中考数学专题复习新定义题型(学生版)

合集下载

九年级数学新定义(含答案)

九年级数学新定义(含答案)

新定义
一、单选题(共4道,每道25分)
1.已知抛物线(a,b,c均不为0)的顶点为M,与轴的交点为N,我们称以N为顶点,对称轴是y轴且过点M的抛物线为抛物线的衍生抛物线,直线MN为抛物线的衍生直线.
(1)若一条抛物线的衍生抛物线和衍生直线分别是和,则这条抛物线的解析式为( )
A. B.
C. D.
答案:C
解题思路:
试题难度:三颗星知识点:二次函数与几何综合
2.(上接第1题)(2)如图,设抛物线的顶点为M,与轴的交点为N,将它的衍生直线MN先绕点N旋转到与轴平行,再沿轴向上平移1个单位得直线,P是直线上的动点,若△POM为直角三角形,则点P的坐标为( )
A.
B.
C.
D.
答案:D
解题思路:
试题难度:三颗星知识点:直角三角形的存在性
3.如图,顶点M在y轴上的抛物线与直线相交于A,B两点,且点A在轴上,点B的横坐标为2.
(1)抛物线的解析式为( )
A. B.
C. D.
答案:A
解题思路:
试题难度:三颗星知识点:二次函数的表达式
4.(上接第3题)(2)我们把抛物线与直线y=x的交点称为抛物线的“不动点”.若将(1)中抛物线平移,使其顶点为(m,2m),当m满足( )时,平移后的抛物线总有不动点.
A. B.
C. D.
答案:D
解题思路:
试题难度:三颗星知识点:二次函数图象的平移
学生做题后建议通过以下问题总结反思问题1:什么是新定义问题?
问题2:新定义问题的一般思路是什么?
问题3:解决新定义问题时常考虑什么?。

中考数学复习《新定义新概念问题》

中考数学复习《新定义新概念问题》

中考数学复习新定义问题所谓“新定义”型问题,主要是指在问题中定义了中学数学中没有学过的一些概念、新运算、新符号,要求学生读懂题意并结合已有知识、能力进行理解,根据新定义进行运算、推理、迁移的一种题型.“新定义”型问题成为近年来中考数学压轴题的新亮点.在复习中应重视学生应用新的知识解决问题的能力.解决“新定义型专题”关键要把握两点:一是掌握问题原型的特点及其解决问题的思想方法;二是根据问题情境的变化,通过认真思考,合理进行思想方法的迁移.类型1 新法则、新运算型例题:(2017甘肃天水)定义一种新的运算:x*y=,如:3*1==,则(2*3)*2= 2 .【考点】1G:有理数的混合运算.【分析】原式利用题中的新定义计算即可得到结果.【解答】解:根据题中的新定义得:(2*3)*2=()*2=4*2==2,故答案为:2同步训练:定义:有一组邻边相等,并且它们的夹角是直角的凸四边形叫做等腰直角四边形.(1)如图1,等腰直角四边形ABCD,AB=BC,∠ABC=90°,①若AB=CD=1,AB∥CD,求对角线BD的长.②若AC⊥BD,求证:AD=CD,(2)如图2,在矩形ABCD中,AB=5,BC=9,点P是对角线BD上一点,且BP=2PD,过点P 作直线分别交边AD,BC于点E,F,使四边形ABFE是等腰直角四边形,求AE的长.【考点】LO:四边形综合题.【分析】(1)①只要证明四边形ABCD是正方形即可解决问题;②只要证明△ABD≌△CBD,即可解决问题;(2)若EF⊥BC,则AE≠EF,BF≠EF,推出四边形ABFE表示等腰直角四边形,不符合条件.若EF与BC不垂直,①当AE=AB时,如图2中,此时四边形ABFE是等腰直角四边形,②当BF=AB 时,如图3中,此时四边形ABFE是等腰直角四边形,分别求解即可;【解答】解:(1)①∵AB=AC=1,AB∥CD,∴S四边形ABCD是平行四边形,∵AB=BC,∴四边形ABCD是菱形,∵∠ABC=90°,∴四边形ABCD是正方形,∴BD=AC==.(2)如图1中,连接AC、BD.∵AB=BC,AC⊥BD,∴∠ABD=∠CBD,∵BD=BD,∴△ABD≌△CBD,∴AD=CD.(2)若EF⊥BC,则AE≠EF,BF≠EF,∴四边形ABFE表示等腰直角四边形,不符合条件.若EF与BC不垂直,①当AE=AB时,如图2中,此时四边形ABFE是等腰直角四边形,∴AE=AB=5.②当BF=AB时,如图3中,此时四边形ABFE是等腰直角四边形,∴BF=AB=5,∵DE∥BF,∴DE:BF=PD:PB=1:2,∴DE=2.5,∴AE=9﹣2.5=6.5,综上所述,满足条件的AE的长为5或6.5.解题方法点析此类问题在于读懂新定义,然后仿照范例进行运算,细心研读定义,细致观察范例是解题的关键.类型2 新定义几何概念型例题:(2017日照)阅读材料:在平面直角坐标系xOy中,点P(x0,y)到直线Ax+By+C=0的距离公式为:d=.例如:求点P(0,0)到直线4x+3y﹣3=0的距离.解:由直线4x+3y﹣3=0知,A=4,B=3,C=﹣3,∴点P(0,0)到直线4x+3y﹣3=0的距离为d==.根据以上材料,解决下列问题:问题1:点P1(3,4)到直线y=﹣x+的距离为 4 ;问题2:已知:⊙C是以点C(2,1)为圆心,1为半径的圆,⊙C与直线y=﹣x+b相切,求实数b的值;问题3:如图,设点P为问题2中⊙C上的任意一点,点A,B为直线3x+4y+5=0上的两点,且AB=2,请求出S△ABP的最大值和最小值.【考点】FI:一次函数综合题.【分析】(1)根据点到直线的距离公式就是即可;(2)根据点到直线的距离公式,列出方程即可解决问题.(3)求出圆心C到直线3x+4y+5=0的距离,求出⊙C上点P到直线3x+4y+5=0的距离的最大值以及最小值即可解决问题.【解答】解:(1)点P1(3,4)到直线3x+4y﹣5=0的距离d==4,故答案为4.(2)∵⊙C与直线y=﹣x+b相切,⊙C的半径为1,∴C(2,1)到直线3x+4y﹣b=0的距离d=1,∴=1,解得b=5或15.(3)点C(2,1)到直线3x+4y+5=0的距离d==3,∴⊙C上点P到直线3x+4y+5=0的距离的最大值为4,最小值为2,∴S△ABP 的最大值=×2×4=4,S△ABP的最小值=×2×2=2.同步训练:(2017湖北随州)在平面直角坐标系中,我们定义直线y=ax﹣a为抛物线y=ax2+bx+c(a、b、c为常数,a≠0)的“梦想直线”;有一个顶点在抛物线上,另有一个顶点在y轴上的三角形为其“梦想三角形”.已知抛物线y=﹣x2﹣x+2与其“梦想直线”交于A、B两点(点A在点B的左侧),与x轴负半轴交于点C.(1)填空:该抛物线的“梦想直线”的解析式为y=﹣x+,点A的坐标为(﹣2,2),点B的坐标为(1,0);(2)如图,点M为线段CB上一动点,将△ACM以AM所在直线为对称轴翻折,点C的对称点为N,若△AMN为该抛物线的“梦想三角形”,求点N的坐标;(3)当点E在抛物线的对称轴上运动时,在该抛物线的“梦想直线”上,是否存在点F,使得以点A、C、E、F为顶点的四边形为平行四边形?若存在,请直接写出点E、F的坐标;若不存在,请说明理由.【考点】HF:二次函数综合题.【分析】(1)由梦想直线的定义可求得其解析式,联立梦想直线与抛物线解析式可求得A、B 的坐标;(2)过A作AD⊥y轴于点D,则可知AN=AC,结合A点坐标,则可求得ON的长,可求得N 点坐标;(3)当AC为平行四边形的一边时,过F作对称轴的垂线FH,过A作AK⊥x轴于点K,可证△EFH≌△ACK,可求得DF的长,则可求得F点的横坐标,从而可求得F点坐标,由HE的长可求得E点坐标;当AC为平行四边形的对角线时,设E(﹣1,t),由A、C的坐标可表示出AC 中点,从而可表示出F点的坐标,代入直线AB的解析式可求得t的值,可求得E、F的坐标.【解答】解:(1)∵抛物线y=﹣x2﹣x+2,∴其梦想直线的解析式为y=﹣x+,联立梦想直线与抛物线解析式可得,解得或,∴A(﹣2,2),B(1,0),故答案为:y=﹣x+;(﹣2,2);(1,0);(2)如图1,过A作AD⊥y轴于点D,在y=﹣x2﹣x+2中,令y=0可求得x=﹣3或x=1,∴C(﹣3,0),且A(﹣2,2),∴AC==,由翻折的性质可知AN=AC=,∵△AMN为梦想三角形,∴N点在y轴上,且AD=2,在Rt△AND中,由勾股定理可得DN===3,∵OD=2,∴ON=2﹣3或ON=2+3,∴N点坐标为(0,2﹣3)或(0,2+3);(3)①当AC为平行四边形的边时,如图2,过F作对称轴的垂线FH,过A作AK⊥x轴于点K,则有AC∥EF且AC=EF,∴∠ACK=∠EFH,在△ACK和△EFH中∴△ACK≌△EFH(AAS),∴FH=CK=1,HE=AK=2,∵抛物线对称轴为x=﹣1,∴F点的横坐标为0或﹣2,∵点F在直线AB上,∴当F点横坐标为0时,则F(0,),此时点E在直线AB下方,∴E到y轴的距离为EH﹣OF=2﹣=,即E点纵坐标为﹣,∴E(﹣1,﹣);当F点的横坐标为﹣2时,则F与A重合,不合题意,舍去;②当AC为平行四边形的对角线时,∵C(﹣3,0),且A(﹣2,2),∴线段AC的中点坐标为(﹣2.5,),设E(﹣1,t),F(x,y),则x﹣1=2×(﹣2.5),y+t=2,∴x=﹣4,y=2﹣t,代入直线AB解析式可得2﹣t=﹣×(﹣4)+,解得t=﹣,∴E(﹣1,﹣),F(﹣4,);综上可知存在满足条件的点F,此时E(﹣1,﹣)、F(0,)或E(﹣1,﹣)、F(﹣4,).解题方法点析解决此类问题的关键在于仔细研读几何新概念,将新的几何问题转化为已知的三角形、四边形或圆的问题,从而解决问题.对于几何新概念弄清楚条件和结论是至关重要的.类型3 新内容理解把握例题:(2017湖南岳阳)已知点A在函数y1=﹣(x>0)的图象上,点B在直线y2=kx+1+k(k为常数,且k≥0)上.若A,B两点关于原点对称,则称点A,B为函数y1,y2图象上的一对“友好点”.请问这两个函数图象上的“友好点”对数的情况为()A.有1对或2对 B.只有1对C.只有2对D.有2对或3对【分析】根据“友好点”的定义知,函数y1图象上点A(a,﹣)关于原点的对称点B(a,﹣)一定位于直线y2上,即方程ka2﹣(k+1)a+1=0 有解,整理方程得(a﹣1)(ka﹣1)=0,据此可得答案.【解答】解:设A(a,﹣),由题意知,点A关于原点的对称点B((a,﹣),)在直线y2=kx+1+k上,则=﹣ak+1+k,整理,得:ka2﹣(k+1)a+1=0 ①,即(a﹣1)(ka﹣1)=0,∴a﹣1=0或ka﹣1=0,则a=1或ka﹣1=0,若k=0,则a=1,此时方程①只有1个实数根,即两个函数图象上的“友好点”只有1对;若k≠0,则a=,此时方程①有2个实数根,即两个函数图象上的“友好点”有2对,综上,这两个函数图象上的“友好点”对数情况为1对或2对,故选:A.【点评】本题主要考查直线和双曲线上点的坐标特征及关于原点对称的点的坐标,将“友好点”的定义,根据关于原点对称的点的坐标特征转化为方程的问题求解是解题的关键.同步训练:(2017湖南株洲)如图示,若△ABC内一点P满足∠PAC=∠PBA=∠PCB,则点P为△ABC的布洛卡点.三角形的布洛卡点(Brocard point)是法国数学家和数学教育家克洛尔(A.L.Crelle 1780﹣1855)于1816年首次发现,但他的发现并未被当时的人们所注意,1875年,布洛卡点被一个数学爱好者法国军官布洛卡(Brocard 1845﹣1922)重新发现,并用他的名字命名.问题:已知在等腰直角三角形DEF中,∠EDF=90°,若点Q为△DEF的布洛卡点,DQ=1,则EQ+FQ=()A.5 B.4 C.D.【考点】R2:旋转的性质;JB:平行线的判定与性质;KW:等腰直角三角形.【分析】由△DQF∽△FQE,推出===,由此求出EQ、FQ即可解决问题.【解答】解:如图,在等腰直角三角形△DEF中,∠EDF=90°,DE=DF,∠1=∠2=∠3,∵∠1+∠QEF=∠3+∠DFQ=45°,∴∠QEF=∠DFQ,∵∠2=∠3,∴△DQF∽△FQE,∴===,∵DQ=1,∴FQ=,EQ=2,∴EQ+FQ=2+,故选D专题训练1.(2017深圳)阅读理解:引入新数i,新数i满足分配律,结合律,交换律,已知i2=﹣1,那么(1+i)•(1﹣i)= 2 .【考点】4F:平方差公式;2C:实数的运算.【分析】根据定义即可求出答案.【解答】解:由题意可知:原式=1﹣i2=1﹣(﹣1)=2故答案为:22. (2017浙江湖州)对于任意实数a,b,定义关于“⊗”的一种运算如下:a⊗b=2a﹣b.例如:5⊗2=2×5﹣2=8,(﹣3)⊗4=2×(﹣3)﹣4=﹣10.(1)若3⊗x=﹣2011,求x的值;(2)若x⊗3<5,求x的取值范围.【考点】C6:解一元一次不等式;2C:实数的运算;86:解一元一次方程.【分析】(1)根据新定义列出关于x的方程,解之可得;(2)根据新定义列出关于x的一元一次不等式,解之可得.【解答】解:(1)根据题意,得:2×3﹣x=﹣2011,解得:x=2017;(2)根据题意,得:2x﹣3<5,解得:x<4.3. (2017湖北宜昌)阅读:能够成为直角三角形三条边长的三个正整数a,b,c,称为勾股数.世界上第一次给出勾股数通解公式的是我国古代数学著作《九章算术》,其勾股数组公式为:其中m>n>0,m,n是互质的奇数.应用:当n=1时,求有一边长为5的直角三角形的另外两条边长.【考点】KT:勾股数;KQ:勾股定理.【分析】由n=1,得到a=(m2﹣1)①,b=m②,c=(m2+1)③,根据直角三角形有一边长为5,列方程即可得到结论.【解答】解:当n=1,a=(m2﹣1)①,b=m②,c=(m2+1)③,∵直角三角形有一边长为5,∴Ⅰ、当a=5时,(m2﹣1)=5,解得:m=(舍去),Ⅱ、当b=5时,即m=5,代入①③得,a=12,c=13,Ⅲ、当c=5时,(m2+1)=5,解得:m=±3,∵m>0,∴m=3,代入①②得,a=4,b=3,综上所述,直角三角形的另外两条边长分别为12,13或3,4.4. (2017广西百色)阅读理解:用“十字相乘法”分解因式2x2﹣x﹣3的方法.(1)二次项系数2=1×2;(2)常数项﹣3=﹣1×3=1×(﹣3),验算:“交叉相乘之和”;1×3+2×(﹣1)=1 1×(﹣1)+2×3=5 1×(﹣3)+2×1=﹣1 1×1+2×(﹣3)=﹣5(3)发现第③个“交叉相乘之和”的结果1×(﹣3)+2×1=﹣1,等于一次项系数﹣1.即:(x+1)(2x﹣3)=2x2﹣3x+2x﹣3=2x2﹣x﹣3,则2x2﹣x﹣3=(x+1)(2x﹣3).像这样,通过十字交叉线帮助,把二次三项式分解因式的方法,叫做十字相乘法.仿照以上方法,分解因式:3x2+5x﹣12= (x+3)(3x﹣4).【考点】57:因式分解﹣十字相乘法等.【分析】根据“十字相乘法”分解因式得出3x2+5x﹣12=(x+3)(3x﹣4)即可.【解答】解:3x2+5x﹣12=(x+3)(3x﹣4).故答案为:(x+3)(3x﹣4)5. (2017湖北咸宁)定义:数学活动课上,李老师给出如下定义:如果一个三角形有一边上的中线等于这条边的一半,那么称这个三角形为“智慧三角形”.理解:(1)如图1,已知A、B是⊙O上两点,请在圆上找出满足条件的点C,使△ABC为“智慧三角形”(画出点C的位置,保留作图痕迹);(2)如图2,在正方形ABCD中,E是BC的中点,F是CD上一点,且CF=CD,试判断△AEF 是否为“智慧三角形”,并说明理由;运用:(3)如图3,在平面直角坐标系xOy中,⊙O的半径为1,点Q是直线y=3上的一点,若在⊙O上存在一点P,使得△OPQ为“智慧三角形”,当其面积取得最小值时,直接写出此时点P 的坐标.【考点】MR:圆的综合题.【分析】(1)连结AO并且延长交圆于C1,连结BO并且延长交圆于C2,即可求解;(2)设正方形的边长为4a,表示出DF=CF以及EC、BE的长,然后根据勾股定理列式表示出AF2、EF2、AE2,再根据勾股定理逆定理判定△AEF是直角三角形,由直角三角形的性质可得△AEF为“智慧三角形”;(3)根据“智慧三角形”的定义可得△OPQ为直角三角形,根据题意可得一条直角边为1,当斜边最短时,另一条直角边最短,则面积取得最小值,由垂线段最短可得斜边最短为3,根据勾股定理可求另一条直角边,再根据三角形面积可求斜边的高,即点P的横坐标,再根据勾股定理可求点P的纵坐标,从而求解.【解答】解:(1)如图1所示:(2)△AEF是否为“智慧三角形”,理由如下:设正方形的边长为4a,∵E是DC的中点,∴DE=CE=2a,∵BC:FC=4:1,∴FC=a,BF=4a﹣a=3a,在Rt△ADE中,AE2=(4a)2+(2a)2=20a2,在Rt△ECF中,EF2=(2a)2+a2=5a2,在Rt△ABF中,AF2=(4a)2+(3a)2=25a2,∴AE2+EF2=AF2,∴△AEF是直角三角形,∵斜边AF上的中线等于AF的一半,∴△AEF为“智慧三角形”;(3)如图3所示:由“智慧三角形”的定义可得△OPQ为直角三角形,根据题意可得一条直角边为1,当斜边最短时,另一条直角边最短,则面积取得最小值,由垂线段最短可得斜边最短为3,由勾股定理可得PQ==2,PM=1×2÷3=,由勾股定理可求得OM==,故点P的坐标(﹣,),(,).6.(2017•益阳)在平面直角坐标系中,将一点(横坐标与纵坐标不相等)的横坐标与纵坐标互换后得到的点叫这一点的“互换点”,如(﹣3,5)与(5,﹣3)是一对“互换点”.(1)任意一对“互换点”能否都在一个反比例函数的图象上?为什么?(2)M、N是一对“互换点”,若点M的坐标为(m,n),求直线MN的表达式(用含m、n 的代数式表示);(3)在抛物线y=x2+bx+c的图象上有一对“互换点”A、B,其中点A在反比例函数y=﹣的图象上,直线AB经过点P(,),求此抛物线的表达式.【考点】G6:反比例函数图象上点的坐标特征;FA:待定系数法求一次函数解析式;H8:待定系数法求二次函数解析式.【分析】(1)设这一对“互换点”的坐标为(a,b)和(b,a).①当ab=0时,它们不可能在反比例函数的图象上,②当ab≠0时,由可得,于是得到结论;(2)把M(m,n),N(n,m)代入y=cx+d,即可得到结论;(3)设点A(p,q),则,由直线AB经过点P(,),得到p+q=1,得到q=﹣1或q=2,将这一对“互换点”代入y=x2+bx+c得,于是得到结论.【解答】解:(1)不一定,设这一对“互换点”的坐标为(a,b)和(b,a).①当ab=0时,它们不可能在反比例函数的图象上,②当ab≠0时,由可得,即(a,b)和(b,a)都在反比例函数(k≠0)的图象上;(2)由M(m,n)得N(n,m),设直线MN的表达式为y=cx+d(c≠0).则有解得,∴直线MN的表达式为y=﹣x+m+n;(3)设点A(p,q),则,∵直线AB经过点P(,),由(2)得,∴p+q=1,∴,解并检验得:p=2或p=﹣1,∴q=﹣1或q=2,∴这一对“互换点”是(2,﹣1)和(﹣1,2),将这一对“互换点”代入y=x2+bx+c得,∴解得,∴此抛物线的表达式为y=x2﹣2x﹣1.【点评】本题考查了反比例函数图象上点的坐标特征,待定系数法求函数的解析式,正确的理解题意是解题的关键.。

九年级数学中考复习新定义专题练习

九年级数学中考复习新定义专题练习

九年级数学中考复习新定义专题练习1.用“☆”定义一种新运算:对于任意有理数a 和b ,规定a ☆b = ab 2 + a .如:1☆3=1×32+1=10.则(-2)☆3的值为 .2.(2019•德州)已知:[x ]表示不超过x 的最大整数.例:[4.8]=4,[﹣0.8]=﹣1.现定义:{x }=x ﹣[x ],例:{1.5}=1.5﹣[1.5]=0.5,则{3.9}+{﹣1.8}﹣{1}= .3. 用“△”定义新运算:对于任意有理数a ,b ,当a ≤b 时,都有2a b a b ∆=;当a >b 时,都有2a b ab ∆=.那么,2△6 = ,2()3-△(3)-= . 4. 如图,在平面内,两条直线l 1,l 2相交于点O ,对于平面内任意一点M ,若p 、q 分别是点M 到直线l 1,l 2的距离,则称(p ,q )为点M 的“距离坐标”.根据上述规定,“距离坐标”是(2,1)的点共有______个.5. 定义:圆中有公共端点的两条弦组成的折线称为圆的一条折弦.阿基米德折弦定理:如图1,AB 和BC 组成圆的折弦,AB BC >,M 是弧ABC 的中点,MF AB ⊥于F ,则AF FB BC =+.如图2,△ABC 中,60ABC ∠=︒,8AB =,6BC =,D 是AB 上一点,1BD =,作DE AB ⊥交△ABC 的外接圆于E ,连接EA ,则EAC ∠=________°6.(2019•枣庄)对于实数a 、b ,定义关于“⊗”的一种运算:a ⊗b =2a +b ,例如3⊗4=2×3+4=10.(1)求4⊗(﹣3)的值;(2)若x ⊗(﹣y )=2,(2y )⊗x =﹣1,求x +y 的值.7. 阅读材料:规定一种新的运算:a c =b ad bc d -.例如:1214-23=-2.34××= (1)按照这个规定,请你计算5624的值.(2)按照这个规定,当5212242=-+-x x 时求x 的值.8. 对于平面直角坐标系xOy 中的点M 和图形G ,若在图形G 上存在一点N ,使M ,N 两点间的距离等于1,则称M 为图形G 的和睦点.(1)当⊙O 的半径为3时,在点P 1(1,0),P 2,1),P 3(72,0),P 4(5,0)中,⊙O 的和睦点是________;(2)若点P (4,3)为⊙O 的和睦点,求⊙O 的半径r 的取值范围;(3)点A 在直线y =﹣1上,将点A 向上平移4个单位长度得到点B ,以AB 为边构造正方形ABCD ,且C ,D 两点都在AB 右侧.已知点E,若线段OE 上的所有点都是正方形ABCD 的和睦点,直接写出点A 的横坐标A x 的取值范围.9. 对于任意四个有理数a ,b ,c ,d ,可以组成两个有理数对(a ,b )与(c ,d ).我们规定:(a ,b )★(c ,d )=bc -ad .例如:(1,2)★(3,4)=2×3-1×4=2.根据上述规定解决下列问题:(1)有理数对(2,-3)★(3,-2)= ;(2)若有理数对(-3,2x -1)★(1,x +1)=7,则x = ;(3)当满足等式(-3,2x -1)★(k ,x +k )=5+2k 的x 是整数时,求整数k 的值.10. 对于任意有理数a ,b ,定义运算:a ⊙b =()1a a b +-,等式右边是通常的加法、减法、乘法运算,例如,2⊙5=2×(2+5)-1=13;(3)-⊙(5)-=-3×(-3-5)-1=23.(1)求(-2)⊙312的值; (2)对于任意有理数m ,n ,请你重新定义一种运算“⊕”,使得5⊕3=20,写出你定义的运算:m ⊕n =(用含m ,n 的式子表示).11. (2019•衢州)定义:在平面直角坐标系中,对于任意两点A (a ,b ),B (c ,d ),若点T (x ,y )满足x =,y =那么称点T 是点A ,B 的融合点.例如:A (﹣1,8),B (4,﹣2),当点T (x ,y )满足x ==1,y ==2时,则点T (1,2)是点A ,B 的融合点.(1)已知点A (﹣1,5),B (7,7),C (2,4),请说明其中一个点是另外两个点的融合点.(2)如图,点D (3,0),点E (t ,2t +3)是直线l 上任意一点,点T (x ,y )是点D ,E 的融合点.①试确定y 与x 的关系式.②若直线ET 交x 轴于点H .当△DTH 为直角三角形时,求点E 的坐标.12. 已知在平面直角坐标系xOy 中的点P 和图形G,给出如下的定义:若在图形G 上存在一点Q ,使得Q P 、之间的距离等于1,则称P 为图形G 的关联点.(1)当圆O 的半径为1时,①点11(,0)2P ,2P,3(0,3)P 中,圆O 的关联点有_____________________. ②直线经过(0,1)点,且与y 轴垂直,点P 在直线上.若P 是圆O 的关联点,求点P 的横坐标x 的取值范围.(2)已知正方形ABCD 的边长为4,中心为原点,正方形各边都与坐标轴垂直.若正方形各边上的点都是某个圆的关联点,求圆的半径r 的取值范围.备用图 备用图参考答案:1. -202. 1.13. 24 -64. 45. 60°6. (1) 5 (2) 137. (1)8 (2)x=18. (1)P2,P3;(2)4≤r≤6(3) -5+√2≤x A≤3 或√2-1≤x A≤19. (1)﹣5 (2)1 (3)k=1,﹣1,﹣2,﹣410. (1)-4(2)答案不唯一,例如:m⊕n=m(n+1)11. (1)x=(﹣1+7)=2,y=(5+7)=4,故点C是点A、B的融合点;(2)①y=2x﹣1;②点E(,6)或(6,15).12. (1)P1 P2(2)-√3≤x≤√3(3)2√2-1≤r≤3。

数列新定义问题(学生版)-【高考新风向】

数列新定义问题(学生版)-【高考新风向】

数列新定义问题新定义数列题是指以学生已有的知识为基础,设计一个陌生的数学情境,或定义一个概念,或规定一种运算,或给出一个规划,通过阅读相关信息,根据题目引入新内容进行解答的一类数列题型.由于新定义数列题背景新颖,构思巧妙,而且能有效地考查学生的迁移能力和思维品质,充分体现“遵循教学大纲,又不拘泥于教学大纲”的特点,所以备受命题专家的青睐解决方案及流程(1)读懂题意,理解研究的对象,理解新定义数列的含义;(2)特殊分析,例如先对n=1,2,3,⋯的情况讨论;(3)通过特殊情况寻找新定义的数列的规律及性质,以及新定义数列与已知数列(如等差与等比数列)的关系,仔细观察,探求规律,注重转化,合理设计解题方案,最后利用等差、等比数列有关知识来求解.题型一递推关系中的新定义1(2022全国乙卷)嫦娥二号卫星在完成探月任务后,继续进行深空探测,成为我国第一颗环绕太阳飞行的人造行星,为研究嫦娥二号绕日周期与地球绕日周期的比值,用到数列b n:b1=1+1α1,b2=1+1α1+1α2,b3=1+1α1+1α2+1α3,⋯,依此类推,其中αk∈N∗(k=1,2,⋯).则()A.b1<b5B.b3<b8C.b6<b2D.b4<b7【跟踪训练】2定义:如果一个数列从第2项起,每一项与它前一项的和都等于同一个常数,那么这个数列就叫做等和数列,这个常数叫做等和数列的公和.设甲:数列a n满足a1=1,a2n+1-a2n=4a n+1-4;乙:数列a n是公差为2的等差数列或公和为2的等和数列,则甲是乙的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件题型二等差数列中新定义3定义“等方差数列”:如果一个数列从第二项起,每一项的平方与它的前一项的平方的差都等于同一个常数,那么这个数列就叫做等方差数列,这个常数叫做该数列的方公差.设数列a n是由正数组成的等方差数列,且方公差为2,a13=5,则数列1a n+a n+1的前n项和Sn=()A.2n+1-12B.2n-1-12C.2n+1-1D.2n-1-1【跟踪训练】4南宋数学家杨辉在《详解九章算术》中提出了高阶等差数列的问题,即一个数列a 本身不是等差数列,但从数列a n 中的第二项开始,每一项与前一项的差构成等差数列b n ,则称数列a n 为一阶等差数列,或者b n 仍旧不是等差数列,但从b n 数列中的第二项开始,每一项与前一项的差构成等差数列c n ,则称数列a n 为二阶等差数列,依次类推,可以得到高阶等差数列.类比高阶等差数列的定义,我们亦可定义高阶等比数列,设数列1,1,2,8,64,⋯⋯是一阶等比数列,则该数列的第10项是()A.210B.215C.221D.236题型三等比数列中的新定义5若数列x n 满足x n +1=x n -f x n f x n,则称数列x n为牛顿数列,若f x =x 2,数列x n 为牛顿数列,且x 1=12,x n ≠0,数列x n 的前n 项和为S n ,则满足S n ≤20232024的最大正整数n 的值为.【跟踪训练】6数列a n 中,S n 是其前n 项的和,若对任意正整数n ,总存在正整数m ,使得S n =a m ,则称数列a n 为“某数列”.现有如下两个命题:①等比数列2n为“某数列”;②对任意的等差数列a n ,总存在两个“某数列”b n 和c n ,使得a n =b n +c n .则下列选项中正确的是()A.①为真命题,②为真命题B.①为真命题,②为假命题C.①为假命题,②为真命题D.①为假命题,②为假命题题型四数列求和中的新定义7定义np 1+p 2+⋯+p n为n 个正数p 1,p 2,⋯p n 的“均倒数”,若已知数列a n 的前n 项的“均倒数”为13n +2,又b n =a n +16,则1b 1b 2+1b 2b 3+⋯+1b 19b 20=()A.19B.911C.920D.1920【跟踪训练】8若数列a n 满足a 1=1,a n +1=3a n +1,若b n =2a n +1n ∈N * ,抽去数列b n 的第3项、第6项、第9项、⋯、第3n 项、⋯,余下的项的顺序不变,构成一个新数列c n ,则数列c n 的前100项的和为.1我国的《洛书》中记载着世界上最古老的一个幻方:将1,2,⋯,9填入3×3的方格内,使三行、三列、对角线的三个数之和都等于15,如图所示.一般地.将连续的正整数1,2,3,⋯,n 2填入n ×n 个方格中,使得每行、每列、每条对角线上的数的和相等,这个正方形叫做n 阶幻方.记n 阶幻方的数的和即方格内的所有数的和为S n ,如图三阶幻方记为S 3=45,那么S 9=()A.3321B.361C.99D.332定义a bc d=ad -bc ,已知数列a n 为等比数列,且a 3=1,a 644a 8=0,则a 7=()A.±2B.2C.±4D.43任取一个正整数,若是奇数,就将该数乘3再加上1;若是偶数,就将该数除以2.反复进行上述两种运算,经过有限次步骤后,必进入循环图1→4→2→1,这就是数学史上著名的“冰霓猜想”(又称“角谷猜想”等).已知数列a n 满足:a 1=3,a n +1=a n2,a n 为偶数3a n+1,a n为奇数 ,则a25=()A.1B.2C.3D.44“提丢斯数列”是由18世纪德国数学家提丢斯给出,具体如下:0,3,6,12,24,48,96,192,⋯,容易发现,从第三项起,每一项是前一项的2倍.将每一项加上4得到一个数列:4,7,10,16,28,52,100,196,⋯,再将每一项除以10得到“提丢斯数列”,0.4,0.7,1.0,1.6,2.8,5.2,10.0,19.6,⋯,则“提丢斯数列”的前50项的和为()A.3×249B.3×250C.248-19710 D.3×249+197105(多选)在无穷数列a n 中,若a p =a q p ,q ∈N * ,总有a p +1=a q +1,此时定义a n 为“阶梯数列”.设a n 为“阶梯数列”,且a 1=a 4=1,a 5=3,a 8a 9=23,则()A.a 7=1B.a 8=2a 4C.S 10=10+33D.a 2021=36(多选)给定数列a n ,定义差分运算:Δa n =a n +1-a n ,Δ2a n =Δa n +1-Δa n ,n ∈N *.若数列a n 满足a n =n 2+n ,数列b n 的首项为1,且Δb n =n +2 ⋅2n -1,n ∈N *,则()A.存在M >0,使得Δa n <M 恒成立B.存在M >0,使得Δ2a n <M 恒成立C.对任意M >0,总存在n ∈N *,使得b n >MD.对任意M >0,总存在n ∈N *,使得Δ2b nb n>M7在数列a n 中,若存在常数t ,使得a n +1=a 1a 2a 3⋯a n +t n ∈N * 恒成立,则称数列a n 为“H(t )数列”若数列a n 为“H (t )数列”,且a 1=2,数列b n 为等差数列,且ni =1a 2i =a n +1+b n -t 则b n =(写出通项公式)8数学家祖冲之曾给出圆周率π的两个近似值:“约率”227与“密率”355113.它们可用“调日法”得到:称小于3.1415926的近似值为弱率,大于3.1415927的近似值为强率.由于31<π<41,取3为弱率,4为强率,计算得a 1=3+41+1=72,故a 1为强率,与上一次的弱率3计算得a 2=3+71+2=103,故a 2为强率,继续计算,⋯.若某次得到的近似值为强率,与上一次的弱率继续计算得到新的近似值;若某次得到的近似值为弱率,与上一次的强率继续计算得到新的近似值,依此类推.已知a m =258,求m9已知数列a n为等差数列a1=25, 为“二阶等差数列”,即当时a n+1-a n=b n n∈N∗,数列b n a3=67,a5=101.(1)求数列b n的通项公式;(2)求数列a n的最大值10设数列a n是 的前n项和为S n,若对任意正整数n,总存在正整数m,使得S n=a m,则称a n “H数列”;(1)若数列a n的前n项和S n=2n(n∈N∗),判断数列a n是否是“H数列”?若是,给出证明;若不是,说明理由;(2)设数列a n为“H数列”的充要条件是a n=0;是常数列,证明:a n(3)设a n是等差数列,其首项a1=1,公差d<0,若a n是“H数列”,求d的值;11已知d为非零常数,a n>0,若对∀n∈N*,a2n+1-a2n=d,则称数列a n为D数列.(1)证明:D数列是递增数列,但不是等比数列;(2)设b n=a n+1-a n,若a n为D数列,证明:b n<d4n-3;(3)若a n为D数列,证明:∃n∈N*,使得ni=11a i>2024.。

中考数学专题复习新定义问题

中考数学专题复习新定义问题

中考数学专题复习新定义问题学校:___________姓名:___________班级:___________考号:___________ 评卷人 得分一、解答题1.在平面直角坐标系xOy 中,O 的半径为1,对于点A 和线段BC ,给出如下定义:若将线段BC 绕点A 旋转可以得到O 的弦B C ''(,B C ''分别是,B C 的对应点),则称线段BC 是O 的以点A 为中心的“关联线段”.(1)如图,点112233,,,,,,A B C B C B C 的横、纵坐标都是整数.在线段112233,,B C B C B C 中,O 的以点A 为中心的“关联线段”是______________;(2)ABC 是边长为1的等边三角形,点()0,A t ,其中0t ≠.若BC 是O 的以点A 为中心的“关联线段”,求t 的值;(3)在ABC 中,1,2AB AC ==.若BC 是O 的以点A 为中心的“关联线段”,直接写出OA 的最小值和最大值,以及相应的BC 长.2.在平面直角坐标系xOy 中,⊙O 的半径为1,A ,B 为⊙O 外两点,AB=1.给出如下定义:平移线段AB ,得到⊙O 的弦A B ''(,A B ''分别为点A ,B 的对应点),线段AA '长度的最小值称为线段AB 到⊙O 的“平移距离”.(1)如图,平移线段AB 到⊙O 的长度为1的弦12PP 和34P P ,则这两条弦的位置关系是 ;在点1234,,,P P P P 中,连接点A 与点 的线段的长度等于线段AB 到⊙O 的“平移距离”;(2)若点A ,B 都在直线323y x =+上,记线段AB 到⊙O 的“平移距离”为1d ,求1d 的最小值;(3)若点A 的坐标为32,2⎛⎫⎪⎝⎭,记线段AB 到⊙O 的“平移距离”为2d ,直接写出2d 的取值范围.3.在⊙ABC 中,D ,E 分别是ABC 两边的中点,如果DE 上的所有点都在⊙ABC 的内部或边上,则称DE 为⊙ABC 的中内弧.例如,下图中DE 是⊙ABC 的一条中内弧.(1)如图,在Rt⊙ABC 中,22AB AC D E ==,,分别是AB AC ,的中点.画出⊙ABC 的最长的中内弧DE ,并直接写出此时DE 的长;(2)在平面直角坐标系中,已知点()()()()0,20,04,00A B C t t >,,,在⊙ABC 中,D E ,分别是AB AC ,的中点. ⊙若12t =,求⊙ABC 的中内弧DE 所在圆的圆心P 的纵坐标的取值范围; ⊙若在⊙ABC 中存在一条中内弧DE ,使得DE 所在圆的圆心P 在⊙ABC 的内部或边上,直接写出t 的取值范围.4.对于平面直角坐标系xOy 中的图形M ,N ,给出如下定义:P 为图形M 上任意一点,Q 为图形N 上任意一点,如果P ,Q 两点间的距离有最小值,那么称这个最小值为图形M ,N 间的“闭距离”,记作d (M ,N ). 已知点A (2-,6),B (2-,2-),C (6,2-). (1)求d (点O ,ABC );(2)记函数y kx =(11x -≤≤,0k ≠)的图象为图形G ,若d (G ,ABC )1=,直接写出k 的取值范围;(3)T 的圆心为T (t ,0),半径为1.若d (T ,ABC )1=,直接写出t 的取值范围.5.在平面直角坐标系xOy 中的点P 和图形M ,给出如下的定义:若在图形M 存在一点Q ,使得P 、Q 两点间的距离小于或等于1,则称P 为图形M 的关联点. (1)当⊙O 的半径为2时,⊙在点1231135,0,,,,02222P P P ⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ 中,⊙O 的关联点是_______________. ⊙点P 在直线y=-x 上,若P 为⊙O 的关联点,求点P 的横坐标的取值范围. (2)⊙C 的圆心在x 轴上,半径为2,直线y=-x+1与x 轴、y 轴交于点A 、B .若线段AB 上的所有点都是⊙C 的关联点,直接写出圆心C 的横坐标的取值范围.6.在平面直角坐标系xOy 中,点P 的坐标为(1x ,1y ),点Q 的坐标为(2x ,2y ),且12x x ≠,12y y ≠,若P ,Q 为某个矩形的两个顶点,且该矩形的边均与某条坐标轴垂直,则称该矩形为点P ,Q 的“相关矩形”.下图为点P ,Q 的“相关矩形”的示意图.(1)已知点A 的坐标为(1,0).⊙若点B 的坐标为(3,1)求点A ,B 的“相关矩形”的面积;⊙点C 在直线x=3上,若点A ,C 的“相关矩形”为正方形,求直线AC 的表达式; (2)⊙O 的半径为,点M 的坐标为(m ,3).若在⊙O 上存在一点N ,使得点M ,N 的“相关矩形”为正方形,求m 的取值范围.7.在平面直角坐标系xOy中,⊙C的半径为r,P是与圆心C不重合的点,点P关于⊙C的反称点的定义如下:若在射线CP上存在一点P′,满足CP+CP′=2r,则称P′为点P关于⊙C的反称点,如图为点P及其关于⊙C的反称点P′的示意图.特别地,当点P′与圆心C重合时,规定CP′=0.(1)当⊙O的半径为1时.①分别判断点M(2,1),N(32,0),T(1,3)关于⊙O的反称点是否存在?若存在,求其坐标;②点P在直线y=﹣x+2上,若点P关于⊙O的反称点P′存在,且点P′不在x轴上,求点P的横坐标的取值范围;(2)⊙C的圆心在x轴上,半径为1,直线y=﹣33x+23与x轴、y轴分别交于点A,B,若线段AB上存在点P,使得点P关于⊙C的反称点P′在⊙C的内部,求圆心C 的横坐标的取值范围.参考答案:1.(1)22B C ;(2)3t =±;(3)当min 1OA =时,此时3BC =;当max 2OA =时,此时62BC =. 【解析】 【分析】(1)以点A 为圆心,分别以112233,,,,,AB AC AB AC AB AC 为半径画圆,进而观察是否与O 有交点即可;(2)由旋转的性质可得AB C ''△是等边三角形,且B C ''是O 的弦,进而画出图象,则根据等边三角形的性质可进行求解;(3)由BC 是O 的以点A 为中心的“关联线段”,则可知,B C ''都在O 上,且1,2AB AB AC AC ''====,然后由题意可根据图象来进行求解即可.【详解】解:(1)由题意得:通过观察图象可得:线段22B C 能绕点A 旋转90°得到O 的“关联线段”,1133,B C B C 都不能绕点A 进行旋转得到; 故答案为22B C ;(2)由题意可得:当BC 是O 的以点A 为中心的“关联线段”时,则有AB C ''△是等边三角形,且边长也为1,当点A 在y 轴的正半轴上时,如图所示:设B C''与y轴的交点为D,连接OB',易得B C y''⊥轴,⊙12B D DC''==,⊙2232OD OB B D''=-=,2232AD AB B D''=-=,⊙3OA=,⊙3t=;当点A在y轴的正半轴上时,如图所示:同理可得此时的3OA=,⊙t3=-;(3)由BC是O的以点A为中心的“关联线段”,则可知,B C''都在O上,且1,2AB AB AC AC''====,则有当以B'为圆心,1为半径作圆,然后以点A为圆心,2为半径作圆,即可得到点A的运动轨迹,如图所示:由运动轨迹可得当点A也在O上时为最小,最小值为1,此时AC'为O的直径,⊙90AB C''∠=︒,⊙30AC B''∠=︒,⊙cos303BC B C AC'''==⋅︒=;由以上情况可知当点,,A B O'三点共线时,OA的值为最大,最大值为2,如图所示:连接,OC B C''',过点C'作C P OA'⊥于点P,⊙1,2OC AC OA''===,设OP x=,则有2AP x=-,⊙由勾股定理可得:22222C P AC AP OC OP'''=-=-,即()222221x x--=-,解得:14x=,⊙154C P'=,⊙34B P OB OP ''=-=, 在Rt B PC ''中,2262B C B P C P ''''=+=, ⊙62BC =; 综上所述:当min 1OA =时,此时3BC =;当max 2OA =时,此时62BC =.【点睛】本题主要考查旋转的综合、圆的基本性质、三角函数及等边三角形的性质,熟练掌握旋转的性质、圆的基本性质、三角函数及等边三角形的性质是解题的关键. 2.(1)平行,P 3;(2)32;(3)233922d ≤≤【解析】 【分析】(1)根据圆的性质及“平移距离”的定义填空即可;(2)过点O 作OE⊙AB 于点E ,交弦CD 于点F ,分别求出OE 、OF 的长,由1d OE OF =-得到1d 的最小值;(3)线段AB 的位置变换,可以看作是以点A 32,2⎛⎫⎪⎝⎭为圆心,半径为1的圆,只需在⊙O内找到与之平行,且长度为1的弦即可.平移距离2d 的最大值即点A ,B 点的位置,由此得出2d 的取值范围. 【详解】解:(1)平行;P 3;(2)如图,线段AB 在直线323y x =+上,平移之后与圆相交,得到的弦为CD ,CD⊙AB ,过点O 作OE⊙AB 于点E ,交弦CD 于点F ,OF⊙CD ,令0y =,直线与x 轴交点为(-2,0),直线与x 轴夹角为60°,⊙2sin 603OE ︒==. 由垂径定理得:221322OF OC CD ⎛⎫=-= ⎪⎝⎭,⊙132d OE OF =-=;(3)线段AB的位置变换,可以看作是以点A32,2⎛⎫⎪⎝⎭为圆心,半径为1的圆,只需在⊙O 内找到与之平行,且长度为1的弦即可;点A到O的距离为2235222AO⎛⎫=+=⎪⎝⎭.如图,平移距离2d的最小值即点A到⊙O的最小值:53122-=;平移距离2d的最大值线段是下图AB的情况,即当A1,A2关于OA对称,且A1B2⊙A1A2且A1B2=1时.⊙B2A2A1=60°,则⊙OA2A1=30°,⊙OA2=1,⊙OM=12, A2M=32,⊙MA=3,AA2=22339 322⎛⎫+=⎪⎪⎝⎭,⊙2d的取值范围为:233922d≤≤.【点睛】本题考查圆的基本性质及与一次函数的综合运用,熟练掌握圆的基本性质、点与圆的位置关系、直线与圆的位置关系是解题的关键.3.(1)π;(2)⊙P的纵坐标1py≥或12Py≤;⊙02t<≤.【解析】【分析】(1)由三角函数值及等腰直角三角形性质可求得DE=2,最长中内弧即以DE为直径的半圆,DE的长即以DE为直径的圆周长的一半;(2)根据三角形中内弧定义可知,圆心一定在DE的中垂线上,,⊙当12t=时,要注意圆心P在DE上方的中垂线上均符合要求,在DE下方时必须AC与半径PE的夹角⊙AEP满足90°≤⊙AEP<135°;⊙根据题意,t的最大值即圆心P在AC上时求得的t值.【详解】解:(1)如图2,以DE 为直径的半圆弧DE ,就是△ABC 的最长的中内弧DE ,连接DE ,⊙⊙A=90°,AB=AC=22,D ,E 分别是AB ,AC 的中点,22114,42sin sin 4522︒∴=====⨯=AC BC DE BC B , ⊙弧DE 122ππ=⨯=; (2)如图3,由垂径定理可知,圆心一定在线段DE 的垂直平分线上,连接DE ,作DE 垂直平分线FP ,作EG⊙AC 交FP 于G ,⊙当12t =时,C (2,0),⊙D (0,1),E (1,1),1,12⎛⎫ ⎪⎝⎭F , 设1,2P m ⎛⎫ ⎪⎝⎭由三角形中内弧定义可知,圆心线段DE 上方射线FP 上均可,⊙m≥1, ⊙OA=OC ,⊙AOC=90°⊙⊙ACO=45°,⊙DE⊙OC⊙⊙AED=⊙ACO=45°作EG⊙AC 交直线FP 于G ,FG=EF=12根据三角形中内弧的定义可知,圆心在点G 的下方(含点G )直线FP 上时也符合要求; 12∴m 综上所述,12m或m≥1. ⊙图4,设圆心P 在AC 上,⊙P 在DE 中垂线上,⊙P 为AE 中点,作PM⊙OC 于M ,则PM=323,2⎛⎫∴ ⎪⎝⎭P t , ⊙DE⊙BC⊙⊙ADE=⊙AOB=90°,222221(2)41∴=+=+=+AE AD DE t t⊙PD=PE ,⊙⊙AED=⊙PDE⊙⊙AED+⊙DAE=⊙PDE+⊙ADP=90°,⊙⊙DAE=⊙ADP12∴===AP PD PE AE 由三角形中内弧定义知,PD≤PM1322∴AE ,AE≤3,即2413+t ,解得:2t02>∴<t t【点睛】此题是一道圆的综合题,考查了圆的性质,弧长计算,直角三角形性质等,给出了“三角形中内弧”新定义,要求学生能够正确理解新概念,并应用新概念解题.4.(1)2;(2)10k -≤<或01k <≤;(3)4t =-或0422t -≤≤或422t =+.【解析】【详解】分析:(1)画出图形,根据“闭距离”的概念结合图形进行求解即可.(2)分0k <和0k >两种情况,画出示意图,即可解决问题.(3)画出图形,直接写出t的取值范围.详解:(1)如下图所示:⊙B(2-,2-),C(6,2-)⊙D(0,2-)⊙d(O,ABC)2OD==(2)10k-≤<或01k<≤(3)4t=-或0422t≤≤-或422t=+.点睛:属于新定义问题,考查点到直线的距离,圆的切线的性质,认真分析材料,读懂“闭距离”的概念是解题的关键.5.(1)⊙P 2、P 3,⊙-322≤x≤-22或22 ≤x≤322;(2)-2≤x≤1或2≤x≤22 . 【解析】【详解】试题分析:(1)⊙由题意得,P 只需在以O 为圆心,半径为1和3两圆之间即可,由23,OP OP 的值可知23,P P 为⊙O 的关联点;⊙满足条件的P 只需在以O 为圆心,半径为1和3两圆之间即可,所以P 横坐标范围是-322 ≤x≤-22 或22 ≤x≤322; (2).分四种情况讨论即可,当圆过点A , CA=3时;当圆与小圆相切时;当圆过点 A ,AC=1时;当圆过点 B 时,即可得出.试题解析:(1)12315,01,22OP P OP ===, 点1P 与⊙的最小距离为32,点2P 与⊙的最小距离为1,点3P 与⊙的最小距离为12, ⊙⊙的关联点为2P 和3P .⊙根据定义分析,可得当直线y=-x 上的点P 到原点的距离在1到3之间时符合题意; ⊙ 设点P 的坐标为P (x ,-x) ,当OP=1时,由距离公式可得,OP=22(0)(0)1x x -+--= ,解得22x =± ,当OP=3时,由距离公式可得,OP=22(0)(0)3x x -+--= ,229x x +=,解得322x =±, ⊙ 点的横坐标的取值范围为-322 ≤x≤-22 或22 ≤x≤322(2)⊙y=-x+1与轴、轴的交点分别为A、B两点,⊙ 令y=0得,-x+1=0,解得x=1,令得x=0得,y=0,⊙A(1,0) ,B (0,1) ,分析得:如图1,当圆过点A时,此时CA=3,⊙ 点C坐标为,C ( -2,0)如图2,当圆与小圆相切时,切点为D,⊙CD=1 ,又⊙直线AB所在的函数解析式为y=-x+1,⊙ 直线AB与x轴形成的夹角是45°,⊙ RT⊙ACD中,CA=2,⊙ C点坐标为(1-2,0)⊙C点的横坐标的取值范围为;-2≤cx≤1-2,如图3,当圆过点A时,AC=1,C点坐标为(2,0)如图4,当圆过点B 时,连接BC ,此时BC =3,在Rt⊙OCB中,由勾股定理得OC=23122-=,C点坐标为(22,0).⊙ C点的横坐标的取值范围为2≤cx≤22;⊙综上所述点C的横坐标的取值范围为-322≤cx≤-22或22≤cx≤322.【点睛】本题考查了新定义题,涉及到的知识点有切线,同心圆,一次函数等,能正确地理解新定义,正确地进行分类讨论是解题的关键.6.(1)⊙2;⊙1y x =- 或1y x =-+;(2)1≤m≤5 或者51m -≤≤-.【解析】【详解】试题分析:(1)⊙易得S=2;⊙得到C 的坐标可以为(3,2)或者(3,-2),设AC 的表达式为y=kx+b ,将A 、C 分别代入AC 的表达式即可得出结论;(2)若⊙O 上存在点N ,使MN 的相关矩形为正方形,则直线MN 的斜率k=±1,即过M 点作k=±1的直线,与⊙O 相切,求出M 的坐标,即可得出结论.试题解析:(1)⊙S=2×1=2;⊙C 的坐标可以为(3,2)或者(3,-2),设AC 的表达式为y=kx+b ,将A 、C分别代入AC 的表达式得到:0{23k b k b =+=+或0{23k b k b=+-=+,解得:1{1k b ==-或1{1k b =-=,则直线AC 的表达式为1y x =- 或1y x =-+;(2)若⊙O 上存在点N ,使MN 的相关矩形为正方形,则直线MN 的斜率k=±1,即过M 点作k=±1的直线,与⊙O 有交点,即存在N ,当k=-1时,极限位置是直线与⊙O 相切,如图1l 与2l ,直线1l 与⊙O 切于点N ,ON=2,⊙ONM=90°,⊙1l 与y 交于1P (0,-2).1M (1m ,3),⊙13(2)0m --=-,⊙1m =-5,⊙1M (-5,3);同理可得2M (-1,3); 当k=1时,极限位置是直线3l 与4l (与⊙O 相切),可得3M (1,3), 4M (5,3). 因此m 的取值范围为1≤m≤5或者51m -≤≤-.考点:一次函数,函数图象,应用数学知识解决问题的能力.7.(1)①见解析;②0<x <2;(2)圆心C 的横坐标的取值范围是2≤x≤8.【解析】【详解】试题分析:(1) ⊙根据反称点的定义画图得出结论;⊙⊙CP≤2r =2 CP 2≤4, P (x ,-x +2), CP 2=x 2+(-x +2)2=2x 2-4x +4≤,2x 2-4x≤0, x (x -2)≤0,⊙0≤x≤2,把x =2和x=0代入验证即可得出,P (2,0),P′(2,0)不符合题意P (0,2),P′(0,0)不符合题意,⊙0<x <2(2)求出A ,B 的坐标,得出OA 与OB 的比值,从而求出⊙OAB=30°,设C (x ,0) ⊙当C 在OA 上时,作CH⊙AB 于H ,则CH≤CP≤2r =2,⊙AC≤4,得出 C 点横坐标x≥2. (当x =2时,C 点坐标(2,0),H 点的反称点H′(2,0)在圆的内部);⊙当C 在A 点右侧时,C 到线段AB 的距离为AC 长,AC 最大值为2,⊙C 点横坐标x≤8,得出结论.试题解析: (1)解:⊙M (2,1)不存在,3,02N ⎛⎫ ⎪⎝⎭存在,反称点1,02N ⎛⎫' ⎪⎝⎭(1,3)T 存在,反称点T′(0,0)⊙⊙CP≤2r =2 CP 2≤4, P (x ,-x +2), CP 2=x 2+(-x +2)2=2x 2-4x +4≤4 2x 2-4x≤0, x (x -2)≤0,⊙0≤x≤2,当x =2时,P (2,0),P′(2,0)不符合题意当x =0时,P (0,2),P′(0,0)不符合题意,⊙0<x <2 (2)解:由题意得:A (6,0),()0,23B ,⊙3OA OB=,⊙⊙OAB =30°,设C (x ,0)⊙当C 在OA 上时,作CH⊙AB 于H ,则CH≤CP≤2r =2,⊙AC≤4, C 点横坐标x≥2. (当x =2时,C 点坐标(2,0),H 点的反称点H′(2,0)在圆的内部)⊙当C 在A 点右侧时,C 到线段AB 的距离为AC 长,AC 最大值为2,⊙C 点横坐标x≤8 综上所述:圆心C 的横坐标的取值范围2≤x≤8.考点:定义新运算;一次函数的图象和性质;二次函数的图象和性质;圆的有关性质,解直角三角形;答案第15页,共15页。

2023北京中考数学备考微专题——二次函数“新定义”学生版

2023北京中考数学备考微专题——二次函数“新定义”学生版

2023北京中考数学备考微专题——二次函数“新定义”1.在平面直角坐标系xOy中,已知一条开口向上的抛物线,连接此抛物线上关于对称轴对称的两点A,B(A点在B点左侧),以AB为直径作⊙M.取线段AB下方的抛物线部分和线段AB上方的圆弧部分(含端点A,B),组成一个封闭图形,我们称这种图形为“抛物圆”,其中线段AB叫做“横径”,线段AB的垂直平分线被“抛物圆”截得的线段叫做“纵径”,规定“纵径”长度和“横径”长度的比值叫做此“抛物圆”的“扁度”.(1)已知抛物线y=x2.①若点A横坐标为﹣2,则得到的“抛物圆”的“横径”长为,“纵径”长为;②若点A横坐标为t,用t表示此“抛物圆”的“纵径”长,并求出当它的“扁度”为2时t的值;(2)已知抛物线y=x2﹣2ax+a2+a,若点A在直线y=﹣4ax+a上,求“抛物圆”的“扁度”不超过3时a的取值范围.2.在平面直角坐标系xOy中,已知四边形OABC是平行四边形,点A(4,0),∠AOC=60°,点C的纵坐标为,点D是边BC上一点,连接OD,将线段OD绕点O逆时针旋转60°得到线段OE.给出如下定义:如果抛物线y=ax2+bx(a≠0)同时经过点A,E,则称抛物线y=ax2+bx(a≠0)为关于点A,E的“伴随抛物线”.(1)如图1,当点D与点C重合时,点E的坐标为,此时关于点A,E的“伴随抛物线”的解析式为;(2)如图2,当点D在边BC上运动时,连接CE.①当CE取最小值时,求关于点A,E的“伴随抛物线”的解析式;②若关于点A,E的“伴随抛物线”y=ax2+bx(a≠0)存在,直接写出a的取值范围.3.定义:若两个函数的图象关于某一点Q中心对称,则称这两个函数关于点Q互为“对称函数”.例如,函数y=x2与y=﹣x2关于原点O互为“对称函数”.(1)函数y=﹣x+1关于原点O的“对称函数”的函数解析式为,函数y=(x ﹣2)2﹣1关于原点O的“对称函数”的函数解析式为;(2)已知函数y=x2﹣2x与函数G关于点Q(0,1)互为“对称函数”,若函数y=x2﹣2x与函数G的函数值y都随自变量x的增大而减小,求x的取值范围;(3)已知点A(0,1),点B(4,1),点C(2,0),二次函数y=ax2﹣2ax﹣3a(a>0),与函数N关于点C互为“对称函数”,将二次函数y=ax2﹣2ax﹣3a(a>0)与函数N的图象组成的图形记为W,若图形W与线段AB恰有2个公共点,直接写出a的取值范围.4.对某一个函数给出如下定义:如果存在实数M,对于任意的函数值y,都满足y≤M,那么称这个函数是有上界函数.在所有满足条件的M中,其最小值称为这个函数的上确界.例如,图中的函数y=﹣(x﹣3)2+2是有上界函数,其上确界是2.(1)函数①y=x2+2x+1和②y=2x﹣3(x≤2)中是有上界函数的为(只填序号即可),其上确界为;(2)如果函数y=﹣x+2(a≤x≤b,b>a)的上确界是b,且这个函数的最小值不超过2a+1,求a的取值范围;(3)如果函数y=x2﹣2ax+2(1≤x≤5)是以3为上确界的有上界函数,求实数a的值.5.定义:如果抛物线C1的顶点在抛物线C2上,同时,抛物线C2的顶点在抛物线C1上,则称抛物线C1与C2关联.例如,如图,抛物线y=x2的顶点(0,0)在抛物线y=﹣x2+2x 上,抛物线y=﹣x2+2x的顶点(1,1)也在抛物线y=x2上,所以抛物线y=x2与y=﹣x2+2x关联.(1)已知抛物线C1:y=(x+1)2﹣2,分别判断抛物线C2:y=﹣x2+2x+1和抛物线C3:y=2x2+2x+1与抛物线C1是否关联;(2)抛物线M1:的顶点为A,动点P的坐标为(t,2),将抛物线M1绕点P(t,2)旋转180°得到抛物线M2,若抛物线M1与M2关联,求抛物线M2的解析式;(3)抛物线M1:的顶点为A,点B是与M1关联的抛物线的顶点,将线段AB绕点A按顺时针方向旋转90°得到线段AB1,若点B1恰好在y轴上,请直接写出点B1的纵坐标.6.定义:若点P(a,b)在函数y=的图象上,将以a为二次项系数,b为一次项系数构造的二次函数y=ax2+bx称为函数y=的一个“二次派生函数”.(1)点(2,)在函数y=的图象上,则它的“二次派生函数”是;(2)若“二次派生函数”y=ax2+bx经过点(1,2),求a,b的值;(3)若函数y=ax+b是函数y=的一个“一次派生函数”,在平面直角坐标系xOy中,同时画出“一次派生函数”y=ax+b和“二次派生函数”y=ax2+bx的图象,当﹣4<x<1时,“一次派生函数”始终大于“二次派生函数”,求点P的坐标.。

专题 新定义与阅读材料(强化题型)(学生版)

专题 新定义与阅读材料(强化题型)(学生版)

专题03新定义与阅读材料一.选择题(共8小题)1.对于任意有理数a ,b ,现用★定义一种运算:a ★22b a b =-.根据这个定义,代数式()x y +★y 可以化简为()A .2xy x +B .2xy y -C .22x xy +D .2x 2.定义运算(1)a b a b =-⊗,下面给出了关于这种运算的几个结论:①2(2)6-=⊗;②a b b a =⊗⊗;③若0a b +=,则()()2a a b b ab +=⊗⊗;④若0a b =⊗,则0a =.其中正确结论的个数()A .1个B .2个C .3个D .4个3.现定义运算“△”,对于任意有理数a ,b ,都有a △2b a ab b =-+.例如:3△2533551=-⨯+=-,由此可知(1)x -△(2)x +等于()A .25x -B .23x -C .25x -+D .23x -+4.定义一种新运算,n m n m =⊗,则3(2)-⊗的值是()A .9-B .19C .18D .8-5.若定义表示3xyz ,表示2b d a c -,则运算⨯的结果为()A .3412m n -B .256m n -C .4312m n D .3412m n 6.现定义运算“△”,对于任意有理数a 、b ,都有a △2b a ab b =-+,例如:3△2533551=-⨯+=-,由此算出(1)x -△(2)x +等于()A .25x -B .23x -C .25x -+D .23x -+7.现定义一种运算“”,对任意有理数m 、n ,规定:()mn mn m n =-,如1212(12)2=⨯-=-,则()()a b a b +-的值是()A .2222ab b -B .2322a b b -C .2222ab b +D .222ab ab -8.定义新运算“⊕”如下:当a b 时,a b ab b =+⊕,当a b <时,a b ab a =-⊕;若(21)(2)0x x -+=⊕,则(x =)A .1-B .1C .12D .1-或12二.填空题(共6小题)9.定义一种新运算:如果0a ≠,则有a △2||b a ab b -=++-,那么1()2-△2=.10.定义a b cd为二阶行列式,规定它的运算法则为a b ad bc c d=-,则二阶行列式1241x x x x --=--.11.定义*(1)a b a b =+,例如2*32(31)248=⨯+=⨯=.则(1)*(1)x x -+的结果为.12.用“★”定义新运算:对于任意有理数a 、b 都有a ★21b b =+,例如7★244117=+=,那么m ★{m ★(m ★1)}=.13.定义:如果一个正整数能够表示为两个正整数的平方差,那么称这个正整数为“智慧数”.因为22321=-,22532=-,22743=-,22831=-⋯⋯,所以按从小到大的顺序,“智慧数”依次为3,5,7,8⋯⋯,按此规律,则第10个“智慧数”是,第2022个智慧数是.14.在学习教材上的综合与实践《设计自己的运算程序》时,小萱对自己设计的运算给出如下定义:(a ,)()()b ax b bx a =++.(1,2)的化简结果是;若(,)a b 乘以(,)b a 的结果为432960118609x x x x -+-+,则a b +的值为.三.解答题(共16小题)15.新定义一种运算a △(1)b a b =+÷,求2△(3-△4)的值.16.阅读材料,解答问题:任意一个正整数n 都可以进行这样的分解:(n a b a =⋅,b 是正整数,且)a b ,在n 的所有这种分解中,如果a ,b 两因数之差最小,我们就称a b ⋅是n 的最优分解,记()F n a b =-.例如:121216243=⨯=⨯=⨯,1216243->->-,43∴⨯是12的最优分解,即(12)431F =-=.(1)填空:(18)F =;(2)若x 是大于1的正整数,求2()F x x -的值;(3)已知2(15)0F x -=,其中x 是正整数,求x 的值.17.对于任意的有理数a ,b ,c ,d 定义新运算:(a ,)*(b c ,)d ad bc =-.例如:(1,2)*(3,4)14232=⨯-⨯=-.(1)计算:(2,3)*(4-,6)=;(2)若(3a -,1)*(1a a ++,3)0a +=,求a 的值.18.若a 、b 可以代表一个数或一个代数式,定义运算“〇”如下:a 〇22()()b a b a b =+--.(1)化简:(2)m 〇(3)n ;(2)若(2)m +〇2(3)4m m -=,求m .19.阅读下面材料:一个含有多个字母的式子中,如果任意交换两个字母的位置,式子的值都不变,这样的式子就叫做对称式,例如:a b c ++,abc ,22a b +,⋯.含有两个字母a ,b 的对称式的基本对称式是a b +和ab ,像22a b +,(2)(2)a b ++等对称式都可以用a b +,ab 表示,例如:222()2a b a b ab +=+-.请根据以上材料解决下列问题:(1)式子:①22a b ②22a b -③11a b+④22a b ab +中,属于对称式的是.(填序号)(2)已知2()()x a x b x mx n ++=++.①用含m ,n 的式子表示对称式a b +,ab ;②若220m n -=,求对称式3311a b a b+++的最小值.20.先阅读材料:已知:不论x 取何值,代数式(2)25a x x --+的值都相同,求a 的值.解:因为不论x 取何值,代数式(2)25a x x --+的值都相同,所以不妨设0x =,得(2)2525a x x a --+=-+,即无论x 取什么值,代数式(2)25a x x --+的值都等于25a -+;再取1x =,得325a a -+=-+,所以2a =.根据上述材料提供的方法,解决下列问题:已知不论x 取什么值,等式322(2)()x mx x x ax b ++=+++永远成立,求m 的值.21.(1)计算:343316(2)x y x y ÷⋅(2)现定义运算“△”,对于任意有理数a ,b 都有a △2b a ab b =-+,例如:3△2533551=-⨯+=-.求(1)x -△(2)x +的结果.22.对于实数a ,b ,定义运算“◎”如下:a ◎22()()b a b a b =+--.计算:(31)m +◎(35)m -.23.用“☆“定义一种新运算:对于任意有理数a 和b ,规定a ☆22b ab ab a =-+.如:1☆231321314=⨯-⨯⨯+=.(1)求(2)-☆5的值;(2)化简:12a +☆3a +☆(2)-;(3)若2m =☆x ,(1)n x =-☆33-(其中x 为有理数),试比较大小m n (填“>”、“<”或“=”).24.材料准备:如图①的三种纸片,A 种纸片是边长为a 的正方形,B 种纸片是边长为b 的正方形,C 种纸片是长为b ,宽为a 的长方形,并用A 种纸片一张,B 种纸片一张,C 种纸片两张拼成如图②的大正方形.解决问题:(1)观察图②,写出代数式2()a b +,22a b +,ab 之间的等量关系是;(2)根据(1)中的等量关系,解决下面问题:已知4a b +=,2210a b +=,求ab 的值;(3)若有3张边长为a 的正方形纸片,4张边长分别为a ,()b a b <的长方形纸片,5张边长为b 的正方形纸片,现从其中取出若干张纸片(每种纸片至少取一张),拼成一个正方形(不重叠无缝隙),则所拼成的正方形的边长最长可以为.A .a b +B .2a b +C .3a b +D .2a b+并画出所拼的正方形(模仿图②标注长度数据).25.阅读材料后解决问题.小明遇到下面一个问题:计算248(21)(21)(21)(21)++++.经过观察,小明发现如果将原式进行适当的变形后可以出现特殊的结构,进而可以应用平方差公式解决问题,具体解法如下:248(21)(21)(21)(21)++++248(21)(21)(21)(21)(21)=-++++2248(21)(21)(21)(21)=-+++448(21)(21)(21)=-++48(21)(21)=-+1621=-.请你根据小明解决问题的方法,试着解决以下的问题:(1)24816(21)(21)(21)(21)(21)+++++;(2)24816(31)(31)(31)(31)(31)+++++.26.阅读下列材料:已知实数m ,n 满足2222(21)(21)80m n m n +++-=,试求222m n +的值.解:设222m n t +=,则原方程变为(1)(1)80t t +-=,整理得2180t -=,281t =,9t ∴=±,2220m n + ,2229m n ∴+=.上面这种方法称为“换元法”,换元法是数学学习中最常用的一种思想方法,在结构较复杂的数和式的运算中,若把其中某些部分看成一个整体,并用新字母代替(即换元),则能使复杂的问题简单化.根据以上阅读材料内容,解决下列问题,并写出解答过程.(1)已知实数x 、y 满足2222(223)(223)27x y x y +++-=,求22x y +的值;(2)在(1)的条件下,若1xy =,求2()x y +和x y -的值.27.解答题.用△定义一种运算:对于任意有理数a 和b ,规定a △221b ab ab =++,例如:1△2515215136=⨯+⨯⨯+=.根据这个规定,解答下列问题:(1)计算:3△(2)-;(2)若2|4|(1)0m n -++=,化简:x △m n -△x ;(3)解方程:11[3]()222y +-=.28.定义一种幂的新运算:a x ⊕b ab a b x x x +=+,请利用这种运算规则解决下列问题:(1)求22⊕32的值;(2)若23p =,25q =,37q =,求2p ⊕2q 的值;(3)若运算3⊕3t 的结果为108,则t 的值是多少?29.对于任意有理数a 、b 、c 、d ,我们定义运算:a b ad bc c d=-.例如:121423234=⨯-⨯=-.(1)计算:2643-=.(2)按这个规定请你计算:当265x x -=时,求1231x x x x +--的值.30.阅读以下材料:指数与对数之间有密切的联系,它们之间可以互化.对数的定义:一般地,若(0x a N a =>且1)a ≠,那么x 叫做以a 为底N 的对数,记作log a x N =,比如指数式4216=可以转化为对数式24log 16=,对数式52log 25=,可以转化为指数式2525=.我们根据对数的定义可得到对数的一个性质:log ()log log (0a a a M N M N a ⋅=+>,1a ≠,0M >,0)N >,理由如下:设log a M m =,log a N n =,则m M a =,n N a =,m n m n M N a a a +∴⋅=⋅=,由对数的定义得log ()a m n M N +=⋅又log log a a m n M N +=+,log ()log log a a a M N M N ∴⋅=+.请解决以下问题:(1)将指数式4381=转化为对数式;(2)求证:log log log (0aa a MM N a N=->,1a ≠,0M >,0)N >;(3)拓展运用:计算666log 9log 8log 2+-=.。

2024中考数学新定义及探究题专题 《圆与新定义》 (含解析)

2024中考数学新定义及探究题专题 《圆与新定义》 (含解析)

2024中考数学新定义及探究题专题《圆与新定义》(学生版)通用的解题思路:①对于圆中角度之间的等量关系,主要是两个方面:一是同弧或者等弧所对的圆周角相等,同弧或者等弧所对的圆心角是圆周角的两倍,二是圆内接四边形中外角等于内角的对角。

②对于求圆中的线段长度,主要从两个方向着手,首先看是否可以用垂径定理构建直角三角形,用勾股定理来求线段的长度;如果勾股定理行不通,则尝试着去找相似三角形,用相似三角形的对应线段成比例来求线段的长度。

1.(长沙中考)我们不妨约定:对角线互相垂直的凸四边形叫做“十字形”.(1)①在“平行四边形,矩形,菱形,正方形”中,一定是“十字形”的有;②在凸四边形ABCD 中,AB=AD 且CB≠CD ,则该四边形“十字形”.(填“是”或“不是”)(2)如图1,A ,B ,C ,D 是半径为1的⊙O 上按逆时针方向排列的四个动点,AC 与BD 交于点E ,∠ADB ﹣∠CDB=∠ABD ﹣∠CBD ,当6≤AC 2+BD 2≤7时,求OE 的取值范围;(3)如图2,在平面直角坐标系xOy 中,抛物线y=ax 2+bx+c (a ,b ,c 为常数,a >0,c <0)与x 轴交于A ,C 两点(点A 在点C 的左侧),B 是抛物线与y 轴的交点,点D 的坐标为(0,﹣ac ),记“十字形”ABCD 的面积为S ,记△AOB ,△COD ,△AOD ,△BOC 的面积分别为S 1,S 2,S 3,S 4.求同时满足下列三个条件的抛物线的解析式;①S =1S 2S +;②S 3S 4S +“十字形”ABCD 的周长为10.2.(一中)定义:三角形一边上的点将该边分为两条线段,且这两条线段的积等于这个点到该边所对顶点连线的平方,则称这个点为三角形该边的“好点”.如图1,△ABC中,点D是BC边上一点,连结AD,若2AD BD CD=⋅,则称点D是△ABC中BC边上的“好点”.(1)如图2,△ABC的顶点是43⨯网格图的格点,请仅用直尺画出AB边上的一个“好点”.(2)△ABC中,BC=9,4tan3B=,2tan3C=,点D是BC边上的“好点”,求线段BD的长.(3)如图3,△ABC是O的内接三角形,OH⊥AB于点H,连结CH并延长交O于点D.①求证:点H是△BCD中CD边上的“好点”.②若O的半径为9,∠ABD=90°,OH=6,请直接写出CHDH的值.3.(青竹湖)我们不妨定义:有两边之比为1“勤业三角形”.(1)下列各三角形中,一定是“勤业三角形”的是________;(填序号)①等边三角形;②等腰直角三角形;③含30︒角的直角三角形;④含120︒角的等腰三角形.(2)如图1,△ABC是⊙O的内接三角形,AC为直径,D为AB上一点,且2BD AD=,作DE OA⊥,交线段OA于点F,交⊙O于点E,连接BE交AC于点G.试判断△AED和△ABE是否是“勤业三角形”?如果是,请给出证明,并求出EDBE的值;如果不是,请说明理由;(3)如图2,在(2)的条件下,当AF:FG=2:3时,求BED∠的余弦值.4.(华益)约定:若三角形一边上的中线将三角形分得的两个小三角形中有一个三角形与原三角形相似,我们则称原三角形为关于该边的“华益美三角”.例如,如图1,在ABC 中,AD 为边BC 上的中线,ABD △与ABC 相似,那么称ABC 为关于边BC 的“华益美三角”.(1)如图2,在ABC 中,BC =,求证:ABC 为关于边BC 的“华益美三角”;(2)如图3,已知ABC 为关于边BC 的“华益美三角”,点D 是ABC 边BC 的中点,以BD 为直径的⊙O 恰好经过点A .①求证:直线CA 与O 相切;②若O 的直径为,求线段AB 的长;(3)已知ABC 为关于边BC 的“华益美三角”,4BC =,30B ∠=︒,求ABC 的面积.5.(华益)约定:三角形的一条中线将三角形分成两个小三角形,如果其中的一个小三角形与原三角形相似,那么称原三角形为“华益三角”,这条中线叫做原三角形的“华益中线”,这条中线所在的边叫做“华益边”,原三角形与小三角形的相似比叫做“华益比”.(1)如图1,已知CD 是ABC 边AB 上的中线,若ABC ACD ∽,那么ABC 就是“华益三角”,中线CD 是ABC 的“华益中线”,边AB 就是ABC 的“华益边”.爱思考的你们一定能发现:“华益三角”的“华益比”总是一个定值,以图1为例,求出“华益比”;(2)如图2,已知在ABC 中,45,1AB A AC ∠=︒+,求证:ABC 是“华益三角”;(3)如图3,已知ABC 是“华益三角”,边AB 是ABC 的“华益边”,ABC 的外接圆O 的半径是2.①若A ∠是一个锐角,求sin BC A的值;②记2,AB x BC ==,若1x =,求y 的值.6.(北雅)如图1,⊙O 的半径为r (0r >),若点P '在射线OP 上,满足2OP OP r '⋅=,则称点P '是点P 关于⊙O 的“反演点”.(1)若点A 关于⊙O 的“反演点”是本身,那么点A 与⊙O 的位置关系为()A .点A 在⊙O 内B .点A 在⊙O 上C .点A 在⊙O 外(2)如图1,若⊙O 的半径为4,点P '是点P 关于⊙O 的“反演点”,且6PP '=,过点P 的直线与⊙O 相切于点Q ,求PQ 长.(3)如图2,若⊙O 的半径为4,点Q 在⊙O 上,点A 在⊙O 内,且2OA =,点Q '、A '分别是点Q 、A 关于⊙O 的“反演点”,过点A '作A B A O '⊥'且A B A O '=',连接BQ ',Q A '',求12BQ Q A ''+'的最小值.7.(青竹湖)定义:两个角对应互余,且这两个角的夹边对应相等的两个三角形叫做“青竹三角形”.如图1,在△ABC 和DEF 中,若90A E B D ∠+∠=∠+∠=︒,且AB DE =,则△ABC 和DEF 是“青竹三角形”.45BAC ACD ∴∠=∠=︒(1)以下四边形中,一定能被一条对角线分成两个“青竹三角形”的是;(填序号)①平行四边形;②矩形;③菱形;④正方形.(2)如图2,△ABC ,90ACB ∠=︒,AC BC =,点D 是AB 上任意一点(不与点A 、B 重合),设AD 、BD 、CD 的长分别为a 、b 、c ,请写出图中的一对“青竹三角形”,并用含a 、b 的式子来表示2c ;(3)如图3,⊙O 的半径为4,四边形ABCD 是⊙O 的内接四边形,且△ABC 和△ADC 是“青竹三角形”.①求22AD BC +的值;②若BAC ACD ∠=∠,75ABC ∠=︒,求△ABC 和△ADC 的周长之差.8.(中雅)在平面直角坐标系xOy中,给出如下定义:若点P在图形M上,点Q在图形N 上,称线段PQ长度的最小值为图形M,N的“雅近值”,记为d(M,N),特别地,若图形M,N有公共点,规定d(M,N)=0.(1)如图1,⊙O的半径为2,①点A(1,0),B(3,4),则d(A,⊙O)=______,d(B,⊙O)=______.②已知直线l:y=43x+4与⊙O,求直线l与⊙O的雅近值d(l,⊙O).(2)如图2,C为x轴正半轴上的一点,⊙C的半径为1,直线y=ax+b(a≠0)与x轴交于点D,与y轴交于点E.①若a,b,线段DE与⊙C的“雅近值”d(DE,⊙O)<12,请直接写出圆心C的横坐标m的取值范围;②若b=C的横坐标m DE与⊙C的“雅近值”d(DE,⊙C)=0,求a的取值范围.9.(广益)婆罗摩芨多是公元7世纪古印度伟大的数学家,他在三角形、四边形、零和负数的运算规则,二次方程等方面均有建树,他也研究过对角线互相垂直的圆内接四边形,我们把这类对角线互相垂直的圆内接四边形称为“婆氏四边形”.(1)若平行四边形ABCD是“婆氏四边形”,则四边形ABCD是.(填序号)①矩形;②菱形;③正方形(2)如图1,Rt ABC中,∠BAC=90°,以AB为弦的⊙O交AC于D,交BC于E,连接DE、AE、BD,AB=6,3sin5C ,若四边形ABED是“婆氏四边形”,求DE的长.(3)如图2,四边形ABCD为⊙O的内接四边形,连接AC,BD,OA,OB,OC,OD,已知∠BOC+∠AOD=180°.①求证:四边形ABCD是“婆氏四边形”;②当AD+BC=4时,求⊙O半径的最小值.10.(雅礼)圆内各几何要素之间存在一定的数量关系和位置关系,这也是国内外数学家感兴趣的研究对象,其中就有对角线互相垂直的圆内接四边形.我们把这类对角线互相垂直的圆内接四边形称为“雅系四边形”.(1)若平行四边形ABCD 是“雅系四边形”,则四边形ABCD 是______(填序号);①矩形;②菱形;③正方形(2)如图,四边形ABCD 内接于圆,P 为圆内一点,90APD BPC ∠=∠=︒,且ADP PBC ∠=∠,求证:四边形ABCD 为“雅系四边形”;(3)在(2)的条件下,3BD =,且AB =.①当DC =时,求AC 的长度;②当DC 的长度最小时,请直接写出tan ADP ∠的值.11.(青竹湖)定义:有一组对角互补且一组邻边相等的四边形叫做“完美四边形”.(1)如图1,四边形ABCD 是O 的内接四边形,且对角线BD 平分ABC ∠,四边形ABCD _______(填“是”或者“不是”)“完美四边形”,若90ABC ∠=︒,且2AD =,则O 的直径为;(2)如图2,四边形ABCD 中,AC 平分BAD ∠,CE AB ⊥于E ,AD BE AE +=.求证:四边形ABCD 为“完美四边形”;(3)如图3,在“完美四边形”ABCD 中,AB AD =,8AC =,60BAD ∠=︒,对角线AC 与BD 相交于点P ,设BC x =,CP y =,求y 与x 的函数关系式,并求y 的最大值.12.(师大附中)若凸四边形的两条对角线所夹锐角为60︒,我们称这样的凸四边形为“美丽四边形”.(1)①在“平行四边形、梯形、菱形、正方形”中,一定不是“美丽四边形”的有;②若矩形ABCD 是“美丽四边形”,且3AB =,则BC =;(2)如图1,“美丽四边形”ABCD 内接于⊙O ,AC 与BD 相交于点P ,且对角线AC 为直径,15AP PC ==,,求另一条对角线BD 的长;(3)如图2,平面直角坐标系中,已知“美丽四边形”ABCD 的四个顶点()()3020A C -,、,,B在第三象限,D 在第一象限,AC 与BD 交于点O ,且四边形ABCD 的面积为函数2y ax bx c =++(a 、b 、c 为常数,且0a ≠)的图象同时经过这四个顶点,求a 的值.2024中考数学新定义及探究题专题《圆与新定义》(解析版)通用的解题思路:①对于圆中角度之间的等量关系,主要是两个方面:一是同弧或者等弧所对的圆周角相等,同弧或者等弧所对的圆心角是圆周角的两倍,二是圆内接四边形中外角等于内角的对角。

新定义与阅读理解创新型问题(共31题)(学生版)--2023年中考数学真题分项汇编(全国通用)

新定义与阅读理解创新型问题(共31题)(学生版)--2023年中考数学真题分项汇编(全国通用)

新定义与阅读理解创新型问题(31题)一、单选题1(2023·湖北武汉·统考中考真题)皮克定理是格点几何学中的一个重要定理,它揭示了以格点为顶点的多边形的面积S=N+12L-1,其中N,L分别表示这个多边形内部与边界上的格点个数.在平面直角坐标系中,横、纵坐标都是整数的点为格点.已知A0,30,B20,10,O0,0,则△ABO内部的格点个数是()A.266B.270C.271D.2852(2023·湖南张家界·统考中考真题)“莱洛三角形”也称为圆弧三角形,它是工业生产中广泛使用的一种图形.如图,分别以等边△ABC的三个顶点为圆心,以边长为半径画弧,三段圆弧围成的封闭图形是“莱洛三角形”.若等边△ABC的边长为3,则该“莱洛三角形”的周长等于()A.πB.3πC.2πD.2π-33(2023·重庆·统考中考真题)在多项式x-y-z-m-n(其中x>y>z>m>n)中,对相邻的两个字母间任意添加绝对值符号,添加绝对值符号后仍只有减法运算,然后进行去绝对值运算,称此为“绝对操作”.例如:x-y-|z-m|-n=x-y-z+m-n,x-y-z-m-n=x-y-z-m+n,⋯.下列说法:①存在“绝对操作”,使其运算结果与原多项式相等;②不存在“绝对操作”,使其运算结果与原多项式之和为0;③所有的“绝对操作”共有7种不同运算结果.其中正确的个数是()A.0B.1C.2D.34(2023·湖南岳阳·统考中考真题)若一个点的坐标满足k,2k,我们将这样的点定义为“倍值点”.若关于x的二次函数y=t+1x2+t+2x+s(s,t为常数,t≠-1)总有两个不同的倍值点,则s的取值范围是()A.s<-1B.s<0C.0<s<1D.-1<s<05(2023·山东·统考中考真题)若一个点的纵坐标是横坐标的3倍,则称这个点为“三倍点”,如:A(1, 3),B(-2,-6),C(0,0)等都是三倍点”,在-3<x<1的范围内,若二次函数y=-x2-x+c的图象上至少存在一个“三倍点”,则c的取值范围是()A.-14≤c<1 B.-4≤c<-3 C.-14<c<5 D.-4≤c<56(2023·福建·统考中考真题)我国魏晋时期数学家刘徽在《九章算术注》中提到了著名的“割圆术”,即利用圆的内接正多边形逼近圆的方法来近似估算,指出“割之弥细,所失弥少.割之又割,以至于不可割,则与圆周合体,而无所失矣”.“割圆术”孕育了微积分思想,他用这种思想得到了圆周率π的近似值为3.1416.如图,⊙O 的半径为1,运用“割圆术”,以圆内接正六边形面积近似估计⊙O 的面积,可得π的估计值为332,若用圆内接正十二边形作近似估计,可得π的估计值为()A.3B.22C.3D.23二、填空题7(2023·甘肃武威·统考中考真题)如图1,我国是世界上最早制造使用水车的国家.1556年兰州人段续的第一架水车创制成功后,黄河两岸人民纷纷仿制,车水灌田,水渠纵横,沃土繁丰.而今,兰州水车博览园是百里黄河风情线上的标志性景观,是兰州“水车之都”的象征.如图2是水车舀水灌溉示意图,水车轮的辐条(圆的半径)OA 长约为6米,辐条尽头装有刮板,刮板间安装有等距斜挂的长方体形状的水斗,当水流冲动水车轮刮板时,驱使水车徐徐转动,水斗依次舀满河水在点A 处离开水面,逆时针旋转150°上升至轮子上方B 处,斗口开始翻转向下,将水倾入木槽,由木槽导入水渠,进而灌溉,那么水斗从A 处(舀水)转动到B 处(倒水)所经过的路程是米.(结果保留π)8(2023·湖北随州·统考中考真题)某天老师给同学们出了一道趣味数学题:设有编号为1-100的100盏灯,分别对应着编号为1-100的100个开关,灯分为“亮”和“不亮”两种状态,每按一次开关改变一次相对应编号的灯的状态,所有灯的初始状态为“不亮”.现有100个人,第1个人把所有编号是1的整数倍的开关按一次,第2个人把所有编号是2的整数倍的开关按一次,第3个人把所有编号是3的整数倍的开关按一次,⋯⋯,第100个人把所有编号是100的整数倍的开关按一次.问最终状态为“亮”的灯共有多少盏?几位同学对该问题展开了讨论:甲:应分析每个开关被按的次数找出规律:乙:1号开关只被第1个人按了1次,2号开关被第1个人和第2个人共按了2次,3号开关被第1个人和第3个人共按了2次,⋯⋯丙:只有按了奇数次的开关所对应的灯最终是“亮”的状态.根据以上同学的思维过程,可以得出最终状态为“亮”的灯共有盏.9(2023·湖南常德·统考中考真题)沈括的《梦溪笔谈》是中国古代科技史上的杰作,其中收录了计算圆弧长度的“会圆术”,如图.AB是以O 为圆心,OA 为半径的圆弧,C 是弦AB 的中点,D 在AB上,CD ⊥AB .“会圆术”给出AB长l 的近似值s 计算公式:s =AB +CD 2OA,当OA =2,∠AOB =90°时,l -s =.(结果保留一位小数)10(2023·北京·统考中考真题)学校组织学生参加木艺艺术品加工劳动实践活动.已知某木艺艺术品加工完成共需A ,B ,C ,D ,E ,F ,G 七道工序,加工要求如下:①工序C ,D 须在工序A 完成后进行,工序E 须在工序B ,D 都完成后进行,工序F 须在工序C ,D 都完成后进行;②一道工序只能由一名学生完成,此工序完成后该学生才能进行其他工序;③各道工序所需时间如下表所示:工序A B C D E F G 所需时间/分钟99797102在不考虑其他因素的前提下,若由一名学生单独完成此木艺艺术品的加工,则需要分钟;若由两名学生合作完成此木艺艺术品的加工,则最少需要分钟.11(2023·重庆·统考中考真题)对于一个四位自然数M ,若它的千位数字比个位数字多6,百位数字比十位数字多2,则称M 为“天真数”.如:四位数7311,∵7-1=6,3-1=2,∴7311是“天真数”;四位数8421,∵8-1≠6,∴8421不是“天真数”,则最小的“天真数”为;一个“天真数”M 的千位数字为a ,百位数字为b ,十位数字为c ,个位数字为d ,记P M =3a +b +c +d ,Q M =a -5,若P MQ M 能被10整除,则满足条件的M 的最大值为.12(2023·四川乐山·统考中考真题)定义:若x ,y 满足x 2=4y +t ,y 2=4x +t 且x ≠y (t 为常数),则称点M (x ,y )为“和谐点”.(1)若P (3,m )是“和谐点”,则m =.(2)若双曲线y =kx(-3<x <-1)存在“和谐点”,则k 的取值范围为.13(2023·浙江绍兴·统考中考真题)在平面直角坐标系xOy 中,一个图形上的点都在一边平行于x 轴的矩形内部(包括边界),这些矩形中面积最小的矩形称为该图形的关联矩形.例如:如图,函数y =(x -2)20≤x ≤3 的图象(抛物线中的实线部分),它的关联矩形为矩形OABC .若二次函数y =14x 2+bx +c 0≤x ≤3 图象的关联矩形恰好也是矩形OABC ,则b =.14(2023·重庆·统考中考真题)如果一个四位自然数abcd的各数位上的数字互不相等且均不为0,满足ab -bc =cd ,那么称这个四位数为“递减数”.例如:四位数4129,∵41-12=29,∴4129是“递减数”;又如:四位数5324,∵53-32=21≠24,∴5324不是“递减数”.若一个“递减数”为a 312,则这个数为;若一个“递减数”的前三个数字组成的三位数abc 与后三个数字组成的三位数bcd的和能被9整除,则满足条件的数的最大值是.三、解答题15(2023·内蒙古通辽·统考中考真题)阅读材料:材料1:关于x 的一元二次方程ax 2+bx +c =0a ≠0 的两个实数根x 1,x 2和系数a ,b ,c 有如下关系:x 1+x 2=-b a ,x 1x 2=ca.材料2:已知一元二次方程x 2-x -1=0的两个实数根分别为m ,n ,求m 2n +mn 2的值.16(2023·江苏徐州·统考中考真题)两汉文化看徐州,桐桐在徐州博物馆“天工汉玉”展厅参观时了解到;玉壁,玉环为我国的传统玉器,通常为正中带圆孔的扇圆型器物,据《尔雅·释器》记载:“肉倍好,谓之璧;肉好若一,调之环.”如图1,“肉”指边(阴影部分),“好”指孔,其比例关系见图示,以考古发现看,这两种玉器的“肉”与“好”未必符合该比例关系.(1)若图1中两个大圆的直径相等,则璧与环的“肉”的面积之比为;(2)利用圆规与无刻度的直尺,解决下列问题(保留作图痕迹,不写作法).①图2为徐州狮子山楚王墓出土的“雷纹玉环”及其主视图,试判断该件玉器的比例关系是否符合“肉好若一”?②图3表示一件圆形玉坯,若将其加工成玉璧,且比例关系符合“肉倍好”,请画出内孔.17(2023·浙江宁波·统考中考真题)定义:有两个相邻的内角是直角,并且有两条邻边相等的四边形称为邻等四边形,相等两邻边的夹角称为邻等角.(1)如图1,在四边形ABCD中,AD∥BC,∠A=90°,对角线BD平分∠ADC.求证:四边形ABCD为邻等四边形.(2)如图2,在6×5的方格纸中,A,B,C三点均在格点上,若四边形ABCD是邻等四边形,请画出所有符合条件的格点D.(3)如图3,四边形ABCD是邻等四边形,∠DAB=∠ABC=90°,∠BCD为邻等角,连接AC,过B作BE∥AC交DA的延长线于点E.若AC=8,DE=10,求四边形EBCD的周长.18(2023·山西·统考中考真题)阅读与思考:下面是一位同学的数学学习笔记,请仔细阅读并完成相应任务.瓦里尼翁平行四边形我们知道,如图1,在四边形ABCD中,点E,F,G,H分别是边AB,BC,CD,DA的中点,顺次连接E,F, G,H,得到的四边形EFGH是平行四边形.我查阅了许多资料,得知这个平行四边形EFGH被称为瓦里尼翁平行四边形.瓦里尼翁Varingnon,Pierre1654-1722是法国数学家、力学家.瓦里尼翁平行四边形与原四边形关系密切.①当原四边形的对角线满足一定关系时,瓦里尼翁平行四边形可能是菱形、矩形或正方形.②瓦里尼翁平行四边形的周长与原四边形对角线的长度也有一定关系.③瓦里尼翁平行四边形的面积等于原四边形面积的一半.此结论可借助图1证明如下:证明:如图2,连接AC ,分别交EH ,FG 于点P ,Q ,过点D 作DM ⊥AC 于点M ,交HG 于点N .∵H ,G 分别为AD ,CD 的中点,∴HG ∥AC ,HG =12AC .(依据1)∴DN NM =DG GC.∵DG =GC ,∴DN =NM =12DM .∵四边形EFGH 是瓦里尼翁平行四边形,∴HE ∥GF ,即HP ∥GQ .∵HG ∥AC ,即HG ∥PQ ,∴四边形HPQG 是平行四边形.(依据2)∴S ▱HPQG =HG ⋅MN =12HG ⋅DM .∵S △ADC =12AC ⋅DM =HG ⋅DM ,∴S ▱HPQG =12S △ADC .同理,⋯任务:(1)填空:材料中的依据1是指:.依据2是指:.(2)请用刻度尺、三角板等工具,画一个四边形ABCD 及它的瓦里尼翁平行四边形EFGH ,使得四边形EFGH 为矩形;(要求同时画出四边形ABCD 的对角线)(3)在图1中,分别连接AC ,BD 得到图3,请猜想瓦里尼翁平行四边形EFGH 的周长与对角线AC ,BD 长度的关系,并证明你的结论.19(2023·河北·统考中考真题)在平面直角坐标系中,设计了点的两种移动方式:从点(x,y)移动到点(x+2,y+1)称为一次甲方式:从点(x,y)移动到点(x+1,y+2)称为一次乙方式.例、点P从原点O出发连续移动2次;若都按甲方式,最终移动到点M(4,2);若都按乙方式,最终移动到点N(2,4);若按1次甲方式和1次乙方式,最终移动到点E(3,3).(1)设直线l1经过上例中的点M,N,求l1的解析式;并直接写出将l1向上平移9个单位长度得到的直线l2的解析式;(2)点P从原点O出发连续移动10次,每次移动按甲方式或乙方式,最终移动到点Q(x,y).其中,按甲方式移动了m次.①用含m的式子分别表示x,y;②请说明:无论m怎样变化,点Q都在一条确定的直线上.设这条直线为l3,在图中直接画出l3的图象;(3)在(1)和(2)中的直线l1,l2,l3上分别有一个动点A,B,C,横坐标依次为a,b,c,若A,B,C三点始终在一条直线上,直接写出此时a,b,c之间的关系式.20(2023·湖南张家界·统考中考真题)阅读下面材料:将边长分别为a,a+b,a+2b,a+3b的正方形面积分别记为S1,S2,S3,S4.则S2-S1=(a+b)2-a2=(a+b)+a⋅(a+b)-a=(2a+b)⋅b=b+2a b例如:当a=1,b=3时,S2-S1=3+23根据以上材料解答下列问题:(1)当a=1,b=3时,S3-S2=,S4-S3=;(2)当a=1,b=3时,把边长为a+n b的正方形面积记作S n+1,其中n是正整数,从(1)中的计算结果,你能猜出S n+1-S n等于多少吗?并证明你的猜想;(3)当a=1,b=3时,令t1=S2-S1,t2=S3-S2,t3=S4-S3,⋯,t n=S n+1-S n,且T=t1+t2+t3+⋯+t50,求T的值.21(2023·湖北荆州·统考中考真题)如图1,点P是线段AB上与点A,点B不重合的任意一点,在AB 的同侧分别以A,P,B为顶点作∠1=∠2=∠3,其中∠1与∠3的一边分别是射线AB和射线BA,∠2的两边不在直线AB上,我们规定这三个角互为等联角,点P为等联点,线段AB为等联线.(1)如图2,在5×3个方格的纸上,小正方形的顶点为格点、边长均为1,AB为端点在格点的已知线段.请用三种不同连接格点的方法,作出以线段AB为等联线、某格点P为等联点的等联角,并标出等联角,保留作图痕迹;(2)如图3,在Rt△APC中,∠A=90°,AC>AP,延长AP至点B,使AB=AC,作∠A的等联角∠CPD 和∠PBD.将△APC沿PC折叠,使点A落在点M处,得到△MPC,再延长PM交BD的延长线于E,连接CE并延长交PD的延长线于F,连接BF.①确定△PCF的形状,并说明理由;②若AP:PB=1:2,BF=2k,求等联线AB和线段PE的长(用含k的式子表示).22(2023·内蒙古赤峰·统考中考真题)定义:在平面直角坐标系xOy 中,当点N 在图形M 的内部,或在图形M 上,且点N 的横坐标和纵坐标相等时,则称点N 为图形M 的“梦之点”.(1)如图①,矩形ABCD 的顶点坐标分别是A -1,2 ,B -1,-1 ,C 3,-1 ,D 3,2 ,在点M 11,1 ,M 22,2 ,M 33,3 中,是矩形ABCD “梦之点”的是;(2)点G 2,2 是反比例函数y 1=kx图象上的一个“梦之点”,则该函数图象上的另一个“梦之点”H 的坐标是,直线GH 的解析式是y 2=.当y 1>y 2时,x 的取值范围是.(3)如图②,已知点A ,B 是抛物线y =-12x 2+x +92上的“梦之点”,点C 是抛物线的顶点,连接AC ,AB ,BC ,判断△ABC 的形状,并说明理由.23(2023·北京·统考中考真题)在平面直角坐标系xOy 中,⊙O 的半径为1.对于⊙O 的弦AB 和⊙O 外一点C 给出如下定义:若直线CA ,CB 中一条经过点O ,另一条是⊙O 的切线,则称点C 是弦AB 的“关联点”.(1)如图,点A -1,0 ,B 1-22,22,B 222,-22 ①在点C 1-1,1 ,C 2(-2,0),C 30,2 中,弦AB 1的“关联点”是.②若点C 是弦AB 2的“关联点”,直接写出OC 的长;(2)已知点M 0,3 ,N 655,0 .对于线段MN 上一点S ,存在⊙O 的弦PQ ,使得点S 是弦PQ 的“关联点”,记PQ 的长为t ,当点S 在线段MN 上运动时,直接写出t 的取值范围.阅读材料:如图1,四边形ABCD是矩形,△AEF是等腰直角三角形,记∠BAE为α、∠FAD为β,若tanα=1 2,则tanβ=13.证明:设BE=k,∵tanα=12,∴AB=2k,易证△AEB≌△EFC AAS∴EC=2k,CF=k,∴FD=k,AD=3k∴tanβ=DFAD =k3k=13,若α+β=45°时,当tanα=12,则tanβ=13.同理:若α+β=45°时,当tanα=13,则tanβ=12.根据上述材料,完成下列问题:如图2,直线y=3x-9与反比例函数y=mx(x>0)的图象交于点A,与x轴交于点B.将直线AB绕点A顺时针旋转45°后的直线与y轴交于点E,过点A作AM⊥x轴于点M,过点A作AN⊥y轴于点N,已知OA=5.(1)求反比例函数的解析式;(2)直接写出tan∠BAM、tan∠NAE的值;(3)求直线AE的解析式.“刻漏”是我国古代的一种利用水流计时的工具.综合实践小组准备用甲、乙两个透明的竖直放置的容器和一根带节流阀(控制水的流速大小)的软管制作简易计时装置.【实验操作】综合实践小组设计了如下的实验:先在甲容器里加满水,此时水面高度为30cm,开始放水后每隔10min 观察一次甲容器中的水面高度,获得的数据如下表:流水时间t/min010203040水面高度h/cm(观察值)302928.12725.8任务1 分别计算表中每隔10min水面高度观察值的变化量.【建立模型】小组讨论发现:“t=0,h=30”是初始状态下的准确数据,水面高度值的变化不均匀,但可以用一次函数近似地刻画水面高度h与流水时间t的关系.任务2 利用t=0时,h=30;t=10时,h=29这两组数据求水面高度h与流水时间t的函数解析式.【反思优化】经检验,发现有两组表中观察值不满足任务2中求出的函数解析式,存在偏差.小组决定优化函数解析式,减少偏差.通过查阅资料后知道:t为表中数据时,根据解析式求出所对应的函数值,计算这些函数值与对应h的观察值之差的平方和,记为w;w越小,偏差越小.任务3 (1)计算任务2得到的函数解析式的w值.(2)请确定经过0,30的一次函数解析式,使得w的值最小.【设计刻度】得到优化的函数解析式后,综合实践小组决定在甲容器外壁设计刻度,通过刻度直接读取时间.任务4 请你简要写出时间刻度的设计方案.26(2023·山西·统考中考真题)问题情境:“综合与实践”课上,老师提出如下问题:将图1中的矩形纸片沿对角线剪开,得到两个全等的三角形纸片,表示为△ABC和△DFE,其中∠ACB=∠DEF=90°,∠A =∠D.将△ABC和△DFE按图2所示方式摆放,其中点B与点F重合(标记为点B).当∠ABE=∠A 时,延长DE交AC于点G.试判断四边形BCGE的形状,并说明理由.(1)数学思考:谈你解答老师提出的问题;(2)深入探究:老师将图2中的△DBE绕点B逆时针方向旋转,使点E落在△ABC内部,并让同学们提出新的问题.①“善思小组”提出问题:如图3,当∠ABE=∠BAC时,过点A作AM⊥BE交BE的延长线于点M,BM 与AC交于点N.试猜想线段AM和BE的数量关系,并加以证明.请你解答此问题;②“智慧小组”提出问题:如图4,当∠CBE=∠BAC时,过点A作AH⊥DE于点H,若BC=9,AC=12,求AH的长.请你思考此问题,直接写出结果.27(2023·吉林长春·统考中考真题)【感知】如图①,点A 、B 、P 均在⊙O 上,∠AOB =90°,则锐角∠APB 的大小为度.【探究】小明遇到这样一个问题:如图②,⊙O 是等边三角形ABC 的外接圆,点P 在AC上(点P 不与点A 、C 重合),连结PA 、PB 、PC .求证:PB =PA +PC .小明发现,延长PA 至点E ,使AE =PC ,连结BE ,通过证明△PBC ≌△EBA ,可推得PBE 是等边三角形,进而得证.下面是小明的部分证明过程:证明:延长PA 至点E ,使AE =PC ,连结BE ,∵四边形ABCP 是⊙O 的内接四边形,∴∠BAP +∠BCP =180°.∵∠BAP +∠BAE =180°,∴∠BCP =∠BAE .∵△ABC 是等边三角形.∴BA =BC ,∴△PBC ≌△EBA (SAS )请你补全余下的证明过程.【应用】如图③,⊙O 是△ABC 的外接圆,∠ABC =90°,AB =BC ,点P 在⊙O 上,且点P 与点B 在AC的两侧,连结PA 、PB 、PC .若PB =22PA ,则PBPC的值为.28(2023·广西·统考中考真题)【探究与证明】折纸,操作简单,富有数学趣味,我们可以通过折纸开展数学探究,探索数学奥秘.【动手操作】如图1,将矩形纸片ABCD对折,使AD与BC重合,展平纸片,得到折痕EF;折叠纸片,使点B落在EF上,并使折痕经过点A,得到折痕AM,点B,E的对应点分别为B ,E ,展平纸片,连接AB ,BB ,BE .请完成:(1)观察图1中∠1,∠2和∠3,试猜想这三个角的大小关系;(2)证明(1)中的猜想;【类比操作】如图2,N为矩形纸片ABCD的边AD上的一点,连接BN,在AB上取一点P,折叠纸片,使B,P两点重合,展平纸片,得到折痕EF;折叠纸片,使点B,P分别落在EF,BN上,得到折痕l,点B,P 的对应点分别为B ,P ,展平纸片,连接,P B .请完成:(3)证明BB 是∠NBC的一条三等分线.29(2023·河南·统考中考真题)李老师善于通过合适的主题整合教学内容,帮助同学们用整体的、联系的、发展的眼光看问题,形成科学的思维习惯.下面是李老师在“图形的变化”主题下设计的问题,请你解答.(1)观察发现:如图1,在平面直角坐标系中,过点M4,0的直线l∥y轴,作△ABC关于y轴对称的图形△A1B1C1,再分别作△A1B1C1关于x轴和直线l对称的图形△A2B2C2和△A3B3C3,则△A2B2C2可以看作是△ABC绕点O顺时针旋转得到的,旋转角的度数为;△A3B3C3可以看作是△ABC向右平移得到的,平移距离为个单位长度.(2)探究迁移:如图2,▱ABCD中,∠BAD=α0°<α<90°,P为直线AB下方一点,作点P关于直线AB的对称点P1,再分别作点P1关于直线AD和直线CD的对称点P2和P3,连接AP,AP2,请仅就图2的情形解决以下问题:①若∠PAP2=β,请判断β与α的数量关系,并说明理由;②若AD=m,求P,P3两点间的距离.(3)拓展应用:在(2)的条件下,若α=60°,AD=23,∠PAB=15°,连接P2P3.当P2P3与▱ABCD的边平行时,请直接写出AP的长.30(2023·甘肃兰州·统考中考真题)在平面直角坐标系中,给出如下定义:P 为图形M 上任意一点,如果点P 到直线EF 的距离等于图形M 上任意两点距离的最大值时,那么点P 称为直线EF 的“伴随点”.例如:如图1,已知点A 1,2 ,B 3,2 ,P 2,2 在线段AB 上,则点P 是直线EF :x 轴的“伴随点”.(1)如图2,已知点A 1,0 ,B 3,0 ,P 是线段AB 上一点,直线EF 过G -1,0 ,T 0,33两点,当点P 是直线EF 的“伴随点”时,求点P 的坐标;(2)如图3,x 轴上方有一等边三角形ABC ,BC ⊥y 轴,顶点A 在y 轴上且在BC 上方,OC =5,点P 是△ABC 上一点,且点P 是直线EF :x 轴的“伴随点”.当点P 到x 轴的距离最小时,求等边三角形ABC 的边长;(3)如图4,以A 1,0 ,B 2,0 ,C 2,1 为顶点的正方形ABCD 上始终存在点P ,使得点P 是直线EF :y =-x +b 的“伴随点”.请直接写出b 的取值范围.31(2023·云南·统考中考真题)数和形是数学研究客观物体的两个方面,数(代数)侧重研究物体数量方面,具有精确性、形(几何)侧重研究物体形的方面,具有直观性.数和形相互联系,可用数来反映空间形式,也可用形来说明数量关系.数形结合就是把两者结合起来考虑问题,充分利用代数、几何各自的优势,数形互化,共同解决问题.同学们,请你结合所学的数学解决下列问题.在平面直角坐标系中,若点的横坐标、纵坐标都为整数,则称这样的点为整点.设函数y=(4a+2)x2+(9 -6a)x-4a+4(实数a为常数)的图象为图象T.(1)求证:无论a取什么实数,图象T与x轴总有公共点;(2)是否存在整数a,使图象T与x轴的公共点中有整点?若存在,求所有整数a的值;若不存在,请说明理由.。

新定义问题在五种题型中的应用(学生版)

新定义问题在五种题型中的应用(学生版)

新定义问题在五种题型中的应用通用的解题思路:新定义类坐标系内代数综合问题,是在已有的数学知识基础上,从坐标、代数式、或者函数图象以及几何图象出发,给出一个新定义,要求学生理解并应用这个定义来解决相应的数学问题。

它突出考查自主学习能力、数学阅读能力、数学抽象概括能力以及对新定义的实际应用能力。

解答此类问题,首先,认真阅读题目,结合简单示例,理解题干新定义的核心特征,如位置关系、数量关系、变化运动特征等;其次,要根据题意,画出辅助图形,完成文字语言、符号语言和图象语言的互化,让语言互化走在思维的最前端;最后,注意归纳结论,为后续问题做好指向。

此类新定义,名字新,但是内容一般是由我们学过的知识按照一种新的模式进行的组合,这就需要在分析的基础上进行转化。

将新定义转化为熟悉的知识和熟悉的方法,才能有效地解决问题。

题型一:数与式中的新定义问题1(2024•宣化区一模)对于三个实数a,b,c,用M{a,b,c}表示这三个数的平均数,用min{a,b,c}表示这三个数中最小的数.例如:M{1,2,9}=1+2+93=4,min{1,2,-3}=-3,min{3,1,1}=1.请结合上述材料,解决下列问题:(1)min{sin30°,cos60°,tan45°};(2)若M{-2x,x2,3}=2,求x的值.2(2023•章贡区校级模拟)给出如下定义:我们把有序实数对(a,b,c)叫做关于x的二次多项式ax2+bx+c的特征系数对,把关于x的二次多项式ax2+bx+c叫做有序实数对(a,b,c)的特征多项式.(1)关于x的二次多项式3x2+2x-1的特征系数对为 (3-1) ;(2)求有序实数对(1,4,4)的特征多项式与有序实数对(1,-4,4)的特征多项式的乘积;(3)若有序实数对(p,q,-1)的特征多项式与有序实数对(m,n,-2)的特征多项式的乘积的结果为2x4+x3 -10x2-x+2,直接写出(4p-2q-1)(2m-n-1)的值为.3(2022•湘潭县校级模拟)阅读下列材料,并解决相关的问题.定义:如果一个数的平方等于-1,记为i2=-1,这个数i叫做虚数单位.那么形如a+bi(a,b为实数)的数就叫做复数,a叫这个复数的实部,b叫做这个复数的虚部,它的加,减,乘法运算与整式的加,减,乘法运算类似.例如计算:(2+i)+(3-4i)=5-3i.(1)填空:i3= -i ,i4=;(2)计算:①(2+i)(2-i);②(2+i)2.(3)试一试:请利用以前学习的有关知识将1+i1-i化简成a+bi的形式.4(2022•沙坪坝区模拟)如果一个三位自然数M的各个数位上的数字均不为0,且满足百位上的数字等于十位上的数字与个位上的数字之和,则称这个数为“沙磁数”.例如:M=321,∵3=2+1,∴321是“沙磁数”.又如:M =534,∵5≠3+4,∴534不是“沙磁数”.(1)判断853,632是否是“沙磁数”?并说明理由;(2)若M 是一个“沙磁数”,将M 的十位数字放在M 的百位数字之前得到一个四位数A ,在M 的末位之后添加数字1得到一个四位数字B ,若A -B 能被11整除,求出所有满足条件的M .5(2022•渝中区校级模拟)材料1:若一个数各个数位上数字之和能被9整除,则这个数本身也能被9整除;材料2:如果一个各个数位上的数字均不为0的四位正整数m 可以被9整除,且m 的百位上的数字比十位上的数字大2,则称m 为“够二数”;将m 的千位数字与个位数字交换,百位数字与十位数字交换,得到的数为m,F (m )=m -m +1818999,例如:m =8424,∵8+4+2+4=18=9×2,4-2=2,∴8424是“够二数”,F (8424)=8424-4248+1818999=6.(1)判断1314,6536是否是“够二数”,请说明理由,如果是“够二数”,请计算F (m )的值;(2)若一个四位正整数n =abcd 是“够二数”,且cF (n )为5的倍数,请求出所有的“够二数” n 的值.6(2024•兴宁区校级模拟)广西是全国水果大省,是能实现水果自由的地方,更是沙糖桔的第一大产区.2024年伊始,伴随广西11车沙糖桔运往哈尔滨,一场特殊的“投桃报李”引发全国关注,沙糖桔一跃成为春节期间的网红水果.小明爸爸开的水果店准备购进一批沙糖桔,有两个商家可供选择,上初三的小明让爸爸各买一箱,标记为A ,B ,准备运用所学的统计知识帮助爸爸进行选择.小明在A ,B 两箱水果中各随机取10个,逐一测量了它们的直径,测量结果如下(单位cm ):数据统计表抽取序号12345678910A 箱沙糖桔直径 4.5 4.4 4.6 4.5 4.4 4.5 4.6 4.6 4.5 4.4B 箱沙糖桔直径4.44.34.44.74.44.84.54.24.84.5统计量平均数众数中位数A 4.5b4.5Ba4.4c根据题目信息,回答下列问题:(1)a =,b =,c =;(2)由折线图可知,s 2As 2B ;(填“>”“ =”或“<” )(3)爸爸告诉小明沙糖桔一级果外观要求:大小均匀,直径在4cm ~5cm 之间.请帮助小明用合适的统计量评价这两箱沙糖桔是否符合一级果要求,以及选择哪箱沙糖桔更好,并写出依据.7(2023•丰润区二模)一个三位数,若它的十位数字等于个位数字与百位数字的和,那么称这个三位数为“和谐数”.(1)最小的三位“和谐数”是,最大的三位“和谐数”是;(2)若一个“和谐数”的个位数字为a (a ≥0),十位数字为b (b ≥1,b >a 且a 、b 都是自然数),请用含a ,b 的代数式表示该“和谐数”;(3)判断任意一个三位“和谐数”能否被11整除,若能,请说明理由,若不能,请举出反例.8(2022•九龙坡区校级模拟)对于任意一个四位数m ,若满足千位上的数字与个位上的数字之和是百位上的数字与十位上的数字之和的2倍,则称这个四位数m 为“倍和数”、例如:m =6132,∵6+2=2×(1+3),∴6132是倍和数”;m =1374,∵1+4≠2×(3+7),∴1374不是“倍和数”;(1)判断1047和4657是否为“倍和数”?并说明理由.(2)当一个“倍和数” m 千位上的数字与个位上的数字不相等,且千位上的数字与个位上的数字之和等于8时,记这个“倍和数” m 的千位上的数字与个位上的数字之差的绝对值为T (m ),记百位上的数字与十位上的数字之差的绝对值为R (m ),令G (m )=T (m )R (m ),当G (m )能被3整除时,求出满足条件的所有“倍和数”m .9(2022•两江新区模拟)材料一:若一个两位数恰好等于它的各位数字之和的4倍,则称这个两位数为“巧数”.材料二:一个四位数N =abcd 满足各个数位数字都不为0,且它的千位数字与百位数字组成的两位数ab,以及十位数字与个位数字组成的两位数cd 均为“巧数”,则称这个四位数为“双巧数”.若p =ac-bd ,q =ad -bc ,则记F (N )=q -p .(1)请任意写出两个“巧数”,并证明任意一个“巧数”的个位数字是十位数字的2倍;(2)若s ,t 都是“双巧数”,其中s =3010+100x +10y +z ,t =1100m +400+10n +2r ,(1≤x ,z ,n ≤9,1≤y ≤8,1≤m ≤5,1≤r ≤4,且x ,y ,z ,m ,n ,r 均为整数),规定K (s ,t )=F (s )F (t ),当F (s )+F (t )=12时,求K (s ,t )的最大值.10(2022•江津区一模)一个三位数m ,将m 的百位数字和十位数字相加,所得数的个位数字放在m 之后,得到的四位数称为m 的“如虎添翼数”,将m 的“如虎添翼数”的任意一个数位上的数字去掉后可以得到四个新的三位数,把四个新的三位数的和与3的商记为F (m ).例如:m =297,∵2+9=11,∴297的“如虎添翼数” n 是2971,将2971的任意一个数位上的数字去掉后可以得到四个新的三位数:971、271、291、297,则F (n )=971+271+291+2973=610.(1)258的“如虎添翼数”是,F (258)=;(2)证明任意一个十位数字为0的三位数M ,它的“如虎添翼数”与M 的个位数字之和能被11整除;(3)一个三位数s =100x +10y +103(x ≥y 且x +y ≥9),它的“如虎添翼数” t 能被17整除,求F (s )的最大值.11(2022•开州区模拟)一个自然数能分解成A ×B ,其中A ,B 均为两位数,A 的十位数字比B 的十位数字少1,且A ,B 的个位数字之和为10,则称这个自然数为“双十数”.例如:∵4819=61×79,6比7小1,1+9=10,∴4819是“双十数”;又如:∵1496=34×44,3比4小1,4+4≠10,∴1496不是“双十数”.(1)判断357,836是否是“双十数”,并说明理由;(2)自然数N =A ×B 为“双十数”,将两位数A 放在两位数B 的左边,构成一个新的四位数M .例如:4819=61×79,M =6179,若A 与B 的十位数字之和能被5整除,且M 能被7整除,求所有满足条件的自然数N .12(2022•重庆)对于一个各数位上的数字均不为0的三位自然数N ,若N 能被它的各数位上的数字之和m 整除,则称N 是m 的“和倍数”.例如:∵247÷(2+4+7)=247÷13=19,∴247是13的“和倍数”.又如:∵214÷(2+1+4)=214÷7=30⋯⋯4,∴214不是“和倍数”.(1)判断357,441是否是“和倍数”?说明理由;(2)三位数A 是12的“和倍数”,a ,b ,c 分别是数A 其中一个数位上的数字,且a >b >c .在a ,b ,c 中任选两个组成两位数,其中最大的两位数记为F (A ),最小的两位数记为G (A ),若F (A )+G (A )16为整数,求出满足条件的所有数A .13(2022•铜梁区模拟)对于任意一个四位数N ,如果N 满足各个数位上的数字互不相同.且个位数字不为0,N 的百位数字与十位数字之差是千位数字与个位数字之差的2倍,则称这个四位数N 为“双减数”,对于一个“双减数” N =abcd ,将它的千位和百位构成的两位数为ab ,个位和十位构成的两位数为dc,规定:F (N )=ab -dc12.例如:N =7028.因为0-2=2×(7-8),所以7028是一个“双减数”则F (7028)=70-8212=-1.(1)判断3401,5713是否是“双减数”,并说明理由;如果是,求出F (N )的值;(2)若“双减数” M 的各个数位上的数字之和能被11整除,且F (M )是3的倍数,求M 的值.14(2022•大足区模拟)对任意一个四位正整数m ,如果m 的百位数字等于个位数字与十位数字之和,m 的千位数字等于十位数字的2倍与个位数字之和,那么称这个数m 为“和谐数”.例如:m =7431,满足1+3=4,2×3+1=7,所以7431是“和谐数”.例如:m =6413,满足1+3=4,但2×1+3=5≠6,所以6413不是“和谐数”.(1)判断8624和9582是不是“和谐数”,并说明理由;(2)若m 是“和谐数”,且m 与22的和能被13整除,求满足条件的所有“和谐数” m .15(2022•南川区模拟)对于一个三位数的正整数P ,满足各个数位上的数字都不为零,它的百位数字减去十位数字的差等于十位数字减去个位数字的差,那么称这个数P 为“平衡数”,对于任意一个“平衡数”,将它的前两位数加上后两位数所得的和记为m ;将它的百位数字和个位数字构成的两位数加上交换这个两位数所得到的新两位数的和记为n ;把m 与n 的差除以9所得结果记为:F (P ).例如P =246,因为2-4=4-6,所以246是一个“平衡数”,所以m =24+46=70,n =26+62=88,则70-889=-2.(1)计算:F (258),F (741);(2)若s、t都是“平衡数”其中s=10x+y+502,t=10a+b+200,(1≤x≤9),1≤y≤7,1≤a≤9,1≤b≤9,x、y、a、b都是整数),规定k=F(s)F(t),当2F(s)+F(t)=-1时,求k的最小值.16(2024•唐山一模)数学课上老师给出规定:如果两个数的平方差能被4整除,我们称这个算式是“佳偶和谐式”.小亮写出如下算式:82-62=7×4;142-122=13×4;1062-1042=105×4.发现:任意两个连续偶数的平方差都能被4整除,这些算式都是“佳偶和谐式”.(1)验证:222-202是“佳偶和谐式”;(2)证明:任意两个连续偶数的平方差都能被4整除,这些算式都是“佳偶和谐式”;(3)小红通过小亮的结论推广得到一个命题:任意两个偶数的平方差都能被4整除,他们的算式都是“佳偶和谐式”,直接判断此命题是真命题还是假命题.题型二:函数中的新定义问题17(2023•益阳)在平面直角坐标系xOy中,直线l:y=a(x+2)(a>0)与x轴交于点A,与抛物线E:y =ax2交于B,C两点(B在C的左边).(1)求A点的坐标;(2)如图1,若B点关于x轴的对称点为B′点,当以点A,B′,C为顶点的三角形是直角三角形时,求实数a的值;(3)定义:将平面直角坐标系中横坐标与纵坐标均为整数的点叫作格点,如(-2,1),(2,0)等均为格点.如图2,直线l与抛物线E所围成的封闭图形即阴影部分(不包含边界)中的格点数恰好是26个,求a的取值范围.18(2023•义乌市模拟)【概念发现】对于平面上的图形S,先将其向上平移a个单位,再将平移后的图形沿着直线x=b翻折得到图象S′,记此变换过程为图形S的(a,b)滑动对称变换,若在另一图形T上存在一动点C,图形S′上存在一动点D,记CD 长度的最大值为H(S′,T),CD长度的最小值为h(S ,T).【理解应用】(1)如图1,平面直角坐标系中,M (3,2),N (5,1),记线段MN 为图形S ,先将线段MN 向上平移1个单位,再沿着直线x =2翻折得到线段,记线段M ′N ',记线段M N 为图形S ′,则图形S 的(,)滑动对称变换得到图形S ′.记原点O 为图形T ,则H (S ,T )=,h (S ,T )=.【思维提升】(2)如图2,⊙P 在坐标平面内,半径为2,圆心P (6,0),A (-1,0),B (2,0),记⊙P 为图形S ,线段AB 记为图形T ,图形S 的(3,2)滑动对称变换得到图形S ′,求H (S ,T )与h (S ,T )的值.【拓展延伸】(3)如图3,记直线y =43x +2的图象为图形S ,反比例y =12x的图象为图形T ,图形S 的(2,0)滑动对称变换得到图形S ′,则h (S ,T )=.19(2023•姜堰区二模)在平面直角坐标系中,对于函数y 1=ax 2+bx +c ,其中a 、b 、c 为常数,a ≠c ,定义:函数y 2=cx 2+bx +a 是y 1=ax 2+bx +c 的衍生函数,点M (a ,c )是函数y 1=ax 2+bx +c 的衍生点,设函数y 1=ax 2+bx +c 与其衍生函数的图象交于A 、B 两点(点A 在点B 的左侧).(1)若函数y 1=ax 2+bx +c 的图象过点C (-1,3)、D (1,-5),其衍生点M (1,c ),求函数y 1=ax 2+bx +c 的解析式;(2)①若函数y 1=ax 2+bx +c 的衍生函数为y 2=2x -1,求A 、B 两点的坐标;②函数y 1=ax 2+bx +c 的图象如图所示,请在图中标出点A 、B 两点的位置;(3)是否存在常数b ,使得无论a 为何值,函数y 1=ax 2+bx +c 的衍生点M 始终在直线AB 上,若存在,请求出b 的值;若不存在,请说明理由.20(2022•遵义)新定义:我们把抛物线y =ax 2+bx +c (其中ab ≠0)与抛物线y =bx 2+ax +c 称为“关联抛物线”.例如:抛物线y =2x 2+3x +1的“关联抛物线”为:y =3x 2+2x +1.已知抛物线C 1:y =4ax 2+ax +4a -3(a ≠0)的“关联抛物线”为C 2.(1)写出C 2的解析式(用含a 的式子表示)及顶点坐标;(2)若a >0,过x 轴上一点P ,作x 轴的垂线分别交抛物线C 1,C 2于点M ,N .①当MN =6a 时,求点P 的坐标;②当a -4≤x ≤a -2时,C 2的最大值与最小值的差为2a ,求a 的值.21(2022•湘西州)定义:由两条与x 轴有着相同的交点,并且开口方向相同的抛物线所围成的封闭曲线称为“月牙线”,如图①,抛物线C 1:y =x 2+2x -3与抛物线C 2:y =ax 2+2ax +c 组成一个开口向上的“月牙线”,抛物线C 1和抛物线C 2与x 轴有着相同的交点A (-3,0)、B (点B 在点A 右侧),与y 轴的交点分别为G 、H (0,-1).(1)求抛物线C 2的解析式和点G 的坐标.(2)点M 是x 轴下方抛物线C 1上的点,过点M 作MN ⊥x 轴于点N ,交抛物线C 2于点D ,求线段MN 与线段DM 的长度的比值.(3)如图②,点E 是点H 关于抛物线对称轴的对称点,连接EG ,在x 轴上是否存在点F ,使得ΔEFG 是以EG 为腰的等腰三角形?若存在,请求出点F 的坐标;若不存在,请说明理由.22(2022•南通)定义:函数图象上到两坐标轴的距离都不大于n (n ≥0)的点叫做这个函数图象的“n 阶方点”.例如,点13,13 是函数y =x 图象的“12阶方点”;点(2,1)是函数y =2x 图象的“2阶方点”.(1)在①-2,-12 ;②(-1,-1);③(1,1)三点中,是反比例函数y =1x图象的“1阶方点”的有(填序号);(2)若y 关于x 的一次函数y =ax -3a +1图象的“2阶方点”有且只有一个,求a 的值;(3)若y 关于x 的二次函数y =-(x -n )2-2n +1图象的“n 阶方点”一定存在,请直接写出n 的取值范围.23(2022•安顺)在平面直角坐标系中,如果点P 的横坐标和纵坐标相等,则称点P 为和谐点.例如:点(1,1),12,12 ,(-2,-2),⋯⋯都是和谐点.(1)判断函数y =2x +1的图象上是否存在和谐点,若存在,求出其和谐点的坐标;(2)若二次函数y =ax 2+6x +c (a ≠0)的图象上有且只有一个和谐点52,52.①求a ,c 的值;②若1≤x ≤m 时,函数y =ax 2+6x +c +14(a ≠0)的最小值为-1,最大值为3,求实数m 的取值范围.24(2024•北京模拟)在平面直角坐标系xOy 中,已知正方形ABCD ,其中A (2,-2),B (2,2),C (-2,2),D (-2,-2),M 、N 为正方形外两点,MN =1.给出如下定义:如果线段MN 平移m 个单位后,两端点均落在正方形ABCD 的边上,则称m 的最小值为线段MN 到正方形ABCD 的“平移距离”,记为d .(1)如图1,平移线段MN ,得到两条端点在正方形ABCD 边上且长度为1的线段P 1P 2和P 3P 4,则这两条线段的位置关系是;在点P 1,P 2,P 3,P 4中,连接点M 与点的线段的长度等于d ;(2)若点M ,N 都在直线y =-x +4上,求d 的值;(3)若点M 的坐标为522,522,直接写出d 的取值范围.25(2024•乌鲁木齐一模)我们将使得函数值为零的自变量的值称为函数的零点.例如,对于函数y =x -1,令y =0,可得x =1,我们就说1是函数y =x -1的零点.(1)求一次函数y =2x -3的零点;(2)若二次函数y =x 2+bx +32b 的零点为x 1,x 2,A ,B 两点的坐标依次A (x 1,0),B (x 2,0),如果AB =2,求b 的值;(3)直线y =-2x +b 的零点为1,且与抛物线y =kx 2-(3k +3)x +2k +4(k ≠0)交于C 、D 两点,若m +1≤1k≤m +2时,线段CD 有最小值35,求m .26(2023•崇川区校级四模)规定:如果两个函数图象上至少存在一组点是关于原点对称的,我们则称这两个函数互为“O -函数”.这组点称为“XC 点”.例如:点P (1,1)在函数y =x 2上,点Q (-1,-1)在函数y =-x -2上,点P 与点Q 关于原点对称,此时函数y =x 2和y =-x -2互为“O -函数”,点P 与点Q 则为一组“XC 点”.(1)已知函数y =-2x -1和y =-6x互为“O -函数”,请求出它们的“XC 点”;(2)已知函数y =x 2+2x +4和y =4x +n -2022互为“O -函数”,求n 的最大值并写出“XC 点”;(3)已知二次函数y =ax 2+bx +c (a >0)与y =2bx +1互为“O -函数”有且仅存在一组“XC 点”,如图,若二次函数的顶点为M ,与x 轴交于A (x 1,0),B (x 2,0)其中0<x 1<x 2,AB =c 2-2c +6c,过顶点M 作x 轴的平行线l ,点P 在直线l 上,记P 的横坐标为-t ,连接OP ,AP ,BP .若∠OPA =∠OBP ,求t 的最小值.27(2023•长安区校级二模)在平面直角坐标系中,如果点P 的横坐标和纵坐标相等,则称点P 为和谐点.例如:点(1,1),(0,0),-13,-13,⋯⋯都是和谐点.(1)判断二次函数y =x 2-2的图象上是否存在和谐点,若存在,求出其和谐点的坐标;(2)若二次函数y =ax 2+2x +c (a ≠0)的图象上有且只有一个和谐点(1,1).①求这个二次函数的表达式;②若0≤x ≤m 时,函数y =ax 2+2x +c +32(a ≠0)的最小值为1,最大值为3,求实数m 的取值范围.(可通过画出函数图象草图来求解)28(2023•海州区校级一模)在平面直角坐标系中,对于两点A (x 1,y 1)和B (x 2,y 2),它们横坐标之差的绝对值与纵坐标之差的绝对值之和称为这两个点之间的曼哈顿距离,表示为:d (A ,B )=|x 1-x 2|+|y 1-y 2|.(1)如果点A (-3,2),则原点O 与点A 的曼哈顿距离d (O ,A )=;(2)函数y =-2x +4(0≤x ≤2)的图象如图1所示,B 是图象上一点,原点O 与点B 的曼哈顿距离d (O ,B )=3,则点B 的坐标为;(3)点C ,D 分别在x 轴和y 轴的正半轴上,对于线段CD 上任意一点P ,都满足d (O ,P )=3,则直线CD 的函数表达式为;(4)如图2,点E (5,3),⊙E 的半径为2,点M 在⊙E 上,则d (O ,M )的最小值为?.29(2023•黄石模拟)定义:若一个函数图象上存在横、纵坐标相等的点,则称该点为这个函数图象的“等值点”,例如,点(1,1)是函数的y =12x +12图象的“等值点”.(1)试判断函数y =1x -1(x >1)的图象上是否存在“等值点”?如果存在,求出“等值点”的坐标;如果不存在,请说明理由;(2)已知函数y =x 2-2的图象的“等值点”为点A (-1,-1)和点B (2,2).①已知实数m 、n 满足m 2-m -2=0,n 2-n -2=0,且m ≠n ,求m 2n +mn 2的值;②已知实数p 、q 满足p 2=p +2,2q 2=q +1,且p ≠2q ,求p 2+4q 2的值;③若函数y =x 2-2(x ≥1)的图象记为W 1将其沿直线x =1翻折后的图象记为W 2,由W 1,W 2两部分组成的图象记为W ,试求图象W 上的“等值点”.30(2022•长沙)若关于x 的函数y ,当t -12≤x ≤t +12时,函数y 的最大值为M ,最小值为N ,令函数h =M -N2,我们不妨把函数h 称之为函数y 的“共同体函数”.(1)①若函数y =4044x ,当t =1时,求函数y 的“共同体函数” h 的值;②若函数y =kx +b (k ≠0,k ,b 为常数),求函数y 的“共同体函数” h 的解析式;(2)若函数y =2x(x ≥1),求函数y 的“共同体函数” h 的最大值;(3)若函数y =-x 2+4x +k ,是否存在实数k ,使得函数y 的最大值等于函数y 的“共同体函数“h 的最小值.若存在,求出k 的值;若不存在,请说明理由.31(2024•长沙三模)对某一个函数给出如下定义:如果函数的自变量x 与函数值y 满足:当(x -m )(x -n )≤0时,(y -m )(y -n )≤0(m ,n 为实数,且m <n ),我们称这个函数在m →n 上是“民主函数”.比如:函数y =-x +1在-1→2上是“民主函数”.理由:∵由[x -(-1)](x -2)≤0,得-1≤x ≤2.∵x =1-y ,∴-1≤1-y ≤2,解得-1≤y ≤2,∴[y -(-1)](y -2)≤0,∴是“民主函数”.(1)反比例函数y =6x是2→3上的“民主函数”吗?请判断并说明理由;(2)若一次函数y =kx +b 在m →n 上是“民主函数”,求此函数的解析式(可用含m ,n 的代数式表示);(3)若抛物线y =ax 2+bx +c (a >0,a +b >0)在1→3上是“民主函数”,且在1≤x ≤3上的最小值为4a ,设抛物线与直线y =3交于A ,B 点,与y 轴相交于C 点.若ΔABC 的内心为G ,外心为M ,试求MG 的长.32(2023•南山区三模)在平面直角坐标系中,由两条与x 轴有着相同的交点,并且开口方向相同的抛物线所围成的封闭曲线称为“月牙线”.如图所示,抛物线C 1与抛物线C 2:y =mx 2+4mx -12m (m >0)的部分图象组成一个“月牙线”,相同的交点分别为M ,N (点M 在点N 的左侧),与y 轴的交点分别为A ,B ,且点A 的坐标为(0,-1).(1)求M ,N 两点的坐标及抛物线C 1的解析式;(2)若抛物线C 2的顶点为D ,当m =34时,试判断三角形MND 的形状,并说明理由;(3)在(2)的条件下,点P t ,-54是抛物线C 1上一点,抛物线C 2第三象限上是否存在一点Q ,使得S ΔAPM =32S ΔONQ,若存在,请直接写出点Q 的坐标;若不存在,说明理由.33(2023•宛城区校级模拟)定义:在平面直角坐标系中,有一条直线x =m ,对于任意一个函数,作该函数自变量大于m 的部分关于直线x =m 的轴对称图形,与原函数中自变量大于或等于m 的部分共同构成一个新的函数图象,则这个新函数叫做原函数关于直线x =m 的“镜面函数”.例如:图①是函数y =x +1的图象,则它关于直线x =0的“镜面函数”的图象如图②所示,且它的“镜面函数”的解析式为y =x +1(x ≥0)-x +1(x <0) ,也可以写成y =|x |+1.(1)在图③中画出函数y=-2x+1关于直线x=1的“镜面函数”的图象.(2)函数y=x2-2x+2关于直线x=-1的“镜面函数”与直线y=-x+m有三个公共点,求m的值.(3)已知抛物线y=ax2-4ax+2(a<0),关于直线x=0的“镜面函数”图象上的两点P(x1,y1),Q(x2,y2),当t-1≤x1≤t+1,x2≥4时,均满足y1≥y2,直接写出t的取值范围 -3≤t≤3 .34(2024•昆山市模拟)定义:若存在实数对坐标(x,y)同时满足一次函数y=px+q和反比例函数y=kx,则二次函数y=px2+qx-k为一次函数和反比例函数的“生成”函数.(1)试判断(需要写出判断过程):一次函数y=-x+3和反比例函数y=2x是否存在“生成”函数,若存在,写出它们的“生成”函数和实数对坐标.(2)已知:整数m,n,t满足条件t<n<8m,并且一次函数y=(1+n)x+2m+2与反比例函数y=2015x存在“生成”函数y=(m+t)x2+(10m-t)x-2015,求m的值.(3)若同时存在两组实数对坐标(x1,y1)和(x2,y2)使一次函数y=ax+2b和反比例函数y=-cx为“生成”函数,其中,实数a>b>c,a+b+c=0,设L=|x1-x2|,求L的取值范围.(注:一元二次方程ax2+bx+c=0的求根公式为x1,2=-b±b2-4ac2a)35(2023•婺城区一模)定义:在平面直角坐标系中,直线x=m与某函数图象交点记为点P,作该函数图象中,点P及点P右侧部分关于直线x=m的轴对称图形,与原函数图象上的点P及点P右侧部分共同构成一个新函数的图象,称这个新函数为原函数关于直线x=m的“迭代函数“.例如:图1是函数y=x+1的图象,则它关于直线x=0的“迭代函数“的图象如图2所示,可以得出它的“迭代函数“的解析式为y=x+1(x≤0)-x+1(x<0).(1)写出函数y=x+1关于直线x=1的“迭代函数“的解析式为 y=x+1(x≥1)-x+3(x<1) .(2)若函数y=-x2+4x+3关于直线x=m的“迭代函数“图象经过(-1,0),则m=.(3)已知正方形ABCD的顶点分别为:A(a,a),B(a,-a),C(-a,-a),D(-a,a),其中a>0.①若函数y=6x关于直线x=-2的“迭代函数“的图象与正方形ABCD有3个公共点,则a=;②若a=6,函数y=6x关于直线x=n的“迭代函数“的图象与正方形ABCD有4个公共点,则n的取值范围为.36(2023•开福区校级一模)对某一个函数给出如下定义,当自变量x满足m≤x≤n(m,n为实数,m <n)时,函数y有最大值,且最大值为2n-2m,则称该函数为理想函数.(1)当m=-1,n=2时,在①y=1x+3;②y=-2x+4中,是理想函数;2(2)当n=3m+2时,反比例函数y=6mx是理想函数,求实数m的值;(3)已知二次函数y=x2-nx+m2+2m-3是理想函数,且最大值为2m+4.将该函数图象向左平移7个单位长度所得图象记为C,若图象C的顶点为D,与x轴交于A,B(A在B的左侧),与y轴交于点E,点M,G分别为ΔEBD的外心和内心,求以MG为边长的正方形面积.37(2023•门头沟区一模)在平面直角坐标系xOy中,已知图形G上的两点M,N(点M,N不重合)和另一点P,给出如下定义:连接PM,PN,如果PM⊥PN,则称点P为点M,N的“条件拐点”.(1)如图1,已知线段MN上的两点M(0,2),N(4,0).①点P1(1,3),P2(2,-1),P3(4,2)中,点M,N的“条件拐点”是P1P3 ;②如果过点A(0,a)且平行于x轴的直线上存在点M,N的“条件拐点”,求a的取值范围;(2)如图2,已知点F(0,1),T(0,t),过点F作直线l⊥y轴,点M,N在直线l上,且FM=FN=FT.如果直线y=x-t上存在点M,N的“条件拐点”,直接写出t的取值范围.38(2023•西城区校级模拟)在平面直角坐标系xOy中,我们给出如下定义:将图形M绕直线x=3上某一点P顺时针旋转90°,再关于直线x=3对称,得到图形N,我们称图形N为图形M关于点P的二次关联图形.已知点A(0,1).(1)若点P的坐标是(3,0),直接写出点A关于点P的二次关联图形的坐标 (2,3) ;(2)若点A关于点P的二次关联图形与点A重合,求点P的坐标(直接写出结果即可);(3)已知⊙O的半径为1,点A关于点P的二次关联图形在⊙O上且不与点A重合.若线段AB=1,其关于点P的二次关联图形上的任意一点都在⊙O及其内部,求此时P点坐标及点B的纵坐标y B的取值范围.题型三:三角形中的新定义问题39(2023•晋中模拟)阅读下列材料并完成任务.?三角形的旁心三角形一个内角的平分线和其他两个内角的外角平分线的交点,称为三角形的旁心,每个三角形有三个旁心.如图1,∠BAC的平分线与ΔABC另外两个内角∠ABC,∠ACB的外角平分线相交于点O,则点O是ΔABC的一个旁心.旁心与三角形的半周长(即周长的一半)关系密切,如图2,过ΔABC的旁心O分别作OD⊥BC于点D,OE⊥AB交AB的延长线于点E,OF⊥AC交AC的延长线于点F,则AE=12(AB+BC+AC).下面是部分证明过程:∵BO平分∠CBE,OE⊥BE,OD⊥BC,∴OD=OE.(依据)同理可得OD=OF,OE=OF.⋯任务:(1)上述证明过程中的“依据”是指什么?(2)请按照上面的证明思路,写出该证明过程的剩余部分;(3)如图3,在ΔABC中,∠BAC=90°,点I是ΔABC的一个旁心且在BC边的下方.①利用尺规作出旁心I;(保留作图痕迹,不写作法)②若∠ACB=30°,ΔABC外接圆的半径为2,则AI= 32+6 .40(2024•道里区校级一模)①请阅读下面材料,并完成相应的任务:定义:点P是ΔABC内部或边上的点(顶点除外),在ΔPBC,ΔPAB或ΔPCA中,如果有一个三角形与ΔABC相似,那么称点P是ΔABC的“相似点”.例:如图 ①,点P在ΔABC的内部,∠PBC=∠BCA,∠PCB=∠A,则ΔBCP~ΔCAB,故点P为ΔABC的“相似点“.请你运用所学知识,结合上述材料,解决下列问题:(1)如图②,在ΔABC中,AB=AC,∠A=36°,PC平分∠ACB,求证:点P为ΔABC的“相似点”;(2)如图③,若ΔABC为锐角三角形,点E是ΔABC的“相似点”,且点B与点A对应,点E在∠ABC的平分线BF上,连接CE,若BCAC=35,求BFAB的值;(3)如图④,在菱形ABCD中,E是AB上一点,F是ΔABC内一点,且AC=4EF,连接DE与AC交于点G,连接DF,GF,若点G是ΔDEF的“相似点”,且∠EDF=∠BAC=∠FGC,求证:DE=2EF.。

中考数学 新定义题型专题05 四边形中的新定义问题(学生版)

中考数学 新定义题型专题05 四边形中的新定义问题(学生版)

专题05 四边形中的新定义问题一、考情分析"新定义"型问题是指在问题中定义了初中数学中没有学过的一些概念、新运算、新符号,要求学生读懂题意并结合已有知识进行理解,而后根据新定义进行运算、推理、迁移的一种题型。

它一般分为三种类型:(1)定义新运算;(2)定义初、高中知识衔接"新知识";(3)定义新概念。

这类试题考查考生对"新定义"的理解和认识,以及灵活运用知识的能力,解题时需要将"新定义"的知识与已学知识联系起来,利用已有的知识经验来解决问题.利用的数学思想:(1)转化的思想,把未知的问题转化为学过的知识解决。

(2)对全新的概念,需要灵活的迁移运用。

二、精选考题1.阅读与探究我们给出如下定义:若一个四边形中存在相邻两边的平方和等于一条对角线的平方,则称这个四边形为勾股四边形,这两条相邻的边称为这个四边形的勾股边.请结合上述阅读材料,解决下列问题:(1)在我们所学过的特殊四边形中,是勾股四边形的是;(写出一种即可)(2)下面图1,图2均为66的正方形网格,点A,B,C均在格点上,请在图中标出格点D,并连接AD,CD,使得四边形ABCD符合下列要求:图1中的四边形ABCD是勾股四边形,并且是轴对称图形;图2中的四边形ABCD是勾股四边形且对角线相等,但不是轴对称图形.2.阅读理解:定义:有三个内角相等的四边形叫“和谐四边形”.(1)在“和谐四边形”ABCD中,若135∠=;B∠=︒,则A(2)如图,折叠平行四边形纸片DEBF,使顶点E,F分别落在边BE,BF上的点A,C 处,折痕分别为DG,DH.求证:四边形ABCD是“和谐四边形”.3.定义:长宽比为:1(n n为正整数)的矩形称为n矩形.通过下面的操作方式我们可以折出一个2矩形,如图①所示.操作1:将正方形ABCD沿过点B的直线折叠,使折叠后的点C落在对角线BD上的点G处,折痕为BD.1操作2:将AD沿过点G的直线折叠,使点A,点D分别落在边AB,CD上,折痕为EF.则四边形BCEF为2矩形.证明:设正方形ABCD 的边长为1,则BD由折叠性质可知1BG BC ==,90CFE BFE C ∠=∠=∠=︒,则四边形BCEF 为矩形.90A BFE ∴∠=∠=︒.//EF AD ∴. ∴BG BFBD AB =1BF =. ∴BF =∴:BC BF ==.∴四边形BCEF阅读以上内容,回答下列问题:(1)已知四边形BCEF 矩形,沿用上述操作方式,得到四边形BCMN ,如图②,求证:四边形BCMN(2)在图②中,求2tan D BC ∠的值.(3)若将矩形沿用上述方式操作m 次后,得到一个矩形,求k 和1tan k D BC -∠的值.(用含m 和n 的代数式表示,直接写出结论即可)4.我们给出如下定义:若一个四边形有一组对角互补(即对角之和为180)︒,则称这个四边形为圆满四边形.(1)概念理解:在平行四边形、菱形、矩形、正方形中,你认为属于圆满四边形的有 矩形,正方形 .(2)问题探究:如图,在四边形ABCD 中,对角线AC 、BD 相交于点O ,若ADB ACB ∠=∠,问四边形ABCD 是圆满四边形吗?请说明理由.小明经过思考后,判断四边形ABCD 是圆满四边形,并提出了如下探究思路:先证明AOD BOC ∆∆∽,得到比例式OA OD OB OC =,再证明AOB DOC ∆∆∽,得出对应角相等,根据四边形内角和定理,得出一组对角互补.请你帮助小明写出解题过程.(3)问题解决:请结合上述解题中所积累的经验和知识完成下题.如图,四边形ABCD 中,AD BD ⊥,AC BC ⊥,AB 与DC 的延长线相交于点E ,BE BD =,5AB =,3AD =,求CE 的长.5.定义:有一组邻边垂直且对角线相等的四边形为垂等四边形.(1)矩形 垂等四边形(填“是”或“不是” );(2)如图1,在正方形ABCD 中,点E ,F ,G 分别在AD ,AB ,BC 边上.若四边形DEFG 是垂等四边形,且90EFG ∠=︒,AF CG =,求证:EG DG =;(3)如图2,在Rt ABC ∆中,90ACB ∠=︒,2AC BC=,25AB =,以AB 为对角线,作垂等四边形ACBD ,过点D 作CB 的延长线的垂线,垂足为E ,且ABC ∆与BDE ∆相似,求四边形ACBD 的面积.6.阅读理解:如图1,在四边形ABCD 的边AB 上任取一点E (点E 不与点A 、点B 重合),分别连接ED ,EC ,可以把四边形ABCD 分成三个三角形,如果其中有两个三角形相似,我们就把E 叫做四边形ABCD 的边AB 上的相似点;如果这三个三角形都相似,我们就把E 叫做四边形ABCD 的边AB 上的强相似点.解决问题:(1)如图1,55A B DEC ∠=∠=∠=︒,试判断点E 是否是四边形ABCD 的边AB 上的相似点,并说明理由;(2)如图2,在矩形ABCD 中,5AB =,2BC =,A ,B ,C ,D 四点均在正方形网格(网格中每个最小正方形的边长为1)的格点(即每个最小正方形的顶点)上,若图2中,矩形ABCD 的边AB 上存在强相似点E ,则:AE EB = ;拓展探究:(3)如图3,将矩形ABCD 沿CM 折叠,使点D 落在AB 边上的点E 处.若点E 恰好是四边形ABCM 的边AB 上的一个强相似点,试探究AB 和BC 的数量关系.7.我们定义对角线互相垂直的四边形叫做垂美四边形.如图点E 是四边形ABCD 内一点,已知BE EC =,AE ED =,90BEC AED ∠=∠=︒,对角线AC 与BD 交于O 点,BD 与EC 交于点F ,AC 与ED 交于点G .(1)求证:四边形ABCD 是垂美四边形;(2)猜想四边形ABCD 两组对边AB 、CD 与BC 、AD 之间的数量关系并说明理由;(3)若3BE =,4AE =,6AB =,则CD 的长为 .8.定义:有一组邻边相等的凸四边形叫做“等邻边四边形”,回答下列问题.(1)如图1,四边形ABCD 中,90A ∠=︒,1AB =,2CD ,BCD DBC ∠=∠,判断四边形ABCD 是不是“等邻边四边形”,并说明理由;(2)如图2,Rt ABC ∆中,90ABC ∠=︒,2AB =,1BC =,现将Rt ABC ∆沿ABC ∠的平分线BB '方向平移得到△A B C ''',连接AA ',BC ',若平移后的四边形ABC A ''是“等邻边四边形”,求BB '的长.9.我们学过了特殊的四边形,体验了通过作平行线、垂线、延长线等常用方法,把四边形问题转化为三角形问题的重要思想.除了我们学过的特殊四边形,还有很多特殊四边形.我们定义:四边形中,除一边以外其余的部分都在这条边的同侧,这个四边形就叫做凸四边形;有一组邻角相等的凸四边形就叫做“等邻角四边形”,根据这个定义,请解决下列问题.(1)概念理解如图(1),在ABC∆中,CH AB⊥于H,点D、E、F分别是AB、BC、AC的中点,连接DF、EF、EH、DE、FH,写一个图形中的“等邻角四边形”:(不再添加除图形以外的字母);(2)解决问题如图(2),四边形ABCD是“等邻角四边形”,且DAB ABC∠=∠,延长AB、DC交于点P.求证:AD PC BC PD⋅=⋅;(3)探索研究如图(3),Rt ABCAC=,3AD=,点E是BC边上的一个AB=,4∠=︒,8∆中,90BAC动点,当四边形ADEC成为“等邻角四边形”时,求四边形ADEC的面积.10.定义:有一组邻边垂直且对角线相等的四边形称为垂等四边形.(1)写出一个已学的特殊平行四边形中是垂等四边形的是;(2)如图1,在正方形ABCD中,点E,F,G分别在AD,AB,BC上,四边形DEFG 是垂等四边形,且90=.∠=︒,AF CGEFG①求证:EG DG =;②若BC n BG =⋅,求n 的值;(3)如图2,在Rt ABC ∆中,2AC BC =,5AB =,以AB 为对角线,作垂等四边形ACBD .过点D 作CB 的延长线的垂线,垂足为E ,且ACB ∆与DBE ∆相似,求四边形ACBD 的面积.11.新定义:有一组对角相等而另一组对角不相等的凸四边形叫做“等对角四边形”.(1)已知:如图1,四边形ABCD 是“等对角四边形”, A C ∠≠∠,60A ∠=︒,70B ∠=︒,求C ∠,D ∠的度数(2)在探究“等对角四边形”性质时:小红画了一个“等对角四边形” ABCD (如图2),其中ABC ADC ∠=∠,AB AD =,此时她发现CB CD =成立.请你证明此结论(3)已知:在“等对角四边形ABCD 中,60DAB ∠=︒,90ABC ∠=︒,10AB =,8AD =.求对角线AC 的长.12.定义:长宽比为:1(n n 为正整数)的矩形称为n 矩形.下面,我们通过折叠的方式折出一个2矩形,如图a 所示.操作1:将正方形ABEF沿过点A的直线折叠,使折叠后的点B落在对角线AE上的点G处,折痕为AH.操作2:将FE沿过点G的直线折叠,使点F、点E分别落在边AF,BE上,折痕为CD.则四边形ABCD为2矩形.(1)证明:四边形ABCD为2矩形;(2)点M是边AB上一动点.①如图b,O是对角线AC的中点,若点N在边BC上,OM ON⊥,连接MN.求tan OMN∠的值;②若AM AD=,点N在边BC上,当DMN∆的周长最小时,求CNNB的值;③连接CM,作BR CM⊥,垂足为R.若22AB=,则DR的最小值=.13.定义:我们知道,四边形的一条对角线把这个四边形分成了两个三角形,如果这两个三角形相似(不全等),我们就把这条对角线叫做这个四边形的“相似对角线”.理解:(1)如图1,ABC∆的三个顶点均在正方形网格中的格点上,若四边形ABCD是以AC为“相似对角线”的四边形,请用无刻度的直尺在网格中画出点D(保留画图痕迹,找出3个即可);(2)①如图2,在四边形ABCD中,80ABC∠=︒,140ADC∠=︒,对角线BD平分ABC∠.请问BD是四边形ABCD的“相似对角线”吗?请说明理由;②若4BD=,求AB BC⋅的值.运用:(3)如图3,已知FH是四边形EFGH的“相似对角线”,30EFH HFG∠=∠=︒.连接EG,若EFG∆的面积为63FH的长.14.新定义:两邻角互余的四边形称为邻余四边形,这两个角的夹边称为邻余线.(1)四边形ABDE 是邻余四边形,则下列说法正确的是 (填序号).①AE ,BD 的延长线的夹角为90︒;②若AB 为邻余线,则AB 是最长边;③若AB 为邻余线,则D ABD ∠>∠.(2)在64⨯的方格纸中,A ,B 在格点上,请在图①,图②中各画出一个符合条件的邻余四边形ABHG ,使AB 不是邻余线,G ,H 在格点上.(3)如图③,四边形ABDE 是邻余四边形,AB 为邻余线,点F 为DE 的中点,连接AF ,BF ,恰有AF ,BF 分别平分EAB ∠,DBA ∠.若8AE BD ⋅=,求DE 的长.15.定义:若一个四边形能被其中一条对角线分割成两个相似三角形,则称这个四边形为“友好四边形”.(1)如图1,在44⨯的正方形网格中,有一个网格Rt ABC ∆和两个网格四边形ABCD 与ABCE ,其中是被AC 分割成的“友好四边形”的是 ;(2)如图2,将ABC ∆绕点C 逆时针旋转得到△A B C '',点B '落在边AC ,过点A 作//AD A B ''交CA '的延长线于点D ,求证:四边形ABCD 是“友好四边形”; (3)如图3,在ABC ∆中,AB BC ≠,60ABC ∠=︒,ABC ∆的面积为63,点D 是ABC ∠的平分线上一点,连接AD ,CD .若四边形ABCD 是被BD 分割成的“友好四边形”,求BD 的长.16.已知在Rt ABC ∆中,90C ∠=︒,6AC =,3BC =.我们定义:“四个顶点都在三角形边上的正方形是三角形的内接正方形”.(1)如图1,四边形CDEF 是ABC ∆的内接正方形,则正方形CDEF 的边长1a 等于 ;(2)如图2,四边形DGHI 是(1)中EDA ∆的内接正方形,那么第2个正方形DGHI 的边长记为2a ;继续在图2中的HGA ∆中按上述方法作第3个内接正方形,依此类推,⋯⋯则第n 个内接正方形的边长n a = .(n 为正整数)17.有一组对边平行,一个内角是它对角的两倍的四边形叫做倍角梯形.(1)已知四边形ABCD 是倍角梯形,//AD BC ,100A ∠=︒,请直接写出所有满足条件的D ∠的度数;(2)如图1,在四边形ABCD 中,180BAD B ∠+∠=︒,BC AD CD =+.求证:四边形ABCD 是倍角梯形;(3)如图2,在(2)的条件下,连结AC ,当2AB AC AD ===时,求BC 的长.18.我们定义:有两条边相等,一组对角互补的四边形称为“奇妙”四边形,其中相等的这组边称为“奇妙”边.(1)下列选项中一定是“奇妙”四边形的是 .(填写序号);①平行四边形 ②矩形 ③菱形 ④正方形(2)如图,在722⨯的正方形网格中,每个小正方形的边长为1,四边形ABCD 的四个顶点均在格点(小正方形的顶点)上,连接AC .①图中ACD ∆中CD 边上的高的长为 .②请判断四边形ABCD 是否为“奇妙”四边形,说明理由;③请用图中的ABC ∆和ADC ∆拼成一个新的图形(两个三角形不重叠),使得该图形为轴对称图形,在网格图中画出两个你所拼后的图形(全等的图形只能算一个),所拼的两个图形分别为 、 (在原图上作图,或在空余网格处作图均可,注明图形顶点字母并表示在横线上);(3)已知在“奇妙”四边形ABCD 中,其中一条“奇妙”边2AB =,对角线2BD =,60ADC ∠=︒,请直接写出该“奇妙”四边形的周长.19.定义:如果一个四边形存在一条对角线,使得这条对角线是四边形某两边的比例中项,则称这个四边形为“闪亮四边形”,这条对角线称为“亮线”.如图1,四边形ABCD 中,AB AC AD ==,满足2AC AB AD =⋅,四边形ABCD 是闪亮四边形,AC 是亮线.(1)以下说法正确的是 (填写序号)①正方形不可能是闪亮四边形;②矩形中存在闪亮四边形;③若一个菱形是闪亮四边形,则必有一个内角是60︒.(2)如图2,四边形ABCD 中,//AD BC ,90ABC ∠=︒,9AD =,12AB =,20CD =,判断哪一条线段是四边形ABCD 的亮线?请你作出判断并说明理由.(3)如图3,AC 是闪亮四边形ABCD 的唯一亮线,90ABC ∠=︒,60D ∠=︒,4AB =,2BC =,请直接写出线段AD 的长.20.我们给出如下新定义:若一个四边形中存在相邻两边的平方和等于一条对角线的平方,则称这个四边形为勾股四边形,这两条相邻的边称为这个四边形的勾股边.(1)如图①,请你在图中画出格点M ,使得四边形OAMB 是以OA 、OB 为勾股边且对角线相等的勾股四边形;(2)如图②,将ABC ∆绕顶点B 按顺时针方向旋转60︒,得到DBE ∆,连接AD ,DC ,CE .若30DCB ∠=︒,则四边形ABCD 是勾股四边形,为什么?。

中考数学压轴题之新定义经典题型

中考数学压轴题之新定义经典题型

中考数学压轴题之新定义经典题型【01】.在平面直角坐标系xOy 中,C 的半径为r ,P 是与圆心C 不重合的点,点P 关于O 的反称点的定义如下:若在射线CP 上存在一点P ¢,满足2CP CP r ¢+=,则称P ¢为点P 关于C 的反称点,下图为点P 及其关于C 的反称点P ¢的示意图。

的示意图。

(1)(1)当当O 的半径为1时。

时。

①分别判断点(2,1)M ,3(,0)2N ,(1(1,,3)T 关于O 的反称点是否存在,若存在?在?求其坐标;求其坐标;②点P 在直线2y x =-+上,若点P 关于O 的反称点P ¢存在,且点P ¢不在x 轴上,求点P 的横坐标的取值范围;的横坐标的取值范围; (2)(2)当当C 的圆心在x 轴上,轴上,半径为半径为1,直线3233y x =-+与x 轴,轴,y y 轴分别交于点A ,B ,若线段AB 上存在点P ,使得点P 关于C 的反称点P ¢在C 的内部,求圆心C 的横坐标的取值范围。

的横坐标的取值范围。

yPOCx1 1【02】.在平面直角坐标系xOy 中,点P 的坐标为()11,x y ,点Q 的坐标为()22,x y ,且12x x ¹,12y y ¹,若,P Q 为某个矩形的两个顶点,为某个矩形的两个顶点,且该矩形的边均与某条坐标轴且该矩形的边均与某条坐标轴垂直,则称该矩形为点P Q ,的“相关矩形”的“相关矩形”..下图为点,P Q 的“相关矩形”的示意图意图. .(1)已知点A 的坐标为()10,,①若点B 的坐标为()31,,求点,A B 的“相关矩形”的面积;的“相关矩形”的面积;②点C 在直线3x =上,若点,A C 的“相关矩形”为正方形,求直线AC 的表达式;式;(2)O ⊙的半径为2,点M 的坐标为(),3m .若在O ⊙上存在一点N ,使得点,M N的“相关矩形”为正方形,求m 的取值范围的取值范围. .【03】对于平面直角坐标系xOy 中的点P 和⊙C ,给出如下定义:若存在过点P 的直线l 交⊙C 于异于点P 的A ,B 两点,在P ,A ,B 三点中,位于中间的点恰为以另外两点为端点的线段的中点时,则称点P 为⊙C 的相邻点,直线l 为⊙C 关于点P 的相邻线的相邻线. . (1)当⊙O 的半径为1时,时, ○1分别判断在点D (,14),E (0,-3),F (4,0)中,是⊙O 的相邻点有____________________;;○2请从○1中的答案中,任选一个相邻点,在图1中做出⊙O 关于它的一条相邻线,并说明你的作图过程相邻线,并说明你的作图过程. .○3点P 在直线3y x =-+上,若点P 为⊙O 的相邻点,求点P 横坐标的取值范围;范围;(2)⊙C 的圆心在x 轴上,半径为1,直线3233y x =-+与x 轴,y 轴分别交于点M ,N ,若线段..MN 上存在⊙C 的相邻点P ,直接写出圆心C 的横坐标的取值范围.范围.21备用图1备用图2 图1【04】定义:y 是一个关于x 的函数,若对于每个实数x ,函数y 的值为三数2+x ,12+x ,205+-x 中的最小值,则函数y 叫做这三数的最小值函数.(1)画出这个最小值函数的图象,并判断点A (1, 3)是否为这个)是否为这个最小值函数图象上的点;图象上的点;(2)设这个最小值函数图象的最高点为B ,点A (1, 3),动点M (m ,m ).①直接写出△ABM 的面积,其面积是的面积,其面积是 ; ②若以M 为圆心的圆经过B A ,两点,写出点M 的坐标;的坐标;③以②中的点M 为圆心,以2为半径作圆为半径作圆. . 在此圆上找一点P ,使22PA PB +的值最小,直接写出此最小值的值最小,直接写出此最小值. .【05】在平面直角坐标系xOy 中,对于点P 和图形W ,如果线段OP 与图形W 无公共点,则称点P 为关于图形W 的“阳光点”;如果线段OP 与图形W 有公共点,则称点P 为关于图形W 的“阴影点”. (1)如图1,已知点()13A ,,()11B ,,连接AB①在()11,4P ,()21,2P ,()32,3P ,()42,1P 这四个点中,关于线段AB 的“阳光点”是;是;②线段11A B AB P ;11A B 上的所有点都是关于线段AB 的“阴影点”,且当线段11A B 向上或向下平移时,都会有11A B 上的点成为关于线段AB 的“阳光点”.若11A B 的长为4,且点1A 在1B 的上方,则点1A 的坐标为的坐标为_________________________________________________________;; (2)如图2,已知点()13C ,,C e 与y 轴相切于点D .若E e 的半径为32,圆心E 在直线343l y x =-+:上,且E e 上的所有点都是关于C e 的“阴影点”,求圆心E 的横坐标的取值范围;的横坐标的取值范围;(3)如图3,M e 的半径是3,点M 到原点的距离为5.点N 是M e 上到原点距离最近的点,点Q 和T 是坐标平面内的两个动点,且M e 上的所有点都是关于NQT D 的“阴影点”,直接写出NQT D 的周长的最小值.的周长的最小值.图1 图2 图3yxB A OyxCOD yx11O【06】给出如下规定:在平面直角坐标系xOy 中,对于点P (x ,y ),以及两个无公共点的图形1W 和2W ,若在图形1W 和2W 上分别存在点M (1x ,1y )和N (2x ,2y ),使得P 是线段MN 的中点,则称点M 和N 被点P “关联”,并称点P 为图形1W 和2W 的一个“中位点”,此时P ,M ,N 三个点的坐标满足122x x x +=,122y yy +=.(1)已知点(0,1),(4,1),(3,1),(3,2)A B C D --,连接AB ,CD .①对于线段AB 和线段CD ,若点A 和C 被点P “关联”,则点P 的坐标为____________________;; ②线段AB 和线段CD 的一个“中位点”是1(2,)2Q -,求这两条线段上被点Q “关联”的两个点的坐标;“关联”的两个点的坐标;(2)如图1,已知点R (-(-2,02,02,0)和抛物线)和抛物线1W :22y x x =-,对于抛物线1W 上的每一个点M ,在抛物线2W 上都存在点N ,使得点N 和M 被点R “关联”,请在图1中画出符合条件的抛物线2W ;(3)正方形EFGH 的顶点分别是(4,1),(4,1),(2,1),(2,1)E F G H ------,⊙T 的圆心为(3,0)T ,半径为1.请在图2中画出由正方形EFGH 和⊙T 的所有“中位点”组成的图形(若涉及平面中某个区域时可以用阴影表示),并直接写出该图形的面积.并直接写出该图形的面积.图1 图2R【06】在平面直角坐标系中,⊙C 的半径为r ,P 是与圆心C 不重合的点,点P 关于⊙C 的限距点的定义如下:若为直线PC 与⊙C 的一个交点,满足,则称为点P 关于⊙C 的限距点,右图为点P 及其关于⊙C 的限距点的示意图.的示意图. (1)当⊙O 的半径为1时.时.①分别判断点M ,N ,T 关于⊙O 的限距点是否存在?若存在,求其坐标;在?若存在,求其坐标;②点D 的坐标为(的坐标为(2,02,02,0)),DE ,DF 分别切⊙O 于点E ,点F ,点P 在△DEF 的边上的边上..若点P 关于⊙O 的限距点存在,求点的横坐标的取值范围;取值范围;(2)保持()保持(11)中D ,E ,F 三点不变,点P 在△DEF 的边上沿E →F →D →E的方向的方向运动,⊙C 的圆心C 的坐标为(1,01,0)),半径为r .请从下面两个问题中任选一个作答一个作答. .温馨提示:答对问题1得2分,答对问题2得1分,两题均答不重复计分.问题1问题2若点P 关于⊙C 的限距点存在,且随点P 的运动所形成的路径长为,则r 的最小值为的最小值为______________________________.. 若点P 关于⊙C 的限距点不存在,则r 的取值范围为的取值范围为________. ________.xOy P ¢2r PP r ¢££P ¢P¢(3,4)5(,0)2(1,2)P ¢P ¢P ¢P ¢r p P¢【07】对于某一函数给出如下定义:若存在实数p ,当其自变量的值为p 时,其函数值等于p ,则称p 为这个函数的不变值. 在函数存在不变值时,该函数的最大不变值与最小不变值之差q 称为这个函数的不变长度.特别地,当函数只有一个不变值时,其不变长度q 为零为零..例如,下图中的函数有0,1两个不变值,其不变长度q 等于1.(1)分别判断函数1y x =-,1y x=,2y x =有没有不变值?如果有,直接写出其不变长度;其不变长度;(2)函数22y x bx =-.①若其不变长度为零,求b 的值;的值;②若13b ££,求其不变长度q 的取值范围;的取值范围;(3)记函数22()y x x x m =-³的图象为1G ,将1G 沿x=m 翻折后得到的函数图象记为2G .函数G 的图象由 1G 和2G 两部分组成,若其不变长度q 满足03q ££,则m 的取值范围为的取值范围为 . .【08】P 是⊙O 内一点,过点P 作⊙O 的任意一条弦AB ,我们把P A PB ×的值称为点P 关于⊙O 的“幂值”.(1)⊙O 的半径为5,OP = 3.①如图1,若点P 恰为弦AB 的中点,则点P 关于⊙O 的“幂值”为________________;; ②判断当弦AB 的位置改变时,点P 关于⊙O 的“幂值”是否为定值,若是定值,证明你的结论;若不是定值,求点P 关于⊙O 的“幂值”的取值范围.的取值范围.(2)若⊙O 的半径为r ,OP = d ,请参考(,请参考(11)的思路,用含r 、d 的式子表示点P 关于⊙O 的“幂值”或“幂值”的取值范围的“幂值”或“幂值”的取值范围________________________;; (3)在平面直角坐标系xOy 中,⊙O 的半径为4,若在直线33y x b =+上存在点P ,使得点P 关于⊙O 的“幂值”为1313,,请写出b 的取值范围的取值范围________________________..图1POBAO备用图备用图【09】在平面直角坐标系xOy 中,中,图形图形W 在坐标轴上的投影长度定义如下:设点),(11y x P ,),(22y x Q 是图形W 上的任意两点.若21x x -的最大值为m ,则图形W 在x 轴上的投影长度m l x =;若21y y -的最大值为n ,则图形W 在y 轴上的投影长度n l y =.如图,图形W 在x 轴上的投影长度213=-=xl ;在y 轴上的投影长度404=-=y l .(1)已知点)3,3(A ,)1,4(B .如图1所示,若图形W 为△OAB ,则=xl ,=y l .(2)已知点)0,4(C ,点D 在直线26y x =-+上,若图形W 为△OCD .当y x l l =时,求点D 的坐标.的坐标.(3)若图形W 为函数2x y =)(b x a ££的图象,其中0a b £<.当该图形.当该图形满足1£=y x l l 时,请直接写出a 的取值范围.的取值范围.x yO BA 1234123x y O 1231234图1【10】.在平面直角坐标系xOy 中,对图形W 给出如下定义:若图形W 上的所有点都在以原点为顶点的角的内部或边界上,在所有满足条件的角中,其度数的最小值称为图形的坐标角度,例如,下图中的矩形ABCD 的坐标角度是9090°.°.°.(1)已知点)3,0(-A ,)1,1(--B ,在点)0,2(C ,)0,1(-D ,)2,2(-E 中,选一点,使得以该点及点A ,B 为顶点的三角形的坐标角度为9090°,则满足条件°,则满足条件的点为的点为 ; (2)将函数2ax y =)31(££a 的图象在直线1=y 下方的部分沿直线1=y 向上翻折,求所得图形坐标角度m 的取值范围;的取值范围;(3)记某个圆的半径为r ,圆心到原点的距离为l ,且)1(3-=r l ,若该圆的,若该圆的坐标角度°££°9060m .直接写出满足条件的r 的取值范围.的取值范围. O xy D C B A –1–2–312312345。

2023中考数学专项: 新定义型二次函数问题(重点突围)(学生版)

2023中考数学专项: 新定义型二次函数问题(重点突围)(学生版)

专题20新定义型二次函数问题【中考考向导航】目录【直击中考】 (1)【考向一新定义型二次函数问题】 (1)【直击中考】【考向一新定义型二次函数问题】求解体验:(1)已知抛物线23y x bx =-+-经过点(1,0-心对称的抛物线表达式是.抽象感悟:我们定义:对于抛物线(2y ax bx c a =++线,则我们又称抛物线为抛物线y 的“衍生抛物线(2)已知抛物线225y x x =--+关于点(0,m【变式训练】m轴对称且对称轴相同的两条抛物线叫作(1)请将点Q “去隐”,得到该抛物线表达式;(2)记(1)中抛物线为W (如图),W 与x 轴交于点A ,B (A 在B 的左侧),其顶点为点平移后的抛物线W '始终过点A ,点C 的对应点为C '.ⅰ)试确定点C '运动路径所对应的函数表达式;ⅱ)在直线2x =-的左侧,是否存在点C ',使ACC '△为等腰三角形?若存在,求出点说明理由.5.(2022秋·湖南长沙·九年级长沙市开福区青竹湖湘一外国语学校校考阶段练习)定义若抛物线2y ax bx c =++(0a ≠)与直线有两个交点,则称抛物线为直线的“双幸运曲线”,其交点为该直线的“幸运点”.(1)已知直线解析式为1y x =-,下列抛物线为该直线的“双幸运曲线”的是________;(填序号)①21y x =+;②22y x x =+-;③2y x x =-;(2)如图,已知直线l :4y x =-,抛物线23y x x =--为直线l 的“双幸运曲线”,“幸运点”分别为A 、B ,在直线l 上方抛物线部分是否存在点P 使△PAB 面积最大,若存在,请求出面积的最大值和点P 坐标,若不存在,请说明理由;(3)已知x 轴的“双幸运曲线”2y ax bx c =++(0a b >>)经过点(1,3),(0,2-),在x 轴的“幸运点”分别为M 、N ,试求MN 的取值范围.6.(2022·湖南湘西·统考中考真题)定义:由两条与x轴有着相同的交点,并且开口方向相同的抛物线所围成的封闭曲线称为“月牙线”,如图①,抛物线C1:y=x2+2x﹣3与抛物线C2:y=ax2+2ax+c组成一个开口向上的“月牙线”,抛物线C1和抛物线C2与x轴有着相同的交点A(﹣3,0)、B(点B在点A右侧),与y轴的交点分别为G、H(0,﹣1).(1)求抛物线C2的解析式和点G的坐标.(2)点M是x轴下方抛物线C1上的点,过点M作MN⊥x轴于点N,交抛物线C2于点D,求线段MN与线段DM 的长度的比值.(3)如图②,点E是点H关于抛物线对称轴的对称点,连接EG,在x轴上是否存在点F,使得△EFG是以EG 为腰的等腰三角形?若存在,请求出点F的坐标;若不存在,请说明理由.7.(2022秋·安徽淮北·九年级淮北市第二中学校联考阶段练习)在数学活动课上,小明兴趣小组对二次函数的图象进行了深入的探究,如果将二次函数()20y ax bx c a =++≠图象上的点(),A x y 的横坐标不变,纵坐标变为A 点的横、纵坐标之和,就会得到的一个新的点()1,A x x y +,他们把这个点1A 定义为点A 的“简朴”点.他们发现:二次函数()20y ax bx c a =++≠所有简朴点构成的图象也是一条抛物线,于是把这条抛物线定义为()20y ax bx c a =++≠的“简朴曲线”.例如,二次函数21y x x =++的“简朴曲线”就是22121y x x x x x =+++=++,请按照定义完成:(1)点()1,2P 的“简朴”点是________;(2)如果抛物线()2730y ax x a =-+≠经过点()1,3M -,求该抛物线的“简朴曲线”;(3)已知抛物线2y x bx c =++图象上的点(),B x y 的“简朴点”是()11,1B -,若该抛物线的“简朴曲线”的顶点坐标为(),m n ,当03c ≤≤时,求n 的取值范围.8.(2022春·九年级课时练习)定义:若二次函数()21y a x h k =-+的图象记为1C ,其顶点为()A h k ,,二次函数()22y a x k h =-+的图象记为2C ,其顶点为()B k h ,,我们称这样的两个二次函数互为“反顶二次函数”.分类一:若二次函数()211:C y a x h k =-+经过2C 的顶点B ,且()222:C y a x k h =-+经过1C 的顶点A ,我们就称它们互为“反顶伴侣二次函数”.(1)所有二次函数都有“反顶伴侣二次函数”是______命题.(填“真”或“假”)(2)试求出245y x x =-+的“反顶伴侣二次函数”.(3)若二次函数1C 与2C 互为“反顶伴侣二次函数”,试探究1a 与2a 的关系,并说明理由.(4)分类二:若二次函数()211:C y a x h k =-+可以绕点M 旋转180°得到二次函数2C ;()22y a x k h =-+,我们就称它们互为“反顶旋转二次函数”.①任意二次函数都有“反顶旋转二次函数”是______命题.(填“真”或“假”)②互为“反顶旋转二次函数”的对称中心点M 有什么特点?③如图,1C ,2C 互为“反顶旋转二次函数”,点E ,F 的对称点分别是点Q ,G ,且EF GQ x ∥∥轴,当四边形EFQG 为矩形时,试探究二次函数1C ,2C 的顶点有什么关系.并说明理由.t轴对称且对称轴相同的两条抛物线叫作。

2023中考一轮复习:选填压轴之新定义题型(学生版)

2023中考一轮复习:选填压轴之新定义题型(学生版)

05选填压轴之新定义题型目录中考考点解读 (1)方法点拨 (1)选填常考题型整理 (1)选填小题狂做 (3)中考考点解读新定义类问题是近两年新出现的一类问题并逐渐成为中考数学的一个热点考题,又因为其出题形式比较新颖,通常不会单独考察,而是要结合初中数学中某个知识点进行命题,进而考察学生对这个结合知识点的掌握情况和迁移能力,所以难度也在逐渐上升。

题目类型上,多数为选择题,个别为填空题,但是,当新定义问题出成解答题时,一般和函数、几何综合等结合,难度就会变的很难(本讲义不做解答题整理),需要考生综合考虑的点比较多,考生在复习这类问题时,一定要注意读懂“新定义”中蕴含的意义,以及可能具有的性质等。

方法点拨1、读懂题目并理解定义,通过定义(确定考点)做题如:定义新运算时,常常会给一个新的“计算公式”,审题中,一定要理解对公式,还有注意公式伴随的计算是什么类型的,如是一元一次方程,还是分式方程等。

首先确定与之结合的考点类型。

2、多注意新定义问题中与之结合的初中考点的应用当确定新定义结合的考点之后,就需要对结合的考点的性质做一个调取,再根据题目中的要求,选择结合考点不同的性质来做题。

3、熟练掌握和运用初中数学中常用的思想方法当新定义类问题比较综合时,可能不是简单的读懂题目就可以完成解题的,题目综合性较强时,需要同步应用如:分类讨论、整体思想、转化思想、类比思想等来分析问题。

选填常考题型整理【常考题型1】新定义运算【例题1】(2023•汉阳区校级一模)对于任意实数a、b,定义一种运算:*2=-+-.例如,a b ab a bx<,则该不等式的正整数解有几个() =⨯-+-=,请根据上述的定义解决问题,若不等式2*62*52525211A.1B.2C.3D.4【例题2】(2022•路北区校级一模)定义[]x表示不超过实数x的最大整数,如[1.4]1-=-,-=-,[3]3=,[ 1.2]2 2[]x x=的解为()则方程2A.0或B.0或2C.2D.0或2【例题3】(2022•平凉二模)对于实数a 、b ,定义一种新运算“※”:a ※21b a b =-,这里等式右边是实数运算.例如:1※2113138==--.则方程x ※5(2)24x -=--的解是()A .4x =B .5x =C .6x =D .7x =【常考题型2】新定义与函数【例题1】(2023•重庆模拟)对于实数a ,b ,定义新运算22()*()a ab a b a b b ab a b ⎧-=⎨-<⎩ ,若函数2*(1)y x x =-,则下列结论正确的有()①方程2*(1)0x x -=的解为0x =或1x =-;②关于x 的方程2*(1)x x m -=有三个解,则102m <;③当1x <-时,y 随x 增大而增大;④当1x >-时,函数2*(1)y x x =-有最大值0.A .1个B .2个C .3个D .4个【例题2】(2023•叙州区校级模拟)新定义:[a ,b ,]c 为二次函数2(0y ax bx c a =++≠,a ,b ,c 为实数)的“图象数”,如:223y x x =-+的“图象数”为[1,2-,3],若“图象数”是[m ,24m +,24]m +的二次函数的图象与x 轴只有一个交点,则m 的值为()A .2-B .14C .2-或2D .2【例题3】(2022•西湖区一模)已知1y ,2y 均为关于x 的函数,当x a =时,函数值分别为1A ,2A ,若对于实数a ,当01a <<时,都有1211A A -<-<,则称1y ,2y 为亲函数,则以下函数1y 和2y 是亲函数的是()A .211y x =+,21y x =-B .211y x =+,221y x =-C .211y x =-,21y x =-D .211y x =-,221y x =-【常考题型3】新定义与几何【例题1】(2022·云南昭通·统考二模)在平面直角坐标系xOy 中,过一点分别作坐标轴的垂线,若垂线与坐标轴围成矩形的周长的值与面积的值相等,则这个点叫做“和谐点”.已知直线y =﹣2x +k 1与y 轴交于点A ,与反比例函数y 2k x =的图象交于点P (52-,m ),且点P 是“和谐点”,则△OAP 的面积为___.【例题2】(2022•孟村县校级模拟)顶角为36︒的等腰三角形称作“黄金三角形”.在黄金三角形ABC 中,36A ∠=︒,底边2BC =,沿ACB ∠的角平分线把ABC ∆分成两个三角形,则ADC ∆的周长比BDC ∆的周长大()A .1B .2C 51-D .512+【例题3】(2023•苏州模拟)定义:如果三角形的一个内角是另一个内角的2倍,那么称这个三角形为“倍角三角形”.若ABC ∆是“倍角三角形”,90A ∠=︒,4BC =,则ABC ∆的面积为.选填小题狂做一.选择题1.(2022•常德)我们发现:633+=,6633++=,66633+++=,⋯,6666633n +++⋯+++个根号,一般地,对于正整数a ,b ,如果满足n b b b b b a a +++⋯+++个根号时,称(,)a b 为一组完美方根数对.如上面(3,6)是一组完美方根数对,则下面4个结论:①(4,12)是完美方根数对;②(9,91)是完美方根数对;③若(,380)a 是完美方根数对,则20a =;④若(,)x y 是完美方根数对,则点(,)P x y 在抛物线2y x x =-上,其中正确的结论有()A .1个B .2个C .3个D .4个2.(2022•娄底)若10x N =,则称x 是以10为底N 的对数.记作:x lgN =.例如:210100=,则2100lg =;0101=,则01lg =.对数运算满足:当0M >,0N >时,()lgM lgN lg MN +=.例如:3515lg lg lg +=,则2(5)522lg lg lg lg +⨯+的值为()A .5B .2C .1D .03.(2022•重庆)在多项式x y z m n ----中任意加括号,加括号后仍只有减法运算,然后按给出的运算顺序重新运算,称此为“加算操作”.例如:()()x y z m n x y z m n ----=--++,()x y z m n x y z m n ----=--+-,⋯.下列说法:①至少存在一种“加算操作”,使其运算结果与原多项式相等;②不存在任何“加算操作”,使其运算结果与原多项式之和为0;③所有可能的“加算操作”共有8种不同运算结果.其中正确的个数是()A .0B .1C .2D .34.(2022•万州区校级一模)我校数学课外小组,在坐标纸上为学校的一块空地设计植树方案如下:第k 棵种植在点(k k P x ,)k y 处,其中11x =,11y =,当2k 时,111215([][])5512[][]55k k k k k k x x k k y y ----⎧=+--⎪⎪⎨--⎪=+-⎪⎩,其中[]a 表示非负实数a 的整数部分,例如[2.6]2=,[0.2]0=,并且,称第k 棵树的位置为“第k y 行第k x 列”.五个同学得出了下面一些结论:甲:5k =时,1[]05k -=;乙:11k =时,12[][]155k k ---=;丙:第6棵树种植在点0(6,2)P 处;丁:每一行种植5棵树;戊:第2022棵树的位置为“第404行第2列”.以上结论正确的个数是()A .2个B .3个C .4个D .5个5.(2022•曹县二模)如图是小明某一天测得的7次体温情况的折线统计图.下列说法:①测得的最高体温与最低体温的差是0.6C ︒;②这组数据的众数是36.8C ︒;③这组数据的中位数是36.6C ︒;其中正确的有()A .0个B .1个C .2个D .3个6.(2022•平桂区一模)在数的学习过程中,我们总会对其中一些具有某种特性的数充满好奇,如学习自然数时,我们发现一种特殊的自然数——“好数”.定义:对于三位自然数n ,各位数字都不为0,且百位数字与十位数字之和恰好能被个位数字整除,则称这个自然数n 为“好数”.例如:426是“好数”,因为4,2,6都不为0,且426+=,6能被6整除;643不是“好数”,因为6410+=,10不能被3整除.则百位数字比十位数字大5的所有“好数”的个数是()A .8B .7C .6D .57.(2022•高安市一模)若将抛物线平移,有一个点既在平移前的抛物线上,又在平移后的抛物线上,则称这个点为“平衡点”.现将抛物线21:(2)4C y x =--向右平移(0)m m >个单位长度后得到新的抛物线2C ,若(4,)n 为“平衡点”,则m 的值为()A .2B .1C .4D .38.(2022•南山区一模)对于实数a ,b ,定义一种新运算“⊗”为:22a b a b =-⊗,这里等式右边是通常的实数运算.例如:22113134==--⊗,则方程6(1)11x x -=--⊗的解是()A .4x =B .5x =C .6x =D .7x =二.填空题9.(2022·上海·统考中考真题)定义:有一个圆分别和一个三角形的三条边各有两个交点,截得的三条弦相等,我们把这个圆叫作“等弦圆”,现在有一个斜边长为2的等腰直角三角形,当等弦圆最大时,这个圆的半径为_____.10.(2022·黑龙江绥化·统考中考真题)定义一种运算;sin()sin cos cos sin αβαβαβ+=+,sin()sin cos cos sin αβαβαβ-=-.例如:当45α=︒,30β=︒时,()sin 4530︒+︒=122224+⨯=,则sin15︒的值为_______.11.(2022·江苏苏州·统考中考真题)定义:一个三角形的一边长是另一边长的2倍,这样的三角形叫做“倍长三角形”.若等腰△ABC 是“倍长三角形”,底边BC 的长为3,则腰AB 的长为______.12.(2023•小店区校级一模)规定:若1(a x =,1)y ,2(b x =,2)y ,则1212a b x x y y ⋅=+.例如(1,3)a =,(2,4)b =,则123421214a b ⋅=⨯+⨯=+=.已知(1,1)a x x =+-,(3,4)b x =-,则a b ⋅的最小值是.13.(2022•天府新区模拟)给定一个矩形,如果存在另一个矩形,它的周长和面积分别是已知矩形的周长和面积的2倍,则我们称这个矩形是给定矩形的“加倍矩形”,当已知矩形的长和宽分别为3和1时,其“加倍矩形”的对角线长为.14.(2022•丹江口市模拟)已知定点(,)P a b ,且动点(,)Q x y 到点P 的距离等于定长r ,根据平面内两点间距离公式可得222()()x a y b r -+-=,这就是到定点P 的距离等于定长r 圆的方程.已知一次函数的210y x =-+的图象交y 轴于点A ,交x 轴于点B ,C 是线段AB 上的一个动点,则当以OC 为半径的C 的面积最小时,C 的方程为.15.(2022•湘潭县校级模拟)定义:如果一个数的平方等于1-,记为21i =-,这个数i 叫做虚数单位,把形如a bi +的数叫做复数,其中a 叫做这个复数的实部,b 叫做这个复数的虚部.它的加、减、乘法运算与整数的加、减、乘法运算类似.例如计算:(4)(62)46210i i i i i++-=++-=-2(2)(3)62365155i i i i i i i--=--+=--=-根据以上信息计算2(12)(2)(2)i i i +-+-=.16.(2022•威县校级模拟)如图,在平面直角坐标系中,矩形OABC 的顶点坐标分别为(8,0)A ,(0,6)C .把横,纵坐标均为偶数的点称为偶点.(1)矩形OABC (不包含边界)内的偶点的个数为.(2)若双曲线:k L y x=上(0)x >将矩形OABC (不包含边界)内的偶点平均分布在其两侧,则k 的整数值有个.17.(2022•巴州区校级模拟)对数的定义:一般地,若(0x a N a =>且1)a ≠,那么x 叫做以a 为底N 的对数,记作log a x N =,比如指数式328=可以转化为对数式23log 8=,对数式62log 36=,可以转化为指数式2636=.计算352log 9log 125log 32+-=.18.(2022•红河州二模)符号“||a b c d ”称为二阶行列式,规定它的运算法则为:||a b ad bc c d =-,请你根据运算法则求出等式中x 的值.若21||13111x x =++,那么x =.19.(2022•高邮市校级模拟)定义:[]x 表示不大于x 的最大整数,()x 表示不小于x 的最小整数,例如:[2.3]2=,(2.3)3=,[2.3]3-=-,(2.3)2-=-,则[1.7](1.7)+-=.20.(2022•大观区校级二模)对于一个函数,自变量x 取a 时,函数值y 也等于a ,则称a 是这个函数的不动点.已知二次函数23y x x m =++.(1)若2是此函数的不动点,则m 的值为.(2)若此函数有两个相异的不动点a 、b ,且1a b <<,则m 的取值范围为.。

2021年北京中考数学一模分类——新定义(学生版)

2021年北京中考数学一模分类——新定义(学生版)

2021年北京中考数学一模分类——新定义1.在平面直角坐标系xOy中,对于点A和线段MN,如果点A,O,M,N按逆时针方向排列构成菱形AOMN,且∠AOM=α,则称线段MN是点A的“α﹣相关线段”.例如,图1中线段MN是点A的“30°﹣相关线段”.(1)已知点A的坐标是(0,2).①在图2中画出点A的“30°﹣相关线段”MN,并直接写出点M和点N的坐标;②若点A的“α﹣相关线段”经过点(,1),求α的值;(2)若存在α,β(α≠β)使得点P的“α﹣相关线段”和“β﹣相关线段”都经过点(0,4),记PO=t,直接写出t的取值范围.2.在平面直角坐标系xOy中,⊙O的半径为1,点A是平面内一点,过点A的直线交⊙O 于点B和点C(AB≤AC),0≤BC≤1,我们把点B称为点A关于⊙O的“斜射点”.(1)如图,在点A1(﹣1,1),A2(0,),A3(,0)中,存在关于⊙O的“斜射点”的是.(2)已知若A(0,2),点A关于⊙O的斜射点”为点B,则点B的坐标可以是.(写出两个即可)(3)若点A直线y=kx+k上,点A关于⊙O的“斜射点”为B(﹣1,0),画出示意图,直接写出k的取值范围.3.对于平面直角坐标系xOy中的点M和图形G1,G2给出如下定义:点P为图形G1上一点,点Q为图形G2上一点,当点M是线段PQ的中点时,称点M是图形G1,G2的“中立点”.如果点P(x1,y1),Q(x2,y2),那么“中立点”M的坐标为(,).已知,点A(﹣3,0),B(4,4),C(4,0).(1)连接BC,在点D(,0),E(0,1),F(,)中,可以成为点A和线段BC 的“中立点”的是;(2)已知点G(3,0),⊙G的半径为2.如果直线y=x﹣1上存在点K可以成为点A 和⊙G的“中立点”,求点K的坐标;(3)以点C为圆心,半径为2作圆.点N为直线y=2x+4上的一点,如果存在点N,使得y轴上的一点可以成为点N与⊙C的“中立点”.直接写出点N的横坐标n的取值范围.4.在平面直角坐标系xOy中,已知正方形ABCD,其中A(﹣,0),B(0,),C (,0),D(0,﹣).M,N为该正方形外两点,MN=1.给出如下定义:记线段MN的中点为P,平移线段MN得到线段M′N′,使点M′,N′分别落在正方形ABCD的相邻两边上,或线段M′N′与正方形的边重合(M′,N′,P′分别为点M,N,P的对应点),线段PP′长度的最小值称为线段MN到正方形ABCD 的“平移距离”.(1)如图1,平移线段MN,得到正方形ABCD内两条长度为1的线段M1N1,M2N2,则这两条线段的位置关系是;若P1,P2分别为M1N1,M2N2的中点,在点P1,P2中,连接点P与点的线段的长度等于线段MN到正方形ABCD 的“平移距离”.(2)如图2,已知点E(+1,0),若M,N都在直线BE上,记线段MN到正方形ABCD的“平移距离”为d1,求d1的最小值;(3)若线段MN的中点P的坐标为(2,2),记线段MN到正方形ABCD的“平移距离”为d2,直接写出d2的取值范围.5.对于平面直角坐标系xOy中的图形M和点P,给出如下定义:将图形M绕点P顺时针旋转90°得到图形N,图形N称为图形M关于点P的“垂直图形”.例如,图1中点D 为点C关于点P的“垂直图形”(1)点A关于原点O的“垂直图形”为点B.①若点A的坐标为(0,2),则点B的坐标为;②若点B的坐标为(2,1),则点A的坐标为;(2)E(﹣3,3),F(﹣2,3),G(a,0).线段EF关于点G的“垂直图形”记为E′F′,点E的对应点为E′,点F的对应点为F′.①求点E′的坐标(用含a的式子表示);②若⊙O的半径为2,E′F′上任意一点都在⊙O内部或圆上,直接写出满足条件的EE′的长度的最大值.6.对于平面直角坐标系xOy中的⊙O和图形N,给出如下定义:如果⊙O平移m个单位后,图形N上的所有点在⊙O内或⊙O上,则称m的最小值为⊙O对图形N的“覆盖近距”.(1)当⊙O的半径为1时,①若点A(3,0),则⊙O对点A的“覆盖近距”为;②若⊙O对点B的“覆盖近距”为1,写出一个满足条件的点B的坐标;③若直线y=2x+b上存在点C,使⊙O对点的“覆盖近距”为1,求b的取值范围;(2)当⊙O的半径为2时,D(3,t),E(4,t+1),且﹣1≤t≤2.记⊙O对以DE为对角线的正方形的“覆盖近距”为d,直接写出d的取值范围.7.对于平面直角坐标系xOy中的线段PQ,给出如下定义:若存在△PQR使得S△PQR=PQ2,则称△PQR为线段PQ的“等幂三角形”,点R称为线段PQ的“等幂点”.(1)已知A(3,0).①在点P1(1,3),P2(2,6),P3(﹣5,1),P4(3,﹣6)中,是线段OA的“等幂点”的是;②若存在等腰△OAB是线段OA的“等幂三角形”,求点B的坐标;(2)已知点C的坐标为C(2,﹣1),点D在直线y=x﹣3上,记图形M为以点T(1,0)为圆心,2为半径的⊙T位于x轴上方的部分.若图形M上存在点E,使得线段CD 的“等幂三角形”△CDE为锐角三角形,直接写出点D的横坐标x D的取值范围.8.在平面直角坐标系xOy中,对于点p和线段ST,我们定义点P关于线段ST的线段比k =.(1)已知点A(0,1),B(1,0).①点Q(2,0)关于线段AB的线段比k=;②点C(0,c)关于线段AB的线段比k=,求c的值.(2)已知点M(m,0),点N(m+2,0),直线y=x+2与坐标轴分别交于E,F两点,若线段EF上存在点使得这一点关于线段MN的线段比k≤,直接写出m的取值范围.9.在平面直角坐标系xOy中,对于任意两点M(x1,y1),N(x2,y2),若|x1﹣x2|+|y1﹣y2|=k(k为常数且k≠0),则称点M为点N的k倍直角点.根据以上定义,解决下列问题:(1)已知点A(1,1),①若点B(﹣2,3)是点A的k倍直角点,则k的值是;②在点C(2,3),D(﹣1,1),E(0,﹣2),O(0,0)中是点A的2倍直角点的是;③若直线y=﹣2x+b上存在点A的2倍直角点,求b的取值范围;(2)⊙T的圆心T的坐标为(1,0),半径为r,若⊙T上存在点O的2倍直角点,直接写出r的取值范围.10.在平面直角坐标系xOy中,任意两点P(x1,y1),Q(x2,y2),定义线段PQ的“直角长度”为d PQ=|x2﹣x1|+|y2﹣y1|.(1)已知点A(3,2).①d OA=;②已知点B(m,0),若d AB=6,求m的值;(2)在三角形中,若存在两条边“直角长度”之和等于第三条边的“直角长度”,则称该三角形为“和距三角形”.已知点M(3,3).①点D(0,d)(d≠0),如果△OMD为“和距三角形”,求d的取值范围;②在平面直角坐标系xOy中,点C为直线y=﹣x﹣4上一点,点K是坐标系中的一点,且满足CK=1,当点C在直线上运动时,点K均满足使△OMK为“和距三角形”,请你直接写出点C的横坐标x的取值范围.11.如图,直线l和直线l外一点P,过点P作PH⊥l于点H,任取直线l上点Q,点H关于直线PQ的对称点为点H',称点H'为点P关于直线l的垂对点.在平面直角坐标系xOy中,(1)已知点P(0,2),则点O(0,0),A(2,2),B(0,4)中是点P关于x轴的垂对点的是;(2)已知点M(0,m),且m>0,直线y=﹣x+4上存在点M关于x轴的垂对点,求m的取值范围;(3)已知点N(n,2),若直线y=x+n上存在两个点N关于x轴的垂对点,直接写出n 的取值范围.12.对于平面内的点P和图形M,给出如下定义:以点P为圆心,r为半径作圆.若⊙P与图形M有交点,且半径r存在最大值与最小值,则将半径r的最大值与最小值的差称为点P视角下图形M的“宽度d M”(1)如图1.点A(4,3),B(0,3).①在点O视角下,则线段AB的“宽度d AB”为;②若⊙B半径为1.5,在点A视角下,⊙B的“宽度d⊙B”为.(2)如图2,⊙O半径为2.点P为直线y=﹣x+1上一点.求点P视角下⊙O“宽度d⊙O”的取值范围;(3)已知点C(m,0),CK=1,直线y=x+3与x轴,y轴分别交于点D,E.若随着点C位置的变化,使得在所有点K的视角下,线段DE的“宽度”均满足0<d DE<6,直接写出m的取值范围.13.已知点P、Q分别为图形M和图形N上的任意点,若存在点P、Q使得PQ=1,我们就称图形M、N为友好图形,P、Q为关于图形M、N的一对友好点.(1)已知点A(1,0),,C(﹣1,1)中,与点O为一对友好点;(2)已知⊙O半径r=1,若直线y=x+b与⊙O有且只有一对友好点,求b的值;(3)已知点,⊙D半径r=1,若直线y=x+m与⊙D是友好图形,求m的取值范围.14.规定如下:图形M与图形N恰有两个公共点(这两个公共点不重合),则称图形M与图形N是和谐图形.(1)在平面直角坐标系xOy中,已知⊙O的半径为2,若直线x=k与⊙O是和谐图形,请你写出一个满足条件的k值,即k=;(2)在平面直角坐标系xOy中,已知点A(t,0),直线l:y=x+3与x轴、y轴分别交于B,C两点(其中点A不与点B重合),则线段AB与直线l组成的图形我们称为图形V;①t=时,以A为圆心,r为半径的⊙A与图形V是和谐图形,求r的取值范围;②以点A为圆心,2为半径的⊙A与图形V均组成和谐图形,求t的取值范围.。

专题09 新定义型几何图形问题(学生版) -2021年中考数学复习重难点与压轴题型专项训练

专题09 新定义型几何图形问题(学生版) -2021年中考数学复习重难点与压轴题型专项训练

备战2021年中考复习重难点与压轴题型专项训练专题09新定义型几何图形问题【专题训练】一、解答题1.(2020·河南信阳市·八年级期末)如图1,我们把对角线互相垂直的四边形叫做垂美四边形.(1)概念理解:我们已经学习了平行四边形、菱形、矩形、正方形,在这四种图形中是垂美四边形的是_____________.(2)性质探究:如图2,已知四边形ABCD是垂美四边形,试探究其两组对边AB,CD与BC,AD之间的数量关系,并写出证明过程.(3)问题解决:如图3,分别以Rt△ACB的直角边AC和斜边AB为边向外作正方形ACFG和正方形ABDE,连接CE,BG,GE,CE交AB于点M,已知AC=4,AB=5,求GE的长.2.(2020·洪泽外国语中学八年级月考)如果三角形的两个内角α与β满足α﹣β=90°,那么我们称这样的三角形为“准互余三角形”.(1)若△ABC 是“准互余三角形”,△A >90°,△B =20°,求△C 的度数;(2)如图①,在Rt △ABC 中,△BAC =90°,AB =4,BC =5,点D 是BC 延长线上一点.若△ABD 是“准互余三角形”,求CD 的长;(3)如图②,在四边形ABCD 中,AC ,BD 是对角线,AC =4,CD =5,△BAC =90°,△ACD =2△ABC ,且△BCD 是“准互余三角形”,求BD 的长.3.(2020·湖南怀化市·中考真题)定义:对角线互相垂直且相等的四边形叫做垂等四边形.(1)下面四边形是垂等四边形的是____________(填序号)①平行四边形;②矩形;③菱形;④正方形(2)图形判定:如图1,在四边形ABCD 中,AD △BC ,AC BD ⊥,过点D 作BD 垂线交BC 的延长线于点E ,且45DBC ∠=︒,证明:四边形ABCD 是垂等四边形.(3)由菱形面积公式易知性质:垂等四边形的面积等于两条对角线乘积的一半.应用:在图2中,面积为24的垂等四边形ABCD 内接于△O 中,60BCD ∠=︒.求△O 的半径.4.(2020·内蒙古通辽市·九年级学业考试)如图1,对角线互相垂直的四边形叫做垂美四边形.(1)概念理解:如图2,在四边形ABCD 中,,AB AD CB CD ==,问四边形ABCD 是垂美四边形吗?请说明理由;(2)性质探究:如图1,四边形ABCD 的对角线,AC BD 交于点O ,AC BD ⊥.试证明:2222AB CD AD BC +=+;(3)解决问题:如图3,分别以Rt ACB △的直角边AC 和斜边AB 为边向外作正方形ACFG 和正方形ABDE ,连结,,CE BG GE .已知30,1CAB CB ∠=︒=,求GE 的长.5.(2019·河南九年级其他模拟)若△ABC绕点A逆时针旋转α后,与△ADE构成位似图形,则我们称△ABC与△ADE互为“旋转位似图形”.(1)知识理解:如图1,△ABC与△ADE互为“旋转位似图形”.①若α=25°,△D=100°,△C=28°,则△BAE=;②若AD=6,DE=7,AB=4,则BC=(2)知识运用:如图2,在四边形ABCD中,△ADC=90°,AE△BD于点E,△DAC=△DBC,求证:△ACD与△ABE互为“旋转位似图形”.(3)拓展提高:如图3,△ABG为等边三角形,点C为AG的中点,点F是AB边上的一点,点D为CF延长线上的一点,点E在线段CF上,且△ABD与△ACE互为“旋转位似图形”.若AB=6,AD=4,求DECE的值.6.(2020·常州市第二十四中学九年级期中)若三角形的一条角平分线与被平分的角的一边相等,则称这个三角形为“弱等腰三角形”,这条角平分线叫做这个三角形的“弱线”,如图①,AD是△ABC的角平分线,当AD=AB时,则△ABC是“弱等腰三角形”,线段AD是△ABC的“弱线”.(1)如图②,在△ABC中.△B=60°,△C=45°.求证:△ABC是“弱等腰三角形”;(2)如图③,在矩形ABCD中,AB=3,BC=4.以B为圆心在矩形内部作AE,交BC于点E,点F是AE上一点,连结CF.且CF与AE有另一个交点G.连结BG.当BG是△BCF的“弱线”时,求CG的长.(3)已知△ABC 是“弱等腰三角形”,AD 是“弱线”,且AB =3BD ,求AC :BC 的值.7.(2020·江西抚州市·金溪一中九年级一模)定义:如果一个三角形一条边上的高与这条边的比值是3:5,那么称这个三角形为“准黄金”三角形,这条边就叫做这个三角形的“金底”.(概念感知)(1)如图1,在ABC 中,12AC =,10BC =,30ACB ∠=︒,试判断ABC 是否是“准黄金”三角形,请说明理由.(问题探究)(2)如图2,ABC 是“准黄金”三角形,BC 是“金底”,把ABC 沿BC 翻折得到DBC △,连AB 接AD 交BC 的延长线于点E ,若点C 恰好是ABD △的重心,求AB BC的值.(拓展提升)(3)如图3,12l l //,且直线1l 与2l 之间的距离为3,“准黄金”ABC 的“金底”BC 在直线2l 上,点A 在直线1l 上.AB BC =,若ABC ∠是钝角,将ABC ∠绕点C 按顺时针方向旋转()090αα︒<<︒得到A B C '',线段A C '交1l 于点D .①当30α=︒时,则CD =_________;②如图4,当点B 落在直线1l 上时,求ADCD的值.8.(2020·江苏南通市·八年级月考)定义:有一组对边相等目这一组对边所在直线互相垂直的凸四边形叫做“等垂四边形”.(1)如图①,四边形ABCD 与四边形AEEG 都是正方形,135AEB 180<∠<︒︒,求证:四边形BEGD 是“等垂四边形”;(2)如图②,四边形ABCD 是“等垂四边形”,AD BC ≠,连接BD ,点E ,F ,G 分别是AD ,BC ,BD 的中点,连接EG ,FG ,EF .试判定EFG 的形状,并证明;(3)如图③,四边形ABCD 是“等垂四边形”,4=AD ,6BC =,试求边AB 长的最小值.9.(2020·江西九年级一模)定义:两条长度相等,且它们所在的直线互相垂直的线段,我们称其互为“等垂线段”.知识应用:在△ABC和△ADE中,AC=BC,AE=DE,且AE<AC,△ACB=△AED=90°,连接BD,点P是线段BD的中点,连接PC,PE.(1)如图1,当AE在线段AC上时,线段PC与线段PE是否互为“等垂线段”?请说明理由.(2)如图2,将图1中的△ADE绕点A顺时针旋转90°,点D落在AB边上,请说明线段PC与线段PE互为“等垂线段”.拓展延伸:(3)将图1中的△ADE绕点A顺时针旋转150°,若BC=3,DE=1,求PC的值.10.(2020·沈阳市第一二六中学九年级月考)如图1,平面内有一点P到△ABC的三个顶点的距离分别为P A、PB、PC,若有P A2=PB2+PC2则称点P为△ABC关于点A的勾股点.(1)如图2,在4×5的网格中,每个小正方形的长均为1,点A、B、C、D、E、F、G均在小正方形的顶点上,则点D是△ABC 关于点的勾股点;在点E、F、G三点中只有点是△ABC关于点A的勾股点.(2)如图3,E是矩形ABCD内一点,且点C是△ABE关于点A的勾股点,①求证:CE =CD ;②若DA =DE ,△AEC =120°,求△ADE 的度数.(3)矩形ABCD 中,AB =5,BC =6,E 是矩形ABCD 内一点,且点C 是△ABE 关于点A 的勾股点,若△ADE 是等腰三角形,直接写出AE 的长.11.(2020·浙江宁波市·九年级零模)当一个角固定不变,而某种图形在该角的内部变化,则我们称这个角为墙角. (1)如图1,墙角O ∠=30°,如果AB =3,长度不变,在角内滑动,当OA =6时,则求出此时OB 的长度.(2)如图2,墙角O ∠=30°,如果在AB 的右边作等边ABC ∆,AB =3,长度不变,滑动过程中,请求出点O 与点C 的最大距离.(3)如图3,墙角sin O =35时,如果点E 是O ∠一条边上的一个点,DEF ∠=90°,其两条边与O ∠另一条边交于点F 与点D ,求OFOD的最大值.12.(2019·江西南昌市·八年级期中)如图1,我们把对角线互相垂直的四边形叫做对垂四边形.观察发现:如图1,对垂四边形ABCD四边存在数量为:AD2+BC2=AB2+CD2.应用发现:如图2,若AE,BD是△ABC的中线,AE△BD,垂足为O,AC=4,BC=6,求AB=应用知识:如图3,分别以Rt△ACB的直角边AC和斜边AB为边向外作正方形ACFG和正方形ABDE,连接CE,BG,GE,已知AC=2,AB=3,求GE长.拓展应用:如图4,在平行四边形ABCD中,点E、F、G分别是AD,BC,CD的中点,BE△EG,AD=4,AB=3,求AF的长13.(2019·浙江杭州市·九年级期中)定义:若一个三角形一条边上的高等于这条边长的一半,则称该三角形为“半高”三角形,这条高称为“半高”.(1)如图1,ABC ∆中,90ACB ∠=︒,2BCAC =,点P 在AB 上,PD AC ⊥于点D ,PE BC ⊥于点E ,连接BD ,DE 求证: BDE ∆是“半高”三角形;(2)如图2,ABC ∆是“半高”三角形,且BC 边上的高是“半高”,点P 在AB 上,//PQ BC 交AC 于点Q ,PM BC ⊥于点M ,QN BC ⊥于点N .①请探究BM ,PM ,CN 之间的等量关系,并说明理由;②若ABC ∆的面积等于16,求MQ 的最小值.14.(2020·江苏扬州市·八年级期中)阅读下列材料:如图(1),在四边形ABCD中,若AB=AD,BC=CD,则把这样的四边形称之为筝形.(1)写出筝形的两个性质(定义除外).① ;② .(2)如图(2),在平行四边形ABCD中,点E、F分别在BC、CD上,且AE=AF,△AEC=△AFC.求证:四边形AECF是筝形.(3)如图(3),在筝形ABCD中,AB=AD=26,BC=DC=25,AC=17,求筝形ABCD的面积.15.(2020·四川麓山师大一中八年级月考)我们定义:对角线互相垂直的四边形叫做垂美四边形.(1)如图1,垂美四边形ABCD的对角线AC,BD交于O.求证:AB2+CD2=AD2+BC2;(2)如图2,分别以Rt△ACB的直角边AC和斜边AB为边向外作正方形ACFG和正方形ABDE,连结BE,CG,GE.①求证:四边形BCGE是垂美四边形;②若AC=4,AB=5,求GE的长.16.(2020·浙江绍兴市·九年级期中)我们知道:有一内角为直角的三角形叫做直角三角形.类似地,我们定义:有一内角为45°的三角形叫做半直角三角形.如图,在平面直角坐标系中,O为原点,A(4,0),B(﹣4,0),D是y轴上的一个动点,△ADC=90°(A、D、C按顺时针方向排列),BC与经过A、B、D三点的△M交于点E,DE平分△ADC,连结AE,BD.显然△DCE、△DEF、△DAE 是半直角三角形.(1)求证:△ABC是半直角三角形;(2)求证:△DEC =△DEA ;(3)若点D 的坐标为(0,8),求AE 的长.17.(2020·江西南昌市·九年级期末)如图,在平面直角坐标系中,以原点O 为中心的正方形ABCD 的边长为4m ,我们把AB y ∥轴时正方形ABCD 的位置作为起始位置,若将它绕点O 顺时针旋转任意角度α时,它能够与反比例函数(0)k y k x=>的图象相交于点E ,F ,G ,H ,则曲线段EF ,HG 与线段EH ,GF 围成的封闭图形命名为“曲边四边形EFGH ”.(1)①如图1,当AB y ∥轴时,用含m ,k 的代数式表示点E 的坐标为________;此时存在曲边四边形EFGH ,则k 的取值范围是________;②已知23k m =,把图1中的正方形ABCD 绕点O 顺时针旋转45º时,是否存在曲边四边形EFGH ?请在备用图中画出图形,并说明理由.当把图1中的正方形ABCD 绕点O 顺时针旋转任意角度α时,直接写出使曲边四边EFGH 存在的k 的取值范围.③若将图1中的正方形绕点O 顺时针旋转角度()0180a a ︒<<︒得到曲边四边形EFGH ,根据正方形和双曲线的对称性试探究四边形EFGH 是什么形状的四边形?曲边四边形EFGH 是怎样的对称图形?直接写出结果,不必证明;(2)正方形ABCD 绕点O 顺时针旋转到如图2位置,已知点A 在反比例函数(0)k y k x=>的图象上,AB 与y 轴交于点M ,8AB =,1AM =,试问此时曲边四边EFGH 存在吗?请说明理由.18.(2019·湖南师大附中博才实验中学) 定义:在凸四边形中,我们把两组对边乘积的和等于对角线的乘积的四边形称为“完美四边形”(1)在正方形、矩形、菱形中,一定是“完美四边形”的是______.(2)如图1,在△ABC 中,AB =2,BC =52,AC =3,D 为平面内一点,以A 、B 、C 、D 四点为顶点构成的四边形为“完美四边形”,若DA ,DC 的长是关于x 的一元二次方程x 2-(m +3)x +14(5m 2-2m +13)=0(其中m 为常数)的两个根,求线段BD 的长度.(3)如图2,在“完美四边形”EFGH 中,△F =90°,EF =6,FG =8,求“完美四边形”EFGH 面积的最大值.19.(2020·江苏苏州市·九年级期中)如图(1),在△ABC中,如果正方形PQMN的边QM在BC上,顶点P,N分别在AB,AC 上,那么我们称这样的正方形为“三角形内接正方形”小波同学按数学家波利亚在《怎样解题》中的方法进行操作:如图(2),任意画△ABC,在AB上任取一点P′,画正方形P′Q′M′N′,使Q′,M′在BC边上,N′在△ABC内,连结BN′并延长交AC于点N,画NM△BC于点M,NP△NM交AB于点P,PQ△BC于点Q,得到四边形PQMN,小波把线段BN称为“波利亚线”,请帮助小波解决下列问题:(1)四边形PQMN是否是△ABC的内接正方形,请证明你的结论;(2)若△ABC为等边三角形,边长BC=6,求△ABC内接正方形的边长;(3)如图(3),若在“波利亚线”BN上截取NE=NM,连结EQ,EM.当34MNBM时,猜想△QEM的度数,并说明你的理由.20.(2020·广州市育才中学九年级期中)若点P为△ABC所在平面上一点,且△APB=△BPC=△CP A=120°,则点P叫做△ABC的费马点.当三角形的最大角小于120°时,可以证明费马点就是“到三角形的三个顶点的距离之和最小的点“.即P A+PB+PC最小.(1)如图1,向△ABC外作等边三角形△ABD,△AEC.连接BE,DC相交于点P,连接AP.①证明:点P就是△ABC费马点;②证明:P A+PB+PC=BE=DC;(2)如图2,在△MNG中,MN=,△M=75°,MG=3.点O是△MNG内一点,则点O到△MNG三个顶点的距离和的最小值是.21.(2020·湖南长沙市·九年级月考)定义:有且仅有一组对角相等的凸四边形叫做“准平行四边形”.例如:凸四边形ABCD 中,若,A C B D ∠=∠∠≠∠,则称四边形ABCD 为准平行四边形.(1)如图①,,,,A P B C 是O 上的四个点,60APC CPB ∠=∠=︒,延长BP 到Q ,使AQ AP =.求证:四边形AQBC 是准平行四边形;(2)如图②,准平行四边形ABCD 内接于O ,,AB AD BC DC +=,若O 的半径为5,6AB =,求AC 的长;(3)如图③,在Rt ABC 中,90,30,2C A BC ∠=︒∠=︒=,若四边形ABCD 是准平行四边形,且BCD BAD ∠≠∠,请直接写出BD 长的最大值.22.(2020·广东深圳市·九年级二模)我们不妨约定:对角线互相垂直的凸四边形叫做“十字形”.(1)①在“平行四边形,矩形,菱形,正方形”中,一定是“十字形”的有 ;②在凸四边形ABCD 中,AB =AD 且CB ≠CD ,则该四边形 “十字形”.(填“是”或“不是”)(2)如图1,A ,B ,C ,D 是半径为1的△O 上按逆时针方向排列的四个动点,AC 与BD 交于点E ,△ADB ﹣△CDB =△ABD ﹣△CBD ,当6≤AC 2+BD 2≤7时,求OE 的取值范围;(3)如图2,在平面直角坐标系xOy 中,抛物线y =ax 2+bx +c (a ,b ,c 为常数,a >0,c <0)与x 轴交于A ,C 两点(点A 在点C 的左侧),B 是抛物线与y 轴的交点,点D 的坐标为(0,﹣ac ),记“十字形”ABCD 的面积为S ,记△AOB ,△COD ,△AOD ,△BOC 的面积分别为S 1,S 2,S 3,S 4.求同时满足下列三个条件的抛物线的解析式; ①S =1S 2S +;②S =3S 4S +;③“十字形”ABCD 的周长为1210.23.(2020·浙江省临海市临海中学九年级期中)定义:只有一组对角是直角的四边形叫做损矩形,连结它的两个非直角顶点的线段叫做这个损矩形的直径.(1)如图1,损矩形ABCD ,△ABC =△ADC =90°,则该损矩形的直径是线段 .(2)在线段AC 上确定一点P ,使损矩形的四个顶点都在以P 为圆心的同一圆上(即损矩形的四个顶点在同一个圆上),请作出这个圆,并说明你的理由.友情提醒:“尺规作图”不要求写作法,但要保留作图痕迹.(3)如图2,△ABC中,△ABC=90°,以AC为一边向形外作菱形ACEF,D为菱形ACEF的中心,连结BD,当BD平分△ABC时,判断四边形ACEF为何种特殊的四边形?请说明理由.若此时AB=3,BD=,求BC的长.。

概率与统计下的新定义(学生版)

概率与统计下的新定义(学生版)

概率与统计下的新定义【题型归纳目录】题型一:二项式定理新定义题型二:排列组合新定义题型三:概率新定义题型四:统计方法新定义题型五:信息熵问题【方法技巧与总结】解概率与统计下的新定义题,就是要细读定义关键词,理解本质特征,适时转化为“熟悉”问题.总之,解决此类问题,取决于已有知识、技能、数学思想的掌握和基本活动经验的积累,还需要不断的实践和反思,不然就谈不上“自然”的、完整的解题.【典型例题】题型一:二项式定理新定义1(2024·湖南衡阳·二模)莫比乌斯函数在数论中有着广泛的应用.所有大于1的正整数n 都可以被唯一表示为有限个质数的乘积形式:n =p r 11p r 22⋅⋅⋅p r kk (k 为n 的质因数个数,p i 为质数,r i ≥1,i =1,2,⋅⋅⋅,k ),例如:90=2×32×5,对应k =3,p 1=2,p 2=3,p 3=5,r 1=1,r 2=2,r 3=1.现对任意n ∈N *,定义莫比乌斯函数μn =1,n =1-1 k,r 1=r 2=⋅⋅⋅=r k =10,存在r i >1 (1)求μ78 ,μ375 ;(2)若正整数x ,y 互质,证明:μxy =μx μy ;(3)若n >1且μn =1,记n 的所有真因数(除了1和n 以外的因数)依次为a 1,a 2,⋅⋅⋅,a m ,证明:μa 1 +μa 2 +⋅⋅⋅+μa m =-2.2(2024·安徽合肥·一模)“q -数”在量子代数研究中发挥了重要作用.设q 是非零实数,对任意n ∈N *,定义“q -数”(n )q =1+q +⋯+q n -1利用“q -数”可定义“q -阶乘”n !q =(1)q (2)q ⋯(n )q ,且0 !q =1.和“q -组合数”,即对任意k ∈N ,n ∈N *,k ≤n ,n kq =n !qk !q n -k !q(1)计算:532;(2)证明:对于任意k ,n ∈N *,k +1≤n ,nk q =n -1k -1q +q k n -1kq(3)证明:对于任意k ,m ∈N ,n ∈N *,k +1≤n ,n +m +1k +1 q -n k +1 q =∑m i =0q n -k +i n +ikq.3(2024·高三·江苏苏州·阶段练习)甲、乙、丙三人以正四棱锥和正三棱柱为研究对象,设棱长为n ,若甲从其中一个底面边长和高都为2的正四棱锥的5个顶点中随机选取3个点构成三角形,定义随机变量X 的值为其三角形的面积;若乙从正四棱锥(和甲研究的四棱锥一样)的8条棱中任取2条,定义随机变量ξ的值为这两条棱的夹角大小(弧度制);若丙从正三棱柱的9条棱中任取2条,定义随机变量ψ的值为这两条棱的夹角大小(弧度制).(1)比较三种随机变量的数学期望大小;(参考数据arctan 5≈0.3661,arctan 52≈0.2677,arctan22≈0.3918)(2)现单独研究棱长n ,记x +1 ×x +12 ×⋯×x +1n(n ≥2且n ∈N *),其展开式中含x 项的系数为S n ,含x 2项的系数为T n .①若T nS n=an 2+bn +c ,对n =2,3,4成立,求实数a ,b ,c 的值;②对①中的实数a ,b ,c 用数字归纳法证明:对任意n ≥2且n ∈N *,Tn S n=an 2+bn +c 都成立.题型二:排列组合新定义4(2024·高三·北京·阶段练习)设n 为正整数,集合A =α∣α=t 1,t 2,⋯,t n ,t k ∈0,1 ,k =1,2,⋯,n .对于集合A 中的任意元素α=x 1,x 2,⋯,x n 和β=y 1,y 2,⋯,y n ,定义d α,β =x 1-y 1 +x 2-y 2 +⋯+x n -y n .(1)当n =4时,若α=0,1,0,1 ,β=1,1,0,1 ,直接写出所有使d α,γ =2,d β,γ =3同时成立的A 的元素γ;(2)当n =3时,设B 是A 的子集,且满足:对于B 中的任意两个不同元素α,β,d α,β ≥2.求集合B 中元素个数的最大值;(3)给定不小于2的n ,设B 是A 的子集,且满足:对于B 中的任意两个不同的元素α,β,d α,β ≥2,写出一个集合B ,使其元素个数最多,并说明理由.5(2024·高三·浙江·开学考试)一般地,n 元有序实数对a 1,a 2,⋯,a n 称为n 维向量.对于两个n 维向量a=a 1,a 2,⋯,a n ,b =b 1,b 2,⋯,b n ,定义:两点间距离d =b 1-a 1 2+b 2-a 2 2+⋯+b n -a n 2,利用n 维向量的运算可以解决许多统计学问题.其中,依据“距离”分类是一种常用的分类方法:计算向量与每个标准点的距离d n ,与哪个标准点的距离d n 最近就归为哪类.某公司对应聘员工的不同方面能力进行测试,得到业务能力分值a 1 、管理能力分值a 2 、计算机能力分值a 3 、沟通能力分值a 4 (分值a i ∈N *,i ∈1,2,3,4 代表要求度,1分最低,5分最高)并形成测试报告.不同岗位的具体要求见下表:岗位业务能力分值a 1管理能力分值a 2计算机能力分值a 3沟通能力分值a 4合计分值会计(1)215412业务员(2)523515后勤(3)235313管理员(4)454417对应聘者的能力报告进行四维距离计算,可得到其最适合的岗位.设四种能力分值分别对应四维向量β=a 1,a 2,a 3,a 4 的四个坐标.(1)将这四个岗位合计分值从小到大排列得到一组数据,直接写出这组数据的第三四分位数;(2)小刚与小明到该公司应聘,已知:只有四个岗位的拟合距离的平方d 2n 均小于20的应聘者才能被招录.(i )小刚测试报告上的四种能力分值为β0=4,3,2,5 ,将这组数据看成四维向量中的一个点,将四种职业1、2、3、4的分值要求看成样本点,分析小刚最适合哪个岗位;(ii )小明已经被该公司招录,其测试报告经公司计算得到四种职业1、2、3、4的推荐率p 分别为1443,1343,943,743p n =d 2n d 21+d 22+d 23+d 24,试求小明的各项能力分值.题型三:概率新定义6(2024·浙江·一模)混管病毒检测是应对单管病毒检测效率低下的问题,出现的一个创新病毒检测策略,混管检测结果为阴性,则参与该混管检测的所有人均为阴性,混管检测结果为阳性,则参与该混管检测的人中至少有一人为阳性.假设一组样本有N 个人,每个人患病毒的概率相互独立且均为p 0<p <1 .目前,我们采用K 人混管病毒检测,定义成本函数f X =NK+KX ,这里X 指该组样本N 个人中患病毒的人数.(1)证明:E f X ≥2p ⋅N ;(2)若0<p <10-4,10≤K ≤20.证明:某混管检测结果为阳性,则参与该混管检测的人中大概率恰有一人为阳性.7(2024·辽宁·模拟预测)条件概率与条件期望是现代概率体系中的重要概念.近年来,随着人们对随机现象的不断观察和研究,条件概率和条件期望已经被广泛的利用到日常生产生活中.定义:设X ,Y 是离散型随机变量,则X 在给定事件Y =y 条件下的期望为E X Y =y =∑ni =1x i ⋅P X =x i Y =y =∑ni =1x i ⋅P X =x i ,Y =yP Y =y ,其中x 1,x 2,⋯,x n 为X 的所有可能取值集合,P X =x ,Y =y 表示事件“X =x ”与事件“Y =y ”都发生的概率.某射击手进行射击训练,每次射击击中目标的概率均为p (0<p <1),射击进行到击中目标两次时停止.设ξ表示第一次击中目标时的射击次数,η表示第二次击中目标时的射击次数.(1)求P ξ=2,η=5 ,P η=5 ;(2)求E ξη=5 ,E ξη=n n ≥2 .8(2024·福建漳州·一模)在数字通信中,信号是由数字0和1组成的序列,发送每个信号数字之间相互独立.由于随机因素的干扰,发送的信号0或1有可能被错误地接收为1或0.(1)记发送信号变量为X ,接收信号变量为Y ,且满足P X =0 =12,P Y =1X =0 =13,P Y =0X =1 =14,求P Y =0 ;(2)当发送信号0时,接收为0的概率为34,定义随机变量η的“有效值”为H η =-ni =1P η=x i lg P η=x i (其中x i 是η的所有可能的取值,i =1,2,⋅⋅⋅,n ),发送信号“000”的接收信号为“y 1y 2y 3”,记ξ为y 1,y 2,y 3三个数字之和,求ξ的“有效值”.(lg3≈0.48,lg2≈0.30)题型四:统计方法新定义9(2024·全国·模拟预测)某校20名学生的数学成绩x i (i =1,2,⋯,20)和知识竞赛成绩y i (i =1,2,⋯,20)如下表:学生编号i 12345678910数学成绩x i 100999693908885838077知识竞赛成绩y i29016022020065709010060270学生编号i 11121314151617181920数学成绩x i 75747270686660503935知识竞赛成绩y i4535405025302015105计算可得数学成绩的平均值是x =75,知识竞赛成绩的平均值是y =90,并且20i =1x i -x 2 =6464,20i =1y i -y2 =149450,20i =1x i -x y i -y =21650.(1)求这组学生的数学成绩和知识竞赛成绩的样本相关系数(精确到0.01).(2)设N ∈N *,变量x 和变量y 的一组样本数据为x i ,y i |i =1,2,⋯,N ,其中x i (i =1,2,⋯,N )两两不相同,y i (i =1,2,⋯,N )两两不相同.记x i 在x n |n =1,2,⋯,N 中的排名是第R i 位,y i 在y n |n =1,2,⋯,N 中的排名是第S i 位,i =1,2,⋯,N .定义变量x 和变量y 的“斯皮尔曼相关系数”(记为ρ)为变量x 的排名和变量y 的排名的样本相关系数.(i )记d i =R i -S i ,i =1,2,⋯,N .证明:ρ=1-6N N 2-1 Ni =1d 2i .(ii )用(i )的公式求这组学生的数学成绩和知识竞赛成绩的“斯皮尔曼相关系数”(精确到0.01).(3)比较(1)和(2)(ii )的计算结果,简述“斯皮尔曼相关系数”在分析线性相关性时的优势.注:参考公式与参考数据.r =ni =1x i -x y i -yni =1x i -x 2 ni =1y i -y2;nk =1k 2=n (n +1)(2n +1)6;6464×149450≈31000.10(2024·全国·模拟预测)冰雪运动是深受学生喜爱的一项户外运动,为了研究性别与学生是否喜爱冰雪运动之间的关系,从某高校男、女生中各随机抽取100名进行问卷调查,得到如下列联表m≤40,m∈N.喜爱不喜爱男生80-m20+m女生60+m40-m(1)当m=0时,从样本中不喜爱冰雪运动的学生中,按性别采用分层抽样的方法抽取6人,再从这6人中随机抽取3人调研不喜爱的原因,记这3人中女生的人数为ξ,求ξ的分布列与数学期望.(2)定义K2=A i,j-B i,j2B i,j2≤i≤3,2≤j≤3,i,j∈N,其中A i,j为列联表中第i行第j列的实际数据,B i,j为列联表中第i行与第j列的总频率之积再乘以列联表的总额数得到的理论频数,如A2,2=80-m,B2,2=100 200×140200×200=70.基于小概率值α的检验规则:首先提出零假设H0(变量X,Y相互独立),然后计算K2的值,当K2≥xα时,我们推断H0不成立,即认为X和Y不独立,该推断犯错误的概率不超过α;否则,我们没有充分证据推断H0不成立,可以认为X和Y独立.根据K2的计算公式,求解下面问题:①当m=0时,依据小概率值α=0.005的独立性检验,分析性别与是否喜爱冰雪运动有关?②当m<10时,依据小概率值α=0.1的独立性检验,若认为性别与是否喜爱冰雪运动有关,则至少有多少名男生喜爱冰雪运动?附:α0.10.0250.005xα 2.706 5.0247.87911(2024·高三·北京·期末)在测试中,客观题难度的计算公式为P i=R iN,其中P i为第i题的难度,R i为答对该题的人数,N为参加测试的总人数.现对某校高三年级240名学生进行一次测试,共5道客观题.测试前根据对学生的了解,预估了每道题的难度,如下表所示:题号12345考前预估难度P i 0.90.80.70.60.4测试后,随机抽取了20名学生的答题数据进行统计,结果如下:题号12345实测答对人数161614144(1)根据题中数据,估计这240名学生中第5题的实测答对人数;(2)从抽样的20名学生中随机抽取2名学生,记这2名学生中第5题答对的人数为X,求X的分布列和数学期望;(3)定义统计量S=1n[(P 1-P1)2+(P 2-P2)2+⋯+(P n-P n)2],其中P i 为第i题的实测难度,P i为第i题的预估难度(i=1,2,⋯,n).规定:若S<0.05,则称该次测试的难度预估合理,否则为不合理.判断本次测试的难度预估是否合理.题型五:信息熵问题12(2024·高三·河北·阶段练习)信息熵是信息论之父香农(Shannon)定义的一个重要概念,香农在1948年发表的论文《通信的数学理论》中指出,任何信息都存在冗余,把信息中排除了冗余后的平均信息量称为“信息熵”,并给出了计算信息熵的数学表达式:设随机变量X所有可能的取值为1,2,⋯,n n∈N*,且P(X=i)=p i>0(i=1,2,⋯,n),ni=1p i=1,定义X的信息熵H(X)=-ni=1p ilog2p i.(1)当n=1时,计算H X ;(2)若p i=1ni=1,2,⋯,n,判断并证明当n增大时,H X 的变化趋势;(3)若n=2m m∈N*,随机变量Y所有可能的取值为1,2,⋯,m,且P Y=j=p j+p2m+1-j j=1,2,⋯,m,证明:H X>H Y.13(2024·高三·河北·期末)在信息论中,熵(entropy)是接收的每条消息中包含的信息的平均量,又被称为信息熵、信源熵、平均自信息量.这里,“消息”代表来自分布或数据流中的事件、样本或特征.(熵最好理解为不确定性的量度而不是确定性的量度,因为越随机的信源的熵越大)来自信源的另一个特征是样本的概率分布.这里的想法是,比较不可能发生的事情,当它发生了,会提供更多的信息.由于一些其他的原因,把信息(熵)定义为概率分布的对数的相反数是有道理的.事件的概率分布和每个事件的信息量构成了一个随机变量,这个随机变量的均值(即期望)就是这个分布产生的信息量的平均值(即熵).熵的单位通常为比特,但也用Sh、nat、Hart计量,取决于定义用到对数的底.采用概率分布的对数作为信息的量度的原因是其可加性.例如,投掷一次硬币提供了1Sh的信息,而掷m次就为m位.更一般地,你需要用log2n位来表示一个可以取n个值的变量.在1948年,克劳德•艾尔伍德•香农将热力学的熵,引入到信息论,因此它又被称为香农滳.而正是信息熵的发现,使得1871年由英国物理学家詹姆斯•麦克斯韦为了说明违反热力学第二定律的可能性而设想的麦克斯韦妖理论被推翻.设随机变量ξ所有取值为1,2,⋯,n,定义ξ的信息熵H(ξ)=-ni=1P ilog2P i,n i=1P i=1,i=1,2,⋯,n.(1)若n=2,试探索ξ的信息熵关于P1的解析式,并求其最大值;(2)若P1=P2=12n-1,P k+1=2P k(k=2,3,⋯,n),求此时的信息熵.14(2024·安徽合肥·模拟预测)在一个典型的数字通信系统中,由信源发出携带着一定信息量的消息,转换成适合在信道中传输的信号,通过信道传送到接收端.有干扰无记忆信道是实际应用中常见的信道,信道中存在干扰,从而造成传输的信息失真.在有干扰无记忆信道中,信道输入和输出是两个取值x 1,x 2,⋯,x n 的随机变量,分别记作X 和Y .条件概率P Y =x j ∣X =x i ,i ,j =1,2,⋯,n ,描述了输入信号和输出信号之间统计依赖关系,反映了信道的统计特性.随机变量X 的平均信息量定义为:H (X )=-ni =1p X =x i log 2p X =x i .当n =2时,信道疑义度定义为H (Y ∣X )=-2i =12j =1p X =x i ,Y =x j log 2p Y =x j ∣X =x i =-P X =x 1,Y =x 1 log 2p Y =x 1∣X =x 1 +P X =x 1,Y =x 2 log 2p Y =x 2∣X =x 1 +P X =x 2,Y =x 1 log 2p Y =x 1∣X =x 2 +P X =x 2,Y =x 2 log 2p Y =x 2∣X =x 2(1)设有一非均匀的骰子,若其任一面出现的概率与该面上的点数成正比,试求扔一次骰子向上的面出现的点数X 的平均信息量log 23≈1.59,log 25≈2.32,log 27≈2.81 ;(2)设某信道的输入变量X 与输出变量Y 均取值0,1.满足:P X =0 =ω,p Y =1∣X =0 =p Y =0∣X =1 =p (0<ω<1,0<p <1).试回答以下问题:①求P Y =0 的值;②求该信道的信道疑义度H Y ∣X 的最大值.【过关测试】1(2024·高三·全国·专题练习)定义:int x 为不超过x的最大整数部分,如int2.3=2,int-2.3= -3.甲、乙两个学生高二的6次数学测试成绩(测试时间为90分钟,满分100分)如下表所示:高二成绩第1次考试第2次考试第3次考试第4次考试第5次考试第6次考试甲687477848895乙717582848694进入高三后,由于改进了学习方法,甲、乙这两个学生的数学测试成绩预计有了大的提升.设甲或乙高二的数学测试成绩为x,若10int x+x-int x2≤100,则甲或乙高三的数学测试成绩预计为10int x+x-int x2;若10int x+x-int x2>100,则甲或乙高三的数学测试成绩预计为100.(1)试预测:在将要进行的高三6次数学测试成绩(测试时间为90分钟,满分100分)中,甲、乙两个学生的成绩(填入下列表格内);高三成绩第1次考试第2次考试第3次考试第4次考试第5次考试第6次考试甲乙(2)记高三任意一次数学测试成绩估计值为t,规定:t∈84,90,记为转换分为3分;t∈91,95,记为转换分为4分;t∈96,100,记为转换分为5分.现从乙的6次数学测试成绩中任意抽取2次,求这2次成绩的转换分之和为8分的概率.2(2024·全国·一模)正态分布与指数分布均是用于描述连续型随机变量的概率分布.对于一个给定的连续型随机变量X,定义其累积分布函数为F(x)=P(X≤x).已知某系统由一个电源和并联的A,B,C三个元件组成,在电源电压正常的情况下,至少一个元件正常工作才可保证系统正常运行,电源及各元件之间工作相互独立.(1)已知电源电压X(单位:V)服从正态分布N(40,4),且X的累积分布函数为F(x),求F(44)-F(38);(2)在数理统计中,指数分布常用于描述事件发生的时间间隔或等待时间.已知随机变量T(单位:天)表示某高稳定性元件的使用寿命,且服从指数分布,其累积分布函数为G t =0,t<0 1-14t,t≥0 .(ⅰ)设t1>t2>0,证明:P(T>t1|T>t2)=P(T>t1-t2);(ⅱ)若第n天元件A发生故障,求第n+1天系统正常运行的概率.附:若随机变量Y服从正态分布N(μ,σ2),则P(|Y-μ|<σ)=0.6827,P(|Y-μ|<2σ)=0.9545,P(|Y-μ| <3σ)=0.9973.3为考查一种新的治疗方案是否优于标准治疗方案,现从一批患者中随机抽取100名患者,均分为两组,分别采用新治疗方案与标准治疗方案治疗,记其中采用新治疗方案与标准治疗方案治疗受益的患者数分别为X 和Y .在治疗过程中,用指标I 衡量患者是否受益:若μ-σ≤I ≤μ+σ,则认为指标I 正常;若I >μ+σ,则认为指标I 偏高;若I <μ-σ,则认为指标I 偏低.若治疗后患者的指标I 正常,则认为患者受益于治疗方案,否则认为患者未受益于治疗方案.根据历史数据,受益于标准治疗方案的患者比例为0.6.(1)求E Y 和D Y ;(2)统计量是关于样本的函数,选取合适的统计量可以有效地反映样本信息.设采用新治疗方案治疗第i 位的患者治疗后指标I 的值为x i ,i =1,2,⋅⋅⋅,50,定义函数:f x i =1,x i >μ+σ0,μ-σ≤x i ≤μ+σ.-1,x i <μ-σ(ⅰ)简述以下统计量所反映的样本信息,并说明理由.①A =f x 1 +f x 2 +⋅⋅⋅+f x 50 ;②B =f x 1 f x 1 +1 +f x 2 f x 2 +1 +⋅⋅⋅+f x 50 f x 50 +12;(ⅱ)为确定新的治疗方案是否优于标准治疗方案,请在(ⅰ)中的统计量中选择一个合适的统计量,并根据统计量的取值作出统计决策.4(2024·高二·四川遂宁·期末)2020年新冠肺炎疫情期间,某区政府为了解本区居民对区政府防疫工作的满意度,从本区居民中随机抽取若干居民进行评分(满分100分),根据调查数据制成如下表格和频率分布直方图,已知评分在80,100的居民有600人.满意度评分40,6090,10080,9060,80满意度等级不满意基本满意满意非常满意(1)求频率分布直方图中a的值及所调查的总人数;(2)定义满意度指数η=(满意程度的平均分)/100,若η<0.8,则防疫工作需要进行大调整,否则不需要大调整.根据所学知识判断该区防疫工作是否带要进行大调整?(同一组中的数据用该组区间的中点值为代表) (3)为了解部分居民不满意的原因,从不满意的居民评分在40,50中用分层抽样的方法抽取6名居,50,60民,倾听他们的意见,并从6人中抽取2人担任防疫工作的监督员,求这2人中仅有一人对防疫工作的评分在40,50内的概率.5(2024·高三·北京·阶段练习)设离散型随机变量X和Y有相同的可能取值,它们的分布列分别为P X=a k=x k,P Y=a k=y k,x k>0,y k>0,k=1,2,⋯,n,nk=1x k=nk=1y k=1.指标D(X‖Y)可用来刻画X和Y的相似程度,其定义为D(X‖Y)=nk=1x kln x ky k.设X~B(n,p),0<p<1.(1)若Y~B(n,q),0<q<1,求D(X‖Y);(2)若n=2,P(Y=k-1)=13,k=1,2,3,求D(X‖Y)的最小值;(3)对任意与X有相同可能取值的随机变量Y,证明:D(X‖Y)≥0,并指出取等号的充要条件6(2024·高三·河南·期末)某国家队要从男子短道速滑1500米的两名种子选手甲、乙中选派一人参加2022年的北京冬季奥运会,他们近期六次训练成绩如下表:次序(i)123456甲(x i秒)142140139138141140乙(y i秒)138142137139143141(1)分别计算甲、乙两人这六次训练的平均成绩x甲,x乙,偏优均差ξ甲,ξ乙;(2)若x i-y i<2i=1,2,3,4,5,6,则称甲、乙这次训练的水平相当,现从这六次训练中随机抽取3次,求有两次甲、乙水平相当的概率.注:若数据x1,x2,⋅⋅⋅,x n中的最优数据为m,定义ξ=1nx1-m2+x2-m2+⋅⋅⋅+x n-m2为偏优均差.本题中的最优数据即最短时间.7(2024·全国·模拟预测)某医科大学科研部门为研究退休人员是否患痴呆症与上网的关系,随机调查了M 市100位退休人员,统计数据如下表所示:患痴呆症不患痴呆症合计上网163248不上网341852合计5050100(1)依据α=0.01的独立性检验,能否认为该市退休人员是否患痴呆症与上网之间有关联?(2)从该市退休人员中任取一位,记事件A 为“此人患痴呆症”,B 为“此人上网”,则A为“此人不患痴呆症”,定义事件A 的强度Y 1=P A 1-P A ,在事件B 发生的条件下A 的强度Y 2=P A B1-P A B.(i )证明:Y1Y 2=P B AP B A ;(ⅱ)利用抽样的样本数据,估计Y 1Y 2的值.附:χ2=n ad -bc 2a +bc +d a +c b +d,其中n =a +b +c +d .α0.0500.0100.001x α3.8416.63510.8288(2024·高三·山西朔州·开学考试)某校20名学生的数学成绩x i i =1,2,⋅⋅⋅,20 和知识竞赛成绩y ii =1,2,⋅⋅⋅,20 如下表:学生编号i 12345678910数学成绩x i 100999693908885838077知识竞赛成绩y i 29016022020065709010060270学生编号i 11121314151617181920数学成绩x i 75747270686660503935知识竞赛成绩y i4535405025302015105计算可得数学成绩的平均值是x =75,知识竞赛成绩的平均值是y =90,并且20i =1x i -x2 =6464,20i =1y i -y2 =149450,20i =1x i -x y i -y =21650.(1)求这组学生的数学成绩和知识竞赛成绩的样本相关系数(精确到0.01);(2)设N ∈N *,变量x 和变量y 的一组样本数据为x i ,y i i =1,2,⋅⋅⋅,N ,其中x i i =1,2,⋅⋅⋅,N 两两不相同,y i i =1,2,⋅⋅⋅,N 两两不相同.记x i 在x n n =1,2,⋅⋅⋅,N 中的排名是第R i 位,y i 在y n n =1,2,⋅⋅⋅,N 中的排名是第S i 位,i =1,2,⋅⋅⋅,N .定义变量x 和变量y 的“斯皮尔曼相关系数”(记为ρ)为变量x 的排名和变量y 的排名的样本相关系数.(i )记d i =R i -S i ,i =1,2,⋅⋅⋅,N .证明:ρ=1-6N N 2-1 Ni =1d 2i ;(ii )用(i )的公式求得这组学生的数学成绩和知识竞赛成绩的“斯皮尔曼相关系数”约为0.91,简述“斯皮尔曼相关系数”在分析线性相关性时的优势.注:参考公式与参考数据.r =ni =1x i -x y i -yni =1x i -x 2 ni =1y i -y2;nk =1k 2=n n +1 2n +16;6464×149450≈31000.9(2024·高二·湖北·阶段练习)“难度系数”反映试题的难易程度,难度系数越大,题目得分率越高,难度也就越小,“难度系数”的计算公式为L=1-YW,其中L为难度系数,Y为样本平均失分,W为试卷总分(一般为100分或150分).某校高二年级的老师命制了某专题共5套测试卷(总分150分),用于对该校高二年级480名学生进行每周测试,测试前根据自己对学生的了解,预估了每套试卷的难度系数,如下表所示:试卷序号i12345考前预估难度系数L i0.70.640.60.60.55测试后,随机抽取了50名学生的数据进行统计,结果如下:试卷序号i12345平均分/分10299939387(1)根据试卷2的预估难度系数估计这480名学生第2套试卷的平均分;(2)试卷的预估难度系数和实测难度系数之间会有偏差,设L i 为第i套试卷的实测难度系数,并定义统计量S=1 nL 1-I i2+L 2-L22+⋯+L n-L n2,若S<0.001,则认为试卷的难度系数预估合理,否则认为不合理.以样本平均分估计总体平均分,试检验这5套试卷难度系数的预估是否合理.(3)聪聪与明明是学习上的好伙伴,两人商定以同时解答上述试卷易错题进行“智力竞赛”,规则如下:双方轮换选题,每人每次只选1道题,先正确解答者记1分,否则计0分,先多得2分者为胜方.若在此次竞赛中,聪聪选题时聪聪得分的概率为23,明明选题时聪聪得分的概率为12,各题的结果相互独立,二人约定从0:0计分并由聪聪先选题,求聪聪3:1获胜的概率 .10(2024·高三·四川成都·开学考试)在三维空间中,立方体的坐标可用三维坐标a 1,a 2,a 3 表示,其中a i ∈0,1 1≤i ≤3,i ∈N .而在n 维空间中n ≥2,n ∈N ,以单位长度为边长的“立方体”的项点坐标可表示为n 维坐标a 1,a 2,a 3,⋯⋯,a n ,其中a i ∈0,1 1≤i ≤n ,i ∈N .现有如下定义:在n 维空间中两点间的曼哈顿距离为两点a 1,a 2,a 3,⋯⋯,a n 与b 1,b 2,b 3,⋯⋯,b n 坐标差的绝对值之和,即为a 1-b 1 +a 2-b 2 +a 3-b 3 +⋯⋯+a n -b n .回答下列问题:(1)求出n 维“立方体”的顶点数;(2)在n 维“立方体”中任取两个不同顶点,记随机变量X 为所取两点间的曼哈顿距离①求出X 的分布列与期望;②证明:在n 足够大时,随机变量X 的方差小于0.25n 2.(已知对于正态分布X ∼N μ,σ2 ,P 随X 变化关系可表示为φμ,σx =1σ2π⋅e -x -μ22σ2)11(2024·高二·福建莆田·期末)为了考查一种新疫苗预防某一疾病的效果,研究人员对一地区某种动物进行试验,从该试验群中随机抽查了50只,得到如下的样本数据(单位:只):发病没发病合计接种疫苗81624没接种疫苗17926合计252550(1)能否有95%的把握认为接种该疫苗与预防该疾病有关?(2)从该地区此动物群中任取一只,记A 表示此动物发病,A表示此动物没发病,B 表示此动物接种疫苗,定义事件A 的优势R 1=P A 1-P A ,在事件B 发生的条件下A 的优势R 2=P A B1-P A B.(ⅰ)证明:R 2R 1=P B A P B A;(ⅱ)利用抽样的样本数据,给出P B A ,P B A 的估计值,并给出R 2R 1的估计值.附:χ2=n ad -bc 2a +bc +d a +c b +d,其中n =a +b +c +d .P χ2≥x 00.0500.0100.001x 03.8416.63510.82812(2024·高一·山东济南·期末)独立事件是一个非常基础但又十分重要的概念,对于理解和应用概率论和统计学至关重要.它的概念最早可以追湖到17世纪的布莱兹·帕斯卡和皮埃尔·德·费马,当时被定义为彼此不相关的事件.19世纪初期,皮埃尔·西蒙·拉普拉斯在他的《概率的分析理论》中给出了相互独立事件的概率乘法公式.对任意两个事件A 与B ,如果P AB =P A P B 成立,则称事件A 与事件B 相互独立,简称为独立.(1)若事件A 与事件B 相互独立,证明:A与B 相互独立;(2)甲、乙两人参加数学节的答题活动,每轮活动由甲、乙各答一题,已知甲每轮答对的概率为35,乙每轮答对的概率为23.在每轮活动中,甲和乙答对与否互不影响,各轮结果也互不影响,求甲乙两人在两轮活动中答对3道题的概率.13(2024·高二·浙江台州·期末)袋中有大小、形状完全相同的2个红球,4个白球.采用放回摸球,从袋中摸出一个球,定义T 变换为:若摸出的球是白球,把函数f x 图象上所有点的横坐标缩短到原来110倍,(纵坐标不变);若摸出的是红球,将函数f x 图象上所有的点向下平移1个单位.函数f x 经过1次T 变换后的函数记为f 1x ,经过2次T 变换后的函数记为f 2x ,⋯,经过n 次T 变换后的函数记为f n x n ∈N * .现对函数f x =lg x 进行连续的T 变换.(1)若第一次摸出的是白球,第二次摸出的是红球,求f 2x ;(2)记X =f 31 ,求随机变量X 的分布列及数学期望.14(2024·高三·上海宝山·阶段练习)已知n为正整数,对于给定的函数y=f x ,定义一个n次多项式g nx 如下:g n x =ni=0C i n f inx i1-xn-i(1)当f x =1时,求g n x ;(2)当f x =x时,求g n x ;(3)当f x =x2时,求g n x .15(2024·高一·辽宁葫芦岛·期末)通信信号利用BEC信道传输,若BEC信道传输成功,则接收端收到的信号与发来的信号完全相同.若BEC信道传输失败,则接收端收不到任何信号.传输技术有两种:一种是传统通信传输技术,采用多个信道各自独立传输信号(以两个信道为例,如图1).另一种是华为公司5G信号现使用的土耳其通讯技术专家Erdal Arikan教授的发明的极化码技术(以两个信道为例,如图2).传输规则如下,信号U2直接从信道2传输;信号U1在传输前先与U2“异或”运算得到信号X1,再从信道1传输.若信道1与信道2均成功输出,则两信号通过“异或”运算进行解码后,传至接收端,若信道1输出失败信道2输出成功,则接收端接收到信道2信号,若信道1输出成功信道2输出失败,则接收端对信号进行自身“异或”运算而解码后,传至接收端.(注:定义“异或”运算:U1⊕U2=X1,X1⊕U1=U2,X1⊕U2=U1,X1⊕X1=U2).假设每个信道传输成功的概率均为p0<p<1.(1)对于传统传输技术,求信号U1和U2中至少有一个传输成功的概率;(2)对于Erdal Arikan教授的极化码技术;①求接收端成功接收信号U1的概率;②若接收端接收到信号U2才算成功完成一次任务,求利用极化码技术成功完成一次任务的概率.。

中考数学专题复习新定义阅读理解题(三)

中考数学专题复习新定义阅读理解题(三)

中考数学专题复习新定义阅读理解题(三)学校:___________姓名:___________班级:___________考号:___________评卷人得分一、解答题1.对于任意一个三位正整数,十位上的数字减去个位上的数字之差恰好等于百位上的数字,则称这个三位数为“极差数”.例如:对于三位数451,5-1=4,则451是“极差数”;对于三位数110,1-0=1,则110是“极差数”.(1)求证:任意一个“极差数”一定能被11整除;(2)在一个“极差数”首位之前添加其十位的数字得到一个新的四位数M,在一个“极差能被12整除,求满足条件的数”末位之后添加数字1得到一个新的四位数N,若M N“极差数”.2.一个正整数的各位数字都相同,我们称这样的数为“称心数”,如5,44,666,2222,…对任意一个三位数n,如果n满足各数位上的数字互不相同,且都不为零,那么称这个数为“相异数”.将一个“相异数”任意两个数位上的数字对调后可以得到三个不同的新三位数,把这三个新三位数的和记为S(n),如n=123,对调百位与十位上的数字得到213,对调百位与个位上的数字得到321,对调十位与个位上的数字得到132,这三个新三位数的和S(123)=213+321+132=666,是一个“称心数”.(1)计算:S(432),S(617),并判断是否为“称心数”;(2)若“相异数”n=100+10p+q(其中正整数p,q满足1≤p≤9,1≤q≤9),且S(n)为最大的三位“称心数”,求n的值.3.材料:对任意一个n位正整数M(n≥3),若M与它的十位数字的p倍的差能被整数q整除,则称这个数为“p阶q级数”,例如:712是“5阶7级数”,因为712517-⨯=101;712也是“12阶10级数”,因为71212110-⨯=70.(1)若415是“5阶k级数”,且k<300,求k的最大值;(2)若一个四位数M的百位数字比个位数字大2,十位数字为1,且M既是“4阶13级数”又是“6阶5级数”,求这个四位数M.参考答案:1.(1)证明见解析;(2)满足条件的“极差数”有671或143或275.【解析】【分析】(1)设任意一个“极差数”的百位数字是a ,十位数字是b ,个位数字是c ,根据条件式子100a +10b +c =11(10b +9c ),即可求证;(2)设任意一个“极差数”的百位数字是a ,十位数字是b ,个位数字是c ,由题意可得M =1000b +100a +10b +c ,N =1000a +100b +10c +1,再根据M −N 能被12整除,可求满足条件的“极差数”.【详解】解:(1)证明:设任意一个“极差数”的百位数字是a ,十位数字是b ,个位数字是c , ∵a =b −c ,∵100a +10b +c =100b −100c +10b +c =110b −99c =11(10b −9c ),∵100a +10b +c 能被11整除,∵任意一个“极差数”一定能被11整除;(2)设任意一个“极差数”的百位数字是a ,十位数字是b ,个位数字是c ,则M =1000b +100a +10b +c ,N =1000a +100b +10c +1,则M −N =−900a +910b −9c −1=−900(b −c )+910b −9c −1=10b +891c −1,M−N 能被12整除,当c =1时,b =1,a =0(舍去);当c =1时,b =7,a =6;当c =3时,b =4,a =1;当c =5时,b =1,a =−4(舍去);当c =5时,b =7,a =2;当c =7时,b =4,a =−3(舍去).故满足条件的“极差数”有671或143或275.【点睛】本题考查了分解因式的实际运用,学生的阅读理解能力以及知识的迁移能力,解题的关键是理解“极差数”的定义.2.(432)999S =,是“称心数”;(617)1554S =,不是“称心数”;(2)n 的值为162或153或135或126.【解析】【分析】(1)根据“称心数”和“相异数”的定义即可判断;(2)根据“称心数”和“相异数”的定义可得()999S n =且19p q ++=,由此即可得出答案.【详解】(1)由题意得:(432)342234423999S =++=,(617)1677166711554S =++=,则(432)S 是“称心数”,(617)S 不是“称心数”;(2)∵“相异数”10010n p q =++(其中正整数p ,q 满足19,19p q ≤≤≤≤),n ∴是一个三位数,且百位数字为1,十位数字为p ,个位数字为q ,1p q ∴≠≠,又()S n 为最大的三位“称心数”,()999S n ∴=,19p q ∴++=,∵p 、q 的所有可能取值为62p q =⎧⎨=⎩或53p q =⎧⎨=⎩或35p q =⎧⎨=⎩或26p q =⎧⎨=⎩, n ∴的值为162或153或135或126.【点睛】本题考查了有理数的加法运算、二元一次方程的应用,理解“称心数”和“相异数”的定义是解题关键.3.(1)k 的最大值为205;(2)满足要求的M 为8311或6816.【解析】【分析】(1)根据材料中给出的“p 阶q 级数”的含义及k 的取值范围即可得出答案.(2)先设未知数表示出M ,然后根据M 既是“4阶13级数”又是“6阶5级数”列出式子并结合整除规律即可解答.【详解】(1)∵415是“5阶k 级数”,所以41551410k k -⨯=为整数, ∵k <300,∵k 的最大值为205.(2)设M 为千位数字为x ,个位数字为y ,则百位数字为y+2,∵M =1000x+100(y+2)+10+y ,(0≤y≤7)∵M 既是“4阶13级数”又是“6阶5级数”, ∵4113M -⨯与615M -⨯均为整数, ∵M ﹣4是13的整数倍,M ﹣6是5的整数倍,∵y =6或1,当y =1时,M ﹣4=1000x+307,413M -=100030713x +=77x+24﹣513x +, ∵x =8,∵M =8311.当y =6时,M ﹣4=1000x+812413M -=100081213x +=77x+63﹣713x +, ∵x =6,∵M =6816.综上所述,满足要求的M 为8311或6816.【点睛】本题以新定义的形式考查了二元一次不定方程的应用、数的整除规律.读懂材料、正确理解“p 阶q 级数”的含义是解答本题的关键.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

小康老师中考数学专题复习--新定义型问题一、中考专题诠释所谓“新定义”型问题,主要是指在问题中定义了中学数学中没有学过的一些概念、新运算、新符号,要求学生读懂题意并结合已有知识、能力进行理解,根据新定义进行运算、推理、迁移的一种题型.“新定义”型问题成为近年来中考数学压轴题的新亮点.在复习中应重视学生应用新的知识解决问题的能力。

近几年日照命题情况来看,该类题型为必考型,一般一道选择或填空再加一道答题,占12到18分。

二、解题策略和解法精讲“新定义型专题”关键要把握两点:一是掌握问题原型的特点及其问题解决的思想方法;二是根据问题情景的变化,通过认真思考,合理进行思想方法的迁移.三、中考典例剖析考点一:规律题型中的新定义例1 (2013•湛江)阅读下面的材料,先完成阅读填空,再按要求答题:sin30°=12,cos30°=32,则sin230°+cos230°= ;①sin45°=22,cos45°=22,则sin245°+cos245°= ;②sin60°=32,cos60°=12,则sin260°+cos260°=.③…观察上述等式,猜想:对任意锐角A,都有sin2A+cos2A=.④(1)如图,在锐角三角形ABC中,利用三角函数的定义及勾股定理对∠A证明你的猜想;(2)已知:∠A为锐角(cosA>0)且sinA=35,求cosA.1.(2013•绵阳)我们知道,三角形的三条中线一定会交于一点,这一点就叫做三角形的重心.重心有很多美妙的性质,如关于线段比.面积比就有一些“漂亮”结论,利用这些性质可以解决三角形中的若干问题.请你利用重心的概念完成如下问题:(1)若O是△ABC的重心(如图1),连结AO并延长交BC于D,证明:23AOAD=;(2)若AD是△ABC的一条中线(如图2),O是AD上一点,且满足23AOAD=,试判断O是△ABC的重心吗?如果是,请证明;如果不是,请说明理由;(3)若O是△ABC的重心,过O的一条直线分别与AB、AC相交于G、H(均不与△ABC 的顶点重合)(如图3),S四边形BCHG,S△AGH分别表示四边形BCHG和△AGH的面积,试探究BCHGAGHSS四边形的最大值.考点二:运算题型中的新定义例2 (2013•河北)定义新运算:对于任意实数a,b,都有a⊕b=a(a-b)+1,等式右边是通常的加法、减法及乘法运算,比如:2⊕5=2×(2-5)+1=2×(-3)+1=-6+1==-5。

(1)求(-2)⊕3的值;(2)若3⊕x的值小于13,求x的取值范围,并在图所示的数轴上表示出来.2.(2013•十堰)定义:对于实数a,符号[a]表示不大于a的最大整数.例如:[5.7]=5,[5]=5,[-π]=-4.(1)如果[a]=-2,那么a的取值范围是.(2)如果[12x]=3,求满足条件的所有正整数x.考点三:探索题型中的新定义例3 (2013•钦州)定义:直线l1与l2相交于点O,对于平面内任意一点M,点M到直线l1、l2的距离分别为p、q,则称有序实数对(p,q)是点M的“距离坐标”,根据上述定义,“距离坐标”是(1,2)的点的个数是()A.2 B.3 C.4 D.5思路分析:“距离坐标”是(1,2)的点表示的含义是该点到直线l1、l2的距离分别为1、2.由于到直线l1的距离是1的点在与直线l1平行且与l1的距离是1的两条平行线a1、a2上,到直线l2的距离是2的点在与直线l2平行且与l2的距离是2的两条平行线b1、b2上,它们有4个交点,即为所求.对应训练3.(2013•台州)如果三角形有一边上的中线长恰好等于这边的长,那么称这个三角形为“好玩三角形”.(1)请用直尺和圆规画一个“好玩三角形”;(2)如图在Rt△ABC中,∠C=90°,tanA=32,求证:△ABC是“好玩三角形”;(3))如图2,已知菱形ABCD的边长为a,∠ABC=2β,点P,Q从点A同时出发,以相同速度分别沿折线AB-BC和AD-DC向终点C运动,记点P经过的路程为s.①当β=45°时,若△APQ是“好玩三角形”,试求as的值;②当tanβ的取值在什么范围内,点P,Q在运动过程中,有且只有一个△APQ能成为“好玩三角形”.请直接写出tanβ的取值范围.(4)(本小题为选做题,作对另加2分,但全卷满分不超过150分)依据(3)的条件,提出一个关于“在点P,Q的运动过程中,tanβ的取值范围与△APQ是‘好玩三角形’的个数关系”的真命题(“好玩三角形”的个数限定不能为1)考点四:开放题型中的新定义例4 (2013•宁波)若一个四边形的一条对角线把四边形分成两个等腰三角形,我们把这条对角线叫这个四边形的和谐线,这个四边形叫做和谐四边形.如菱形就是和谐四边形.(1)如图1,在梯形ABCD中,AD∥BC,∠BAD=120°,∠C=75°,BD平分∠ABC.求证:BD是梯形ABCD的和谐线;(2)如图2,在12×16的网格图上(每个小正方形的边长为1)有一个扇形BAC,点A.B.C 均在格点上,请在答题卷给出的两个网格图上各找一个点D,使得以A、B、C、D为顶点的四边形的两条对角线都是和谐线,并画出相应的和谐四边形;(3)四边形ABCD中,AB=AD=BC,∠BAD=90°,AC是四边形ABCD的和谐线,求∠BCD的度数.对应训练4.(2013•常州)用水平线和竖起线将平面分成若干个边长为1的小正方形格子,小正方形的顶点称为格点,以格点为顶点的多边形称为格点多边形.设格点多边形的面积为S,该多边形各边上的格点个数和为a,内部的格点个数为b,则S=12a+b-1(史称“皮克公式”).小明认真研究了“皮克公式”,并受此启发对正三角开形网格中的类似问题进行探究:正三角形网格中每个小正三角形面积为1,小正三角形的顶点为格点,以格点为顶点的多边形称为格点多边形,下图是该正三角形格点中的两个多边形:根据图中提供的信息填表:格点多边形各边上的格点的个数格点边多边形内部的格点个数格点多边形的面积多边形1 8 1多边形2 7 3…………一般格点多边形 a b S则S与a、b之间的关系为S=(用含a、b的代数式表示).考点五:阅读材料题型中的新定义例5 (2013•舟山)对于点A(x1,y1),B(x2,y2),定义一种运算:A⊕B=(x1+x2)+(y1+y2).例如,A(-5,4),B(2,-3),A⊕B=(-5+2)+(4-3)=-2.若互不重合的四点C,D,E,F,满足C⊕D=D⊕E=E⊕F=F⊕D,则C,D,E,F四点()A.在同一条直线上B.在同一条抛物线上C.在同一反比例函数图象上D.是同一个正方形的四个顶点对应训练5.(2013•天门)一张矩形纸片,剪下一个正方形,剩下一个矩形,称为第一次操作;在剩下的矩形纸片中再剪下一个正方形,剩下一个矩形,称为第二次操作;…;若在第n次操作后,剩下的矩形为正方形,则称原矩形为n阶奇异矩形.如图1,矩形ABCD中,若AB=2,BC=6,则称矩形ABCD为2阶奇异矩形.(1)判断与操作:如图2,矩形ABCD长为5,宽为2,它是奇异矩形吗?如果是,请写出它是几阶奇异矩形,并在图中画出裁剪线;如果不是,请说明理由.(2)探究与计算:已知矩形ABCD的一边长为20,另一边长为a(a<20),且它是3阶奇异矩形,请画出矩形ABCD及裁剪线的示意图,并在图的下方写出a的值.(3)归纳与拓展:已知矩形ABCD两邻边的长分别为b,c(b<c),且它是4阶奇异矩形,求b:c(直接写出结果).四、中考真题演练一、选择题1.(2013•成都)在平面直角坐标系中,下列函数的图象经过原点的是()A.y=-x+3 B.y=5xC.y=2x D.y=-2x2+x-72.(2013•绍兴)若圆锥的轴截图为等边三角形,则称此圆锥为正圆锥,则正圆锥的侧面展开图的圆心角是()A.90°B.120°C.150°D.180°3.(2013•潍坊)对于实数x,我们规定[x]表示不大于x的最大整数,例如[1.2]=1,[3]=3,[-2.5]=-3,若[410x]=5,则x的取值可以是()A.40 B.45 C.51 D.56 4.(2013•乌鲁木齐)对平面上任意一点(a,b),定义f,g两种变换:f(a,b)=(a,-b).如f(1,2)=(1,-2);g(a,b)=(b,a).如g(1,2)=(2,1).据此得g(f(5,-9))=()A.(5,-9)B.(-9,-5)C.(5,9)D.(9,5)5.(2013•常德)连接一个几何图形上任意两点间的线段中,最长的线段称为这个几何图形的直径,根据此定义,图(扇形、菱形、直角梯形、红十字图标)中“直径”最小的是()A.B.C.D.二、填空题6.(2013•上海)当三角形中一个内角α是另一个内角β的两倍时,我们称此三角形为“特征三角形”,其中α称为“特征角”.如果一个“特征三角形”的“特征角”为100°,那么这个“特征三角形”的最小内角的度数为.7.(2013•宜宾)如图,△ABC是正三角形,曲线CDEF叫做正三角形的渐开线,其中弧CD、弧DE、弧EF的圆心依次是A、B、C,如果AB=1,那么曲线CDEF的长是.8.(2013•淄博)在△ABC中,P是AB上的动点(P异于A,B),过点P的一条直线截△ABC,使截得的三角形与△ABC相似,我们不妨称这种直线为过点P的△ABC的相似线.如图,∠A=36°,AB=AC,当点P在AC的垂直平分线上时,过点P的△ABC的相似线最多有条.9.(2013•乐山)对非负实数x“四舍五入”到个位的值记为(x).即当n为非负整数时,若n-12≤x<n+12,则(x)=n.如(0.46)=0,(3.67)=4.给出下列关于(x)的结论:①(1.493)=1;②(2x)=2(x);③若(12x-1)=4,则实数x的取值范围是9≤x<11;④当x≥0,m为非负整数时,有(m+2013x)=m+(2013x);⑤(x+y)=(x)+(y);其中,正确的结论有(填写所有正确的序号).三、解答题10.(2013•莆田)定义:如图1,点C在线段AB上,若满足AC2=BC•AB,则称点C为线段AB的黄金分割点.如图2,△ABC中,AB=AC=1,∠A=36°,BD平分∠ABC交AC于点D.(1)求证:点D是线段AC的黄金分割点;(2)求出线段AD的长.11.(2013•大庆)对于钝角α,定义它的三角函数值如下:sinα=sin(180°-α),cosα=-cos(180°-α)(1)求sin120°,cos120°,sin150°的值;(2)若一个三角形的三个内角的比是1:1:4,A,B是这个三角形的两个顶点,sinA,cosB 是方程4x2-mx-1=0的两个不相等的实数根,求m的值及∠A和∠B的大小.12.(2013•安徽)我们把由不平行于底的直线截等腰三角形的两腰所得的四边形称为“准等腰梯形”.如图1,四边形ABCD即为“准等腰梯形”.其中∠B=∠C.(1)在图1所示的“准等腰梯形”ABCD中,选择合适的一个顶点引一条直线将四边形ABCD 分割成一个等腰梯形和一个三角形或分割成一个等腰三角形和一个梯形(画出一种示意图即可);(2)如图2,在“准等腰梯形”ABCD中∠B=∠C.E为边BC上一点,若AB∥DE,AE∥DC,求证:AB BE DC EC;(3)在由不平行于BC的直线AD截△PBC所得的四边形ABCD中,∠BAD与∠ADC的平分线交于点E.若EB=EC,请问当点E在四边形ABCD内部时(即图3所示情形),四边形ABCD是不是“准等腰梯形”,为什么?若点E不在四边形ABCD内部时,情况又将如何?写出你的结论.(不必说明理由)13.(2013•北京)对于平面直角坐标系xOy中的点P和⊙C,给出如下的定义:若⊙C上存在两个点A、B,使得∠APB=60°,则称P为⊙C的关联点.已知点D(12,12),E(0,-2),F(23,0).(1)当⊙O的半径为1时,①在点D、E、F中,⊙O的关联点是.②过点F作直线l交y轴正半轴于点G,使∠GFO=30°,若直线l上的点P(m,n)是⊙O 的关联点,求m的取值范围;(2)若线段EF上的所有点都是某个圆的关联点,求这个圆的半径r的取值范围.。

相关文档
最新文档