高考数学回归基础知识二、函数及其表示
函数及其表示知识梳理
函数1.函数的概念:设A 、B 是非空的数集,如果按照某个确定的对应关系f ,使对于集合A 中的任意一个数x ,在集合B 中都有唯一确定的数f (x )和它对应,那么就称f :A →B 为从集合A 到集合B 的一个函数。
记作:y =f (x ),x ∈A 。
其中,x 叫做自变量,x 的取值范围A 叫做函数的定义域;与x 的值相对应的y 值叫做函数值,函数值的集合{f (x )| x ∈A }叫做函数的值域。
显然,值域是集合B 的子集.解读函数概念(1)“A ,B 是非空的数集”,一方面强调了A ,B 只能是数集,即A ,B 中的元素只能是实数;另一方面指出了定义域、值域都不能是空集,也就是说定义域为空集的函数是不存在的.(2)理解函数的概念要注意函数的定义域是非空数集A ,但函数的值域不一定是非空数集B ,而是集合B 的子集.(3)函数定义中强调“三性”:任意性、存在性、唯一性,即对于非空数集A 中的任意一个(任意性)元素x ,在非空数集B 中都有(存在性)唯一(唯一性)的元素y 与之对应.(4) “y=f(x)”是函数符号,可以用任意的字母表示,如“y=g(x)”;常用函数符号: ƒ(x) ,g(x), h(x), F(x), G(x)等.(5)函数符号“()y f x =”是数学中抽象符号之一,“()y f x =”仅为y 是x 的函数的数学表示,不表示y 等于f 与x 的乘积,()f x 也不一定是解析式,还可以是图表或图象.(6)函数只能是一对一或者多对一(7)函数求值,需要把所有定义域都做代换2.构成函数的三要素:定义域、对应关系和值域函数的构成要素由函数概念知,一个函数的构成要素为定义域、对应关系和值域_.由于值域是由定义域和对应关系决定的,所以确定一个函数只需要两个要素:定义域和对应关系.辨析() f x 与()()f a a A ∈:()f a 表示当自变量x a =时函数() f x 的值,是一个常量,而() f x 是自变量x 的函数,它是一个变量,()f a 是() f x 的一个特殊值.(1)解决一切函数问题必须认真确定该函数的定义域,函数的定义域包含三种形式:①自然型:指函数的解析式有意义的自变量x 的取值范围(如:分式函数的分母不为零,偶次根式函数的被开方数为非负数,对数函数的真数为正数,等等);②限制型:指命题的条件或人为对自变量x 的限制,这是函数学习中重点,往往也是难点,因为有时这种限制比较隐蔽,容易犯错误;③实际型:解决函数的综合问题与应用问题时,应认真考察自变量x 的实际意义。
高中数学基础之函数及其表示
1.一种优先意识 函数定义域是研究函数的基础依据,对函数的研究,必须坚持定义域优先的 原则. 2.两个关注点 (1)分段函数是一个函数. (2)分段函数的定义域、值域是各段定义域、值域的并集.
核心考点突破
考点一 函数的概念
【例1】 (1)下列对应是从集合A到B的函数是( A ) A.A=N,B=N,f:x→y=(x-1)2 B.A=N,B=R,f:x→y=± x C.A=N,B=Q,f:x→y=x-1 1 D.A={衡中高三·一班的同学},B=[0,150],f:每个同学与其高考数学的分 数相对应
为相等函数.
3.函数的表示法 表示函数的常用方法有 解析法 、图象法和 列表法 .
4.分段函数 (1)若函数在其定义域的不同子集上,因 对应关系 不同而分别用几个不同的
式子来表示,这种函数称为分段函数. (2)分段函数的定义域等于各段函数的定义域的 并集 ,其值域等于各段函数
的值域的 并集 ,分段函数虽由几个部分组成,但它表示的是一个函数.
角度3:待定系数法求函数解析式 【例2-3】 已知f(x)是一次函数,且满足3f(x+1)- 2f(x-1)=2x+17,则f(x)=__2_x_+__7__.
[思路引导] 设f(x)=ax+b(a≠0)→代入已知条件→解出a、b→得f(x).
[解析] 设f(x)=ax+b(a≠0),则3f(x+1)-2f(x-1)=3ax+3a+3b-2ax+2a -2b=ax+5a+b,
角度2:分段函数与不等式问题
【例3-2】 (1)已知函数f(x)= 1)≤1的解集是_(_-__∞__,__-__1_+___2_]_.
-x+1,x<0, x-1,x≥0,
则不等式x+(x+1)f(x+
(2)设函数f(x)= _a_≤___2___.
高中数学知识点总结(第二章 函数的概念与基本初等函数Ⅰ第一节 函数及其表示)
第二章函数的概念与基本初等函数Ⅰ第一节函数及其表示一、基础知识1.函数与映射的概念2.函数的有关概念(1)函数的定义域、值域:在函数y=f(x),x∈A中,x叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的集合{f(x)|x∈A}叫做函数的值域.求函数定义域的策略(1)确定函数的定义域常从解析式本身有意义,或从实际出发.(2)如果函数y=f(x)是用表格给出,则表格中x的集合即为定义域.(3)如果函数y=f(x)是用图象给出,则图象在x轴上的投影所覆盖的x的集合即为定义域.(2)函数的三要素:定义域、值域和对应关系.(3)相等函数:如果两个函数的定义域和对应关系完全一致,则这两个函数相等,这是判断两函数相等的依据.两函数值域与对应关系相同时,两函数不一定相同.(4)函数的表示法:表示函数的常用方法有:解析法、图象法、列表法.3.分段函数若函数在其定义域内,对于定义域内的不同取值区间,有着不同的对应关系,这样的函数通常叫做分段函数.关于分段函数的3个注意(1)分段函数虽然由几个部分构成,但它表示同一个函数.(2)分段函数的定义域是各段定义域的并集,值域是各段值域的并集.(3)各段函数的定义域不可以相交.考点一 函数的定义域[典例] (1)(2019·长春质检)函数y =ln1-x x +1+1x的定义域是( ) A .[-1,0)∪(0,1) B .[-1,0)∪(0,1] C .(-1,0)∪(0,1]D .(-1,0)∪(0,1)(2)已知函数f (x )的定义域为(-1,0),则函数f (2x +1)的定义域为( ) A .(-1,1) B.⎝⎛⎭⎫-1,-12 C .(-1,0)D.⎝⎛⎭⎫12,1[解析] (1)由题意得⎩⎪⎨⎪⎧1-x >0,x +1>0,x ≠0,解得-1<x <0或0<x <1.所以原函数的定义域为(-1,0)∪(0,1).(2)令u =2x +1,由f (x )的定义域为(-1,0),可知-1<u <0,即-1<2x +1<0, 得-1<x <-12.[答案] (1)D (2)B [解题技法]1.使函数解析式有意义的一般准则(1)分式中的分母不为0; (2)偶次根式的被开方数非负; (3)y =x 0要求x ≠0;(4)对数式中的真数大于0,底数大于0且不等于1; (5)正切函数y =tan x ,x ≠k π+π2(k ∈Z);(6)实际问题中除考虑函数解析式有意义外,还应考虑实际问题本身的要求. 2.抽象函数的定义域问题(1)若已知函数f (x )的定义域为[a ,b ],其复合函数f (g (x ))的定义域由不等式a ≤g (x )≤b 求出;(2)若已知函数f (g (x ))的定义域为[a ,b ],则f (x )的定义域为g (x )在x ∈[a ,b ]上的值域. [题组训练] 1.函数f (x )=1lnx +1+4-x 2的定义域为( ) A .[-2,0)∪(0,2] B .(-1,0)∪(0,2] C .[-2,2]D .(-1,2]解析:选B 由⎩⎪⎨⎪⎧x +1>0,ln x +1≠0,4-x 2≥0,得-1<x ≤2,且x ≠0.2.若函数y =f (x )的定义域是[1,2 019],则函数g (x )=f x +1x -1的定义域是________________.解析:因为y =f (x )的定义域是[1,2 019],所以若g (x )有意义,应满足⎩⎪⎨⎪⎧1≤x +1≤2 019,x -1≠0,所以0≤x ≤2 018,且x ≠1.因此g (x )的定义域是{x |0≤x ≤2 018,且x ≠1}. 答案:{x |0≤x ≤2 018,且x ≠1}考点二 求函数的解析式[典例] (1)已知二次函数f (2x +1)=4x 2-6x +5,求f (x ); (2)已知函数f (x )满足f (-x )+2f (x )=2x ,求f (x ). [解] (1)法一:待定系数法因为f (x )是二次函数,所以设f (x )=ax 2+bx +c (a ≠0),则f (2x +1)=a (2x +1)2+b (2x +1)+c =4ax 2+(4a +2b )x +a +b +c .因为f (2x +1)=4x 2-6x +5, 所以⎩⎪⎨⎪⎧4a =4,4a +2b =-6,a +b +c =5,解得⎩⎪⎨⎪⎧a =1,b =-5,c =9,所以f (x )=x 2-5x +9(x ∈R). 法二:换元法令2x +1=t (t ∈R),则x =t -12,所以f (t )=4⎝⎛⎭⎫t -122-6·t -12+5=t 2-5t +9(t ∈R),所以f (x )=x 2-5x +9(x ∈R). 法三:配凑法因为f (2x +1)=4x 2-6x +5=(2x +1)2-10x +4=(2x +1)2-5(2x +1)+9, 所以f (x )=x 2-5x +9(x ∈R).(2)解方程组法由f (-x )+2f (x )=2x , ① 得f (x )+2f (-x )=2-x ,② ①×2-②,得3f (x )=2x +1-2-x . 即f (x )=2x +1-2-x3.故f (x )的解析式是f (x )=2x +1-2-x3(x ∈R).[解题技法] 求函数解析式的4种方法及适用条件 (1)待定系数法先设出含有待定系数的解析式,再利用恒等式的性质,或将已知条件代入,建立方程(组),通过解方程(组)求出相应的待定系数.(2)换元法对于形如y =f (g (x ))的函数解析式,令t =g (x ),从中求出x =φ(t ),然后代入表达式求出f (t ),再将t 换成x ,得到f (x )的解析式,要注意新元的取值范围.(3)配凑法由已知条件f (g (x ))=F (x ),可将F (x )改写成关于g (x )的表达式,然后以x 替代g (x ),便得f (x )的解析式.(4)解方程组法已知关于f (x )与f ⎝⎛⎭⎫1x 或f (-x )的表达式,可根据已知条件再构造出另外一个等式组成方程组,通过解方程组求出f (x ).[提醒] 由于函数的解析式相同,定义域不同,则为不相同的函数,因此求函数的解析式时,如果定义域不是R ,一定要注明函数的定义域.[题组训练]1.[口诀第2句]已知f (x )是二次函数,且f (0)=0,f (x +1)=f (x )+x +1,则f (x )=________________.解析:设f (x )=ax 2+bx +c (a ≠0), 由f (0)=0,知c =0,f (x )=ax 2+bx . 又由f (x +1)=f (x )+x +1,得a (x +1)2+b (x +1)=ax 2+bx +x +1, 即ax 2+(2a +b )x +a +b =ax 2+(b +1)x +1,所以⎩⎪⎨⎪⎧2a +b =b +1,a +b =1,解得a =b =12.所以f (x )=12x 2+12x (x ∈R).答案:12x 2+12x (x ∈R)2.[口诀第3句]已知f ⎝⎛⎭⎫2x +1=lg x ,则f (x )=________________.解析:令2x +1=t ,得x =2t -1,则f (t )=lg 2t -1,又x >0,所以t >1,故f (x )的解析式是f (x )=lg2x -1(x >1). 答案:lg2x -1(x >1) 3.[口诀第4句]已知f (x )满足2f (x )+f ⎝⎛⎭⎫1x =3x ,则f (x )=________. 解析:∵2f (x )+f ⎝⎛⎭⎫1x =3x ,①把①中的x 换成1x ,得2f ⎝⎛⎭⎫1x +f (x )=3x.② 联立①②可得⎩⎨⎧2f x +f ⎝⎛⎭⎫1x =3x ,2f ⎝⎛⎭⎫1x +f x =3x,解此方程组可得f (x )=2x -1x(x ≠0).答案:2x -1x (x ≠0)考点三 分段函数考法(一) 求函数值[典例] (2019·石家庄模拟)已知f (x )=⎩⎪⎨⎪⎧log 3x ,x >0,a x +b ,x ≤0(0<a <1),且f (-2)=5,f (-1)=3,则f (f (-3))=( )A .-2B .2C .3D .-3[解析] 由题意得,f (-2)=a -2+b =5,①f (-1)=a -1+b =3,②联立①②,结合0<a <1,得a =12,b =1,所以f (x )=⎩⎪⎨⎪⎧log 3x ,x >0,⎝⎛⎭⎫12x +1,x ≤0,则f (-3)=⎝⎛⎭⎫12-3+1=9,f (f (-3))=f (9)=log 39=2. [答案] B[解题技法] 求分段函数的函数值的策略(1)求分段函数的函数值时,要先确定要求值的自变量属于哪一区间,然后代入该区间对应的解析式求值;(2)当出现f (f (a ))的形式时,应从内到外依次求值;(3)当自变量的值所在区间不确定时,要分类讨论,分类标准应参照分段函数不同段的端点.考法(二) 求参数或自变量的值(或范围)[典例] (2018·全国卷Ⅰ)设函数f (x )=⎩⎪⎨⎪⎧2-x ,x ≤0,1,x >0,则满足f (x +1)<f (2x )的x 的取值范围是( )A .(-∞,-1]B .(0,+∞)C .(-1,0)D .(-∞,0)[解析] 法一:分类讨论法①当⎩⎪⎨⎪⎧x +1≤0,2x ≤0,即x ≤-1时,f (x +1)<f (2x ),即为2-(x +1)<2-2x,即-(x +1)<-2x ,解得x <1. 因此不等式的解集为(-∞,-1].②当⎩⎪⎨⎪⎧x +1≤0,2x >0时,不等式组无解.③当⎩⎪⎨⎪⎧x +1>0,2x ≤0,即-1<x ≤0时,f (x +1)<f (2x ),即为1<2-2x,解得x <0.因此不等式的解集为(-1,0).④当⎩⎪⎨⎪⎧x +1>0,2x >0,即x >0时,f (x +1)=1,f (2x )=1,不合题意.综上,不等式f (x +1)<f (2x )的解集为(-∞,0). 法二:数形结合法∵f (x )=⎩⎪⎨⎪⎧2-x ,x ≤0,1,x >0,∴函数f (x )的图象如图所示. 结合图象知,要使f (x +1)<f (2x ), 则需⎩⎪⎨⎪⎧x +1<0,2x <0,2x <x +1或⎩⎪⎨⎪⎧x +1≥0,2x <0, ∴x <0,故选D. [答案] D[解题技法]已知函数值(或范围)求自变量的值(或范围)的方法(1)根据每一段的解析式分别求解,但要注意检验所求自变量的值(或范围)是否符合相应段的自变量的取值范围,最后将各段的结果合起来(求并集)即可;(2)如果分段函数的图象易得,也可以画出函数图象后结合图象求解.[题组训练]1.设f (x )=⎩⎨⎧x ,0<x <1,2x -1,x ≥1,若f (a )=f (a +1),则f ⎝⎛⎭⎫1a =( ) A .2 B .4 C .6D .8解析:选C 当0<a <1时,a +1>1,f (a )=a ,f (a +1)=2(a +1-1)=2a , ∵f (a )=f (a +1),∴a =2a , 解得a =14或a =0(舍去).∴f ⎝⎛⎭⎫1a =f (4)=2×(4-1)=6.当a ≥1时,a +1≥2,f (a )=2(a -1),f (a +1)=2(a +1-1)=2a , ∵f (a )=f (a +1),∴2(a -1)=2a ,无解. 综上,f ⎝⎛⎭⎫1a =6.2.已知函数f (x )=⎩⎪⎨⎪⎧2x ,x ≤1,f x -1,x >1,则f (f (3))=________.解析:由题意,得f (3)=f (2)=f (1)=21=2, ∴f (f (3))=f (2)=2. 答案:23.(2017·全国卷Ⅰ)设函数f (x )=⎩⎪⎨⎪⎧x +1,x ≤0,2x ,x >0,则满足f (x )+f ⎝⎛⎭⎫x -12>1的x 的取值范围是________.解析:由题意知,可对不等式分x ≤0,0<x ≤12,x >12讨论.①当x ≤0时,原不等式为x +1+x +12>1,解得x >-14,故-14<x ≤0.②当0<x ≤12时,原不等式为2x +x +12>1,显然成立.③当x >12时,原不等式为2x +2x -12>1,显然成立.综上可知,所求x 的取值范围是⎝⎛⎭⎫-14,+∞. 答案:⎝⎛⎭⎫-14,+∞ 4.设函数f (x )=⎩⎪⎨⎪⎧⎝⎛⎭⎫12x -7,x <0,x ,x ≥0,若f (a )<1,则实数a 的取值范围是____________.解析:若a <0,则f (a )<1⇔⎝⎛⎭⎫12a-7<1⇔⎝⎛⎭⎫12a <8,解得a >-3,故-3<a <0; 若a ≥0,则f (a )<1⇔a <1,解得a <1,故0≤a <1. 综上可得-3<a <1. 答案:(-3,1)[课时跟踪检测]1.下列所给图象是函数图象的个数为( )A .1B .2C .3D .4解析:选B ①中当x >0时,每一个x 的值对应两个不同的y 值,因此不是函数图象;②中当x =x 0时,y 的值有两个,因此不是函数图象;③④中每一个x 的值对应唯一的y 值,因此是函数图象.故选B.2.函数f (x )=2x -1+1x -2的定义域为( ) A .[0,2)B .(2,+∞)C .[0,2)∪(2,+∞)D .(-∞,2)∪(2,+∞)解析:选C 由题意得⎩⎪⎨⎪⎧2x -1≥0,x -2≠0,解得x ≥0,且x ≠2.3.已知f ⎝⎛⎭⎫12x -1=2x -5,且f (a )=6,则a 等于( ) A.74 B .-74C.43D .-43解析:选A 令t =12x -1,则x =2t +2,f (t )=2(2t +2)-5=4t -1,则4a -1=6,解得a =74.4.(2019·贵阳检测)下列函数中,同一个函数的定义域与值域相同的是( ) A .y =x -1 B .y =ln x C .y =13x -1D .y =x +1x -1解析:选D 对于A ,定义域为[1,+∞),值域为[0,+∞),不满足题意;对于B ,定义域为(0,+∞),值域为R ,不满足题意;对于C ,定义域为(-∞,0)∪(0,+∞),值域为(-∞,-1)∪(0,+∞),不满足题意;对于D ,y =x +1x -1=1+2x -1,定义域为(-∞,1)∪(1,+∞),值域也是(-∞,1)∪(1,+∞).5.(2018·福建期末)已知函数f (x )=⎩⎪⎨⎪⎧log 2x +a ,x >0,4x -2-1,x ≤0.若f (a )=3,则f (a -2)=( )A .-1516B .3C .-6364或3D .-1516或3解析:选A 当a >0时,若f (a )=3,则log 2a +a =3,解得a =2(满足a >0);当a ≤0时,若f (a )=3,则4a -2-1=3,解得a =3,不满足a ≤0,所以舍去.于是,可得a =2.故f (a -2)=f (0)=4-2-1=-1516.6.已知函数y =f (2x -1)的定义域是[0,1],则函数f 2x +1log 2x +1的定义域是( )A .[1,2]B .(-1,1] C.⎣⎡⎦⎤-12,0 D .(-1,0)解析:选D 由f (2x -1)的定义域是[0,1], 得0≤x ≤1,故-1≤2x -1≤1, ∴f (x )的定义域是[-1,1], ∴要使函数f 2x +1log 2x +1有意义,需满足⎩⎪⎨⎪⎧-1≤2x +1≤1,x +1>0,x +1≠1,解得-1<x <0.7.下列函数中,不满足f (2 018x )=2 018f (x )的是( ) A .f (x )=|x | B .f (x )=x -|x | C .f (x )=x +2D .f (x )=-2x解析:选C 若f (x )=|x |,则f (2 018x )=|2 018x |=2 018|x |=2 018f (x );若f (x )=x -|x |,则f (2 018x )=2 018x -|2 018x |=2 018(x -|x |)=2 018f (x );若f (x )=x +2,则f (2 018x )=2 018x +2,而2 018f (x )=2 018x +2 018×2,故f (x )=x +2不满足f (2 018x )=2 018f (x );若f (x )=-2x ,则f (2 018x )=-2×2 018x =2 018×(-2x )=2 018f (x ).故选C.8.已知具有性质:f ⎝⎛⎭⎫1x =-f (x )的函数,我们称为满足“倒负”变换的函数,下列函数: ①f (x )=x -1x ;②f (x )=x +1x ;③f (x )=⎩⎪⎨⎪⎧x ,0<x <1,0,x =1,-1x ,x >1.其中满足“倒负”变换的函数是( ) A .①② B .①③ C .②③D .①解析:选B 对于①,f (x )=x -1x ,f ⎝⎛⎭⎫1x =1x-x =-f (x ),满足题意;对于②,f ⎝⎛⎭⎫1x =1x +x=f (x ),不满足题意;对于③,f ⎝⎛⎭⎫1x =⎩⎪⎨⎪⎧ 1x ,0<1x <1,0,1x =1,-x ,1x >1,即f ⎝⎛⎭⎫1x =⎩⎪⎨⎪⎧ 1x ,x >1,0,x =1,-x ,0<x <1,故f ⎝⎛⎭⎫1x =-f (x ),满足题意.综上可知,满足“倒负”变换的函数是①③. 9.(2019·青岛模拟)函数y =ln ⎝⎛⎭⎫1+1x +1-x 2的定义域为________. 解析:由⎩⎪⎨⎪⎧ 1+1x >0,1-x 2≥0⇒⎩⎪⎨⎪⎧x <-1或x >0,-1≤x ≤1⇒0<x ≤1. 所以该函数的定义域为(0,1].答案:(0,1]10.(2019·益阳、湘潭调研)若函数f (x )=⎩⎨⎧ lg 1-x ,x <0,-2x ,x ≥0,则f (f (-9))=________. 解析:∵函数f (x )=⎩⎨⎧ lg 1-x ,x <0,-2x ,x ≥0,∴f (-9)=lg 10=1,∴f (f (-9))=f (1)=-2. 答案:-211.(2018·张掖一诊)已知函数f (x )=⎩⎪⎨⎪⎧2x ,x >0,x +1,x ≤0,若f (a )+f (1)=0,则实数a 的值等于________.解析:∵f (1)=2,且f (1)+f (a )=0,∴f (a )=-2<0,故a ≤0. 依题知a +1=-2,解得a =-3.答案:-312.已知f (x )=⎩⎪⎨⎪⎧ 12x +1,x ≤0,-x -12,x >0,使f (x )≥-1成立的x 的取值范围是________. 解析:由题意知⎩⎪⎨⎪⎧ x ≤0,12x +1≥-1或⎩⎪⎨⎪⎧ x >0,-x -12≥-1,解得-4≤x ≤0或0<x ≤2,故所求x 的取值范围是[-4,2].答案:[-4,2]13.设函数f (x )=⎩⎪⎨⎪⎧ax +b ,x <0,2x ,x ≥0,且f (-2)=3,f (-1)=f (1). (1)求函数f (x )的解析式;(2)在如图所示的直角坐标系中画出f (x )的图象.解:(1)由f (-2)=3,f (-1)=f (1),得⎩⎪⎨⎪⎧ -2a +b =3,-a +b =2, 解得⎩⎪⎨⎪⎧ a =-1,b =1,所以f (x )=⎩⎪⎨⎪⎧-x +1,x <0,2x ,x ≥0. (2)函数f (x )的图象如图所示.。
高考数学一轮复习第二章函数概念及基本初等函数Ⅰ第1节函数及其表示课件新人教A版
考点三 分段函数
多维探究
角度1 分段函数求值
【例 3-1】 (2018·江苏卷)函数 f(x)满足 f(x+4)=f(x)(x∈R),且在区间(-2,2]上,
f(x)=cxo+s π122x,,-0<2x<≤x≤2,0,则 f[f(15)]的值为________.
解析 因为函数 f(x)满足 f(x+4)=f(x)(x∈R),所以函数 f(x)的最小正周期是 4.因为
(2)已知 f(x)是二次函数且 f(0)=2,f(x+1)-f(x)=x-1,则 f(x)=________;
(3)已知函数 f(x)的定义域为(0,+∞),且 f(x)=2f1x· x-1,则 f(x)=________.
解析 (1)令 t=2x+1(t>1),则 x=t-2 1,∴f(t)=lgt-2 1,即 f(x)=lgx-2 1(x>1). (2)设f(x)=ax2+bx+c(a≠0),由f(0)=2,得c=2, f(x+1)-f(x)=a(x+1)2+b(x+1)+2-ax2-bx-2=2ax+a+b=x-1, 所以2aa+=b1=,-1,即ab= =- 12,32.∴f(x)=12x2-32x+2.
5.(2020·九江联考)函数 f(x)=
1-ln 2x-2
x的定义域是________.
解析 依题意,得12- x-ln2≠x≥0,0,解得 0<x≤e,且 x≠1. 答案 (0,1)∪(1,e]
6.已知函数f(x)满足f(x)+2f(-x)=ex,则函数f(x)的解析式为________________.
解得-1<x<0 或 0<x≤3,所
x+1≠1,
以函数的定义域为(-1,0)∪(0,3]. (2)因为 f(x)的定义域为[0,2],所以要使 g(x)有意义,x 满足0≤12x≤2,解得
高中数学总复习系列之函数及其表示
高中数学总复习系列之函数及其表示第页高考调研·高三总复习·数学(理)第二章函数与基本初等函数第1课时函数及其表示第页高考调研·高三总复习·数学(理)…2018考纲下载…1.了解构成函数的要素会求一些简单函数的定义域和值域.了解映射的概念在实际情景中会根据不同的需要选择恰当的方法(如图像法、列表法、解析法)表示函数.了解简单的分段函数并能简单应用.请注意本节是函数的起始部分以考查函数的概念、三要素及表示法为主同时函数的图像、分段函数的考查是热点另外实际问题中的建模能力偶有考查.特别是函数的表达式及图像仍是2019年高考考查的重要内容.课前自助餐函数与映射的概念函数映射两集合A设A是两个非空数集设A 是两个非空集合对应关系:A→B 如果按照某种确定的对应关系f使对于集合A中的任意一个数x在集合B中有唯一的数(x)和它对应如果按某一个确定的对应关系f使对于集合A中的任意一个元素x在集合B中有唯一的元素y与之对应名称称f:A→B为从集合A到集合B的一个函数称对应f:A→B为从集合A到集合B的一个映射记法y=(x),x∈A 对应f:A→B是一个映射函数(1)函数实质上是从一个非空数集到另一个非空数集的映射.(2)函数的三要素:定义域、值域、对应法则.(3)函数的表示法:解析法、图像法、列表法.(4)两个函定义域和对应法则都分别相同时这两个函数才相同.分段函数在一个函数的定义域中对于自变量x的不同取值范围有着不同的对应关系这样的函数叫分段函数分段函数是一个函数而不是几个函数.1.判断下列说法是否正确(打“√”或“×”).(1)f(x)=+(2)A=R=R:x→y=表示从集合A到集合B的映射(也是函数).(3)函数(x)的图像与直线x=1的交点最多有2个.(4)y=2x(x∈{1)的值域是2(5)y=与y=2表示同一函数.(6)f(x)=则f(-x)=答案(1)×(2)×(3)×(4)×(5)×(6)√2.2018年是平年假设月份构成集合A每月的天数构成集合B是月份与天数的对应关系其对应如下:月份 1 2 3 4 5 6 7 8 9 10 11 12 天数 31 28 31 30 31 30 31 31 30 31 30 31对照课本中的函数概念上述从A到B的对应是函数吗?又从B到A的对应是函数吗?答案是不是3.已知(x)=m(x∈R)则f(m)等于(). D.不确定答案4.已知f(x+1)=x-1则(x)=________答案x-2x5.函数y=(x)的图像如图所示那么(x)的定义域是________;值域是________;其中只与x的一个值对应的y值的范围是________.答案[-3]∪[2,3][1][1)∪(4,5]6.(2018·衡水调研卷)函数(x)=则()=________;方程f(-x)=的解是________答案-2-或1解析f()==-2;当x<0时由f(-x)=(-x)=解得x=-当x>0时由f(-x)=2-x=解得x=1.授人以渔题型一函数与映射的概念(1)下列对A到B的映射能否构成函数?A=N=N:x→y=(x-1);=N=R:x→y=±;=N=Q:x→y=;={衡中高三·一班的同学}=[0],f:每个同学与其高考数学的分数相对应.【解析】①是映射也是函数.不是映射更不是函数因为从A到B的对应为“一对多”.当x =1时值不存在故不是映射更不是函数.是映射但不是函数因为集合A 不是数集.【答案】①是映射也是函数不是映射更不是函数不是映射更不是函数是映射但不是函数(2)下列表格中的x与y能构成函数的是()【解析】中0既是非负数又是非正数;B中0又是偶数;D中自然数也是整数也是有理数.【答案】★状元笔记★映射与函数的含义(1)映射只要求第一个集合A中的每个元素在第二个集合B中有且只有一个元素与之对应;至于B中的元素有无原象、有几个原象却无所谓.(2)函数是特殊的映射:当映射f:A→B中的A 为非空数集时即成为函数.(3)高考对映射的考查往往结合其他思考题1(1)下图中建立了集合P中元素与集合M中元素的对应f.其中为映射的对应是________.【解析】①中:P中元素-3在M中没有象.③中中元素2在M 中有两个不同的元素与之对应.④中中元素1在M中有两个不同的元素与之对应.【答案】②⑤(2)集合A={x|0≤x≤4}={y|0≤y≤2}下列不表示从A到B的函数的是():x→y=.:x→y=:x→y=:x→y=【解析】依据函数概念集合A中任一元素在集合B中都有唯一确定的元素与之对应选项不符合.(2018·湖北宜昌一中月考)已知函数(x)=|x-1|则下列函数中与(x)相等的函数是()(x)=(x)=(x)=(x)=x-1【解析】∵g(x)=与(x)的定义域和对应关系完全一致故选【答案】★状元笔记★判断两个函数是否相同的方法(1)构成函数的三要素中(2)两个函数当且仅当定义域和对应法则相同时才是相同函数.思考题2下列五组函数中表示同一函数的是________(x)=x-1与g(x)=(x)=与g(x)=2(x)=x+2与g(x)=x+2(u)=与f(v)==(x)与y =f(x+1)【答案】④题型二函数的解析式求下列函数的解析式:(1)已知f()=求(x)的解析式;(2)已知f(+)=x+求(x)的解析式;(3)已知(x)是二次函数(x+1)-(x)=2x+1且f(0)=3求(x)的解析式;(4)定义在(0+∞)上的函数(x)满足(x)=()·-1求(x)的解析式.【解析】(1)(换元法)设=t[-1],∵f(cosx)==1-(t)=1-t[-1].即(x)=1-x[-1].(2)(凑配法)∵f(+)=(+)-2(x)=x-2[2,+∞).(3)(待定系数法)因为(x)是二次函数可设(x)=ax+bx+c(a≠0)(x+1)+b(x+1)+c-(ax+bx+c)=2x+1.即2ax+a+b=2x+1解得又∵f(0)=3=3(x)=x+3.(4)(方程组法)在(x)=2f()-1中用代替x得f()=2(x)-1将f()=-1代入(x)=2f()-1中可求得(x)=+【答案】(1)(x)=1-x[-1](2)f(x)=x-2[2,+∞)(3)f(x)=x+3(4)f(x)=+★状元笔记★函数解析式的求法(1)凑配法:由已知条件f(g(x))=(x),可将(x)改写成关于g(x)的表达式然后以x替代g(x)便得(x)的表达式.(2)待定系数法:若已知函数的类型(如一次函数、二次函数)可用待定系数法.(3)换元法:已知复合函数f(g(x))的解析式可用换元法(4)方程思想:已知关于(x)与f()或f(-x)等的表达式可根据已知条件再构造出另外一个等式组成方程组通过解方程组求出(x).思考题3(1)若函数(x)满足f(1+)=求(x)的解析式.(2)定义在R上的函数(x)满足f(x+1)=2(x),若当0≤x≤1时(x)=x(1-x)当-1≤x≤0时求(x)解析式.(3)已知(x)+2f()=x(x≠0)求(x).【解析】(1)令1+=t=t-1=-1(t)=(x)=(2)当0≤x≤1时(x)=x(1-x)当-1≤x≤00≤x+1≤1(x+1)=(x+1)[1-(x+1)]=-x(x+1)而(x)=(x+1)=--当-1≤x≤0时(x)=--(3)∵f(x)+2f()=x将原式中的x与互换得f()+2(x)=于是得关f(x)的方程组解得(x)=-(x≠0).【答案】(1)(x)=(2)f(x)=--(3)f(x)=(x≠0)题型三分段函数与复合函数(1)已知函数(x)=(x)=x+1则:①g[(x)]=________;②f[g(x)]=________.【解析】①x<0时f(x)=[f(x)]=+1;时(x)=x[f(x)]=x+1.[f(x)]=由x+1<0得x<-1.由x+1≥0得x≥-1.∴f[g(x)]=【答案】①g[(x)]=[g(x)]=(2)(2018·南京金陵中学模拟)已知函数(x)=则使得(x)≤3成立的x的取值范围是________【解析】当x≥0时-1≤3=2当x<0时-2x≤3-2x-3≤0-1≤x<0.综上可得x∈[-1].【答案】[-1]★状元笔记★分段函数、复合函思考题4(1)(2018·河北清苑一中模拟)设(x)=则f(f(-1))=________(x)的最小值是________【解析】∵f(-1)=(-1)+1=2(f(-1))=f(2)=2+-3=0.当x≥1时(x)在[1]上单调递减在[+∞)上单调递增(x)min=f()=2-3<0.当x<1时(x)min=1,∴f(x)的最小值为2-3.【答案】02-3(2)(2017·课标全国Ⅲ)设函数(x)=则满足(x)+f(x-)>1的x的取值范围是________【解析】当x>0时(x)=2x恒成立当x-即x>时(x-)=2-当x-即01恒成立.当x≤0时(x)+f(x-)=x+1+x+=2x+所以-综上所述的取值范围是(-+∞).【答案】(-+∞)常用结论记心中快速解题特轻松:映射问题允许多对一但不允许一对多!换句话说就是允许三石一鸟但不允许一石三鸟!函数问题定义域优先!抽象函数不要怕赋值方法解决它!4.分段函数分段算本课时主要涉及到三类题型:函数的三要素分段函数函数的解析式.通过例题的讲解(有些题目直接源于教材)一方面使学生掌握各类题型的解法;另一方面也要教给学生把握复习的尺度教学大纲是高考命题的依据而教材是贯彻大纲的载体研习教材是学生获取知识、能力的重要途径.从近几年的新课标高考试题可以看到高考试题严格遵循教学大纲及《高考大纲》有一定数量的试题直接源自教材这就要求我们在教学过程中要紧扣教材和大纲全面、系统地抓好对基础知识、基本技能、基本思想和方法的教学对各模块的内容要课外阅读抽象函数设函数(x)的定义域为R对于任意实数x都有f(x)+f(x)=2f()f()(π)=-1则(0)=________.【解析】令x=x=则f()+f()=2f()f(0),∴f(0)=1.【答案】1已知偶函数(x),对任意的x恒有(x1+x)=f(x)+f(x)+2x+1则函数(x)的解析式为________.【解析】取x=x=0所以f(0)=2f(0)+1.所以f(0)=-1.因为f[x +(-x)]=(x)+f(-x)+2x·(-x)+1又f(-x)=(x),所以(x)=x-1.【答案】(x)=x-1【讲评】抽象函数问题的处理一般有两种途径:(1)看其性质符合哪类具(2)利用特殊值代入寻求规律和解法。
高考函数知识点总结
高考函数知识点总结一、函数的概念1.1 函数的定义函数是一种特殊的对应关系,即对于一个自变量的取值,对应有唯一的因变量的取值。
形式化地说,设X和Y是两个非空集合,如果存在一个由X的元素到Y的元素的对应关系f,即X中的每个元素x都对应Y中唯一确定的一个元素y,那么这个对应关系就叫做函数。
1.2 函数的表示函数一般用一对括号表示,即f(x),其中x为自变量,f(x)为因变量。
函数可以用各种形式来表示,例如用文字描述、用公式表示、用图象表示等。
1.3 函数的符号表示如果函数f(x)的自变量x是属于实数集合R的,那么就称f(x)为实函数。
如果函数f(x)的因变量是属于复数集合C的,那么就称f(x)为复函数。
通常情况下,函数的符号表示可以是简单的字母,如y=f(x),也可以是复杂的组合,如y=f(g(x))。
1.4 函数的定义域与值域函数的定义域是指自变量x的取值范围,而值域是指因变量f(x)的取值范围。
函数的定义域和值域是函数最基本的性质,准确地找出函数的定义域和值域对于理解函数的性质和规律至关重要。
1.5 函数的图象函数的图象是一个坐标系中的点的集合,它可以用来直观地表示函数的性质和规律。
对于某些函数,可以用计算机软件或手工绘图的方式获得其图象,从而更好地理解函数的性态。
二、基本初等函数2.1 一次函数一次函数是指函数f(x)=ax+b(a≠0)。
一次函数是一种最简单的函数形式,它在平面直角坐标系中的图象是一条直线,因此也被称为线性函数。
一次函数的特点是斜率a和截距b。
2.2 二次函数二次函数是指函数f(x)=ax^2+bx+c(a≠0)。
二次函数在平面直角坐标系中的图象是一个抛物线,它具有对称轴、顶点、开口方向等性质。
二次函数又分为开口向上和开口向下两种情况。
2.3 幂函数幂函数是指函数f(x)=x^a(a为常数)。
当a是正整数时,幂函数是指数函数;当a是分数时,幂函数是根式函数。
幂函数的性质包括增减性、奇偶性、周期性等。
年高考数学基础突破集合与函数2函数的概念及其表示
2021年高考数学根底突破——集合与函数2.函数概念及其表示【知识梳理】1.函数与映射概念(1)函数定义域、值域在函数y=f(x),x∈A中,x叫做自变量,x取值范围A叫做函数定义域;与x值相对应y值叫做函数值,函数值集合{f(x)|x∈A}叫做函数值域.显然,值域是集合B子集.(2)函数三要素:定义域、值域与对应关系.(3)相等函数:如果两个函数定义域与对应关系完全一致,那么这两个函数相等,这是判断两函数相等依据.(4)函数表示法: 表示函数常用方法有:解析法、图象法、列表法.3.分段函数假设函数在其定义域不同子集上,因对应关系不同而分别用几个不同式子来表示,这种函数称为分段函数.4.常见函数定义域求法(1)分式函数中分母不等于零.(2)偶次根式函数被开方式大于或等于0.(3)一次函数、二次函数定义域为R.(4)y=a x(a>0且a≠1),y=sin x,y=cos x,定义域均为R .(5)y =tan x 定义域为.5.根本初等函数值域(1)y =kx +b (k ≠0)值域是R .(2)y =ax 2+bx +c (a ≠0)值域是:当a >0时,值域为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫y |y ≥4ac -b 24a ;当a <0时,值域为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫y |y ≤4ac -b 24a . (3)y =k x(k ≠0)值域是{y |y ≠0}. (4)y =a x (a >0且a ≠1)值域是{y |y >0}.(5)y =log a x (a >0且a ≠1)值域是R .(6)y =sin x ,y =cos x 值域是[-1,1].(7)y =tan x 值域是R .【根底考点突破】考点1. 函数根本概念【例1】M ={x |0≤x ≤2},N ={y |0≤y ≤3},给出以下四个图形,其中能表示从集合M 到集合N 函数关系有( )A .0个B .1个C .2个D .3个变式训练1. 试判断以下各组中函数f (x )与g (x )是否表示同一个函数,并说明理由.(1)f (x )=(x -1)0,g (x )=1; (2)f (x )=x ,g (x )=x 2;(3)f (x )=x 2,g (x )=(x +1)2; (4)f (x )=|x |,g (x )=x 2. 考点2. 分段函数【例2】 假设函数,(1)求f (-5),f (-3),f [f (-3)]值;(2)假设f (a )=3,求a 值.变式训练2.〔1〕【2021年高考北京理数】设函数.①假设0a ,那么()f x 最大值为_________;②假设()f x 无最大值,那么实数a 取值范围是_______.〔2〕作出函数y =2|x -1|-3|x |图象.考点3. 求函数解析式【例3】 (1)反比例函数f (x )满足f (3)=-6,求f (x )解析式;(2)一次函数y =f (x ),f (1)=1,f (-1)=-3,求f (3).变式训练3. f (1+1x )=1+x 2x 2+1x,试求f (x ). 考点4. 函数定义域【例4】 求函数定义域.变式训练4.〔1〕【2021高考江苏卷】函数y =定义域是 .〔2〕 函数f (x )=lg 〔1-2x 〕定义域为( )A .(-∞,0]B .(-∞,0) C.⎝ ⎛⎭⎪⎪⎫0,12D .⎝ ⎛⎭⎪⎪⎫-∞,12 考点5. 函数值域【例5】 求函数22([0,3])y x x x =+∈值域.变式训练5. 求函数f (x )=x -1-2x 值域【根底练习】1.以下四组式子中,f(x)与g(x)表示同一函数是( )A.f(x)=4x4,g(x)=(4x)4B.f(x)=x,g(x)=3x3C.f(x)=x,g(x)=(x)2D.f(x)=x2-4x+2,g(x)=x-22.f(x)=x2+x+1,那么f[f(1)]值是( )A.11 B.12 C.13 D.103.函数y=x+10|x|-x定义域是( )A.(0,+∞)B.(-∞,0)C.(-∞,-1)∪(-1,0) D.(-∞,-1)∪(-1,0)∪(0,+∞)4.函数y=x2-2x定义域为{0,1,2,3},那么其值域为( ) A.{-1,0,3} B.{0,1,2,3} C.{y|-1≤y≤3}D.{y|0≤y≤3}5.函数f(x)由下表给出,那么f(3)等于( )x1234f(x)-3-2-4-1A.-1 D.-46.f(x2-1)=2x+3,且f(m)=6,那么m等于( )A .-14 B.14 C.32 D .-327.等腰三角形周长为20,底边长y 是一腰长x 函数,那么( )A .y =10-x (0<x ≤10)B .y =10-x (0<x <10)C .y =20-2x (5≤x ≤10)D .y =20-2x (5<x <10)8.函数,那么f (2)等于( )A .0 B.13C .1D .2 9.函数f (x )=x +|x |x图象是( ) 10.函数f (x )=⎩⎪⎨⎪⎧ 2x ,0≤x ≤1,2,1<x <2,3,x ≥2值域是( )A .[0,+∞)B .RC .[0,3]D .[0,2]∪{3}11.a 、b 为实数,集合M ={b a,1},N ={a,0},f :x →x 表示把集合M 中元素x 映射到集合N 中仍为x ,那么a +b 值为( )A .-1B .0C .1D .±112.映射f :A →B ,其中集合A ={-3,-2,-1,1,2,3,4},集合B中元素都是集合A 中某个元素在映射f 下对应元素,且对任意a ∈A ,在B 中与它对应元素是|a |,那么集合B 中元素个数是( )A .4B .5C .6D .713.设a <b ,函数y =(x -a )2(x -b )图象可能是( )14.以下图中能表示函数关系是________.15.设f (x )=11-x,那么f [f (x )]=________. 16.函数y =x 2-4x +6,x ∈[1,5)值域是________.17.设函数f (x )=⎩⎪⎨⎪⎧ x 2+2,x ≤2,2x ,x >2,那么f (-4)=________,又f (x 0)=8,那么x 0=________.18.设f (x )=⎩⎪⎨⎪⎧ 3x +1,x ≥0,x 2,x <0,g (x )=⎩⎪⎨⎪⎧ 2-x 2,x ≤1,2,x >1,那么f [g (π)]=________,g [f (2)]=________.19.全集U =R ,函数y =x -2+x +1定义域为A ,函数y =2x +4x -3定义域为B . (1)求集合A ,B ;(2)求(∁U A )∪(∁U B ).20.二次函数f (x )满足f (0)=0,且对任意x ∈R 总有f (x +1)=f (x )+x +1,求f (x ).2021年高考数学根底突破——集合与函数2.函数概念及其表示〔教师版〕【知识梳理】1.函数与映射概念(1)函数定义域、值域在函数y=f(x),x∈A中,x叫做自变量,x取值范围A叫做函数定义域;与x值相对应y值叫做函数值,函数值集合{f(x)|x∈A}叫做函数值域.显然,值域是集合B子集.(2)函数三要素:定义域、值域与对应关系.(3)相等函数:如果两个函数定义域与对应关系完全一致,那么这两个函数相等,这是判断两函数相等依据.(4)函数表示法: 表示函数常用方法有:解析法、图象法、列表法.3.分段函数假设函数在其定义域不同子集上,因对应关系不同而分别用几个不同式子来表示,这种函数称为分段函数.4.常见函数定义域求法(1)分式函数中分母不等于零.(2)偶次根式函数被开方式大于或等于0.(3)一次函数、二次函数定义域为R.(4)y=a x(a>0且a≠1),y=sin x,y=cos x,定义域均为R .(5)y =tan x 定义域为.5.根本初等函数值域(1)y =kx +b (k ≠0)值域是R .(2)y =ax 2+bx +c (a ≠0)值域是:当a >0时,值域为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫y |y ≥4ac -b 24a ;当a <0时,值域为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫y |y ≤4ac -b 24a . (3)y =k x(k ≠0)值域是{y |y ≠0}. (4)y =a x (a >0且a ≠1)值域是{y |y >0}. (5)y =log a x (a >0且a ≠1)值域是R .(6)y =sin x ,y =cos x 值域是[-1,1].(7)y =tan x 值域是R .【根底考点突破】考点1. 函数根本概念【例1】M ={x |0≤x ≤2},N ={y |0≤y ≤3},给出以下四个图形,其中能表示从集合M 到集合N 函数关系有( )A .0个B .1个C .2个D .3个【答案】C【解析】用x =a,0≤a ≤2动直线去截图象,哪个始终只有一个交点,哪个就表示具有函数关系.由图可知,图(2)(3)都具有这一性质,而(1)(4)那么不具有这一性质,所以有2个具有函数关系.变式训练1. 试判断以下各组中函数f (x )与g (x )是否表示同一个函数,并说明理由.(1)f (x )=(x -1)0,g (x )=1; (2)f (x )=x ,g (x )=x 2;(3)f (x )=x 2,g (x )=(x +1)2; (4)f (x )=|x |,g (x )=x 2.【解】(1)f (x )定义域是{x |x ∈R ,且x ≠1},g (x )定义域是R ,它们定义域不同,故不是同一个函数;(2)定义域一样都是R ,但是g (x )=|x |,即它们解析式不同,也就是对应关系不同,故不是同一个函数;(3)定义域一样都是R ,但是它们解析式不同,也就是对应关系不同,故不是同一个函数;(4)定义域一样都是R ,解析式化简后都是y =|x |,也就是对应关系一样,故是同一个函数.考点2. 分段函数【例2】 假设函数f (x )=⎩⎪⎨⎪⎧ x + 2 x ≤-2,x 2 -2<x <2,2x x ≥2.(1)求f (-5),f (-3),f [f (-3)]值;(2)假设f (a )=3,求a 值.【解析】(1)f (-5)=-5+2=-3,f (-3)=(-3)2=3,f [f (-3)]=f (3)=2×3=6.(2)①假设a +2=3,那么a =1>-2不成立,舍去;②假设a 2=3,那么a =±3,-2<±3<2成立;③假设2a =3,那么a =32<2不成立,舍去. 变式训练2. 〔1〕【2021年高考北京理数】设函数.①假设0a =,那么()f x 最大值为_________;②假设()f x 无最大值,那么实数a 取值范围是_______.【答案】2,(,1)-∞-.【解答】解:①假设a=0,那么,那么,当x <﹣1时,()0f x '>,此时函数为增函数;当x >﹣1时,()0f x '<,此时函数为减函数,故当1x =-时,()f x 最大值为2.②,令()0f x '=,那么x=±1,假设f 〔x 〕无最大值,那么,或,解得:(,1)a ∈-∞-.〔2〕作出函数y =2|x -1|-3|x |图象. 【解析】当x <0时,y =-2(x -1)+3x =x +2; 当0≤x <1时,y =-2(x -1)-3x =-5x +2; 当x ≥1时,y =2(x -1)-3x =-x -2, 因此,依上述解析式作出图象如以下图 考点3. 求函数解析式【例3】 (1)反比例函数f (x )满足f (3)=-6,求f (x )解析式; (2)一次函数y =f (x ),f (1)=1,f (-1)=-3,求f (3).【解析】(1)设反比例函数f (x )=k x (k ≠0),那么f (3)=k3=-6,解得k =-18,故f (x )=-18x.(2)设一次函数f (x )=ax +b (a ≠0),∵f (1)=1,f (-1)=-3,∴⎩⎪⎨⎪⎧a +b =1-a +b =-3,解得⎩⎪⎨⎪⎧a =2b =-1,∴f (x )=2x -1. ∴f (3)=2×3-1=5.变式训练3. f (1+1x )=1+x 2x 2+1x,试求f (x ).【解析】解法一:(换元法)令t =1+1x,那么t ∈(-∞,1)∪(1,+∞),于是x =1t -1,代入1+x 2x 2+1x 中,可得f (t )=t 2-t +1,即f (x )=x 2-x +1,x ∈(-∞,1)∪(1,+∞).解法二:(配凑法)f (1+1x )=1+x 2x 2+1x =x 2+2x +1x 2-2x x 2+1x=(1+1x )2-(1+1x )+1,因为1+1x≠1,所以函数解析式为f (x )=x 2-x+1,x ∈(-∞,1)∪(1,+∞). 考点4. 函数定义域 【例4】 求函数定义域.【解析】要使函数解析式有意义,由解得x ≥-1且x ≠2,所以函数定义域为{x |x ≥-1且x ≠2}.变式训练4.〔1〕【2021高考江苏卷】函数y =定义域是 .〔2〕函数f (x )=lg 〔1-2x 〕定义域为( )A .(-∞,0]B .(-∞,0) C.⎝⎛⎭⎪⎪⎫0,12D .⎝⎛⎭⎪⎪⎫-∞,12 【解析】〔1〕要使函数有意义,必须2320x x --≥,即2230x x +-≤,31x ∴-≤≤.故应填:[]3,1-,〔2〕要使函数有意义,应满足⎩⎪⎨⎪⎧1-2x >0,lg 〔1-2x 〕≥0,解得x ≤0,应选A.考点5. 函数值域【例5】 求函数y =x 2+2x (x ∈[0,3])值域.【解析】(1)(配方法)y =x 2+2x =(x +1)2-1,因为y =(x +1)2-1在[0,3]上为增函数,所以0≤y ≤15,即函数y =x 2+2x (x ∈[0,3])值域为[0,15]. 变式训练5. 求函数f (x )=x -1-2x 值域解: 法一:(换元法)令1-2x =t ,那么t ≥0且x =1-t 22,于是y =1-t 22-t =-12(t +1)2+1,由于t ≥0,所以y ≤12,故函数值域是⎝⎛⎦⎥⎥⎤-∞,12. 法二:(单调性法)f (x )定义域为⎝ ⎛⎦⎥⎥⎤-∞,12,容易判断f (x )为增函数,所以f (x )≤f ⎝ ⎛⎭⎪⎪⎫12=12,即函数值域是⎝⎛⎦⎥⎥⎤-∞,12. 【根底练习】1.以下四组式子中,f (x )与g (x )表示同一函数是( )A .f (x )=4x 4,g (x )=(4x )4B .f (x )=x ,g (x )=3x 3C .f (x )=x ,g (x )=(x )2D .f (x )=x 2-4x +2,g (x )=x-2答案:B解析:A 、C 、D 定义域不同,B 定义域、对应关系、值域都一样.2.f (x )=x 2+x +1,那么f [f (1)]值是( )A .11B .12C .13D .10 解析:f [f (1)]=f (3)=9+3+1=13. 答案:C 3.函数y =x +1|x |-x定义域是( )A .(0,+∞)B .(-∞,0)C .(-∞,-1)∪(-1,0)D .(-∞,-1)∪(-1,0)∪(0,+∞)解析:由题知⎩⎪⎨⎪⎧x +1≠0,|x |>x ,∴x <0且x ≠-1,即定义域为(-∞,-1)∪(-1,0).答案:C4.函数y =x 2-2x 定义域为{0,1,2,3},那么其值域为( )A .{-1,0,3}B .{0,1,2,3}C .{y |-1≤y ≤3}D .{y |0≤y ≤3}解析:x =0,y =0;x =1,y =-1;x =2,y =0;x =3,y =3,∴值域为{-1,0,3}.答案:A5.函数f (x )由下表给出,那么f (3)等于( )x 1 2 3 4f (x )-3 -2 -4 -1A.-1 B .-2 C .-3 D .-4答案:D6.f (x2-1)=2x +3,且f (m )=6,那么m 等于( )A .-14 B.14 C.32D .-32解析:令2x +3=6,得x =32,所以m =x 2-1=12×32-1=-14,或先求f (x )解析式,再由f (m )=6,求m .答案:A7.等腰三角形周长为20,底边长y 是一腰长x 函数,那么( )A .y =10-x (0<x ≤10)B .y =10-x (0<x <10)C .y =20-2x (5≤x ≤10)D .y =20-2x (5<x <10)解析:∵2x +y =20,∴y =20-2x ,解不等式组,得5<x <10. 答案:D8.函数,那么f (2)等于( )A .0 B.13 C .1 D .2解析:f (2)=2-1=1. 答案:C9.函数f (x )=x +|x |x图象是( )解析:f (x )=⎩⎪⎨⎪⎧x +1,x >0,x -1,x <0,画出f (x )图象可知选C.答案:C10.函数f (x )=⎩⎪⎨⎪⎧2x ,0≤x ≤1,2,1<x <2,3,x ≥2值域是( )A .[0,+∞)B .RC .[0,3]D .[0,2]∪{3}答案:D11.a 、b 为实数,集合M ={ba,1},N ={a,0},f :x →x 表示把集合M 中元素x 映射到集合N 中仍为x ,那么a +b 值为( )A .-1B .0C .1D .±1解析:∵f :x →x ,∴M =N . ∴⎩⎪⎨⎪⎧a =1,ba =0,解得a =1,b =0.∴a +b =1.答案:C12.映射f :A →B ,其中集合A ={-3,-2,-1,1,2,3,4},集合B 中元素都是集合A 中某个元素在映射f 下对应元素,且对任意a ∈A ,在B 中与它对应元素是|a |,那么集合B 中元素个数是( )A .4B .5C .6D .7解析:∵|±3|=3,|±2|=2,|±1|=1,|4|=4,∴B ={1,2,3,4}.答案:A13.设a <b ,函数y =(x -a )2(x -b )图象可能是( )解析:由于f (a )=0,f (b )=0,那么函数图象过点(a,0),(b,0). 当x <b 时,那么x -b <0,(x -a )2>0,此时f (x )<0,即在区间(-∞,a )∪(a ,b )上,函数图象位于x 轴下方,排除A 、B 、D.答案:C14.以下图中能表示函数关系是________.解析:(3)中元素2对应着两个元素1与3,不符合函数定义.(1)、(2)、(4)均符合函数定义.答案:(1)(2)(4)15.设f (x )=11-x,那么f [f (x )]=________.解析:f [f (x )]=f (11-x )=11-11-x=1-x -x =x -1x.答案:x -1x16.函数y =x 2-4x +6,x ∈[1,5)值域是________.解析:画出函数图象,如右图所示,观察图象可得图象上所有点纵坐标取值范围是[f (2),f (5)),即函数值域是[2,11).答案:[2,11)17.设函数f (x )=⎩⎪⎨⎪⎧x 2+2,x ≤2,2x ,x >2,那么f (-4)=________,又f (x 0)=8,那么x 0=________.解析:f (-4)=(-4)2+2=18;令x 2+2=8,解得x =±6,∵x ≤2,∴x =-6;令2x =8,解得xx 0=-6或4.答案:18 4或-618.设f (x )=⎩⎪⎨⎪⎧3x +1,x ≥0,x 2,x <0,g (x )=⎩⎪⎨⎪⎧2-x 2,x ≤1,2,x >1,那么f [g (π)]=________,g [f (2)]=________.解析:f [g (π)]=f (2)=3×2+1=7,g [f (2)]=g (7)=2. 答案:7 219.全集U =R ,函数y =x -2+x +1定义域为A ,函数y =2x +4x -3定义域为B .(1)求集合A ,B ; (2)求(∁U A )∪(∁U B ). 解:(1)函数y =x -2+x +1应满足⎩⎪⎨⎪⎧x -2≥0,x +1≥0,∴x ≥2.∴A ={x |x ≥2}.函数y =2x +4x -3应满足⎩⎪⎨⎪⎧2x +4≥0,x -3≠0,∴x ≥-2且x ≠3. ∴B ={x |x ≥-2且x ≠3}.(2)∁U A ={x |x <2},∁U B ={x |x <-2或x =3},∴(∁U A )∪(∁U B )={x |x <2或x =3}.20.二次函数f (x )满足f (0)=0,且对任意x ∈R 总有f (x +1)=f (x )+x +1,求f (x ).解:设f (x )=ax 2+bx +c (a ≠0),∵f (0)=c =0,∴f (x +1)=a (x +1)2+b (x +1)+c =ax 2+(2a +b )x +a +b ,f (x )+x +1=ax 2+bx +x +1=ax 2+(b +1)x +1.∴⎩⎪⎨⎪⎧2a +b =b +1,a +b =1.∴⎩⎪⎨⎪⎧a =12,b =12.∴f (x )=12x 2+12x .。
高中数学课件-2 1 函数及其表示
第二章
2.1
函数及其表示
知识梳理 知识梳理 双击自测 核心考点 学科素养
考纲要求
-6-
3.映射的概念 两个非空集合A和B间存在着对应关系f,而且对于A中的每一个元 素x,B中总有唯一的一个元素y与它对应,就称这种对应为从A到B的 映射,记作f:A→B.A中的元素x称为原像,B中的对应元素y称为x的像, 记作f:x→y. 4.映射与函数的关系 函数是从非空数集到非空数集的映射,该映射中的原像的集合称 为定义域,像的集合称为值域.
(2)函数 f(x)= A.(2,3) C.(2,3)∪(3,4]
������2 -5������+6 4-|������| +lg ������-3
的定义域为(
)
B.(2,4] D.(-1,3)∪(3,6]
关闭
要使函数有意义,须 即 -4 ≤ ������ ≤ 4,
4-|������| ≥ 0,
������ 2 -5������ +6 ������ -3
函数及其表示
知识梳理 双击自测 核心考点 核心考点 学科素养
考纲要求
-14-
考点4
知识方法
易错易混
思考:怎样判断两个函数相等? 解题心得:两个函数是否相等,取决于它们的定义域和对应关系 是否相同,只有当两个函数的定义域和对应关系完全相同时,才相 等.另外,函数的自变量习惯上用x表示,但也可用其他字母表示, 如:f(x)=2x-1,g(t)=2t-1,h(m)=2m-1均相等.
第二章
2.1
函数及其表示
知识梳理 知识梳理 双击自测 核心考点 学科素养
考纲要求
-4-
1.函数的基本概念 (1)函数的定义:给定两个非空数集A和B,如果按照某个对应关系f, 对于集合A中的任何一个数x,在集合B中都存在唯一确定的数f(x)与 之对应,那么就把对应关系f叫作定义在集合A上的函数,记作f:A→B 或y=f(x),x∈A,此时x叫作自变量,集合A叫作函数的定义域,集合 {f(x)|x∈A}叫作函数的值域. (2)函数的三要素是:定义域、值域和对应关系. (3)相等函数:如果两个函数的定义域相同,并且对应关系完全一 致,我们就称这两个函数相等. (4)表示函数的常用方法有:解析法、列表法和图像法. (5)分段函数:若函数在其定义域内,对于定义域内的不同取值区 间,有着不同的对应关系,这样的函数通常叫作分段函数.分段函数 的定义域是各段定义域的并集,值域是各段值域的并集.
高中数学知识点(二)函数及其表示
高中数学必修1知识点(二)-----函数及其表示【1.2.1】函数的概念(1)函数的概念①设A 、B 是两个非空的数集,如果按照某种对应法则f ,对于集合A 中任何一个数x ,在集合B 中都有唯一确定的数()f x 和它对应,那么这样的对应(包括集合A ,B 以及A 到B 的对应法则f )叫做集合A 到B 的一个函数,记作:f A B →.②函数的三要素:定义域、值域和对应法则.③只有定义域相同,且对应法则也相同的两个函数才是同一函数.(2)区间的概念及表示法①设,a b 是两个实数,且a b <,满足a x b ≤≤的实数x 的集合叫做闭区间,记做[,]a b ;满足a x b <<的实数x 的集合叫做开区间,记做(,)a b ;满足a x b ≤<,或a x b <≤的实数x 的集合叫做半开半闭区间,分别记做[,)a b ,(,]a b ;满足,,,x a x a x b x b ≥>≤<的实数x 的集合分别记做[,),(,),(,],(,)a a b b +∞+∞-∞-∞. 注意:对于集合{|}x a x b <<与区间(,)a b ,前者a 可以大于或等于b ,而后者必须 a b <.(3)求函数的定义域时,一般遵循以下原则:①()f x 是整式时,定义域是全体实数.②()f x 是分式函数时,定义域是使分母不为零的一切实数.③()f x 是偶次根式时,定义域是使被开方式为非负值时的实数的集合.④对数函数的真数大于零,当对数或指数函数的底数中含变量时,底数须大于零且不等于1.⑤tan y x =中,()2x k k Z ππ≠+∈.⑥零(负)指数幂的底数不能为零.⑦若()f x 是由有限个基本初等函数的四则运算而合成的函数时,则其定义域一般是各基本初等函数的定义域的交集.⑧对于求复合函数定义域问题,一般步骤是:若已知()f x 的定义域为[,]a b ,其复合函数[()]f g x 的定义域应由不等式()a g x b ≤≤解出.⑨对于含字母参数的函数,求其定义域,根据问题具体情况需对字母参数进行分类讨论. ⑩由实际问题确定的函数,其定义域除使函数有意义外,还要符合问题的实际意义.(4)求函数的值域或最值求函数最值的常用方法和求函数值域的方法基本上是相同的.事实上,如果在函数的值域中存在一个最小(大)数,这个数就是函数的最小(大)值.因此求函数的最值与值域,其实质是相同的,只是提问的角度不同.求函数值域与最值的常用方法:①观察法:对于比较简单的函数,我们可以通过观察直接得到值域或最值.②配方法:将函数解析式化成含有自变量的平方式与常数的和,然后根据变量的取值范围确定函数的值域或最值.③判别式法:若函数()y f x =可以化成一个系数含有y 的关于x 的二次方程2()()()0a y x b y x c y ++=,则在()0a y ≠时,由于,x y 为实数,故必须有2()4()()0b y a y c y ∆=-⋅≥,从而确定函数的值域或最值.④不等式法:利用基本不等式确定函数的值域或最值.⑤换元法:通过变量代换达到化繁为简、化难为易的目的,三角代换可将代数函数的最值问题转化为三角函数的最值问题.⑥反函数法:利用函数和它的反函数的定义域与值域的互逆关系确定函数的值域或最值. ⑦数形结合法:利用函数图象或几何方法确定函数的值域或最值.⑧函数的单调性法.【1.2.2】函数的表示法(5)函数的表示方法表示函数的方法,常用的有解析法、列表法、图象法三种.解析法:就是用数学表达式表示两个变量之间的对应关系.列表法:就是列出表格来表示两个变量之间的对应关系.图象法:就是用图象表示两个变量之间的对应关系.(6)映射的概念①设A 、B 是两个集合,如果按照某种对应法则f ,对于集合A 中任何一个元素,在集合B 中都有唯一的元素和它对应,那么这样的对应(包括集合A ,B 以及A 到B 的对应法则f )叫做集合A 到B 的映射,记作:f A B →.②给定一个集合A 到集合B 的映射,且,a A b B ∈∈.如果元素a 和元素b 对应,那么我们把元素b 叫做元素a 的象,元素a 叫做元素b 的原象.。
高中数学__函数及其表示知识点
函数及其表示 (一)知识梳理 1.函数的概念 (1)函数的定义:设B A 、是两个非空的数集,如果按照某种对应法则f ,对于集合A 中的 x ,在集合B 中都有 的数和它对应,那么这样的对应叫做从A 到B 的一个函数,通常记为__________(2)函数的定义域、值域在函数A x x f y ∈=),(中,x 叫做自变量,x A 叫做)(x f y =的定义域;与x 的值相对应的y 值叫做函数值, {}A x x f ∈)(称为函数)(x f y =的值域。
(3)函数的三要素: 、 和 2.函数的三种表示法:图象法、列表法、解析法 (1).图象法:就是用函数图象表示两个变量之间的关系; (2).列表法:就是列出表格来表示两个变量的函数关系; (3).解析法:就是把两个变量的函数关系,用等式来表示。
3.分段函数在自变量的不同变化范围中,对应法则用不同式子来表示的函数称为分段函数。
4.映射的概念设B A 、是两个集合,如果按照某种对应法则f ,对于集合A 中的任意元素,在集合B 中都有唯一确定的元素与之对应,那么这样的单值对应叫做从A 到B 的映射,通常记为B A f →: ,f 表示对应法则注意:⑴A 中元素必须都有象且唯一;⑵B 中元素不一定都有原象,但原象不一定唯一。
(二)考点分析考点1:判断两函数是否为同一个函数如果两个函数的定义域相同,并且对应关系完全一致,称这两个函数相等。
例1. 试判断以下各组函数是否表示同一函数?(1)2)(x x f =,33)(x x g =; (2)x xx f =)(,⎩⎨⎧<-≥=;01,01)(x x x g (3)x x f =)(1+x ,x x x g +=2)(;(4)12)(2--=x x x f ,12)(2--=t t t g(5)1212)(++=n n x x f ,1212)()(--=n n x x g (n ∈N *); 考点2:映射的概念例1.下述两个个对应是A 到B 的映射吗?(1)A R =,{|0}B y y =>,:||f x y x →=;(2){|0}A x x =>,{|}B y y R =∈,:f x y →=例2.若}4,3,2,1{=A ,},,{c b a B =,,,a b c R ∈,则A 到B 的映射有 个,B 到A 的映射有 个 例3.设集合{1,0,1}M =-,{2,1,0,1,2}N =--,如果从M 到N 的映射f 满足条件:对M 中的每个元素x 与它在N 中的象()f x 的和都为奇数,则映射f 的个数是( )()A 8个 ()B 12个 ()C 16个 ()D 18个考点3:求函数的定义域题型1:求有解析式的函数的定义域(1)方法总结:如没有标明定义域,则认为定义域为使得函数解析式有意义的x 的取值范围,实际操作时要注意:① 分母不能为0;② 对数的真数必须为正;③ 偶次根式中被开方数应为非负数;④ 零指数幂中,底数不等于0;⑤ 负分数指数幂中,底数应大于0;⑥ 若解析式由几个部分组成,则定义域为各个部分相应集合的交集;⑦ 如果涉及实际问题,还应使得实际问题有意义,而且注意:研究函数的有关问题一定要注意定义域优先原则,实际问题的定义域不要漏写。
新课标2023版高考数学一轮总复习第2章函数第1节函数及其表示课件
常见函数类型的定义域 (1)分式中,分母不为 0. (2)偶次方根中,被开方数非负. (3)对于 y=x0,要求 x≠0,负指数的底数不为 0. (4)抽象函数定义域要注意对应法则下的取值范围. (5)对数式中,真数大于 0.
考向 1 分段函数求值 x2-4,x>2,
(1)(2021·浙江卷)已知 a∈R,函数 f(x)=|x-3|+a,x≤2. 若 f(f( 6))=3,则 a=__________.
x2+2x+2,x≤0, (2)设函数 f(x)=-x2,x>0. 若 f(f(a))=2,则 a=________.
AC 解析:对于 A,f(x)=x2-2x-1 的定义域为 R,g(s)=s2- 2s-1 的定义域为 R,定义域相同,对应关系也相同,是同一函数; 对于 B,f(x)= -x3=-x -x的定义域为{x|x≤0},g(x)=x -x的 定义域为{x|x≤0},对应关系不同,不是同一函数;对于 C,f(x)=xx= 1 的定义域为{x|x≠0},g(x)=x10=1 的定义域为{x|x≠0},定义域相同, 对应关系也相同,是同一函数;对于 D,f(x)=x 的定义域为 R,g(x) = x2=|x|的定义域为 R,对应关系不同,不是同一函数.故选 AC.
(√)
(5)函数 y=f(x)的图象可以是一条封闭的曲线.
(×)
2.(2021·安阳模拟)设集合 M={x|0≤x≤2},N={y|0≤y≤2}.下 面的 4 个图形中,能表示从集合 M 到集合 N 的函数关系的有( )
2022数学第二章函数2
第二章函数2.1函数及其表示必备知识预案自诊知识梳理1.函数与映射的概念2。
函数的有关概念(1)函数的定义域、值域在函数y=f(x),x∈A中,x叫做自变量,叫做函数的定义域;与x的值相对应的y值叫做函数值,叫做函数的值域,显然,值域是集合B的子集.(2)函数的三要素:、和.(3)相等函数:如果两个函数的相同,并且完全一致,那么我们就称这两个函数相等.3。
函数的表示方法表示函数的常用方法有、和.4.分段函数(1)定义:如果一个函数,在其定义域内,对于自变量的不同取值区间,有不同的对应方式,则称其为分段函数。
(2)分段函数的相关结论①分段函数虽然由几个部分组成,但是它表示的是一个函数.②分段函数的定义域等于各段函数的定义域的并集,值域等于各段函数的值域的并集。
1。
映射:(1)映射是函数的推广,函数是特殊的映射,A,B为非空数集的映射就是函数;(2)映射问题允许多对一,但不允许一对多。
2。
判断两个函数相等的依据是两个函数的定义域和对应关系完全一致。
考点自诊1。
判断下列结论是否正确,正确的画“√”,错误的画“×”。
(1)函数是其定义域到值域的映射.()(2)函数y=f(x)的图象与直线x=1有两个交点.()(3)定义域相同,值域也相同的两个函数一定是相等函数.()(4)对于函数f:A→B,其值域是集合B.()(5)分段函数是由两个或几个函数组成的.()+ln x的定义域是.2.(2020北京,11)函数f(x)=1x+13.已知f,g都是从A到A的映射(其中A={1,2,3}),其对应关系如下表:则f(g(3))等于()2022 2.1A.1 B。
2 C.3 D。
不存在4。
(2020辽宁大连模拟,文2)设函数f(x)={1-x2,x≤1,x2+x-2,x>1,则f1 f(2)的值为()A.1516B。
—2716C.89D.185。
如图表示的是从集合A到集合B的对应,其中是映射,是函数.关键能力学案突破考点函数及其有关的概念【例1】以下给出的同组函数中,表示相等函数的有.(只填序号)①f1(x)=xx,f2(x)=1;②f1(x)={1,x≤1,2,1<x<2,3,x≥2,f2(x):③f1(x)=2x,f2(x):如图所示。
高考数学回归基础知识:二、函数及其表示
二、函数及其表示(一)函数的概念1、定义一般地,我们说:设A,B是非空的数集,如果按照某种确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A →B为集合A到集合B的一个函数,记作A=),(y∈xxf其中,x叫做自变量,x的取值范围A叫函数的定义域;与x的值相对应的y值叫做函数值,函数值的集合{}A)(叫做函数的值域,显然,值域是集合f∈xxB的子集。
2、函数的三要素(1)函数的三要素是指定义域、对应关系和值域。
(2)由于值域是由定义域和对应关系决定的,所以,如果两个函数的定义域相同,并且对应关系完全一致,我们就称这两个函数相等。
3、区间。
设a,b是两个实数,而且a<b,我们规定:(1)满足不等式a≤x≤b的实数x的集合叫做闭区间,表示为[a,b];(2)满足不等式a<x<b的实数x的集合叫做开区间,表示为(a,b);(3)满足不等式a≤x<b或a<x≤b的实数x的集合叫做半开半闭区间,分别表示为[)(]b a,,ba,这里的实数a与b都叫做相应区间的端点。
b)实数集常用区间表示为()-∞+∞,,“∞”读作“无穷大”。
“-∞”读作“负无穷大”,“+∞”读作“正无穷大” 数轴表示例1 求下列函数的定义域xx y -++=211 解析 要使xx y -++=211有意义,则必须 ⎩⎨⎧≠-≥⇒⎩⎨⎧≠-≥+210201x x x x ,即x ≥-1且x ≠2,故所求函数的定义域为{}21|≠-≥x x x 且例2 (1)已知函数f(x)的定义域是[-1,3],求f(x+1)和f(x 2)的 定义域(2)已知函数f(2x+3)的定义域为(]2,1-,求f(x-1)的定义域解析 (1)∵f(x)的定义域为[-1,3],∴f(x+1)的定义域由-1≤x+1≤3确定,即-2≤x ≤2, ∴f(x+1)的定义域为[-2,2].f(x 2)的定义域由-1≤x 2≤3确定,即33≤≤-x ∴f(x 2)的定义域为[33,-] (2)∵函数f(2x+3)的定义域为(]2,1-, ∴2x+3中的x 满足-1<x ≤2, ∴1<2x+3≤7.令t=2x+3,则f(t)的定义域为(]7,1. 又1<x-1≤7,∴2<x ≤8 ∴f(x-1)的定义域为(]8,2 4、反函数式子y=f(x)表示y 是自变量x 的函数,设它的定义域为A ,值域为C ,我们从式子y=f(x)中解出x 得到x=g(y),如果对于y 在C 中的任何一个值通过式子x=g(y),x 在A 中都有唯一确定的值和它对应,那么式子x=g(y)表示y 是自变量x 的函数,这样的函数x=g(y)叫做y=f(x)的反函数,记作)(1y f x -=,一般写成)(1x fy -=.(二)函数的表示法 1、函数的三种表示法解析法,就是用数学表达式表示两个变量之间的对应关系。
2020高考文科数学回归教材 2函数
函 数1.函数:f A B →的概念.理解注意(1):A B 、都是非空数集;(2)任意性:集合A 中的任意一个元素x ;(3)唯一性:在集合B 中有唯一确定的数()f x 和它对应;(3)定不定:集合A 一定是函数的定义域,集合B 不一定是函数的值域,函数值域一定是集合B 的子集. 典例:(1)函数图像与直线()x m m R =∈至多有一个公共点,但与直线()y n n R =∈的公共点可能没有,也可能有任意个.(2)已知{(,)|(),},{(,)|1}A x y y f x x F B x y x ==∈==,则集合A B I 中元素有 0或1 个;(3)若函数21242y x x =-+的定义域、值域都是闭区间[2,2]b ,则b = 2 .2.同一函数.函数三要素是:定义域,值域和对应法则.而值域可由定义域和对应法则唯一确定,因此当两个函数的定义域和对应法则相同时,它们一定为同一函数.典例:若一系列函数的解析式相同,值域相同,但其定义域不同,则称这些函数为“孪生函数”,那么解析式为2y x =,值域为{4,1}的“孪生函数”共有 9 个.3.映射:f A B →的概念.理解注意:映射是函数概念的推广,表现在集合A B 、可以为任意非空集合,不一定是表示数,可以是其它人或事物本身.典例:(1)设集合{1,0,1},{1,2,3,4,5}M N =-=,映射:f M N →满足条件“对任意的x M ∈,()x f x +是奇数”,这样的映射f 有 12 个;(2)设2:f x x →是集合A 到集合B 的映射,若{1,2}B =,则A B I 一定是{}1∅或. 4.求函数定义域的常用方法(一切函数问题:定义域优先)典例:(1)函数lg 3y x =-的定义域是[0,2)(2,3)(3,4)U U ; (2)若函数2743kx y kx kx +=++的定义域为R,则k ∈34[0,);(3)函数()f x 定义域是[,]a b ,且0b a >->,则函数()()()F x f x f x =+-定义域是[,]a a -;(4)设函数2()lg(21)f x ax x =++,①若()f x 的定义域是R ,求实数a 的取值范围;②若()f x 的值域是R ,求实数a 的取值范围(答:①1a >; ②01a ≤≤)典例:(1)若函数()y f x =的定义域为12[,2],则2(log )f x 的定义域为4}{x x ≤;(2)若函数2(1)f x +的定义域为[2,1)-,则函数()f x 的定义域为[1,5]x ∈.5.求函数值域(最值)的方法:(1)配方法——二次函数(二次函数在给出区间上的最值有两类:一是求闭区间[,]m n 上的最值;二是求区间定(动),对称轴动(定)的最值问题.求二次函数的最值问题,勿忘数形结合,注意“两看”:一看开口方向;二看对称轴与所给区间的相对位置关系).典例:(1)函数225,[1,2]y x x x =-+∈-的值域是[4,8];(2)已知2()4(1)3()f x ax a x x =++-∈(0,2]在2x =时有最大值,则a ∈1[,)2-+∞;(2)换元法——通过换元把一个较复杂的函数变为简单易求值域的函数,其函数特征是函数解析式含有根式.典例:(1)22sin 3cos 1y x x =--的值域为178[4,]-;(2)21y x =+值域为[3,)+∞;(令0t ≥,注意:换元要等价);(3)sin cos sin cos y x x x x =++⋅的值域为12[1,-;(4sin cos )t x x x π=+=+…)(4)4y x =++值域为4];(令3cos ()x =∈[0,π]θθ…)(3)函数有界性法——利用已学过函数的有界性,如三角函数的有界性.典例:函数2sin 11sin y -=+θθ,313xx y =+,2sin 11cos y -=+θθ值域分别是:3122(,],(0,1),(,]-∞-∞; (4)单调性法——利用函数的单调性.典例:(1)求1(19)y x x x =-<<,229(1sin )sin x y x +=+,52log x y -=+值域为801192(0,)[,9]R 、、; (5)数形结合法——函数解析式具有明显的某种几何意义,如两点的距离、直线斜率等.典例:(1)若点22{(,)|1}P x y x y ∈+=,则2y x +及2y x -的取值范围[[;(2)函数y =的值域[10,)+∞;(3)函数y 值域)+∞注意:异侧和最小,同侧差最大.(6)判别式法——分式函数(分子或分母中有一个是二次),其定义域通常为R典例:(1)函数22(1)x x y +=的值域[1,1]- (2)若2328log 1mx x n y x ++=+的定义域为R,值域为[0,2],求常数,m n 的值(答:5m n ==)(7)不等式法——利用基本不等式,)a b a b R ++≥∈求函数的最值或值域.其题型特征解析式是和式时要求积为定值,解析式是积时要求和为定值,不过有时须要用到拆项、添项和平方等技巧.典例:(1)2b y k x =+型,可直接用不等式性质,如函数232y x =+的值域32(0,].(2)2x m x n y mx n ''++=+型, ,如函数211x x y x ++=+的值域(,3][1,)-∞-+∞U (3)2bx y x mx n =++型,如①函数21x y x =+的值域1122[,]-;②函数y =的值域12[0,] . (4) 设12,,,x a a y 成等差数列,12,,,x b b y 成等比数列,则21212()a a b b +的取值范围是(,0][4,)-∞+∞U .(8)导数法——一般适用于高次多项式函数.典例:函数32()2440f x x x x =+-,[3,3]x ∈-的最小值是48-.提醒:(1)写函数的定义域、值域时,你按要求写成集合形式了吗?(2)函数的最值与值域之间有何关系?典例:函数3(13,y x x =-≤≤且)x Z ∈的值域是{3,0,3,6,9}-,不要错觉为[3,9]-.6.分段函数的概念.分段函数是在其定义域的不同子集上,分别用几个不同的式子来表示对应关系的函数,它是一类较特殊的函数.在求分段函数的值0()f x 时,一定首先要判断0x 属于定义域的哪个子集,然后再代相应的关系式;分段函数的值域应是其定义域内不同子集上各关系式的取值范围的并集.典例:(1)设函数2(1),(1)()41)x x f x x ⎧+<⎪=⎨≥⎪⎩,则不等式()1f x ≥的解集为(,2][0,10]-∞-U ; (2)已知1(0)()1(0)x f x x ≥⎧=⎨-<⎩ ,则不等式(2)(2)5x x f x +++≤的解集是32(,]-∞. 7.求函数解析式的常用方法:(1)待定系数法——已知所求函数的类型(二次函数的表达形式有三种:一般式:2()f x ax bx c =++;顶点式:2()()f x a x m n =-+;零点式:12()()()f x a x x x x =--,要会根据已知条件的特点,灵活地选用二次函数的表达形式.典例:若()f x 为二次函数,且(2)(2)f x f x -=--,且f(0)=1,图象在x 轴上截得的线段长为求()f x 的解析式.(答:21()212f x x x =++) (2)代换(配凑)法——已知形如(())fg x 的表达式,求()f x 的表达式.典例:(1)已知2(1cos )sin ,f x x -=求()2f x 的解析式(答:242()2,[f x x x x =-+∈); 这里需值得注意的是所求解析式的定义域的等价性,即()f x 的定义域应是()g x 的值域.(2)若2211()f x x x x-=+,则函数(1)f x -=223x x -+; (3)若()()y f x x R =∈是奇函数,且()(10)f x x x =≥,那么(,0)x ∈-∞时,()f x= (1x .(3)方程的思想——已知条件是含有()f x 及另外一个函数的等式,可抓住等式的特征对等式的进行赋值,从而得到关于()f x 及另外一个函数的方程组.典例:(1)已知()2()32f x f x x +-=-,求()f x 的解析式(答:2()33f x x =--);(2)已知()f x 是奇函数,()g x 是偶函数,且()f x +()g x =11x -,则()f x =21x x -. 8.函数的奇偶性.(1)具有奇偶性的函数的定义域的特征:定义域必须关于原点对称!为此确定函数的奇偶性时,务必先判定函数定义域是否关于原点对称.典例:若()f x 2sin(3),[25,3]x x θαπα=+∈-为奇函数,其中(0,2)∈θπ,则-αθ值是 0 ;(2)确定函数奇偶性的常用方法(若函数解析式较为复杂,应先化简,再判断其奇偶性):①定义法: 典例:(1)判断函数y 奇函数_. (2)判断函数44()sin cos2cos f x x x x =+-的奇偶性 既是奇函数又是偶函数 ;②利用函数奇偶性定义的等价形式:()()0f x f x ±-=或()1()f x f x -=±(()0f x ≠). 典例:判断11()()212x f x x =+-的奇偶性 偶函数 . ③图像法:奇函数的图象关于原点对称;偶函数的图象关于y 轴对称.典例:判断1,(0)() 1.(0)x x f x x x +>⎧=⎨-<⎩的奇偶性 奇函数 . (3)函数奇偶性的性质:①奇(偶)函数在关于原点对称的区间上若有单调性,则其单调性完全相同(反).②若()f x 为偶函数,则()()(||)f x f x f x -==.典例:若偶函数()()f x x R ∈在(,0)-∞上单调递减,且1()3f =2,则不等式18(log )2f x >的解集为12(0,)(2,)+∞U④若奇函数()f x 定义域中含有0,则必有(0)0f =.故(0)0f =是()f x 为奇函数的既不充分也不必要条件.典例:若22()21x x a a f x ⋅+-=+为奇函数,则实数a = 1 . ⑤定义在关于原点对称区间上的任意一个函数,都可表示成“一个奇函数与一个偶函数的和(或差)”.典例:设()f x 是定义域为R 的任一函数, ()()()2f x f x F x +-=,()()()2f x f x G x --=. ①判断()F x 与()G x 的奇偶性; 答案:()()F x G x 为偶函数,为奇函数; ②若将函数()lg(101)x f x =+,表示成一个奇函数()g x 和一个偶函数()h x 之和,则()g x =2x⑥复合函数的奇偶性特点是:“内偶则偶,内奇同外”.⑦既奇又偶函数有无穷多个(()0f x =,定义域是关于原点对称的任意一个数集).9.函数的单调性.(1)确定函数的单调性或单调区间的常用方法:①在解答题中常用:定义法(取值—作差—变形—定号)、导数法(在区间(,)a b 内,若总有()0f x '>,则()f x 为增函数;反之,若()f x 在区间(,)a b 内为增函数,则()0f x '≥,请注意两者的区别所在.典例:已知函数3()f x x ax =-在区间[1,)+∞上是增函数,则a 的取值范围是(,3]-∞;②在小题中还可用数形结合法、特殊值法等等,特别要注意双勾函数(,)by ax a b R x+=+∈图象和单调性在解题中的运用:增区间为(,)-∞+∞,减区间为[和.典例:(1)若函数2()2(1)2f x x a x =+-+在(,4]-∞上是减函数,则a 取值范围是3a ≤-;(2)已知函数1()2ax f x x +=+在区间()2,-+∞上为增函数,则实数a 的取值范围12(,)+∞; (3)若函数()()log (4)0,1a x a f x x a a =+->≠且的值域为R,则a 的取值范围是041a a <≤≠且; ③复合函数法:复合函数单调性的特点是同增异减.典例:函数20.5log (2)y x x =-+的单调递增区间是(1,2).特别提醒:求单调区间时,第一,勿忘定义域;典例:若2()log (3)a f x x ax =-+在区间(,]2a -∞上为减函数,则a 的取值范围; 第二,在多个单调区间之间不一定能添加符号“U ”和“或”;第三,单调区间应该用区间表示,不能用集合或不等式表示;第四,你注意到函数单调性与奇偶性的逆用了吗?①比较大小;②解不等式;③求参数范围. 典例:已知奇函数()f x 是定义在(2,2)-上的减函数,若(1)(21)0f m f m -+->,求实数m 的取值范围.(答:1223m -<<)10. 常见的图象变换①()y f x a =+(0)a >的图象是把函数()y f x =图象沿x 轴向左平移a 个单位得到的. 典例:设()2,()x f x g x -=的图像与()f x 的图像关于直线y x =对称,()h x 的图像由()g x 的图像向右平移1个单位得到,则()h x 为2()log (1)h x x =--②()y f x a =+((0)a <的图象是把函数()y f x =图象沿x 轴向右平移a 个单位得到的. 典例: (1)若2(199)443f x x x +=++,则函数()f x 的最小值为 2 ;(2)要得到lg(3)y x =-的图像,需作lg y x =关于 y 轴对称图像,再向右平移3个单位而得到;(3)函数()lg(2)1f x x x =⋅+-的图象与x 轴的交点个数有 2 个.③函数()y f x =+a (0)a >图象是把函数()y f x =的图象沿y 轴向上平移a 个单位得到的; ④函数()y f x =+a (0)a <图象是把函数()y f x =的图象沿y 轴向下平移a 个单位得到的;典例:将函数b y a x a=++的图象向右平移2个单位后又向下平移2个单位,所得图象如果与原图象关于直线y x =对称,那么 ( C )1,0A a b =-≠ 1,B a b R =-∈ 1,0C a b =≠ 0,D a b R =∈⑤函数()y f ax =(0)a >的图象是把函数()y f x =的图象沿x 轴伸缩为原来的1a得到的. 典例:(1)将函数()y f x =的图像上所有点的横坐标变为原来的13(纵坐标不变),再将此图像沿x 轴方向向左平移2个单位,所得图像对应的函数为(36)y f x =+; (2)如若函数(21)y f x =-是偶函数,则函数(2)y f x =的对称轴方程是12x -=. ⑥函数()y af x =(0)a >图象是把函数()y f x =图象上各点纵坐标变为原来的a 倍得到的.11. 函数的对称性. ①满足条件()()f x a f b x +=-的函数的图象关于直线2a b x +=对称. 典例:若2(0)y ax bx a =+≠满足(5)(3)f x f x -=-且方程()f x x =有等根,则()f x =212x x -+. ②点(,)x y 关于y 轴对称点为(,)x y -;函数()y f x =关于y 轴的对称曲线方程为()y f x =-;③点(,)x y 关于x 轴对称点为(,)x y -;函数()y f x =关于x 轴的对称曲线方程为()y f x =-; ④点(,)x y 关于原点对称点为(,)x y --;函数()y f x =关于原点对称曲线方程为()y f x =--;:⑤点(,)x y 关于直线y x a =±+的对称点为((),)y a x a ±-±+;曲线(,)0f x y =关于直线y x a =±+的对称曲线的方程为((),)0f y a x a ±-±+=.特别地,点(,)x y 关于直线y x =的对称点为(,)y x ;曲线(,)0f x y =关于直线y x =的对称曲线的方程为(,)0f y x =;点(,)x y 关于直线y x =-的对称点为(,)y x --;曲线(,)0f x y =关于直线y x =-的对称曲线的方程为(,)0f y x --=.典例:己知函数33(),()232x f x x x -=≠-,若(1)y f x =+的图像是1C ,它关于直线y x =对称图像是22,C C 关于原点对称的图像为33,C C 则对应的函数解析式是221x y x +=-+; ⑥曲线(,)0f x y =关于点(,)a b 的对称曲线的方程为(2,2)0f a x b y --=.典例:若函数2y x x =+与()y g x =的图象关于点(-2,3)对称,则()g x =276x x ---. ⑦形如(0,)ax b y c ad bc cx d +=≠≠+的图像是双曲线,其两渐近线分别直线d x c=-(由分母为零确定)和直线a y c =(由分子、分母中x 的系数确定),对称中心是点(,)d a c c-. 典例:已知函数图象C '与2:(1)1C y x a ax a ++=++关于直线y x =对称,且图象C '关于点(2,3)-对称,则a 的值为 2 .⑧|()|f x 的图象先保留()f x 原来在x 轴上方的图象,作出x 轴下方的图象关于x 轴的对称图形,然后擦去x 轴下方的图象得到;(||)f x 的图象先保留()f x 在y 轴右方的图象,擦去y 轴左方的图象,然后作出y 轴右方的图象关于y 轴的对称图形得到.典例:(1)作出函数2|log (1)|y x =+及2log |1|y x =+的图象;(2)若函数()f x 是定义在R 上的奇函数,则函数()()()F x f x f x =+的图象关于y 轴对称.提醒:(1)从结论②③④⑤⑥可看出,求对称曲线方程的问题,实质上是利用代入法转化为求点的对称问题;(2)证明函数图像的对称性,即证明图像上任一点关于对称中心(对称轴)的对称点仍在图像上;(3)证明图像1C 与2C 的对称性,需证两方面:①证明1C 上任意点关于对称中心(对称轴)的对称点仍在2C 上;②证明2C 上任意点关于对称中心(对称轴)的对称点仍在1C 上.典例:(1)已知函数1()()x a f x a R a x +-=∈-.求证:函数()f x 的图像关于点(,1)M a -成中心对称图形;(2)设曲线C 的方程是3y x x =-,将C 沿x 轴, y 轴正方向分别平行移动,t s 单位长度后得曲线1C .①写出曲线1C 的方程(答:3()()y x t x t s =---+);②证明曲线C 与1C 关于点(,)22t s A 对称.12. 函数的周期性.(1)类比“三角函数图像”得①若()y f x =图像有两条对称轴,()x a x b a b ==≠,则()y f x =必是周期函数,且一周期为2||T a b =-;②若()y f x =图像有两个对称中心(,0),(,0)()A a B b a b ≠,则()y f x =是周期函数,且一周期为2||T a b =-;③如果函数()y f x =的图像有一个对称中心(,0)A a 和一条对称轴()x b a b =≠,则函数()y f x =必是周期函数,且一周期为4||T a b =-;典例:(1)已知定义在R 上的函数()f x 是以2为周期的奇函数,则方程()0f x =在[2,2]-上至少有 5 个实数根.(2)由周期函数的定义“函数()f x 满足()()f x f a x =+(0)a >,则()f x 是周期为a 的周期函数”得:①函数()f x 满足()()f x f a x -=+,则()f x 是周期为2a 的周期函数; ②若1()(0)()f x a a f x +=≠恒成立,则2T a =;③若1()(0)()f x a a f x +=-≠恒成立,则2T a =. ④若1()()(0)1()f x f x a a f x ++=≠-恒成立,则4T a =.类比1tan tan()41tan x x x π++=-记忆. 典例:(1)设()f x 是R 上的奇函数,(2)()f x f x +=-,当01x ≤≤时,()f x x =,则(47.5)f =0.5-;(2)定义在R 上的偶函数()f x 满足(2)()f x f x +=,且在[3,2]--上是减函数,若,αβ是锐角三角形的两个内角,则(sin ),(cos )f f αβ的大小关系为(sin )(cos )f f αβ>;(3)已知()f x 是偶函数,且(1)g =993,()g x =(1)f x -是奇函数,求(2012)f 的值(答:993);(4)设()()()211()f x f x f x x R +-=+∈⎡⎤⎣⎦,又()22f =则()2012f= 1-. 13.指数式、对数式:mn a =,1mn mn a a -=,01(0)a a =≠,log 10a =,log 1a a =,lg2lg51+=,log ln e x x =,log (0,1,0)b a a N N b a a N =⇔=>≠>,log a N a N =,log log log c a c b b a=, log log m n a a n b b m =. 典例:(1)235log 25log 4log 9g g 的值为 8 ;(2)21()2的值为164 (3)已知函数*1()log (2)()n f n n n N +=+∈,定义使(1)(2)()f f f k ⋅⋅⋅L 为整数的数*()k k N ∈叫做企盼数,则在区间[1,2012]内这样的企盼数共有 9 个.14. 指数、对数值的大小比较:(1)化同底后利用函数的单调性; (2)作差或作商法;(3)利用中间量(0或1); (4)化同指数(或同真数)后利用图象比较.15. 函数的应用.(1)求解数学应用题的一般步骤:①审题—认真读题,确切理解题意,明确问题的实际背景,寻找各量之间的内存联系;②建模—通过抽象概括,将实际问题转化为相应的数学问题,别忘了注上符合实际意义的定义域;③解模—求解所得的数学问题;④回归—将所解得的数学结果,回归到实际问题中去. (2)常见的函数模型有:①建立一次函数或二次函数模型;②建立分段函数模型;③建立指数函数模型;④建立双勾函数(,)b y ax a b R x+=+∈型.典例:某旅店有客床100张,各床每天收费10元时可全部额满.若每床每天收费每提高2元,则减少10张客床租出,这样,为了减少投入多获利,每床每天收费应提高( B )A 2元B 4元C 6元D 8元16. 抽象函数抽象函数通常是指没有给出函数的具体的解析式,只给出了其它一些条件(如函数的定义域、单调性、奇偶性、解析递推式等)的函数问题.求解抽象函数问题的常用方法是:(1)借鉴模特函数进行类比探究.几类常见的抽象函数:①正比例函数型:()(0)f x kx k =≠ ---------------()()()f x y f x f y ±=±;②幂函数型:2()f x x = --------------()()()f xy f x f y =,()()()x f x f y f y =; ③指数函数型:()x f x a = ------------()()()f x y f x f y +=,()()()f x f x y f y -=; ④对数函数型:()log a f x x = -----()()()f xy f x f y =+,()()()x f f x f y y=-; ⑤三角函数型:()tan f x x = ----- ()()()1()()f x f y f x y f x f y ++=-. 典例:若()f x 是R 上的奇函数,且为周期函数,若它的周期为T,则()2T f -= 0 .(2)利用函数的性质(如奇偶性、单调性、周期性、对称性等)进行演绎探究 典例:(1)设函数()()f x x N ∈表示x 除以3的余数,则对任意的,x y N ∈,都有( A ) A (3)()f x f x += B ()()()f x y f x f y +=+ C (3)3()f x f x = D ()()()f xy f x f y =(2)设(2)(1)()()f x f x f x x R +=+-∈,若3(1)lg 2f =,(2)lg15f =,求(2012)f (答:1-);(3)设()()f x x R ∈是奇函数,且(2)()f x f x +=-,证明:直线1x =是()f x 图象的一条对称轴;(4)已知定义域为R 的函数()f x 满足()(4)f x f x -=-+,且当2x >时,()f x 单调递增.如果124x x +<,且12(2)(2)0x x --<,则12()()f x f x +的值的符号是 负 .(3)利用一些方法(如赋值法(令x =0或1,求出(0)f 或(1)f 、令y x =或y x =-等)、递推法、反证法等)进行逻辑探究.典例:(1)若x R ∈,()f x 满足()()f x y f x +=()f y +,则()f x 的奇偶性是 奇函数 ;(2)若x R ∈,()f x 满足()()f xy f x =()f y +,则()f x(3)已知()f x 是定义在(3,3)-上的奇函数,当03x <<时, (f x 图像如右图所示,那么不等式()cos 0f x x ⋅<的解集是(,1)(0,1)(,3)22--ππU U ; (4)设()f x 的定义域为R +,对任意,x y R +∈,都有()()()x f f x f y y =-, 且1x >时,()0f x <,又1()12f =.①求证()f x 为减函数;②解不等式2()(5)f x f x ≥-+-.(答:(0,1][4,5)U ).。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高考数学回归基础知识:二、函数及其表示
二、函数及其表示
(一)函数的概念 1、定义
一般地,我们说:
设A ,B 是非空的数集,如果按照某种确定的对应关系f ,使对于集合A 中的任意一个数x ,在集合B 中都有唯一确定的数f(x)和它对应,那么就称f :A →B 为集合A 到集合B 的一个函数,记作A x x f y ∈=),(
其中,x 叫做自变量,x 的取值范围A 叫函数的定义域;与x 的值相对应的y 值叫做函数值,函数值的集合{}A x x f ∈)(叫做函数的值域,显然,值域是集合B 的子集。
2、函数的三要素
(1)函数的三要素是指定义域、对应关系和值域。
(2)由于值域是由定义域和对应关系决定的,所以,如果两个函数的定义域相同,并且对应关系完全一致,我们就称这两个函数相等。
3(2)满足不等式a<x<b 的实数x 的集合叫做开区间,表示为(a ,b);
(3)满足不等式a ≤x<b 或a<x ≤b 的实数x 的集合叫做半开半闭区间,分别表示为
[)(]b a b a ,,,
这里的实数a 与b 都叫做相应区间的端点。
实数集常用区间表示为()-∞+∞,,
“∞”读作“无穷大”。
“-∞”读作“负无穷大”,“+∞”读作“正无穷大”
⎩⎨
⎧≠-≥⇒⎩⎨⎧≠-≥+2
1
0201x x x x ,即x ≥-1且x ≠2, 故所求函数的定义域为{}21|≠-≥x x x 且
例2 (1)已知函数f(x)的定义域是[-1,3],求f(x+1)和f(x 2
)的 定义域
(2)已知函数f(2x+3)的定义域为(]2,1-,求f(x-1)的定义域
解析 (1)∵f(x)的定义域为[-1,3],
∴f(x+1)的定义域由-1≤x+1≤3确定,即-2≤x ≤2, ∴f(x+1)的定义域为[-2,2].
f(x 2
)的定义域由-1≤x 2
≤3确定,即33≤≤-x
∴f(x 2
)的定义域为[33,-]
(2)∵函数f(2x+3)的定义域为(]2,1-, ∴2x+3中的x 满足-1<x ≤2, ∴1<2x+3≤7.
令t=2x+3,则f(t)的定义域为(]7,1. 又1<x-1≤7,∴2<x ≤8 ∴f (x-1)的定义域为(]8,2
4、反函数
式子y=f(x)表示y 是自变量x 的函数,设它的定义域为A ,值域为C ,我们从式子y=f(x)中解出x 得到x=g(y),如果对于y 在C 中的任何一个值通过式子x=g(y),x 在A 中都有唯一确定的值和它对应,那么式子x=g(y)表示y 是自变量x 的函数,这样的函数x=g(y)叫做y=f(x)的反函数,记作)(1
y f
x -=,一般写成)(1
x f
y -=.
解析法,就是用数学表达式表示两个变量之间的对应关系。
图象法,就是用图象表示两个变量之间的对应关系。
列表法,就是列出表格来表示两个变量之间的对应关系。
2
⎪⎪⎩⎨∈⋯⋯n
n D x x f )(
分段函数是一个函数,而不是几个函数,对于分段函数必须分段处理,其定义域为D 1∪D 2∪…∪D n .
球通”移动电话资费“套餐”,这个套餐的最大特点是针对不同用户采用了不同的收费方法,具体方案如下:
话用时之和)的函数关系式。
解析 “套餐”中第3种收费函数为 3、复合函数
若y 是u 的函数,u 又是x 的函数,即y=f(u),u=g(x),x ∈(a, b),u ∈(m,n),那么y 关于x 的函数y=f [g(x)],x ∈(a,b)叫做f 和g 的复合函数,u 叫做中间变量,u 的取值范围是g(x)的值域。
4、映射
设A ,B 是两个非空的集合,如果按某一个确定的对应关系f ,使对于集合A 中的任何一个元素x ,在集合B 中都有唯一确定的元素y 与之对应,那么就称对应f :A →B 为从集合A 到集合B 的一个映射。
代入解析式求得y=f(t)的解析式,要注意t 的取值范围为所求函数的定义域。
③赋值法:可令解析式中的自变量等于某些特殊值求解。
④列方程(组)法求解。
若所给式子中含有f(x),⎪⎭
⎫
⎝⎛x f 1或f(x),f(-x)等形式,可考虑构
造另一个方程,通过解方程组获解。
5.配凑法
例 解答下列各题:
(1)已知f(x)=x 2
-4x+3,求f(x+1);
(2)已知f(x+1)=x 2
-2x ,求f(x);
(3)已知二次函数g(x)满足g(1)=1,g(-1)=5,图象过原点,求g(x)。
解析 (1)f(x+1)=(x+1)2-4(x+1)+3=x 2
-2x (2)方法一:(配凑法)
f(x+1)=(x+1)2-2x-1-2x=(x+1)2-4x-1=(x+1)2
-4(x+1)+3,
∴f(x)=x 2
-4x+3
方法二:(换元法)令x+1=t ,则x=t-1,
f(t)=(t-1)2-2(t-1)=t 2
-4t+3,
∴f(x)=x 2
-4x+3.
(2)由题意设g(x)=ax 2
+bx+c ,a ≠0. ∵g(1)=1,g(-1)=4,且图象过原点,
∴ .
0,5,
1⎪⎩
⎪
⎨⎧==+-=++c c b a c b a 解得 ⎪⎩⎪⎨⎧=-==.0,2,3c b a
∴g(x)=3x 2
-2x.。