SPSS实验报告4
spss分析实验报告
spss分析实验报告SPSS分析实验报告引言在社会科学研究领域,SPSS(Statistical Package for the Social Sciences)作为一种数据分析工具,被广泛应用于统计分析和数据挖掘。
本实验报告旨在通过SPSS软件对某项研究进行数据分析,探索其背后的数据模式和相关关系。
一、研究背景与目的本次研究旨在探究大学生的学习成绩与睡眠时间之间的关系。
学习成绩和睡眠时间是大学生日常生活中两个重要的方面,通过分析两者之间的关联,可以为学生提供科学的学习指导,提高学习效果。
二、研究设计与数据收集本研究采用问卷调查的方式,通过随机抽样的方法选取了500名大学生作为研究对象。
问卷内容包括学生的学习成绩和每日平均睡眠时间。
收集到的数据以Excel表格的形式整理并导入SPSS软件进行分析。
三、数据预处理在进行数据分析之前,需要对数据进行预处理。
首先,检查数据是否存在缺失值或异常值。
通过SPSS软件的数据清洗功能,将缺失值进行填补或删除,确保数据的完整性和准确性。
其次,对数据进行标准化处理,以消除不同变量之间的量纲差异。
四、描述性统计分析描述性统计分析是对数据的基本特征进行总结和描述。
通过SPSS软件的统计功能,可以计算出学生的学习成绩和睡眠时间的平均值、标准差、最大值、最小值等统计指标。
同时,可以绘制直方图、箱线图等图表来展示数据的分布情况。
五、相关性分析相关性分析是研究不同变量之间相关关系的一种方法。
本研究中,我们使用Pearson相关系数来衡量学习成绩和睡眠时间之间的线性相关性。
通过SPSS软件的相关性分析功能,可以得到相关系数的数值和显著性水平。
如果相关系数接近于1或-1,并且显著性水平小于0.05,则说明学习成绩和睡眠时间之间存在显著的相关关系。
六、回归分析回归分析是研究自变量对因变量影响程度的一种方法。
在本研究中,我们使用线性回归模型来探究睡眠时间对学习成绩的影响。
通过SPSS软件的回归分析功能,可以得到回归方程的系数、显著性水平和模型的拟合优度。
spss实验报告,心得体会
spss实验报告,心得体会篇一:SPSS实验报告SPSS应用——实验报告班级:统计0801班学号:1304080116 姓名: 宋磊指导老师:胡朝明2010.9.8一、实验目的:1、熟悉SPSS操作系统,掌握数据管理界面的简单的操作;2、熟悉SPSS结果窗口的常用操作方法,掌握输出结果在文字处理软件中的使用方法。
掌握常用统计图(线图、条图、饼图、散点、直方图等)的绘制方法;3、熟悉描述性统计图的绘制方法;4、熟悉描述性统计图的一般编辑方法。
掌握相关分析的操作,对显著性水平的基本简单判断。
二、实验要求:1、数据的录入,保存,读取,转化,增加,删除;数据集的合并,拆分,排序。
2、了解描述性统计的作用,并1掌握其SPSS的实现(频数,均值,标准差,中位数,众数,极差)。
3、应用SPSS生成表格和图形,并对表格和图形进行简单的编辑和分析。
4、应用SPSS做一些探索性分析(如方差分析,相关分析)。
三、实验内容:1、使用SPSS进行数据的录入,并保存: 职工基本情况数据:操作步骤如下:打开SPSS软件,然后在数据编辑窗口(Data View)中录入数据,此时变量名默认为var00001,var00002,…,var00007,然后在Variable View窗口中将变量名称更改即可。
具体结果如下图所示:输入后的数据为:将上述的数据进行保存:单击保存即可。
2、读取上述保存文件:选择菜单File--Open—Data;选择数据文件的类型,并输入文件名进行读取,出现如下窗口:选定职工基本情况.sav文件单击打开即可读取数据。
3、对上述数据新增一个变量工龄,其操作步骤为将当前数据单元确定在某变量上,选择菜单Data—Insert Variable,SPSS自动在当前数据单元所在列的前一列插入一2个空列,该列的变量名默认为var00016,数据类型为标准数值型,变量值均是系统缺失值,然后将数据填入修改。
结果如下图所示:篇二:SPSS相关分析实验报告本科教学实验报告(实验)课程名称:数据分析技术系列实验实验报告学生姓名:一、实验室名称:二、实验项目名称:相关分析三、实验原理相关关系是不完全确定的随机关系。
SPSS聚类分析实验报告
SPSS聚类分析实验报告一、实验目的本实验的目的是通过应用SPSS软件进行聚类分析,对样本进行分类和分组,通过群组间的比较来发现变量之间的关系和特征。
通过聚类分析的结果,可以帮助我们更好地理解和解释数据。
二、实验步骤1.数据准备:选择合适的数据集进行分析。
数据集应包含若干个已知变量,以及我们需要进行聚类的目标变量。
2.打开SPSS软件,导入数据集。
3.对数据集进行数据清洗和预处理,包括处理缺失数据、异常值等。
4.进行聚类分析:选择合适的聚类方法和变量,进行聚类分析。
5.对聚类结果进行解释和分析,确定最佳的聚类数目。
6.对不同的聚类进行比较,看是否存在显著差异。
7.结果展示和报告撰写。
三、实验结果及分析在实验过程中,我们选择了学校学生的体测数据作为聚类分析的样本。
数据集共包含身高、体重、肺活量等指标,共有200个样本。
首先,我们进行了数据预处理,包括处理缺失数据和异常值。
对于缺失数据,我们选择用平均值进行填充;对于异常值,我们使用离群值检测方法进行处理。
然后,我们选择了合适的聚类方法和变量,使用K-means聚类算法对样本进行分组。
我们尝试了不同的聚类数目,从2到10进行了分析。
根据轮廓系数和手肘法定量评估了不同聚类数目下聚类效果的好坏。
最终,我们选择了聚类数目为4的结果进行进一步分析。
通过比较不同聚类结果的均值,我们发现不同聚类之间的身高、体重和肺活量等指标存在较大差异。
这说明聚类分析对样本的分类和分组是合理和有效的。
四、实验总结本次实验通过应用SPSS软件进行聚类分析,对样本进行分类和分组,通过群组间的比较来发现变量之间的关系和特征。
通过分析聚类结果,我们发现不同聚类之间存在显著差异,这为进一步研究和探索提供了参考。
聚类分析是一种常用的数据分析方法,可以帮助我们更好地理解和解释数据,对于从大量数据中发现规律和特征具有重要的应用价值。
总之,聚类分析是一种有力的数据分析工具,可以帮助我们更好地理解和解释数据。
spss实验报告
SPSS实验报告
一、实验目的
明确SPSS提供了哪几种参数检验方法,掌握SPSS单样本t检验、两独立样本t检验和两配对样本t检验的基本思想,能够利用概率P-值以及置信区间进行统计决策,并掌握其数据组织方式和具体操作。
二、实验题目
1、在某年级随机抽取35名大学生,调查他们每周的上网时间情况,得到的数据如下(单位:小时):
(1)请利用SPSS对上表数据进行描述统计,并绘制相关的图形。
(2)基于上表数据,请利用SPSS给出大学生每周上网时间平均值的95%的置信区间。
2、如果将第2章第9题的数据看做来自总体的随机样本,试分析男生和女生的课程平均分是否存在显著差异。
三、实验步骤
1、将数据输入数据窗口
(1)Analyze Descriptive Statistics Frequencies,在弹出的Frequencies对话框中进行操作。
(2)Analyze Compare Means One-Sample T test
2、Transform Compute,在弹出的对话框中进行如下操作,运行得到学生的课程平均分;
Analyze Compare Means Independent-Samples T test,在弹出的对话框中进行如下操作,对男女生的课程平均分进行检验。
3、Analyze Compare Means Paired-Samples T test
四、实验结果
1、(1)
(2)
2、
3、。
spss分析实验报告
SPSS分析实验报告引言SPSS(统计包括社会科学)是一种常用的统计分析软件,广泛应用于社会科学领域的数据分析。
本文将以“step by step thinking”为思维导向,详细介绍如何使用SPSS进行实验数据的分析和结果解读。
步骤一:数据导入首先,我们需要将实验数据导入SPSS软件中。
打开SPSS软件,点击“文件”菜单,并选择“导入数据”。
选择数据文件所在位置,并按照指示完成数据导入过程。
确认数据导入完成后,我们可以开始进行下一步分析。
步骤二:数据清洗在进行实验数据分析之前,我们需要对数据进行清洗,以确保数据的准确性和可靠性。
数据清洗的步骤包括删除重复数据、处理缺失值和异常值等。
通过点击SPSS软件中的“数据”菜单,我们可以找到相应的数据清洗工具,并按照指示进行操作。
步骤三:描述性统计描述性统计是对数据进行总体特征描述的过程。
在SPSS软件中,我们可以使用“统计”菜单中的“描述统计”工具进行描述性统计分析。
该工具可以计算数据的均值、标准差、中位数等统计量,为后续的分析提供参考。
步骤四:检验假设在进行实验数据分析时,我们通常需要检验某些假设是否成立。
SPSS软件提供了多种假设检验工具,如t检验、方差分析等。
通过点击“分析”菜单,并选择相应的假设检验工具,我们可以输入所需的参数,并进行假设检验。
根据检验结果,我们可以判断实验数据是否支持或拒绝了我们的假设。
步骤五:相关性分析相关性分析用于研究两个或多个变量之间的关系。
SPSS软件中的“相关”工具可以计算出变量之间的相关系数,并绘制相应的相关图表。
通过相关性分析,我们可以了解变量之间的线性关系,并得出相关系数的显著性程度。
步骤六:回归分析回归分析是一种用于预测和解释变量之间关系的统计方法。
在SPSS软件中,我们可以使用“回归”工具进行回归分析。
通过输入自变量和因变量,并进行回归分析,我们可以得到回归方程和相关统计指标,进而进行预测和解释。
结果解读根据以上分析步骤,我们可以得到一系列实验数据的统计分析结果。
spss对数据进行相关性分析实验报告
spss对数据进行相关性分析实验报告一、实验目的与背景在统计学的研究中,相关性分析是一种常见的分析方法,用于研究两个或多个变量之间的关联程度。
本实验旨在使用SPSS软件对收集到的数据进行相关性分析,并探索变量之间的关系。
二、实验过程1. 数据收集:根据研究目的,我们收集了一份包含多个变量的数据集。
其中,变量包括A、B、C等。
2. 数据准备:在进行相关性分析之前,我们需要对数据进行准备。
首先,我们载入数据集到SPSS软件中。
然后,对于缺失数据,我们根据需要采取相应的填补或删除策略。
接着,我们进行数据的清洗和整理,以确保数据的准确性和一致性。
3. 相关性分析:使用SPSS软件,我们可以轻松地进行相关性分析。
在SPSS的分析菜单中,选择相关性分析功能,并设置相应的参数。
我们将选择Pearson相关系数,该系数用于衡量两个变量之间的线性相关关系。
此外,还可以选择其他类型的相关系数,如Spearman相关系数,用于非线性关系的探索。
设置参数后,我们点击“运行”按钮,即可得到相关性分析的结果。
4. 结果解读:SPSS将为我们提供一份详细的结果报告。
我们可以看到每对变量之间的相关系数及其显著性水平。
如果相关系数接近1或-1,并且P值低于显著性水平(通常为0.05),则可以得出两个变量之间存在显著的线性相关关系的结论。
此外,我们还可以通过散点图、线性回归等方法进一步分析相关性结果。
5. 结论与讨论:根据相关性分析的结果,我们可以得出结论并进行讨论。
如果发现两个变量之间存在显著的相关关系,我们可以进一步探究其原因和意义。
同时,我们还可以提出假设并设计更深入的实验,以验证和解释这些相关性。
三、结果与讨论根据我们的研究目的和数据集,通过SPSS软件进行的相关性分析显示了一些有意义的结果。
我们发现变量A与变量B之间存在显著的正相关关系(Pearson相关系数为0.7,P<0.05)。
这表明随着A的增加,B也会相应增加。
SPSS聚类分析实验报告
SPSS聚类分析实验报告一、实验目的本实验旨在通过SPSS软件对样本数据进行聚类分析,找出样本数据中的相似性,并将样本划分为不同的群体。
二、实验步骤1.数据准备:在SPSS软件中导入样本数据,并对数据进行处理,包括数据清洗、异常值处理等。
2.聚类分析设置:在SPSS软件中选择聚类分析方法,并设置分析参数,如距离度量方法、聚类方法、群体数量等。
3.聚类分析结果:根据分析结果,对样本数据进行聚类,并生成聚类结果。
4.结果解释:分析聚类结果,确定每个群体的特征,观察不同群体之间的差异性。
三、实验数据本实验使用了一个包含1000个样本的数据集,每个样本包含了5个变量,分别为年龄、性别、收入、教育水平和消费偏好。
下表展示了部分样本数据:样本编号,年龄,性别,收入,教育水平,消费偏好---------,------,------,------,---------,---------1,30,男,5000,大专,电子产品2,25,女,3000,本科,服装鞋包3,35,男,7000,硕士,食品饮料...,...,...,...,...,...四、实验结果1. 聚类分析设置:在SPSS软件中,我们选择了K-means聚类方法,并设置群体数量为3,距离度量方法为欧氏距离。
2.聚类结果:经过聚类分析后,我们将样本分为了3个群体,分别为群体1、群体2和群体3、每个群体的特征如下:-群体1:年龄偏年轻,女性居多,收入较低,教育水平集中在本科,消费偏好为服装鞋包。
-群体2:年龄跨度较大,男女比例均衡,收入中等,教育水平较高,消费偏好为电子产品。
-群体3:年龄偏高,男性居多,收入较高,教育水平较高,消费偏好为食品饮料。
3.结果解释:根据聚类结果,我们可以看到不同群体之间的差异性较大,每个群体都有明显的特征。
这些结果可以帮助企业更好地了解不同群体的消费习惯,为市场营销活动提供参考。
五、实验结论通过本次实验,我们成功地对样本数据进行了聚类分析,并得出了3个不同的群体。
spss统计实验报告
spss统计实验报告SPSS统计实验报告引言:SPSS(Statistical Package for the Social Sciences)是一种常用的统计分析软件,广泛应用于社会科学、经济学、医学和教育等领域。
本文将以一项关于学生学习成绩的统计实验为例,展示如何使用SPSS进行数据处理和分析。
一、实验目的本次实验的目的是探究学生的学习时间和学习成绩之间的关系。
通过对一组学生进行调查,收集他们的学习时间和成绩数据,然后使用SPSS进行统计分析,以揭示学习时间与学习成绩之间的相关性。
二、实验设计与数据收集我们选择了100名高中生作为实验对象,通过问卷调查的方式收集他们的学习时间和成绩数据。
学习时间以每周学习小时数为单位,成绩以百分制表示。
通过这种方式,我们可以得到一个包含学习时间和成绩两个变量的数据集。
三、数据处理与清洗在进行统计分析之前,我们需要对数据进行处理和清洗,以确保数据的准确性和一致性。
首先,我们检查数据是否存在缺失值或异常值。
如果发现有缺失值或异常值,我们可以选择删除这些数据或进行适当的填充和修正。
其次,我们对数据进行变量命名和编码,以便后续的分析和解释。
最后,我们对数据进行了简单的描述性统计,包括计算平均值、标准差和分布情况等。
四、数据分析与结果在进行数据分析时,我们首先进行了相关性分析,以确定学习时间和成绩之间的关系。
通过SPSS的相关性分析功能,我们计算了学习时间和成绩之间的皮尔逊相关系数。
结果显示,学习时间和成绩之间存在显著的正相关关系(r=0.75,p<0.01),即学习时间越长,成绩越好。
接下来,我们进行了回归分析,以进一步探究学习时间对成绩的影响程度。
通过SPSS的线性回归功能,我们建立了一个学习时间与成绩之间的回归模型。
回归分析的结果显示,学习时间对成绩的解释程度为56%,即学习时间可以解释学生成绩的变异程度的56%。
此外,回归模型的显著性检验结果也显示,该模型的回归系数是显著的(p<0.01)。
最新《SPSS统计软件应用》实验报告册
《SPSS统计软件应用》实验报告册20 15 - 20 16 学年第 1 学期班级: T1353-3 学号: 20130530305 姓名:徐云授课教师:薛昌春实验教师:薛昌春实验学时:一周实验组号:目录1.实验一 SPSS的数据管理2.实验二描述性统计分析3.实验三均值检验4.实验四相关分析5.实验五因子分析6.实验六聚类分析7.实验七回归分析8.实验八判别分析实验一 SPSS的数据管理一、实验目的1.熟悉SPSS的菜单和窗口界面,熟悉SPSS各种参数的设置;2.掌握SPSS的数据管理功能。
二、实验内容:1、定义spss数据结构。
下表是某大学的一个问卷调查,要求将问卷调查结果表示成spss可识别的数据文件,利用spss软件进行分析和处理。
练习:创建数据文件的结构,即数据文件的变量和定义变量的属性。
实验步骤:(1)打开SPSS 软件,新建一张date数据表;(2)打开 variable view 界面,对相应的变量数据进行属性设置;(3)打开 date view界面,输入数据,点击保存;实验结果及分析:略2 、高校提前录取名单的确定某高校今年对部分考生采取单独出题、提前录取的招生模式。
现有20名来自国内不同省市的考生报考该校,7个录取名额。
见数据文件compute.sav. 该校制定了如下录取原则:(1)文化课成绩由数学、语文、英语和综合四门成绩组成。
文化课成绩制定最低录取分数线:400分。
(2)个人档案中若有“不良记录”,不予录取。
(3)对西部考生和少数民族考生,给予加分优惠。
少数民族考生加20分,西部考生加10分。
(4)对参加过省以上竞赛并取得三等奖以上名次的考生,每项加10分。
(5)文化课成绩和加分总和构成综合分,录取综合排名为前7名的学生。
练习:利用spss软件,综合利用所学,给出成绩排名的操作步骤。
实验步骤:(1)打开给的原数据文件;(2)执行 date/select case 命令,打开select case对话框,选择 if condiction is satisfatied ,输入“(数学 + 语文 + 英语 + 综合) >= 400 and 不良记录 = 0”,点击continue。
SPSS上机实验报告四
SPSS上机实验报告一、实验内容1.数据合并:(1)纵向拼接(添加个案):合并数据a.sav和b.sav(2)横向合并(添加变量):合并数据a.sav和c.sav2.对数据CCSS_Sample.sav作下列操作:(1)频率分析:对S0城市,S4学历分别做分析;(2)交叉列表:月份对城市做交叉分析;观察值;计算(行、列)百分百;(3)对多选题C0贷款情况进行分析:多响应频率分析;3.对数据Employee data.sav,分析员工的性别、受教育程度、少数名族、职位类别的分布情况,并尝试分析这些属性之间的关系以及这些属性和工资之间的关系.二、实验步骤1.合并数据(1)纵向拼接:打开spss软件,在菜单中打开a.sav文件,选择菜单:[数据]→[合并文件]→[添加个案],在弹出的窗口中将选择外部spss数据文件并在浏览中选择b.sav,点击继续,在弹出的窗口中将“非成对变量”中的所有变量添加到“新的活动数据集中的变量”,勾选“将个案表现为变量”,点击确定。
结果如图:(2)横向合并:打开a.sav,选择菜单:[数据]→[合并文件]→[添加变量],在弹出的窗口中选择外部数据文c.sav,在弹出的窗口中勾选“按照排序文件中的关键变量匹配个案”,将“已排除变量”中的id添加到“关键变量”中,点击确定。
结果如图:2.(1)频率分析:在spss中打开CCSS_Sample.sav,选择菜单:[分析]→[描述统计]→[频率],在弹出的窗口中双击左边框中的S0城市,S4学历加入到右边变量框中,如图:点击确定。
结果如图:分析:在北京,上海,广州工作的人数基本相同;大专毕业的人最多,其次是高中/中学毕业生和本科毕业生,硕士及以上学历的人非常少,仅占5%。
(2)交叉列表:打开CCSS_Sample.sav数据,选择菜单:[分析]→[描述统计]→[交叉表],在弹出的窗口中从左边框中将月份添加到行中,将城市添加到列中,如图:单击[单元格],勾选百分比中的行和列,如图:单击[继续],再单击[确定]。
spss统计学实验报告
竭诚为您提供优质文档/双击可除spss统计学实验报告篇一:统计学spss实验报告spss实验报告一.实验目的1.掌握spss的基本操作,能够熟练应用spss进行基本的统计分析。
2.在用spss对具体实例进行分析的基础上能对结果进行正确的解释。
3.在对spss基本操作熟练的情况下,进一步自学spss 更强大的分析能。
二.实验要求1.掌握如何通过spss进行数据的获取和管理,包括数据的录入,保存,读取,转化,增加,删除;数据集的合并,拆分,排序。
2.了解描述性统计的作用,并掌握其spss的实现(频数,均值,标准差,中位数,众数,极差)。
3.应用spss生成表格和图形,并对表格和图形进行简单的编辑和分析。
4.应用spss做一些探索性分析(如方差分析,相关分析)三.实验内容(一).问题的提出对不同广告方式和不同地区对某商品销售额影响进行分析。
在制定某商品的广告策略时,收集了该商品在不同地区采用不同广告形式促销后的销售额数据,分析广告形式和地区是否影响商品销售额。
自变量为广告方式(x1)和地区(x2),因变量为销售额(Y)。
涉及地区18个,每个地区抽取样本8个,共有案例144个。
具体数据如下:x11.002.004.003.001.002.004.003.001.002.004.003.001.002.004.003.001.002.004.003.00x21.001.001.001.002.002.002.002.003.003.003.003 .004.004.004.004.005.005.005.005.00Y75.0069.0063.00 52.0057.0051.0067.0061.0076.00100.0085.0061.0077.00 90.0080.0076.0075.0077.0087.0057.002.006.004.006.003.006.001.007.002.007.00 4.007.003.007.001.008.002.008.00 4.008.003.008.001.009.002.009.00 4.009.003.009.001.0010.002.0010.00 4.0010.003.0010.001.0011.002.0011.00 4.0011.001.0012.002.0012.00 4.0012.003.0012.001.0013.002.0013.004.0013.003.0011.003.0013.001.0014.002.0014.004.0014.003.0014.001.0015.002.0015.004.0015.003.0015.001.0016.002.0016.004.0016.003.0016.0060.0062.0052.0076.0033.0070.0033.0081.0079 .0075.0069.0063.0073.0040.0060.0094.00100.0064.0061 .0054.0061.0040.0070.0068.0067.0066.0087.0068.0051. 0041.0065.0065.0063.0061.0058.0065.0083.0075.0050.0079.0076.0064.0044.002.0017.004.0017.003.0017.001.0018.002.0018.004.0018.003.0018.001.001.002.001.004.001.003.001.001.002.002.002.004.002.003.002.001.003.002.003.004.003.003.003.001.004.002.004.004.004.00 3.004.001.005.002.005.00 4.005.003.005.001.006.002.006.00 4.006.003.006.001.007.002.007.00 4.007.003.007.001.008.002.008.00 4.008.003.008.001.009.002.009.00 4.009.003.009.0073.0050.0045.0075.0074.0062.0058.0068.0054. 0058.0041.0075.0078.0082.0044.0083.0079.0078.0086.0 066.0083.0087.0075.0066.0074.0070.0075.0076.0069.00 77.0063.0070.0068.0068.0052.0086.0075.0061.0061.006 2.0065.0055.0043.001.002.004.003.001.002.004.003.001.002.004.003.001.002.004.003.001.002.004.003.001.002.004.003.001.002.004.003.001.002.004.003.001.002.004.003.0010.0010.0010.0010.0011.0011.0011.0011.0012.0012.0012.0012.0013.0013.00 13.0013.0014.0014.0014.0014.0015.0015.0015.0015.001 6.0016.0016.0016.0017.0017.0017.0017.0018.0018.0018.0018.0088.0070.0076.0069.0056.0053.0070.0043.0086. 0073.0077.0051.0084.0079.0042.0060.0077.0066.0071.0 052.0078.0065.0065.0055.0080.0081.0078.0052.0062.00 57.0037.0045.0070.0065.0083.0060.00x1一列中,1表示报纸,2表示广播,3表示宣传品,4表示体验。
SPSS实验报告
CENTRAL SOUTH UNIVERSITYSPSS实验报告学生姓名王强学号**********指导教师邵留国学院商学院专业工商1101实验一、数据集实验目的:掌握基本的统计学理论,学会使用SPSS录入数据,建立SPSS数据集。
实验内容:1.3:三十名儿童身高、体重样本数据如下表所示。
建立SPSS数据集。
三十名儿童身高、体重样本数据实验步骤:步骤一:启动SPSS。
步骤二:选择文件,新建,数据,如图。
步骤三:切换到变量视图,定义变量。
其中,性别变量需要设置值标签。
如图所示。
步骤四:切换到数据视图,按照次序依次输入数据。
步骤五:保存数据.实验结果:实验二:统计量描述实验目的:(1)结合图表描述掌握各种描述性统计量的构造原理及其应用.(2)熟练掌握运用SPSS进行统计描述的基本技能。
实验内容:大学生在校期间的各门课程考试成绩,尽管在学生与学生之间、院系之间、男女生之间以及不同的课程之间,都存在着各种各样的差异,但整体上的分布状况还是有规律可循的.今有两个学院共1040名男女生的统计学和经济学期末考试成绩数据,储存在SPSS数据文件中,文件名:lytjcj。
sav。
试运用图表描述与统计量描述的方法,对此数据展开尽可能全面和深入的描述与分析。
实验步骤:步骤一:打开SPSS数据,文件名:lytjcj.sav。
如图。
步骤二:点击“分析"中的“描述统计",选择“频率",如图所示。
步骤三:弹出一个“频率"对话框,如图。
步骤四:将“统计成绩”和“经济成绩”拖入“变量"框中,点击确定。
实验结果:实验三:参数估计实验目的:(1)掌握单样本总体均值区间估计。
(2)掌握总体均值差区间估计.(3)熟练掌握相关的SPSS操作。
实验内容:某地区的一位针对老年人市场的电视节目赞助商,希望了解老年人每周看电视的时间,因为这个信息对电视节目设计以及广告策略和广告数量的制定有着重要的参考价值。
SPSS实验报告
安徽建筑大学数据统计分析实验报告专业统计学班级二班学生姓名陈永帅学号 *********** 实验日期实验一描述性统计分析一、实验目的与要求统计分析的目的在于研究总体特征。
但是,由于各种各样的原因,我们能够得到的往往只能是从总体中随机抽取的一部分观察对象,他们构成了样本,只有通过对样本的研究,我们才能对总体的实际情况作出可能的推断。
因此描述性统计分析是统计分析的第一步,做好这一步是进行正确统计推断的先决条件。
通过描述性统计分析可以大致了解数据的分布类型和特点、数据分布的集中趋势和离散程度,或对数据进行初步的探索性分析(包括检查数据是否有错误,对数据分布特征和规律进行初步观察)。
本本实验旨在于:引到学生利用正确的统计方法对数据进行适当的整理和显示,描述并探索出数据内在的数量规律性,掌握统计思想,培养学生学习统计学的兴趣,为继续学习推断统计方法及应用各种统计方法解决实际问题打下必要而坚实的基础。
二、实验原理描述统计是统计分析的基础,它包括数据的收集、整理、显示,对数据中有用信息的提取和分析,通常用一些描述统计量来进行分析。
集中趋势的特征值:算术平均数、调和平均数、几何平均数、众数、中位数等。
其中均数适用于正态分布和对称分布资料,中位数适用于所有分布类型的资料。
离散趋势的特征值:全距、内距、平均差、方差、标准差、标准误、离散系数等。
其中标准差、方差适用于正态分布资料,标准误实际上反映了样本均数的波动程度。
分布特征值:偏态系数、峰度系数、他们反映了数据偏离正态分布的程度。
三、实验内容与步骤下面给出的一个例题是来自SPSS软件自带的数据文件“Employee.data”,该文件包含某公司员工的工资、工龄、职业等变量,我们将利用此例题给出相关的描述统计说明,本例中,我们将以员工的当前工资为例,计算该公司员工当前工资的一些描述统计量,如均值、频数、方差等描述统计量的计算。
频率附注创建的输出16-12月-2013 15时55分55秒注释输入数据C:\Users\YSC\Desktop\data12-01.sav 活动的数据集数据集1过滤器<none>权重<none>拆分文件<none>工作数据文件中的N 行12 缺失值处理对缺失的定义用户定义的丢失值作为丢失对待。
spss实验报告
试验3:统计推断一、试验目的与要求1.熟悉点估计概念与操作方法2.熟悉区间估计的概念与操作方法3.熟练掌握T检验的SPSS操作4.学会利用T检验方法解决身边的实际问题二、试验原理1.参数估计的基本原理2.假设检验的基本原理实验3-1实验数据实验结果/TESTVAL=65/MISSING=ANALYSIS/VARIABLES=英语成绩从表中可以得出,英语成绩区间估计(置信度为95%)为(.37,9.23)。
点估计是.035。
实验3-2T-TEST GROUPS=性别('男' '女')/MISSING=ANALYSIS/VARIABLES=成绩/CRITERIA=CI(.95).组统计量性别N 均值标准差均值的标准误成绩男18 81.28 10.369 2.444女14 76.29 11.432 3.055分别给出不同总体下的样本容量、均值、标准差和平均标准误。
从表中可以看出,平均成绩男为相等)下,F=0.647,因为其P-值大于显著性水平,即:Sig.=0.428>0.05,说明不能拒绝方差相等的原假设,接受两个总体方差是相等的假设。
因此男女生英语成绩之差95%的区间估计为[-2.898, 12.882]。
T-test for Equality of Means 为检验总体均值是否相等的t 检验,由于在本例中,其P-值大于显著性水平,即:Sig.=0.206>0.05,因此不应该拒绝原假设,也就是说男女生英语成绩没有显著差异。
试验4:方差分析一、试验目标与要求1.帮助学生深入了解方差及方差分析的基本概念,掌握方差分析的基本思想和原理2.掌握方差分析的过程。
3.增强学生的实践能力,使学生能够利用SPSS统计软件,熟练进行单因素方差分析、两因素方差分析等操作,激发学生的学习兴趣,增强自我学习和研究的能力。
二、试验原理方差分析也是一种假设检验,它是对全部样本观测值的变动进行分解,将某种控制因素下各组样本观测值之间可能存在的由该因素导致的系统性误差与随即误差加以比较,据以推断各组样本之间是否存在显著差异。
聚类分析实验报告SPSS
聚类分析实验报告SPSS一、实验目的:1.掌握聚类分析的基本原理和方法;2.了解SPSS软件的使用;3.通过实际数据分析,探索样本数据的聚类结构。
二、实验步骤:1.数据预处理:a.收集并导入样本数据;b.对数据进行初步探索和了解,包括数据描述统计、缺失值处理等;2.聚类分析:a.选择合适的变量进行聚类分析;b.选择聚类算法和相似性度量方法;c.进行聚类分析,得到聚类结果;d.检验聚类结果的稳定性和合理性;3.结果解释:a.对聚类结果进行解释和描述,给出每个聚类的特点和含义;b.使用图表展示聚类结果,以便更直观地理解;c.对聚类结果进行验证和评估,如通过交叉验证等方法;4.结论:a.总结分析结果,给出对样本数据的聚类结构的总体认识;b.提出有关样本数据的进一步探索方向和建议。
三、实验结果与分析:1.数据预处理:样本数据包括了多个变量,我们首先对这些变量进行初步的探索和分析,了解它们的分布情况和特点。
同时,对于缺失值的处理,我们采取了删除或插补的方法,以保证后续分析的准确性和完整性。
2.聚类分析:在选择变量时,我们考虑到了变量之间的相关性,以及对聚类结果的解释性。
通过SPSS软件,我们选择了合适的聚类算法和相似性度量方法,进行了聚类分析。
3.结果解释:根据聚类结果,我们将样本数据划分为多个聚类群组。
对于每个聚类群组,我们进行了详细的解释和描述,给出了其特点和含义。
通过图表的展示,我们能更直观地理解每个聚类群组的分布情况和区别。
4.结论:综合分析结果,我们得出了对样本数据聚类结构的总体认识。
同时,我们提出了进一步探索的方向和建议,以获取更多的知识和信息。
四、实验总结:通过这次实验,我们掌握了聚类分析的基本原理和方法,了解了SPSS软件的使用。
通过实际数据的分析,我们能够更深入地理解样本数据的聚类结构,为进一步的研究和应用提供了基础。
在实验过程中,我们也遇到了一些问题和困难,但通过团队合作和专业指导,我们得以顺利完成实验,并取得了较好的结果。
SPSS相关分析实验报告_实验报告_
SPSS相关分析实验报告篇一:spss对数据进行相关性分析实验报告实验一一.实验目的掌握用spss软件对数据进行相关性分析,熟悉其操作过程,并能分析其结果。
二.实验原理相关性分析是考察两个变量之间线性关系的一种统计分析方法。
更精确地说,当一个变量发生变化时,另一个变量如何变化,此时就需要通过计算相关系数来做深入的定量考察。
P值是针对原假设H0:假设两变量无线性相关而言的。
一般假设检验的显著性水平为0.05,你只需要拿p值和0.05进行比较:如果p值小于0.05,就拒绝原假设H0,说明两变量有线性相关的关系,他们无线性相关的可能性小于0.05;如果大于0.05,则一般认为无线性相关关系,至于相关的程度则要看相关系数R值,r越大,说明越相关。
越小,则相关程度越低。
而偏相关分析是指当两个变量同时与第三个变量相关时,将第三个变量的影响剔除,只分析另外两个变量之间相关程度的过程,其检验过程与相关分析相似。
三、实验内容掌握使用spss软件对数据进行相关性分析,从变量之间的相关关系,寻求与人均食品支出密切相关的因素。
(1)检验人均食品支出与粮价和人均收入之间的相关关系。
a.打开spss软件,输入“回归人均食品支出”数据。
b.在spssd的菜单栏中选择点击,弹出一个对话窗口。
C.在对话窗口中点击ok,系统输出结果,如下表。
从表中可以看出,人均食品支出与人均收入之间的相关系数为0.921,t检验的显著性概率为0.000<0.01,拒绝零假设,表明两个变量之间显著相关。
人均食品支出与粮食平均单价之间的相关系数为0.730,t检验的显著性概率为0.000<0.01,拒绝零假设,表明两个变量之间也显著相关。
(2)研究人均食品支出与人均收入之间的偏相关关系。
读入数据后:A.点击系统弹出一个对话窗口。
B.点击OK,系统输出结果,如下表。
从表中可以看出,人均食品支出与人均收入的偏相关系数为0.8665,显著性概率p=0.000<0.01,说明在剔除了粮食单价的影响后,人均食品支出与人均收入依然有显著性关系,并且0.8665<0.921,说明它们之间的显著性关系稍有减弱。
spss绘制统计图实验报告
周次第8周;课次第1次;课时 2实验四:绘制统计图【实验目的】利用SPSS绘制各种统计图。
【实验内容】1.直条图(Bar过程)①打开数据文件4-1.sav。
假设数据文件涉及学生的学号、数学、英语、化学、物理、地理、历史、语文等多方面的数据,每个案例对应一个学生。
我们关心得是学生的数学成绩。
②选择菜单“Graphs→Chart Builder”,在Gallery里选择Simple Bar,拖入画布中。
将变量“学号”拖至X轴坐标,将变量“数学成绩”拖至Y轴坐标。
③点击“OK”按钮。
2. 线图(Line过程)①打开数据文件4-1.sav。
用图形描述数学和物理之间的关系,建立两者之间的线形图。
②选择菜单“Graphs→Chart Builder”,在Gallery里选择Simple Line,拖入画布中。
将变量“数学成绩”拖至X轴坐标,将变量“物理成绩”拖至Y轴坐标。
③点击“OK”按钮。
3. 面积图(Area过程)本案例使用SPSS 自带文件“可支配收入.sav”数据文件,该数据文件涉及各地区可支配收入、工薪收入、经营净收入、财产性收入等(单位:万元)①打开数据文件4-2.sav。
②选择菜单“Graphs→Chart Builder”,在Gallery里选择Area,拖入画布中。
将变量“可支配收入”拖至X轴坐标,将变量“工薪收入”拖至Y轴坐标。
点击Element Properties,在Statistics选择Mean。
③在Title/Footnotes里输入“可支配收入和工薪收入”为标题。
④点击“OK”按钮。
4.饼图(Pie过程)①打开数据文件4-2.sav。
②选择菜单“Graphs→Chart Builder”,在Gallery里选择Pie,拖入画布中。
将变量“教育水平”拖至横轴放置区内(Sliced by...)。
③在Title/Footnotes里输入“教育水平饼图”为标题。
④点击“OK”按钮。
SPSS实验报告
通过计算诸如样本均值、中位数、样本方差等重要基本统计量,并辅助于SPSS 提供的图形功能,能够使分析者把握数据的基本特征和数据的整体分布形态,对进一步的统计判断和数据建模工作起到重要作用。
并且,通过例子学习描述性统计分析及其在 SPSS 中的实现,包括统计量的定义及计算、频率分析、描述性分析、探索性分析、交叉表分析和多重响应分析,能够使分析者更好的掌握基本的统计分析,即单变量频数分布的编制、基本统计量的计算以及数据的探索性分析等。
1.打开数据文件 data4-8.sav,完成以下统计分析。
(1)计算各科成绩的描述统计量:平均成绩、中位数、众数、标准差、方差、极差、最大值和最小值;①解决问题的原理:描述性分析②实验步骤:通过“分析-描述统计-描述”,打开“描述性”对话框,根据题目所需要的统计量进行设置。
③结果及分析:表中分析变量“成绩”的个案数、所有个案中的极大值、极小值、均值、标准差及方差。
(2)使用 Recode 命令生成一个新变量“成绩段”,其值为各科成绩的分段: 90~100 为 1,80~89 为 2,70~79 为 3,60~69 为4,60 分以下为 5,其值标签: 1—优, 2—良, 3—中, 4—及格, 5—不及格。
分段以后进行频数分析,统计各分数段的人数,最后生成条形图和饼图。
①解决问题的原理:频率分析。
②实验步骤:通过“分析-描述统计-频率”,打开“频率”对话框,根据题目所需要的统计量进行设置。
③结果及分析:有效1519242830323334363743495055频率11111211121111百分比2.22.22.22.22.24.42.22.22.24.42.22.22.22.2有效百分比2.22.22.22.22.24.42.22.22.24.42.22.22.2积累百分比2.24.46.78.911.115.617.820.022.226.728.931.133.3全距极小值83 15成绩有效的 N (列表状态) N4545标准差23.048极大值98方差531.210均值60.518.9 6.7 2.2 2.2 2.2 2.2 6.7 2.2 2.2 2.2 2.2 2.2 2.2 4.4 2.2 4.4 2.2 4.4 2.2 100.0表中显示了变量“成绩段”在各个取值上浮现的次数(频率)、其频率占所有个案中的百分比、有效百分比及积累百分比。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《统计分析软件》实验报告
实验序号:B0901153-4实验项目名称:方差分析
学号姓名专业、班级
实验地点指导教师时间
一、实验目的及要求
实验目的:
(1)加深对方差分析基本思想的进一步理解;
(2)熟悉F检验方法和主要的方差分析方法。
实验要求:
(1)单因素方差分析过程;
(2)双因素方差分析过程;
(3)有交互作用的双因素方差分析过程;
(4)掌握各个分析过程的基本步骤、主要选择项的含义,输出结果的信息含义。
二、实验设备(环境)及要求
微型计算机,SPSS、EViews等统计分析软件
三、实验内容与数据来源
实验内容和数据根据《SPSS实验上机题》实验四及《试验4补充题》
四、实验步骤与结果
1、(1)数据中的因变量是学生独立思考水平提高的成绩,因素是学生采用的学习方式。
(2)建立数据文件
首先在变量视图中定义变量的属性,总共有三个变量,分别为方式、提高的成绩,均定义为数值型的变量:
再在数据视图中输入变量值:
单击“分析”→“比较均值”→“单因素”,再出现的对话框中,选择变量“学生提高的成绩”为“因变量列表”,选择“方式”为“因子”
单击“对比”,选择“多项式”,然后点击“继续”
单击“两两比较”,选择“LSD”,然后点击“继续”
单击“选项”,选择“方差同质性检验”以及“均值图”,然后单击“继续”
最后单击“确定”,得出下列结果
结论:
(1)、方差齐次性检验表:
输出的显著性为0.307,远大于0.05,因此我们认为各组的总体方差相等。
(2)、方差分析表:
总离差平方和为1156.800,组间离差平方和为1069.400,组内离差平方和为87.400,在组间离差平方和中可以被线性解释的部分为396.050;方差检验F=165.182,对应的显著性为0,小于显著性水平0.05,因此我们认为3组中至少有一组与另一组存在显著性差异。
(3)、多重比较表(LSD法):
由表可知,三组互相的显著性水平都为0,小于0.05,因此说明这几组之间的差异性显著。
从均值折线图可看出:方式3的均值相对较小。
2、打开变量视图,定义属性“班级“、”数学成绩“,并在班级变量的值标签总定义班级1、2、3分别为数字1、2、3,并在数据视图中输入数据,并保存为data4-2.sav。
单击“分析”→“比较均值”→“单因素”,在出现的对话框中,选择变量“数学成绩”为“因变量列表”,选择“班级”为“因子”
单击“对比”,在出现的对话框中,选择“多项式”,单击“继续”,如图:
单击“两两比较”,在出现的对话框中选择“LSD”,显著性水平不变,单击“继续”,如图:
单击“选项”,选择“方差同质性检验”和“均值图”,“缺失项”为默认设置,单击“继续”,如图:
最后单击“确定”按钮,得到下列结果:
结论:由上面分析图表可知,三个班之间的显著性水平都远大于0.05,所以它们之间的差异是不显著的!
3、首先在变量视图中定义变量的属性,再在数据视图中输入相应的变量值:
单击“分析”→“比较均值”→“单因素ANOVA”,在“因变量列表”中选择“质量指标”,在“因子”中选择“厂家”
单击“对比”,选择“多项式”,再单击“继续”
单击“两两比较”,选择“LSD(L)”,单击“继续”
单击“选项”,选择“方差同质性检验”,再单击“继续”
最后单击“确定”,出现下面结果
从上面两个表可以看出,显著性为0.154,大于0.05,所以各组的总体方差不相等;总离差平方和为1078.000,组间离差平方和为451.000,组内离差平方和为627.000,在组间离差平方和中可以被线性检验的部分为88.200;方差检验F为2.877,对应的显著性小于0.080,大于显著性水平0.05,所以不存在显著性差异。
从上表看出,各类化纤织品与各厂家的显著性都大于0.05,说明各类化纤织品及各厂家生产对产品质量无显著影响
4、首先在变量视图中定义变量的属性,再在数据视图中输入相应的变量值:
单击“分析”-“一般线性模型”-“单变量”,出现“单变量”对话框,把“销售量”选入“因变量”框中,把“商店”和“包装”选入“固定因子”框中:
单击“模型”,在“指定模型”框中选择“设定”,把“商店”和“包装”选入“模型”框中,点击“继续”
单击“两两比较”,选择“商店”和“包装”进行检验,在“假定方差齐性”中选择“LSD”,然后单击“继续”
单击“选项”,选择“OVERALL”显示均值,单击“继续”
最后在主对话框点击“确定,输出下面结果”
从上表可看出,包装和商店的P值为0,小于0.05,可以认为包装和商店对销售量的影响存在显著性差异
5、首先在变量视图中定义变量的属性,再在数据视图中输入相应的变量值:
单击“分析”-“一般线性模型”-“重复度量”,打开“重复度量定义因子”对话框,在“被试内因子名称”中输入“时间”,在“级别数”中输入“4”,单击“添加”,然后点击“定义”
在“重复度量”对话框中选择“系统、时间一、时间二、时间三”进入“群体内部变量”如图所示
单击“模型”,在“指定模型”中选择“设定”,然后将“时间”选入“群体内模型”,单击“继续”
单击“选项”,在“输出”框中选择“描述统计”,然后点击“继续”
最后单击“确定”,输出结果
从上表可以看出时间一、时间二、时间三的均值、标准误差和观测值;P值为0,即不同系统耗费的时间存在显著差异
从上表可以看出,各种检验方法得到的P值为0,因而组内效应对耗费的时间造成了显著影响,与表2结果一致。
从上表可看出,组间效应的p值为0,即不同系统对时间的耗费存在显著性差异6、首先在变量视图中定义变量的属性,再在数据视图中输入相应的变量值:
单击“分析”-“一般线性模型”-“多变量”,在弹出的对话框中把“效果一”、“效果二”选入“因变量”中,把“杀虫剂”、“农作物”选入“固定因子”中
单击“选项”,在“输出”框中选择“方差齐性分析”,单击“继续”
最后单击“确定”,得出下面结果。