《高分子化学》张形欣主编,第六章开环聚合
《高分子化学》习题与答案
1. 说明下列名词和术语:(1)单体,聚合物,高分子,高聚物(2)碳链聚合物,杂链聚合物,元素有机聚合物,无机高分子(3)主链,侧链,侧基,端基(4)结构单元,单体单元,重复单元,链节(5)聚合度,相对分子质量,相对分子质量分布(6)连锁聚合,逐步聚合,加聚反应,缩聚反应(7)加聚物,缩聚物,低聚物2.与低分子化合物比较,高分子化合物有什么特征?3. 从时间~转化率、相对分子质量~转化率关系讨论连锁聚合与逐步聚合间的相互关系与差别。
4. 举例说明链式聚合与加聚反应、逐步聚合与缩聚反应间的关系与区别。
5. 各举三例说明下列聚合物(1)天然无机高分子,天然有机高分子,生物高分子。
(2)碳链聚合物,杂链聚合物。
(3)塑料,橡胶,化学纤维,功能高分子。
6. 写出下列单体的聚合反应式和单体、聚合物的名称(1) CH2=CHF(2) CH2=CH(CH3)2CH3|(3) CH2=C|COO CH3(4) HO-( CH2)5-COOH(5) CH2CH2CH2O|__________|7. 写出下列聚合物的一般名称、单体、聚合反应式,并指明这些聚合反应属于加聚反应还是缩聚反应,链式聚合还是逐步聚合?-(1) -[- CH2- CH-]n|COO CH3(2) -[- CH2- CH-]-n|OCOCH3(3) -[- CH2- C = CH- CH2-]-n|CH3(4) -[-NH(CH2)6NHCO(CH2)4CO-]n-(5) -[-NH(CH2)5CO-]n-8. 写出合成下列聚合物的单体和反应式:(1) 聚苯乙烯(2) 聚丙烯(3) 聚四氟乙烯(4) 丁苯橡胶(5) 顺丁橡胶(6) 聚丙烯腈 (7) 涤纶(8) 尼龙6,10 (9) 聚碳酸酯(10) 聚氨酯9. 写出下列单体形成聚合物的反应式。
指出形成聚合物的重复单元、结构单元、单体单元和单体,并对聚合物命名,说明聚合属于何类聚合反应。
10. 写出聚乙烯、聚氯乙烯、尼龙66、维尼纶、天然橡胶、顺丁橡胶的分子式,根据表1-4所列这些聚合物的相对分子质量,计算这些聚合物的聚合度。
高分子化学导论第6章 阴离离子聚合与阳离子聚合
不同机理的聚合反应中分子量与转化率的关系
分
分
子
子
量
量
转化率/%
转化率/%
自由基聚合 逐步聚合
分 子 量
转化率/% 活性阴离子聚合
活性聚合物的分子量分布:
由萘钠-THF引发得的聚苯乙烯,接近 单分散性,这种聚苯乙烯可用作分子 量及其分布测定的标样。
6.5 阴离子聚合的分子设计
♣ 制备遥爪聚合物:指分子链两端都带 有活性官能团的聚合物,两个官能团遥 遥位居于分子链的两端,象两个爪子。
pKa=-logKa,Ka:电离平衡常数
pKa值:St 40-42 ; MMA 24
6.6 工业生产
理论上:对分子链结构有较强的控 制能力,可获得“活性聚合物”,可进 行分子设计,合成预定结构和性能的聚 合物;
工业生产中:可生产许多性能优良的 聚合物,如丁苯橡胶、异戊橡胶、SBS 热塑性橡胶等。
制备方法:聚合末期在活性链上加入如 CO2、环氧乙烷、二异氰酸酯等添加剂, 使末端带羧基、羟基、异氰酸根等基团 的聚合物,合成遥爪聚合物。
端羧基化反应 端羟基化反应
♣ 制备嵌段共聚物(Block copolymer)
先制成一种单体的“活的聚合物”,再 加另一单体共聚,制得任意链段长度的 嵌段共聚物。如合成SBS热塑性橡胶。
碱金属将最外层的一价电子直接转移给单体, 生成自由基-阴离子,自由基阴离子末端很 双阴离子 快偶合终止,生成双阴离子,两端阴离子同 时引发单体聚合。如丁钠橡胶的生产。
♣ b 电子间接转移引发
碱金属—芳烃复合引发剂 碱金属(如钠)将最外层的一个价电子转移给中间 体(如萘),使中间体变为自由基阴离子(如萘钠 络合物),再引发单体聚合,同样形成双阴离子。
开环聚合
第八章 开环聚合8.1 概述高分子化学中,以环状单体通过开环聚合来合成聚合物,同样具有重要的地位。
在这种聚合过程中,增长链通过不断地打开环状结构,形成高聚物:以环醚为例,环氧乙烷经开环聚合反应,得到一种聚醚,即聚氧化乙烯。
这在工业上已得到应用。
能够进行开环聚合的单体很多,如环状烯烃,以及内酯、内酰胺、环醚、环硅氧烷等环内含有一个或多个杂原子的杂环化合物。
开环聚合既具有某些加成聚合的特征,也具有缩合聚合的特征。
由开环聚合得到的聚合物,重复单元与环状单体开裂时的结构相同,这与加成聚合相似;而聚合物主链中往往含有醚键、酯键、酰胺键等,与缩聚反应得到的聚合物常具有相同的结构,只是无小分子放出。
开环聚合与缩聚反应相比,还具有聚合条件温和、能够自动保持官能团等物质的量等特点,因此开环聚合所得聚合物的平均分子质量,通常要比缩聚物高得多。
有些单体如乳酸,采用缩聚反应无法得到高分子质量的聚合物;而采用乳交酯的开环聚合,就能够获得高分子质量的聚乳酸。
但是,与缩聚反应相比,开环聚合可供选择的单体较少,例如二元酸与二元醇能够通过缩聚获得聚酯;而开环聚合,只有相当于α,ω-羟基酸的环内酯可供选择。
聚酰胺的情况也是如此。
另外,有些环状单体合成困难,因此由开环聚合所得到的聚合物品种受到限制。
开环聚合就机理而言,有些属于逐步聚合,有些属于连锁聚合。
8.1.1 聚合范围及单体可聚性如前所述,环醚、环酯、环酰胺、环硅氧烷等能够进行开环聚合。
此外,环胺、环硫化物、环烯烃、以及N-羧基-α-氨基酸酐等同样也能进行开环聚合。
环状单体能否转变为聚合物,取决于聚合过程中自由能的变化情况,与环状单体和线形聚合物的相对稳定性有关。
Dainton 以环烷烃作为环状单体的母体,研究了环大小与聚合能力的关系。
表6-1列出了环烷烃在假想开环聚合时的自由能变化ΔG lc 0、焓变ΔH lc 0、及熵变ΔS lc 0。
R X [ R X ]n n [ CH 2 CH 2 O ]n n H 2C CH 2O聚合过程中,液态的环烷烃(l )转变为无定型的聚合物(c )。
高分子化学-11(开环聚合)
+
C 2 C 2 H H O AH H O C H
p r o p a t
H
C 2
a n d
C 2 H
C 2 T H
H O C H H ( O C H
2 C 2 F +O H - A-
2 C 2 O+ H - A- C 2 H T H F + 2 C 2 ) 2 O AH
H
a 反应性环醚叫引发促进剂 g i o
⊕
⊕
三、环酰胺的开环聚合
环酰胺(内酰胺)的聚合反应可用碱、酸和水来引发。 环酰胺(内酰胺)的聚合反应可用碱、酸和水来引发。
n O 1. 水解聚合反应 ( C 2 ) m N H ] [ 2 ) m C O
n
C N (1) 己内酰胺水解成氨基酸 ( 5 H H C H 2 O H 2 C CH N O ( O ( H 2 + C C ) H H (2) 氨基酸本身逐步缩聚
( C H O C
2
C M )
5
C ( C H O C
+
H B
+
-
2
)
5
N - M+
+
1 2 H
2
( C H
C O )
2
5
2
)
5
N H
-
( M
O
C H
C
2
)
5
N M+ B
O C
-
+
H
+
+
第二步: 第二步:
C H
(
O C )
2
5
N M
N H C H (
《高分子化学》教案第7章开环聚合
第六章 开环聚合开环聚合属于链式聚合,单体为环化合物,包括环醚、环缩醛、内酯、内酰胺、环硅氧烷等。
7.1 总论7.1.1 环单体的聚合活性环单体的聚合活性由热力学因素和动力学因素共同决定。
1. 热力学因素即环单体和相应的线形聚合物的相对稳定性,它与环大小、成环原子和环的取代基相关。
1) 环烷烃的稳定性:环烷烃进行开环聚合的热力学可行性顺序为:三元环、四元环>八元环>五元环,七元环>六元环。
2) 环的取代基:取代基的引入使聚合热增加、熵变增加,总体使开环聚合可能性降低。
3) 单环单体和多环单体:多环单体的环张力会有所增加,使开环聚合可能性增加。
如8-氧杂[4,3,0]环壬烷,反式的可开环聚合。
4) 成环原子:对于内酯而言,六元、七元环内酯可聚合,而五元环内酯则不可;环三硅氧烷的聚合活性高于环四硅氧烷。
2. 动力学因素环烷烃没有易受活性种攻击的键,因此动力学上仅环丙烷衍生物可进行开环聚合,并且仅能得到低聚物。
环醚、内酯、内酰胺等环单体,因有亲核或亲电子部位,易开环聚合。
7.1.2 开环聚合机理和特征 1. 聚合机理开环聚合的引发剂为烯烃聚合进行离子型聚合所用的引发剂,引发反应包括初级活性种的形成和单体活性种的形成。
大多数阳离子开环聚合的链增长是通过单体对增长链末端的环状阳离子的亲核反应来进行的,其中的Z 基团为C-O (环醚)、C-N (环氮化合物)、Si-O (环硅氧烷)、酯键和酰胺键;而阴离子聚合的链增长则是增长链末端的阴离子对单体的亲核反应,Z 基团为RO -(环醚)、COO -(内酯)和Si-O -(环硅氧烷)。
;一般情况下,开环聚合的增长链末端带电荷,进行链增长的单体是中性的。
但是,开环聚合还有另一种链增长方式,即所谓的活化单体机理,增长链末端不带电荷,而单体是离子化的,如己内酰胺的阴离子聚合。
2. 开环聚合的基本特征Z-++Z单体加到增长链上进行高分子链的生长;聚合度随转化率增加缓慢,但是在许多场合下呈线性关系;溶剂对聚合反应影响同烯烃的离子聚合;动力学表达式通常类似于链式聚合,特别是活性聚合;许多开环聚合的单体平衡浓度较高,即临界聚合温度较低。
北京化工大学《高分子化学》 各章要求、重点内容
《高分子化学》各章要求及重点内容第一章 绪论一、基本要求1、掌握高分子化学的基本概念。
2、对重要的相关概念进行辨析。
3、掌握聚合物的分类与命名。
4、正确写出常用聚合物的名称、分子式、聚合反应式。
二、主要内容 1、基本概念单体、高分子、大分子、聚合物、低聚物(齐聚物); 结构单元、重复单元、单体单元、链节; 主链、侧链、端基、侧基;聚合度、相对分子质量、相对分子质量分布等;加聚反应、缩聚反应、加聚物、缩聚物、连锁聚合、逐步聚合; 2、聚合物的分类、命名及典型聚合物的命名、来源、结构特征 - 表1-5、1-6、1-7、1-8、内容合成高分子、天然高分子;碳链聚合物、杂链聚合物、元素有机聚合物、无机高分子; 聚酯、聚酰胺、聚氨酯、聚醚、聚脲、聚砜。
3、聚合反应的分类及聚合反应式 聚合物分子式(结构式)、结构单元-重复单元的区别与联系; 聚合反应的分类及聚合反应式写法;加成聚合与缩合聚合、连锁聚合与逐步聚合的联系与区别。
第二章 逐步聚合要求一、基本要求1、掌握逐步聚合的基本概念;2、逐步聚合反应分类(从不同的角度分类)3、比较线形逐步聚合与体型逐步聚合反应;4、线形逐步聚合反应聚合度的计算与控制(单体等摩尔比反应与非等摩尔比反应);5、体型逐步聚合凝胶点的控制;6、正确书写重要逐步聚合聚合物的合成反应式;7、比较连锁聚合与逐步聚合,讨论影响两类反应速率及产物分子量的因素。
二、主要内容 1、基本概念平衡缩聚与不平衡缩聚、线形缩聚与体形缩聚、均缩聚、混缩聚、共缩聚; 缩合聚合、逐步加聚反应(聚加成反应)、氧化偶取联聚合、加成缩合聚合、分解缩聚。
官能团与官能度、平均官能度、官能团等活性理论、反应程度与转化率、当量系数与过量分率; 热塑性树脂与热固型树脂、凝胶点、结构预聚物与无规预聚物; 2、线性逐步聚合相对分子质量控制方法及其计算(1)等物质量反应:PX n -=11封闭体系: )1/(+=K K P 1+=K X n开放体系: wnPnKC X0=(2)非等物质量反应:aAa + bBb (过量)体系:当量系数:B A N N r = 过量分率:AA B N N N q -= 关系:r=1/(1+q) rPr r X n 211-++= )1(22P q q X n -++= aAa + bBb + Cb 体系:,2BBANNN r +=AB NN q ,2= 聚合度计算公式同前3、体型逐步聚合凝胶点的控制官能团等当量:平均官能度:∑∑=iii Nf N f 凝胶点: fP c2=官能团非等当量:所有分子数未过量官能团数⨯=2f 凝胶点: fP c 2= 三、分析应用(1)官能团等活性理论的分析、运用(与自由基聚合、共聚合中等活性理论比较)。
北化高分子材料6.开环聚合-教学与复习
05
开环聚合的挑战与展望
开环聚合的挑战
聚合机理的复杂性
开环聚合涉及复杂的化学反应过程,需要深入理解聚合机理,以便更 好地控制聚合反应。
与传统的缩聚和加成 聚合不同,开环聚合 过程中没有小分子副 产物生成。
开环聚合的类型
01
02
03
均裂开环聚合
通过均裂环状化合物的键 来生成两个自由基,进而 引发聚合。
异裂开环聚合
通过异裂环状化合物的键 来生成一个正离子或负离 子,进而引发聚环状化合物的键打开并 生成线性聚合物。
影响因素
阳离子开环聚合反应受温度、溶剂、压力、引发剂等因素影响,其中引 发剂是关键因素,能够控制聚合反应的活性和稳定性。
配位聚合
定义
配位聚合是一种通过过渡金属催化剂催化烯烃单体进行配 位插入方式生成定向聚合物的过程。
反应机理
配位聚合反应机理涉及配位和插入两个步骤,首先是过渡 金属催化剂与烯烃单体进行配位,形成π-络合物,然后单 体插入到络合物中,实现开环聚合。
定义
阴离子开环聚合是一种通过阴离子活性聚合方式将环状阳离子聚合物或闭环单体开环聚合 生成线型聚合物的过程。
反应机理
阴离子开环聚合反应机理涉及电子转移和活性中心的形成,首先是电子从阳离子单体转移 到阴离子引发剂上,形成负离子活性中心,然后该活性中心与单体加成,实现开环聚合。
影响因素
阴离子开环聚合反应受温度、溶剂、压力、引发剂等因素影响,其中引发剂是关键因素, 能够控制聚合反应的活性和稳定性。
《高分子化学》考研复习大纲
《高分子化学》考研复习大纲绪论高分子化合物的基本概念,高分子的分类方式及命名方法,不同聚合反应类型及聚合反应式,聚合物的不同平均分子量的定义及计算方法,高分子的多层次结构。
第二章缩聚和逐步聚合缩聚和逐步聚合的相互关系,单体的官能度对缩聚反应的影响,线形缩聚的逐步特性和可逆平衡以及副反应,影响聚酯化动力学的因素,线形缩聚物聚合度的计算及控制方法,体形缩聚中凝胶点的定义及Carothers法凝胶点的预测,缩聚反应主要产品及高性能缩聚高分子材料简介。
第三章自由基聚合烯类单体取代基的电子效应和位阻效应对聚合反应类型和能力的影响,自由基聚合的引发剂类型,自由基聚合机理及基元反应特征,自由基聚合反应速率,自由基聚合动力学链长、链转移及聚合度的相互关系,影响自由基聚合反应的因素,阻聚和缓聚,可控“活性”自由基聚合的基本概念。
第四章共聚合反应共聚物的类型及研究共聚反应的意义,二元共聚物组成微分方程、共聚行为的判断以及共聚物组成随转化率的变化规律,共聚物组成分布的控制,竞聚率的定义及其对共聚反应中的作用,单体和自由基的相对活性,Q-e概念及意义。
第五章聚合方法本体聚合、溶液聚合、悬浮聚合、乳液聚合方法的基本概念。
第六章离子聚合阴离子聚合和阳离子聚合反应单体,阴离子聚合和阳离子聚合的引发剂类型,阴离子聚合和阳离子聚合机理及各基元反应特征,阴离子聚合反应动力学,活性聚合的特点及应用。
第七章配位聚合配位聚合的基本概念,配位聚合的引发剂类型,聚合物的立体异构现象。
第八章开环聚合开环聚合的基本概念,开环聚合热力学特征,环醚、己内酰胺及羰基化合物的开环聚合。
第九章聚合物的化学反应高分子化学反应中的基团反应因素,接枝、嵌段、扩链及交联反应的基本概念,降解与老化。
高分子化学课件-开环聚合
聚碳酸亚丙酯的开环聚合是通过丙二酸和环氧乙烷的反应实现的。在催化剂的作用下,丙二酸和环氧 乙烷发生开环聚合反应,形成聚碳酸亚丙酯。聚碳酸亚丙酯具有优异的耐热性能、阻隔性能和加工性 能,广泛应用于食品包装、电子器件等领域。
聚己内酯的开环聚合
总结词
聚己内酯的开环聚合是一种高效、可控 的聚合方法,可制备出高分子量聚合物 。
能源消耗,实现聚合过程的可持续发展。
循环利用
02
通过循环利用聚合物材料,降低生产成本和资源消耗,同时减
少对环境的污染。
生物降解性
03
研究和发展具有生物降解性的聚合物材料,使其在完成使用寿
命后能够自然降解,减少对环境的长期影响。
05 开环聚合的实例分析
聚乳酸的开环聚合
总结词
聚乳酸的开环聚合是一种环保、可持续的聚合方法,具有广泛的应用前景。
03
02
配位聚合
配位聚合是一种通过过渡金属催化剂将烯烃单体聚合的 方法,具有高活性、高定向性和高立构规整性的特点, 是开环聚合领域的研究热点。
活性聚合技术
活性聚合技术能够实现聚合过程中链自由基的稳定,从 而控制聚合物的分子量和分子量分布,提高聚合物的性 能。
聚合产物的性能改进
功能化聚合物
共聚物
通过在聚合物分子链上引入特定的功 能基团,可以获得具有特殊性能的功 能化聚合物,如导电、发光、磁性等 功能。
合成聚醚类高分子材料
通过开环聚合反应,将环状单体转化为聚醚类高分子材料, 如聚四氟乙烯、聚乙二醇等。这些高分子材料具有优异的耐 化学腐蚀性和生物相容性,广泛应用于制药、电子和化工等 领域。
合成功能性高分子材料
合成导电高分子材料
通过开环聚合反应,将环状单体转化为导电高分子材料,如聚吡咯、聚苯胺等 。这些高分子材料具有良好的导电性能和稳定性,广泛应用于电子器件、传感 器和电池等领域。
第6章 高分子化学— 开环聚合(全)
起始剂浓度
环氧化合物开环聚合过程中,由于起始剂的酸性、引发 环氧化合物开环聚合过程中,由于起始剂的酸性、 剂的活性不同,引发、增长、交换反应的相对速率不同; 剂的活性不同,引发、增长、交换反应的相对速率不同;使 聚合物的分子量、分子量分布各不相同,情况十分复杂。 聚合物的分子量、分子量分布各不相同,情况十分复杂。
14
(3)向单体链转移 )
环氧丙烷阴离子聚合,存在着向单体链转移, 环氧丙烷阴离子聚合,存在着向单体链转移,结果使聚合物分子 量降低。 量降低。
转移反应首先 夺取与环相连 的甲基上的H, 的甲基上的 , 生成单阴离子: 生成单阴离子:
单阴离子
单阴离子迅速 开环, 开环,生成烯 丙基醚阴离子: 丙基醚阴离子:
9
1——自由基聚合 2——阴离子聚合 3——逐步聚合
聚合物分子量和转化率之间的关系 是区别链式和逐步聚合的主要标志。 。
开环聚合反应的聚合上限温度较低,聚合过 程中常有 聚合-解聚 平衡,使过程复杂化。 以工业上几种重要的开环聚合为例进行说明
[ 环氧乙烷、环氧丙烷、三聚甲醛、3,3‘-二(氯亚甲基)环丁醚、已内酰胺 ] 环醚、内酰胺、 环醚、内酰胺、环缩醛
2
如:直链烷烃中CH2的燃烧热=659.0 kJ/mol。 环丙烷中CH2的燃烧热=697.6 kJ/mol。 则:环丙烷中每一个亚甲基的张力=697.6-659.0=38.6 kJ/mol。 所以,环丙烷的张力能=38.6×3=115.8 kJ/mol 。
武汉大学高分子化学 第六章开环聚合
CH2
O CH2 O
CH2
+
O CH2
O 三聚甲醛
+
CH2 ( OCH2 )2OCH2 CH2O
n
聚甲醛
( CH2O )nCH2OCH2OH CH2OH
( CH2O )nCH2OH
+ HCHO
+ ( n + 1 ) HCHO
为提高其稳定性,工业上采用酯化或共聚的方法 来改进。
O ( CH2O )n CH2OH ( RCO )2O RCOO CH2O n CH2O C R
杂原子或-CH=CH-、-C-C-基团。
2. 开环聚合的特点
仅有键的改变而无小分子放出,生成聚合物和 起始单体组成相同。 与缩聚比较,开环聚合条件较温和。 可自动地保持着等物质的量,因此可以制得分 子量很大的聚合物。 平衡可逆,总有部分环状单体存在。
3. 环状单体聚合能力
聚合 动力学因素 能力 热力学因素:环和线型结构的相对稳定性
第六章 开环聚合
开环聚合的特点
不同环状单体的聚合能力
环状单体开环聚合的方式
几种通过开环聚合合成的聚合物
6.1 概述
1. 概念 开环聚合,就是指环状结构单体在离子引 发剂作用下经过开环和聚合,转变为高分子的 一类反应。
nR X R X n
X为杂原子或官能团,例如O、N、S、P、Si等
C
( CH2 )5
O
HO
CH2CH2O
H b O
萘钠
+ Na O
CH2CH2O b
+ Na
O
O a O CH2CH2O b C ( CH2 )5O a + Na
高分子化学名词解释
高分子化学名词解释work Information Technology Company.2020YEAR高分子化学(潘祖仁主编)名词解释第一章绪论逐步聚合,是指聚合过程中低分子转变成高分子是缓慢逐步进行的,每步的反应速率和活化能大致相同。
聚合早期,单体很快聚合成低分子量的齐聚物,短期内单体转化率很高,反应程度却很低。
连锁聚合,是指从自由基、阴阳离子等活性种开始,经历链引发、链增长、链终止等基元反应的,各基元反应的速率和活化能差别很大的一类聚合反应。
数均分子量,是指按聚合物中含有的分子数目统计平均的分子量,等于高分子样品中所以分子的总质量除以总的摩尔分数;质均分子量,是指按聚合物中含有的分子质量统计平均的分子量;黏均分子量,是指用粘度法测得的高分子的平均分子量。
热塑性弹性体:通常的弹性体如橡胶是通过化学反应使聚合物分子链发生交联才具有弹性,而热塑弹性体的弹性来自于聚合物分子链间的物理交联,如氢键等分子间相互作用。
普通橡胶不能二次加工,而热塑弹性既具有橡胶的弹性,又具有塑料的可塑性,可以多次进行成型加工。
热塑性聚合物:线形或支链形大分子以物理力聚集成聚合物,可溶于适当溶剂中,加热时可熔融塑化,冷却时固化成型,此类聚合物称作热塑性聚合物。
热固性聚合物:酚醛树脂,醇酸树脂等在树脂合成阶段,需控制原料配比和反应条件,使其停留在线形或少量支链的低分子预聚物阶段。
成型时,经加热,再使其中潜在的官能团继续反应成交联结构而固化。
此类聚合物称作热固性聚合物。
第二章缩聚和逐步聚合均聚是指系统中只由一种单体构成的聚合反应,如氯乙烯的缩聚;共聚是指聚合物是由两种或多种单体共同聚合而成的聚合反应,如尼龙-66的聚合;混缩聚是指类如aAb的单体进行的聚合反应。
反应程度的定义为参与反应的基团数占起始基团数的分数,将大分子的结构单元数(不是重复单元数)定义为聚合度。
官能团等活性理论提出,不同的链长的端基官能团,具有相同的反应能力和参加反应的机会,即官能团的活性与分子的大小无关。
高分子化学第六章
§6. 2.8 烷基锂的缔合现象(association phenomenon) (书P176)
丁基锂在苯、环己环等非极性溶剂中存在着 缔合现象。缔合分子无引发活性,所以缔合 现象使聚合速率显著降低。 丁基锂在极性溶剂如四氢呋喃中引发,缔合 现象完全消失,速率变快。 升高温度使缔合程度下降。
• 环氧乙烷、环氧丙烷、己内酰胺等杂环化合 物,可由阴离子催化剂开环聚合。
2019/9/22
§6. 2.2 阴离子聚合的引发剂和引发反应
阴离子聚合引发剂——电子给体,即亲核试剂, 属于碱类。 按引发机理分为: • 电子转移引发,如碱金属、碱金属芳烃引发剂; • 阴离子加成引发,如有机金属化合物。
2019/9/22
§6. 2.3 阴离子聚合引发剂和单体的匹配(书P170) (matching)
与自由基聚合相比,阴离子聚合的单体对 引发剂有较强的选择性,只有当引发剂与 单体活性相匹配才能得到所需的聚合物。 匹配情况见表6-2,表中按引发剂活性由 强到弱、单体聚合活性由弱到强的次序排 列。箭头连接的单体和引发剂都可以进行 阴离子聚合。
(1) 电子转移引发——碱金属(alkali metal) 如 Li、Na、K等。 • 电子直接转移引发。
碱金属将最外层的一个价电子直接转移给单体, 生成自由基-阴离子,自由基末端很快偶合终止, 生成双阴离子,而后引发聚合。
M + CH 2 CH X
M CH 2 CH X
M CH CH 2 X
2M CH CH2
无终止的阴离子聚合速率可以简单地由增长速率表 示:
R k [M ][M]
p
p
[M—]:阴离子增长活性中心的总浓 度。由光谱法或化学滴定法测定。
高分子化学第六章聚合方法解答
解:⑴解:⑴ 如反应前后的聚合度不变,由于原料的原有官能团往往和产物同在一个分子链中,也就是说,分子链中官能团很难完全转化,因此这类反应需以结构单元作为化学反应的计算单元。
计算单元。
⑵ 如反应前后聚合度发生变化,则情况更为复杂。
这种情况常发生在原料聚合物主链中有弱键、易受化学键进攻的部位,由此导致裂解或交联。
中有弱键、易受化学键进攻的部位,由此导致裂解或交联。
⑶ 与低分子反应不同,聚合物化学反应的速度还会受到大分子在反应体系的形态和参加反应的相邻基团等的影响。
加反应的相邻基团等的影响。
⑷ 对均相的聚合物化学反应,反应常为扩散控制,溶剂起着重要作用。
对非均相反应情况更为复杂。
情况更为复杂。
2. 解:⑴解:⑴ 物理因素:主要反映在反应物质的扩散速度和局部浓度两方面。
结晶和无定型聚合物;线性、支链型及交联聚合物;不同的链构象以及反应呈均相还是非均相等,对小分子物质的扩散都有着不同的影响,从而影响到基团的反应能力。
另外,链的构象也有一定影响,聚合物呈紧密线团、疏松线团或螺旋线团时,链上官能团与小分子反应物反应的活性也并不相同。
的活性也并不相同。
⑵ 化学因素:主要是大分子链上邻近基团间效应和几率效应。
大分子链上邻近基团间的静电作用、空间位阻及构型的不同,可改变官能团的反应活性;聚合物相邻官能团作无规成双反应时,中间往往会有孤立的单个基团,使最高转化程度受到限制,则此时要考虑几率效应。
考虑几率效应。
3 解:①解:① 自由基聚合反应:自由基聚合反应:nCH 2 CH [CH2CH]n OCOCH 3OCOCH 3AIBN② 醇解反应:醇解反应:[CH 2C H ]nOCOCH 3[CH 2C H ]nOHCH 3OH③ 缩醛化反应(包括分子内和分子间):HCHO H2O CH 2O OCH 2CH 2CH CHOH OHCH 2CH CHCH 24.解:聚合物与低分子化合物反应,聚合物与低分子化合物反应,仅限于侧基和/或端基而聚合度基本不变的反应,仅限于侧基和/或端基而聚合度基本不变的反应,仅限于侧基和/或端基而聚合度基本不变的反应,称为聚称为聚合物的相似转变。
高分子化学名词解释
高分子化学(潘祖仁主编)名词解释第一章绪论逐步聚合,是指聚合过程中低分子转变成高分子是缓慢逐步进行的,每步的反应速率和活化能大致相同。
聚合早期,单体很快聚合成低分子量的齐聚物,短期内单体转化率很高,反应程度却很低。
连锁聚合,是指从自由基、阴阳离子等活性种开始,经历链引发、链增长、链终止等基元反应的,各基元反应的速率和活化能差别很大的一类聚合反应。
数均分子量,是指按聚合物中含有的分子数目统计平均的分子量,等于高分子样品中所以分子的总质量除以总的摩尔分数;质均分子量,是指按聚合物中含有的分子质量统计平均的分子量;黏均分子量,是指用粘度法测得的高分子的平均分子量。
热塑性弹性体:通常的弹性体如橡胶是通过化学反应使聚合物分子链发生交联才具有弹性,而热塑弹性体的弹性来自于聚合物分子链间的物理交联,如氢键等分子间相互作用。
普通橡胶不能二次加工,而热塑弹性既具有橡胶的弹性,又具有塑料的可塑性,可以多次进行成型加工。
热塑性聚合物:线形或支链形大分子以物理力聚集成聚合物,可溶于适当溶剂中,加热时可熔融塑化,冷却时固化成型,此类聚合物称作热塑性聚合物。
热固性聚合物:酚醛树脂,醇酸树脂等在树脂合成阶段,需控制原料配比和反应条件,使其停留在线形或少量支链的低分子预聚物阶段。
成型时,经加热,再使其中潜在的官能团继续反应成交联结构而固化。
此类聚合物称作热固性聚合物。
第二章缩聚和逐步聚合均聚是指系统中只由一种单体构成的聚合反应,如氯乙烯的缩聚;共聚是指聚合物是由两种或多种单体共同聚合而成的聚合反应,如尼龙-66的聚合;混缩聚是指类如aAb的单体进行的聚合反应。
反应程度的定义为参与反应的基团数占起始基团数的分数,将大分子的结构单元数(不是重复单元数)定义为聚合度。
官能团等活性理论提出,不同的链长的端基官能团,具有相同的反应能力和参加反应的机会,即官能团的活性与分子的大小无关。
此理论适用于一般的聚合度不太高的、体系粘度不太大的缩聚体系;不适用于聚合反应后期,因为聚合反应后期,聚合度较大、粘度大,链段活动受到阻碍,端基活性降低。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
+
O(CH2)3 [O(CH2)3]2 O [BF3OH]-
+ (CH2)3O(CH2)3
O(CH2)3
O (CH2)3O(CH2)3
O
[BF3OH]-
形成的无环张力的四聚体氧正离子,活性降低,使聚合终止。它可通过与氧杂环丁烷的交换,形成 新的活性中心,并有环状四聚体形成:
+ (CH2)3O(CH2)3
+ (CH2)5 N-Li+
O
C (CH2)5
N
CO(CH2)5
LN-i+ CO(CH2)5NH
O
很很
C
(CH2)5 N [CO(CH2)5NH]2
O C + (CH2)5 N-Li+
(c) 八甲基环四硅氧烷
n C4H9Li + [(CH3)2SiO]4 (d) 硫化丙烯
S n C4H9Li + CH2 CH2
+
CH3
O CH CH2
ktr, M
CH3
O
CH2 CH OH + CH2 CH CH-Na+
O CH2 CH CH-Na+ 很很
CH2 CH CH2O-Na+
活性链向单体的转移,也是聚合物分子质量降低的原因之一。
3. 用氢氧离子或烷氧基负离子引发环氧化物的聚合反应常在醇的存在下进行,为什么?醇是 如何影响分子量的?
O(CH2)3
O (CH2)3O(CH2)3
O +O
[BF3OH]-
+
O(CH2)3 O
(CH2)3O(CH2)3
+O
O
(CH2)3O(CH2)3
[BF3OH]-
5. 考察下列单体和引发体系,哪种引发体系能使下表中右列的单体聚合?用化学方程式写出每 一聚合反应的机理。
引发体系 n C4H9Li
BF3+ H2O
第六章 开环聚合
习题参考答案
1. 试讨论环状单体环的大小与开环聚合反应倾向的关系。 解答: 环状单体能否转变为聚合物,取决于聚合过程中自由能的变化情况,与环状单体和线形聚合物 的相对稳定性有关。以环烷烃为例,由液态的环烷烃(I)转变为无定型的聚合物(c):
n (CH2)x (l)
[(CH2) x]n (c)
解答: 许多环氧化物的开环聚合,如醇盐或氢氧化物等引发的聚合,是在醇(常采用醇盐相应的醇) 的存在下进行的。醇的存在,可以溶解引发剂,形成均相体系,同时能明显地提高聚合反应的速率。 这可能是由于醇增加了自由离子的浓度,同时将紧密离子对变为松散离子对的缘故。 在醇存在下,增长链与醇之间可发生交换反应:
R ( CH2CH2O )n O-Na+ + ROH
R ( CH2CH2O )n OH + RO-Na+
新生成的高分子醇也会与增长链发生类似的交换反应:
R ( CH2CH2O )n OH + R ( CH2CH2O )m O-Na+ R ( CH2CH2O )n O-Na+ + R ( CH2CH2O )m OH
R ( CH2CH2O )n O-Na+ + ROH
R ( CH2CH2O )n OH + RO-Na+
新生成的高分子醇也会与增长链发生类似的交换反应:
R ( CH2CH2O )n OH + R ( CH2CH2O )m O-Na+
R ( CH2CH2O )n O-Na+ + R ( CH2CH2O )m OH
O C (CH2)5 N CO(CH2)5NH2 +
O C (CH2)5 N-Li+
增长反应:内酰胺负离子与聚合物链的端内酰胺基作用,聚合物链增长,并形成位于链
上的酰胺负离子;经交换反应,形成新的内酰胺负离子,进一步与聚合物的端内酰胺基作用,使聚
合物链不断增长:
O
O
C
C
(CH2)5 N CO(CH2)5NH
H2SO4 H2O NaOC2H5
环氧丙烷 ε-己内酰胺 δ-戊内酰胺 乙烯亚胺 八甲基环四硅氧烷 硫化丙烯 三氧六环 氧杂环丁烷
单体
解答:
(1) n C4H9Li 能引发氧化丙烯、ε-己内酰胺、八甲基环四硅氧烷、硫化丙烯、三氧六环等 进行负离子开环聚合,具体引发反应如下:
(a) 氧化丙烯
O n C4H9Li + CH3 CH CH2
N n H C (CH2)3
O
(d)以正离子引发剂引发聚合。
CHO
[N (CH2)3]n
nO O
[ O(CH2)2 OCH2 ]n
(e)以 WCl6—烷基铝等为催化剂进行易位聚合。
n
[ CH CH(CH2)2 ]n
(f)以强碱等引发负离子聚合。
n/4 [(CH3)2SiO]4
NaOH
[ SiCH3)2O ]n
从而引起分子质量的降低及分子质量分布的变宽。 向单体的转移反应 氧化丙烯通过负离子开环聚合,仅能得到分子质量小于 5000 的低聚物。这
是因为环氧化物对负离子增长种活性较低,同时存在着增长链向单体的转移反应。对于取代的环氧 乙烷如环氧丙烷来说,向单体的转移反应尤为显著。其过程如下:
CH2
CH3 CH O-Na+
O C (CH2)5 NH + H2O
HO2C(CH2)5NH2
(b)氨基酸本身的缩聚反应:
COOH + H2N
CO NH
+ H2O
(c)氨基对内酰胺的亲核进攻,引发的开环聚合反应: 引发: O
C
HO2C(CH2)5NH2 + (CH2)5 NH
HO2C(CH2)5NHCO(CH2)5NH2
增长:
O C NH2 + (CH2)5 NH
O
O
C
C
(CH2)5 N CO R + (CH2)5 N-Me+
O
C
Me+
(CH2)5 N CO(CH2)5 N- CO R
很很
O
O
C
C
(CH2)5 N CO(CH2)5 NH CO R + (CH2)5 N-Me+
单独以强碱作为引发剂,仅能引发活性较大的内酰胺如己内酰胺、庚内酰胺等的开环聚合,而 且聚合存在诱导期;而对于反应活性小的内酰胺如六元环的哌啶酮等,不能引发聚合。因为反应活 性小的单体不能形成所需的酰亚胺二聚体(N-酰基内酰胺)。采用酰化剂,就可以很快地形成 N-酰 基内酰胺,从而使聚合迅速进行。只有 N-酰基内酰胺才具有足够的活性,使得活化单体进攻,引发 聚合。活化单体起亲核试剂的作用。
CH3 n C4H9 CH2 CH O-Li+
(b) ε-己内酰胺 引发反应:首先丁基锂与ε-己内酰胺作用,生成内酰胺负离子,之后内酰胺负离子再
与单体作用,发生开环转酰胺基作用,形成的伯胺负离子由于活性高,能很快由单体夺取质子,形 成酰亚胺二聚体 N-(ε-氨基己酰基)己内酰胺,并再生出内酰胺负离子:
(a)氧化丙烯 引发: BF3 + H2O
H+[BF3OH]-
O + H+[BF3OH]-
增长:
+
O
+O
+
HO [BF3OH]-
+
HOCH2CHCH3 [BF3OH]-
CH3 + OCH2CH O
[BF3OH]-
[BF3OH]-
(b)乙烯亚胺 H N
H N
+ HA
H2 NA
H2 NA +
H CH2 CH2 NH2 NA
这些交换反应可引起分子质量的降低及分子质量分布的变宽。
4. 用方程式表示环醚、环缩醛在聚合反应中发生的尾咬、扩环反应。 解答: 环醚及环缩醛等在进行正离子开环聚合过程中,活性中心常会受到增长链中的其他氧原子的进 攻,转换成张力较小的活性种。之后再与单体交换,形成新的活性种,同时有环状低聚物形成。以 四元环醚为例,其增长过程中的回咬、扩环反应如下:
以上仅是通过热力学分析的结果,事实上环烷烃的开环聚合通常难于进行,主要是因为环烷烃 的结构中不存在容易被引发物种进攻的键,这是动力学原因。其他的环状单体如内酰胺、内酯、环 醚等杂环单体与环烷烃不同,由于杂原子的存在提供了可接受引发物种亲核或亲电进攻的部位,从 而能够进行开环聚合。
2. 氧化丙烯的负离子聚合通常仅能得到低分子量的聚合物,试讨论原因。 解答: 在氧化丙烯的负离子开环聚合过程中,由于存在副反应如交换反应、向单体的转移反应等,使 得聚合物的相对分子质量降低,仅能得到低聚物。具体原因如下: 交换反应 氧化丙烯的负离子开环聚合,常在醇(常采用醇盐相应的醇)的存在下,由醇盐或 氢氧化物等引发聚合。醇的存在,可以溶解引发剂,形成均相体系,同时能明显地提高聚合反应的 速率,但醇可与增长链之间发生交换反应:
H
H
N
H CH2 CH2 N CH2 CH2 NH2
NA
其中: A (c)三氧六环
引发:
[BF3OH]-, HSO4-
O CH2
H2C
O
O CH2
增长:
H+A-
O CH2 H
H2C O
CH2O+A-
HOCH2OCH2OCH2 A+-
+ CH2 O
OCH2OCH2OCH2 O
CH2
A- CH2 O
+
(OCH2)3OCH2OCH2OCA-H2
[ SiCH3)2O ]n
(a)先将 5~10%的单体水溶液在 250~270℃加热 12~24 小时以上,至转化率为 80~90%,然