汽油机缸内直喷技术GDI
国外GDI发动机技术特点及发展趋势

国外GDl发动机技术特点及发展趋势汽油缸内直接喷射式(GD I )发动机,是上世纪90年代末国外内燃机研究与开发中最引人注目的发动机。
专家们认为,GDl发动机的出现使汽车发动机技术进入了一个崭新的时代。
它将在21世纪取代传统的汽油机和柴油机而成为轿车最理想的动力装置。
1总体发展动向传统的汽油发动机,是将燃油喷射到进气管中,与空气混合后再进入气缸内燃烧。
而GD I发动机的工作特点是,将燃油直接喷入气缸,利用缸内气流和活塞表面的燃料雾化效果达到燃烧的目的。
据有关资料介绍,GDl发动机在工作的均匀性及全负荷下的性能方面都有极佳的表现,而且使汽油机的冷车工作不稳定性问题也有了显著的改善。
此外,GDl发动机还有实现分层燃烧的特点,可使燃油经济性大大提高。
G D I发动机与一般汽油发动机的主要区别在于汽油喷射的位置,目前一般汽油发动机上所用的汽油电控喷射系统,是将汽油喷入进气歧管或进气管道上,与空气混合成混合气后再通过进气门进入气缸燃烧室内被点燃作功;而GD I缸内喷注式汽油发动机顾名思义是在气缸内喷注汽油,它将喷油嘴安装在燃烧室内,将汽油直接喷注在气缸燃烧室内,空气则通过进气门进入燃烧室与汽油混合成混合气被点燃作功,这种形式与直喷式柴油机相似,因此有人认为,GDl汽油发动机是将柴油机的形式移植到汽油机上的一种创举。
缸内喷注的关键在于产生与传统发动机不同的缸内气流运动状态,通过技术手段使喷射入气缸的汽油与空气形成一种多层次的旋转涡流。
因此GDl采用了立式吸气口、弯曲顶面活塞、高压旋转喷射器等三种技术手段。
目前,各国的汽车公司都在大力开发和采用这种技术先进、性能优异的产品。
日本三菱汽车公司一直处于领先地位。
自1996年8月率先向市场投放第一台 GDl发动机以来,三菱公司先后又开发出了多种不同类型的GDl发动机,即 2.4L四缸机、3. OL六缸机和3. 5L六缸机,它们己分别装用于四种中、大型轿车投放市场。
近年来,该公司又推出多种GDl新机型:4. 5L的V8机、L 5L的直列四缸机和O. 66L的直列三缸机。
缸内直喷see

(2)三菱GDI基础技术 总体来说,三菱公司是采用了四个关键技术来实现 GDI的。立式吸气口使最理想的气流进入气缸;弯曲顶 面活塞通过对燃油空气混合气定形来控制燃烧;高压燃 料泵提供了缸内直接喷射的必要压力;而高压旋转喷射 器控制了燃料喷雾的蒸发和扩散。 这些基础技术与其他燃料控制技术的结合让三菱的GDI 发动机实现了低燃油消耗以及高功率输出。在下文将分 别进行详细介绍。
2.燃油供给系统的组成
1)低压油泵 低压油泵是电动泵,并联一个机械式燃油压力调节器,出口 压力为0.35MPa. 2)高压油泵 高压油泵由发动机的凸轮轴驱动在0.35MPa基础上将油压 提高到12MPa. 3)燃油蓄压器 用铝制成管状,上有用于连接高压油泵、喷油器、燃油 压力传感器和燃油压力控制阀。 4)燃油压力传感器 用于测定燃油蓄压器中的压力,测量电阻采用薄膜技术。
3.控制策略
1)按工况区分控制模式 GDI之所以能节油20%,主要是低 工况范围无节流损失的超稀薄燃烧,采用充气分层,而充气分 层离不开推迟喷油的配合。高工况范围恰恰相反,强调的是提 高转矩和功率,必须采取略稀或λ≤1的混合气。
2)转矩控制策略 低工况加速质调节 高工况加速量调节
3)模式切换策略 低工况质调节和高工况量调节两种模式间的切换需要进行 控制。 (1)切换前,节气门必须先关闭,进气压力下降,A/F↓, 此时必须避开A/F=19~23的禁区,质调节在A/F<22(λ<1.5) 左右时会产生黑烟;而采用变量调节时A/F超过19 (λ=1.3) 左右时会发生燃烧不稳定甚至缺火 .所以切换点要增加喷油量, 使A/F突变,迅速越过上述禁区 (2) A/F突然↓会使转矩突然↑,为使转矩保持恒定,必 须减小点火提前角,以抵消影响。
HC排量不高,在第2个工作循环时即可正常运转。
汽油机缸内直喷技术(GDI)

且 比较 容 易进行 混 合 过程 的控 制 , 本 低 廉 , 成 因此 成 为 当前 的 主流模 式 。但 是 在该种 导 向模式 中 . 一旦 在
壁面形 成燃油 附着 , 使未 燃 H 会 C的排 放极 度恶 化 。
0
C o
盎
期
年应 用传 统涡 旋式 喷油 器和逆 向滚流技 术 。 功地 开 成 发 了第 一套商 业用 G I D 系统 。德 国大 众公 司 于 2 0 00
年 向市 场 投 放 了 F I 缸 内直 喷 汽 油机 ;0 1年标 s型 20 志一 铁龙公 司开 发 了 H I 内直喷 系统 ,丰 田公 司 雪 P缸 推 出 D 4 直喷式火花点火发 动机 。 比而言 。 -型 相 国内对 汽油机缸 内直喷技术的研究起 步喷 技 术原 理 ? 问 请
答 : 内直喷 汽油 机稀 薄燃 烧技术 分 为均质 稀燃 缸 和分层稀 燃 两种燃 烧模 式 。 中小负荷 时 。 压缩 行程 在
后 期 开 始喷 油 , 过 与燃 烧 系统 的合 理 配合 。 通 在火 花
油 导向火 花塞 。 在 火花塞 周 围形成 一定 适合 浓度 的 并
岭
。
《 岭
c 嗡
’ c》 塑》0畸 《岭| M E 《 ・ 。 0
一
汽油机缸 内直喷技术( GDI )
刘 锦文 将 一个 循 环 中 的喷油 量分 两 次 喷 人气 缸 可 以很 好 的
、
最终 在火 花 塞 附近形 成 较浓 的可 燃混 合 气 , 种 这 问 : 什 么 要 发展 汽 油 机 缸 内直 喷技 术 油 , 为
之 间 已分 离 , 它两 根摇 臂 不受 它 的 控制 , 以不会 其 所 影 响气 门的开 闭状 态 。 发动机 达 到某一 个设 定 的高转 速时 。 电脑 即会 指 令 电磁 阀起 动 液 压 系统 , 动摇 臂 内 的小 活塞 , 三 推 使 根 摇臂 锁成 一 体 一起 由 中间 凸轮 来驱 动 。 由于 中间 凸 轮 比其它 凸轮 都高 , 程 大 , 以进 气 门开 起 时 间 升 所 延长 , 升程 也增大 了 。 当发动 机转 速降 低到 某一 个设定 的低 转速 时 。 摇 臂内的液压也随之降低 。 活塞在 回位弹簧作用下退回 原位 。 三根摇 臂分 开 。 整个 V E T C系统 由发 动 机 电子 控 制 单 元 (C E U)
汽车发动机:发动机缸内直喷工作原理

汽车发动机:发动机缸内直喷工作原理
汽车发动机是汽车的心脏,而发动机缸内喷油技术在汽车发动机中占据了重要的位置。
那么,发动机缸内直喷工作的原理是什么呢?
发动机缸内直喷技术,又称为汽油直喷技术,是一种先进的汽车喷油技术。
该技术采用了高压喷油系统和电脑控制,实现了发动机缸内直接喷油,使汽车发动机的性能和效率得到了大幅度提升,同时也减少了污染排放。
发动机缸内直喷的工作原理可以简要概括为以下几个步骤:
第一步:高压油泵将汽油从油箱中抽取并压缩至高压状态。
第二步:高压油泵将压缩后的汽油经过高压油管送到发动机缸内的喷嘴。
第三步:电脑控制喷嘴的开闭,将汽油在缸内形成雾状。
由于发动机缸内温度和压力的高涨,汽油几乎瞬间就能被蒸发和气化,形成一个高温、高压的喷油峰值。
第四步:发动机活塞缸通过压力推动活塞向下运动,汽油燃烧,推动
活塞向上运动,完成了一次工作循环。
总体来说,发动机缸内直喷工作的过程可以看作是喷油、燃烧、推动
活塞这三个过程的不断重复。
在喷油、燃烧、推动活塞等过程中,高
压燃油能够精准地定量喷入发动机缸内,提高了发动机的功率和效率,同时也能够显著降低燃油的消耗和污染排放。
此外,发动机缸内直喷技术的应用,也促进了发动机压缩比和燃烧效
率的提高,从而增强了发动机在启动时的动力表现,使汽车更加省油、环保、安全。
因此,发动机缸内直喷技术被广泛应用于现代汽车上,
成为现代汽车零部件中不可或缺的一部分。
总之,发动机缸内直喷技术的工作原理对于现代化的汽车制造不可或缺,它通过燃油的喷射使发动机功率和效率得到巨大提升,并在减少
环境污染方面发挥了重要作用。
缸内直喷简介

因此,在大负荷工况时,一个工作循环中,喷 因此,在大负荷工况时,一个工作循环中, 油器发生两次脉冲信号, 油器发生两次脉冲信号,必须是用瞬时高电压 和大电流“峰值保持型”驱动方式( 100~ 和大电流“峰值保持型”驱动方式(用100~ 110V和17~20A打开 110V和17~20A打开) 。 打开) 两次喷射”也可在起动工况、 “两次喷射”也可在起动工况、急加速工况出 以调节空燃比A/F的大小 改善使用性能。 的大小, 现,以调节空燃比A/F的大小,改善使用性能。 可见,只有在等速稳定工况行驶,才能节油。 可见,只有在等速稳定工况行驶,才能节油。
检测方法: 检测方法: 可燃混合气较浓, (1)在小负荷工况时 可燃混合气较浓,输出 )在小负荷工况时—可燃混合气较浓 电压应为0.66v左右;在中等负荷工况时 可燃混 左右; 电压应为 左右 在中等负荷工况时—可燃混 合气较稀,输出电压应为3.3v左右。 左右。 合气较稀,输出电压应为 左右 (2)连续地快速加减油门踏板,输出电压应连 )连续地快速加减油门踏板, 续的变化,反应时间应为1.1s为好(与传统数据 为好( 续的变化,反应时间应为 为好 相近, 相近,10s>8次)。 > 次 3)宽带氧传感器,也有多组故障代码, (3)宽带氧传感器,也有多组故障代码,如: P1133—A/F传感器反应速度过慢; 传感器反应速度过慢; 传感器反应速度过慢 P0171—混合气稀。等等 混合气稀。 混合气稀 等等----
5、高压旋流式喷油器— 高压旋流式喷油器— ECU直接用脉冲电流 由ECU直接用脉冲电流 的宽度, 的宽度,控制喷油量的多 利用特殊的喷孔形状, 少,利用特殊的喷孔形状, 向气缸内喷出旋转的雾状 燃油, 燃油,与挤压涡流快速的 混合,以便点火燃烧。 混合,以便点火燃烧。它 没有进气管沉积油膜的缺 又因喷油压力较高, 点,又因喷油压力较高, 喷油器的自洁功能高, 喷油器的自洁功能高,不 易产生脏堵故障。 易产生脏堵故障。
缸内直喷技术

2、汽车发动机新技术---缸内直喷式
近年来,当代汽车汽车飞速发展,汽车新技术不断涌现和应用,带动汽车性能不断改善。下面就现代缸内直喷式汽油机进行简单介绍。
汽油机的发展经历了100多年的漫长历史,其中具有里程碑意义的发展阶段无不是以油气混合方式和机理的变迁为标志的。
早期的化油器式汽油机依靠化油器喉口气流流速增加所产生的真空度将汽油吸出被高速进气空气流雾化以及汽油油滴本身的蒸发而与空气形成可燃混合汽。油气混合比(空燃比=进气空气质量/燃油质量)取决于化油器喉口的设计和量孔直径,负荷的调节是由节气门的开度来调节进入汽缸的油气混合汽量来实现的,因此属于混合汽外部形成的量调节方式,且没有任何反馈控制。由于汽油-空气混合汽能在相当宽的空燃比范围内点燃,这种不太精确的控制对早期汽油机的正常运行并不存在什么问题。
既然油气混合物能有如此惊人的杀伤力,那在汽车上引入显然也会获得更高的动力和更省油的表现。根据云爆弹原理,大众为高压泵设计了一个非常精巧的结构,通过进气阀的凸轮轴来为油泵提供动力,这样很好的解决了油泵和进气阀之间的正时问题,也提高了燃油效率;同时作为一个纯机械的结构,这个高压泵具备了非常高的可靠性,大众(博世)甚至还设计了一个内部保护回路防止油压过高。可惜的是,大众和博世的设计尽管确保了机械自身的可靠性,但高压燃油轨(Rail)里的高压燃料是无法保护的,为了保证发动机运转的顺畅性,燃油轨中必须保持一定的压力。这个在平时是没有问题的,问题就出在了碰撞上。当发动机受到巨大的外力撞击时,位于发动机前部的高压共轨喷射系统就成了发动机首先受到撞击的部分。
GDI发动机的发展趋势

缸内直喷汽油机技术发展趋势分析、八、-前言近几十年来,受能源日益枯竭、油价不断上涨、全球变暖等问题的困扰,在满足发动机排放要求的前提下改善发动机燃油经济性显得格外迫切。
由于汽油机的燃油经济性比柴油机差,所以。
降低汽油机的能耗已经成为汽车界当前必须要解决的问题。
开发具有汽油机优点同时又具备柴油机部分负荷高燃油经济性优点的车用发动机是主要的研究目标。
汽油缸内直(GDI)是提高汽油机燃油经济性的重要手段,近些年来,以缸内直喷为代表的新型混合气形成模式的研究与应用极大地提高了汽油机的燃油经济性。
1.GDI 发动机技术发展现状对于汽油机缸内直喷的工作方式,20 世纪50 年代德国的BenZ300SL车型和60年代MAN —FM系统,70年代美国Texaco的TCCS系统和Ford的PROCO系统就曾经采用过o。
这些早期技术大多基于每缸2 气门和碗形活塞燃烧室,利用柴油机的机械泵和喷油器实现后喷。
这些早期的GDI 发动机在大部分负荷范围实现了无节气门控制并且燃油经济性接近非直喷柴油机。
其主要缺点是由于采用机械式供油系统,各负荷甚至全负荷时后喷时刻是固定的,燃烧烟度限制了空燃比不能超过20:l 口采用柴油机供油系统并利用涡轮增压技术来增加功率输出,使得汽油机性能与柴油机相似,且在部分负荷时有更差的HC 排放。
空气利用效率低,机械供油系统受到转速范围的限制,使得发动机的输出功率非常低。
因此,受当时内燃机制造技术水平的限制,加之尚无电控喷射手段,开发出的GDI 发动机性能和排放并不理想,没有得到实际应用。
20 世纪90年代以后,由于发动机制造技术的提高,制造精密、性能优良的内燃机部件的应用和精度高、响应快的电控汽油直喷系统的应用使得GDI 发动机的研究与应用得到快速发展。
GDI 发动机瞬态响应好,可以实现精确的空燃比控制,具有快速冷起动和减速断油能力及潜在的系统优化能力,这些都显示了它比进气道喷射汽油机更优越。
采用先进的电子控制技术,解决了早期直喷发动机的控制和排放等方面的许多问题。
T-GDI发动机技术发展及其对润滑油的要求

众公司 已在大连设 厂开始批量 生产缸 内直 喷式汽油机 ,这种 高技术含量 的新型节能减排 发动机对润
滑油提 出了新的要求 。
关键 词 :T GDl — 技术 润滑油 涡轮增压
中图分 类号 :U 6 44 文 献标识码 :A
缸 内直喷
■ ■
中国石油 兰 州润 滑油研 究开 发 中心 汤仲平 中国石油 润 滑油 分公司 杨 俊杰
发挥 ,不 能 满 足 全 负荷 时对 发 动 机 动 力性 的要 求 。
2 GD 汽油 机 工 作原 理 I
21 . GDI 机与传统 汽油 机的 区别 汽油
如 果 仅 仅 采 用 均 质 混合 气 理 论 当量 燃烧 模 式 ,那 就
不得 不放 弃 GD 发 动 机 在 燃 油 经 济 性 方 面 的 一部 分 I 好 处 ,但 与 进 气 口喷射 相 比 ,仍 然具 有燃 油 经 济 性
优势。
目前 ,汽油 机按燃 油喷入 方式主 要 分为三类 ,即
化油器 发动机 、 ห้องสมุดไป่ตู้控 汽油 喷射 发动机 、直 喷式汽 油发
动机 。化 油器 发动机 是在 进气管 道 的化油器 位置 上汽 油 与空气 混合 、雾化 形成 混合气 ,经气 门进 入气缸 ;
1 — T GDI 术 发 展 背 景 技
因为 受能 源枯 竭 、油价 持续 增高 和全 球 变暖 等 问 题 的困扰 ,所 以在 满 足发 动机 排放 要 求前 提下 改 善发
成 熟 的GDI 机型 和产 品 ,标 志着 汽油 发动 机技 术进 入 了一个 崭新 的 时代 。在 当前 能源 危机 和排 放 法规越 来
场 ,但 由于达 不 到 美国 L V  ̄VL V 排 放标 准 而 未能 E E 打 入 美 国 市 场 。 到 目前 为 止 ,丰 田、 福 特 、 奔 驰 、
汽油机缸内直接喷射技术

汽油机缸内直接喷射技术摘要:由于能源枯竭和环境污染情况日益严重,即使是多点燃油喷射这样的技术也不能满足人们的要求了,于是更为精确的燃油喷射技术诞生了,那就是汽油机缸内直接喷射技术。
本文将对汽油机缸内直接喷射技术的类型、结构原理、存在问题等进行简要的论述。
关键词:缸内直喷类型结构原理存在问题近年来,由于能源紧缺和环境污染问题的日益突出,汽车用发动机面临着越来越严峻的考验。
目前为绝大多数汽车所采用的EFI发动机已显出明显不足,主要由于混合气在进气门处形成,汽油雾化不完全、混合气质量欠佳,所以燃烧不充分冷启动排放和燃油经济性较差。
汽油机缸内直接喷射系统则与EFI系统迥然不同,该系统是将汽油直接喷射到气缸里,通过相应的控制手段,可以大大提高发动机的燃油经济性和动力性能,同时大幅度降低排放。
1 汽油机缸内直接喷射技术汽油机缸内直接喷射技术,简称缸内直喷,顾名思义,就是把汽油直接喷射到气缸内。
随着技术的发展,化油器被淘汰后,开始采用汽油喷射技术,按照喷射位置可以分为进气道喷射和缸内直接喷射两种。
进气道喷射可以采用低压的喷射装置,是目前最常用的喷射方式,喷油嘴位于进气歧管的前方,汽油喷入进气歧管与空气混合后再进入气缸。
缸内直接喷射则更为先进,喷油嘴位于气缸内部,将汽油直接喷入气缸,与空气形成混合气,不过它需要较高压力的喷射装置以及其它一些专门的零部件,成本要更高一点。
2 缸内直喷的类型及其特点近年来,缸内直喷的发动机电控技术的研究与开发越来越受到重视,其被认为是内燃机解决能源和环境问题的重要方向之一,国内外许多研究机构和汽车厂商都致力于缸内直喷发动机的研究与开发,并推出了各种装备缸内直喷发动机的汽车。
2.1 FSIFSI是Fuel Stratified Injection的缩写,它代表大众汽车的缸内直喷发动机。
从理论上来说,采用FSI技术的发动机有至少两种燃烧模式:分层燃烧和均质燃烧,从上面3个英文单词来看,分层燃烧应该是FSI 发动机的特点。
缸内直喷发动机的工作过程

缸内直喷发动机的工作过程
缸内直喷(Gasoline Direct Injection,简称GDI)发动机是一种现代汽油发动机技术,它将燃油直接喷射到每个气缸的燃烧室内。
下面是缸内直喷发动机的工作过程:
1. 进气冲程:活塞向下运动,气门打开,进气门使得新鲜空气通过进气道进入气缸。
同时,高压燃油泵从燃油箱中提供高压燃油并将其送入喷雾器。
2. 喷油过程:在进气冲程结束时或稍微提前,燃油喷雾器快速喷射精确计量的燃油直接进入气缸的燃烧室。
由于燃油直接喷射,可以更好地控制燃油的分布和喷射的时机,提高燃烧效率。
3. 压缩冲程:进气门关闭,活塞开始向上移动,压缩混合气。
由于燃油是直接喷射进入燃烧室的,相对于传统的多点燃油喷射发动机,GDI发动机具有更高的压缩比,有利于提高功率和燃油经济性。
4. 着火冲程:当活塞接近顶部时,火花塞放电产生火花,点燃燃油和空气混合物。
由于燃油直接喷射到燃烧室,火花塞位于较富燃油的区域,更容易点燃混合物。
5. 排气冲程:活塞向下运动,废气通过排气门进入排气管排出。
通过这个过程,缸内直喷发动机能够更有效地利用燃料,提高燃烧效率和动力输出,并减少废气排放。
此外,由于燃油直接喷射到燃烧室内,缸内直喷发动机还可以实现更精确的燃油控制、改善冷启动性能和降低涡轮增压的喷口积碳问题。
这使得缸内直喷发动机被广泛应用于现代汽车领域。
GDI vs PFI

80%安装在进 气歧管上靠近 汽缸盖位置
进气门附近形成瞬时液 态油膜,这些燃油会在每次 进气过程逐渐蒸发进入气缸 燃烧。因此,进气口处的油膜 如同电容,具有积分的作用,发 动机瞬时的供油量不能通过 喷油器实现精确控制。
GDI VS PFI
PFI限制二:中小负荷下的节流损失
PFI 发动机 中、小负荷时 采用节气门来 控制负荷
存在节流损失
GDI VS PFI
结论:
部分蒸发现象 冷机起动 燃油蒸发困难 油量控制延迟动时发动机有4 个~10 个循环的不 稳定燃烧, 显著加大发动机未燃HC 排放
GDI VS PFI
BUT
GDI 的 优势一
缸内直喷:
喷嘴装于气缸内,直接将燃油喷入气缸内与进 气混合。喷射压力进一步提高,燃油雾化更加细 致,通过电控技术真正实现了精准地按比例控制 喷油并与进气混合,避免气门口燃油湿壁现象。 实现燃烧各阶段准确供油,能够实现更稀薄燃 烧并且降低循环变动,冷起动首循环不需加浓控制, 降低瞬态工况HC 的排放。
GDI VS PFI
燃烧的充分性 喷入的燃料燃烧了的比例有多大? 转化效率的大小 燃烧释放的热能有多少最终成功 转化成了机械功?
GDI VS PFI
PFI发动机与GDI发动机的主要区别
。
混合气的形成策略不同
GDI VS PFI
PFI限制一:气门口燃油湿壁现象
20%喷嘴装在 汽缸盖上进气 门的背面
,而周边区域的油气浓度相对稀薄,这样一来就节
约了一部分燃油,提升了效率,正所谓“好钢用在
刀刃上”。
GDI VS PFI
GDI 的优势四
降低进气温度,提高充气效率 燃油的蒸发能够冷却进气提高 在进气过程喷油能够提高充气效率 燃油经济性最大显著提高
缸内直喷式的汽油机工作原理

缸内直喷式汽油机工作原理
一、燃油喷射系统
缸内直喷式汽油机的燃油喷射系统与传统的汽油机有所不同。
在缸内直喷式汽油机中,燃油喷射器直接将燃油喷入汽缸内,而不是像传统汽油机那样将燃油喷入进气歧管。
这种设计使得燃油能够在压缩冲程后期与空气混合,为燃烧过程提供了更佳的条件。
二、燃烧过程
缸内直喷式汽油机的燃烧过程更加高效。
由于燃油直接喷入汽缸内,因此能够更好地控制燃油的喷射量和喷射时间,使得燃油能够更好地与空气混合。
这种设计使得缸内直喷式汽油机的燃烧温度更高,从而提高了发动机的功率和扭矩。
三、空气流动
在缸内直喷式汽油机中,空气流动也与传统的汽油机有所不同。
在传统的汽油机中,空气通过进气歧管进入汽缸内,而在缸内直喷式汽油机中,空气通过进气门进入汽缸内。
这种设计使得缸内直喷式汽油机能够在更高的压力下工作,从而提高了发动机的压缩比和效率。
四、控制系统
缸内直喷式汽油机的控制系统也是其工作原理的重要组成部分。
这种控制系统可以精确控制燃油的喷射量和喷射时间,使得发动机能够在各种工况下都能够保持最佳的工作状态。
同时,控制系统还可以根据发动机的工况和驾驶员的需求来调整发动机的功率和扭矩输出,从而提高了驾驶体验和燃油经济性。
总之,缸内直喷式汽油机的工作原理涉及到燃油喷射系统、燃烧过程、空气流动和控制系统等多个方面。
这些方面的协同工作使得缸内直喷式汽油机具有更高的功率和扭矩输出、更佳的燃油经济性和更低的排放等优点。
GDI发动机——详细介绍原理及相关技术

日本三菱汽车公司于1996年研制成功GDI发动 机,并将其装在Galant牌汽车上,于同年8月投放 日本汽车市场。1997年装备同样发动机的中级轿车 Garisma进入西欧市场,该发动机排量为1.8L,功 率为88kW,100km油耗为5L左右,发动机价格较 原先略有上涨。三菱汽车公司计划在最近几年内将 其生产的汽油机全部改成汽油直接喷射,丰田汽车 公司也准备步其后尘,三菱公司的成功表明,汽油 直接喷射是可行的。废气中的氮氧化物含量高的问 题,可利用废气再循环及加装第二只催化裂化转换 器来解决。
GDI发动机的活塞顶部形状
控制模式的切换通过喷油定时的变换来实现。 切换时要注意切换前后扭矩的一致,以防扭矩变化 带来振动。为此,三菱、丰田等公司在模式切换时 采用了二段喷射技术,即在进气行程中喷射一部分 燃料,以便在燃烧室全空间内形成稀薄的预混合 气。第二次在即将点火之前向火花塞喷射,以保证 稀混合气的稳定着火和分层燃烧。据报道采用二段 喷射技术的GDI发动机可实现从中小负荷区向大功 率区的平稳过渡,并可降低缸内的气体温度,从而 抑制了爆震的发生,增加了功率的输出。21世纪轿车的理想动力装置 NhomakorabeaDI发动机
汽油直接喷射(Gasoline Direct Injection) 发动机简称GDI发动机,是近年来国外内燃机研 究与开发的热点。专家认为,汽油机直喷技术的 出现,使汽车发动机技术进入了一个崭新的时代, 它在21世纪有取代传统的汽油机和柴油机的趋势, 成为轿车最理想的动力装置。
因为: a. 此时活塞正处于向上运动,气缸内的 压力很大,这就迫使燃油喷射时所需的压力 相应地增大。喷油压力越大,SMD( 油滴的 索特平均直径,表示燃油的雾化程度)越小, 燃油蒸发越快,雾化程度越高,油滴喷射距 离有限,穿透度不深;
发动机技术解析缸内直喷与缸外直喷的优劣

发动机技术解析缸内直喷与缸外直喷的优劣发动机技术一直是汽车制造商和消费者关注的热点之一。
其中,缸内直喷和缸外直喷这两种燃油喷射技术备受关注。
它们分别在汽油和柴油发动机中被广泛应用。
本文将对这两种喷射技术的优劣进行解析和比较。
一、缸内直喷技术缸内直喷技术是将燃油喷射器直接安装在汽缸内(柴油发动机)或燃烧室(汽油发动机)内部。
其优势主要体现在以下几个方面:1. 燃烧效率提升:缸内直喷技术可以实现更高的压缩比和更精确的燃油控制,从而提高燃烧效率和动力输出。
2. 减少污染物排放:由于燃油喷射直接进入燃烧室,缸内直喷技术可以更好地控制燃烧过程,减少尾气中产生的有害物质排放。
3. 提高燃油经济性:缸内直喷技术可以更有效地利用燃油能量,降低燃油消耗,从而提高燃油经济性。
缸内直喷技术的缺点是:1. 发动机噪音较大:由于燃油喷射直接进入燃烧室,可能会产生较大的喷油噪音。
2. 燃油喷射器易受污染:喷油器直接暴露在燃烧室的高温和高压环境下,容易受到燃烧残渣的污染,进而影响喷油效果。
二、缸外直喷技术缸外直喷技术是将燃油喷射器安装在燃烧室外部,通过进气门将燃油喷射到汽缸内(柴油发动机)或燃烧室(汽油发动机)内。
下面是缸外直喷技术的优势和不足之处:优势:1. 降低噪音和振动:相比缸内直喷,缸外直喷技术可以减少喷油噪音和振动,提升发动机的舒适性和可靠性。
2. 降低碳积垢:由于燃油喷射器远离燃烧室,不易受到燃烧残渣的污染,减少发动机碳积垢的形成。
不足:1. 燃烧效率相对较低:燃油喷射到燃烧室之前会与进气气流混合,这可能会降低燃烧效率,从而影响动力输出和燃油经济性。
2. 排放污染物增加:缸外直喷技术中,燃油喷射到进气道上,容易形成积炭,导致排放污染物的增加。
综合比较:缸内直喷和缸外直喷技术各有优劣,具体应用取决于车辆制造商的需求和设计选择。
在柴油发动机中,由于其燃烧方式和压力要求较高,缸内直喷技术被广泛应用。
它可以提高燃油经济性和动力输出,同时减少尾气排放,符合环保要求。
复合燃烧技术在缸内直喷汽油机的应用探讨

复合燃烧技术在缸内直喷汽油机的应用探讨摘要:汽车技术诞生的百余年中,发动机作为核心一直在不断突破,但其技术更新远不如车型风格演变那样简便,往往十数年都难以有大的进展,就好像一些车型引以为豪的VVT可变正时气门技术,其实也已经是上世纪的产物。
而近年来,欧美的汽油缸内直喷技术开始从实验室走向市场,由此带来的发动机第三次革命也诞生了迄今最牛的汽油发动机技术——缸内直喷。
文中介绍了缸内直喷汽油机的性能特点、提出了燃烧理论空燃比的复合喷射燃烧技术,运用了废气再循环(EGR)分层技术。
复合喷射通过稳压腔辅助喷射燃油和缸内直接喷射燃油,使缸内形成准均质混合气,以满足各种工况下缸内直喷汽油机对混合气的要求。
关键词:汽油机缸内直接喷射技术现状难点开发具有汽油机优点同时又具备柴油机部分负荷高燃油经济性优点的车用发动机是主要的研究目标。
汽油缸内直喷(GDI)是提高汽油机燃油经济性的重要手段,近些年来,以缸内直喷为代表的新型混合气形成模式的研究与应用极大地提高了汽油机的燃油经济性。
1 缸内直喷技术的六大优势由于燃油被精确的喷射于汽缸燃烧室内,也直接带来了6大好处。
1.1 节省燃油现代发动机技术的趋势之一就是节约燃料,而缸内直喷技术可以大大提升燃油与空气混合的雾化程度与混合的效率,带来燃油的节约。
采用缸内直喷技术的车型油耗水平可下降3%以上。
1.2 减少废气排放人类对生存环境的重视也造就了环保发动机的不断诞生。
缸内直喷发动机的高压燃油泵能提供高达120Pa的压力,确保燃料充分燃烧,最大程度的减少废气中的有害杂物。
1.3 提升动力性能由于燃料的混合更充分,燃烧更彻底,也带来了燃料转化为动能的效率提升,直接推动了发动机动力性能的增加,同排量下,最大功率可提高15%。
1.4 减少发动机震动由于缸内直喷技术允许更高的压缩比,缸内爆震情况的大大减少,对降低发动机低速情况下的震动也有明显的效果。
1.5 喷油的准确度提升缸内直喷技术的关键就是电脑系统的精确控制。
缸内直喷技术

缸内直喷技术缸内直喷(GDI),就是直接将燃油喷入气缸内与进气混合的技术。
优点是油耗量低,升功率大,压缩比高达12,与同排量的一般发动机相比功率与扭矩都提高了10%。
它的劣势是零组件复杂,而且价格通常要贵。
缸内喷注式汽油发动机与一般汽油发动机的主要区别在于汽油喷射的位置,普通电喷汽油发动机上所用的汽油电控喷射系统,是将汽油喷入进气歧管或进气管道上,与空气混合成混合气后再通过进气门进入气缸燃烧室内被点燃作功;而缸内直喷式汽油发动机顾名思义是在汽缸内喷注汽油,它将喷油嘴安装在燃烧室内,将汽油直接喷注在气缸燃烧室内,空气则通过进气门进入燃烧室与汽油混合成混合气被点燃作功,这种形式与直喷式柴油机相似,因此有人认为缸内直喷式汽油发动机是将柴油机的形式移植到汽油机上的一种创举。
喷射压力也进一步提高,使燃油雾化更加细致,真正实现了精准地按比例控制喷油并与进气混合,并且消除了缸外喷射的缺点。
同时,喷嘴位置、喷雾形状、进气气流控制,以及活塞顶形状等特别的设计,使油气能够在整个气缸内充分、均匀的混合,从而使燃油充分燃烧,能量转化效率更高。
因此有人认为缸内直喷式汽油发动机是将柴油机的形式移植到汽油机上的一种创举。
缸内直喷式汽油发动机的优点是油耗量低,升功率大。
空燃比达到40:1(一般汽油发动机的空燃比是14.7:1),也就是人们所说的“稀燃”。
汽车缸内直喷技术Gasoline Direct Injection(GDI)在不同汽车品牌中各自有着不同的学名,比如奔驰CGI/ BlueDIRECT、宝马HPI、奥迪TFSI、大众TSI、通用SIDI、福特EcoBoost、丰田D4、本田Earth Dreams Technology (地球梦)、尼桑DIG、马自达SKYACTIV(创驰蓝天)、现代GDI等在近来各厂采用的发动机科技中,最炙手可热的技术非缸内直喷莫属。
这套由柴油发动机衍生而来的科技目前已经大量使用在包含VAG、BMW、Mercedes-Benz、GM以及Toyota(Lexus)车系上。
缸内直喷技术

GDI发动机的喷油压力一般在 10-15MPa左右,以保证燃油雾化质量及合适的贯穿距离。高压油泵一般由安装 在进气凸轮轴上的 4山凸轮驱动,升程在 2.5-4mm之间,升程对高压油泵的选择十分重要,直接影响着冷起动时直 喷系统的建压时间,升程需根据发动机性能需求、滚轮挺柱寿命、驱动凸轮型线及制造工艺等因素综合设计,一般 3.5mm左右的升程即可满足使用需求。
直喷发动机燃油和空气混合主要有三种方式,即喷射引导、壁面引导和气流引导,具体见图中a、b、c所示。 发动机的喷油器设计在缸盖顶部,火花塞设计在发动机的侧面,此种方式称为喷射式引导,在火花塞周围易形成较 浓的混合气,这种布置方式比较适合于分层稀薄燃烧,具有较好的燃油经济性。壁面引导方式是喷油器侧置,火花 塞顶置,通过活塞顶部的特殊形状引导油束运动并与空气混合,此种方式可以在火花塞周围形成较大面积的可燃区 域。气流引导方式同样采用喷油器侧置、火花塞顶置的形式,利用进气时形成的滚流强化油气混合。壁面引导方式 和气流引导方式结构形式相似,多用于均质燃烧模式,可以由传统的 PFI发动机转化而来,可以实现与 PFI发动机 共用燃烧室及缸盖毛坯,是直喷系统的核心部件,喷油器在燃烧室内的布置方式、喷嘴结构形式、油束的喷雾形状都直接影响燃 油的雾化、油气混合及燃烧过程,最后影响发动机的性能。另外喷油器喷嘴置于燃烧室内,受燃油品质量影响较大。 如果燃油的油品质不好,燃烧不充分,极易生成积碳并堵塞喷嘴,影响喷雾质量及喷油器自身的寿命。
缸内直喷发动机的活塞顶面形状对燃烧室内气流的运动及混合气的形成有很大的影响,因此缸内直喷发动机都 将活塞作为关键部件进行重点的设计和开发。无论是壁面引导、气流引导还是喷射引导,都需要特殊的活塞顶面凹 坑相适应,从而达到较为理想的油气混合效果,形成油气浓度的均质分布或梯度分布,保证燃烧的顺利进行。