理可得AC=4k,∴4432 cos tan5315k kA Bk k+=+=.(3)由已知,AD是半圆的直径,连接CD,可得∠ACD=90°∠B=∠D,所以sinB=sinD=23 ACAD=.【总结升华】已知一个角的某个三角函数值,求同角或余角的其他三角函数值时,常用的方法是:利用定义,根据三角函数值,用比例系数表示三角形的边长;(2)题求cosA时,还可以直接利用同角三角函数之间的关系式sin2 A+cos2 A=1,读者可自己尝试完成.举一反三:【变式】(2015•乐山)如图,已知△ABC的三个顶点均在格点上,则cosA的值为()A.B.C.D.【答案】D【解析】过B点作BD⊥AC,如图,由勾股定理得,AB==,AD==2cosA===,故选:D.类型二、特殊角的三角函数值【高清课堂:锐角三角函数综合复习 例1】2.解答下列各题: (1)化简求值:tan 60tan 45sin 45sin 30sin 60cos30cos 45--++°°°°°°°;(2)在△ABC 中,∠C =90°,化简12sin cos A A -.【思路点拨】第(2)题可以先利用关系式sin 2 A+cos 2A =1对根号内的式子进行变形,配成完全平方的形式. 【答案与解析】解 (1)tan 60tan 45sin 45sin 30sin 60cos30cos 45--++°°°°°°°(2)∵12sin cos A A -2(sin cos )|sin cos |A A A A =-=-,∴12sin cos A A -cos sin (045)sin cos (4590)A A A A A A -<⎧=⎨-<<⎩°≤°°°.【总结升华】由第(2)题可得到今后常用的一个关系式:1±2sin αcos α=(sin α±cos α)2. 例如,若设sin α+cos α=t ,则21sin cos (1)2t αα=-. 举一反三:【高清课堂:锐角三角函数综合复习 ID :408468 播放点:例1】 【变式】若3sin 22α=,cos sin βα=,(2α,β为锐角),求2tan()3β的值. 【答案】∵3sin 22α,且2α为锐角, ∴2α=60°,α=30°. ∴12cos sin 22βα===, ∴β=45°. ∴23tan()tan 3033β==°. 3.(2015春•凉州区校级月考)如图,在锐角△ABC 中,AB=15,BC=14,S △ABC =84,求: (1)tanC 的值;(2)sinA 的值.【思路点拨】(1)过A 作AD ⊥BC 于点D ,利用面积公式求出高AD 的长,从而求出BD 、CD 、AC 的长,此时再求tanC 的值就不那么难了.(2)同理作AC 边上的高,利用面积公式求出高的长,从而求出sinA 的值. 【答案与解析】 解:(1)过A 作AD ⊥BC 于点D . ∵S △ABC =BC •AD=84, ∴×14×AD=84,∴AD=12. 又∵AB=14, ∴BD==9.∴CD=14﹣9=5. 在Rt △ADC 中,AC==13,∴tanC==;(2)过B 作BE ⊥AC 于点E . ∵S △ABC =AC •EB=84, ∴BE=,∴sin ∠BAC===.【总结升华】考查了锐角三角函数的定义,注意辅助线的添法和面积公式,以及解直角三角形公式的灵活应用. 举一反三:【变式】如图,AB 是江北岸滨江路一段,长为3千米,C 为南岸一渡口,为了解决两岸交通困难,拟在渡口C 处架桥.经测量得A 在C 北偏西30°方向,B 在C 的东北方向,从C 处连接两岸的最短的桥长为多少千米?(精确到)【答案】过点C 作CD ⊥AB 于点D.EABCCD 就是连接两岸最短的桥.设CD=x (千米). 在直角三角形BCD 中,∠BCD=45°,所以BD=CD=x.在直角三角形ACD 中,∠ACD=30°,所以AD=CD ×tan ∠ACD=x ·tan30°=x.因为AD+DB=AB ,所以x+x=3,x=≈答:从C 处连接两岸的最短的桥长约为. 类型三、解直角三角形及应用4.如图所示,D 是AB 上一点,且CD ⊥AC 于C ,:2:3ACD CDB S S =△△,4cos 5DCB ∠=, AC+CD =18,求tanA 的值和AB 的长. 【思路点拨】解题的基本思路是将问题转化为解直角三角形的问题,转化的目标主要有两个,一是构造可解的直角三角形;二是利用已知条件通过设参数列方程. 【答案与解析】解:作DE ∥AC 交CB 于E ,则∠EDC =∠ACD =90°.∵4cos 5CD DCE CE =∠=, 设CD =4k(k >0),则CE =5k ,由勾股定理得DE =3k .∵△ACD 和△CDB 在AB 边上的高相同,∴AD:DB =:2:3ACD CDB S S =△△.即553533AC DE k k ==⨯=. ∴44tan 55CD k A AC k ===.∵AC+CD =18, ∴5k+4k =18,解得k =2. ∴2241241AD AC CD k =+==.∴AB =AD+DB =AD+32AD =541. 【总结升华】在解直角三角形时,常用的等量关系是:勾股定理、三角函数关系式、相等的线段、面积关系等. 5.如图所示,山脚下有一棵树AB ,小华从点B 沿山坡向上走50 m 到达点D ,用高为的测角仪CD 测得树顶的仰角为10°,已知山坡的坡角为15°,求树AB 的高(精确到).(参考数据:sin10°≈°≈°≈°≈°≈°≈ 【思路点拨】本题是求四边形一边长的问题,可以通过添加辅助线构造直角三角形来解. 【答案与解析】解:如图所示,延长CD 交PB 于F ,则DF ⊥PB . ∴DF =DB ·sinl5°≈50× CE =BF =DB ·cos15°≈50× ∴AE =CE ·tan10°≈× ∴≈答:树高约为. 【总结升华】一些特殊的四边形,可以通过切割补图形的方法将其转化为若干个直角三角形来解. 举一反三:【变式】如图所示,正三角形ABC 的边长为2,点D 在BC 的延长线上,CD =3.(1)动点P 在AB 上由A 向B 移动,设AP =t ,△PCD 的面积为y ,求y 与t 之间的函数关系式及自变量t 的取值范围;(2)在(1)的条件下,设PC =z ,求z 与t 之间的函数关系式. 【答案】解:(1)作PE ⊥BC 于E ,则BP =AB-AP =2-t(0≤t <2). ∵∠B =60°, ∴1133sin (2)2222PCD S CD PE CD BP B t ===-△, 即3333(02)42y t t =-+≤<. (2)由(1)不难得出,3(2)2PE t =-,1(2)2BE t =-. ∴112(2)(2)22EC BC BE t t =-=--=+. ∵22222231(2)(2)2444PC PE EC t t t t =+=-++=-+.∴224(02)z t t t =-+≤<.6.如图(1)所示,一架长4米的梯子AB 斜靠在与地面OM 垂直的墙ON 上,梯子与地面的倾斜角α为60°.(1)求AO 与BO 的长.(2)若梯子顶端A 沿NO 下滑,同时底端B 沿OM 向右滑行.①如图(2)所示,设A 点下滑到C 点,B 点向右滑行到D 点,并且AC:BD =2:3,试计算梯子顶端A 沿NO 下滑了多少米;②如图(3)所示,当A 点下滑到A ′点,B 点向右滑行到B ′点时,梯子AB 的中点P 也随之运动到P ′点,若∠POP ′=15°,试求AA ′的长.【思路点拨】(1)在直角△AOB 中,已知斜边AB ,和锐角∠ABO ,即可根据正弦和余弦的定义求得OA ,OB 的长;(2)△APO 和△P′A′O 都是等腰三角形,根据等腰三角形的两底角相等,即可求得∠PAO 的度数, 和∠P′A′O 的度数,在直角△ABO 和△A′B′O 中,根据三角函数即可求得OA 与OA′,即可求得AA′的长.【答案与解析】解:(1)Rt △AOB 中,∠O =90°,α=60°,∴∠OAB =30°.又AB =4米,∴OB =12AB =2米.OA =AB ·sin 60°=4×2=米). (2)①设AC =2x ,BD =3x ,在Rt △COD 中,OC =2x ,OD =2+3x ,CD =4,根据勾股定理:OC 2+OD 2=CD 2,∴2222)(23)4x x ++=.∴213(120x x +-=.∵x ≠0,∴13120x +-=.∴1213x =.24213AC x ==.即梯子顶端A 沿NO 下滑了2413米. ②∵点P 和点P ′分别是Rt △AOB 的斜边AB 与Rt △A ′OB ′的斜边A ′B ′的中点,∴PA =PO ,P ′A ′=P ′O .∴∠PAO =∠AOP ,∠P ′A ′O =∠A ′OP ′.∴∠P ′A ′O-∠PAO =∠POP ′=15°.∵∠PAO =30°,∴∠P ′A ′O =45°.∴A ′O =A ′B ′·cos 45°=42⨯=∴AA ′=OA-A ′O =米.【总结升华】解答本题的关键是理解题意.此题的妙处在于恰到好处地利用了直角三角形斜边上的中线等于斜边的一半,从而求出∠P′A′O=45°,让我们感受到了数学题真的很有意思,做数学题是一种享受.。

解答锐角三角函数问题容易犯的错误

解答锐角三角函数问题容易犯的错误

数学篇数苑纵横在求解锐角三角函数问题时,有的同学由于对锐角三角函数的概念理解不清,或运用锐角三角函数定义时忽略了直角三角形这个前提条件,或在解题时考虑问题不全面,忽视了要进行分类讨论,从而走入了解题的误区.为了避免同学们也犯相同的错误,现对解三角函数问题中的常见错误进行归纳并分析.一、对锐角三角函数概念理解不清锐角三角函数是以锐角为自变量,以比值为因变量的函数.它的概念是在直角三角形中相对其锐角而定义的,其本质是两条线段长度的比.因此锐角三角函数只是一个比值(数值),它的值与角的大小有关,与三角形边的长度无关.很多同学由于对该概念的本质没有理解透彻,误把“无关”当“有关”.例1在Rt△ABC 中,各边的长度都扩大3倍,那么锐角A 的三角函数值().A.都扩大3倍B.都扩大4倍C.不能确定D.没有变化错解:A.错因分析:三角函数的值是直角边与斜边或直角边与直角边的比值,三角形三边都扩大3倍后的三角形与原三角形相似,所以直角边与斜边,直角边与直角边的比值不变.产生错解的原因就在于没有真正理解三角函数的概念.正解:D.点拨:锐角三角函数反映的是直角三角形相应两边的比值的特性,当一个锐角大小不变时,其函数值是固定的.二、忽视运用锐角三角函数定义的前提解决任何问题都必须具备一定的条件背景,解答锐角三角函数问题的前提就是必须在直角三角形中.只要题目条件中没有直角条件的,要么证出直角,要么添加辅助线构造直角,然后再根据锐角三角函数的定义进行求解.有的同学没有构造直角三角形求解锐角三角函数问题的意识和习惯,直接运用三角函数的定义解题就会出错.例2在△ABC 中,∠A ,∠B ,∠C 的对边为a ,b ,c ,且a :b :c =3:4:5.试证明sin A +sin B =75.错解:设a =3k ,b =4k ,c =5k ,则sin A =a c =3k 5k =35,sin B =b c =4k 5k =45.所以sin A +sin B =35+45=75.错因分析:本题中没有说明∠C =90∘,而直接应用正弦、余弦函数的定义是错误的,应先说明△ABC 为直角三角形,且∠C =90∘后才能用定义解题.正解:设a =3k ,b =4k ,c =5k (k >0),因为a 2+b 2=(3k )2+(4k )2=25k 2=c 2,所以△ABC 是以c 为斜边的直角三角形.所以sin A =a c =3k 5k =35,sin B =b c =4k 5k =45.所以sin A +sin B =35+45=75.例3在等腰三角形ABC 中,AB =AC =5,BC =6.求sin B 、cos B 、tan B .错解:∵a =6,b =5,c =5,∴sin B =b c =55=1,cos B =a c =65,tan B =b a =56.错因分析:错解忽视了用边比表示锐角的正弦、余弦和正切的前提是在直角三角形中,显然△ABC 不是直角三角形,故上述解法错误.正确解法应把∠B 放到直角三角形中求解函数值.正解:如图1,过A 作AD ⊥BC 于D ,则解答锐角三角函数问题容易犯的错误江西高安夏宇23数学篇数苑纵横BD =3,∵AB =5,∴AD =AB 2-BD 2=4,∴sin B =AD AB =45,cos B =BD AB =35,tan B =AD BD =43.点拨:锐角三角函数是在直角三角形中定义的.锐角三角函数与锐角在的直角三角形有关,而与锐角作为内角所在的三角形无关,因此必须先构造直角三角形,再求值.三、考虑问题不全面导致漏解锐角三角函数的定义揭示了直角三角形中的锐角与三边之间的关系,因此,我们会遇到一些边、角、点、形等条件不明确,存在多解情况的问题.这个时候就需要采取分类讨论的方法,以保证解题的完整性与准确性.如果同学们思考不细致,思维不严谨,就会出现漏解的情况.例4在ΔABC 中,AB =122,AC =13,cos ∠B,则BC 边长为().A.7 B.17 C.8或17D.7或17错解:作AD ⊥BC 于点D ,如图2,∵cos ∠B 2,∴∠B =45°,∵AB =122,∴AD =BD =12,又∵AC =13,∴CD =5,∴BC =BD +CD =12+5=17,故选B.图2错因分析:错解认为高AD 一定在三角形的内部.其实△ABC 不一定是锐角三角形,应分两种情况:(1)高AD 在△ABC 内部;(2)高AD 在△ABC 外部.错解忽视了第二种情况.正解:∵cos ∠B ,∴∠B =45°,当ΔABC 为钝角三角形时,如图3,∵AB =122,∠B =45°,∴AD =BD =12,∵AC =13,∴由勾股定理得CD =5,∴BC =BD -CD =12-5=7;当ΔABC 为锐角三角形时,如图2,BC =BD +CD =12+5=17,故选D .例5Rt△ABC 的两条边分别是6和8,求其最小角的正弦值.错解:因为6和8是直角三角形的两边,所以斜边是10,所以最小角的正弦值是610,也就是35.错因分析:已知条件中并没有告诉6和8是两条直角边,所以本题应分两种情况:(1)6和8是两条直角边,(2)6是直角边,8是斜边.错解忽视了第二种情况.正解:当6和8是直角边时,斜边是10,所以最小角的正弦值35;当6是直角边,8是斜边时,另一直角边是82-62=2727,所以最小角的正弦值为=.综上可知,最小角的正弦值为35或.点拨:对于没有明确三角形高的位置的问题,要注意对高的位置进行分类讨论;在直角三角形中没有说明已知的边是直角边或斜边的情况下,要分这两边是直角边及所给的长边是斜边两种情况来讨论.解答锐角三角函数问题易出现的错误除了以上几种情况外,可能还会出现其他的情况.希望同学们正确理解三角函数的概念,把握运用三角形函数定义的前提条件以及可能存在的多种情况,避免出现解题错误.图1图324。

专题训练(六) 锐角三角函数求值的六种方法讲解

专题训练(六) 锐角三角函数求值的六种方法讲解

专题训练(六) 锐角三角函数求值的六种方法讲解►方法一运用定义求锐角三角函数值1.在下列网格中,每个小正方形的边长均为1,点A,B,O都在格点上,则∠O的正弦值是________.图ZT-6-12.如图ZT-6-2所示,在Rt△ABC中,∠C=90°,AC=12,BC=5.(1)求AB的长;(2)求两个锐角的三角函数值.图ZT-6-2►方法二巧设参数求锐角三角函数值3.在Rt△ABC中,∠C=90°,若sin A=513,则cos A的值是()A.512B.813C.23D.12134.2017·铜仁如图ZT -6-3,在Rt △ABC 中,∠C =90°,D 是AB 的中点,ED ⊥AB 交AC 于点E.设∠A =α,且tan α=13,则tan 2α=________.图ZT -6-35.已知:如图ZT -6-4,在Rt △ABC 中,∠C =90°,tan A =12,求∠B 的正弦值、余弦值.图ZT -6-46.如图ZT -6-5,∠C =90°,∠DBC =30°,AB =BD ,根据此图求tan 15°的值.图ZT -6-5► 方法三 利用边角关系求锐角三角函数值7.如图ZT -6-6所示,在四边形ABCD 中,E ,F 分别是AB ,AD 的中点,若EF =2,BC =5,CD =3,则tan C 的值是( )图ZT -6-6A.34B.43C.35D.458.如图ZT -6-7所示,在△ABC 中,点D 在AC 上,DE ⊥BC ,垂足为E ,若AD =2DC ,AB =4DE ,则sin B 的值是( )图ZT -6-7A.12B.73C.3 77D.349.已知锐角三角形ABC 中,点D 在BC 的延长线上,连结AD ,若∠DAB =90°,∠ACB =2∠D ,AD =2,AC =32,根据题意画出示意图,并求出tan D 的值.►方法四利用等角求锐角三角函数值10.如图ZT-6-8所示,∠ACB=90°,DE⊥AB,垂足为E,AB=10,BC=6,求∠BDE的正弦值、余弦值、正切值.图ZT-6-811.如图ZT-6-9所示,在矩形ABCD中,AB=10,BC=8,E为AD边上一点,沿CE将△CDE折叠后,点D正好落在AB边上的点F处,求tan∠AFE的值.图ZT -6-9► 方法五 利用同角三角函数的关系求锐角三角函数值同角三角函数之间有如下关系:对于锐角α,有sin 2α+cos 2α=1,tan α=sin αcos α. 12.已知在Rt △ABC 中,∠C =90°,cos B =23,则sin B 的值为( )A.2 53B.53C.2 55D.5513.已知α为锐角,且cos α=13,求tan α+cos α1+sin α的值.► 方法六 利用互余两角三角函数的关系求锐角三角函数值 若∠A +∠B =90°,则sin A =cos B ,cos A =sin B.对于锐角α,sin α随α的增大而增大,cos α随α的增大而减小,tan α随α的增大而增大.14.已知0°<∠A <90°,那么cos (90°-∠A)等于( ) A .cos A B .sin (90°+∠A) C .sin A D .sin (90°-∠A)15.在△ABC 中,∠C =90°,tan A =3,求cos B 的值.16.在△ABC 中,(1)若∠C =90°,cos A =1213,求sin B 的值;(2)若∠A=35°,∠B=65°,试比较cos A与sin B的大小,并说明理由.教师详解详析1.[答案]10 10[解析] 如图,过点C作CD⊥OB于点D,根据正方形的性质可知点D为小正方形对角线的中点,∴CD=22,由勾股定理得OC=22+12=5,∴在Rt△OCD中,sin O=CDOC=225=1010.2.解:(1)AB=AC2+BC2=13.(2)sin A=BCAB=513,cos A=ACAB=1213,tan A=BCAC=512;sin B=ACAB=1213,cos B=BCAB=513,tan B=ACBC=125.3.D4.[答案]34[解析] 连结BE.∵D是AB的中点,ED⊥AB,∴ED是AB的垂直平分线,∴EB=EA,∴∠EBA =∠A =α,∴∠BEC =2α.∵tan α=13,设DE =a ,则AD =3a ,∴AE =10a ,AB =6a ,∴BC =3 10a 5,AC =9 10a 5,∴CE =9 10a 5-10a =4 10a 5,∴tan2α=BCCE =3 10a 54 10a5=34. 5.解:∵∠C =90°,tan A =BC AC =12, ∴设BC =x ,AC =2x , ∴AB =5x ,∴sin B =AC AB =2x 5x =2 55,cos B =BC AB =x 5x =55.6.解:设AB =BD =2x . ∵AB =BD ,∠DBC =30°, ∴∠A =12∠DBC =15°.∵∠DBC =30°,∠C =90°, ∴CD =x ,由勾股定理可求出BC =3x , ∴AC =AB +BC =2x +3x , ∴tan15°=CDAC =2- 3.7.[解析] B 连结BD .∵E ,F 分别是AB ,AD 的中点, ∴BD =2EF =4.∵BC =5,CD =3,BD =4, ∴BD 2+CD 2=BC 2,∴△BCD 是直角三角形,且∠BDC =90°, ∴tan C =BD CD =43.8.[解析] D 如图,过点A 作AF ⊥BC 于点F ,则有DE ∥AF . ∵AD =2DC ,∴DC ∶AC =1∶3=DE ∶AF , ∴AF =3DE . ∵AB =4DE , ∴sin B =AF AB =3DE 4DE =34.9.解:示意图如图所示.∵∠ACB =∠D +∠CAD ,∠ACB =2∠D , ∴∠CAD =∠D , ∴AC =DC .∵∠BAD =90°,∴∠B +∠D =90°.∵∠BAC +∠CAD =90°,∴∠B =∠BAC ,∴BC =AC ,∴BD =2AC .∵AC =32, ∴BD =3.在Rt △BAD 中,∵AD =2,BD =3,∴AB =5,∴tan D =AB AD =52. 10.解:∵在Rt △ABC 中,AB =10,BC =6, ∴AC =AB 2-BC 2=8.∵∠C =∠DEB =90°,∠B =∠B ,∴△ACB ∽△DEB ,∴∠A =∠BDE ,∴sin ∠BDE =sin A =35, cos ∠BDE =cos A =45, tan ∠BDE =tan A =34.11.解:根据图形得∠AFE +∠EFC +∠BFC =180°. 根据折叠的性质,得∠EFC =∠EDC =90°,∴∠AFE +∠BFC =90°.在Rt △BCF 中,∠BCF +∠BFC =90°,∴∠AFE =∠BCF .又根据折叠的性质,得CF =CD =10.在Rt △BCF 中,BC =8,CF =10,由勾股定理,得BF =CF 2-BC 2=6,∴tan ∠BCF =34, ∴tan ∠AFE =tan ∠BCF =34. 12.[解析] B ∵在Rt △ABC 中,∠C =90°,cos B =23, ∴sin B =1-(23)2=53. 故选B.13.解:∵cos α=13, ∴sin α=1-(13)2=2 23, tan α=sin αcos α=2 2313=2 2, ∴tan α+cos α1+sin α=2 2+131+2 23=2 2+3-2 2=3.14.C15.解:∵tan A =3,∴∠A =60°,sin A =32. 又∵∠A +∠B =90°,∴cos B =sin A =32. 16.解:(1)在Rt △ABC 中,∵∠A +∠B =90°,∴sin B =cos A =1213. (2)cos A <sin B .理由:∵cos A =cos35°=sin55°<sin65°, ∴cos A <sin B .。

求锐角三角函数值的几种方法

求锐角三角函数值的几种方法

c 。 s / - C A D
, A B的长可 以根 据 勾股定理 求
例7 已知 AA B C中 , C = 9 0 。 ,
s l n A


得, 即可求得 s i n /AC D .
解: 在 Rc △A B C中, 。 . ‘ A c = ~ , B C = 2 ,
评 注 :注 意锐 角三 角 函数 的 定 义 只适 用 于 直角三 角形 ,在斜 三角形 中不能直接 用锐 角三 计算起来稍麻烦 . 若根据 直 角三 角形 两锐 角之 角 函数 的 定 义 求 三 角 函 数值 ,需要 将 斜 三 角 形 间的关 系, 可得 s i n ZAC D = c o s C A D, 只要 求得 转化成 直角三 角形再求值. 七 、 方程法 C O S 0t D 的 值 即 可 .而 在 Rt △A B C中 ,

, t a n A=

六、 构造法
. .

+ _ _ _ : + : 丛 : 5
t a n A a 0 a
S l n A
例 6 如图 2 , 已知 A D为 等腰三角形 A B C 底边上 的高 ,
且 t a n厶 B = 4

即 b + c = S a , 联 立 方 程 { ≥ ,
利用公式 , 得:
t a
嘉 1 5.
— 一
A . 音 B .
解: ‘ . ’ t a n A = 羔,
・ . .
c .
D .
分析 :由 已知锐 角三 角函数 式 ,设 比值 h 二、 定 义 法 ( k >0 ) , 用含 的式子表 示两边 , 再利用 勾股定 然后用锐角三角函数 的定义求解 . 例 2 在 AA B C中 ,已知 C = 9 0 。 , s i n A= 理求 出第三边,

锐角三角函数应用题的方法与技巧

锐角三角函数应用题的方法与技巧

锐角三角函数应用题的方法与技巧
x
《锐角三角函数应用题的方法与技巧》
一、总体思路
1、识别出三角形所涉及的三角函数,并确定三角函数的参数:根据题干里面提供的线段、角度等长度或角度来初步判断三角形的形状,并由此来计算出三个角度和三条边。

2、判断题目的性质:根据题目要求,判断出是求边长还是求角度。

3、解答:
(1)求边长:利用相应的三角函数关系(正弦定理、余弦定理、正切定理等),求出答案;
(2)求角度:利用相应的三角函数关系,求出角度的三角函数值,再用反三角函数求出角度。

二、技巧总结
1、画图法:根据题干中提供的信息,画出准确的三角形图形,便于计算和判断。

2、直角三角形快速求角度:根据对边比斜边的特点,找出角度所对应的三角函数值,再用反三角函数计算出角度。

3、正弦定理、余弦定理:正弦定理可用于计算夹角的一边的长度,余弦定理可用于求另一边的长度。

4、正切定理:正切定理可以用于求夹角的角度大小。

5、各种三角函数的关系:在计算三个角度的大小时,可以利用三个角度的和为180°;在计算三条边的长度时,可以利用三条边之和的性质。

锐角三角函数的解题技巧

锐角三角函数的解题技巧
(二)同角的三角函数之间的关系
(1)平方关系:sin2α+cos2α=1
(2)商数关系:
(三)两角的关系
任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等于它的余角的正弦值,任意锐角的正切值与它的余角的正切值的积等于1.即若A+B=90°,则sinA=cosB,cosA=sinB,tanA·tanB=1.
答案:D
分析:
(1)要求sinα与cosα的关系的值,而已知tanα的值,故可通过 来求值.
(2)已知tanα的值,也可通过 ,把要求的式子的分子,分母同时除以cos2α转化成关于tanα的关系,这样便可求出结论.
点评:在进行三角函数有关计算时,常利用有关公式进行变换.
2、化简计算
例3、计算
分析:
这是一组有关特殊角三角函数值的计算题,计算中最关键是将它们先化成具体的数值,同时还要应用其它一些知识帮助求值,如(1)注意分母有理化,(2)应掌握整数指数幂的意义.
(5)0<sinA<1,0<cosA<1
2、同名三角函数值的变化规律
当角α在0°~90°间变化时,它的正切和正弦三角函数值随着角度的增大而增大;余弦三角函数值随着角度的增大而减少.
三、解题方法技巧点拨
1、求锐角三角函数的值
例1、(1)在Rt△ABC中,∠C=90°,若 ,求cosB,tanB的值.
分析:本题主要考查锐角三角函数的定义,结合图形求解可化繁为简,迅速得解.
5、求线段长与面积
例6、如图,在△ABC中,∠A=30°,∠B=45°,AC=4,求BC的长.
分析:
题中有30°,45°特殊角,想把它们放到直角三角形中,利用三角函数来解题.
点评:
(1)在作高线构造直角三角形时,一般不过特殊角的顶点作垂线,这样便于利用特殊角解题.

数学九年级培优第25讲 《锐角三角函数》

数学九年级培优第25讲 《锐角三角函数》

第二十八章锐角三角函数第25讲锐角三角函数知识导航1.正弦、余弦、正切的概念及表示方法.2.特殊角的三角函数值.【板块一】求锐角三角函数值方法技巧1.结合图形,理解并牢记三角函数的定义.2.数形结合法熟记特殊角的三角函数值.3.求一个角的三角函数值,一般利用已有的或构造的直角三角形,也可以利用等角转化等,结合三角函数定义求解.题型一紧扣定义求三角函数值【例1】已知锐角α满足tanα=12,求sinα的值.【解析】在Rt△ABC中,∠C=90°,∠A=α,∵tanα=12BCAC=,∴设BC=x,AC=2x,∴AB,∴sinBCABα===【点评】由于三角函数的定义是基于直角三角形,所以要画出符合题意的直角三角形,结合勾股定理和三角函教的定义求解.【例2】如图,在正方形ABCD中,点M为AD的中点,点E为AB上一点,且BE=3AE,求cos∠ECM 的值.【解析】首先确定△EMC为直角三角形,设AE=x,则BE=3x,AM=MD=2x,CD=4x.∴AE MDAM CD=,又∠A=∠D=90°,∴△AEM∽△DMC,可得∠EMC=90°,由勾股定理可求CM=x,CE=5x,在Rt△CEM中,cos∠ECM=CMCE=.题型二等角转换求三角函数值【例3】如图,半径为3的⊙A经过原点O和点C(0,2),点B是y轴左侧⊙A优弧上一点,求tan∠OBC 的值.αA BCCBEA M D【解析】作直径CD,在Rt△OCD中.CD=6.OC=2.∴ODtan∠CDO=OCOD=,由圆周角定理得∠OBC=∠CDO,则tan∠OBC【点评】在圆中经常利用同弧或等弧所对的圆周角相等进行角的转换,用直径所对的圆周角去构造直角三角形.题型三构造直角求三角函数值【例4】如图,在Rt△BAD中,tan∠B=53,延长斜边BD到点C,使DC=12BD,连接AC,求tan∠CAD 的值.【解析】要求tan∠CAD,必须将∠CAD放在直角三角形中,考虑∠BAD=90°,故过点D作DE∥AB交AC于点E.则∠ADE=90°,且有△CDE∽△CBA可利用,由tan∠B=53ADAB=,设AD=5x,AB=3x,而13DE CDAB BC==,∴DE=x,∴tan∠CAD=155DE xAD x==.【点评】求一个角的三角函数值,必须将所求的角放在直角三角形中.题型四等比转化求三角函数值【例5】如图,等腰直角△ABC中,∠ACB=90°,过BC的中点D作DE⊥AB,垂足为点E,连接CE,求tan∠ACE的值.CDBACDEBAA BDEC【解析】过点E 作EH ⊥AC 于点H ,易证AH =HE ,∴tan ∠ACE =HE AH AECH CH EB==,设BE =x ,则BD =CD,∴BC =x ,AB =4x ,∴AE =AB -BE =3x ,∴tan ∠ACE =AEEB=3.【例6】如图,AB 是⊙O 的直径,且AB =10,CD 是⊙O 的弦,AD 与BC 相交于点P ,若弦CD =6,试求cos ∠APC 的值.【解析】连接AC ,∵AB 是⊙O 的直径,∴∠ACP =90°,∴cos ∠APC =PCPA,又易证△PCD ∽△P AB ,∴63105PC CD PA AB ===,∴cos ∠APC =35. 【点评】在直角三角形中,锐角的三角函数值等于两边的比值,当这个比值无法直接求解时,可利用相似三角形对应线段成比例进行转化.题型五 利用特殊角求三角函数值【例7】利用45°角的正切,求tan 22.5°的值,方法如下:解:构造Rt △ABC ,其中∠C =90°,∠B =45°,如图,延长CB 到点D ,使BD =AB ,连接AD ,则∠D =12∠ABC =22.5°,设AC =a ,AB =BDa a ,∴CD =(1)a ,∴tan 22.5°=tan ∠D=AC CD =-1.A BE DHCAACA请你依照此法求tan 15°的值.【解析】构造如图所示的∠A =15°的直角三角形,∠C =90°,并过点B 作∠ABD =15°交AC 于点D ,则∠BDC =30°,设BC =x ,则BD =AD =2x ,CD,∴AC =(2x ,∴tan 15°=BC AC=2针对练习11.如图,△ABC 的顶点是正方形网格的格点,则sin A =.2.在Rt △ABC 中,∠C =90°,sin A =513,则tan B = 125 .3.如图,将边长为2的正方形ABCD 沿 EF 和ED 折叠,使得点B ,C 两点折叠后重合于点G ,则tan ∠FEG =12.4.如图,直线MN 与⊙O 相切于点M ,ME =EF ,EF ∥MN ,则cos ∠E =12. A D CBABCDG F DCBA E5.如图,在△ABC 中,∠C =90°,BC =1,AC =tan 2A的值.解:AB=7.延长CA 到点D ,使AD =AB =7,则CD =7+tan2A=tan ∠D=7- 6.如图,AC 为⊙O 的直径,△ABD 内接于⊙O ,BD 交AC 于点F ,过点B 的切线BE ∥AD 交AC 的延长线于点E ,若CF =2,AF =8,求sin ∠E 的值.解:连接OB ,CD ,∵CF =2,AF =8,∴AC =10.∴OB =5.易证CD ⊥AD ,OB ⊥AD ,∴OB ∥CD ,∴△BOF ∽△DCF .∴32OB OF CD CF ==.CD =103.sin ∠E =sin ∠CAD =CD AC =13. 7.将一副三角尺(Rt △ABC 与Rt △BDC )按如图所示摆放在一起,连接AD ,试求∠ADB 的正切值.解:过点A 作AM ⊥DB 交DB 的延长线于点M ,易证∠MBA =45°,∴设AM =BM =x,则AB x .∴BC,BD .∴tan ∠ADB =AMDM8.如图,在△ABC 中,BC =4,AC =6,AB =5,求tan12∠BAC ·tan 12∠CBA 的值.ABCDEAAEDCBABCDM解:过点C作CH⊥AB于点H,延长BA到点D,使AD=AC,延长AB到点E,使BE=BC,设AH=x,则BH=5-x,∴42-(5-x)2=62-x2,∴x=92.∴BH=12,CH∴tan12∠BAC=tan∠D=CHDH=2962+.tan12∠CBA=tan∠E=CHHE=2142+,∴tan12∠BAC·tan12∠CBA=13.方法技巧:深刻理解三角函数的定义,画出符合题意的示意图,充分运用数形结合的思想解题.▶题型一利用已知三角函数,求其他角的三角函数值【例1】同学们,在我们进入高中以后,将会学到三角函数公式:sin2α=2sinα·cosα,则当锐角a的正切值为12时,sin2a=.【解析】如图,在Rt△ABC中.∠C=90°,∠A=α,由tanα=BCAC=12,设BC=1,AC=2,则AB.sinα=BCAB,cosα=ACAB,由公式sin2α=2sinα·cosα=2=45.【点评】紧扣定义,运用公式解题.▶题型二利用已知三角函数,求线段长【例2】如图,点D是△ABC的边AC上一点,BD=8,sin∠CBD=34,AE⊥BC于点E,若CD=2AD,求AE的长.BACEDCBA HC BADBAO OFAB CDE【解析】过点D作DF⊥BC于点F,则DF=BD·sin∠CBD=8×2=6,由AE⊥B C.DF⊥BC,∴DF∥AE.∴△CDF∽△CAE.∴CDAC=DFAE=23.∴AE=32DF=9.【点评】因三角函数的本质是线段比,故与三角函数相关的计算常与相似三角形联系在一起.▶题型三利用已知三角函数,求线段比【例3】如图,在Rt△ABC中,CD,CE分别为斜边AB上的高和中线,BC=a,AC=b(b>a),若tan∠DCE=12,求ab的值.【解析】易证△BCD∽△BAC,∴BC2=BD·BA,又BA,∴BD2,同理CD=DE=BE-BD222,又∵谈∠DCE=DECD=222b aab-=12,∴a2+ab-b2=0,∴ab▶题型四利用已知三角函数,求面积【例4】如图,在四边形ABCD中,∠BAC=90°,tan∠CAD=12,cos∠ACD,AC与BD交于点E,CDBE=2ED,求四边形ABCD的面积.【解析】过点D作DF⊥ACC于点F,则AB∥DF.∴△ABE∽△FDE.∴ABDF=AEEF=BEED=2,设EF=2a,AE=4a.∴AF=6a,在Rt△AFD中.tan∠F AD=FDAF=12,∴DF=3a,在Rt△CFD中,cos∠ACD =CFCD.∴CF=1,DF=3a=3,∴a=1,AC=7,AB=2DF=6,∴S四边形ABCD=S△ABC+S△AC=12AB·AC+12AC·DF=12×6×7+12×7×3=632.针对练习21.在△ABC中,∠A为锐角,BC=12.tan A=34.∠B=30°,则AB2.如图,点E是正方形ABCD的边CB的延长线上的一点,且tan∠DEC=34,则tan∠AED的值为EDCBAABCDEFE DCBA913.3.已知△ABC中,AB=10,AC=B=30°,则△ABC4.如图,在四边形ABCD中,BD是对角线,∠ABC=90”,tan∠ABD=34,AB=20,BC=10,AD=13,求CD的长.解:分别过点A,C作AH⊥BD于点H,CG⊥BD于点G,∵tan∠ABD=AHBH=34,∴设AH=3x,BH=4x,(3x)2+(4x)2=202,∴x=4.∴AH=12,BH=16.∴HD=5,BD=21,易证∠BCG=∠ABD,..tan∠BCG=GBGC=34,又BC=10,∴BG=6,CG=8,∴DG=BD-BG=15,∴CD==17.5.如图,在△ABC中,AB=BC=5,tan∠ABC=34.边BC的重直平分线与AB的交点为点D.求ADDB的值.解:过点D作DF⊥BC于点F,连接CD,则BD=CD,BF=CF=52,tan∠DBF=DFBF=34.∴DF =158,在Rt△BFD中,BD=258,∴AD=5-258=158,∴ADDB=35.6.如图,已知四边形ABCD的一组对边AD,BC的延长线相交于点E,∠ABC=120°,cos∠ADC=35,CD=5,AB=12,ACDE的面积为6,求四边形ABCD的面积.EDCBAAB CDGHDCBAAB CDF CBA解:过点C作CF⊥AD于点F,过点A作AG⊥EB于点G,在Rt△ACDF中,cos∠ADC=DF CD=3 5.又CD=5,DF=3,CF=4,∵S△CDE=12ED·CF=6,∴ED=3,∴EF=6,在Rt△BAG中,∠BAG=30°,AB=12,∴AG=EFC∽△EAG,得EFEG=CFAG,可求EG=BE=EG-BG=9 6.∴S四边形ABCD=S△ABE-S△CED=126)×6=75-E DCBA ABCDE FG。

初三锐角三角函数题型及解题方法

初三锐角三角函数题型及解题方法

初三锐角三角函数题型及解题方法初三数学中,锐角三角函数是一个非常重要的内容。

学习锐角三角函数,不仅需要掌握其概念和公式,还需要掌握一些常见的题型及解题方法。

本文将介绍一些常见的锐角三角函数题型及解题方法,帮助初三学生更好地掌握这一内容。

一、求三角函数值求三角函数值是锐角三角函数中最基本的题型。

一般来说,题目都会给出三角函数的角度,要求求出其对应的正弦、余弦、正切等函数值。

解题方法:对于这类题目,我们需要掌握三角函数的定义和公式。

例如,正弦函数的定义是:在直角三角形中,对于一个锐角角度A,其对边长度与斜边长度的比值称为正弦值sinA。

因此,我们只需要根据这个定义和公式进行计算即可。

举个例子,题目给出角度A=30度,要求求出其正弦值sinA。

根据正弦函数的定义和公式,我们得到:sinA=对边长度/斜边长度=sqrt(3)/2因此,sinA=√3/2。

二、三角函数的基本关系式三角函数的基本关系式指的是三角函数之间的基本等式。

例如,正切函数的基本关系式是tanA=sinA/cosA。

这类题目一般要求将一个三角函数用另外一个三角函数表示出来,或者将两个三角函数相互表示。

解题方法:对于这类题目,我们需要掌握三角函数之间的基本关系式。

例如,正切函数的基本关系式是:tanA=sinA/cosA因此,如果题目给出sinA的值,要求求出tanA的值,我们只需要将sinA/cosA代入上式,即可得到:tanA=sinA/cosA=√3/3三、三角函数值的范围三角函数值的范围是指,每个三角函数的取值范围。

例如,正弦函数的取值范围是[-1,1],余弦函数的取值范围也是[-1,1]。

解题方法:对于这类题目,我们需要掌握每个三角函数的取值范围。

例如,正弦函数的取值范围是[-1,1],因此,如果题目给出sinA=-0.5,我们就可以知道sinA的值在[-1,1]范围之内。

四、三角函数的性质三角函数的性质指的是,它们在不同象限中的正负性和大小关系。

求锐角三角函数值的几种常用方法

求锐角三角函数值的几种常用方法

求锐角三角函数值的几种常用方法锐角三角函数是初中数学的重要内容,也是中考的热点之一.求锐角的三角函数值 方法较多,下面举例介绍求锐角三角函数值的几种常用方法,供参考.一、定义法当已知直角三角形的两条边,可直接运用锐角三角函数的定义求锐角三角函数的值. 例1 如图1,在△ABC 中,∠C =90°,AB =13,BC =5,则sin A 的值是( )(A )513 (B )1213 (C )512 (D )135分析 题目中已知乞A 的对边BC 和斜边AB 的长,可直接运用锐角三角函数的定义求解.解 ∵在△ABC 中,∠C =90°,AB =13,BC =5,∴sin A 513BC AB =故选A 二、参数法锐角三角函数值实质是直角三角形两边的比值,所以解题中有时需将三角函数转化为线 段比,通过设定一个参数,并用含该参数的代数式表示出直角三角形各边的长,然后结合相关条件解决问题.例2 在△ABC 中,∠C =90°,如果tan A =512,那么sin B 的值是 . 分析 由已知条件∠A 的正切,可知直角三角形中两边的比值,据此可用参数法将第三边表示出来,进而求出sin B 的值.解如图2 ∵tan A =512BC AC =, ∴设BC =5k ,AC =12k (k >O ).由勾股定理,得AB =13k ,∴1212sin 1313AC k B AB k === 三、等角代换法当一个锐角的三角函数不能直接求解或锐角不在直角三角形中时,可将此角通过等 角转换到能够求出三角函数值的直角三角形中,利用“两锐角相等,则三角函数值也相等” 来解决.例3 如图3,在Rt △ABC 中,∠BCA =90°,CD 是AB 边上的中线,BC =5,CD =4,则cos ∠ACD 的值为 .分析 由已知条件,不难知道∠ACD 与∠A 相等,所以欲求cos ∠ACD ,只要求cos A 即可.解 在Rt △ABC 中,∵CD 是AB 边上的中线,∴CD =AD =BD ,∴∠ACD =∠A .又∵CD =4,∴AB =2 CD =8,由勾股定理,得AC =∴cos A =AC AB =∴cos ∠ACD =cos A =8 四、构造法直角三角形是求解或运用三角函数的前提条件,故当题目中已知条件并非直角三角 形时,需通过添加辅助线构造直角三角形,然后求解.例4 在△ABC 中,∠A =120°,AB =4,AC =2,则sinB 的值是( )(A (B (C (D 分析 由于∠B 不在直角三角形中,因此需添加辅助线构造直角三角形,从而求解. 解 如图4,过点C 作CD ⊥BA ,交BA 的延长线于点D .∵∠BAC =120°,∴∠DA C =180°一∠BAC=180°一120°=60°.在Rt △ABC 中,∵A C =2,∠DAC =60°,∴CD =AC ·sin ∠DAC =2=∴AD =1.又∵AB =4 ∴BD =AB +AD =5, 在Rt △ABC 中,由勾股定理,得BC =∴sin CD B BC === 故选D .。

用锐角三角函数概念解题的常见方法(含答案页)

用锐角三角函数概念解题的常见方法(含答案页)

用锐角三角函数概念解题的常见方法(含答案11页)用锐角三角函数概念解题的常见方法1.锐角三角函数(1)锐角三角函数的定义我们规定:sinA=abab,cosA=,tanA=,cotA=.ccba锐角的正弦、余弦、正切、余切统称为锐角的三角函数.(2)用计算器由已知角求三角函数值或由已知三角函数值求角度对于特殊角的三角函数值我们很容易计算,甚至可以背诵下来,但是对于一般的锐角又怎样求它的三角函数值呢?用计算器可以帮我们解决大问题.①已知角求三角函数值;②已知三角函数值求锐角.2直角三角形中,30°的锐角所对的直角边等于斜边的一半.3.锐角三角函数的性质(1)0&lt;sinα&lt;1,o&lt;cosα&lt;1(0°&lt;α&lt;90°)1(2)tanα·cotα=1或tanα=(3)tanα=1;cot?sin?cos?,cotα=.cos?sin?(4)sinα=cos(90°-α),tanα=cot(90°-α).有关锐角三角函数的问题,常用下面几种方法:一、设参数例1. 在?ABC中,?C?90?,如果tanA?5,那么sinB的值等于()12D.12 5A.513B.1213C.512解析:如图1,要求sinB的值,就是求AC5的值,而已知的tanA?,也就是AB12BC5? AC12可设BC?5k,AC?12k则AB?(5k)2?(12k)2?13k?sinB?12k12?,选B 13k13二、巧代换例2. 已知tan??3,求sin??2cos?的值。

5sin??cos?解析:已知是正切值,而所求的是有关正弦、余弦的值,我们可以利用关系式sin??3,作代换sin??3cos?,代入即可达到约分的目的,也可以把所求的cos?分式的分子、分母都除以cos?。

tan??2sin??2sin??2cos? ?cos?sin5sin??cos?5?1cos?再把sin?1?3代入,得:原式? cos?16三、妙估计例3. 若太阳光与地面成37?角,一棵树的影长为10m,则树高h的范围是(取?1.7)A. 3?h?5B. 5?h?10C. 10?h?15D. h?15 解析:如图2,树高h?10tan37?,要确定h的范围,可根据正切函数是增函数,估计tan30??tan37??tan45?即10tan30??10tan37??10tan45??10??h?10 3?5?h?10,故选B四、善转化例4. 在?ABC中,1?A?30?,tanB?BC?,求AB的长。

求锐角三角函数常用方法

求锐角三角函数常用方法

求锐角三角函数常用方法锐角三角函数是三角函数中的一部分,它们是正弦函数、余弦函数和正切函数的定义域在锐角范围内的部分。

在数学中,常用的锐角三角函数常见方法有:单位圆法、加法公式、倍角公式和倒数关系等。

1.单位圆法:单位圆法是研究锐角三角函数最基本的方法之一、单位圆法的基本思想是,把一个角落在标准位置的角看做单位圆上的一条弧,角的顶点作为圆心,角的边所在的直线成为弧的切线。

这样可以通过单位圆上的坐标来表示角的边上的函数值。

以正弦函数为例,假设角为A,边所在的线段与单位圆交于点P(x,y)。

可以得到如下关系:sin(A) = y2.加法公式:加法公式是指锐角三角函数在角度A和角度B的和角度(A+B)时,对应的函数值之间的关系。

常用的加法公式如下:sin(A + B) = sin(A)cos(B) + cos(A)sin(B)cos(A + B) = cos(A)cos(B) - sin(A)sin(B)tan(A + B) = (tan(A) + tan(B))/(1 - tan(A)tan(B))3.倍角公式:倍角公式是指锐角三角函数在角度A的两倍角度2A时,对应的函数值之间的关系。

常用的倍角公式如下:sin(2A) = 2sin(A)cos(A)cos(2A) = cos^2(A) - sin^2(A)tan(2A) = 2tan(A)/(1 - tan^2(A))4.倒数关系:倒数关系是指锐角三角函数之间的倒数关系。

常用的倒数关系如下:cosec(A) = 1/sin(A)sec(A) = 1/cos(A)cot(A) = 1/tan(A)5.三角函数的特殊值:在锐角三角函数中,特殊的角度对应的函数值是常用的。

常见的特殊角度包括:- sin(0) = 0- cos(0) = 1- tan(0) = 0- sin(30°) = 1/2- cos(30°) = √3/2- tan(30°) = √3/3- sin(45°) = √2/2- cos(45°) = √2/2- tan(45°) = 1除了以上常见的方法外,还有其他一些方法也能在特定的问题中应用。

求锐角三角函数的方法归类

求锐角三角函数的方法归类

求锐角三角函数的方法归类锐角三角函数是沟通代数与几何知识的桥梁,一直是中考命题的热点之一,从题型上看,选择题、填空题、解答题、综合题、压轴题,型型皆有,然面课本上的例题又比较少,使我们在求锐角三角函数值时无从下手,现将求锐角三角函数值常用的方法做个归纳:一、直接用锐角三角函数的定义例.如图,在△ABC中,AD⊥BC,垂足为点D.已知BC=14,AD=12,tan∠BAD=,求sinC的值,分析:已知条件中的tan∠BAD==,由AD=12,可得BD的值,问题中的sinC=,而AD=12是已知条件,所以我们只需求AD的值就可解了,这道题就是直接利用正弦值的定义求值。

解:∵在直角△ABD中,,∴BD=AD•tan∠BAD=12× =9. ∴CD=BC-BD=14-9=5.∴.∴.如果直接找不到边的值,该怎么办?在格点图形中,经常采用适当的方法求边例:如图,△ABC的三个顶点都在正方形网格的格点上,求sin∠ACB的值分析根据勾股定理,可得BC、AC的长,采用补全图形求出△ABC的面积,求出高AN,解直角三角形求出即可.解:由勾股定理可得:BC==5,AC==,∵∴∴AN=1二、巧用参数求锐角三角函数若已知两边的比值或一个三角函数值,而不能直接求出三角函数相应边的长,则可采用设参数的方法,先用参数表示出三角函数相应边的长,再根据三角函数公式计算它们的比值,即可得出三角函数值.例:已知a、b、c是的三边,且a、b、c满足,若5b-4c=0,求sinA+sinB的值。

分析:这是一道中档题,已知条件没有直接说明三角形的形状,所以先从入手,由勾股定理的逆定理判断出三角形为直角三角形,且斜边为c,再由5b-4c=0得出b,c之间的数量关系,此时用设参数的方法可以轻松得到三边之间的关系,问题就迎刃而解了。

三,用同角三角函数间的关系例.如图,在正方形网格中,求∠AOB的正切值.分析:连接AB,就可以根据勾股定理求出OA,OB,AB的长度,根据余弦定理就可以求出cos∠AOB,根据同角三角函数的关系,就可以求出,∠AOB的正切值.解:方法一:连接AB,根据勾股定理可以得到OA=OB=,AB=根据余弦定理可以得到:OA2+OB2-2OA•OB•cos∠AOB=AB2即:10+10-20cos∠AOB=8,解得cos∠AOB=.∴∠AOB的正切值.方法二:根据勾股定理可以得到OA=OB=,AB=过点A作AC⊥OB于C,=4=,可得AC=, sin∠AOB=,∴∠AOB的正切值.四、用等角来替代当直接用三角函数的定义求某锐角的三角函数值较为困难时,可通过相等角进行转换求值,这是一个非常重要的解题技巧。

初中数学锐角三角函数知识点

初中数学锐角三角函数知识点

初中数学锐角三角函数知识点锐角三角函数是高中数学的重要内容,它涉及到三角函数的定义、性质以及与三角函数相关的常见解题方法。

以下将详细介绍锐角三角函数的知识点。

一、锐角三角函数的定义1. 正弦函数(sine function):在锐角ABC中,以角A为自变量,以对边AB与斜边AC的比值作为函数值。

记作sinA = AB/AC。

2. 余弦函数(cosine function):在锐角ABC中,以角A为自变量,以邻边BC与斜边AC的比值作为函数值。

记作cosA = BC/AC。

3. 正切函数(tangent function):在锐角ABC中,以角A为自变量,以对边AB与邻边BC的比值作为函数值。

记作tanA = AB/BC。

4. 余切函数(cotangent function):在锐角ABC中,以角A为自变量,以邻边BC与对边AB的比值作为函数值。

记作cotA = BC/AB。

5. 正割函数(secant function):在锐角ABC中,以角A为自变量,以斜边AC与邻边BC的比值作为函数值。

记作secA = AC/BC。

6. 余割函数(cosecant function):在锐角ABC中,以角A为自变量,以斜边AC与对边AB的比值作为函数值。

记作cscA = AC/AB。

二、锐角三角函数的性质1. 正弦函数的定义域为[0, π/2],值域为[0, 1],是一个奇函数,即sin(π/2 - A) = cosA。

2. 余弦函数的定义域为[0, π/2],值域为[0, 1],是一个偶函数,即cos(π/2 - A) = sinA。

3.正割函数和余割函数的定义域为(0,π/2)∪(π/2,π),值域为R^+∪R^-。

4.正弦函数和余弦函数的图像是一条周期为2π的曲线,对称于直线x=π/25.正切函数和余切函数的定义域为(0,π/2)∪(π/2,π),值域为R^+∪R^-。

6.正切函数和余切函数的图像是一条周期为π的曲线,对称于直线x=π/2三、常用的锐角三角函数解题方法1. 利用定义求函数值:根据三角函数的定义,利用已知信息计算出函数值。

高考数学中的锐角三角函数运算技巧

高考数学中的锐角三角函数运算技巧

高考数学中的锐角三角函数运算技巧在高考数学中,三角函数是一个非常重要的知识点,其核心是锐角三角函数。

学好锐角三角函数的运算技巧,对于高考数学的成绩起着至关重要的作用。

在这篇文章中,笔者将为大家分享一些关于高考数学中的锐角三角函数运算技巧。

一、正弦函数、余弦函数与正切函数的关系在高考数学中,学生需要掌握三角函数之间的相互关系。

其中,正弦函数、余弦函数和正切函数之间有着非常密切的联系。

在锐角三角形中,正弦函数是指对应于角的斜边与直角边的比值,余弦函数是指对应于角的邻边与斜边的比值,而正切函数则是指对应于角的邻边与直角边的比值。

正弦函数、余弦函数和正切函数之间的关系可以用以下公式表示:$$\sin x = \frac{\text{对边}}{\text{斜边}}, \cos x = \frac{\text{邻边}}{\text{斜边}}, \tan x = \frac{\text{对边}}{\text{邻边}} $$根据这个公式,我们可以推导出以下关系:$$\tan x = \frac{\sin x}{\cos x}, \cos x = \frac{1}{\sec x}, \sin x = \frac{1}{\csc x}$$其中,$\sec x$ 表示 $\cos x$ 的倒数,$\csc x$ 则表示 $\sinx$ 的倒数。

掌握了正弦函数、余弦函数和正切函数之间的关系,就可以在解题过程中利用其中的转换关系,减少运算的难度。

二、三角函数的和差公式在高考数学中,比较常见的一个运算技巧就是利用三角函数的和差公式,将复杂的三角函数式子简化为容易计算的形式。

三角函数的和差公式如下:$$\sin(x\pm y) = \sin x\cos y \pm \cos x\sin y$$$$\cos(x \pm y) = \cos x\cos y \mp \sin x\sin y$$$$\tan(x \pm y) = \frac{\tan x \pm \tan y}{1 \mp \tan x\tan y}$$这三个公式是高中数学中最基本的三角函数公式之一。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
解:
在矩形中AB=DC=4,
∠2+∠α=90°
又DE⊥AC,
∠1+∠2=90°
∴∠1=∠α
点评:注意把条件集中到一起.
例9.如图,点A是一个半径为300米的圆形森林公园的中心,在森林公园附近有B、C两个村庄,现要在B、C两村庄之间修一条长为1000米的笔直公路将两村连通,经测得∠ABC=45o,∠ACB=30o,问此公路是否会穿过该森林公园?请通过计算进行说明。
解:如图,设BC=3m,则AB=5m,
(2)如图所示,已知AB是⊙O的直径,CD是弦,且CD⊥AB,BC=6,AC=8,则sin∠ABD的值是( )
分析:
因为AB是⊙O的直径,所以∠ACB=90°.因为BC=6,AC=8,所以AB=10.因为∠ABD=∠ACD=∠ABC,所以在Rt△ACB中, 故正确答案为D.
(二)同角的三角函数之间的关系
(1)平方关系:sin2α+cos2α=1
(2)商数关系:
(三)两角的关系
任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等于它的余角的正弦值,任意锐角的正切值与它的余角的正切值的积等于1.即若A+B=90°,则sinA=cosB,cosA=sinB,tanA·tanB=1.
图4
参考数据:
分析:(1)由图可知 是直角三角形,于是由勾股定理可求。
(2)利用三角函数的概念即求。
解:设需要t小时才能追上。

(1)在 中, ,
则 (负值舍去)故需要1小时才能追上。
(2)在 中
即巡逻艇沿北偏东 方向追赶。
例20.如图5,山上有一座铁塔,山脚下有一矩形建筑物ABCD,且建筑物周围没有平整地带,该建筑物顶端宽度AD和高度DC都可直接测得,从A、D、C三点可看到塔顶端H,可供使用的测量工具有皮尺,测倾器。
例13在 中, ,那么cotB等于()
分析:在 中,已知tanA,求cotB可利用互余角的三角函数关系求解,应选C。
例14已知 为锐角,下列结论:
<2>如果 ,那么
<3>如果 ,那么 <4>
正确的有()
A. 1个B. 2个C. 3个D. 4个
分析:利用三角函数的增减性和有界性即可求解。
解:由于 为锐角知<1>不成立
解:
例11.如图,山上有一座铁塔,山脚下有一矩形建筑物ABCD,且建筑物周围没有开阔平整地带,该建筑物顶端宽度AD和高度DC都可直接测得,从A、D、C三点可看到塔顶端H,可供使用的测量工具有皮尺、测倾器。
(1)请你根据现有条件,充分利用矩形建筑物,设计一个测量塔顶端到地面高度HG的方案。具体要求如下:测量数据尽可能少,在所给图形上,画出你设计的测量平面图,并将应测数据标记在图形上(如果测A、D间距离,用m表示;如果测D、C间距离,用n表示;如果测角,用α、β、γ表示)。
(四)特殊锐角的三角函数值

30°
45°
60°
90°
sinA
0
1
cosA
1
0
tanA
0
1

(五)锐角三角函数值解法
1、用计算器
求整数度数的锐角三角函数值.
在计算器的面板上涉及三角函数的键有 和 键,当我们计算整数度数的某三角函数值时,可先按这三个键之一,然后再从高位向低位按出表示度数的整数,然后按 ,则屏幕上就会显示出结果.
(5)0<sinA<1,0<cosA<1
2、同名三角函数值的变化规律
当角α在0°~90°间变化时,它的正切和正弦三角函数值随着角度的增大而增大;余弦三角函数值随着角度的增大而减少.
三、解题方法技巧点拨
1、求锐角三角函数的值
例1、(1)在Rt△ABC中,∠C=90°,若 ,求cosB,tanB的值.
分析:本题主要考查锐角三角函数的定义,结合图形求解可化繁为简,迅速得解.
4、已知三角函数值求角
对于非特殊角可用计算器求角,若是特殊角的三角函数值则可以直接得角度.
例如:已知cosα=0.5237,求锐角α.
解:
按键 ,再依次按键 .
则屏幕上显示结果为58.41923095.
例5、求适合下列各式的锐角α.
点拨:所有锐角三角函数值都是正数,而且正弦和余弦值都不大于1,不符合条件的三角函数值应舍去.
例如:计算sin44°.
解:
按键 ,再依次按键 .
则屏幕上显示结果为0.69465837.
求非整数度数的锐角三角函数值.
若度数的单位是用度、分、秒表示的,在用计算器计算三角函数值时,同样先按 和 三个键之一,然后再依次按度 分 秒 键,然后按 键,则屏幕上就会显示出结果.
2、已知三角函数值,用计算器求角度
(2)根据你测量的数据,计算塔顶端到地面的高度HG(用字母表示,测倾器高度忽略不计)。
解:(1)在A处放置测倾器,测得点H的仰角为α
在B处放置测倾器,测得点H的仰角为β
例12.某一时刻,一架飞机在海面上空C点处观测到一人在海岸A点处钓鱼。从C点处测得A的俯角为45o;同一时刻,从A点处测得飞机在水中影子的俯角为60o。已知海岸的高度为4米,求此时钓鱼的人和飞机之间的距离(结果保留整数)。
图5
(1)请你根据现有条件,充分利用矩形建筑物,设计一个测量塔顶端到地面高度HG的方案,具体要求如下:<1>测量数据尽可能少;<2>在所给图形上,画出你设计的测量平面图,并将应测数据标记在图形上(如果测A、D间距离,用m表示;如果测D、C间距离,用n表示;如果测角,用 等表示,测倾器高度不计)。
(2)根据你测量的数据,计算塔顶端到地面的高度HG(用字母表示)。
锐角三角函数的解题技巧
一、知识点回忆
(一)锐角的三角函数的意义
1、正切
在Rt△ABC中,∠C=90°,我们把锐角A的对边与邻边的比,叫做∠A的正切,记作tanA.
2、正弦和余弦
如图,在Rt△ABC中,∠C=90°,锐角A的对边与斜边的比叫做∠A的正弦,记作sinA,即
3、三角函数:在直角三角形中,锐角A的正切(tanA)、正弦(sinA)、余弦(cosA),都叫做∠A的三角函数.
(2)依据购买量判断,选择哪种购买方案付款最少?并说明理由。
4.某市从今年1月1日起调整居民用水价格,每立方米水费上涨1/3,小利家去年12月的水费是15元,而今年7月份的水费则是30元。已知小利家今年7月的用水量比去年12月份的用水量多5立方米,求该市今年居民的用水价格。
解:由
例18.如图3,沿AC方向开山修路,为了加快施工速度,要在小山的另一边同时施工。从AC上的一点B,取 米, 。要使A、C、E成一直线,那么开挖点E离点D的距离是()
A. 米B. 米
C. 米D. 米
图3
分析:在 中可用三角函数求得DE长。
解: A、C、E成一直线
在 中,
米,
米,故应选B。
例19.人民海关缉私巡逻艇在东海海域执行巡逻任务时,发现在其所处位置O点的正北方向10海里处的A点有一涉嫌走私船只正以24海里/小时的速度向正东方向航行。为迅速实验检查,巡逻艇调整好航向,以26海里/小时的速度追赶,在涉嫌船只不改变航向和航速的前提下,问(1)需要几小时才能追上?(点B为追上时的位置)(2)确定巡逻艇的追赶方向(精确到 )(如图4)
二、重点难点疑点突破
1、(1)sinA和cosA都是一个整体符号,不能看成sin·A或cos·A.
(2) 是一个比值,没有单位,只与角的大小有关,而与三角形的大小无关.
(3)sinA+sinB≠sin(A+B)sinA·sinB≠sin(AB)
(4)sin2A表示(sinA)2,cos2A=(cosA)2
分析:本题实际是一道图形设计和数据的测量计算,依题意可有几种方案。如测三个数据、测四个数据、测五个数据等。但又要使测得的数据尽可能少,于是以三个数据为例。
解:如图5(1)测三个数据。
(2)设
在 中, 在 中,
,即
同步练习:
1.测量底部不可以到达的物体的高度,可以按下列步骤进行:(如图所示,以测量MN的高度为例)
例7、如图所示.在四边形ABCD中,AB=2,CD=1,∠A=60°,∠D=∠B=90°,求此四边形ABCD的面积.
分析:
由已知∠B=90°,∠A=60°这两个条件想到延长BC,AD,使它们相交,构成直角三角形.
例8、在矩形ABCD中DE⊥AC于E,设∠ADE=α,且 ,AB=4,求AD.
分析:
在矩形中AB=DC=4,可证∠α=∠1,于是条件转移到△DCE中来了,求出DE.
3.某公司到果园基地购买某种优质水果,慰问医务工作者,果园基地对购买量在3000千克以上(含3000千克)的有两种销售方案。甲方案:每千克9元,由基地送货上门。乙方案:每千克8元,由顾客自己租车运回。已知该公司租车从基地到公司的运输费为5000元。
(1)分别写出该公司两种购买方案的付款y(元)与所购买的水果质量x(千克)之间的函数关系式,并写出自变量x的取值范围。
①在测点A处安置测倾器,测得此时M的仰角 。
②在测点A与物体之间的B处安置测倾器(A、B与N在一条直线上),测得此时M的仰角 。
③量出测倾器的高度 ,以及测点
A、B之间的距离AB=b。
(1)根据测量数据,你能求出物体MN的高度吗?
说说你的理由。
(2)若 ,
试计算MN的高度。
2.公路MN和公路PQ在点P处交汇,且 ,点A处有一所中学,AP=160m,一辆拖拉机以3.6km/h的速度在公路MN上沿PN方向行驶,假设拖拉机行驶时,周围100m以内会受噪声影响,那么,学校是否会受到噪声影响?如果不受影响,请说明理由;如果受影响,会受影响几分钟?
解:
点评:
学过锐角三角函数后,特殊角的三角函数的计算是常考不衰的内容,做这类题主要分两步:(一)代入;(二)计算.因此,特殊角的三角函数值必须牢记.
相关文档
最新文档