九年级数学同步练习题
九年级数学上册同步练习(含答案)
22.1.3函数k h x a y ++=2)(的图象与性质(二) 一.选择题1. 将抛物线y =x 2向左平移2个单位得到新的抛物线的解析式是( )A. y =x 2+2B. y =x 2-2C. y =(x +2)2D. y =(x -2)22把二次函数2x y =的图象向右平移3个单位长度,得到新的图象的函数表达式是( )A. 32+=x yB. 32-=x yC. 2)3(+=x yD. 2)3(-=x y3. 对称轴是直线x =-3的抛物线是( )A. y =-x 2-3B. y =x 2-3C. y =-12(x +3)2 D. y =12(x -3)2 4. 下列抛物线中,顶点坐标是(-3,0)的抛物线是( )A. y =-3x 2-3B. y =-3x 2+3C. y =-3(x -3)2D. y =-3(x +3)2 5. 抛物线y =-12(x -5)2不经过的象限是( ) A. 一、 二 B. 一、 四 C. 二、 三 D. 三、 四6. 关于抛物线①y =12x 2;②y =-12x 2+1;③y =12(x -2)2,下列结论正确的是( ) A. 顶点相同 B. 对称轴相同 C. 形状相同 D. 都有最高点7. 抛物线y =(x -1)2与y 轴的交点坐标为( )A. (1,0)B. (-1,0)C. (0,-1)D. (0,1) 8对称轴是直线2-=x 的抛物线是( ) A.22+-=x y B.22+=x y C.2)2(21+=x y D.2)2(3-=x y 9对于函数2)2(3-=x y ,下列说法正确的是( )A. 当0>x 时,y 随x 的增大而减小B. 当0<x 时,y 随x 的增大而增大C. 当2>x 时,y 随x 的增大而增大D. 当2->x 时,y 随x 的增大而减小10.二次函数132+=x y 和2)1(3-=x y ,以下说法:①它们的图象都是开口向上;②它们的对称轴都是y 轴,顶点坐标都是原点(0,0);③当0>x 时,它们的函数值y 都是随着x 的增大而增大;④它们的开口的大小是一样的.其中正确的说法有( )A.1个B.2个C.3个D.4个二、填空题11. 抛物线y =-3(x +1)2的开口方向 ,对称轴是 ,顶点坐标是 .12. 抛物线y =-12(x -2)2可以看作是抛物线y =-12x 2向 平移 个单位得到的. 13. 二次函数y =2(x -3)2,当x 时,y 随x 的增大而减小;当x 时,y 随x 的增大而增大.14. 若抛物线y =3(x -1)2的图象上有三点A (-2,y 1),B (1,y 2),C (5,y 3),则y 1、 y 2、 y 3的大小关系为 .15.顶点是)0,2(,且抛物线23x y -=的形状、开口方向都相同的抛物线的解析式为 .16.对称轴为2-=x ,顶点在x 轴上,并与y 轴交于点(0,3)的抛物线解析式为 .三.解答题17. 确定列函数图象的开口方向及对称轴、顶点坐标、最大值或最小值.(1)y =2(x +1)2 (2)y =-4(x -5)218.已知二次函数2)(h x a y -=,当2=x 时有最大值,且此函数的图象经过点)3,1(-,求此二次函数的解析式,并指出当x 为何值时,y 随x 的增大而增大?19. 如图,抛物线y =a (x +1)2的顶点为A ,与y 轴的负半轴交于点B ,且OB =OA .(1)求抛物线的解析式;(2)若点C (-3,b )在该抛物线上,求S △ABC 的值.20.如图,抛物线的顶点M 在x 轴上,抛物线与y 轴交于点N ,且OM=ON=4,矩形ABCD 的顶点A 、B 在抛物线上,C 、D 在x 轴上.(1)求抛物线的解析式;(2)设点A 的横坐标为t(t >4),矩形ABCD 的周长为L 求L 与t 之间函数关系式.22.1.3函数k h x a y ++=2)(的图象与性质(二)一、选择题1.C 2.D 3.C 4.D 5.A 6.C 7.C 8.C 9.C 10.B二、填空题11.向下、1-=x 、(-1,0) 12.右 2 13.3< 3>14.312y y y << 15.2)2(3--=x y 16.2)2(43+=x y 三、解答题17.(1)由y =2(x +1)2 可知,二次项系数为2>0,∴抛物线开口向上,对称轴为直线x=-1,顶点坐标为(-1,0).(2)由y =-4(x -5)2可知,二次项系数为-4<0,∴抛物线开口向下,对称轴为直线x=5,顶点坐标为(5,0).18.根据题意得()22-=x a y , 把(1,-3)代入得3-=a ,所以二次函数解析式为()223--=x y ,因为抛物线的对称轴为直线x=2,抛物线开口向下,所以当x <2时,y 随x 的增大而增大.19.(1)由投影仪得:A (-1,0),B (0,-1),将x=0,y=-1代入抛物线解析式得1-=a :,则抛物线解析式为()12122---=+-=x x x y ; (2)过C 作CD ⊥x 轴,将C (-3,b )代入抛物线解析式得:b=-4,即C (-3,-4), 则S △ABC =S 梯形OBCD -S △ACD -S △AOB =21×3×(4+1)-21×4×2-21×1×1=3. 20.(1)∵OM=ON=4,∴M 点坐标为(4,0),N 点坐标为(0,4),设抛物线解析式为()24-=x a y , 把N (0,4)代入得16a =4,解得41=a , 所以抛物线的解析式为()424144122+-=-=x x x y ; (2)∵点A 的横坐标为t ,∴DM=t -4,∴CD=2DM=2(t -4)=2t -8,把x =t 代入42412+-=x x y 得42412+-=t t y ,∴42412+-=t t AD , ∴821)824241(2)(222-=-++-=+=t t t t CD AD L (t >4).。
九年级数学第二十八章《锐角三角函数——应用举例》同步练习(含答案)
九年级数学第二十八章《锐角三角函数——应用举例》同步练习(含答案)一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的.1.如图,在综合实践活动中,小明在学校门口的点C处测得树的顶端A仰角为37°,同时测得BC=15米,则树的高AB(单位:米)为A.15tan37︒B.15sin37︒C.15tan 37°D.15sin 37°【答案】C【解析】如图,在Rt△ABC中,∠B=90°,∠C=37°,BC=15,∴tan C=ABBC,则AB=BC•tan C=15tan37°.故选C.【名师点睛】本题考查了解直角三角形的应用﹣仰角俯角问题.解决此类问题要了解角之间的关系,找到与已知和未知相关联的直角三角形,当图形中没有直角三角形时,要通过作高或垂线构造直角三角形,当问题以一个实际问题的形式给出时,要善于读懂题意,把实际问题划归为直角三角形中边角关系问题加以解决.2.如图,在海拔200米的小山顶A处,观察M,N两地,俯角分别为30°,45°,则M,N两地的距离为A.200米B.2003米C.400米D.200(3+1)米【答案】D【解析】过A作AB⊥MN于B,在Rt △ABM 中, 90,200,30ABM AB M ∠==∠=,tan AB M BM∴∠=, 2003BM ∴=,在Rt △ABN 中, 90,45ABN N BAN ∠=∠=∠=,∴BN =AB =200,()200320020031MN ∴=+=+米.故选D.3.如图是一张简易活动餐桌,测得30cm OA OB ==,50cm OC OD ==,B 点和O 点是固定的.为了调节餐桌高矮,A 点有3处固定点,分别使OAB ∠为30,45,60,问这张餐桌调节到最低时桌面离地面的高度是(不考虑桌面厚度)A .402cmB .40cmC .403cmD .30cm【答案】B【解析】过点D 作DE ⊥AB 于点E ,∵∠OAB =30时,桌面离地面最低, ∴DE 的长即为最低长度, ∵OA =OB =30cm ,OC =OD =50cm , ∴AD =OA +OD =80cm , 在Rt △ADE 中,∵∠OAB =30,AD =80cm , ∴140cm.2DE AD ==故选:B.4.如图,某水库堤坝横截面迎水坡AB的坡度是1:3,堤坝高为40m,则迎水坡面AB的长度是A.80m B.803mC.40m D.403m【答案】A5.如图,铁路MN和公路PQ在点O处交汇,∠QON=30°.公路PQ上A处距O点240米.如果火车行驶时,周围200米以内会受到噪音的影响.那么火车在铁路MN上沿ON方向以72千米/时的速度行驶时,A 处受噪音影响的时间为A.409秒B.16秒C.403秒D.24秒【答案】B【解析】如图,以点A为圆心,取AB=AD=200米为半径,过点A作AC⊥MN,∵∠QON=30°,OA=240米,∴AC=120米,当火车到B点时开始对A处产生噪音影响,到点D时结束影响,此时AB=200米,∵AB=200米,AC=120米,∴由勾股定理得: BC=160米∴BD=2BC=320米,∵72千米/小时=20米/秒,∴影响时间应是320÷20=16 (秒),故选B.6.如图,在A、B两地之间要修一条笔直的公路,从A地测得公路走向是北偏东48°,A,B两地同时开工,若干天后公路准确接通,若公路AB长8千米,另一条公路BC长是6千米,且BC的走向是北偏西42°,则A地到公路BC的距离是A.6千米B.8千米C.10千米D.14千米【答案】B【解析】∵∠ABG=48°,∠CBE=42°,∴∠ABC=180°-48°-42°=90°,∴A到BC的距离就是线段AB的长度,∴AB=8千米.BE=,她7.如图,小颖利用有一锐角是30的三角板测量一棵树的高度,已知她与树之间的水平距离6mAB=,那么这棵树高的眼睛距地面的距离 1.5m23 1.5mA.23m B.()32 1.5m D.4.5mC.()【答案】B【解析】在直角三角形ACD中,∠CAD=30°,AD=6m,∴CD=AD tan30°=6×33=23,∴CE=CD+DE=23+1.5(m).故选B.8.如图,在小山的东侧A点有一个热气球,由于受风的影响,以30米/分的速度沿与地面成75°角的方向飞行,25分钟后到达C处,此时热气球上的人测得小山西侧B点的俯角为30°,则小山东西两侧A,B 两点间的距离为多少米.A.7502B.3752C.3756D.7506【答案】A二、填空题:请将答案填在题中横线上.9.如图,长4m的楼梯AB的倾斜角∠ABD为60°,为了改善楼梯的安全性能,准备重新建造楼梯,使其倾斜角∠ACD为45°,则调整后楼梯AC长为_____m.【答案】26【解析】在Rt△ABD中,∵sin∠ABD=AD AB,∴AD=4sin60°=23(m),在Rt△ACD中,∵sin∠ACD=AD AC,∴AC=23sin45=26(m).故答案是:26.10.我国海域辽阔,渔业资源丰富.如图,现有渔船B在海岛A,C附近捕鱼作业,已知海岛C位于海岛A 的北偏东45°方向上.在渔船B上测得海岛A位于渔船B的北偏西30°的方向上,此时海岛C恰好位于渔船B的正北方向18(1+3)nmile处,则海岛A,C之间的距离为______nmile.【答案】2【解析】作AD⊥BC于D,设AC=x海里,在Rt△ACD中,AD=AC×sin∠ACD=22x,则CD=22x,在Rt△ABD中,BD=6 tan2ADABD=∠x,则22x+62x=18(1+3),解得,x=182,答:A,C之间的距离为182海里.故答案为:182.11.如图,一轮船由南向北航行到O处时,发现与轮船相距40海里的A岛在北偏东33方向.已知A岛周围20海里水域有暗礁,如果不改变航向,轮船________(填“有”或“没有”)触暗礁的危险.(可使用科学记算器)【答案】没有【解析】已知OA=40,∠O=33°,则AB=40•sin33°≈21.79>20.所以轮船没有触暗礁的危险.故答案为: 没有.12.数学组活动,老师带领学生去测塔高,如图,从B点测得塔顶A的仰角为60,测得塔基D的仰角为45,已知塔基高出测量仪20m,(即20mDC=),则塔身AD的高为________米.【答案】()2031-【解析】在Rt △ABC 中,AC =3BC .在Rt △BDC 中有DC =BC =20,∴AD =AC−DC =3BC−BC =20(3−1)米. 故答案为:20(3−1).三、解答题:解答应写出文字说明、证明过程或演算步骤.13.某中学九年级数学兴趣小组想测量建筑物AB 的高度.他们在C 处仰望建筑物顶端A 处,测得仰角为45,再往建筑物的方向前进6米到达D 处,测得仰角为60,求建筑物的高度.(测角器的高度忽略不计,结果精确到0.1米,3 1.732≈,2 1.414)≈【解析】设AB x =米, ∵∠C =45°,∴在Rt ABC △中,BC AB x ==米,60ADB ∠=, 6CD =米,∴在Rt ADB △中tan ∠ADB =ABBD, tan60°=6xx -, 解得)333114.2x =≈米答,建筑物的高度为14.2米.14.如图,一个热气球悬停在空中,从热气球上的P点测得直立于地面的旗杆AB的顶端A与底端B的俯角分别为34°和45°,此时P点距地面高度PC为75米,求旗杆AB的高度(结果精确到0.1米).(参考数据:sin34°=0.56,cos34°=0.83,tan34°=0.67)15.太阳能光伏发电因其清洁、安全、便利、高效等特点,已成为世界各国普遍关注和重点发展的新兴产业.如图是太阳能电池板支撑架的截面图,其中线段AB、CD、EF表示支撑角钢,太阳能电池板紧贴在支撑角钢AB上且长度均为300cm,AB的倾斜角为30°,BE=CA=50cm,支撑角钢CD、EF与地面接触点分别为D、F,CD垂直于地面,FE⊥AB于点E.点A到地面的垂直距离为50cm,求支撑角钢CD和EF的长度各是多少.(结果保留根号)【解析】如图所示,延长BA交FD延长线于点G,过点A作AH⊥DG于点H.由题意知,AB=300cm,BE=AC=50cm,AH=50cm,∠AGH=30°.在Rt△AGH中,∵AG=2AH=100cm,∴CG=AC+AG=150cm,则CD=12CG=75cm.∵EG=AB﹣BE+AG=300﹣50+100=350(cm).在Rt△EFG中,EF=EG tan∠EGF=350tan30°=350×33503(cm).答:支撑角钢CD的长为75cm,EF 3503.。
人教版九年级数学上册《21.2解一元二次方程》同步练习题(附带答案)
人教版九年级数学上册《21.2解一元二次方程》同步练习题(附带答案)姓名班级学号成绩一、选择题:(本题共8小题,每小题5分,共40分.)1.方程的实数根的个数是()A.0个B.1个C.2个D.无法确定2.以3,4为两实数根的一元二次方程为()A.B.C.D.3.用配方法解方程,下列配方正确的是()A.B.C.D.4.若是方程的一个根,则此方程的另一个根是()A.B.C.D.5.若关于的一元二次方程有实数根,则实数的取值范围是()A.B.C.且D.且6.若是一元二次方程的两根,则的值是()A.B.1 C.5 D.7.亮亮在解一元二次方程+▢=0时,不小心把常数项丢掉了,已知这个一元二次方程有实数根,则丢掉的常数项的最大值是()A.7 B.12 C.16 D.188.已知是关于x的方程的实数根.下列说法:①此方程有两个不相等的实数根;②当时,一定有;③b是此方程的根;④此方程有两个相等的实数根.上述说法中,正确的有()A.①②B.②③C.①③D.③④二、填空题:(本题共5小题,每小题3分,共15分.)9.方程x2-4x=5的根是.10.关于x的方程有两个不相等的实数根,则m的取值范围是.11.一元二次方程的两根为和,则的值为.12.已知一元二次方程▢+2=0,在▢中添加一个合适的数字,使该方程没有实数根,则添加的数字可以是.13.已知关于x的一元二次方程,当的斜边长a为,且两条直角边的长b、c恰好是这个方程的两个根,的周长为.三、解答题:(本题共5题,共45分)14.(1)(2)15.(1);(2) .16.当x满足条件时,求出方程x2﹣2x﹣4=0的根.17.已知有关于x的一元二次方程.(1)求k的取值范围,并判断该一元二次方程根的情况;(2)若方程有一个根为-2,求k的值及方程的另一个根;(3)若方程的一个根是另一个根3倍,求k的值.18.已知关于的一元二次方程有两个不相等的实数根. (1)求m的取值范围;(2)若两实数根分别为和,且,求m的值.参考答案:1.B 2.B 3.B 4.A 5.D 6.B 7.C 8.C 9.5或-110.m>-111.912.大于就行13.14.(1)解:.(2)解:或.15.(1)解:因式分解,得于是得或解得:;(2)解:∵∴∴∴解得: .16.解:由求得,则2<x<4.解方程x2﹣2x﹣4=0可得x1=1+ ,x2=1﹣,∵2<<3,∴3<1+ <4,符合题意∴x=1+ .17.(1)解:∵关于x的一元二次方程∴∴;而∴原方程方程有两个实数根(2)解:∵方程有一个根为∴解得:∴方程为:∴∴解得:∴方程的另一个解为1.(3)解:∵∴∴解得:∵方程的一个根是另一个根3倍当时,解得:,经检验符合题意;当时,解得:,经检验符合题意;综上:或.18.(1)解:∵关于x的一元二次方程有两个不相等的实数根∴Δ>0,即,解得;∴m的取值范围为.(2)解:∵方程的两个实数根分别为x1和x2∴x1+x2=,x1x2=∴∵∴解得m=1或-3∵∴。
九年级数学上册(第三章)同步练习试题
轧东卡州北占业市传业学校睢宁县新世纪九年级数学上册<第三章>同步练习一、选择题1、如果一个数的平方根与它的立方根相同,那么这个数是〔 〕 A 、±1 B 、0 C 、1 D 、0和12、在316x 、32-、5.0-、xa 、325中,最简二次根式的个数是〔 〕A 、1B 、2C 、3D 、4 3、以下说法正确的选项是〔 〕A 、0没有平方根B 、-1的平方根是-1C 、4的平方根是-2D 、()23-的算术平方根是34、164+的算术平方根是〔 〕A 、6B 、-6C 、6 D 、6±5、对于任意实数a ,以下等式成立的是〔 〕A 、a a =2B 、a a =2C 、a a -=2D 、24a a =6、设7的小数局部为b ,那么)4(+b b 的值是〔 〕A 、1B 、是一个无理数C 、3D 、无法确定7、假设121+=x ,那么122++x x的值是〔 〕A 、2 B 、22+ C 、2 D 、12-8、如果1≤a ≤2,那么2122-++-a a a 的值是〔 〕A 、a +6B 、a --6C 、a -D 、19、二次根式:①29x -;②))((b a b a -+;③122+-a a ;④x1;⑤75.0中最简二次根式是〔 〕A 、①②B 、③④⑤C 、②③D 、只有④10、式子1313--=--x xx x 成立的条件是〔 〕 A 、x ≥3 B 、x ≤1 C 、1≤x ≤3 D 、1<x ≤3 11、以下等式不成立的是〔 〕A 、()a a =2B 、aa =2 C 、33a a -=- D 、a aa -=-112、假设x <2,化简()xx -+-322的正确结果是〔 〕A 、-1B 、1C 、52-xD 、x 25- 13、式子3ax --〔a >0〕化简的结果是〔 〕A 、ax x- B 、ax x -- C 、ax x D 、ax x -14、231+=a ,23-=b ,那么a 与b 的关系是〔 〕A 、b a =B 、b a -=C 、ba 1=D 、1-=ab 15、以下运算正确的选项是〔 〕A 、()ππ-=-332B 、()12211-=-- C 、()0230=-D 、()6208322352-=-二、填空题1、当a 时,23-a 无意义;322xx +-有意义的条件是 。
苏科版九年级数学上册全册同步练习题(共56套带答案)
苏科版九年级数学上册全册同步练习题(共56套带答案)第3章数据的集中趋势和离散程度 [测试范围:3.1~3.3 时间:40分钟分值:100分] 一、选择题(每小题4分,共32分) 1.一组数据1,3,4,2,2的众数是( ) A.1 B.2 C.3 D.4 2.一组数据7,8,10,12,13的平均数是( ) A.7 B.9 C.10 D.12 3.一组数据3,3,5,6,7,8的中位数是( ) A.3 B.5 C.5.5 D.6 4.一次数学检测中,有5名学生的成绩(单位:分)分别是86,89,78,93,90.则这5名学生成绩的平均数和中位数分别是( ) A.87.2分,89分 B.89分,89分 C.87.2分,78分 D.90分,93分 5.学习全等三角形时,数学兴趣小组设计并组织了“生活中的全等”的比赛,全班同学的比赛结果统计如下表:得分(分) 60 70 80 90 100 人数 7 12 10 8 3 则得分的众数和中位数分别是( ) A.70分,70分 B.80分,80分 C.70分,80分 D.80分,70分 6.如图4-G-1是根据某班40名同学一周的体育锻炼情况绘制的条形统计图.那么该班40名同学一周参加体育锻炼时间的众数、中位数分别是( ) 图4-G-1 A.16小时,10.5小时 B.8小时,9小时 C.16小时,8.5小时 D.8小时,8.5小时 7.某公司欲招聘一名公关人员,对甲、乙、丙、丁四名候选人进行了面试和笔试,他们的成绩如下表所示:候选人甲乙丙丁测试成绩 (百分制) 面试 86 92 90 83 笔试90 83 83 92 如果公司认为,作为公关人员面试的成绩应该比笔试的成绩更重要,并分别赋予它们6和4的权,根据四人各自的平均成绩,公司将录取( ) A.甲 B.乙 C.丙 D.丁 8.数据x1,x2,x3,x4,x5的平均数是x,则数据x1+3,x2+3.5,x3+2.5,x4+2,x5+4的平均数为( ) A.x+2 B.x+2.5 C.x+3 D.x+3.5 二、填空题(每小题4分,共24分) 9.在演唱比赛中,5位评委给一位歌手的打分如下:8.2分,8.3分,7.8分,7.7分,8.0分,则这位歌手的平均得分是________分. 10.如图4-G-2是根据某地某段时间的每天最低气温绘成的折线图,那么这段时间最低气温的平均数是________.图4-G-2 11.某班学生综合实践作物栽培操作能力评估成绩的统计结果如下表:成绩/分 3 4 5 6 7 8 9 10 人数 1 12 2 8 9 15 12 则这组成绩的众数为________. 12. 某校在进行“阳光体育活动”中,统计了7名原来偏胖的学生的情况,他们的体重分别降低的千克数为5,9,3,10,6,8,5,则这组数据的中位数是________.13.一个样本为1,3,2,2,a,b,c,已知这个样本的众数为3,平均数为2,则这组数据的中位数为________. 14.某校抽样调查了七年级学生每天的体育锻炼时间,整理数据后制成了如下所示的频数分布表,这个样本的中位数在第________组.组别时间(时) 频数第1组0≤t<0.5 12 第2组0.5≤t<1 24 第3组1≤t<1.5 18 第4组1.5≤t<2 10 第5组2≤t<2.5 6 三、解答题(共44分) 15.(8分)已知一组数据:3,a,4,5,b,c,6.(1)若这组数据是按由小到大的顺序排列的,则中位数是________;(2)若该组数据的平均数是12,求a+b+c的值.16.(10分)一销售某品牌冰箱的公司有营销人员14人,销售部为制定营销人员月销售冰箱定额(单位:台),统计了14人某月的销售量如下表:每人销售量(台) 20 17 13 8 5 4 人数 1 1 2 5 3 2 (1)这14名营销人员该月销售冰箱的平均数、众数和中位数分别是多少? (2)你认为销售部经理给这14名营销人员定出每月销售冰箱的定额为多少台才比较合适?并说明理由.17.(12分)九(3)班A,B,C三名同学的知识测试、实践能力、成长记录三项成绩(单位:分)如下表所示.测试项目测试成绩 A B C 知识测试 90 88 90 实践能力 82 84 87 成长记录 95 95 90 (1)如果根据三项测试的平均成绩评价他们的综合成绩,那么谁的成绩最好? (2)如果把他们的知识测试、实践能力、成长记录三项成绩按5∶3∶2的比例计入综合成绩,那么谁的成绩最好?18.(14分)为增强学生的身体素质,教育行政部门规定学生每天户外活动的平均时间不少于1小时,为了解学生参加户外活动的情况,对部分学生参加户外活动的时间进行抽样调查,并将调查结果绘制成如图4-G-3中两幅不完整的统计图,请你根据图中提供的信息解答下列问题: (1)在这次调查中共调查了多少名学生? (2)求户外活动时间为0.5小时的人数,并补全条形统计图; (3)求表示户外活动时间为2小时的扇形圆心角的度数; (4)本次调查中学生参加户外活动的平均时间是否符合要求?户外活动时间的众数和中位数各是多少?图4-G-3详解详析 1.B 2.C 3.C [解析] 这组数据已经从小到大排列了,中间的两个数是5和6,故中位数是(5+6)÷2=5.5. 4.A 5.C [解析] 全班有40人,取得70分的人数最多,故众数是70分;把这40人的得分按大小顺序排列后知,第20个与第21个得分都是80分,故中位数是80分. 6.B [解析] 众数是一组数据中出现次数最多的数,所以该班40名同学一周参加体育锻炼时间的众数是8小时;将这组数据按从小到大的顺序排列后,第20个和第21个数都是9,故该班40名同学一周参加体育锻炼时间的中位数是9小时. 7.B [解析] 因为甲的平均成绩为86×0.6+90×0.4=51.6+36=87.6(分);乙的平均成绩为92×0.6+83×0.4=55.2+33.2=88.4(分);丙的平均成绩为90×0.6+83×0.4=54+33.2=87.2(分);丁的平均成绩为83×0.6+92×0.4=49.8+36.8=86.6(分).所以乙的平均成绩最高.故选B. 8. C 9.8.0 [解析] 根据题意,得(8.2+8.3+7.8+7.7+8.0)÷5=8.0(分). 10.4 ℃ 11.9分 12.6 13.2 14. 2 [解析] 中位数应是第35个和第36个数的平均数,第35个数和第36个数都在第2组.15.解:(1)5 (2)由题意可知17(3+a+4+5+b+c+6)=12,所以a+b+c=66. 16.解:(1)平均数为20×1+17×1+13×2+8×5+5×3+4×214=9(台), 8台出现了5次,出现的次数最多,所以众数为8台, 14个数据按从小到大的顺序排列后,第7个,第8个数都是8,所以中位数是(8+8)÷2=8(台). (2)每月销售冰箱的定额为8台才比较合适.因为8台既是众数,又是中位数,是大部分人能够完成的台数.若定为9台,则只有少量人才能完成,打击了大部分职工的积极性. 17.解:(1)xA=13(90+82+95)=89(分); xB =13(88+84+95)=89(分); xC=13(90+87+90)=89(分).可见,三名同学的成绩一样. (2)xA=90×50%+82×30%+95×20%=88.6(分); xB=88×50%+84×30%+95×20%=88.2(分); xC=90×50%+87×30%+90×20%=89.1(分).可见,C同学的成绩最好. 18.解:(1)共调查了32÷40%=80(名)学生. (2)户外活动时间为0.5小时的人数为80×20%=16(名).补全条形统计图如下. (3)表示户外活动时间为2小时的扇形圆心角的度数为1280×360°=54°. (4)本次调查中学生参加户外活动的平均时间为16×0.5+32×1+20×1.5+12×280=1.175(时).∵1.175>1,∴平均活动时间符合要求.户外活动时间的众数和中位数均为1小时.第2章对称图形――圆 [测试范围:2.1~2.3 时间:40分钟分值:100分] 一、选择题(每小题3分,共24分) 1.已知⊙O的半径为8,点P与点O的距离为6 2,则( ) A.点P在⊙O的内部 B.点P在⊙O的外部 C.点P在⊙O上 D.以上选项都不对 2.下列说法中正确的个数为( ) ①直径不是弦;②三点确定一个圆;③圆是轴对称图形,任何一条直径所在的直线都是它的对称轴;④相等的圆心角所对的弧相等,所对的弦也相等. A.1 B.2 C.3 D.4 3.如图2-G-1,在半径为13 cm的圆形铁片上切下一块高为8 cm的弓形铁片,则弦AB的长为( ) A.10 cm B.16 cm C.24 cm D.26 cm 图2-G-1 图2-G-24.如图2-G-2,在Rt△ABC中,∠ACB=90°,∠A=26°,以点C 为圆心,BC长为半径的圆分别交AB,AC于点D,E,则BD�嗟亩仁�为( ) A.26° B.64° C.52° D.128° 图2-G-3 5.如图2-G-3,已知⊙O的半径为10,弦AB=12,M是AB上任意一点,则线段OM的长可能是( ) A.5 B.7 C.9 D.11 6.一个点到一个圆上的点的最短距离是3 cm,最长距离是6 cm,则这个圆的半径是( ) A.4.5 cm B.1.5 cm C.4.5 cm或1.5 cm D.9 cm或3 cm 7.如图2-G-4所示,一圆弧过方格的格点A,B,C,试在方格中建立平面直角坐标系,使点A的坐标为(-2,4),点C的坐标为(0,4),则该圆弧所在圆的圆心坐标是( ) A.(-1,2) B.(1,-1) C.(-1,1) D.(2,1) 图2-G-4 图2-G-5 8.如图2-G-5,在⊙O中,弦AB∥CD,直径MN⊥AB且分别交AB,CD于点E,F,下列4个结论:①AE=BE;②CF=DF;③AC�啵�BD�啵虎�MF =EF.其中正确的有( ) A.1个 B.2个 C.3个 D.4个二、填空题(每小题4分,共24分) 9.圆是轴对称图形,它的对称轴是______________. 10.在平面内,⊙O的半径为3 cm,点P到圆心O的距离为7 cm,则点P与⊙O的位置关系是________. 11.如图2-G-6,⊙O的半径为5,点A,B在⊙O上,∠AOB=60°,则弦AB 的长为________.图2-G-6 图2-G-712.如图2-G-7,在半径为5的⊙O中,AB,CD是互相垂直的两条弦,垂足为P,且AB=CD=8,则OP的长为________. 13.如图2-G-8,矩形ABCD与⊙O交于点A,B,F,E,DE=1 cm,EF=3 cm,则AB=________ cm. 图2-G-8 图2-G-914.已知:如图2-G-9,A是半圆上的一个三等分点,B是AN�嗟闹械悖�P是MN上一动点,⊙O的半径为1,则AP+BP的最小值是________.三、解答题(共52分) 15.(12分)如图2-G-10,AB,CD为⊙O的直径,点E,F在直径CD上,且CE=DF. 求证:AF=BE. 图2-G-1016.(12分)如图2-G-11,AB是⊙O的直径,AC�啵�CD�啵�∠COD=60°. (1)△AOC是等边三角形吗?请说明理由; (2)求证:OC∥BD. 图2-G-1117.(14分)如图2-G-12,已知AB是⊙O的直径,AB=10,弦CD与AB相交于点N,∠ANC=30°,ON∶AN=2∶3,OM⊥CD,垂足为M.(1)求OM的长; (2)求弦CD的长.图2-G-1218.(14分)把球放在长方体纸盒内,球的一部分露出盒外,其截面如图2-G-13所示.圆O与纸盒交于E,F,G三点,已知EF=CD=16 cm. (1)利用直尺和圆规作出圆心O; (2)求出球的半径.图2-G-13详解详析 1.B [解析] ∵82=64,6 22=72,且64<72,∴8<6 2,∴点P与点O的距离大于⊙O的半径,∴点P在⊙O的外部.故选B. 2.A [解析] ③正确,这是根据圆的轴对称的性质来判断的.①错误,直径是过圆心的弦;②错误,不在同一条直线上的三点才能确定一个圆;④错误,相等的圆心角所对的弧不一定相等,所对的弦也不一定相等,缺少“在同圆或等圆中”这一条件.正确的只有③.故选A. 3.C 4.C [解析] ∵∠ACB=90°,∠A=26°,∴∠B=64°.∵CB=CD,∴∠CDB=∠B=64°,∴∠BCD=180°-64°-64°=52°,∴BD�嗟亩仁�为52°.故选C. 5.C [解析] 连接OA.过点O作ON⊥AB,垂足为N.∵ON⊥AB,AB=12,∴AN=BN=6.在Rt△OAN 中,ON=OA2-AN2=102-62=8,∴8≤OM≤10.故选C. 6. C [解析] 根据题意,画出图形如图所示.设圆的半径为r cm,分两种情况来考虑: (1)如图①,若点P在圆内,则PA+PB=2r,∴3+6=2r,解得r=4.5,即圆的半径为4.5 cm; (2)如图②,若点P在圆外,则PA-PB=2r,∴6-3=2r,解得r=1.5,即圆的半径为1.5 cm. 故此圆的半径为4.5 cm或1.5 cm.故选C. 7.C [解析] 连接AB,AC,利用网格图的特征,作出AB,AC的垂直平分线,其交点即为圆心,则可得它的坐标为(-1,1).故选C. 8. C 9.过圆心的任意一条直线[解析] 圆是轴对称图形,它的对称轴是过圆心的任意一条直线. 10.点P在⊙O外[解析] ∵⊙O的半径为3 cm,点P到圆心O的距离为7 cm,∴d>r,∴点P与⊙O的位置关系是点P在⊙O外. 11.5 [解析] ∵⊙O的半径为5,∴OA=OB=5. 又∵∠O=60°,∴∠A=∠B=60°,∴△ABO是边长为5的等边三角形,∴AB=5. 12.3 2 [解析] 如图,过点O分别作OM⊥AB于点M,ON⊥CD于点N,连接OB,OD. ∵AB=CD=8,∴BM=DN=4. 又∵OB=OD=5,∴OM=ON=52-42=3. ∵AB⊥CD,∴∠DPB=90°. ∵OM⊥AB,ON⊥CD,∴∠OMP=∠ONP=90°,∴四边形MONP是矩形.又∵OM=ON,∴矩形MONP是正方形,∴PM=OM=3,∴OP=3 2. 13.5 [解析] 由图形的轴对称性易知CF=DE. ∵DE=1 cm,∴CF=1 cm. ∵EF=3 cm,∴DC=5 cm,∴AB=5 cm. 14.2 [解析] 利用对称法,作点A或点B关于MN的对称点是解决问题的关键.如图,作点A关于MN的对称点A′,连接A′B,交MN于点P,则此时PA+PB的值最小,连接OA,OA′. ∵点A与点A′关于MN对称,点A是半圆上的一个三等分点,∴∠A′ON=∠AON=60°,PA=PA′,∴PA+PB=PA′+PB=A′B. 连接OB. ∵B是AN�嗟闹械悖�∴∠BON=30°,∴∠A′OB=90°,∴在Rt△A′OB中,A′B=OA′+OB2=2,∴PA+PB的最小值为2. 15.证明:∵AB,CD为⊙O的直径,∴OA=OB,OC=OD. ∵CE=DF,∴OE=OF. 在△AOF和△BOE 中,OA=OB,∠AOF=∠BOE,OF=OE,∴△AOF≌△BOE(SAS),∴AF =BE. 16.解:(1)△AOC是等边三角形.理由:∵AC�啵�CD�啵�∴∠AOC=∠COD=60°. ∵OA=OC,∴△AOC是等边三角形. (2)证明:∵∠AOC=∠COD=60°,∴∠BOD=60°. ∵OB=OD,∴△OBD 是等边三角形,∴∠OBD=60°,∴∠OBD=∠AOC,∴OC∥BD. 17.解:(1)∵AB=10,∴OA=5. ∵ON∶AN=2∶3,∴ON=2. ∵∠ANC=30°,∴∠ONM=30°,∴在Rt△OMN中,OM=12ON=1. (2)如图,连接OC. 在Rt△COM中,由勾股定理,得CM2=CO2-OM2=25-1=24,∴CM=2 6. 又∵OM⊥CD,∴CD=2CM=4 6. 18.解:(1)如图①所示,点O即为所求. (2)如图②,过点O作OM⊥EF于点M,连接OF,延长MO,则MO与BC的交点为G. 设球的半径为r cm,则OF=r cm,OM=(16-r)cm,MF=12EF=8 cm. 在Rt△OFM中,由勾股定理,得OF2=OM2+MF2,即r2=(16-r)2+82,解得r=10. 即球的半径为10 cm.。
2023-2024学年九年级数学上册《第二十二章 实际问题与二次函数》同步练习题附答案(人教版)
2023-2024学年九年级数学上册《第二十二章 实际问题与二次函数》同步练习题附答案(人教版)学校:___________班级:___________姓名:___________考号:___________一、单选题1.一名男生推铅球,铅球行进高度y (单位:m )与水平距离x (单位:m )之间的关系是y=﹣112x 2+23x+53.则他将铅球推出的距离是( )m . A .8B .9C .10D .112.某海滨浴场有100个遮阳伞,每个每天收费10元时,可全部租出,若每个每天提高2元,则减少10个伞租出,若每个每天收费再提高2元,则再减少10个伞租出,…,为了投资少而获利大,每个每天应提高( ) A .4元或6元B .4元C .6元D .8元3.为了响应“足球进校园”的目标,兴义市某学校开展了多场足球比赛.在某场比赛中,一个足球被从地面向上踢出,它距地面的高度h(m)可以用公式 ℎ=−5t 2+v 0t 表示,其中t(s)表示足球被踢出后经过的时间,v 0(m /s)是足球被踢出时的速度,如果要求足球的最大度达到20m ,那么足球被踢出时的速度应该达到( ) A .5m /sB .10m /sC .20m /sD .40m /s4.生产季节性产品的企业,当它的产品无利润时就会及时停产.现有一生产季节性产品的企业,一年中获得利润y 与月份n 之间的函数关系式是y =-n 2+15n -36,那么该企业一年中应停产的月份是( ) A .1月,2月 B .1月,2月,3月 C .3月,12月D .1月,2月,3月,12月5.小杰把班级勤工俭学挣得的班费500元按一年期存入银行,已知年利率为x ,一年到期后银行将本金和利息自动按一年定期转存,设两年到期后,本利和为y 元,则y 与x 之间的函数关系式为( ) A .y=500(x+1)2B .y=x 2+500C .y=x 2+500xD .y=x 2+5x6.一个球从地面竖直向上弹起时的速度为8米/秒,经过t 秒时球的高度为h 米,h 和t 满足公式:表示球弹起时的速度,g 表示重力系数,取 g =10 米/秒2) ,则球不低于3米的持续时间是( ) A .0.4 秒B .0.6 秒C .0.8 秒D .1秒7.如图所示,赵州桥的桥拱用抛物线的部分表示,其函数的关系式为 y =−125x 2 ,当水面宽度 AB 为20m 时,此时水面与桥拱顶的高度 DO 是( )A.2m B.4m C.10m D.16m8.如图,已知二次函数y=mx2-4mx+3m(m>0)的图像与x轴交于A,B两点,与y轴交于点C,连接AC、BC,若CA平分∠OCB,则m的值为()A.√3B.√2C.√22D.√33二、填空题9.从喷水池喷头喷出的水珠,在空中形成一条抛物线,如图所示,在抛物线各个位置上,水珠的竖直高度y(单位:m)与它距离喷头的水平距离x(单位:m)之间满足函数关系式y=−2x2+4x+1喷出水珠的最大高度是m .10.廊桥是我国古老的文化遗产.如图,是某座抛物线型的廊桥示意图,已知抛物线的函数表达式为y=−140x2+10,为保护廊桥的安全,在该抛物线上距水面AB高为8米的点E,F处要安装两盏警示灯,则这两盏灯的水平距离EF是米.(精确到1米)11.如图,已知点A(4,0),O为坐标原点,P是线段OA上任意一点(不含端点O、A),过P、O两点的二次函数y1和过P、A两点的二次函数y2的图象开口均向下,它们的顶点分别为B、C,射线OB与AC相交于点D.当OD=AD=3时,这两个二次函数的最大值之和等于.12.如图,要修建一个圆形喷水池,在池中心竖直安装一根水管,在水管的顶端A点安一个喷水头,使喷出的抛物线形水柱在与池中心的水平距离为3m处达到最高,高度为5m,水柱落地处离池中心距离为9m,则水管的长度OA是m.三、解答题13.建立适当的坐标系,运用函数知识解决下面的问题:如图,是某条河上的一座抛物线形拱桥,拱桥顶部点E到桥下水面的距离EF为3米时,水面宽AB为6米,一场大雨过后,河水上涨,水面宽度变为CD,且CD=2√6米,此时水位上升了多少米?14.学校准备添置一批课桌椅,原计划订购60套,每套100元,店方表示:如果多购,可以优惠.结果校方实际订购了72套,每套减价3元,但商店获得了同样多的利润.(1)求每套课桌椅的成本;(2)求商店获得的利润.15.某造纸厂生产甲、乙两种生活用纸的相关信息如下表,其中x(吨)表示甲、乙两种生活用纸的月产量,请根据表中的信息解答后面的问题:种 品价 目出厂价(元/吨) 成本价(元/吨)排污处理费甲种生活用纸48002200200(元/吨)每月还需支付设备管理、维护费20000元乙种生活用纸7000﹣10x1600400(元/吨) (1)设该造纸厂每月生产甲、乙两种生活用纸的利润分别为y 1元和y 2元,分别求出y 1和y 2与x 的函数关系式(注:利润=总收入﹣总支出);(2)若某月要生产甲、乙两种生活用纸共300吨,求该月生产甲、乙两种生活用纸各多少吨,获得的总利润最大?最大利润是多少?16.如图,有长为24米的篱笆,一面利用墙(墙的最大可用长度a 为15米),围成中间隔有一道篱笆的长方形花圃.设花圃的宽AB 为x 米,面积为S .(1)求S 与x 的函数关系式;(2)并求出当AB 的长为多少时,花圃的面积最大,最大值是多少?17.某水晶厂生产的水晶工艺品非常畅销,某网店专门销售这种工艺品.成本为30元/件,每天销售y (件)与销售单价x (元)之间存在一次函数关系,当x=40时,y=300;当x=55时,y=150. (1)求y 与x 之间的函数关系式;(2)如果规定每天工艺品的销售量不低于240件,当销售单价为多少元时,每天获取的利润最大,最大利润是多少?(3)该网店店主热心公益事业,决定从每天的销售利润中捐出150元给希望工程,为了保证捐款后每天剩余利润不低于3600元,试确定该工艺品销售单价的范围.18.如图,抛物线L :y=ax 2+bx+c 与x 轴交于A 、B (3,0)两点(A 在B 的左侧),与y 轴交于点C (0,3),已知对称轴x=1.(1)求抛物线L的解析式;(2)将抛物线L向下平移h个单位长度,使平移后所得抛物线的顶点落在△OBC内(包括△OBC的边界),求h的取值范围;(3)设点P是抛物线L上任一点,点Q在直线l:x=﹣3上,△PBQ能否成为以点P为直角顶点的等腰直角三角形?若能,求出符合条件的点P的坐标;若不能,请说明理由.参考答案1.C2.C3.C4.D5.A6.A7.B8.D9.310.8√511.√512.15413.解:以点E为原点、EF所在直线为y轴,垂直EF的直线为x轴建立平面直角坐标系根据题意知E(0,0)、A(﹣3,﹣3)、B(3,﹣3)设y=kx2(k<0)将点(3,﹣3)代入,得:k=﹣13x2∴y=﹣13将x=√6代入,得:y=﹣2∴上升了1米.14.(1)解:设每套课桌椅的成本为x元,根据题意得:60×100﹣60x=72×(100﹣3)﹣72x,解得:x=82 答:每套课桌椅的成本为82元(2)解:60×(100﹣82)=1080(元)答:商店获得的利润为1080元15.解:(1)依题意得:y 1=(4800﹣2200﹣200)x ﹣20000=2400x ﹣20000 y 2=(7000﹣10x ﹣1600﹣400)x=﹣10x 2+5000x ;(2)设该月生产乙种生活用纸m 吨,则生产甲种生活用纸(300﹣m )吨,总利润为W 元 依题意得:W=2400(300﹣m )﹣20000﹣10m 2+5000m =720000﹣2400 m ﹣20000﹣10 m 2+5000m =﹣10 m 2+2600 m+700000 ∵W=﹣10(m ﹣130)2+869000. ∵﹣10<0∴当m=130时,W 最大=869000即生产甲、乙生活用纸分别为170吨和130吨时总利润最大,最大利润为869000元. 16.(1)解:∵围成中间隔有一道篱笆的长方形花圃 AB=EF=CD=x 米,BC=(24-3x )米 S=(24-3x )x =-3x 2+24x (平方米) ∵x > 0,且 15≥24-3x > 0 ∴3≤x <8S=-3x 2+24x ( 3≤x <8 )(2)解:S=(24-3x )x =-3x 2+24x =-3(x-4)2+48 ∵a=-3<0,二次函数图形开口向下,函数有最大值 当x=4时,S 最大=48平方米∴当AB 长为4m ,宽BC 为12m 时,有最大面积,最大面积为48平方米. 17.(1)解:设y 与x 之间的函数关系式: y =kx +b 由题意得: {40k +b =30055k +b =150 ,解得: {k =−10b =700∴y 与x 之间的函数关系式为: y =−10x +700 (2)解:设利润为 w 元由题意,得 −10x +700≥240 ,解得 x ≤46 则 w =(x −30)(−10x +700) =−10x 2+1000x −21000=−10(x −50)2+4000 ∵−10<0∴x <50 时, w 随 x 的增大而增大 ∴x =46 时答:当销售单价为46元时,每天获取的利润最大,最大利润是3840元 (3)解: w −150=−10x 2+1000x −21000−150=3600 −10(x −50)2=−250 解得: x 1=55 结合二次函数图象可得:当 45≤x ≤55 时,捐款后每天剩余利润不低于3600元 18.(1)解:∵抛物线的对称轴x=1,B (3,0) ∴A (﹣1,0)∵抛物线y=ax 2+bx+c 过点C (0,3) ∴当x=0时,c=3.又∵抛物线y=ax 2+bx+c 过点A (﹣1,0),B (3,0) ∴{a −b +3=09a +3b +3=0 ∴{a =−1b =2∴抛物线的解析式为:y=﹣x 2+2x+3 (2)解:∵C (0,3),B (3,0) ∴直线BC 解析式为y=﹣x+3 ∵y=﹣x 2+2x+3=﹣(x ﹣1)2+4 ∴顶点坐标为(1,4)∵对于直线BC :y=﹣x+1,当x=1时,y=2;将抛物线L 向下平移h 个单位长度 ∴当h=2时,抛物线顶点落在BC 上; 当h=4时,抛物线顶点落在OB 上∴将抛物线L 向下平移h 个单位长度,使平移后所得抛物线的顶点落在△OBC 内(包括△OBC 的边界)则2≤h≤4(3)解:设P(m,﹣m2+2m+3),Q(﹣3,n)①当P点在x轴上方时,过P点作PM垂直于y轴,交y轴与M点,过B点作BN垂直于MP的延长线于N 点,如图所示:∵B(3,0)∵△PBQ是以点P为直角顶点的等腰直角三角形∴∠BPQ=90°,BP=PQ则∠PMQ=∠BNP=90°,∠MPQ=∠NBP在△PQM和△BPN中∴△PQM≌△BPN(AAS)∴PM=BN∵PM=BN=﹣m2+2m+3,根据B点坐标可得PN=3﹣m,且PM+PN=6∴﹣m2+2m+3+3﹣m=6解得:m=1或m=0∴P(1,4)或P(0,3).②当P点在x轴下方时,过P点作PM垂直于l于M点,过B点作BN垂直于MP的延长线于N点同理可得△PQM≌△BPN∴PM=BN∴PM=6﹣(3﹣m)=3+m,BN=m2﹣2m﹣3则3+m=m2﹣2m﹣3解得m= 3+√332或3−√332.∴P(3+√332,−√33−92)或(3−√332,√33−92).综上可得,符合条件的点P的坐标是(1,4),(0,3),(3+√332,−√33−92)和(3−√332,√33−92).。
【九年级数学《圆》同步练习题含答案
九年级数学上册《圆》同步练习一、选择题1.圆的直径为13cm,如果圆心与直线的距离是d,则()A.当d=8 cm,时,直线与圆相交B.当d=4.5 cm时,直线与圆相离C.当d=6.5 cm时,直线与圆相切D.当d=13 cm时,直线与圆相切2.如图,在⊙O中,AB为直径,点C为圆上一点,将劣弧AC沿弦AC翻折交AB于点D,连接CD.如果∠BAC=20°,则∠BDC=()A.80°B.70°C.60°D.50°3.如图是一个正八边形,图中空白部分的面积等于20,则阴影部分的面积等于()A.102 B.20 C.18 D.202 4.如图,△ABC内接于⊙O,且∠ABC=700,则∠AOC为()(A)1400 (B)1200(C)900 (D)3505.⊙O的半径为5cm,点A到圆心O的距离OA=3cm,则点A与圆O 的位置关系为()A.点A在圆上 B.点A在圆内 C.点A在圆外 D.无法确定6.(3分)在⊙O中,圆心O到弦AB的距离为AB长度的一半,则弦AB所对圆心角的大小为()A.30° B.45° C.60° D.90°7.(3分)(2015•牡丹江)如图,△ABD的三个顶点在⊙O上,AB是直径,点C在⊙O上,且∠ABD=52°,则∠BCD等于().A.32° B.38° C.52° D.66°8.已知一块圆心角为300°的扇形铁皮,用它做一个圆锥形的烟囱帽(接缝忽略不计),圆锥的底面圆的直径是80cm,则这块扇形铁皮的半径是()A.24cm B.48cm C.96cm D.192cm二、填空题9.用半径为6cm的半圆围成一个圆锥的侧面,则圆锥的底面半径等于 cm.10.一个几何体的三视图如图,根据图示的数据计算该几何体的表面积为.(结果保留π)11.如果一个扇形的圆心角为120°,半径为6,那么该扇形的弧长是.12.如图,在⊙O中,∠OAB=45°,圆心O到弦AB的距离OE=2cm,则弦AB的长为 cm.13.(3分)用一个圆心角为90°,半径为4的扇形围成一个圆锥的侧面,该圆锥底面圆的半径.14.(3分)边长为1的正三角形的内切圆半径为.15.(3分)(2015•郴州)已知圆锥的底面半径是1cm,母线长为3cm,则该圆锥的侧面积为 cm2.16.(4分)如图,AD是⊙O的直径,弦BC⊥AD于E,AB=BC=12,则OC= .三、解答题17.如图,已知AB 是⊙O 的直径,AP 是⊙O 的切线,A 是切点,BP 与⊙O 交于点C ,若AB=2,∠P=30°,求AP 的长(结果保留根号).已知:如图,AB 为⊙O 的直径,AD 为弦,∠DBC =∠A.18.求证: BC 是⊙O 的切线;19.若OC ∥AD ,OC 交BD 于E ,BD=6,CE=4,求AD 的长. O EDA20.如图,已知⊙O 与BC 相切,点C 不是切点,AO ⊥OC ,∠OAC=∠ABO ,且AC=BO ,判断直线AB 与⊙O 的位置关系,并说明理由.21.已知,如图,直线MN交⊙O于A,B两点,AC是⊙O的直径,DE 切⊙O于点D,且DE⊥MN于点E.(1)求证:AD平分∠CAM.(2)若DE=6,AE=3,求⊙O的半径.22.(10分)如图,已知AB是⊙O的直径,点C,D在⊙O上,点E 在⊙O外,∠EAC=∠B.(1)求证:直线AE是⊙O的切线;(2)若∠D=60°,AB=6时,求劣弧AC的长(结果保留π).参考答案1.C2.B.3.B.4.A5.B.6.D.7.B.8.B.9.310.24π.11.4π.12.4.13.1..14.3615.3π.16.43.17.23.18.证明:(1)∵AB为⊙O的直径∴D=90°, A+ABD=90°∵∠DBC =∠A∴∠DBC+∠ABD=90°∴BC⊥AB∴BC是⊙O的切线19.∵OC∥AD,D=90°,BD=6∴OC⊥BDBD=3∴BE=12∵O是AB的中点∴AD=2EO -∵BC⊥AB ,OC⊥BD∴△CEB∽△BEO,∴2=•BE CE OE∵CE=4,∴9OE=4∴AD=9220.直线AB与⊙O的位置关系是相离.理由见解析.21.(1)证明见解析;(2)⊙O的半径为7.5.22.(1)证明见试题解析;(2)2π.《圆》的练习一、选择题(共10小题,每小题3分,共30分)1.下列说法正确的是()A.三点确定一个圆B.一个三角形只有一个外接圆C.和半径垂直的直线是圆的切线D.三角形的内心到三角形三个顶点距离相等2.如图,⊙O的直径AB与弦CD的延长线交于点E,若DE=OB,∠AOC=84°,则∠E等于()A.42°B.28°C.21°D.20°3.已知如图,AB是⊙O的直径,弦CD⊥AB于E,CD=6,AE=1,则⊙O的直径为()A.6 B.8 C.10 D.124.如图,DC是以AB为直径的半圆上的弦,DM⊥CD交AB于点M,CN ⊥CD交AB于点N.AB=10,CD=6.则四边形DMNC的面积()A.等于24 B.最小为24 C.等于48 D.最大为485.如图,在半径为5的⊙O中,弦AB=6,OP⊥AB,垂足为点P,则OP的长为()A.3 B.2.5 C.4 D.3.56.如图表示一圆柱形输水管的横截面,阴影部分为有水部分,如果输水管的半径为5cm,水面宽AB为8cm,则水的最大深度CD为()A.4cm B.3cm C.2cm D.1cm7.图中的五个半圆,邻近的两半圆相切,两只小虫同时出发,以相同的速度从A点到B点,甲虫沿ADA1、A1EA2、A2FA3、A3GB路线爬行,乙虫沿ACB路线爬行,则下列结论正确的是()A.甲先到B点B.乙先到B点C.甲、乙同时到B D.无法确定8.在直径为200cm的圆柱形油槽内装入一些油以后,截面如图.若油面的宽AB=160cm,则油的最大深度为()A.40cm B.60cm C.80cm D.100cm9.如图,AB是⊙O的直径,四边形ABCD内接于⊙O,若BC=CD=DA=4cm,则⊙O的周长为()A.5πcm B.6πcm C.9πcm D.8πcm10.如图,AB是⊙O的弦,点C在圆上,已知∠OBA=40°,则∠C=()A.40°B.50°C.60°D.80°二、填空题(共6小题,每小题3分,共18分)11.如图,在⊙O中,弦AB∥CD,若∠ABC=40°,则∠BOD= .12.如图,在矩形ABCD中,AB=4,AD=3,以顶点D为圆心作半径为r的圆,若要求另外三个顶点A、B、C中至少有一个点在圆内,且至少有一个点在圆外,则r的取值范围是.13.如图,已知∠BOA=30°,M为OB边上一点,以M为圆心、2cm 为半径作⊙M.点M在射线OB上运动,当OM=5cm时,⊙M与直线OA 的位置关系是.14.如图,正方形ABCD内接于⊙O,其边长为4,则⊙O的内接正三角形EFG的边长为.15.已知扇形的半径为6cm,圆心角的度数为120°,则此扇形的弧长为cm.16.如图,半圆O的直径AB=2,弦CD∥AB,∠COD=90°,则图中阴影部分的面积为.三、解答题(共8题,共72分)17.圆锥底面圆的半径为3m,其侧面展开图是半圆,求圆锥母线长.18.在一个底面直径为5cm,高为18cm的圆柱形瓶内装满水,再将瓶内的水倒入一个底面直径是6cm,高是10cm的圆柱形玻璃杯中,能否完全装下?若未能装满,求杯内水面离杯口的距离.19.如图,AB和CD分别是⊙O上的两条弦,过点O分别作ON⊥CD 于点N,OM⊥AB于点M,若ON=AB,证明:OM=CD.20.如图为桥洞的形状,其正视图是由和矩形ABCD构成.O点为所在⊙O的圆心,点O又恰好在AB为水面处.若桥洞跨度CD为8米,拱高(OE⊥弦CD于点F )EF为2米.求所在⊙O的半径DO.21.△ABC是⊙O的内接三角形,BC=.如图,若AC是⊙O的直径,∠BAC=60°,延长BA到点D,使得DA=BA,过点D作直线l⊥BD,垂足为点D,请将图形补充完整,判断直线l和⊙O的位置关系并说明理由.22.如图直角坐标系中,已知A(﹣8,0),B(0,6),点M在线段AB上.(1)如图1,如果点M是线段AB的中点,且⊙M的半径为4,试判断直线OB与⊙M的位置关系,并说明理由;(2)如图2,⊙M与x轴、y轴都相切,切点分别是点E、F,试求出点M的坐标.23.已知等边三角形ABC,AB=12,以AB为直径的半圆与BC边交于点D,过点D作DF⊥AC,垂足为F,过点F作FG⊥AB,垂足为G,连接GD,(1)求证:DF与⊙O的位置关系并证明;(2)求FG的长.24.如图,等边△ABC的边长为2,E是边BC上的动点,EF∥AC交边AB于点F,在边AC上取一点P,使PE=EB,连接FP.(1)请直接写出图中与线段EF相等的两条线段;(不再另外添加辅助线)(2)探究:当点E在什么位置时,四边形EFPC是平行四边形?并判断四边形EFPC是什么特殊的平行四边形,请说明理由;(3)在(2)的条件下,以点E为圆心,r为半径作圆,根据⊙E与平行四边形EFPC四条边交点的总个数,求相应的r的取值范围.参考答案与试题解析一、选择题(共10小题,每小题3分,共30分)1.下列说法正确的是()A.三点确定一个圆B.一个三角形只有一个外接圆C.和半径垂直的直线是圆的切线D.三角形的内心到三角形三个顶点距离相等【考点】圆的认识.【分析】根据确定圆的条件对A、B进行判断;根据切线的判定定理对C进行判断;根据三角形内心的性质对D进行判断.【解答】解:A、不共线的三点确定一个圆,所以A选项错误;B、一个三角形只有一个外接圆,所以B选项正确;C、过半径的外端与半径垂直的直线是圆的切线,所以C选项错误;D、三角形的内心到三角形三边的距离相等,所以D选项错误.故选B.【点评】本题考查了圆的认识:掌握与圆有关的概念(弦、直径、半径、弧、半圆、优弧、劣弧、等圆、等弧等).也考查了确定圆的条件和切线的判定.2.如图,⊙O的直径AB与弦CD的延长线交于点E,若DE=OB,∠AOC=84°,则∠E等于()A.42°B.28°C.21°D.20°【考点】圆的认识;等腰三角形的性质.【专题】计算题.【分析】利用半径相等得到DO=DE,则∠E=∠DOE,根据三角形外角性质得∠1=∠DOE+∠E,所以∠1=2∠E,同理得到∠AOC=∠C+∠E=3∠E,然后利用∠E=∠AOC进行计算即可.【解答】解:连结OD,如图,∵OB=DE,OB=OD,∴DO=DE,∴∠E=∠DOE,∵∠1=∠DOE+∠E,∴∠1=2∠E,而OC=OD,∴∠C=∠1,∴∠C=2∠E,∴∠AOC=∠C+∠E=3∠E,∴∠E=∠AOC=×84°=28°.故选B.【点评】本题考查了圆的认识:掌握与圆有关的概念(弦、直径、半径、弧、半圆、优弧、劣弧、等圆、等弧等).也考查了等腰三角形的性质.3.已知如图,AB是⊙O的直径,弦CD⊥AB于E,CD=6,AE=1,则⊙O的直径为()A.6 B.8 C.10 D.12【考点】垂径定理;勾股定理.【分析】连接OC,根据题意OE=OC﹣1,CE=3,结合勾股定理,可求出OC的长度,即可求出直径的长度.【解答】解:连接OC,∵弦CD⊥AB于E,CD=6,AE=1,∴OE=OC﹣1,CE=3,∴OC2=(OC﹣1)2+32,∴OC=5,∴AB=10.故选C.【点评】本题主要考查了垂径定理、勾股定理,解题的关键在于连接OC,构建直角三角形,根据勾股定理求半径OC的长度.4.如图,DC是以AB为直径的半圆上的弦,DM⊥CD交AB于点M,CN ⊥CD交AB于点N.AB=10,CD=6.则四边形DMNC的面积()A.等于24 B.最小为24 C.等于48 D.最大为48【考点】垂径定理;勾股定理;梯形中位线定理.【分析】过圆心O作OE⊥CD于点E,则OE平分CD,在直角△ODE中利用勾股定理即可求得OE的长,即梯形DMNC的中位线,根据梯形的面积等于OE?CD即可求得.【解答】解:过圆心O作OE⊥CD于点E,连接OD.则DE=CD=×6=3.在直角△ODE中,OD=AB=×10=5,OE===4.则S四边形DMNC=OE?CD=4×6=24.故选A.【点评】本题考查了梯形的中位线以及垂径定理,正确作出辅助线是关键.5.如图,在半径为5的⊙O中,弦AB=6,OP⊥AB,垂足为点P,则OP的长为()A.3 B.2.5 C.4 D.3.5【考点】垂径定理;勾股定理.【分析】连接OA,根据垂径定理得到AP=AB,利用勾股定理得到答案.【解答】解:连接OA,∵AB⊥OP,∴AP==3,∠APO=90°,又OA=5,∴OP===4,故选C.【点评】本题考查的是垂径定理的应用,掌握垂直于弦的直径平分这条弦是解题的关键.6.如图表示一圆柱形输水管的横截面,阴影部分为有水部分,如果输水管的半径为5cm,水面宽AB为8cm,则水的最大深度CD为()A.4cm B.3cm C.2cm D.1cm【考点】垂径定理的应用;勾股定理.【分析】根据题意可得出AO=5cm,AC=4cm,进而得出CO的长,即可得出答案.【解答】解:如图所示:∵输水管的半径为5cm,水面宽AB为8cm,水的最大深度为CD,∴DO⊥AB,∴AO=5cm,AC=4cm,∴CO==3(cm),∴水的最大深度CD为:2cm.故选:C.【点评】本题考查的是垂径定理的应用及勾股定理,根据构造出直角三角形是解答此题的关键.7.图中的五个半圆,邻近的两半圆相切,两只小虫同时出发,以相同的速度从A点到B点,甲虫沿ADA1、A1EA2、A2FA3、A3GB路线爬行,乙虫沿ACB路线爬行,则下列结论正确的是()A.甲先到B点B.乙先到B点C.甲、乙同时到B D.无法确定【考点】圆的认识.【专题】应用题.【分析】甲虫走的路线应该是4段半圆的弧长,那么应该是π(AA1+A1A2+A2A3+A3B)=π×AB,因此甲虫走的四段半圆的弧长正好和乙虫走的大半圆的弧长相等,因此两个同时到B点.【解答】解:π(AA1+A1A2+A2A3+A3B)=π×AB,因此甲虫走的四段半圆的弧长正好和乙虫走的大半圆的弧长相等,因此两个同时到B点.故选C.【点评】本题考查了圆的认识,主要掌握弧长的计算公式.8.在直径为200cm的圆柱形油槽内装入一些油以后,截面如图.若油面的宽AB=160cm,则油的最大深度为()A.40cm B.60cm C.80cm D.100cm【考点】垂径定理的应用;勾股定理.【分析】连接OA,过点O作OE⊥AB,交AB于点M,由垂径定理求出AM的长,再根据勾股定理求出OM的长,进而可得出ME的长.【解答】解:连接OA,过点O作OE⊥AB,交AB于点M,∵直径为200cm,AB=160cm,∴OA=OE=100cm,AM=80cm,∴OM===60cm,∴ME=OE﹣OM=100﹣60=40cm.故选:A.【点评】本题考查的是垂径定理的应用,根据题意作出辅助线,构造出直角三角形是解答此题的关键.9.如图,AB是⊙O的直径,四边形ABCD内接于⊙O,若BC=CD=DA=4cm,则⊙O的周长为()A.5πcm B.6πcm C.9πcm D.8πcm【考点】圆心角、弧、弦的关系;等边三角形的判定与性质.【分析】如图,连接OD、OC.根据圆心角、弧、弦的关系证得△AOD 是等边三角形,则⊙O的半径长为BC=4cm;然后由圆的周长公式进行计算.【解答】解:如图,连接OD、OC.∵AB是⊙O的直径,四边形ABCD内接于⊙O,若BC=CD=DA=4cm,∴==,∴∠AOD=∠DOC=∠BOC=60°.又OA=OD,∴△AOD是等边三角形,∴OA=AD=4cm,∴⊙O的周长=2×4π=8π(cm).故选:D.【点评】本题考查了圆心角、弧、弦的关系,等边三角形的判定.该题利用“有一内角是60度的等腰三角形为等边三角形”证得△AOD 是等边三角形.10.如图,AB是⊙O的弦,点C在圆上,已知∠OBA=40°,则∠C=()A.40°B.50°C.60°D.80°【考点】圆周角定理.【分析】首先根据等边对等角即可求得∠OAB的度数,然后根据三角形的内角和定理求得∠AOB的度数,再根据圆周角定理即可求解.【解答】解:∵OA=OB,∴∠OAB=∠OBA=40°,∴∠AOB=180°﹣40°﹣40°=100°.∴∠C=∠AOB=×100°=50°.故选B.【点评】本题考查了等腰三角形的性质定理以及圆周角定理,正确理解定理是关键.二、填空题(共6小题,每小题3分,共18分)11.如图,在⊙O中,弦AB∥CD,若∠ABC=40°,则∠BOD= 80°.【考点】圆周角定理;平行线的性质.【分析】根据平行线的性质由AB∥CD得到∠C=∠ABC=40°,然后根据圆周角定理求解.【解答】解:∵AB∥CD,∴∠C=∠ABC=40°,∴∠BOD=2∠C=80°.故答案为80°.【点评】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,一条弧所对的圆周角的度数等于它所对的圆心角度数的一半.也考查了平行线的性质.12.如图,在矩形ABCD中,AB=4,AD=3,以顶点D为圆心作半径为r的圆,若要求另外三个顶点A、B、C中至少有一个点在圆内,且至少有一个点在圆外,则r的取值范围是3<r<5 .【考点】点与圆的位置关系.【分析】要确定点与圆的位置关系,主要根据点与圆心的距离与半径的大小关系来进行判断.当d>r时,点在圆外;当d=r时,点在圆上;当d<r时,点在圆内.【解答】解:在直角△ABD中,CD=AB=4,AD=3,则BD==5.由图可知3<r<5.故答案为:3<r<5.【点评】此题主要考查了点与圆的位置关系,解决本题要注意点与圆的位置关系,要熟悉勾股定理,及点与圆的位置关系.13.如图,已知∠BOA=30°,M为OB边上一点,以M为圆心、2cm 为半径作⊙M.点M在射线OB上运动,当OM=5cm时,⊙M与直线OA 的位置关系是相离.【考点】直线与圆的位置关系.【专题】常规题型.【分析】作MH⊥OA于H,如图,根据含30度的直角三角形三边的关系得到MH=OM=,则MH大于⊙M的半径,然后根据直线与圆的位置关系的判定方法求解.【解答】解:作MH⊥OA于H,如图,在Rt△OMH中,∵∠HOM=30°,∴MH=OM=,∵⊙M的半径为2,∴MH>2,∴⊙M与直线OA的位置关系是相离.故答案为相离.【点评】本题考查了直线与圆的位置关系:设⊙O的半径为r,圆心O到直线l的距离为d,直线l和⊙O相交?d<r;直线l和⊙O相切?d=r;直线l和⊙O相离?d>r.14.如图,正方形ABCD内接于⊙O,其边长为4,则⊙O的内接正三角形EFG的边长为 2 .【考点】正多边形和圆.【分析】连接AC、OE、OF,作OM⊥EF于M,先求出圆的半径,在RT △OEM中利用30度角的性质即可解决问题.【解答】解;连接AC、OE、OF,作OM⊥EF于M,∵四边形ABCD是正方形,∴AB=BC=4,∠ABC=90°,∴AC是直径,AC=4,∴OE=OF=2,∵OM⊥EF,∴EM=MF,∵△EFG是等边三角形,∴∠GEF=60°,在RT△OME中,∵OE=2,∠OEM=∠GEF=30°,∴OM=,EM=OM=,∴EF=2.故答案为2.【点评】本题考查正多边形与圆、等腰直角三角形的性质、等边三角形的性质等知识,解题的关键是熟练应用这些知识解决问题,属于中考常考题型.15.已知扇形的半径为6cm,圆心角的度数为120°,则此扇形的弧长为4πcm.【考点】弧长的计算.【分析】在半径是R的圆中,因为360°的圆心角所对的弧长就等于圆周长C=2πR,所以n°圆心角所对的弧长为l=nπR÷180.【解答】解:∵扇形的半径为6cm,圆心角的度数为120°,∴扇形的弧长为: =4πcm;故答案为:4π.【点评】本题考查了弧长的计算.解答该题需熟记弧长的公式l=.16.如图,半圆O的直径AB=2,弦CD∥AB,∠COD=90°,则图中阴影部分的面积为.【考点】扇形面积的计算.【分析】由CD∥AB可知,点A、O到直线CD的距离相等,结合同底等高的三角形面积相等即可得出S△ACD=S△OCD,进而得出S阴影=S 扇形COD,根据扇形的面积公式即可得出结论.【解答】解:∵弦CD∥AB,∴S△ACD=S△OCD,∴S阴影=S扇形COD=?π?=×π×=.故答案为:.【点评】本题考查了扇形面积的计算以及平行线的性质,解题的关键是找出S阴影=S扇形COD.本题属于基础题,难度不大,解决该题型题目时,通过分割图形找出面积之间的关系是关键.三、解答题(共8题,共72分)17.圆锥底面圆的半径为3m,其侧面展开图是半圆,求圆锥母线长.【考点】圆锥的计算.【分析】侧面展开后得到一个半圆就是底面圆的周长.依此列出方程即可.【解答】解:设母线长为x,根据题意得2πx÷2=2π×3,解得x=6.故圆锥的母线长为6m.【点评】本题考查圆锥的母线长的求法,注意利用圆锥的弧长等于底面周长这个知识点.18.在一个底面直径为5cm,高为18cm的圆柱形瓶内装满水,再将瓶内的水倒入一个底面直径是6cm,高是10cm的圆柱形玻璃杯中,能否完全装下?若未能装满,求杯内水面离杯口的距离.【考点】圆柱的计算.【专题】计算题.【分析】设将瓶内的水倒入一个底面直径是6cm,高是10cm的圆柱形玻璃杯中时,水面高为xcm,根据水的体积不变和圆柱的条件公式得到π?()2?x=π?()2?18,解得x=12.5,然后把12.5与10进行大小比较即可判断能否完全装下.【解答】解:设将瓶内的水倒入一个底面直径是6cm,高是10cm的圆柱形玻璃杯中时,水面高为xcm,根据题意得π?()2?x=π?()2?18,解得x=12.5,∵12.5>10,∴不能完全装下.【点评】本题考查了圆柱:圆柱的母线(高)等于展开后所得矩形的宽,圆柱的底面周长等于矩形的长;圆柱的侧面积=底面圆的周长×高;圆柱的表面积=上下底面面积+侧面积;圆柱的体积=底面积×高.19.如图,AB和CD分别是⊙O上的两条弦,过点O分别作ON⊥CD 于点N,OM⊥AB于点M,若ON=AB,证明:OM=CD.【考点】垂径定理;全等三角形的判定与性质.【专题】证明题.【分析】设圆的半径是r,ON=x,则AB=2x,在直角△CON中利用勾股定理即可求得CN的长,然后根据垂径定理求得CD的长,然后在直角△OAM中,利用勾股定理求得OM的长,即可证得.【解答】证明:设圆的半径是r,ON=x,则AB=2x,在直角△CON中,CN==,∵ON⊥CD,∴CD=2CN=2,∵OM⊥AB,∴AM=AB=x,在△AOM中,OM==,∴OM=CD.【点评】此题涉及圆中求半径的问题,此类在圆中涉及弦长、半径、圆心角的计算的问题,常把半弦长,半圆心角,圆心到弦距离转换到同一直角三角形中,然后通过直角三角形予以求解.20.如图为桥洞的形状,其正视图是由和矩形ABCD构成.O点为所在⊙O的圆心,点O又恰好在AB为水面处.若桥洞跨度CD为8米,拱高(OE⊥弦CD于点F )EF为2米.求所在⊙O的半径DO.【考点】垂径定理的应用;矩形的性质.【分析】先根据垂径定理求出DF的长,再由勾股定理即可得出结论.【解答】解:∵OE⊥弦CD于点F,CD为8米,EF为2米,∴EO垂直平分CD,DF=4m,FO=DO﹣2,在Rt△DFO中,DO2=FO2+DF2,则DO2=(DO﹣2)2+42,解得:DO=5;答:所在⊙O的半径DO为5m.【点评】本题考查的是垂径定理的应用,此类题中一般使用列方程的方法,这种用代数方法解决几何问题即几何代数解的数学思想方法一定要掌握.21.△ABC是⊙O的内接三角形,BC=.如图,若AC是⊙O的直径,∠BAC=60°,延长BA到点D,使得DA=BA,过点D作直线l⊥BD,垂足为点D,请将图形补充完整,判断直线l和⊙O的位置关系并说明理由.【考点】直线与圆的位置关系.【分析】作OF⊥l于F,CE⊥l于E,设AD=a,则AB=2AD=2a,只要证明OF是梯形ADEC的中位线即可解决问题.【解答】解:图形如图所示,直线l与⊙O相切.理由:作OF⊥l于F,CE⊥l于E,∵AC是直径,∴∠ABC=90°,∵l⊥BD,∴∠BDE=90°,∵OF⊥l,CE⊥l,∴AD∥OF∥CE,∵AO=OC,∴DF=FE,∴OF=(AD+CE),设AD=a,则AB=2AD=2a,∵∠ABC=∠BDE=∠CED=90°,∴四边形BDEC是矩形,∴CE=BD=3a,∴OF=2a,∵在Rt△ABC中,∠ABC=90°,∠ACB=30°,AB=2a,∴AC=4a,∴OF=OA=2a,∴直线l是⊙O切线.【点评】本题考查直线与圆的位置关系、图形中位线的性质等知识,解题的关键是添加辅助线,要证明切线的方法有两种,一是连半径,证垂直,二是作垂直,正半径,此题则是运用第二种方法.22.如图直角坐标系中,已知A(﹣8,0),B(0,6),点M在线段AB上.(1)如图1,如果点M是线段AB的中点,且⊙M的半径为4,试判断直线OB与⊙M的位置关系,并说明理由;(2)如图2,⊙M与x轴、y轴都相切,切点分别是点E、F,试求出点M的坐标.【考点】直线与圆的位置关系;坐标与图形性质.【分析】(1)设线段OB的中点为D,连结MD,根据三角形的中位线求出MD,根据直线和圆的位置关系得出即可;(2)求出过点A、B的一次函数关系式是y=x+6,设M(a,﹣a),把x=a,y=﹣a代入y=x+6得出关于a的方程,求出即可.【解答】解:(1)直线OB与⊙M相切,理由:设线段OB的中点为D,连结MD,如图1,∵点M是线段AB的中点,所以MD∥AO,MD=4.∴∠AOB=∠MDB=90°,∴MD⊥OB,点D在⊙M上,又∵点D在直线OB上,∴直线OB与⊙M相切;,(2)解:连接ME,MF,如图2,∵A(﹣8,0),B(0,6),∴设直线AB的解析式是y=kx+b,∴,解得:k=,b=6,即直线AB的函数关系式是y=x+6,∵⊙M与x轴、y轴都相切,∴点M到x轴、y轴的距离都相等,即ME=MF,设M(a,﹣a)(﹣8<a<0),把x=a,y=﹣a代入y=x+6,得﹣a=a+6,得a=﹣,∴点M的坐标为(﹣,).【点评】本题考查了直线和圆的位置关系,用待定系数法求一次函数的解析式的应用,能综合运用知识点进行推理和计算是解此题的关键,注意:直线和圆有三种位置关系:已知⊙O的半径为r,圆心O 到直线l的距离是,当d=r时,直线l和⊙O相切.23.已知等边三角形ABC,AB=12,以AB为直径的半圆与BC边交于点D,过点D作DF⊥AC,垂足为F,过点F作FG⊥AB,垂足为G,连接GD,(1)求证:DF与⊙O的位置关系并证明;(2)求FG的长.【考点】直线与圆的位置关系;等边三角形的性质;勾股定理;垂径定理.【分析】(1)连接OD,证∠ODF=90°即可.(2)利用△ADF是30°的直角三角形可求得AF长,同理可利用△FHC 中的60°的三角函数值可求得FG长.【解答】(1)证明:连接OD,∵以等边三角形ABC的边AB为直径的半圆与BC边交于点D,∴∠B=∠C=∠ODB=60°,∴OD∥AC,∵DF⊥AC,∴∠CFD=∠ODF=90°,即OD⊥DF,∵OD是以边AB为直径的半圆的半径,∴DF是圆O的切线;(2)∵OB=OD=AB=6,且∠B=60°,∴BD=OB=OD=6,∴CD=BC﹣BD=AB﹣BD=12﹣6=6,∵在Rt△CFD中,∠C=60°,∴∠CDF=30°,∴CF=CD=×6=3,∴AF=AC﹣CF=12﹣3=9,∵FG⊥AB,∴∠FGA=90°,∵∠FAG=60°,∴FG=AFsin60°=.【点评】本题主要考查了直线与圆的位置关系、等边三角形的性质、垂径定理等知识,判断直线和圆的位置关系,一般要猜想是相切,那么证直线和半径的夹角为90°即可;注意利用特殊的三角形和三角函数来求得相应的线段长.24.如图,等边△ABC的边长为2,E是边BC上的动点,EF∥AC交边AB于点F,在边AC上取一点P,使PE=EB,连接FP.(1)请直接写出图中与线段EF相等的两条线段;(不再另外添加辅助线)(2)探究:当点E在什么位置时,四边形EFPC是平行四边形?并判断四边形EFPC是什么特殊的平行四边形,请说明理由;(3)在(2)的条件下,以点E为圆心,r为半径作圆,根据⊙E与平行四边形EFPC四条边交点的总个数,求相应的r的取值范围.【考点】点与圆的位置关系;等边三角形的性质;平行四边形的判定;菱形的判定.【专题】探究型.【分析】(1)由平行易得△BFE是等边三角形,那么各边是相等的;(2)当点E是BC的中点时,△PEC为等边三角形,可得到PC=EC=BE=EF,也就得到了四边形EFPC是平行四边形,再有EF=EC 可证为菱形;(3)根据各点到圆心的距离作答即可.【解答】解:(1)如图,∵△ABC是等边三角形,∴∠B=∠A=∠C=60°.又∵EF∥AC,∴∠BFE=∠A=60°,∠BEF=∠C=60°,∴△BFE是等边三角形,PE=EB,∴EF=BE=PE=BF;(2)当点E是BC的中点时,四边形是菱形;∵E是BC的中点,∴EC=BE,∵PE=BE,∴PE=EC,∵∠C=60°,∴△PEC是等边三角形,∴PC=EC=PE,∵EF=BE,∴EF=PC,又∵EF∥CP,∴四边形EFPC是平行四边形,∵EC=PC=EF,∴平行四边形EFPC是菱形;(3)如图所示:当点E是BC的中点时,EC=1,则NE=ECcos30°=,当0<r<时,有两个交点;当r=时,有四个交点;当<r<1时,有六个交点;当r=1时,有三个交点;当r>1时,有0个交点.【点评】本题综合考查了等边三角形的性质和判定,菱形的判定及点和圆的位置关系等知识点.注意圆和线段有交点,应根据半径作答.。
九年级上册数学同步练习册答案
九年级上册数学同步练习册答案【练习一:实数的运算】1. 计算下列各数的平方根:- √9 = ±3- √64 = 8- √0.25 = 0.52. 计算下列各数的立方根:- ∛8 = 2- ∛-27 = -3- ∛0 = 03. 判断下列各数是无理数还是有理数:- π 是无理数- 0.3 是有理数- √2 是无理数【练习二:代数式】1. 化简下列代数式:- 3x + 2y - 5x = -2x + 2y- 4a² - 3a + 5b² = 4a² + 5b² - 3a2. 求下列代数式的值,当x=2,y=-3:- 2x - 3y = 2*2 - 3*(-3) = 4 + 9 = 133. 判断下列代数式是否可以合并同类项:- 5x² + 3x²可以合并为 8x²- 2y + 3z 不能合并【练习三:一元一次方程】1. 解下列一元一次方程:- 3x - 5 = 10,解得 x = 5- 2y + 4 = 0,解得 y = -22. 根据题目条件列出方程并求解:- 如果一个数的3倍加上4等于26,设这个数为x,可列出方程3x + 4 = 26,解得 x = 63. 判断下列方程是否有解:- 5x - 7 = 0 有解- 2x + 3 = x - 1 有解,解得 x = -4【练习四:几何图形】1. 计算下列图形的面积:- 一个边长为4的正方形的面积为 4*4 = 16- 一个半径为3的圆的面积为π*3² = 9π2. 计算下列图形的周长:- 一个边长为5的正六边形的周长为 6*5 = 30- 一个直径为10的圆的周长为π*10 = 10π3. 判断下列几何图形的性质:- 等边三角形的三个内角都是60度- 矩形的对边相等且互相垂直【结束语】以上是九年级上册数学同步练习册的部分答案,希望能够帮助同学们更好地理解和掌握数学知识。
人教版九年级数学上册《21.1一元二次方程》同步练习题-附答案
人教版九年级数学上册《21.1一元二次方程》同步练习题-附答案学校:___________班级:___________姓名:___________考号:___________一、单选题1.下列关于x 的方程是一元二次方程的是( )A .20ax bx c ++=B .240x x-= C .()()1110x x +-+= D .()22125x x x -= 2.一元二次方程221x x -=的一次项系数和常数项依次是( )A .1-和1B .1-和1-C .2和1-D .1-和33.将一元二次方程()()()21235x x x x +-=+-化为一般形式为( )A .2510x x -+=B .290x x +-=C .2430x x -+=D .210x x -+=4.一元二次方程x 2+px ﹣2=0的一个根为2,则p 的值为( )A .1B .2C .﹣1D .﹣25.若a 是方程2230x x --=的一个解,则263a a -的值为() A .3B .3-C .9D .9-二、填空题 6.只含有 个未知数,并且未知数的 次数是2的方程,叫做一元二次方程,它的一般形式为 .7.一元二次方程()521x x x -=+的一次项系数是 .8.若关于x 的一元二次方程20x a -=的一个根是2,则=a .9.若方程()2190a x x -+-=是关于x 的一元二次方程,则a 的取值范围是__________.10.已知m 是方程210x x --=的一个根,则代数式2552021m m -+的值是 .三、解答题11.判断下列各式哪些是一元二次方程.①21x x ++;②2960x x -=;③ 2102y =;④ 215402x x-+=; ⑤ 2230x xy y +-=;⑥ 232y =;⑦ 2(1)(1)x x x +-=.12.已知13,都是方程230==-x x+-=的根,求a、b的值和这个一元二次方程的一般形式.ax bx13.已知m是方程2250x x+-=的一个根,求32+--的值.259m m m14.根据题意列出方程,化为一般式,不解方程.(1)一个大正方形的边长比一个小正方形边长的3倍多1,若两正方形面积和为53,求这两正方形的边长.(2)某班同学之间为了相互鼓励,每两人之间进行一次击掌,共击掌595次.求本班有多少名同学(设本班有x名同学).参考答案1.C2.B3.A4.C5.C6.一最高20(0)++=≠ax bx c a7.7-8.49.1a ≠10.202611.②③⑥.12.1a = 2b = 2 230x x +-= 13.9-14.(1)10x 2+6x-52=0;(2)211900x x --=。
九年级数学第二十七章《相似三角形的性质》同步练习(含答案)
九年级数学第二十七章《相似三角形的性质》同步练习(含答案)一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的.1.如果△ABC ∽△DEF ,A 、B 分别对应D 、E ,且AB :DE =1:2,那么下列等式一定成立的是 A .BC :DE =1:2B .△ABC 的面积:△DEF 的面积=1:2 C .∠A 的度数:∠D 的度数=1:2D .△ABC 的周长:△DEF 的周长=1:2 【答案】D2.如图,AB 、CD 、EF 都与BD 垂直,且AB =1,CD =3,那么EF 的长是A .13B .23 C .34D .45【答案】C【解析】∵AB 、CD 、EF 都与BD 垂直,∴AB ∥CD ∥EF , ∴△DEF ∽△DAB ,△BEF ∽△BCD ,∴EF DF AB DB =,EF BF CD BD =,∴EF EF DF BFAB CD DB BD+=+=1. ∵AB =1,CD =3,∴13EF EF +=1,∴EF =34.故选C .3.已知:如图,在ABCD中,AE:EB=1:2,则FE:FC=A.1:2 B.2:3 C.3:4 D.3:2 【答案】B【解析】在ABCD中,AB=CD,AB∥CD,∵BE=2AE,∴BE=23AB=23CD,∵AB∥CD,∴EFFC=BEDC=23,故选B.4.已知:如图,E是ABCD的边AD上的一点,且32AEDE=,CE交BD于点F,BF=15cm,则DF的长为A.10cm B.5cmC.6cm D.9cm【答案】C【解析】∵四边形ABCD是平行四边形,点E在边AD上,∴DE∥BC,且AD=BC,∴∠DEF=∠BCF;∠EDF=∠CBF,∴△EDF∽△CBF,∴BC BF ED DF=,∵32AEDE=,∴设AE=3k,DE=2k,则AD=BC=5k,52BC BFED DF==,∵BF=15cm,∴DF=25BF═6cm.故选C.5.已知△ABC∽△DEF,△ABC的周长为3,△DEF的周长为1,则△DEF与△ABC的面积之比为A.9:1 B.1:9C.3:1 D.1:3【答案】B【解析】∵△ABC∽△DEF,△ABC的周长为3,△DEF的周长为1,∴△ABC与△DEF的相似比为3,∴△DEF与△ABC的相似比为1:3,∴△DEF与△ABC的面积之比为1:9,故选B.6.如图,△ABC∽△AB'C',∠A=35°,∠B=72°,则∠AC'B'的度数为A.63°B.72°C.73°D.83°【答案】C【解析】∵∠A+∠B+∠C=180°,∠A=35°,∠B=72°,∴∠C=180°–35°–72°=73°,∵△ABC∽△AB'C',∴∠AC′B′=∠C=73°,故选C.7.如图,△ABC中,E为AB中点,AB=6,AC=4.5,∠ADE=∠B,则CD=A.32B.1C.12D.23【答案】C【解析】∵E为AB中点,∴AE=12AB,∵∠ADE=∠B,∠A=∠A,∴△ADE∽△ABC,∴AE ADAC AB,∴12AB2=AD•AC,∴AD=4,∴CD=AC–AD=0.5,故选C.二、填空题:请将答案填在题中横线上.8.两个三角形相似,相似比是12,如果小三角形的面积是9,那么大三角形的面积是__________.【答案】36【解析】∵两个三角形相似,相似比是12,∴两个三角形的面积比是14,∵小三角形的面积是9,∴大三角形的面积是36,故答案为:36.9.矩形ABCD中,AB=6,BC=8.点P在矩形ABCD的内部,点E在边BC上,满足△PBE∽△DBC,若△APD是等腰三角形,则PE的长为__________.【答案】65或310.如图,在△ABC纸板中,AC=4,BC=2,AB=5,P是AC上一点,过点P沿直线剪下一个与△ABC相似的小三角形纸板,如果有4种不同的剪法,那么AP长的取值范围是__________.【答案】3≤AP<4【解析】如图所示,过P作PD∥AB交BC于D或PE∥BC交AB于E,则△PCD∽△ACB或△APE∽△ACB,此时0<AP<4;如图所示,过P作∠APF=∠B交AB于F,则△APF∽△ABC,此时0<AP≤4;如图所示,过P作∠CPG=∠CBA交BC于G,则△CPG∽△CBA,此时,△CPG∽△CBA,当点G与点B重合时,CB2=CP×CA,即22=CP×4,∴CP=1,AP=3,∴此时,3≤AP<4;综上所述,AP长的取值范围是3≤AP<4.故答案为:3≤AP<4.11.如图,点A、B、C、D的坐标分别是(1,7)、(1,1)、(4,1)、(6,1),且△CDE与△ABC相似,则点E的坐标是__________.【答案】(6,0),(6,5),(6,2),(4,2)、(4,5)、(4,0).【解析】在△ABC中,∠ABC=90°,AB=6,BC=3,AB:BC=2.①当点E的坐标为(6,0)时,∠CDE=90°,CD=2,DE=1,则AB:BC=CD:DE,△CDE∽△ABC;②当点E的坐标为(6,5)时,∠CDE=90°,CD=2,DE=4,则AB:BC=DE:CD,△EDC∽△ABC;③当点E的坐标为(6,2)时,∠ECD=90°,CD=2,DE=1,则AB:BC=CD:DE,△CDE∽△ABC;同理,当点E的坐标为(4,2)、(4,5)、(4,0),故答案为:(6,0),(6,5),(6,2),(4,2)、(4,5)、(4,0).三、解答题:解答应写出文字说明、证明过程或演算步骤.12.求证:相似三角形面积的比等于相似比的平方.(请根据题意画出图形,写出已知,求证并证明)【解析】已知:如图,已知△ABC ∽△A 1B 1C 1,顶点A 、B 、C 分别与A 1、B 1、C 1对应,△ABC 和△A 1B 1C 1的相似比为k .求证:111ABC A B C S S △△=k 2;证明:作AD ⊥BC 于D ,A 1D 1⊥B 1C 1于D 1,∵△ABC ∽△A 1B 1C 1,顶点A 、B 、C 分别与A 1、B 1、C 1对应, ∴∠B =∠B 1,∵AD 、A 1D 1分别是△ABC ,△A 1B 1C 1的高线, ∴∠BDA =∠B 1D 1A 1,∴△ABD ∽△A 1B 1D 1,∴11AD A D =11ABA B =k , ∴111ABC A B C S S △△=11111212BC AD B C A D ⋅⋅⋅⋅=k 2.13.如图所示,Rt △ABC ∽Rt △DFE ,CM 、EN 分别是斜边AB 、DF 上的中线,已知AC =9cm ,CB =12cm ,DE =3cm .(1)求CM 和EN 的长; (2)你发现CMEN的值与相似比有什么关系?得到什么结论?【解析】(1)在Rt △ABC 中,AB =22AC CB +=22912+=15,∵CM 是斜边AB 的中线, ∴CM =12AB=7.5, ∵Rt △ABC ∽Rt △DFE , ∴DE DF AC AB =,即319315DF==, ∴DF =5,∵EN 为斜边DF 上的中线,∴EN =12DF =2.5; (2)∵7.532.51CM EN ==,相似比为9331AC DE ==,∴相似三角形对应中线的比等于相似比.14.如图,点C 、D 在线段AB 上,△PCD 是等边三角形,且△ACP ∽△PDB .(1)求∠APB 的大小.(2)说明线段AC 、CD 、BD 之间的数量关系.15.从三角形(不是等腰三角形)一个顶点引出一条射线与对边相交,顶点与交点之间的线段把这个三角形分割成两个小三角形,如果分得的两个小三角形中一个为等腰三角形,另一个与原三角形相似,我们把这条线段叫做这个三角形的完美分割线.(1)如图1,在△ABC 中,∠A =48°,CD 是△ABC 的完美分割线,且AD =CD ,则∠ACB =__________°. (2)如图2,在△ABC 中,AC =2,BC 2,CD 是△ABC 的完美分割线,且△ACD 是以CD 为底边的等腰三角形,求完美分割线CD的长.【解析】(1)当AD=CD时,如图,∠ACD=∠A=48°,∵△BDC∽△BCA,∴∠BCD=∠A=48°,∴∠ACB=∠ACD+∠BCD=96°.(2)由已知得AC=AD=2,∵△BCD∽△BAC,∴BCBA=BDBC,设BD=x2)2=x(x+2),∵x>0,∴x3–1,∵△BCD∽△BAC,∴CD BDAC BC=32,∴CD 312-×62.故答案为:96.。
人教版九年级数学上册《24.3 正多边形和圆》同步练习题-附答案
人教版九年级数学上册《24.3 正多边形和圆》同步练习题-附答案学校:___________班级:___________姓名:___________考号:___________考点 正多边形与圆1.定义:正多边形的 圆的圆心叫做这个正多边形的中心 圆的半径叫做正多边形的半径 正多边形每一边所对的 角叫做正多边形的中心角 到正多边形的一边的距离 叫做正多边形的边心距。
2.公式:正多边形的有关概念:边长(a ) 中心(O ) 中心角(∠AOB ) 半径(R )) 边心距(r ) 如图所示①.边心距222a r R ⎛⎫=- ⎪⎝⎭中心角360n ︒=关键点:三角形的内切圆与外接圆 关系定义圆心 实质半径图示外接圆经过三角形各顶点的圆外心三角形各边垂直平分线的交点交点到三角形三个顶点的距离相等内切圆与三角形各边都相切的圆内心三角形各内角平分线的交点交点到三角形各边的距离相等名校提高练习:一选择题:本题共10小题每小题3分共30分。
在每小题给出的选项中只有一项是符合题目要求的。
1.(2024·四川省泸州市·月考试卷)已知圆内接正三角形的面积为√ 3则该圆的内接正六边形的边心距是( )A. 2B. 1C. √ 3D. √ 322.同一个圆的内接正三角形正方形正六边形的边心距分别为r3r4r6则r3:r4:r6等于( )A. 1:√2:√3B. √3:√2:1C. 1:2:3D. 3:2:13.如图若干个全等的正五边形排成环状图中所示的是前3个正五边形要完成这一圆环还需正五边形的个数为( )A. 10B. 9C. 8D. 74.(2024·贵州省黔东南苗族侗族自治州·月考试卷)正六边形ABCDEF内接于⊙O正六边形的周长是12则⊙O的半径是( )A. √ 3B. 2C. 2√ 2D. 2√ 35.(2024·山东省·单元测试)《几何原本》中记载了用尺规作某种六边形的方法其步骤是:①在⊙O上任取一点A连接AO并延长交⊙O于点B②以点B为圆心BO为半径作圆弧分别交⊙O于C D两点③连接CO DO并延长分别交⊙O于点E F④顺次连接BC CF FA AE ED DB得到六边形AFCBDE.再连接AD EF AD EF交于点G.则下列结论不正确的是( )A. GF=GDB. ∠FGA=60°C. EFAE=√ 2 D. AF⊥AD6.(2024·江苏省·同步练习)以半径为2的圆的内接正三角形正方形正六边形的边心距为三边作三角形则该三角形的面积是( )A. √ 22B. √ 32C. √ 2D. √ 37.(2024·江苏省·同步练习)如图正十二边形A1A2…A12连接A3A7A7A10则∠A3A7A10的度数为( )A. 60°B. 65°C. 70°D. 75°8.(2024·江苏省·同步练习)如图若干个全等的正五边形排成环状.图中所示的是前3个正五边形要完成这一圆环还需正五边形的个数为( )A. 6B. 7C. 8D. 99.(2024·北京市市辖区·期末考试)如图正方形ABCD的边长为6且顶点A B C D都在⊙O上则⊙O 的半径为().A. 3B. 6C. 3√ 2D. 6√ 210.(2024·广东省广州市·月考试卷)如图已知⊙O的周长等于4πcm则圆内接正六边形的边长为()cm.A. √ 3B. 2C. 2√ 3D. 4二填空题:本题共6小题每小题3分共18分。
九年级上册数学同步练习:解一元二次方程(简答题:较易)
解一元二次方程(简答题:较易)1、解方程:(1).x2﹣5=4x(2).2、解方程:.3、计算:(1)求4x2-100=0中x的值(2)() -1 +(-1) 0 +2×(-3)4、(1)解方程:x (x-2)=3;(2)解不等式组5、我们已经学习了一元二次方程的多种解法:如因式分解法,开平方法,配方法和公式法,还可以运用十字相乘法,请从以下一元二次方程中任选一个,并选择你认为适当的方法解这个方程.我选择第______个方程.6、解方程:(1)(x+3)2=2x+6;(2)x2﹣2x=8.7、解方程:x2-5 = 4x.8、解方程:(1)x22x4=0;(2)(3x+1)2=9x+3.9、解方程:(1)x2+4x﹣1=0;(2)3(x-2)2=x(x-2).10、解方程(1)x2+x-12=0(2) 2x2-3x+2=011、解方程:(1).x2-4x+3=0; (2).(3). (4).12、解下列方程(1) (2)13、已知关于x的一元二次方程x2+(2m+1)x+m2-m-1=0有两个实数根.(1)求实数m的取值范围;(2)若该方程的两个实数根为x1和x2,且 x1+x2=x1x2,求实数m的值.14、解下列方程:(1)9(x+1) 2-4=0 ;(2)2y2-6y+1=0(用配方法).15、(1)解方程9x2﹣49=0;(2)计算:.16、解方程:x2-3x-1=0.17、解下列方程:(1)x2+4x-5=0; (2)x(x-4)=8-2x;18、解方程:(1)(2).19、计算:(1)2x2﹣5x+1=0;(2)3x(x﹣2)=2(x﹣2).20、小明在解方程出现了错误,解答过程如下:(第一步)(第二步)(第三步)(第四步)(第五步)(1)小明解答过程从第步开始出错的,其错误原因是;(2)请写出此题正确的解答过程.21、解下列方程:(1)x2﹣9=0 (2)x2﹣3x﹣4=022、已知关于x的一元二次方程的一个根是1,求方程的另一根和k的值。
人教版九年级数学上册《24.1.1-圆》同步练习题-附答案
人教版九年级数学上册《24.1.1 圆》同步练习题-附答案学校:___________班级:___________姓名:___________考号:___________一、单选题1.把圆规的两脚分开,两脚间的距离是3厘米,再把有针尖的一只脚固定在一点上,把装有铅笔尖的一只脚旋转一周,就画出一个圆,则这个圆的()A.半径是3厘米B.直径是3厘米C.周长是3π厘米D.面积是3π厘米2.已知⊙O的半径长7cm,P为线段O A的中点,若点P在⊙O上,则OA的长是()A.等于7cm B.等于14cm C.小于7cm D.大于14cm3.下列说法正确的是()A.同弧或等弧所对的圆心角相等B.所对圆心角相等的弧是等弧C.弧长相等的弧一定是等弧D.平分弦的直径必垂直于弦4.已知O的半径为5,则该圆中最长的弦的长是()A.52B.53C.10 D.155.如图,在平面直角坐标系中,Q(3,4),P是在以Q为圆心,2为半径的⊙Q上一动点,设P点的横坐标为x,A(1,0)、B(-1,0),连接P A、PB,则P A2+PB2的最大值是A.64 B.98 C.100 D.1246.如图,在矩形ABCD中,AB=10,BC=12,E是矩形内部的一个动点,连接AE BE CE DE,,,,下列选项中的结论错误..的是()A .0261CE <<B .无论点E 在何位置,总有2222AE CE BE DE +=+C .若AE BE ⊥,则线段CE 的最小值为8D .若60EAD EBC ∠+∠=︒,AE BE +的最大值为23 7.下列命题是假命题的是( )A .不在同一直线上的三点确定一个圆B .矩形的对角线互相垂直且平分C .正六边形的内角和是720°D .角平分线上的点到角两边的距离相等8.下列命题正确的是( )A .相等的圆心角所对的弧是等弧B .等圆周角对等弧C .任何一个三角形只有一个外接圆D .过任意三点可以确定一个圆9.下列条件中,能确定圆的是( )A .以已知点O 为圆心B .以1cm 长为半径C .经过已知点A ,且半径为2cmD .以点O 为圆心,1cm 为半径10.下列条件中,能确定一个圆的是( )A .经过已知点MB .以点O 为圆心,10cm 长为半径C .以10cm 长为半径D .以点O 为圆心二、填空题11.如图,在平面直角坐标系中,点A 的坐标为(0,12),点B 的坐标为(5,0),动点P 在以A 为圆心,7为半径的圆周上运动,连接BP .(1)当动点P 与点B 距离最远时,此时线段BP 的长度为 ;(2)连接OP ,当OBP ∆为等腰三角形时,则P 点坐标为 .12.(1)图⊙中有 条弧,分别为 ;(2)写出图⊙中的一个半圆 ;劣弧: ;优弧: .13.如图,在⊙ABC 中,AC =BC ,⊙ACB =90°,以点A 为圆心,AB 长为半径画弧,交AC 延长线于点D ,则AC CD 的值为 ;过点C 作CE ⊙AB ,交BD 于点E ,连接BE ,则CE AD的值为 .14.如图,在矩形ABCD 中,AB =6,AD =8,E 是AB 边的中点,F 是线段BC 的动点,将△EBF 沿EF 所在直线折叠得到△EB ´F ,连接B ´D ,则B ′D 的最小值是 .15.如图,在O 中,点A 、B 在圆上,且AB OA =,则OAB ∠的度数为 °.16.直径为6cm 的圆周长是 cm .17.如图,点A 、B 在O 上,且AB BO =.ABO ∠的平分线与AO 相交于点C ,若3AC =,则O 的周长为 .(结果保留π)18.如图,在矩形ABCD 中,AB=2,AD=3,动点P 在矩形的边上沿B C D A →→→运动.当点P 不与点A 、B 重合时,将ABP 沿AP 对折,得到AB P ',连接CB ',则在点P 的运动过程中,线段CB '的最小值为 .19.直线4y x =+分别与x 轴、y 轴相交于点M 、N ,边长为2的正方形OABC 的一个顶点O 在坐标系的原点,直线AN 与MC 相交于点P ,若正方形绕着点O 旋转一周,则点P 到点()0,2长度的最小值是 .20.国际奥委会会旗上的图案是由代表五大洲的五个圆环组成,现在在某体育馆前的草坪上要修剪出此图案.已知,每个圆环的内、外半径分别为4米和5米,图中重叠部分的每个小曲边四边形的面积都为1平方米,若修剪每平方米的人工费用为10元,则修剪此图案所花费的人工费为 元(π取3).三、解答题21.综合与实践【问题背景】“夏至”过后,越来越多的市民喜欢去海边游玩。
九年级上册数学同步练习含答案大全
九年级上册数学同步练习含答案大全数学是人类对事物的抽象结构与模式进行严格描述的一种通用手段,可以应用于现实世界的任何问题,所有的数学对象本质上都是人为定义的。
下面是小编为大家整理的关于九年级上册数学同步练习含答案,希望对您有所帮助!九年级数学第21章同步测试题与答案二次根式(第二课时)随堂检测1、化简| -2|+ 的结果是( )A.4-2B.0C.2D.42、下列各式中,一定能成立的是( )A. B.C. D.3、已知x<y,化简 p="" 为_______.4、若,则 _________;若,则 ________.5、当时,求|2- |的值是多少?典例分析有一道练习题是:对于式子先化简,后求值.其中 .小明的解法如下: = = = = .小明的解法对吗?如果不对,请改正.分析:本题中有一个隐含条件,即,并由此应将化简为 .对这个隐含条件的敏感度是正确解决问题的关键.解:小明的解法对不对.改正如下:由题意得,,∴应有 .∴ = = = = .课下作业拓展提高1、当-1< <1时,化简得( )A.2B.-2C.2D.-22、计算 =_______.3、观察下列各式:请你将发现的规律用含自然数n(n≥1)的等式表示出来 .4、把下列非负数写成一个数的平方的形式:(1)5 (2)3.4 (3) (4)x(x≥0)5、在实数范围内分解下列因式:(1) (2) (3)6、已知实数满足,求的值是多少?体验中考1、(2009年,长沙)已知实数在数轴上的位置如图所示,则化简的结果为( )A.1B.-1C.D.(注意:由图可知,我们可以直接利用这个结论解题.)2、(2008年,广州)实数在数轴上的位置如图所示,化简 .(提示:由图可知,可以选择利用和解题.)参考答案:随堂检测1、A. ∵ 有意义,∴ ,∴原式= ,故选A.2、A. ∵只有A选项不含代数字母,等式总成立.故选A.3、0. ∵x4、,∵当时,由得 ;当时,由得,即 .5、解:当时, , ,∴|2- |=|2- |=| |= .课下作业拓展提高1、A. ∵当-1< <1时,∴ , ,∴ ,故选A.2、可以直接利用 ( )的结论解题. = .3、 = .4、解:(1)5=( )2 (2)3.4=( )2(3) =( )2 (4)x=( )2(x≥0).5、解:(1)(2)(3)6、解:∵实数满足,∴ ,∴ ,∴ ,∴由可得:,化简得:,∴ ,∴ .体验中考1、A 由题图可知,∴ ,∴原式= ,故选A.2、由图可知,∴原式= .九年级上册数学练习带答案一、选择题(在下列各题的四个备选答案中,只有一个是符合题意的,请将正确答案前的字母写在答题纸上;本题共32分,每小题4分)1. 已知⊙O的直径为3cm,点P到圆心O的距离OP=2cm,则点PA. 在⊙O外B. 在⊙O上C. 在⊙O内D. 不能确定2. 已知△ABC中,∠C=90°,AC=6,BC=8,则cosB的值是A.0.6B.0.75C.0.8D.3.如图,△ABC中,点 M、N分别在两边AB、AC上,MN‖BC,则下列比例式中,不正确的是A .B .C. D.4. 下列图形中,既是中心对称图形又是轴对称图形的是A. B. C. D.5. 已知⊙O1、⊙O2的半径分别是1cm、4cm,O1O2= cm,则⊙O1和⊙O2的位置关系是A.外离B.外切C.内切D.相交6. 某二次函数y=ax2+bx+c 的图象如图所示,则下列结论正确的是A. a>0, b>0, c>0B. a>0, b>0, c<0C. a>0, b<0, c>0D. a>0, b<0, c<07.下列命题中,正确的是A.平面上三个点确定一个圆B.等弧所对的圆周角相等C.平分弦的直径垂直于这条弦D.与某圆一条半径垂直的直线是该圆的切线8. 把抛物线y=-x2+4x-3先向左平移3个单位,再向下平移2个单位,则变换后的抛物线解析式是A.y=-(x+3)2-2B.y=-(x+1)2-1C.y=-x2+x-5D.前三个答案都不正确二、填空题(本题共16分, 每小题4分)9.已知两个相似三角形面积的比是2∶1,则它们周长的比 _____ .10.在反比例函数y= 中,当x>0时,y 随x的增大而增大,则k 的取值范围是_________.11. 水平相当的甲乙两人进行羽毛球比赛,规定三局两胜,则甲队战胜乙队的概率是_________;甲队以2∶0战胜乙队的概率是________.12.已知⊙O的直径AB为6cm,弦CD与AB相交,夹角为30°,交点M恰好为AB的一个三等分点,则CD的长为 _________ cm.三、解答题(本题共30分, 每小题5分)13. 计算:cos245°-2tan45°+tan30°- sin60°.14. 已知正方形MNPQ内接于△ABC(如图所示),若△ABC的面积为9cm2,BC=6cm,求该正方形的边长.15. 某商场准备改善原有自动楼梯的安全性能,把倾斜角由原来的30°减至25°(如图所示),已知原楼梯坡面AB的长为12米,调整后的楼梯所占地面CD有多长?(结果精确到0.1米;参考数据:sin25°≈0.42,cos25°≈0.91,tan25°≈0.47)16.已知:△ABC中,∠A是锐角,b、c分别是∠B、∠C的对边.求证:△ABC的面积S△ABC= bcsinA.17. 如图,△ABC内接于⊙O,弦AC交直径BD于点E,AG⊥BD 于点G,延长AG交BC于点F. 求证:AB2=BF•BC.18. 已知二次函数 y=ax2-x+ 的图象经过点(-3, 1).(1)求 a 的'值;(2)判断此函数的图象与x轴是否相交?如果相交,请求出交点坐标;(3)画出这个函数的图象.(不要求列对应数值表,但要求尽可能画准确)四、解答题(本题共20分, 每小题5分)19. 如图,在由小正方形组成的12×10的网格中,点O、M和四边形ABCD的顶点都在格点上.(1)画出与四边形ABCD关于直线CD对称的图形;(2)平移四边形ABCD,使其顶点B与点M重合,画出平移后的图形;(3)把四边形ABCD绕点O逆时针旋转90°,画出旋转后的图形.20. 口袋里有 5枚除颜色外都相同的棋子,其中 3枚是红色的,其余为黑色.(1)从口袋中随机摸出一一枚棋子,摸到黑色棋子的概率是_______ ;(2)从口袋中一次摸出两枚棋子,求颜色不同的概率.(需写出“列表”或画“树状图”的过程)21. 已知函数y1=- x2 和反比例函数y2的图象有一个交点是 A( ,-1).(1)求函数y2的解析式;(2)在同一直角坐标系中,画出函数y1和y2的图象草图;(3)借助图象回答:当自变量x在什么范围内取值时,对于x的同一个值,都有y122. 工厂有一批长3dm、宽2dm的矩形铁片,为了利用这批材料,在每一块上裁下一个最大的圆铁片⊙O1之后(如图所示),再在剩余铁片上裁下一个充分大的圆铁片⊙O2.(1)求⊙O1、⊙O2的半径r1、r2的长;(2)能否在剩余的铁片上再裁出一个与⊙O2 同样大小的圆铁片?为什么?五、解答题(本题共22分, 第23、24题各7分,第25题8分)23.如图,在△ABC中,AB=AC,以AB为直径的⊙O分别交AC、BC于点M、N,在AC的延长线上取点P,使∠CBP= ∠A.(1)判断直线BP与⊙O的位置关系,并证明你的结论;(2)若⊙O的半径为1,tan∠CBP=0.5,求BC和BP的长.24. 已知:如图,正方形纸片ABCD的边长是4,点M、N分别在两边AB和CD上(其中点N不与点C重合),沿直线MN折叠该纸片,点B恰好落在AD边上点E处.(1)设AE=x,四边形AMND的面积为 S,求 S关于x 的函数解析式,并指明该函数的定义域;(2)当AM为何值时,四边形AMND的面积最大?最大值是多少?(3)点M能是AB边上任意一点吗?请求出AM的取值范围.25. 在直角坐标系xOy 中,已知某二次函数的图象经过A(-4,0)、B(0,-3),与x轴的正半轴相交于点C,若△AOB∽△BOC(相似比不为1).(1)求这个二次函数的解析式;(2)求△ABC的外接圆半径r;(3)在线段AC上是否存在点M(m,0),使得以线段BM为直径的圆与线段AB交于N点,且以点O、A、N为顶点的三角形是等腰三角形?若存在,求出m的值;若不存在,请说明理由.一、 ACCB DABB二、 9. :1 10. k< -1 11. , 12.三、13. 原式= -2+ - ×= -2 + - ……………………………………4分= -3+ ……………………………………………………5分14. 作AE⊥BC于E,交MQ于F.由题意,BC×AE=9cm2 , BC=6cm.∴AE=3cm. ……………………………1分设MQ= xcm,∵MQ‖BC,∴△AMQ∽△ABC. ……………………2分∴ . ……………………3分又∵EF=MN=MQ,∴AF=3-x.∴ . ……………………………………4分解得 x=2.答:正方形的边长是2cm. …………………………5分15. 由题意,在Rt△ABC中,AC= AB=6(米), …………………1分又∵在Rt△ACD中,∠D=25°,=tan∠D, ……………………………3分∴CD= ≈ ≈12.8(米).答:调整后的楼梯所占地面CD长约为12.8米. (5)分16. 证明:作CD⊥AB于D,则S△ABC= AB×CD. ………………2分∵ 不论点D落在射线AB的什么位置,在Rt△ACD中,都有CD=ACsinA. …………………4分又∵AC=b,AB=c,∴ S△ABC= AB×A九年级数学上册练习题及答案一选择题:1、下列命题中的真命题是、A、对角线互相垂直的四边形是菱形B、中心对称图形都是轴对称图形C、两条对角线相等的梯形是等腰梯形D、等腰梯形是中心对称图形第2题图2、如右图,将半径为2cm的圆形纸片折叠后,圆弧恰好经过圆心O,则折痕AB的长为A.2cmB.3cm C.23cm D.25cm3、如图,BD是⊙O的直径,∠CBD=30?,则∠A的度数.A、30?B、45?C、60?D、75?、已知二次函数y=ax2+bx+c的图像如图所示,则下列条件正确的是 A.ac<0B、b-4ac<0C、 b>0D、 a>0,b<0,c>05、抛物线y= x 向左平移8个单位,再向下平移个单位后,所得抛物线的表达式是A、 y=2-B、 y=2+C、 y=2-D、y=2+96. 如图,在平面直角坐标系中,长、宽分别为2和1的矩形ABCD的边上有一动点P,沿A→B→C→D→A运动一周,则点P的纵坐标y与P所走过的路程x之间的函数关系用图象表示大致是2第3题图第4题图7、某商品原售价289元,经过连续两次降价后售价为256元,设平均每次降价的百分率为 x,则下面所列方程中正确的是A、2892=25B、2562=289C、289=25D、256=2898、如图,在平面直角坐标系中,正方形ABCD的顶点A、C分别在y 轴、x轴上,以AB为弦的⊙M与x轴相切、若点A 的坐标为,则圆心M的坐标为A、B、C、D、9.若点A的坐标为O为坐标原点,将OA绕点O按顺时针方向旋转90得到OA′,则点A′的坐标是A、B、C、D、10、下列各点中,在函数y=-6x 图像上的是12A、B、C、D、11.抛物线y=x?2x?3与坐标轴交点为A.二个交点 B.一个交点C.无交点D.三个交点12.关于x的一元二次方程x2+x+m+1=0有两个相等的实数根,则m的值是A、0B、C、422D、 0或二、填空题:13 、使x的取值范围是、 A DB E D14、将二次函数y=x2-4x+5化为y=2+k的形式,则15 、如图所示,把一个长方形纸片沿EF折叠后,点D,C分别落 CC 在D′,C′的位置.若∠EFB=65,则∠AED′等于16、菱形OABC在平面直角坐标系中的位置如图所示, ?AOC?45,OC?B的坐标为.17、如图所示,边长为1的小正方形构成的网格中,半径为1的⊙O的圆心O在格点上,则∠A ED的正切值等于、三、解答题:18、解方程:2 x+6x-11=019、如图,在平面直角坐标系中,△ ABC的三个顶点的坐标分别为A,B,C、、画出△ABC关于x轴对称的△A1B1C1,并写出点C1的坐标; 、画出△ABC绕原点O顺时针方向旋转90后得到的△A2B2C2,并写出点C2的坐标;,第16B A C第17题图将△A2B2C2平移得到△ A3B3C3,使点A2的对应点是A3,点B2的对应点是B3,点C2的对应点是C3,在坐标系中画出△ A3B3C3,并写出点A3的坐标。
九年级上册数学《二次函数》同步练习题含答案
九年级上册数学《二次函数》同步练习题含答案九年级数学第22章《二次函数》同步练一、选择题1.已知反比例函数y=k/x的图象如图,则二次函数y=2kx^2-4x+k^2的图象大致为()2.(2020•牡丹江)抛物线y=3x^2+2x-1向上平移4个单位长度后的函数解析式为().A。
y=3x^2+2x-5B。
y=3x^2+2x-4C。
y=3x^2+2x+3D。
y=3x^2+2x+43.“一般的,如果二次函数y=ax^2+bx+c的图象与x轴有两个公共点,那么一元二次方程ax^2+bx+c=0有两个不相等的实数根.--苏科版《数学》九年级(下册)P21”参考上述教材中的话,判断方程x^2-2x=(1/x)-2实数根的情况是()A。
有三个实数根B。
有两个实数根C。
有一个实数根D。
无实数根4.已知二次函数y=ax^2+bx+c自变量x与函数值y之间满足下列数量关系:x=2.y=45;x=37.y=374.那么 (a+b+c)/2a的值为()A。
24B。
20C。
10D。
45.对于二次函数y=(x-1)^2+2的图象,下列说法正确的是()A。
开口向下B。
对称轴是x=-1C。
顶点坐标是(1,2)D。
与x轴有两个交点6.(2020•天水)二次函数y=ax^2+bx-1(a≠0)的图象经过点(1,1),则a+b+1的值是()A。
-3B。
-1C。
2D。
37.将函数y=x^2+6x+7进行配方正确的结果应为()A。
y=(x+3)^2+2B。
y=(x-3)^2+2C。
y=(x+3)^2-2D。
y=(x-3)^2-28.抛物线y=(1/2)(x-2)^2-3的顶点坐标是()A。
(2,-3)B。
(2,3)C。
(-2,3)D。
(-2,-3)二、填空题29.如图,是二次函数y=ax+bx+c图象的一部分,其对称轴为直线x=1,若其与x轴一交点为A(3,2),则由图象可知,不等式ax+bx+c<0的解集是()。
10.已知函数y=-x^2+ax-(2/a),当-1≤x≤1时的最大值是2,则实数a的值为()。
人教版九年级数学 同步练习 含答案_第二十五章__概率初步
第二十五章概率初步测试1 随机事件学习要求了解随机事件的意义,会判断必然事件、不可能事件和随机事件,知道不同随机事件发生的可能性.课堂学习检测一、填空题1.在下列事件中:①投掷一枚均匀的硬币,正面朝上;②投掷一枚均匀的骰子,6点朝上;③任意找367人中,至少有2人的生日相同;④打开电视,正在播放广告;⑤小红买体育彩票中奖;⑥北京明年的元旦将下雪;⑦买一张电影票,座位号正好是偶数;⑧到2020年世界上将没有饥荒和战争;⑨抛掷一只均匀的骰子两次,朝上一面的点数之和一定大于等于2;⑩在标准大气压下,温度低于0℃时冰融化;⑾如果a,b为实数,那么a+b =b+a;⑿抛掷一枚图钉,钉尖朝上.确定的事件有______;随机事件有______,在随机事件中,你认为发生的可能性最小的是______,发生的可能性最大的是______.(只填序号)二、选择题2.下列事件中是必然事件的是( ).A.从一个装有蓝、白两色球的缸里摸出一个球,摸出的球是白球B.小丹的自行车轮胎被钉子扎坏C.小红期末考试数学成绩一定得满分D.将豆油滴入水中,豆油会浮在水面上3.同时投掷两枚质地均匀的正方体骰子,骰子的六个面上分别刻有1到6的点数.下列事件中是不可能事件的是( ).A.点数之和为12 B.点数之和小于3C.点数之和大于4且小于8 D.点数之和为134.下列事件中,是确定事件的是( ).A.明年元旦北京会下雪B.成人会骑摩托车C.地球总是绕着太阳转D.从北京去天津要乘火车5.下列说法中,正确的是( ).A.生活中,如果一个事件不是不可能事件,那么它就必然发生B.生活中,如果一个事件可能发生,那么它就是必然事件C.生活中,如果一个事件发生的可能性很大,那么它也可能不发生D.生活中,如果一个事件不是必然事件,那么它就不可能发生三、解答题6.“有位从不买彩票的人,在别人的劝说下用2元买了一随机号码,居然中了500万”,你认为这样的事情可能发生吗?请简述理由.综合、运用、诊断7.一张写有密码的纸片被随意地埋在如图所示的矩形区域内,图中的四个正方形大小一样,则纸片埋在几号区域的可能性最大?为什么?8.在如图所示的图案中,黑白两色的直角三角形都全等.甲、乙两人将它作为一个游戏盘,游戏规则是:按一定距离向盘中投镖一次,扎在黑色区域为甲胜,扎在白色区域为乙胜.你认为这个游戏公平吗?为什么?9.用力旋转如图所示的甲转盘和乙转盘的指针,如果指针停在蓝色区域就称为成功.A同学说:“乙转盘大,相应的蓝色部分的面积也大,所以选乙转盘成功的机会比较大.”B同学说:“转盘上只有两种颜色,指针不是停在红色上就是停在蓝色上,因此两个转盘成功的机会都是50%.”你同意两人的说法吗?如果不同意,请你预言旋转两个转盘成功的机会有多大?拓广、探究、思考10.分别列出下列各项操作的所有可能结果,并分别指出在各项操作中出现可能性最大的结果.(1)旋转各图中的转盘,指针所处的位置.(2)投掷各图中的骰子,朝上一面的数字.(3)投掷一枚均匀的硬币,朝上的一面.测试2 概率的意义学习要求理解概率的意义;对于大量重复试验,会用事件的频率来估计事件的概率.课堂学习检测一、填空题1.在大量重复进行同一试验时,随机事件A 发生的______总是会稳定在某个常数的附近,这个常数就叫做事件A 的______.2.在一篇英文短文中,共使用了6000个英文字母(含重复使用),其中“正”共使用了900次,则字母“正”在这篇短文中的使用频率是______.3.下表是一个机器人做9999次“抛硬币”游戏时记录下的出现正面的频数和频率.抛掷结果 5次 50次 300次 800次 3200次 6000次 9999次 出现正面的频数 1 31 135 408 1580 2980 5006 出现正面的频率20%62%45%51%49.4%49.7%50.1%(1)由这张频数和频率表可知,机器人抛掷完5次时,得到1次正面,正面出现的频率是20%,那么,也就是说机器人抛掷完5次后,得到______次反面,反面出现的频率是______;(2)由这张频数和频率表可知,机器人抛掷完9999次时,得到______次正面,正面出现的频率是______;那么,也就是说机器人抛掷完9999次时,得到______次反面,反面出现的频率是______;(3)请你估计一下,抛这枚硬币,正面出现的概率是______. 二、选择题4.某个事件发生的概率是21,这意味着( ). A .在两次重复实验中该事件必有一次发生 B .在一次实验中没有发生,下次肯定发生 C .在一次实验中已经发生,下次肯定不发生 D .每次实验中事件发生的可能性是50%5.在生产的100件产品中,有95件正品,5件次品.从中任抽一件是次品的概率为( ). A .0.05 B .0.5 C .0.95 D .95 三、解答题6.某篮球运动员在最近几场大赛中罚球投篮的结果如下:投篮次数n 8 10 12 9 16 10 进球次数m 6 8 9 7 12 7 进球频率nm(1)计算表中各次比赛进球的频率;(2)这位运动员每次投篮,进球的概率约为多少?综合、运用、诊断7.下列说法:①频率是反映事件发生的频繁程度,概率反映事件发生的可能性大小;②做n 次随机试验,事件A 发生m 次,则事件A 发生的概率一定等于nm;③频率是不能脱离具体的n 次试验的实验值,而概率是具有确定性的不依赖于试验次数的理论值;④频率是概率的近似值,概率是频率的稳定值.其中正确的是______(填序号).8.某市元宵节期间举行了“即开式社会福利彩票”销售活动,印制彩票3000万张(每张彩票2元).在这些彩票中,设置了如下的奖项:奖金/万元 501584…数量/个20 20 20 180 …如果花2元钱购买1张彩票,那么能得到8万元以上(包括8万元)大奖的概率是______ 9.下列说法中正确的是( ).A .抛一枚均匀的硬币,出现正面、反面的机会不能确定B .抛一枚均匀的硬币,出现正面的机会比较大C .抛一枚均匀的硬币,出现反面的机会比较大D .抛一枚均匀的硬币,出现正面与反面的机会相等 10.从不透明的口袋中摸出红球的概率为51,若袋中红球有3个,则袋中共有球( ). A .5个 B .8个 C .10个 D .15个 11.柜子里有5双鞋,取出一只鞋是右脚鞋的概率是( ).A .21B .31 C .51D .101 12.某储蓄卡上的密码是一组四位数字号码,每一位上的数字可在0~9这10个数字中选取.某人未记准储蓄卡密码的最后一位数字,他在使用这张储蓄卡时,如果随意地 按一下密码的最后一位数字,正好按对密码的概率有多少?13.某地区近5年出生婴儿性别的调查表如下:出生年份 出生数 共计n =m 1+m 2出生频率男孩m 1 女孩m 2 男孩P 1女孩P 21996 52807 49473 102280 1997 51365 47733 99098 1998 49698 46758 96456 1999 49654 46218 95872 2000 4824345223934665年共计251767 235405 487172完成该地区近5年出生婴儿性别的调查表,并分别求出出生男孩和女孩概率的近似值.(精确到0.001)14.小明在课堂做摸牌实验,从两张数字分别为1,2的牌(除数字外都相同)中任意摸出一张,共实验10次,恰好都摸到1,小明高兴地说:“我摸到数字为1的牌的概率为100%”,你同意他的结论吗?若不同意,你将怎样纠正他的结论.拓广、探究、思考15.小刚做掷硬币的游戏,得到结论:掷均匀的硬币两次,会出现三种情况:两正,一正一反,两反,所以出现一正一反的概率是31.他的结论对吗?说说你的理由.16.袋子中装有3个白球和2个红球,共5个球,每个球除颜色外都相同,从袋子中任意摸出一个球,则:(1)摸到白球的概率等于______; (2)摸到红球的概率等于______; (3)摸到绿球的概率等于______;(4)摸到白球或红球的概率等于______;(5)摸到红球的机会______于摸到白球的机会(填“大”或“小”).测试3 用列举法求概率(一)学习要求会通过列举法分析随机事件可能出现的结果,求出“结果发生的可能性相等”的随机事件的概率.课堂学习检测一、填空题1.一个袋中装有10个红球、3个黄球,每个球只有颜色不同,现在任意摸出一个球,摸到______球的可能性较大.2.掷一枚均匀正方体骰子,6个面上分别标有数字1,2,3,4,5,6,则有: (1)P (掷出的数字是1)=______;(2)P (掷出的数字大于4)=______.3.某班的联欢会上,设有一个摇奖节目,奖品为钢笔、图书和糖果,标于一个转盘的相应区域上(如图所示),转盘可以自由转动,参与者转动转盘,当转盘停止时,指针落在哪一区域,就获得哪种奖品.则获得钢笔的概率为______,获得______的概率大.4.一副扑克牌有54张,任意从中抽一张. (1)抽到大王的概率为______;(2)抽到A 的概率为______; (3)抽到红桃的概率为______;(4)抽到红牌的概率为______;(红桃或方块) (5)抽到红牌或黑牌的概率为______. 二、选择题5.一道选择题共有4个答案,其中有且只有一个是正确的,有一位同学随意地选了一个答案,那么他选对的概率为( ).A .1B .21C .31D .416.掷一枚均匀的正方体骰子,骰子6个面分别标有数字1,1,2,2,3,3,则“3”朝上的概率为( ).A .61B .41C .31D .217.一个口袋共有50个球,其中白球20个,红球20个,蓝球10个,则摸到不是白球的概率是( ).A .54B .53C .52D .51三、解答题8.有10张卡片,每张卡片分别写有1,2,3,4,5,6,7,8,9,10,从中任意摸取一张卡片,问摸到2的倍数的卡片的概率是多少?3的倍数呢?5的倍数呢?9.小李新买了一部手机,并设置了六位数的开机密码(每位数码都是0~9这10个数字中的一个),第二天小李忘记了密码中间的两个数字,他一次就能打开手机的概率是多少?综合、运用、诊断一、填空题10.袋中有3个红球,2个白球,现从袋中任意摸出1球,摸出白球的概率是______. 11.有纯黑、纯白的袜子各一双,小明在黑暗中穿袜子,左脚穿黑袜子,右脚穿白袜子的概率为______.12.有7条线段,长度分别为2,4,6,8,10,12,14,从中任取三条,能构成三角形的概率是______. 二、选择题13.一个均匀的正方体各面上分别标有数字1,2,3,4,6,8,其表面展开图如图所示,抛掷这个立方体,则朝上一面的数字恰好等于朝下一面上的数字的2倍的概率是( ).A .32B .21 C .31D .6114.从6名同学中选出4人参加数学竞赛,其中甲被选中的概率是( ).A .31B .21C .53D .3215.柜子里有两双不同的鞋,取出两只刚好配一双鞋的概率是( ).A .21B .31 C .41 D .6116.设袋中有4个乒乓球,一个涂白色,一个涂红色,一个涂蓝、白两色,另一个涂白、红、蓝三色,今从袋中随机地取出一球.①取到的球上涂有白色的概率为43;②取到的球上涂有红色的概率为;21③取到的球上涂有蓝色的概率为;21④取到的球上涂有红色、蓝色的概率为,41以上四个命题中正确的有( ).A .4个B .3个C .2个D .1个 三、解答题17.随意安排甲、乙、丙3人在3天节日中值班,每人值班1天.(1)这3人的值班顺序共有多少种不同的排列方法? (2)其中甲排在乙之前的排法有多少种? (3)甲排在乙之前的概率是多少?18.甲、乙、丙三人参加科技知识竞赛,已知这三人分别获得了一、二、三等奖.在不知谁获一等奖、谁获二等奖、谁获三等奖的情况下,“小灵通”凭猜测事先写下了获奖证书,则“小灵通”写对获奖名次的概率是多少?拓广、探究、思考19.有两组相同的牌,每组4张,它们的牌面数字分别是1,2,3,4,那么从每组中各摸出一张牌,两张牌的牌面数字之和等于5的概率是多少?两张牌的牌面数字之和等于几的概率最小?20.用24个球设计一个摸球游戏,使得:(1)摸到红球的概率是,21摸到白球的概率是,31摸到黄球的概率是;61(2)摸到白球的概率是,41摸到红球和黄球的概率都是 83测试4 用列举法求概率(二)学习要求能运用列表法和树状图法计算一些事件发生的概率.课堂学习检测一、选择题 1.在一个暗箱里放入除颜色外其他都相同的3个红球和11个黄球,搅拌均匀后随机任取一个球,取到红球..的概率是( ). A .113B .118 C .1411 D .143 2.号码锁上有3个拨盘,每个拨盘上有0~9共10个数字,能打开锁的号码只有一个.任意拨一个号码,能打开锁的概率是( ).A .1B .101C .1001D .10001二、解答题3.在一个布口袋中装着只有颜色不同,其他都相同的白、红、黑三种颜色的小球各1只,甲乙两人进行摸球游戏;甲先从袋中摸出一球看清颜色后放回,再由乙从袋中摸出一球. (1)试用树状图(或列表法)表示摸球游戏所有可能的结果; (2)如果规定:乙摸到与甲相同颜色的球为乙胜,否则为负,试求乙在游戏中获胜的概率.4.一个袋子中装有红、黄、蓝三个小球,它们除颜色外均相同. (1)如果从中随机摸出一个小球,那么摸到蓝色小球的概率是多少?(2)小王和小李玩摸球游戏,游戏规则如下:先由小王随机摸出一个小球,记下颜色后放回,小李再随机摸出一个小球,记下颜色.当两个小球的颜色相同时,小王赢;当两个小球的颜色不同时,小李赢.请你分析这个游戏规则对双方是否公平?并用列表法或画树状图法加以说明.5.如图,两个转盘中指针落在每个数字上的机会相等,现同时转动A 、B 两个转盘,停止后,指针各指向一个数字.小力和小明利用这两个转盘做游戏,若两数之积为非负数则小力胜;否则,小明胜.你认为这个游戏公平吗?请你利用列举法说明理由.6.“石头、剪刀、布”是广为流传的游戏,游戏时比赛各方做“石头”、“剪刀”、“布”手势中的一种,规定“石头”胜“剪刀”,“剪刀”胜“布”,“布”胜“石头”,同种手势或三种手势循环不分胜负继续比赛,假定甲、乙、丙三人都是等可能地做这三种手势,那么:(1)一次比赛中三人不分胜负的概率是多少? (2)比赛中一人胜,二人负的概率是多少?7.经过某十字路口的汽车,它可能继续直行,也可能向左转或向右转.如果这三种可能性大小相同,三辆汽车经过这个十字路口,求下列事件的概率: (1)三辆车全部直行;(2)两辆车向右转,一辆车向左转; (3)至少有两辆车向左转.综合、运用、诊断一、填空题8.“五一”期间,梁先生驾驶汽车从甲地经过乙地到丙地游玩.甲地到乙地有两条公路,乙地到丙地有三条公路.每一条公路的长度如图所示(单位:km),梁先生任选一条从甲地到丙地的路线,这条路线正好是最短路线的概率是______.9.同时掷两枚普通的骰子,“出现数字之积为奇数”与“出现数字之积为偶数”的概率分别是______,______.10.银行为储户提供的储蓄卡的密码由0,1,2,…,9中的6个数字组成.某储户的储蓄卡被盗,盗贼如果随意按下6个数字,可以取出钱的概率是______.11.小明和小颖做游戏:桌面上放有5支铅笔,每次取1支或2支,由小明先取,最后取完铅笔的人获胜.如果小明获胜的概率为1,那么小明第一次应取走______支. 二、选择题12.有三条带子,第一条的一头是黑色,另一头是黄色,第二条的一头是黄色,另一头是白色,第三条的一头是白色,另一头是黑色.若任意选取这三条带子的一头,颜色各不相同的概率是( ).A .31B .41C .51D .6113.某校九年级学生中有5人在省数学竞赛中获奖,其中3人获一等奖,2人获二等奖.老师从5人中选2人向全校学生介绍学好数学的经验,则选出的2人中恰好一人是一等奖获得者,一人是二等奖获得者的概率是( ).A .51B .52C .53D .54三、解答题14.口袋里有红、绿、黄三种颜色的球,除颜色外其余都相同.其中有红球4个,绿球51个,任意摸出1个绿球的概率是3求:(1)口袋里黄球的个数;(2)任意摸出1个红球的概率.拓广、探究、思考15.小明走进迷宫,迷宫中的每一个门都相同,第一道关口有四个门,只有第三个门有开关,第二道关口有两个门,只有第一个门有开关,他一次就能走出迷宫的概率是______.16.请你设计一种均匀的正方体骰子,使得它掷出后满足下列所有条件:1(1)奇数点朝上的概率为;3(2)大于6的点数与小于3的点数朝上的概率相同.测试5 利用频率估计概率(一)学习要求会根据一个随机事件发生的频率估计这个事件发生的概率,学会用试验估计某事件出现的概率的操作过程.课堂学习检测一、填空题1.当实验次数很大时,同一事件发生的频率稳定在相应的______附近,所以我们可以通过多次实验,用同一个事件发生的______来估计这事件发生的概率.(填“频率”或“概率”) 2.50张牌,牌面朝下,每次抽出一张记下花色后放回,洗匀后再抽,抽到红桃、黑桃、梅花、方片的频率依次是16%、24%、8%、52%,估计四种花色分别有______张.3.在一个8万人的小镇,随机调查了1000人,其中有250人有订报纸的习惯,则该镇有订报纸习惯的人大约为______万人.4.为估计某天鹅湖中天鹅的数量,先捕捉10只,全部做上记号后放飞.过了一段时间后,重新捕捉40只,其中带有标记的天鹅有2只.据此可估算出该地区大约有天鹅______只.二、选择题5.如果手头没有硬币,用来模拟实验的替代物可用( ).A.汽水瓶盖B.骰子C.锥体D.两个红球6.在“抛硬币”的游戏中,如果抛了10000次,则出现正面的概率是50%,这是( ).A.确定的B.可能的C.不可能的D.不太可能的三、解答题7.对某厂生产的直径为4cm的乒乓球进行产品质量检查,结果如下:(1)计算各次检查中“优等品”的频率,填入表中;抽取球数n50 100 500 1000 5000优等品数m45 92 455 890 4500m优等品频率n(2)该厂生产乒乓球优等品的概率约为多少?8.某封闭的纸箱中有红色、黄色的玻璃球若干,为了估计出纸箱中红色、黄色球的数目,小亮向纸箱中放入25个白球,通过多次摸球实验后,发现摸到白球的频率为25%,摸到黄球的频率为40%,试估计出原纸箱中红球、黄球的数目.综合、运用、诊断一、填空题9.一口袋中有6个红球和若干个白球,除颜色外均相同,从口袋中随机摸出一球,记下颜色,再把它放回口袋中摇匀.重复上述实验共300次,其中120次摸到红球,则口袋中大约有______个白球.10.某班级有学生40人,其中共青团员15人,全班分成4个小组,第一小组有学生10人,其中共青团员4人.如果要在班内任选一人当学生代表,那么这个代表恰好在第一小组内的概率为______;现在要在班级任选一个共青团员当团员代表,问这个代表恰好在第一小组内的概率是______.二、解答题11.在5瓶饮料中有2瓶已过了保质期,从5瓶饮料中任取2瓶,则取到的2瓶都过了保质期的可能性是多少?请你用替代物进行模拟实验,估计问题的答案.12.某笔芯厂生产圆珠笔芯,每箱可装2000支.一位质检员误把一些已做标记的不合格产品也放入箱子里,若随机拿出100支,共做10次实验,这100支中不合格笔芯的平均数是5,你能估计箱子里有多少支不合格品吗?若每支合格品的利润为0.5元,如果顾客发现不合格品,需双倍赔偿(即每支赔1元),如果让这箱含不合格品的笔芯走上市场,根据你的估算这箱笔芯是赚是赔?赚多少或赔多少?13.为估计某一池塘中鱼的总数目,小英将100尾做了标记的鱼投入池塘中,几天后,随机捕捞,每次捕捞后做好记录,然后将鱼放回,如此进行20次,记录数据如下:总条数50 45 60 48 10 30 42 38 15 10标记数 2 1 3 2 0 1 1 2 0 1总条数53 36 27 34 43 26 18 22 25 47标记数 2 1 2 1 2 1 1 2 1 2(1)估计池塘中鱼的总数.根据这种方法估算是否准确?(2)请设计另一种标记的方法,使得估计更加精准.14.小明在乒乓球馆训练完后,不慎将若干白球放入了装有30个橙色球的袋子中,已知两种球除颜色外都相同,你能帮他设计一个方案来估计放进多少白球吗?拓广、探究、思考15.北京联通公司市场部经理小张想了解市内移动公司等对手的市场占有率及用户数量,你能帮他设计一种方案估计出其他公司用户的数量吗?16.一口袋中只有若干粒白色围棋子,没有其他颜色的棋子;而且不许将棋子倒出来数,请你设计一个方案估计出其中白色棋子的数目.测试6 利用频率估计概率(二)学习要求当调查估计某事件发生的概率比较困难时,会转化成某种“替代”实际调查的简易方法.课堂掌习检测一、填空题1.用频率来估计概率的值,得到的只是______,但随实验的次数增多,频率值与实际概率值的差会越来越趋近于______,此时对这个事件发生概率值估计的准确性也就越大. 2.某单位共有30名员工,现有6张音乐会门票,领导决定分给6名员工,为了公平起见,他将员工们按1~30进行编号,用计算器随机产生______~______之间的整数,随机产生的______个整数对应的编号去听音乐会.3.为了解某城市的空气质量,小明由于时间的限制,只随机记录了一年中73天空气质量情况,其中空气质量为优的有60天,请你估计该城市一年中空气质量为优的有______天. 4.利用计算器产生1~5的随机数(整数),连续两次随机数相同的概率是______. 二、选择题5.某口袋放有编号1~6的6个球,先从中摸出一球,将它放回口袋中后,再摸一次,两次摸到的球相同的概率是( )A .361B .181C .61D .216.某科研小组,为了考查某河流野生鱼的数量,从中捕捞200条,作上标记后,放回河里,经过一段时间,再从中捕捞300条,发现有标记的鱼有15条,则估计该河流中有野生鱼( )A .8000条B .4000条C .2000条D .1000条 三、解答题7.在一个不透明的口袋里装有只有颜色不同的黑、白两种颜色的球共20只,某学习小组做摸球实验,将球搅匀后从中随机摸出一个球记下颜色,再把它放回袋中,不断重复.下表是活动进行中的一组统计数据:摸球的次数n 100 150 200 500 800 1000 摸到白球的次数m 58 96 116 295 484 601 摸到白球的频率nm 0.580.640.580.590.6050.601(1)请估计:当n 很大时,摸到白球的频率将会接近______;(2)假如你去摸一次,你摸到白球的概率是______,摸到黑球的概率是______; (3)试估算口袋中黑、白两种颜色的球各有多少只?(4)解决了上面的问题,小明同学猛然顿悟,过去一个悬而未决的问题有办法了.这个问题是:在一个不透明的口袋里装有若干个白球,在不允许将球倒出来数的情况下,如何估计白球的个数(可以借助其他工具及用品)?请你应用统计与概率的思想和方法解决这个问题,写出解决这个问题的主要步骤及估算方法.8.某学校有50位女教师,但不知其校男教师的人数,一位同学为了弄清该校男教师的人数,他对每天进校时的第一位老师的性别进行了记录,他一共记录了200次,记录到女教师有80次.你能根据这位同学的记录估计出该校男教师的人数吗?请说明理由.综合、运用、诊断一、填空题9.均匀的正四面体各面分别标有1,2,3,4四个数字,同时抛掷两个这样的四面体,它们着地一面数字相同的概率是______.如果没有正四面体,设计一个模拟实验用来替代此实验:______________________________.10.有4根完全相同的绳子放在盒子中,然后分别将它们的两端相接连成一条绳子,问一根绳子的两端刚好都接有绳子的概率是______. 二、解答题11.某数学兴趣小组为了估计π的值设计了投针实验.平行线间的距离α=0.5m ,针长为0.1m ,向地面随机投了150次,经统计有19次针与平行线相交.试求出针与平行线相交的概率的近似值,并估计出π的值.12.小明在操场上做游戏,他发现地上有一个不规则的封闭图形ABC .为了知道它的面积,小明在封闭图形内划出了一个半径为1m 的圆,在不远处向圈内掷石子,且记录如下:掷子次数 50次 150次 300次 石子落在⊙O 内 (含⊙O 上)的次数m 1443 93 石子落在图形内的次数n1985186你能否求出封闭图形ABC 的面积?试试看.。
九年级数学同步练习习题
九年级数学同步练习习题学习必须与实干相结合。
每一门科目都有自己的学习方法,但其实都是万变不离其中的,数学其实和语文英语一样,也是要记、要背、要练的。
下面是小编给大家整理的一些九年级数学同步练习的学习资料,希望对大家有所帮助。
九年级数学同步练习题一、填空题(每题3分,满分30分)1. 数据显示,今年高校毕业生规模达到727万人,比去年有所增加。
数据727万人用科学记数法表示为人。
2. 函数中,自变量的取值范围是。
3. 如图,梯形ABCD中,AD∥BC,点M是AD的中点,不添加辅助线,梯形满足条件时,有MB=MC(只填一个即可)。
4. 三张扑克牌中只有一张黑桃,三位同学依次抽取,第一位同学抽到黑桃的概率为。
5. 不等式组2≤3x-7<8的解集为。
6. 直径为10cm的⊙O中,弦AB=5cm,则弦AB所对的圆周角是。
7. 小明带7元钱去买中性笔和橡皮(两种文具都买),中性笔每支2元,橡皮每块1元,那么中性笔能买支。
8. △A BC中,AB=4,BC=3,∠BAC=30°,则△ABC的面积为。
9. 如图,菱形ABCD中,对角线AC=6,BD=8,M、N分别是BC、CD的中点,P是线段BD上的一个动点,则PM+PN的最小值是。
10.如图,等腰Rt△ABC中,∠ACB=90°,AC=BC=1,且AC边在直线a上,将△ABC绕点A顺时针旋转到位置①可得到点P1 ,此时AP1= ;将位置①的三角形绕点P1顺时针旋转到位置②,可得到点P2,此时AP2=1+ ;将位置②的三角形绕点P2顺时针旋转到位置③,可得到点P3,此时AP3=2+ ;……,按此规律继续旋转,直至得到点P2014为止。
则AP2014= 。
苏教版九年级数学同步练习题一、选择题(每题3分,共24分)1.-2的相反数是( ▲ )A.-2B.- 12C.2D.122. 已知∠A=60°,则∠A的补角是( ▲ )A.160°B.120°C.60°D.30°3. 将5.62×10-4用小数表示为( ▲ )A.0.000 562B.0.000 056 2C.0.005 62D.0.000 005 624.下列等式错误的是( ▲ )A. B. C. D.5.如图,在Rt△ABC中,∠C=90°,∠B=60°,内切圆O与边AB、BC、CA分别相切于点D、E、F,则∠DEF为( ▲ ).A.55°B.60°C.75°D.80°6.某次知识竞赛中,10名学生成绩的统计表如下:分数(分) 60 70 80 90 100人数(人) 1 1 5 2 1则下列说法中正确的是( ▲ )A.学生成绩的极差是4B.学生成绩的中位数是80分C.学生成绩的众数是5D.学生成绩的平均数是80分7.一个几何体由一些小正方体摆成,其主视图与左视图如图所示,其俯视图不可能( ▲ )8.如图,网格中的每个小正方形的边长都是1, A1、A2、A3、…都在格点上,△A1A2A 3、△A3A4A 5、△A5A6A 7、…都是斜边在x轴上,且斜边长分别为2、4、6、…的等腰直角三角形.若△A1A2A 3的三个顶点坐标为A1(2,0)、A2(1,-1)、A3(0,0),则依图中所示规律,A203的坐标为( ▲ ).A.(-100,0)B.(100,0)C.(-99,0)D.(99,0)二、填空题(每题3分,共30分)9.计算:-1+3 = ▲ .10.因式分解mx2-2mx+m= ▲ .11.当x= ▲ 时,分式的值为0;12.将一次函数y=-2x+4的图象向左平移▲ 个单位长度,所得图象的函数关系式为y=-2 x.13.将一副三角板摆成如图所示,则∠AOB= ▲ ° ;14.已知图中的每个小方格都是边长为1的小正方形,每个小正方形的顶点称为格点.若△ABC与△A1B1C1是位似图形,且顶点都在格点上,则位似中心的坐标是▲ .15.已知鸟卵孵化后,雏鸟为雌与为雄的概率相同.如果2枚鸟卵全部成功孵化,则2只雏鸟都为雄鸟的概率为▲ .16.小明的圆锥玩具的高为12 cm,母线长为13cm,则其侧面积为▲ cm2.17.若关于x的一元二次方程有两个实数根,则k的取值范围是▲ .18.如图,A、C分别是x轴、y轴上的点,双曲线(x>0)与矩形OABC的边BC、AB分别交于E、F,若AF︰BF=1︰2,则△OEF的面积为▲九年级数学同步练习题一. 选择题:1. 如果(a-1)x+ax+a-1=0是关于x的一元二次方程,那么必有( )A. a≠0B. a≠1C. a≠-1D. a=±-12. 某种产品原来每件的成本是100元,由于连续两次降低成本,现在的成本是81元,设平均每次降低成本的百分率为x,则所得方程为( )22 A. 100(1+x)=81 B. 100(1-x)=81C. 81 (1-x)=100D. 81(1+x)=1002 3. 若a-b+c=0,则一元二次方程ax+bx+c=0有一根是( )A. 2B. 1C. 0D. -12 4. 若ax-5x+3=0,是一元二次方程,则不等式3a+6>0的解集是( ) 22221A. a>-2B. a<-2C. a>-2且a≠0D. a<25. 一元二次方程3x-2x=1的二次项系数、一次项系数、常数项分别是( )A. 3,2,1B. 3,-2,1C. 3,-2, -1D. -3,2,1二. 填空题:6. 关于x的一元二次方程(ax-1)(ax-2) =x-2x+6中,a的取值范围是|m-2| 7. 已知关于x的方程mx+2(m+1)x-3=0是一元二次方程,则m=22 8. k为何值时,(k-9)x+(k-5)x-3=0不是关于x的一元二次方程?22 9. 已知|a-25|+a+b+9=0,关于x的方程ax+bx=5x-4是一元二次方程,则25x+2x-1=。
九年级数学解直角三角形同步练习题(含答案)
九年级数学解直角三角形同步练习题(含答案)一、选择题(本大题共15小题,共45.0分)1.若角α的余角是30∘,则cosα的值是()A. 12B. √32C. √22D. √332.在Rt▵ABC中,∠C=90∘,sinA=35,则cosB的值是()A. 45B. 35C. 34D. 433.如图,Rt△ABC中,∠C=90°,点D在AC上,∠DBC=∠A.若AC=4,cosA=45,则BD的长度为()A. 94B. 125C. 154D. 44.已知a,b,c是△ABC的∠A,∠B,∠C的对边,且a:b:c=1:√2:√3,则cos B的值为()A. √63B. √33C. √22D. √245.如图,Rt△ABC中,∠C=90°,AB=5,cosA=45,以点B为圆心,r为半径作⊙B,当r=3时,⊙B与AC的位置关系是()A. 相离B. 相切C. 相交D. 无法确定6.如图,数学活动小组利用测角仪和皮尺测量学校旗杆的高度,在点D处测得旗杆顶端A的仰角∠ADE为55°,测角仪CD的高度为1米,其底端C与旗杆底端B之间的距离为6米,设旗杆AB的高度为x米,则下列关系式正确的是()A. tan55°=B. tan55°=C. sin55°=D. cos55°=7.如图,已知点A、点B是同一幢楼上的两个不同位置,从A点观测标志物C的俯角是65°,从B点观测标志物C的俯角是35°,则∠ACB的度数为()A. 25°B. 30°C. 35°D. 65°8.在Rt△ABC中,已知∠C=90∘.若AC=2BC,则sin∠A的值是()A. 12B. 2 C. √55D. √529.△ABC中,∠C=90°,若∠A=2∠B,则cosB等于()A. √3B. √33C. √32D. 1210.如图,△ABC中,AD⊥BC于点D,AD=2√3,∠B=30°,S△ABC=10√3,则tanC的值为()A. 13B. 12C. √33D. √3211.在Rt△ABC中,∠C=90,AC=12,cosA=1213,则tanA等于()A. 513B. 1312C. 125D. 51212.如图,点A、B、C均在小正方形的顶点上,且每个小正方形的边长均为1,则cos∠BAC的值为()A. 12B. √22C. 1D. √213.从一艘船上测得海岸上高为42米的灯塔顶部的仰角为30°时,船离灯塔的水平距离是()A. 42√3米B. 14√3米C. 21米D. 42米14.如图,在8×4的正方形网格中,若△ABC的三个顶点在图中相应的格点上,则tan∠ACB的值为()A. 13B. √1010C. 12D. √2215.把Rt△ABC三边的长度都扩大为原来的3倍,则锐角A的余弦值()A. 不变B. 缩小为原来的13C. 扩大为原来的3倍D. 扩大为原来的9倍二、填空题(本大题共1小题,共3.0分)16.计算:√27+(13)−2−3tan60°+(π−√2)0=______.三、计算题(本大题共1小题,共6.0分)17.如图,在A的正东方向有一港口B.某巡逻艇从A沿着北偏东55°方向巡逻,到达C时接到命令,立刻从C沿南偏东60°方向以20海里/小时的速度航行,从C到B航行了3小时.求A,B间的距离(结果保留整数).(参考数据:sin55°≈0.82,cos55°≈0.57,tan55°≈1.43,√3≈1.73)四、解答题(本大题共5小题,共40.0分)18.如图,A,B两点被池塘隔开,在AB外选一点C,连接AC,BC.测得BC=221m,∠ACB=45°,∠ABC=58°.根据测得的数据,求AB的长(结果取整数).参考数据:sin58°≈0.85,cos58°≈0.53,tan58°≈1.60.19.如图,在平面直角坐标系内,O为原点,点A的坐标为(10,0),点B在第一象限内,BO=5,sin∠BOA=.(1)求点B的坐标;(2)求tan∠BAO的值.)−1+√18−6sin45°.20.计算:(1221.如图,平台AB高为12m,在B处测得楼房CD顶部点D的仰角为45°,底部点C的俯角为30°,求楼房CD的高度(√3取1.7).22.如图,在△ABC中,∠C=90°,点D,E分别在AC,AB上,BD平分∠ABC,DE⊥AB于点E,AE=6,cosA=3.5(1)求CD的长;(2)求tan∠DBC的值.1.【答案】A【解析】【分析】本题考查了特殊角的三角函数值,属于基础题.先根据题意求得α的值,再求它的余弦值.【解答】解:因为角α的余角是30∘,所以α=90°−30°=60°,则.故选A.2.【答案】B【解析】解:在Rt△ABC中,∠C=90°,∴∠A+∠B=90°,∴cosB=sinA=,故选:B.3.【答案】C【解析】解:∵∠C=90°,AC=4,cosA=45,∴AB=ACcosA=5,∴BC=√AB2−AC2=3,∵∠DBC=∠A.∴cos∠DBC=cosA=BCBD =45,∴BD=3×54=154,故选:C.在△ABC中,由三角函数求得AB,再由勾股定理求得BC,最后在△BCD中由三角函数求得BD.本题主要考查了勾股定理,解直角三角形的应用,关键是解直角三角形.4.【答案】B【解析】解:∵,∴△ABC为直角三角形.cosB==.故选:B.5.【答案】B【解析】【分析】本题考查了直线与圆的位置关系的应用,注意:直线和圆有三种位置关系:相切、相交、相离.根据三角函数的定义得到AC,根据勾股定理求得BC,和⊙B的半径比较即可.【解答】解:∵Rt△ABC中,∠C=90°,AB=5,cosA=45,∴ACAB =AC5=45,∴AC=4,∴BC=√AB2−AC2=3,∵r=3,∴⊙B与AC的位置关系是相切,故选:B.6.【答案】B【解析】【解析】解:∵在Rt△ADE中,DE=6,AE=AB−BE=AB−CD=x−1,∠ADE=55°,∴sin55°=,cos55°=,tan55°=,故选:B.7.【答案】B【解析】【解析】解:根据题意可知:∠ACD=65°,∠BCD=35°,∴∠ACB=∠ACD−∠BCD=30°.故选:B.8.【答案】C【解析】【分析】本题主要考查了锐角三角函数的求法,属于基础题.可先求出斜边AB,然后根据正弦的定义求出角A的正弦即可.【答案】解:∵AC=2BC,由勾股定理可得:AB=√AC2+BC2=√(2BC)2+BC2=√5BC,∴sin∠A=BCAB =√5=√55,故选C.9.【答案】C【解析】解:∵∠C=90°,∴∠A+∠B=90°,∵∠A=2∠B,∴∠B=30°,∴cosB=cos30°=√32,故选:C.根据直角三角形的性质求出∠B,根据30°的余弦值是√32解答.本题考查的是特殊角的三角函数值、直角三角形的性质,熟记特殊角的三角函数值是解题的关键.10.【答案】D【解析】解:∵在△ABD中,∠ADB=90°,AD=2√3,∠B=30°,∴BD=ADtanB =√3√33=6.∵S△ABC=12BC⋅AD=10√3,∴12BC⋅2√3=10√3,∴BC=10,∴CD=BC−BD=10−6=4,∴tanC=ADCD =2√34=√32.故选:D.首先解直角△ABD,求得BD,再根据S△ABC=10√3,求出BC,那么CD=BC−BD,然后在直角△ACD中利用正切函数定义即可求得tanC的值.本题考查了解直角三角形,三角形的面积,锐角三角函数定义,解题的关键是求出CD的长.【解析】解:∵cosA=ACAB =1213,AC=12,∴AB=13,BC=√AB2−AC2=5,∴tanA=BCAC =512.故选:D.根据cosA=1213求出第三边长的表达式,求出tanA即可.本题利用了勾股定理和锐角三角函数的定义.12.【答案】B【解析】解:连接BC,∵每个小正方形的边长均为1,∴AB=√5,BC=√5,AC=√10,∵(√5)2+(√5)2=(√10)2,∴△ABC是直角三角形,∴cos∠BAC=ABAC =√5√10=√22,故选:B.根据题目中的数据和勾股定理,可以求得AB、BC、AC的长,然后根据勾股定理逆定理可以判断△ABC的形状,从而可以求得cos∠BAC的值.本题考查解直角三角形、勾股定理与逆定理,解答本题的关键是明确题意,判断出△ABC 的形状,利用锐角三角函数解答.13.【答案】A【解析】解:根据题意可得:船离海岸线的距离为42÷tan30°=42√3(米)故选:A.在直角三角形中,已知角的对边求邻边,可以用正切函数来解决.本题考查解直角三角形的应用−仰角的定义,要求学生能借助仰角构造直角三角形并解直角三角形.【解析】【分析】本题主要考查正切值的求法,解题的关键是构造直角三角形.作AH⊥CB,交CB延长线于H点,∠ACB的正切值是AH与CH的比值.【解答】解:如图,作AH⊥CB,交CB延长线于H点,则tan∠ACB=AHHC =26=13.故选A.15.【答案】A【解析】【分析】本题考查的是相似三角形的判定和性质、锐角三角函数的定义,掌握相似三角形的对应角相等是解题的关键.根据相似三角形的性质解答.【解答】解:三边的长度都扩大为原来的3倍,则所得的三角形与原三角形相似,∴锐角A的大小不变,∴锐角A的余弦值不变,故选:A.16.【答案】10【解析】解:原式=3√3+9−3√3+1=10.故答案为:10.直接利用零指数幂的性质以及特殊角的三角函数值、负整数指数幂的性质分别化简得出答案.此题主要考查了实数运算,正确化简各数是解题关键.17.【答案】解:如图,过点C作CD⊥AB于点D,由题意可知:∠ACD=55°,∠BCD=60°,BC=20×3=60(海里),BC=30(海里),BD=30√3(海里),在Rt△BCD中,CD=12在Rt△ADC中,AD=CD⋅tan55°=30×1.43≈42.90(海里),∴AB=AD+BD=42.90+30√3≈95(海里).答:A,B间的距离为95海里.【解析】过点C作CD⊥AB于点D,根据三角函数分别求出CD、BD、AD的长,进而可求出A、B间的距离.本题考查了解直角三角形的应用−方向角问题,解决本题的关键是掌握方向角的定义.18.【答案】解:如图,过点A作AD⊥BC,垂足为D,∵∠ACB=45°,∴AD=CD,设AB=x,在Rt△ADB中,AD=AB⋅sin58°≈0.85x,BD=AB⋅cos58°≈0.53x,又∵BC=221,即CD+BD=221,∴0.85x+0.53x=221,解得,x≈160,答:AB的长约为160m.【解析】通过作高,构造直角三角形,利用直角三角形的边角关系,列方程求解即可.本题考查直角三角形的边角关系,掌握直角三角形的边角关系,即锐角三角函数,是正确解答的前提,通过作辅助线构造直角三角形是常用的方法.19.【答案】解:(1)如图,过点B作BH⊥OA于点H,∵OB=5,sin∠BOA=,∴BH=3,OH=4,∴点B的坐标为(4,3),(2)∵OA=10,∴AH=OA−OH=10−4=6,∴在Rt△AHB中,tan∠BAO===.【解析】解答案20.【答案】解:(12)−1+√18−6sin45°=2+3√2−6×√2 2=2+3√2−3√2=2.【解析】首先计算负整数指数幂、开方和特殊角的三角函数值,然后计算乘法,最后从左向右依次计算,求出算式的值即可.此题主要考查了实数的运算,解答此题的关键是要明确:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.另外,有理数的运算律在实数范围内仍然适用.21.【答案】解:如图,过点B作BE⊥CD于点E,根据题意,∠DBE=45°,∠CBE=30°.∵AB⊥AC,CD⊥AC,∴四边形ABEC为矩形.∴CE=AB=12m.在Rt△CBE中,cot∠CBE=BE,CE∴BE=CE⋅cot30°=12×√3=12√3.在Rt△BDE中,由∠DBE=45°,得DE=BE=12√3.∴CD=CE+DE=12(√3+1)≈32.4.答:楼房CD的高度约为32.4m.【解析】首先分析图形,根据题意构造直角三角形.本题涉及多个直角三角形,应利用其公共边构造关系式求解.考查了解直角三角形的应用−仰角俯角问题,本题要求学生借助俯角构造直角三角形,并结合图形利用三角函数解直角三角形.22.【答案】解:(1)在Rt△ADE中,∠AED=90°,AE=6,cosA=3,5∴AD=AE=10,cosA∴DE=√AD2−AE2=√102−62=8.∵BD平分∠ABC,DE⊥AB,DC⊥BC,∴CD=DE=8;(2)由(1)AD=10,DC=8,∴AC=AD+DC=18,在△ADE与△ABC中,∵∠A=∠A,∠AED=∠ACB,∴△ADE∽△ABC,∴DEBC =AEAC,即8BC=618,BC=24,∴tan∠DBC=CDBC =824=13.【解析】(1)在Rt△ADE中,根据余弦函数的定义求出AD,利用勾股定理求出DE,再由角平分线的性质可得DC=DE=8;(2)由AD=10,DC=8,得AC=AD+DC=18.由∠A=∠A,∠AED=∠ACB,可知△ADE∽△ABC,由相似三角形对应边成比例可求出BC的长,根据三角函数的定义可求出tan∠DBC=13.本题考查了解直角三角形,角平分线的性质、相似三角形的判定与性质,三角函数的定义,求出DE是解第(1)小题的关键;求出BC是解第(2)小题的关键.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
九年级数学同步练习题
一、选择题:
1.下列说法正确的是( )
A.垂直于半径的直线是圆的切线
B.通过三点一定能够作圆
C.圆的切线垂直于圆的半径
D.每个三角形都有一个内切圆 2.三角形的外心是( )
A.三条中线的交点
B.三条边的垂直平分线的交点
C.三个内角平分线的交点
D.三条高的交点
3.如图(1),已知PA 切⊙O 于B,OP 交AB 于C,则图中能用字母表示的直角共有( ) 个 A.3 B.4 C.5 D.6
P
(2)
图3
4.已知⊙O 的半径为10cm,弦AB ∥CD,AB=12cm,CD=16cm,则AB 和CD 的距离为( ) A.2cm B.14cm C.2cm 或14cm D.10cm 或20cm
5.在半径为6cm 的圆中,长为2 cm 的弧所对的圆周角的度数为( ) A.30° B.100 C.120° D.130°
6.如图(2),已知圆心角∠AOB 的度数为100°,则圆周角∠ACB 的度数是( ) A.80° B.100° C.120° D.130°
7.若两圆半径分别为R 和r(R>r),圆心距为d,且R 2+d 2=r 2
+2Rd, 则两圆的位置关系为( ) A.内切 B.内切或外切 C.外切 D.相交 8.圆锥的母线长5cm,底面半径长3cm,那么它的侧面展开图的圆心角是( ) A.180° B.200° C.225° D.216° 9.如图(3),某都市公园的雕塑是由3个直径为1m 的圆两两相垒 图4
立在水平的地面上,则雕塑的最高点到地面的距离为[ ]
A .
232+ B.233+ C.2
2
2+ D. 223+
图5
二、填空题:
1.假如⊙O 的直径为10cm,弦AB=6cm,那么圆心O 到弦AB 的距离为______cm.
2.如图(4),在⊙O 中,直径AB 为10cm ,弦AC 为6cm ,∠ACB 的平分线交⊙O 于D ,则BC= cm, ∠ABD= °
3.如图(5):PT 切⊙O 于点T ,通过圆心的割线PAB 交⊙O 于点A 和B ,PT=4,PA=2,则⊙O 的半径是 ;15.PA 、PB 是⊙O 的切线,A 、B 为切点,若∠AOB=136°,则∠P=______.
4.⊙O 的半径为6,⊙O 的一条弦AB 长以3为半径的同心圆与直线AB 的位置关系是__________.
5.两圆相切,圆心距为10cm,已知其中一圆半径为6cm, 则另一圆半径为____
6.两圆半径长分别为R 和r(R>r),圆心距为d,若关于x 的方程x 2
-2rx+(R-d)2
=0有相等的实数根,则两圆的位置关系是_________.1、正方形ABCD 中,AB=1,分别以A 、C 为圆心作两个半径为R 、r (R>r )的圆,当R 、r 满足条件 时,⊙A 与⊙C 有2个交点。
(A ) R+r>2 (B )R-r<2< R+r (C )R-r>2 (D )0<R-r<2 P
B
7、已知圆柱的母线长是10cm ,侧面积是40cm 2
,则那个圆柱的底面半径是 cm ; 8、已知图(6)中各圆两两相切,⊙O 的半径为2r ,⊙O 1 、⊙O 2 的半径为r ,则⊙O 3 的半径是______________;
A
B C D
图7
图6 9、某工厂要选一块矩形铁皮加工一个底面半径为20cm ,高为240cm 的锥形漏斗,要求只能有一条接缝(接
缝忽略不计),要想用料最省,矩形的边长分别是 10.如图7,两个半圆中,长为6的弦CD 与直径AB 平行且与小半圆相切,那么图中阴影部分的面积等于_____. 11.如图,三个半径为3的圆两两外切,且ΔABC 的每一边都与其中的两个圆相切,那么ΔABC 的周长
是 ;
三、解答题
1.如图,P 是⊙O 外一点,PAB 、PCD 分别与⊙O 相交于A 、B 、C 、D.
(1)PO 平分∠BPD ;(2)AB =CD ;(3)OE ⊥CD ,OF ⊥AB ;(4)OE =OF .
从中选出两个作为条件,另两个作为结论组成一个真命题,并加以证明,与同伴交流.
A
B
P
O
E
F
C
D
2.如图,已知AB 为⊙O 的直径,CE 切⊙O 于C 点,过B 点的直线BD 交直线CE 于D 点,假如BC 平分∠ABD 。
求证:BD ⊥CE 。
3。
如图,AB 是⊙O 的直径,BC 是弦,延长BC 到D ,使CD = BC ,CE 切⊙O 于点C ,交AD 于E ,
求证:CE ⊥AD
4.如图,以Rt △ABC 的直角边AB 为直径的半圆O ,与斜边AC 交于D ,E 是BC 边上的中点,连结DE.
(1) DE 与半圆O 相切吗?若相切,请给出证明;若不相切,请说明理由; (2) 若AD 、AB 的长是方程x 2
-10x+24=0的两个根,求直角边BC 的长。
5.如图,在矩形ABCD 中,AB =3,BC =4,P 是边AD 上一点(除端点外),过三点A ,B ,P 作⊙O . (1)指出圆心O 的位置;
(2)当AP =3时,判定CD 与⊙O 的位置关系;
(3)当CD 与⊙O 相切时,求BC 被⊙O 截得的弦长.
6.如图⊙O 1与⊙O 2是等圆,相交于A 、B ,CD 过点A 与两圆交于C 、D ,BE ⊥CD ,求证:CE=ED 。
7.如图⊙O 与⊙O 1交于A 、B 两点,O 1点在⊙O 上,AC 是⊙O 直径,AD 是⊙O 1直径,连结CD ,求证:AC=CD 。
E
D
B 12
A C
O O B 1
A C O O D
8.如图,⊙O 1与⊙O 2交于A 、B 两点,P 是⊙O 1上的点,连结PA 、PB 交⊙O 2于C 、D ,求证:PO 1⊥CD 。
9.如图,⊙O 1和⊙O 2相交于 A 、B 两点,CD 是过A 点的割线交⊙O 1于C 点,交⊙O 2于D 点,BE 是⊙O 2
的弦交⊙O 1于F ,求证:DE ∥CF
10.如图,∠AOB =120°,
的长为2π,⊙O 1和
、OA 、OB 相切于点C 、D 、E ,
求 : ⊙O 1的周长.
A
B
C D
O 1
E
11.如图,一个圆锥的高为33 cm ,侧面展开图是半圆.求:(1)圆锥的母线长与底面半径之比; (2)锥角的大小(锥角为过圆锥高的平面上两母线的夹角); (3)圆锥的侧面积
A
B
C
B 12A
C O
O D
P
O 1
B
O 2A
C
D
E
F
12.如图所示,在Rt△ABC中,∠BAC=90°,AC=AC=2,以AB为直径的圆交BC于D, 求图形阴影部分的面积.
13. 已知如图7-101
于E
A
B C
D
F
E
图7-101
14.
半径作弧与CD相切于E
15.如图13,正三角形ABC的中心恰好为扇形ODE的圆心,且点B在扇形内,要使扇形ODE绕点O不管如
何样转动,△ABC与扇形重叠部分的面积总等于△ABC的面积的
3
1
,扇形的圆心角应为多少度?说明你的理由.
.
n
A
B
C
D.B
16、如图,⊙O半径为2,直径CD以O为中心,在⊙O所在平面内转动,
当CD 转动时,OA固定不动,0°≤∠DOA≤90°,且总有BC∥OA,AB∥CD,
若OA=4,BC与⊙O交于E,连AD,设CE为x,四边形ABCD的面积为y。
(1)求y关于x的函数解析式,并指出x的取值范畴;
(2)当x=23时,求四边形ABCD在圆内的面积与四边形ABCD的面积之比;
(3)当x取何值时,四边形ABCD为直角梯形?连EF,现在OCEF变成什么图形?(只需说明结论,不必证明)。
A
(1)求证:PC是⊙D的切线;(2)判定在直线PC上是否存在点E,使得S△EOC=4S△CDO,若存在,
.
求出点E的坐标;若不存在,请说明理由
18.如图,O是已知线段AB上一点,以OB为半径的⊙O交线段AB于点C,以线段AO为直径的半圆交⊙O 于点D,过点B作AB的垂线与AD的延长线交于点E;
(1)求证:AE切⊙O于点D;
(3)当点O位于线段AB何处时,⊿ODC恰好是等边三角形?并说明理由。