(完整版)理论力学第五章点的运动学

合集下载

《理论力学》武清玺第五章_点的运动_习题全解

《理论力学》武清玺第五章_点的运动_习题全解

第五章 点的运动 习题全解[习题5-1] 一点按2123+-=t t x 的规律沿直线动动(其中t 要s 计,x 以m 计).试求:(1)最初s 3内的位移;(2)改变动动方向的时刻和所在位置;(3)最初s 3内经过的路程;(4)s t 3=时的速度和加速度;(5)点在哪段时间作加速度,哪段时间作减速运动. 解:(1)求最初s 3内的位移.m x 220120)0(3=+⨯-= m x 723123)3(3-=+⨯-=)(927)0()3(m x x x -=--=-=∆ (动点的位移为9m,位移的方向为负x 方向). (2)求改变动动方向的时刻和所在位置. 改变方向时,动点的速度为零.即: 01232=-==t dtdxv , 亦即:当s t 2=时,动点改变运动方向.此时动点所在的位置为: )(1422122)2(3m x -=+⨯-= (3)求最初s 3内经过的路程.)(23716|)14(7||214|)3~2()2~0()3~0(m S S S =+=---+--=+= (4)求s t 3=时的速度和加速度1232-==t dt dx v )/(151233)3(2s m dt dx v =-⨯== t dtdv a 6== )/(1836)3(2s m a =⨯=(5)求动点在哪段时间作加速度,哪段时间作减速运动.若v 与a 同号,则动点作加速运动; 若v 与a 异号,则动点作减速运动.即: 同号时有:0)2)(2(18)4(18)6)(123(22>+-=-=-=t t t t t t t va0)2)(2(>+-t t t20<<t .即当s t 20<<时,动点作加速动动.Oxy图题25-异号时有:0)2)(2(<+-t t t2>t即当s t 2>时,动点作减速运动.[习题5-2] 已知图示机构中,l AB OA ==,a AC DM CM ===,求出t ωϕ=时,点M 的动动方程和轨迹方程。

理论力学第五章 点的运动

理论力学第五章 点的运动

【例5.1】 已知点的运动方程为 x r cost y r sin t 其中:r、ω是常数。求动点的运动轨迹、速度与加速度。
目录
第五章 点的运动\描述点运动的直角坐标表示法
【解】 为求动点的运动轨迹,将运动方程平方后相加,消去t得 x2 y2 r 2
这说明动点的运动轨迹是以O为圆心、r为半径的一个圆。当 ωt=0时,x=r, y=0,动点位于x轴上,当ωt=π/2时,x=0, y=r,动点位 于y轴上。 y v 动点的速度在坐标轴上的投影为 M r v x r sin t t v y r cost x O 因此速度的大小为
z M k O r z
a
v x y
i
j y
上式表明,动点的加速度在各坐标轴上的投影分别等于动点相 应的位置坐标对时间t的二阶导数。 目录
第五章 点的运动\描述点运动的直角坐标表示法 加速度的大小及方向余弦为
2 2 2 d x d y d z 2 2 2 2 2 2 a ax a y az ( 2 ) ( 2 ) ( 2 ) dt dt dt ay ax az cosa , i cosa , j cosa , k a a a
x x(t ) y y (t )
当动点始终沿一直线运动时,如取该直线为坐标轴Ox,则动点 的运动方程为
x x(t )
目录
第五章 点的运动\描述点运动的直角坐标表示法
5.2.2 用直角坐标表示点的速度
如图所示,若以O点为坐标原点建立 Oxyz直角坐标系,则动点的位置矢量r 可表示为
第五章 点的运动\描述点运动的弧坐标表示法
dr τ ds 式中:—沿轨迹切向指向弧坐标正向的单位矢量。此外,

理论力学运动学基础

理论力学运动学基础

第五章运动学基础一、是非题1.已知直角坐标描述的点的运动方程为X=f1(t),y=f2(t),z=f3(t),则任一瞬时点的速度、加速度即可确定。

()2.一动点如果在某瞬时的法向加速度等于零,而其切向加速度不等于零,尚不能决定该点是作直线运动还是作曲线运动。

()3.切向加速度只表示速度方向的变化率,而与速度的大小无关。

()4.由于加速度a永远位于轨迹上动点处的密切面内,故a在副法线上的投影恒等于零。

()5.在自然坐标系中,如果速度υ=常数,则加速度α=0。

()6.在刚体运动过程中,若其上有一条直线始终平行于它的初始位置,这种刚体的运动就是平动。

()7.刚体平动时,若刚体上任一点的运动已知,则其它各点的运动随之确定。

()8.若刚体内各点均作圆周运动,则此刚体的运动必是定轴转动。

()9.定轴转动刚体上点的速度可以用矢积表示为v=w×r,其中w是刚体的角速度矢量,r是从定轴上任一点引出的矢径。

()10、在任意初始条件下,刚体不受力的作用、则应保持静止或作等速直线平动。

()二、选择题1、已知某点的运动方程为S=a+bt2(S以米计,t以秒计,a、b为常数),则点的轨迹。

①是直线;②是曲线;③不能确定。

2、一动点作平面曲线运动,若其速率不变,则其速度矢量与加速度矢量。

①平行;②垂直;③夹角随时间变化。

3、刚体作定轴转动时,切向加速度为,法向加速度为。

①r×ε②ε×r③ω×v④v×ω4、杆OA绕固定轴O转动,某瞬时杆端A点的加速度α分别如图(a)、(b)、(c)所示。

则该瞬时的角速度为零,的角加速度为零。

①图(a)系统;②图(b)系统;③图(c)系统。

三、填空题1、点在运动过程中,在下列条件下,各作何种运动?①aτ=0,a n=0(答):;②aτ≠0,a n=0(答):;③aτ=0,a n≠0(答):;④aτ≠0,a n≠0(答):;2、杆O1B以匀角速ω绕O1轴转动,通过套筒A带动杆O2A绕O2轴转动,若O1O2=O2A=L,α=ωt,则用自然坐标表示(以O1为原点,顺时针转向为正向)的套筒A 的运动方程为s=。

《理论力学》第五章 点的运动

《理论力学》第五章 点的运动

动点的速度等于它的矢 径对于时间的一阶导数
r-动点 对于点O的
矢径或位置矢
矢径r的矢端线是 点的运动轨迹
单位
§5-2 点的运动的直角坐标表示法
点的运动方程
即 x xt y yt z zt
r xi y j zk
M v
HOHAI UNIVERSITY ENGINEERING MECHANICS
4. M点的加速度
I
a x r sin t
2
a y r 2 cos t
( a, x )

2
; ( a, y )
例1:图示机构中A、B两滑块可分别沿互相垂直的两 直槽滑动。已知BA=a,AM=b,=t+(, 为常 y 量),求点M的运动轨迹、速度和加速度。 M
HOHAI UNIVERSITY ENGINEERING MECHANICS
F2=(y、z)
y
HOHAI UNIVERSITY ENGINEERING MECHANICS
x
F1=(x、y)
z

一人在路灯下由灯柱起以匀速 u 沿直线背离灯
HOHAI UNIVERSITY ENGINEERING MECHANICS
点的直线运动
点的曲线运动
点的合成运动
刚体的平行移动 刚体的定轴转动 刚体的平面运动 刚体的定点运动 刚体的一般运动
刚体的基本 运动形式
刚体的运动
第五章
HOHAI UNIVERSITY ENGINEERING MECHANICS
点的运动
轨迹或路径:点在空间所占据的位置随时 间连续变化而形成的曲线 直线 轨 迹 曲线 矢量法
d v d( ve ) d v d e a e v dt ds dt dt

理论力学(机械工业出版社)第五章点的运动学习题解答

理论力学(机械工业出版社)第五章点的运动学习题解答

习 题5-1 如图5-13所示,偏心轮半径为R ,绕轴O 转动,转角t ωϕ=(ω为常量),偏心距e OC =,偏心轮带动顶杆AB 沿铅垂直线作往复运动。

试求顶杆的运动方程和速度。

图5-13)(cos )sin(222t e R t e y ωω-+=)(cos 2)2sin()[cos(222t e R t e t e yv ωωωω-+==5-2 梯子的一端A 放在水平地面上,另一端B 靠在竖直的墙上,如图5-14所示。

梯子保持在竖直平面内沿墙滑下。

已知点A 的速度为常值v 0,M 为梯子上的一点,设MA = l ,MB = h 。

试求当梯子与墙的夹角为θ时,试点M 速度和加速度的大小。

图5-14A M x hl hh x +==θsin θcos l y M = 0cos v h l h x h l h h xA M +=+== θθ 得 θθcos )(0h l v +=θθθθθt a n)(c o s )(s i n s i n 00h l lv h l v l l yM +-=+⨯-=-= 0=M xθθθθθ322002020cos )(cos )(sec )(sec )(h l lv h l v h l lv h l lv y M +-=+⨯+-=+-=θ3220cos )(h l lv a M+=5-3 已知杆OA 与铅直线夹角6/πt =ϕ( 以 rad 计,t 以s 计),小环M 套在杆OA 、CD 上,如图5-15所示。

铰O至水平杆CD 的距离h =400 mm 。

试求t = 1 s 时,小环M 的速度和加速度。

图5-15ϕtan h x M = ϕϕϕ22sec 6π400sec ⨯== h xM ϕϕϕϕϕϕϕs i n s e c 9π200s i n s e c 6π3π400)s i n s e c 2(6π4003233=⨯⨯=⨯⨯= M x当s 1=t 时6π=ϕmm/s 3.2799π800346π400)6π(sec 6π4002==⨯==Mv 223232mm/s 8.168327π80021)32(9π200)6πsin()6π(sec 9π200==⨯⨯=⨯⨯=Ma5-4 点M 以匀速u 在直管OA 内运动,直管OA 又按t ωϕ=规律绕O 转动,如图5-16所示。

理论力学 第五章 点的运动学(合)

理论力学 第五章  点的运动学(合)

[讨论] (1) d v 与 d v 有何不同? 就直线和曲线分别说明。
dt dt
d v = a ——点的加速度矢。 dt
对直线、曲线都一样。
d v ——速度大小对时间的变化率 dt 在直线中为加速度大小: d v = a
dt
在曲线中为切向加速度大小: d v dt
=
at
36
第五章 点的运动学
(2)点作曲线运动, 画出下列情况下加速度的大致方向。 ① M1点作匀速运动; ② M2点作加速运动; ③ M3点作减速运动。
(2)速度
vx = x& = rω (1− cosωt)
vy = y& = rω sin ωt
v=
v
2 x
+
v
2 y
= rω
2
− 2 cosωt
=
2rω
sin
ωt
2
(3)切向、法向加速度
at = v&
= rω 2 cos ωt
2
an
=
rω 2
sin
ωt
2
思考:如何求点M的法向加速度?
30
第五章 点的运动学
dt dt
dt
dt
=
d2 x dt2 i
+ d2 y dt2
j
+
d2 dt
z
2
k
解析表达式: a = a x i + a y j + a z k
ax
=
d vx dt
=
d2 x d t2
=
v& x
=
&x&
ay
=
d vy dt

理论力学@5点的运动学

理论力学@5点的运动学

伸直面
M(动点)bn → 自然轴系 (随动坐标系)
4
第二篇 运动学 第5章 点的运动学
一、运动方程: s f (t)
二、轨迹方程:已知。
三、速度:
v

v
,式中,v ds
,方向沿切向。
dt

四、加速度:a a ann
,式中,a

dv dt

d2s dt 2
,an

v2

,位于密切面内。
注:以上诸式不加证明。
密切面
伸直面
5
第二篇 运动学 第5章 点的运动学
例1:例5-2(老书例6-2)(直角坐标法与自然坐标法)
摇杆滑道机构。已知滑道半径R,摇杆匀角 速度ω 。求:①滑块速度、加速度;②滑块 相对摇杆的速度、加速度。 分析: 绝对法求速度、加速度,即利用几何关系, 写出滑块运动方程,求导。 ①即求滑块绝对速度和加速度。直角坐 标法可解。又滑块轨迹已知(滑道), 自然坐标法亦可解,且更简单; ②求滑块相对摇杆的速度、加速度,即选 摇杆为参考系(动系),求在此坐标系下 的运动量。

d vy dt

d2 y d t2

a
z

d vz dt

d2z d t2
3
第二篇 运动学 第5章 点的运动学
5.3 点运动的自然坐标法
先介绍自然坐标系:弧坐标系与自然轴系。
原点O,弧坐标s → 弧坐标系
密切面
密切面
切线:M'→M, MM →τ
密切面: M'→M,′组成平 面的极限位置
解:(略)
6
第二篇 运动学 第5章 点的运动学

理论力学课件:点的运动学

理论力学课件:点的运动学

点的运动学
2.速度
点的运动学
上式表明动点 M 的速度v在直角坐标轴上的投影等于该
点相应坐标对时间的一阶导数。
速度大小为
其方向由方向余弦来确定:
点的运动学
3.加速度
点的运动学
因此,动点的加速度a 在直角坐标轴上的投影等于速度
在相应坐标轴上的投影对时间的一阶导数,也等于其相应坐
标对时间的二阶导数。
点,其弧坐标为s,位置矢径为r,经 Δt时间后,弧坐标为s+Δs,矢
径变为r',根据点的速度公式有
点的运动学
图5-9
点的运动学
点的运动学
3.加速度
将v=vτ 代入式(5-5),得
点的运动学
(1)
d
的大小。设瞬时t,动点
d
M 处对应的切线单位矢量
为τ,经过时间 Δt,动点运动到 M',其切线单位矢量为τ'。Δt时
点的运动学
点的运动学
5.1 点的运动的矢量表示法
5.2 点的运动的直角坐标表示法
5.3 点的运动的自然坐标表示法
思考题
点的运动学
5.1 点的运动的矢量表示法
1.运动方程、轨迹
点的运动学
图5-1
点的运动学
点的运动学
3.加速度
点在运动过程中,其速度v 的大小和方向往往都随着时间
而变化,速度对时间的变化率称为加速度。
cm,时间单位为s。
解 由题知,点的运动方程为
点的运动学
速度的大小为
从运动方
点的运动学
点的切向加速度、法向加速度的大小分别为
点的运动学
思考题
5-2 结合v t图,说明平均加速度和瞬时加速度的几何意义。

05 点的运动学 理论力学

05 点的运动学 理论力学
理 论 力 学
南通大学建筑工程学院 力学教研室 金江
运动学
物体运动规律比平衡规律复杂很多,采用运动 学和动力学来进行研究。
运动学是从几何的观点来研究物体的机械运动,不 考虑运动原因
两种模型:点和刚体 学习运动学的目的: 为学习动力学提供必要的基础知识 工程实际中独立的应用价值
运动学 第五章 点的运动学
τ 2 τ sin 2
5-3 自然法
Δ
τ
M
s
Δφ
M'
Δτ
τ ''
τ'
d lim s 0 s ds 1
0
τ
s 0
τ 1
∆τ与 τ垂直
运动学
dτ τ 1 lim lim n n s 0 s 0 ds s s
dr dx dy dz v i j k dt dt dt dt
运动学
v vx i v y j vz k
dx vx x dt dy vy y dt dz vz z dt
5-2 直角坐标法 速度大小
dx dy dz 2 2 2 v vx vy vz dt dt dt
面 法平
b
密切 面
M1
M
n
线 主法
τ1
τ τ 1'
切线
主法线——法平面与密切面的交线,单位方向矢量n, 指向曲线内凹一侧
副法线——过点 M且垂直于切线及主法线的直线
b τ n
运动轨 迹
运动学
点运动时,在轨迹曲线 上位置变化,其自然轴 系的方位也改变 曲线运动,轨迹的曲率或 曲率半径是重要的参数, 表示曲线的弯曲程度

理论力学第5章 点的一般运动与刚体的基本运动

理论力学第5章 点的一般运动与刚体的基本运动

基础部分——运动学第5 章点的一般运动与刚体的基本运动一、运动学的研究对象及任务点刚体zz几何性质z合成分解例1例2例3例4例5例6二、学习运动学的目的三、运动学的分析方法矢量工具数值求解工具四、具体内容第5章点的一般运动与刚体的基本运动点的运动的矢量法点的运动的直角坐标法点的运动的弧坐标法一、运动方程二、轨迹三、点的速度O)(t r )(t t Δ+r vMM ′位矢四、点的加速度点的运动的矢量法一、运动方程点的运动的直角坐标法O rMxy z)(zy,x,xyz二、轨迹方程三、点的速度四、点的加速度AB点的运动的弧坐标法运动轨迹原点O 一、运动方程sMO)(−)(+正方向弧坐标s二、自然轴系主法线n 切线τ,指副法线b思考:共同点不同点)(t r M O三、点的速度⋅lim ⋅st s d d d d r⋅τ⋅=v tsv d d =)(t t Δ+r vM ′sΔO)(−)(+r Δτ四、点的加速度速度大小随时间的变化率方向ττa 22t d d d d tst v ==22t d d d d tst v a ==z切向tas t ΔΔ⋅→Δτ0lim⋅速度方向随时间的变化率z法向n a sΔΔτs ΔΔϕsd d ϕ→方向?n2n2taa +全t 讨论:加速减速[例5-1]纯滚动解:(1)运动方程运动方程=x =y (2)速度22yxv v +t ωcos 22−(3)切向、法向加速度思考:如何求速度投影加速度投影全加速度22a a yx +法向加速度2t2aa −曲率半径(4)运动方程(弧坐标)如何取弧坐标的原点?讨论:Array纯滚动速度为零加速度不为零5-4-1 平行移动(平移)任一直线z形状相同z速度相同z加速度相同5-4-2 定轴转动=矢量表示:=右手规则滑动矢量αωαkz线速度v(弧坐标法)Rv ω=Rna ta αta 方向?z加速度aRa α=t Ra 2n ω=2n2t aa +42ωα+t a α思考:过轴的任一条直线上θαθrωv ×=ααt a rαa ×=t na vωa ×=nr ωr×=td d αααx ′y ′z ′1O i ′j ′k ′rωv ×=[例5-2]解:r ω=+d d r tω−=avtr R +=22ππ[思考题]j i i k ⎜+′⎟⎜′⋅+′⎟′⋅提示:5-5-1 注意区别几组公式5-5-2 描述点的运动的其它方法点的一般运动与刚体基本运动点的一般运动刚体基本运动矢量法直角坐标法弧坐标法其它方法平移定轴转动5-5-3 本章知识结构框图补充:轮系的传动比一、齿轮传动z速度z 切向加速度外啮合内啮合=两齿轮之传动比:21=1 2112R R i ==ωω2112ωω=i 22211±=±=±=正号內啮合负号外啮合11±=外啮合转向推广:二、带轮(链轮)传动二、带轮(链轮)传动z z 皮带与带轮间无相对滑动。

理论力学第5章(点的运动)

理论力学第5章(点的运动)
包括几何静力学、分析静力学
(2) 运动学: 研究点与刚体运动的几何性质。
包括位移、轨迹、速度、加速度。 (与力无关、也是变形体运动基础)
A B
F
C
B
刚体运动
C
变形(包含刚体位移和相对位移)
(3) 动力学: 研究物体所受力与运动间的关系。
包括质点系、刚体,变形体的动力效应。
第五章 点的运动学
§5-1 运动学的基本概念
速度
已知: OC AC BC l , MC a , t。 求:运动方程、轨迹、速度和加速度。
x l a cost ax v x 2 a y vy y l a sin t
2
加速度
a a a
F ( x, y) 0
二、点的速度v

r = xi + yj + zk
式中 v x 所以得
dr dx dy dz v i j k dt dt dt dt v = vx i + vy j + vz k
、v y
、v z
vx
dx dt
v
表明:“动点的速度在坐标轴上的投影,等于动点对应的位置 坐标对时间 t 的一阶导数”。 则速度的大小和方向余弦为
弧坐标的运动方程sf切向加速度表示速度大小的变化三点的加速度法向加速度表示速度方向的变化匀速运动v常数常数常数匀变速直线运动匀速圆周运动匀速直线运动或静止直线运动匀速运动圆周运动匀速运动直线运动匀速曲线运动匀变速曲线运动点作曲线运动画出下列情况下点的加速度方向
(1) 静力学: 研究物体所受力系的简化、平衡规律及其应用。
△r称为在△t时间内动点M的位移。
间间隔△t内的平均速度。以 v*表示。则: Δr v Δt 平均速度表示动点在△t内平均运动的快慢和运动方向。

哈工大理论力学第五章 点的运动学

哈工大理论力学第五章 点的运动学

dvz d 2 z az 2 dt dt
例 5-1 已知:椭圆规的曲柄OC 可绕定轴O 转动,其端点C 与规
尺AB 的中点以铰链相连接,而规尺A,B 两端分别在相互
垂直的滑槽中运动, OC AC BC l , MC a, ωt 求:① M 点的运动方程; ② 轨迹;
ax (l a ) cos t cos(a , i ) a l 2 a 2 2al cos 2t ay (l a ) sin t cos( a , j ) a l 2 a 2 2al cos 2t
例5-2
已知:正弦机构如图所示。曲柄OM长为r,绕O轴匀速转动, 它与水平线间的夹角为 t ,其中 为t = 0时的夹角, 为一常数。动杆上A,B两点间距离为b。
速度 矢径矢端曲线切线
加速度 速度矢端曲线切线
§5-2 直角坐标法
运动方程
x x(t ) y y (t ) z z (t )
直角坐标与矢径坐标之间的关系
r (t ) x t i y (t ) j z (t )k
速度
dr dx dy dz v i j k vx i v y j vz k dt dt dt dt
③ 速度;
④ 加速度。
解: 点M作曲线运动,取坐标系Oxy如图所示。
运动方程
x (OC CM ) cos (l a) cos t
y AM sin (l a) sin t
消去t, 得轨迹
x2 y2 1 2 2 (l Biblioteka a) (l a )速度
l a sin t vx x (l a) cost vy y v vx 2 v y 2 (l a) 2 2 sin 2 t (l a) 2 2 cos 2 t

理论力学5__点的运动学

理论力学5__点的运动学
23
第五章 点的运动学
§5-3 自然法
—— 已知运动轨迹 求速度和加速度
24
§5-3 自然法
一、弧坐标与运动方程
如果点沿着已知的轨迹 运动,则点的运动方程, 可用点在已知轨迹上所走 过的弧长随时间变化的规 律来描述。
25
§5-3 自然法
弧坐标具有以下要素:
(1)有坐标原点(一般在轨迹上 任选一参考点作为坐标原点);
曲率:曲线切线的转角对弧长一阶导数的绝对值。
曲率半径ρ:曲率的倒数称为曲率半径。 1 lim d s0 s ds
31
§5-3 自然法
2、
点的速度
r v
r v
lim
r r
t0 t
r
r dr
dt
dr ds
ds dt
rr
τv vτ
τr vr
r r
rr
rr
速度的大小: v ds s& dt
空间曲线上的任意点都存在且仅存在唯一 的一个密切面。
空间曲线上任意点的无穷小邻域内的一段 弧长,可以看作是位于密切面内的平面曲线。
曲线在密切面内的弯曲程度,称为曲线的 曲率,用 1 表示。
28
§5-3 自然法
2、自然轴系
副法线
法平面- 过动点M并与切 线垂直的平面;
主法线- 密切面与法平面的
s+
交线;
加速度 :
r a
=
r dv
dt
d2rr dt2
= vr&= r&r&
物理意义:表征点速度变化快慢的物理量。
单位:m/s2,方向沿速度矢端曲线的切线。
11
§5-1 矢量法
矢端曲线

理论力学第五章 点的运动和刚体的基本运动 [同济大学]

理论力学第五章 点的运动和刚体的基本运动 [同济大学]

dv v2 τ n dt
a
r
O
`
v vτ
r
dv 2 v2 ) ( )2 dt ρ
tan
aτ an
1
例5-2 汽车以匀速度v=10m/s过拱桥,桥面曲线 y=4fx(L–x)/L2, f=1m,求车到桥最高点时的加速度。
解: aτ
例5-3 销钉A由导杆B带动沿固定圆弧槽运动。导杆B沿轴螺旋 立柱以不变的速度v0 =2m/s向上运动。试计算当θ=30° 时,销钉 A的切向和法向加速度。 解: 建立弧坐标s和直角坐标Oxy如图。 因 s=Rθ,
销钉A的加速度为
aτ v sin θ v0 θ cos θ
2 2 sin θ v0 12.32m/s 2 R cos3 θ
an
2 v2 v0 21.33m/s 2 R R cos 2 θ
例5-4
判别下图示曲线中加速度、速度矢量是否正确。
§5-4 刚体的基本运动平动,转动

则vD=vA=2rω
aDn=aAn=2rω2 aDτ=aAτ=2ra
0 dt
0
t
y x

θ θ0 ω0t
t
0 0

t
αdtdt
角加速度为常量:
两个独立方程
0 t,
1 θ θ0 ω0 t t 2 2
1 θ θ0 (ω0 ω)t , 2
t 0
'2 1 1 y " k y

切线
v r S M* + M
dτ s v lim n d t lim t 0 t t 0 s t
an

哈尔滨工业大学理论力学第七版第5章_点的运动学

哈尔滨工业大学理论力学第七版第5章_点的运动学
解:点做匀加速运动
v v0 at t 2 4 2 6 m/s 2 at 4 m/s (常量) 2 v 36 2 an 9 m/s 4
a a a 16 81 97 m/s
M
s f (t )
S
(+)
(以弧坐标表示的点的运动方程)
• 自然轴系
切线 主法线 副法线
n b
b n
曲率半径
曲率
1

d lim s 0 s ds 1

2 sin 2
d 1 lim lim n n ds s 0 s s 0 s
dvz d z az 2 dt dt
2
x
y
一火箭沿直线飞行,它的加速度方程 为 ,其中 A 和 B 均为常数。设初 a Ae Bt 速度为 ,初位置坐标为 ,求火箭的速 v0 度方程和运动方程。 x0
解:火箭作直线运动
dv adt
v vo adt v0 Ae Bt dt
(D)点A,B,C。
正确答案是:A
点沿螺线自外向内运动,如图所示。它 走过的弧长与时间的一次方成正比,问点的 加速度是越来越大,还是越来越小?这点越 跑越快,还是越跑越慢?
解:
s kt
(常数 )
ds v k dt
这点的速度保持不变
dv at 0 dt
an
2 n
v2


k2

( 越来越小)
a3t
答:匀变速运动 :at 常数, 该点不是作匀变速运动
点M 沿半径为 R 的圆周运动,其速
度为v=kt,k 是常数。则点M 的全加

理论力学-点的运动学

理论力学-点的运动学
详细描述
速度和加速度的矢量表示
04
CHAPTER
点的运动轨迹和运动参数
通过已知的初始位置和速度矢量,利用矢量合成法则确定点的运动轨迹。
直角坐标系
极坐标系
参数方程
利用极坐标表示点的位置,通过已知的初始位置和速度矢量,确定点的运动轨迹。
通过设定参数表示点的位置,根据初始条件和运动规律,确定参数方程,从而确定点的运动轨迹。
加速度与轨迹的关系
根据点的加速度矢量,可以判断点加速或减速的情况,进一步推断出其运动轨迹的变化趋势。
位移与轨迹的关系
根据点的位移矢量,可以确定点在平面或空间中的运动轨迹。
运动参数与轨迹的关系
05
CHAPTER
点的运动学应用
刚体的平动是指刚体在空间中的移动,其上任意两点之间的距离保持不变。
总结词
刚体的平动是刚体运动的一种基本形式,它描述了刚体在空间中的移动。在这种运动中,刚体的所有点都以相同的速度和方向移动,因此刚体上任意两点之间的距离保持不变。平动不会改变刚体的形状和大小。
点的速度和加速度
总结词
速度是描述物体运动快慢的物理量,其大小等于物体在单位时间内通过的位移。
详细描述
速度的大小可以用矢量表示,其大小等于物体在单位时间内通过的位移量,方向与物体运动方向相同。在直角坐标系中,速度矢量可以表示为位置矢量对时间的一阶导数。
速度的定义与计算
总结词
加速度是描述物体速度变化快慢的物理量,其大小等于物体在单位时间内速度的变化量。
详细描述
加速度的大小可以用矢量表示,其大小等于物体在单位时间内速度的变化量,方向与物体速度变化方向相同。在直角坐标系中,加速度矢量可以表示为速度矢量对时间的一阶导数。

理论力学5—点的运动学

理论力学5—点的运动学
M
t
r
△s
v

用矢量表示为: ds v τ vτ dt
r
M' r'
在曲线运动中,点的速度是矢量。它的 大小等于弧坐标对于时间的一阶导数,它 的方向沿轨迹的切线,并指向运动的一方。
5.3 自然法
ds v τ vτ dt
dτ τ j 1 lim lim n n s 0 s s 0 s ds
2 2
x l (1

2
4
) r (cos wt

4
cos 2wt )
由此可得滑块B的速度和加速度: dx v rw (sin wt sin 2wt )
dt 2 dv a rw 2 (cos wt cos 2w ) dt
6.3 自然法
1 弧坐标 动点M在轨迹上的位置可以这样确定:在轨迹 上任选一点O为参考点,并设点O的某一侧为正 向,动点M在轨迹上的位置由弧长s确定,视弧 长s为代数量,称它为动点M在轨迹上的弧坐标。 当动点M运动时,s随着时间变化,它是时间t的 单值连续函数,即 (+)
解: 点的速度和加速度在三个坐标轴上的投影 分别为: 32sin 4t x 8cos 4t x
y 8sin 4t
z4
32cos 4t y
0 z
v x y z 80 m/s
4 点的切向加速度和法向加速度
dv d dv dτ a (vτ ) τ v at an at τ an n dt dt dt dt
dv at dt
dτ dτ ds dτ ds v 由于 n dt ds dt ds dt
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

解:活塞作直线运动,取坐标轴Ox如图所示
由 a dv kv

v ddvt
t
k dt
ln vv由0 v0vvktdd,xtvvv00e0ektkt

x
dx
x0
t 0
v0e
kt
dt
x
x0
v0 k
1 ekt
§ 5-3 自然法
1、 弧坐标 s f (t)
2、自然轴系
切向单位矢量 主法线单位矢量 n
vy y 8sin 4t, ay y 32cos 4t
已知:OC AC BC l , MC a , t。
求:运动方程、轨迹、速度和加速度。
解:点M作曲线运动,取坐标系Oxy如图所示。 运动方程
x (OC CM ) cos (l a) cost
y AM sin (l a)sin t
消去t, 得轨迹
(l
x
2
a)2
(l
y2 a)2

a
dv
dt
v2
n
at
ann
at
dv dt
d2s dt 2

切向加速度
an
v2
1
ds 2 dt

法向加速度
a at2 an2
曲线匀速运动
at 0, v v0 常数, s s0 v0t
曲线匀变速运动
at
常数,
v
v0
att
,
ss0v0t源自1 2att
2
例5-4 列车沿半径为R=800m的圆弧轨道作匀 加速运动。如初速度为零,经过2min后,速度到 达54km/h。求列车起点和未点的加速度。
a ax2 ay2 l a2 4 cos2 t (l a)2 4 sin 2 t
2 l2 a2 2al cos 2t
cos(a, i ) ax (l a) cost
a
l2 a2 2al cos 2t
cos(a, j) ay (l a)sin t
a
l2 a2 2al cos 2t
d2 x dt 2
ay
dvy dt
d2 y dt 2
az
dvz dt
d2z dt 2
例 5-1 椭圆规的曲柄OC 可绕定轴O 转动, 其端点C 与规尺AB 的中点以铰链相连接,而规尺 A,B 两端分别在相互垂直的滑槽中运动。
已知:OC AC BC l , MC a , t。
求:① M 点的运动方程; ② 轨迹; ③ 速度; ④ 加速度。
cos(v, i ) vx (l a)sint
v
l2 a2 2al cos 2t
cos(v, j) vy (l a) cost v l2 a2 2al cos 2t
已知:OC AC BC l , MC a , t。
求:运动方程、轨迹、速度和加速度。
加速度
ax vx x l a 2 cost ay vy y l a2 sin t
r (t) x t i y(t) j z(t)k
速度
v
dr dt
dx i dt
dy dt
j
dz k dt
vxi
vy
j
vzk
dx vx dt
vy
dy dt
vz
dz dt
加速度
a dv dt
dvx i dt
dvy dt
j dvz dt
k
axi
ay j azk
ax
dvx dt
解: A,B点都作直线运动,取Ox轴如图所示。 运动方程
xA b r sin b r sin(t )
xB r sin r sin( t )
已知:OM r, t , 常数, AB b。
求:① A,B点运动方程; ② B点速度、加速度。
B点的速度和加速度
vB xB r cost
副法线单位矢量 b n
自然坐标轴的几何性质
因为 d d d d 1 方向同 n ds d ds ds
所以 n d
ds
3、速度
v dr dr ds ds v
dt ds dt dt
4、加速度 a dv dv v d
dt dt dt
代入
d d ds v n
dt ds dt
第五章 点的运动学
§5-1 矢量法
运动方程 r r t
速度
dr v r
dt
单位 m/s
加速度
dv d2 r
a
v r
dt dt 2
单位 m/s2
矢端曲线
速度方向为: 矢径矢端曲线切线
加速度方向为: 速度矢端曲线切线
§5-2 直角坐标法
运动方程
x x(t) y y(t) z z(t)
直角坐标与矢径坐标之间的关系
aB xB r2 sin t 2xB
周期运动
x(t T ) xt
f 1 频率 T
例5-3 如图所示,当液压减振器工作时,它的活塞在
套筒内作直线往复运动。设活塞的加速度 a kv
(v 为活塞的速度,k为比例常数),初速度为 v0 。求
活塞的运动规律。
已知:a kv, v t0 v0 。求:x t 。
例5-2 正弦机构如图所示。曲柄OM长为r,绕O
轴匀速转动,它与水平线间的夹角为 t , 其中 为t = 0时的夹角, 为一常数。已知动杆上A,B两
点间距离为b。求点A和B的运动方程及点B的速度和加 速度。
已知:OM r, t , 常数, AB b。
求:① A,B点运动方程; ② B点速度、加速度。
1
已知:OC AC BC l , MC a , t。
求:运动方程、轨迹、速度和加速度。
速度
vx x l a sin t
vy y (l a) cost v vx2 vy2 (l a)2 2 sin2 t (l a)2 2 cos2 t
l2 a2 2al cos 2t
② t 2min 120s
an
v2 R
(15m s)2 800m
=
0.281m
s2
a at2 an2 0.308m s2
例5-5 已知点的运动方程为x=2sin 4t m,
y=2cos 4t m,z=4t m。求:点运动轨迹的曲率半径 。
解:由点M的运动方程,得
vx x 8cos 4t, ax x 32sin 4t
已知:R=800m=常数, at 常数, v t0 v0 0
v
t 2 min
54km
h。求:a
t0 ,
a

t 2 min
解:列车作曲线加速运动,取弧坐标如上图。
由 at 常数, v0 0 有 v att
at
v t
15m s 120s
=
0.125m
s2
① t 0, an 0 a at 0.125m s2
相关文档
最新文档