实验一离散信号的频谱分析报告

合集下载

数字信号处理实验报告

数字信号处理实验报告

《数字信号处理》实验报告学院:信息科学与工程学院专业班级:通信1303姓名学号:实验一 常见离散时间信号的产生和频谱分析一、 实验目的(1) 熟悉MATLAB 应用环境,常用窗口的功能和使用方法;(2) 加深对常用离散时间信号的理解;(3) 掌握简单的绘图命令;(4) 掌握序列傅里叶变换的计算机实现方法,利用序列的傅里叶变换对离散信号进行频域分析。

二、 实验原理(1) 常用离散时间信号a )单位抽样序列⎩⎨⎧=01)(n δ00≠=n n 如果)(n δ在时间轴上延迟了k 个单位,得到)(k n -δ即:⎩⎨⎧=-01)(k n δ0≠=n k n b )单位阶跃序列⎩⎨⎧=01)(n u 00<≥n n c )矩形序列 ⎩⎨⎧=01)(n R N 其他10-≤≤N nd )正弦序列)sin()(ϕ+=wn A n xe )实指数序列f )复指数序列()()jw n x n e σ+=(2)离散傅里叶变换:设连续正弦信号()x t 为0()sin()x t A t φ=Ω+这一信号的频率为0f ,角频率为002f πΩ=,信号的周期为00012T f π==Ω。

如果对此连续周期信号()x t 进行抽样,其抽样时间间隔为T ,抽样后信号以()x n 表示,则有0()()sin()t nT x n x t A nT φ===Ω+,如果令w 为数字频率,满足000012s sf w T f f π=Ω=Ω=,其中s f 是抽样重复频率,简称抽样频率。

为了在数字计算机上观察分析各种序列的频域特性,通常对)(jw e X 在[]π2,0上进行M 点采样来观察分析。

对长度为N 的有限长序列x(n), 有∑-=-=10)()(N n n jw jw k k e n x e X其中 1,,1,02-==M k k Mw k ,π 通常M 应取得大一些,以便观察谱的细节变化。

取模|)(|k jw e X 可绘出幅频特性曲线。

数字信号处理实验报告

数字信号处理实验报告

《数字信号处理》实验报告课程名称:《数字信号处理》学院:信息科学与工程学院专业班级:通信1502班学生姓名:侯子强学号:02指导教师:李宏2017年5月28日实验一离散时间信号和系统响应一. 实验目的1. 熟悉连续信号经理想采样前后的频谱变化关系,加深对时域采样定理的理解2. 掌握时域离散系统的时域特性3. 利用卷积方法观察分析系统的时域特性4. 掌握序列傅里叶变换的计算机实现方法,利用序列的傅里叶变换对离散信号及系统响应进行频域分析二、实验原理1. 采样是连续信号数字化处理的第一个关键环节。

对采样过程的研究不仅可以了解采样前后信号时域和频域特性的变化以及信号信息不丢失的条件,而且可以加深对离散傅里叶变换、Z 变换和序列傅里叶变换之间关系式的理解。

对连续信号()a x t 以T 为采样间隔进行时域等间隔理想采样,形成采样信号:ˆ()()()a a xt x t p t = 式中()p t 为周期冲激脉冲,$()a x t 为()a x t 的理想采样。

()a x t 的傅里叶变换为µ()a X j Ω: 上式表明将连续信号()a x t 采样后其频谱将变为周期的,周期为Ωs=2π/T。

也即采样信号的频谱µ()a X j Ω是原连续信号xa(t)的频谱Xa(jΩ)在频率轴上以Ωs 为周期,周期延拓而成的。

因此,若对连续信号()a x t 进行采样,要保证采样频率fs ≥2fm ,fm 为信号的最高频率,才可能由采样信号无失真地恢复出原模拟信号计算机实现时,利用计算机计算上式并不方便,因此我们利用采样序列的傅里叶变换来实现,即而()()j j n n X e x n e ωω∞-=-∞=∑为采样序列的傅里叶变换()()n P t t nT δ∞=-∞=-∑µ1()()*()21()n a a a s X j X j P j X j jn T π∞=-∞Ω=ΩΩ=Ω-Ω∑µ()()|j a TX j X e ωω=ΩΩ=2. 时域中,描述系统特性的方法是差分方程和单位脉冲响应,频域中可用系统函数描述系统特性。

matlab离散信号的频谱分析实验报告

matlab离散信号的频谱分析实验报告

matlab离散信号的频谱分析实验报告Matlab离散信号的频谱分析实验报告引言:信号频谱分析是信号处理领域中的重要内容,它可以帮助我们了解信号的频率特性和频谱分布。

在实际应用中,离散信号的频谱分析尤为重要,因为大部分现实世界中的信号都是以离散形式存在的。

本实验旨在使用Matlab对离散信号进行频谱分析,并探索不同信号的频谱特性。

一、实验准备在进行实验之前,我们需要准备一些基本的工具和知识。

首先,我们需要安装Matlab软件,并熟悉其基本操作。

其次,我们需要了解离散信号的基本概念和性质,例如采样率、离散傅里叶变换等。

最后,我们需要准备一些实验数据,可以是自己生成的信号,也可以是从外部设备中获取的信号。

二、实验步骤1.生成离散信号首先,我们可以使用Matlab的随机函数生成一个离散信号。

例如,我们可以使用randn函数生成一个均值为0、方差为1的高斯白噪声信号。

代码如下:```matlabN = 1000; % 信号长度x = randn(N, 1); % 生成高斯白噪声信号```2.计算信号的频谱接下来,我们可以使用Matlab的fft函数对信号进行离散傅里叶变换,从而得到信号的频谱。

代码如下:```matlabX = fft(x); % 对信号进行离散傅里叶变换```3.绘制频谱图最后,我们可以使用Matlab的plot函数将信号的频谱绘制出来,以便更直观地观察信号的频谱特性。

代码如下:```matlabf = (0:N-1)*(1/N); % 构建频率轴plot(f, abs(X)); % 绘制频谱图xlabel('Frequency'); % 设置横轴标签ylabel('Magnitude'); % 设置纵轴标签title('Spectrum Analysis'); % 设置图标题```三、实验结果通过以上步骤,我们可以得到离散信号的频谱图。

频谱分析实验报告

频谱分析实验报告

频谱分析实验报告频谱分析实验报告引言:频谱分析是一种用于研究信号频谱特性的方法,广泛应用于通信、音频处理、无线电等领域。

本实验旨在通过实际操作和数据分析,探索频谱分析的原理和应用。

实验设备与步骤:本次实验使用了频谱分析仪、信号发生器和电缆等设备。

具体步骤如下:1. 连接设备:将信号发生器通过电缆连接到频谱分析仪的输入端口。

2. 设置参数:根据实验要求,设置信号发生器的频率、幅度和波形等参数,并将频谱分析仪的参考电平和分辨率带宽调整到合适的范围。

3. 采集数据:启动频谱分析仪,开始采集信号数据。

可以选择连续扫描或单次扫描模式,并设置合适的时间窗口。

4. 数据分析:通过频谱分析仪提供的界面和功能,对采集到的数据进行分析和处理。

可以查看频谱图、功率谱密度图等,了解信号的频谱特性。

实验结果与讨论:通过实验操作和数据分析,我们得到了以下结果和结论。

1. 频谱分析原理:频谱分析仪通过将信号转换为频谱图来展示信号在不同频率上的能量分布情况。

频谱图通常以频率为横轴,幅度或功率为纵轴,可以直观地反映信号的频谱特性。

2. 不同信号的频谱特性:我们使用了不同频率和波形的信号进行实验,观察其在频谱图上的表现。

正弦波信号在频谱图上呈现出单个峰值,峰值的位置对应信号的频率。

方波信号在频谱图上则呈现出多个峰值,峰值的位置和幅度反映了方波的频率和谐波分量。

3. 噪声信号的频谱特性:我们还进行了噪声信号的频谱分析。

噪声信号在频谱图上呈现为连续的能量分布,没有明显的峰值。

通过分析噪声信号的功率谱密度图,可以了解噪声信号在不同频率上的能量分布情况。

4. 频谱分析的应用:频谱分析在通信和音频处理领域有着广泛的应用。

通过频谱分析,可以帮助我们了解信号的频率成分、噪声特性以及信号处理器件的性能等。

在无线电领域,频谱分析还可用于频段分配、干扰监测等工作。

结论:通过本次实验,我们深入了解了频谱分析的原理和应用。

频谱分析可以帮助我们理解信号的频谱特性,对于信号处理和通信系统设计具有重要意义。

MATLAB离散信号的产生和频谱分析实验报告

MATLAB离散信号的产生和频谱分析实验报告

MATLAB离散信号的产⽣和频谱分析实验报告实验⼀离散信号的产⽣和频谱分析⼀、实验⽬的仿真掌握采样定理。

学会⽤FFT 进⾏数字谱分析。

掌握FFT 进⾏数字谱分析的计算机编程实现⽅法。

培养学⽣综合分析、解决问题的能⼒,加深对课堂内容的理解。

⼆、实验要求掌握采样定理和数字谱分析⽅法;编制FFT 程序;完成正弦信号、线性调频信号等模拟⽔声信号的数字谱分析;三、实验内容单频脉冲(CWP )为)2e xp()()(0t f j T t rec t t s π=。

式中,)(Ttrect 是矩形包络,T 是脉冲持续时间,0f 是中⼼频率。

矩形包络线性调频脉冲信号(LFM )为)]21(2exp[)()(20Mt t f j Ttrect t s +=π。

式中,M 是线性调频指数。

瞬时频率Mt f +0是时间的线性函数,频率调制宽度为MT B =。

设参数为kHz f 200=,ms T 50=,kHz B 10=,采样频率kHz f s 100=。

1.编程产⽣单频脉冲、矩形包络线性调频脉冲。

2.编程实现这些信号的谱分析。

3.编程实现快速傅⽴叶变换的逆变换。

四、实验原理1、采样定理所谓抽样,就是对连续信号隔⼀段时间T 抽取⼀个瞬时幅度值。

在进⾏模拟/数字信号的转换过程中,当采样频率fs ⼤于信号中最⾼频率f 的2倍时(fs>=2f),采样之后的数字信号完整地保留了原始信号中的信息,⼀般实际应⽤中保证采样频率为信号最⾼频率的5~10倍;采样定理⼜称奈奎斯特定理。

2、离散傅⾥叶变换(FFT )长度为N 的序列()x n 的离散傅⽴叶变换()X k 为:10()(),0,....,1N nkN n X k x n W k N -===-∑N 点的DFT 可以分解为两个N/2点的DFT ,每个N/2点的DFT ⼜可以分解为两个N/4点的DFT 。

依此类推,当N 为2的整数次幂时(2MN =),由于每分解⼀次降低⼀阶幂次,所以通过M 次的分解,最后全部成为⼀系列2点DFT 运算。

离散信号频域分析心得体会

离散信号频域分析心得体会

离散信号频域分析心得体会离散信号频域分析是数字信号处理中的重要内容,通过将信号从时域转换到频域,可以获得信号在频率上的特性,进而对信号进行分析和处理。

在学习离散信号频域分析的过程中,我积累了以下一些心得体会。

首先,离散信号频域分析的核心是傅里叶变换。

傅里叶变换是一种将信号从时域转换到频域的数学工具,可以将一个信号分解成不同频率的频谱分量。

在学习傅里叶变换的时候,我深刻体会到信号的频域表示与时域表示是等价的,它们只是从不同的角度描述了信号的特性。

傅里叶变换可以将一个信号从时域转换到频域,它本质上是将信号分解成一系列复指数函数的和,每一个复指数函数对应一个频率的分量。

通过对频谱的分析,可以获取信号在不同频率上的能量分布情况,了解信号的频率组成,并根据不同的应用目的选择合适的频率范围进行分析和处理。

其次,离散信号的频域分析主要涉及到离散傅里叶变换(DFT)和快速傅里叶变换(FFT)等算法。

DFT是一种将离散时间域信号转换为离散频率域信号的变换,通常需要进行大量的计算,计算复杂度较高。

为了提高计算效率,人们提出了FFT算法,能够在O(NlogN)的时间复杂度内完成频域分析。

在学习FFT算法的过程中,我深刻感受到它的高效性和重要性。

FFT算法通过将原始信号的长度分解成多个小问题,并利用变位运算和加减运算进行计算,从而大大提高了计算速度。

掌握了FFT算法,可以极大地简化频域分析的计算过程,提高信号处理的效率。

此外,离散信号频域分析的应用十分广泛。

在通信领域,频域分析可以用于调制解调、信道估计、频谱分析等;在图像处理领域,频域分析可以用于图像压缩、滤波、增强等;在音频处理领域,频域分析可以用于音频合成、音乐分析等。

通过对信号进行频域分析,可以提取信号的关键特征,为后续的处理和应用打下基础。

在实际应用中,我们可以根据具体场景和需求,选择合适的频域分析方法和算法,对信号进行处理和优化。

最后,学习离散信号频域分析需要具备一定的数学基础和计算机编程能力。

信号分析实验报告总结

信号分析实验报告总结

一、实验目的本次信号分析实验旨在通过MATLAB软件,对连续信号进行采样、重建、频谱分析等操作,加深对信号处理基本理论和方法的理解,掌握信号的时域、频域分析技巧,并学会使用MATLAB进行信号处理实验。

二、实验内容1. 连续信号采样与重建(1)实验内容:以正弦信号为例,验证采样定理,分析采样频率与信号恢复质量的关系。

(2)实验步骤:a. 定义连续信号y(t) = sin(2π×24t) + sin(2π×20t),包含12Hz和20Hz 两个等幅度分量。

b. 分别以1/4、1/2、1/3Nyquist频率对信号进行采样,其中Nyquist频率为最高信号频率的两倍。

c. 利用MATLAB的插值函数对采样信号进行重建,比较不同采样频率下的信号恢复质量。

(3)实验结果与分析:a. 当采样频率低于Nyquist频率时,重建信号出现失真,频率混叠现象明显。

b. 当采样频率等于Nyquist频率时,重建信号基本恢复原信号,失真较小。

c. 当采样频率高于Nyquist频率时,重建信号质量进一步提高,失真更小。

2. 离散信号频谱分析(1)实验内容:分析不同加窗长度对信号频谱的影响,理解频率分辨率的概念。

(2)实验步骤:a. 定义离散信号x[n],计算其频谱。

b. 分别采用16、60、120点窗口进行信号截取,计算其频谱。

c. 比较不同窗口长度对频谱的影响。

(3)实验结果与分析:a. 随着窗口长度的增加,频谱分辨率降低,频率混叠现象减弱。

b. 频率分辨率与窗口长度成反比,窗口长度越长,频率分辨率越高。

3. 调频信号分析(1)实验内容:搭建调频通信系统,分析调频信号,验证调频解调原理。

(2)实验步骤:a. 搭建调频通信系统,包括信号源、调制器、解调器等模块。

b. 产生调频信号,并对其进行解调。

c. 分析调频信号的频谱,验证调频解调原理。

(3)实验结果与分析:a. 调频信号具有线性调频特性,其频谱为连续谱。

《信号与系统》离散信号的频域分析实验报告

《信号与系统》离散信号的频域分析实验报告

信息科学与工程学院《信号与系统》实验报告四专业班级电信 09-班姓名学号实验时间 2011 年月日指导教师陈华丽成绩实验名称离散信号的频域分析实验目的1. 掌握离散信号谱分析的方法:序列的傅里叶变换、离散傅里叶级数、离散傅里叶变换、快速傅里叶变换,进一步理解这些变换之间的关系;2. 掌握序列的傅里叶变换、离散傅里叶级数、离散傅里叶变换、快速傅里叶变换的Matlab实现;3. 熟悉FFT算法原理和FFT子程序的应用。

4. 学习用FFT对连续信号和离散信号进行谱分析的方法,了解可能出现的分析误差及其原因,以便在实际中正确应用FFT。

实验内容1.对连续信号)()sin()(0tutAetx taΩα-=(128.444=A,πα250=,πΩ250=)进行理想采样,可得采样序列50)()sin()()(0≤≤==-nnunTAenTxnx nTaΩα。

图1给出了)(txa的幅频特性曲线,由此图可以确定对)(txa采用的采样频率。

分别取采样频率为1KHz、300Hz和200Hz,画出所得采样序列)(nx的幅频特性)(ωj eX。

并观察是否存在频谱混叠。

图1 连续信号)()sin()(0tutAetx taΩα-=2. 设)52.0cos()48.0cos()(nnnxππ+=(1)取)(nx(100≤≤n)时,求)(nx的FFT变换)(kX,并绘出其幅度曲线。

(2)将(1)中的)(nx以补零方式加长到200≤≤n,求)(kX并绘出其幅度曲线。

(3)取)(nx(1000≤≤n),求)(kX并绘出其幅度曲线。

(4)观察上述三种情况下,)(nx的幅度曲线是否一致?为什么?3. (1)编制信号产生子程序,产生以下典型信号供谱分析用。

11,03()8,470,n nx n n nn+≤≤⎧⎪=-≤≤⎨⎪⎩其它2()cos4x n nπ=3()sin8x n nπ=4()cos8cos16cos20x t t t tπππ=++10.80.60.40.20100200300400500xa(jf)f /Hz(2)对信号1()x n ,2()x n ,3()x n 进行两次谱分析,FFT 的变换区间N 分别取8和16,观察两次的结果是否一致?为什么?(3)连续信号4()x n 的采样频率64s f Hz =,16,32,64N =。

用DFT(FFT)对时域离散信号进行频谱分析

用DFT(FFT)对时域离散信号进行频谱分析

电子信息工程系实验报告课程名称:数字信号处理 实验时间:2013-05-15实验项目名称:用DFT (FFT )对时域离散信号进行频谱分析班级:通信102 姓名:申太友 学号:010705244实 验 目 的:1. 进一步加深DFT 算法原理和基本性质的理解(因为FFT 只是DFT 的一种快速算法, 所以FFT 的运算结果必然满足DFT 的基本性质)。

2.掌握DFT (FFT )对时域离散信号进行频谱分析的方法。

实 验 环 境:计算机 、MATLAB 软件 原理说明:1、DFT 和FFT 原理:长度为N 的序列x(n)的离散傅立叶变换为X(k):∑-=-==101,....,0,)()(N n nkN N k W n x k X首先按n 的奇偶把时间序列x(n)分解为两个长为N/2点的序列:x n x r 12()()= r=0,1,...,N/2-1x n x r 221()()=+ r=0,1,...,N/2-1则x(n)的DFT 为X(k)X k x n W x r W x r W x r W x r W W n N Nknr N N krr N Nk r r N N krr N N kr Nk()()()()()()//()//==++=+=-=-=-+=-=-∑∑∑∑∑1212021210211202122221由于WeeW NkrjNKr jN kr N kr 222222===--ππ//,故有:X k x r WWx r W X k W X k k N r N N kr N kr N N krN k()()()()(),,...,/////=+=+=-=-=-∑∑21122122120121其中X 1(k) 和X 2(k)分别为x 1(n) 和x 2(n)的N/2点DFT 。

因为X 1(k) 和X 2(k)均是以N/2为周期的,且W W N k N Nk+=-/2。

因此可将N 点DFT X(k)分解为下面的形式:X k X k W X k N k()()()=+12k=0,1,...,N/2-1k=0,1,...,N/2-1成 绩:指导教师(签名):通过上面的推导可以看出,N 点的DFT 可以分解为两个N/2点的DFT ,每个N/2点的DFT 又可以分解为两个N/4点的DFT 。

数字信号处理实验一报告

数字信号处理实验一报告

实验一:用FFT 对信号作频谱分析1.实验目的学习用FFT 对连续信号和时域离散信号进行谱分析的方法,了解可能出现的分析 误差及其原因,以便正确应用FFT 。

2. 实验原理用FFT 对信号作频谱分析是学习数字信号处理的重要内容。

经常需要进行谱分析的信号是模拟信号和时域离散信号。

对信号进行谱分析的重要问题是频谱分辨率D 和分析误差。

频谱分辨率直接和FFT 的变换区间N 有关,因为FFT 能够实现的频率分辨率是N /2π,因此要求D N ≤/2π。

可以根据此式选择FFT 的变换区间N 。

误差主要来自于用FFT 作频谱分析时,得到的是离散谱,而信号(周期信号除外)是连续谱,只有当N 较大时离散谱的包络才能逼近于连续谱,因此N 要适当选择大一些。

周期信号的频谱是离散谱,只有用整数倍周期的长度作FFT ,得到的离散谱才能代表周期信号的频谱。

如果不知道信号周期,可以尽量选择信号的观察时间长一些。

对模拟信号进行谱分析时,首先要按照采样定理将其变成时域离散信号。

如果是模拟周期信号,也应该选取整数倍周期的长度,经过采样后形成周期序列,按照周期序列的谱分析进行。

3.实验步骤及内容(1)对以下序列进行谱分析。

⎪⎩⎪⎨⎧≤≤-≤≤-=⎪⎩⎪⎨⎧≤≤-≤≤+==其它nn n n n n x 其它nn n n n n x n R n x ,074,330,4)(,074,830,1)()()(3241选择FFT 的变换区间N 为8和16 两种情况进行频谱分析。

分别打印其幅频特性曲线。

并进行对比、分析和讨论。

(2)对以下周期序列进行谱分析。

4()cos4x n n π=5()cos(/4)cos(/8)x n n n ππ=+选择FFT 的变换区间N 为8和16 两种情况分别对以上序列进行频谱分析。

分别打印其幅频特性曲线。

并进行对比、分析和讨论。

(3)对模拟周期信号进行谱分析6()cos8cos16cos20x t t t t πππ=++选择 采样频率Hz F s 64=,变换区间N=16,32,64 三种情况进行谱分析。

信号_频域分析实验报告(3篇)

信号_频域分析实验报告(3篇)

第1篇一、实验目的1. 理解信号的频域分析方法及其在信号处理中的应用。

2. 掌握傅里叶变换的基本原理和计算方法。

3. 学习使用MATLAB进行信号的频域分析。

4. 分析不同信号在频域中的特性,理解频域分析在实际问题中的应用。

二、实验原理频域分析是信号处理中一种重要的分析方法,它将信号从时域转换到频域,从而揭示信号的频率结构。

傅里叶变换是频域分析的核心工具,它可以将任何信号分解为不同频率的正弦波和余弦波的线性组合。

三、实验内容及步骤1. 信号生成与傅里叶变换- 使用MATLAB生成一个简单的正弦波信号,频率为50Hz,采样频率为1000Hz。

- 对生成的正弦波信号进行傅里叶变换,得到其频谱图。

2. 频谱分析- 分析正弦波信号的频谱图,观察其频率成分和幅度分布。

- 改变正弦波信号的频率和幅度,观察频谱图的变化,验证傅里叶变换的性质。

3. 信号叠加- 将两个不同频率的正弦波信号叠加,生成一个复合信号。

- 对复合信号进行傅里叶变换,分析其频谱图,验证频谱叠加原理。

4. 窗函数- 使用不同类型的窗函数(如矩形窗、汉宁窗、汉明窗等)对信号进行截取,观察窗函数对频谱的影响。

- 分析不同窗函数的频率分辨率和旁瓣抑制能力。

5. 信号滤波- 设计一个低通滤波器,对信号进行滤波处理,观察滤波器对信号频谱的影响。

- 分析滤波器对信号时域和频域特性的影响。

6. MATLAB工具箱- 使用MATLAB信号处理工具箱中的函数,如`fft`、`ifft`、`filter`等,进行信号的频域分析。

- 学习MATLAB工具箱中的函数调用方法和参数设置。

四、实验结果与分析1. 正弦波信号的频谱分析实验结果显示,正弦波信号的频谱图只有一个峰值,位于50Hz处,说明信号只包含一个频率成分。

2. 信号叠加的频谱分析实验结果显示,复合信号的频谱图包含两个峰值,分别对应两个正弦波信号的频率。

验证了频谱叠加原理。

3. 窗函数对频谱的影响实验结果显示,不同类型的窗函数对频谱的影响不同。

北邮数字信号处理MATLAB实验报告

北邮数字信号处理MATLAB实验报告

数字信号处理软件实验——MatLab仿真实验报告学院:电子工程学院班级:2013211202姓名:学号:实验一:数字信号的 FFT 分析1、实验内容及要求(1) 离散信号的频谱分析:设信号 此信号的0.3pi 和 0.302pi 两根谱线相距很近,谱线 0.45pi 的幅度很小,请选择合适的序列长度 N 和窗函数,用 DFT 分析其频谱,要求得到清楚的三根谱线。

(2) DTMF 信号频谱分析用计算机声卡采用一段通信系统中电话双音多频(DTMF )拨号数字 0~9的数据,采用快速傅立叶变换(FFT )分析这10个号码DTMF 拨号时的频谱。

2、实验目的通过本次实验,应该掌握:(a) 用傅立叶变换进行信号分析时基本参数的选择。

(b) 经过离散时间傅立叶变换(DTFT )和有限长度离散傅立叶变换(DFT ) 后信号频谱上的区别,前者 DTFT 时间域是离散信号,频率域还是连续的,而 DFT 在两个域中都是离散的。

(c) 离散傅立叶变换的基本原理、特性,以及经典的快速算法(基2时间抽选法),体会快速算法的效率。

(d) 获得一个高密度频谱和高分辨率频谱的概念和方法,建立频率分辨率和时间分辨率的概念,为将来进一步进行时频分析(例如小波)的学习和研究打下基础。

(e) 建立 DFT 从整体上可看成是由窄带相邻滤波器组成的滤波器组的概念,此概念的一个典型应用是数字音频压缩中的分析滤波器,例如 DVD AC3 和MPEG Audio 。

3.设计思路及实验步骤1)离散信号的频谱分析:该信号中要求能够清楚的观察到三根谱线。

由于频率0.3pi 和0.302pi 间隔非常小,要清楚的显示,必须采取足够大小的N ,使得分辨率足够好,至少到0.001单位级,而频率0.45pi 的幅度很小,要清楚的观察到它的谱线,必须采取幅度够大的窗函数,使得它的频谱幅度变大一些。

同时还要注意频谱泄漏的问题,三个正弦函数的周期(2pi/w )分别为20,40,1000,所以为了避免产生频谱泄漏(k=w/w0为整数),采样点数N 必须为1000的整数倍。

实验一 时域离散信号与系统分析(实验报告)-2015

实验一 时域离散信号与系统分析(实验报告)-2015

《数字信号处理》 实验报告学院 专业 电子信息工程 班级 姓名 学号 时间实验一 时域离散信号与系统分析一、实验目的1、熟悉连续信号经理想采样后的频谱变化关系,加深对时域采样定理的理解。

2、熟悉时域离散系统的时域特性,利用卷积方法观察分析系统的时域特性。

3、学会离散信号及系统响应的频域分析。

4、学会时域离散信号的MATLAB 编程和绘图。

5、学会利用MATLAB 进行时域离散系统的频率特性分析。

二、实验内容1、序列的产生(用Matlab 编程实现下列序列(数组),并用stem 语句绘出杆图。

(要求标注横轴、纵轴和标题)(1). 单位脉冲序列x(n)=δ(n ) (2). 矩形序列x(n)=R N (n) ,N=10nδ(n )nR N (n )图1.1 单位脉冲序列 图1.2 矩形序列(3) . x(n)=e (0.8+3j )n ; n 取0-15。

4n|x (n )|201321111053 陈闽焜n<x (n )/R a d图1.3 复指数序列的 模 图1.4 复指数序列的 相角(4). x(n)=3cos (0. 25πn +0.3π)+2sin (0.125πn +0.2π) n 取0-15。

ny (n )图1.4 复合正弦实数序列(5). 把第(3)小题的复指数x(n)周期化,周期20点,延拓3个周期。

4m|y (m )|201321111053 陈闽焜图1.5 第(3)的20点周期延拓杆图(6). 假设x(n)= [1,-3,2,3,-2 ], 编程产生以下序列并绘出杆图:y(n) y(n)= x(n)-2x(n+1)+x(n-1)+x(n-3);5201321111053 陈闽焜图1.6 y(n)序列杆图(7)、编一个用户自定义matlab 函数,名为stepshf (n0,n1,n2)实现单位阶跃序列u[n -n1]。

其中位移点数n1在起点n0和终点n2之间任意可选。

自选3个入口参数产生杆图。

实验一 利用DFT分析信号频谱

实验一 利用DFT分析信号频谱

实验一 利用DFT 分析信号频谱一、实验目的1、加深对DFT 原理的理解。

2、应用DFT 分析信号的频谱。

3、深刻理解利用DFT 分析信号频谱的原理,分析实现过程中出现的现象及解决方法。

二、实验设备与环境计算机、MATLAB 软件环境。

三、实验基础理论1、DFT 与DTFT 的关系DFT 实际上就是DTFT 在单位圆上以k N j e zπ2=的抽样,数学公式表示为: ∑-=-===102)(|)()(2N n k N j e z e n x z X k X k N j ππ , 1,..1,0-=N k(2—1)2、利用DFT 求DTFT方法一:利用下列公式: )2()()(10∑-==-=N k k j Nk k X e X πωφω (2—2) 其中21)2/sin()2/sin()(--=N j e N N ωωωωφ为内插函数方法二:实际在MATLAB 计算中,上述插值运算不见得就是最好的办法。

由于DFT 就是DTFT 的取样值,其相邻两个频率样本点的间距为Nπ2,所以如果我们增加数据的长度N,使得到的 DFT 谱线就更加精细,其包络就越接近DTFT 的结果,这样就可以利用DFT 计算DTFT 。

如果没有更多的数据,可以通过补零来增加数据长度。

3、利用DFT 分析连续时间函数利用DFT 分析连续时间函数就是,主要有两个处理:①抽样,②截断对连续时间信号)(t x a 一时间T 进行抽样,截取长度为M,则nT j M n a t j a a e nT x T dt e t x j X Ω--=+∞∞-Ω-∑⎰==Ω)()()(10(2—3)再进行频域抽样可得 )()(|)(1022k TX enT x T j X M M n n N k j a NT k a ==Ω∑-=-=Ωππ(2—4)因此,利用DFT 分析连续时间信号的步骤如下:(1)、确定时间间隔,抽样得到离散时间序列)(n x 、(2)、选择合适的窗函数与合适长度M,得到M 点离散序列)()()(n w n x n x M =、(3)、确定频域采样点数N,要求N ≥M 。

matlab 离散信号频谱分析实验报告

matlab 离散信号频谱分析实验报告

matlab 离散信号频谱分析实验报告实验目的:本实验旨在通过使用MATLAB软件对离散信号进行频谱分析,探究信号的频谱特性,并通过实验结果验证频谱分析的有效性和准确性。

实验原理:频谱分析是一种将信号从时域转换到频域的方法,通过分析信号的频谱特性可以了解信号的频率分布情况。

离散信号频谱分析主要基于离散傅里叶变换(DFT)和快速傅里叶变换(FFT)算法。

实验步骤:1. 生成离散信号:使用MATLAB中的函数生成一个离散信号,可以选择正弦信号、方波信号或其他类型的信号。

2. 绘制时域波形:将生成的离散信号在时域上进行绘制,观察信号的波形特征。

3. 进行频谱分析:使用MATLAB中的DFT或FFT函数对离散信号进行频谱分析,得到信号的频谱图像。

4. 绘制频谱图像:将频谱分析得到的结果进行绘制,观察信号在频域上的频率分布情况。

5. 分析频谱特性:根据频谱图像,分析信号的主要频率成分、频谱密度等特性。

实验结果与分析:通过实验我们选择了一个正弦信号作为实验对象,其频率为100Hz,幅值为1。

首先,我们绘制了该正弦信号的时域波形,观察到信号呈现出周期性的振荡特征。

接下来,我们使用MATLAB中的FFT函数对该离散信号进行频谱分析。

得到的频谱图像显示,信号的主要频率成分为100Hz,且幅值为1。

此外,频谱图像还显示了信号在其他频率上的幅值衰减情况,表明信号在频域上存在多个频率成分。

根据频谱图像,我们可以进一步分析信号的频谱特性。

首先,信号的主要频率成分为100Hz,这意味着信号的主要周期为0.01秒。

其次,频谱图像显示了信号在其他频率上的幅值衰减情况,说明信号在频域上存在多个频率成分,这可能与信号的采样率和信号源本身的特性有关。

实验结论:通过本次实验,我们成功地使用MATLAB对离散信号进行了频谱分析,并得到了信号的频谱图像。

实验结果表明,频谱分析是一种有效的信号分析方法,可以揭示信号的频率分布情况和频谱特性。

离散信号与系统的频谱分析实验报告

离散信号与系统的频谱分析实验报告

实验二 离散信号与系统的频谱分析一、实验目的1.掌握离散傅里叶变换(DFT )及快速傅里叶变换(FFT )的计算机实现方法。

2.检验序列DFT 的性质。

3.掌握利用DFT (FFT )计算序列线性卷积的方法。

4.学习用DFT 对连续信号和时域离散信号进行谱分析的方法,了解可能出现的分析误差,以便在实际中正确应用DFT 。

5.了解采样频率对谱分析的影响。

6.了解利用FFT 进行语音信号分析的方法。

二、实验设备1.计算机2.Matlab 软件7.0以上版本。

三、实验内容1.对不同序列进行离散傅里叶变换并进行分析;DFT 共轭对称性质的应用(通过1次N 点FFT 计算2个N 点实序列的DFT )。

2.线性卷积及循环卷积的关系,以及利用DFT (FFT )进行线性卷积的方法。

3.比较计算序列的DFT 和FFT 的运算时间。

4.利用FFT 实现带噪信号检测。

5.利用FFT 计算信号频谱及功率谱。

6.扩展部分主要是关于离散系统采样频率、时域持续时间、谱分辨率等参数之间的关系,频谱的内插恢复,对语音信号进行简单分析。

四、实验原理1.序列的离散傅里叶变换及性质离散傅里叶变换的定义:10, )()]([)(102-≤≤==∑-=-N k en x n x DFT k X N n nk Nj π离散傅里叶变换的性质:(1)DFT 的共轭对称性。

若)()()(n x n x n x op ep +=,[])()(n x DFT k X =,则:)()]([k X n x DFT R ep =, )()]([k jX n x DFT I op =。

(2)实序列DFT 的性质。

若)(n x 为实序列,则其离散傅里叶变换)(k X 为共轭对称,即10),()(*-≤≤-=N k k N X k X 。

(3)实偶序列DFT 的性质。

若)(n x 为实偶序列,则其离散傅里叶变换)(k X 为实偶对称,即10),()(-≤≤-=N k k N X k X 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验一离散信号的频谱分析报告
班级
姓名
学号
实验一离散信号的频谱分析报告
1 掌握采样频率的概念
2 掌握信号频谱分析方法;
3 掌握在计算机中绘制信号频谱图的方法。

①采样频率为1000Hz,信号频率为30Hz的正弦信号y1(n)
对其进行FFT变换
②采样频率为1000Hz,信号频率为120Hz的正弦信号y2(n)
对其进行FFT变换
③采样频率为1000Hz, 30Hz的正弦信号和120Hz的混合信号y3(n)。

对其进行FFT变换
语音信号波形
附录程序:
fs=1000;%设定采样频率
N=1024;
n=0:N-1;
t=n/fs;
f0=30;%设定正弦信号频率
%生成正弦信号
x=sin(2*pi*f0*t);
figure(1);
subplot(3,2,1);
plot(t,x);%作正弦信号的时域波形xlabel('t');
ylabel('y');
title('正弦信号30HZ时域波形'); grid;
%进行FFT变换并做频谱图
y=fft(x,N);%进行fft变换
mag=abs(y);%求幅值
f=(0:length(y)-1)'*fs/length(y);%进行对应的频率转换figure(1);
subplot(3,2,2);
plot(f,mag);%做频谱图
axis([0,100,0,500]);
xlabel('频率(Hz)');
ylabel('幅值');
title('正弦信号30HZ幅频谱图N=1024');
grid;
%120HZ
f1=120;
x=sin(2*pi*f1*t);
figure(1);
subplot(3,2,3);
plot(t,x);%作正弦信号的时域波形
xlabel('t');
ylabel('y');
title('正弦信号120HZ时域波形');
grid;
%进行FFT变换并做频谱图
y=fft(x,N);%进行fft变换
mag=abs(y);%求幅值
f=(0:length(y)-1)'*fs/length(y);%进行对应的频率转换
figure(1);
subplot(3,2,4);
plot(f,mag);%做频谱图
axis([0,200,0,600]);
xlabel('频率(Hz)');
ylabel('幅值');
title('正弦信号120HZ幅频谱图N=1024');
grid;
%混合
x=sin(2*pi*f0*t)+sin(2*pi*f1*t);
figure(1);
subplot(3,2,5);
plot(t,x);%作正弦信号的时域波形
xlabel('t');
ylabel('y');
title('正弦信号混合时域波形');
grid;
%进行FFT变换并做频谱图
y=fft(x,N);%进行fft变换
mag=abs(y);%求幅值
f=(0:length(y)-1)'*fs/length(y);%进行对应的频率转换figure(1);
subplot(3,2,6);
plot(f,mag);%做频谱图
axis([0,200,0,600]);
xlabel('频率(Hz)');
ylabel('幅值');
title('正弦信号混合幅频谱图N=1024');
grid;
fs=11025;
[y,fs,bits]=wavread('C:\Users\Administrator\Desktop\2015103 0133647.WAV');
sound(y,fs,bits);
Y=fft(y);
figure(2);
subplot(2,3,1);
plot(y);
title('原始信号波形');
subplot(2,3,2);
plot(Y);
title('原始信号频谱');
subplot(2,3,3);
plot(abs(Y));
title('原始信号幅值');
subplot(234);
plot(angle(Y));
title('原始信号相位');
c=fft(y,44100);%进行fft变换
mag=abs(c);%求幅值
f=(0:length(c)-1)'*fs/length(c);%进行对应的频率转换 subplot(2,3,5);
plot(f,mag);%做频谱图
axis([0,40000,0,100]);
xlabel('频率(Hz)');
ylabel('幅值');
title('频谱图N=44100');
grid;。

相关文档
最新文档