八年级数学 证明 2
初中数学八年级《命题与证明第二课时证明》公开课教学设计
命题与证明令令的知识储备,同时,学生已经具有了基本的图形认识能力和初步的~ 1 ~空间想象能力,但学生可能对寻觅证明思路,书写证明过程必须步步有据等接受有艰难。
令1.理解定义、基本事实、定理、证明的意义,能区分基本事实、定理和命题。
2.通过具体例子了解综合法证明的步骤和书写格式,体验证明的必要性和数学推理的严密性。
3.了解推理过程步步有据的重要性,能够证明一些简单的几何问题,增强学生的推理论证意识,培养学生的演绎推理习惯和能力。
4.通过对欧几里得的《几何原本》的简单介绍渗透数学文化教育。
令令令情境教学法、引导发现法、自主探索法~ 2 ~令本节课教学流程共分为五个环节,挨次是:环节一创设情境,引入新课环节二知识回顾,认识概念环节三合作探索,学习新知环节四学以致用,深化理解环节五课堂小结,分层作业令微课视频简单介绍欧几里得的《几何原本》 .教师介绍古希腊数学家欧几里得,引入本节课题“证明”.通过微课介绍,激发学生的兴趣,渗透数学文化教育.(一)思量请判断下列命题是真命题还是假命题.1.如果|a| = |b|,那末a = b .2.在角的内部,以角的顶点为端点的一条射线把这个角分成两个相等的角,这条射线叫做这个角的平分线.3.同位角相等,两直线平行.4.内错角相等,两直线平行.(二)从基本事实或者其他真命题出发,用推理方法判断为正确~ 3 ~的,并被选作判断命题真假的依据,这样的真命题叫做定理.师生行为: (1)教师引导学生复习命题相关知识,并进一步探索真命题的分类. (2)学生回顾已学的基本事实和定理. (3)教师引导学生归纳定理的概念.教师充分发挥学生的主体作用,让学生从自己的视点去观察、归纳,让学生亲身经历概念形成的全过程,感受数学概念形成的自然性与合理性,加深学生对概念的理解,突出本节课的重点.通过回顾基本事实为下面的证明做好铺垫.1.例题已知:如图,直线c与直线a ,b相交,且∠1=∠2求证:a∥b .2.从已知条件出发,依据定义、基本事实、已证定理,并按照逻辑规则,推导出结论,这一方法称为演绎推理(或者演绎法) .3.演绎推理的过程,叫做演绎证明,简称证明.师生行为: (1)教师点拨证明的书写格式及证明过程要步步有据. (2)学生探索证明方法,师生共同完成证明过程,教师板演.(3)教师引导学生观察例题证明过程,归纳演绎推理和演绎证明的~ 4 ~~ 5 ~概念.通过对学生熟悉的“内错角相等,两直线平行”的论 证,使学生理解严格的数学证明要有理有据,感悟学习演绎证明的必要.通过对 例题的反思归纳演绎推理和演绎证明的概念,加深学生对概念的理解.此例题是 由基本事实“同位角相等,两直线平行”推理得出的定理,让学生体味欧式几 何公理化的演绎范式.练习已知:如图,直线c 与直线a ,b 相交,且∠1+∠2=180° 求证: a ∥b .师生行为: (1)学生自主探索完成练习题. (2)投影展示学生 解题过程并请学生自评.在例题中通过基本事实证明出定理“内错角相等,两直线平行”后出示此练习题,再用定理“内错角相等,两直线平行”证明另一个 命题的正确性,再次体味欧式几何公理化的演绎范式.例题已知:如图,∠A0B + ∠B0C = 180° ,0E 平分∠A0B ,0F 平 分∠B0C .求证: 0E ⊥ 0F.~ 6 ~师生行为: (1)学生独立思量完成例题,如有艰难可同桌交流 探索. (2)投影展示学生的证明过程,学生自评互评,教师适时点 .通过具体例子了解综合法证明的步骤和书写格式,体验证明的必要性和数学推理的严密性.体味推理过程步步有据的重要性,突破本节 课的难点.练习请在下题的括号内,填上推理的依据:已知:如图,点B 、A 、E 在一条直线上,∠1 = ∠B . 求证:∠C = ∠2.证明: ∵ ∠1 = ∠B ( )∴ AD ∥ BC ( )∴ ∠C = ∠2 ( )变式一:已知:如图,点B 、A 、E 在一条直线上,∠1 = ∠2,∠EAC =拨~ 7 ~2∠B .求证: AD ∥ BC .变式二:已知:如图,点B 、A 、E 在一条直线上, AD ∥ BC ,∠B = ∠C . 求证:∠1 = ∠2.师生行为: (1)学生自主探索完成证明过程,同桌互评. (2)教师根据此题编出变式练习题,由学生完成完整的证明过程.通过练习让学生进一步体味证明过程要步步有据. 变式练习设计目的是进一步巩固证明过程的书写,增强学生的推理论证意识,培养学 生的演绎推理习惯和能力.小结:请同学们静思一下,想一想这节课你有哪些新的收获?师生行为: (1)学生思量后回答. (2)教师在学生总结的基础 上,把学生反思与教师总结相结合,使学生对本节课知识有一个完 整系统的认识.让学生自己小结,发挥学生的主体作用,提高了他们的表达能力,尊重学生的个性发展,促进了学生综合素质的提高. 先请同学回顾,然后教师通过PPT 课件展示本节课的知识结构,学生将自我回顾与其融合,完善本节课知识体系.分层作业:必做题:课本P84 习题13.2 第5 、6 题.选做题:思量如何证明三角形内角和等于180° .必做题是对本节课内容的巩固和反馈,选做题是对下节课知识的预习,为下节课的学习做准备.附:板书设计13.2.1 命题与证明~ 8 ~。
八年级数学上册 第2章 三角形2.2 命题与证明第2课时 真命题、假命题与定理课件
第三页,共十七页。
判断下列命题(mìng tí)为真命题(mìng tí)的依据是什 么(1?)如果(rúguǒ)a是整数,那么a是有理数;
有理数的定义
(2)如果(rúguǒ)△ABC是等边三角形,那么△ABC是
等腰三角形.
等腰(等边)三角形的定义
第四页,共十七页。
试一试
下列命题为真命题的是( ) B
第十五页,共十七页。
课后小结(xiǎojié)
真、假命题
基本事实
定理
你有哪些疑惑与收获?
第十六页,共十七页。
内容 总结 (nèiróng)
第2课时 真命题、假命题与定理。(2)如果△ABC是等边三角形,那么△ABC是等腰三角 形.。B. 0的平方是0。D. 三角形的一个外角等于它的两个内角之和。∠A不一定等于∠B。等于 与它不相邻的两个内角的和。基本事实:我们把少数真命题作为基本事实.。定理:我们把经 过证明为真的命题叫作定理.。任何定理都有逆命题,但不一定有逆定理.。(3)两条直线 (zhíxiàn)被第三条直线(zhíxiàn)所截,同位角相等.。你有哪些疑惑与收获
第十三页,共十七页。
真命题
2. 举反例说明下列命题是假命题:
(1)两个锐角的和是钝∠A+∠B=65°,和是锐角(ruìjiǎo).
(2)如果数a, b的积ab>0,那么a,b都是正数(zhèngshù);
如取a=-3,b=-5,则ab=15>0,但a、b都是负数(fùshù).
真命题 假命题
当一个(yī ɡè)命题是真命题时,它的逆命题不一定是真命题.
第九页,共十七页。
互逆定理:如果一个定理的逆命题(mìng tí)能被证明是真命题
八年级数学 勾股定理证明方法
勾股定理的证明【证法1】(课本的证明)做8个全等的直角三角形,设它们的两条直角边长分别为a 、b ,斜边长为c ,再做三个边长分别为a 、b 、c 的正方形,把它们像上图那样拼成两个正方形.从图上可以看到,这两个正方形的边长都是a + b ,所以面积相等. 即abc ab b a 214214222⨯+=⨯++, 整理得 222c b a =+.【证法2】(邹元治证明)以a 、b 为直角边,以c 为斜边做四个全等的直角三角形,则每个直角三角形的面积等于ab21. 把这四个直角三角形拼成如图所示形状,使A 、E 、B 三点在一条直线上,B 、F 、C 三点在一条直线上,C 、G 、D 三点在一条直线上.∵ Rt ΔHAE ≌ Rt ΔEBF, ∴ ∠AHE = ∠BEF .∵ ∠AEH + ∠AHE = 90º, ∴ ∠AEH + ∠BEF = 90º. ∴ ∠HEF = 180º―90º= 90º.∴ 四边形EFGH 是一个边长为c 的 正方形. 它的面积等于c 2.∵ Rt ΔGDH ≌ Rt ΔHAE, ∴ ∠HGD = ∠EHA .∵ ∠HGD + ∠GHD = 90º, ∴ ∠EHA + ∠GHD = 90º. 又∵ ∠GHE = 90º,∴ ∠DHA = 90º+ 90º= 180º.∴ ABCD 是一个边长为a + b 的正方形,它的面积等于(a +∴()22214c ab b a +⨯=+. ∴ 222c b a =+.【证法3】(赵爽证明) 以a 、b 为直角边(b>a ), 以c 为斜 边作四个全等的直角三角形,则每个直角三角形的面积等于ab 21. 把这四个直角三角形拼成如图所示形状.∵ Rt ΔDAH ≌ Rt ΔABE, ∴ ∠HDA = ∠EAB .∵ ∠HAD + ∠HAD = 90º, ∴ ∠EAB + ∠HAD = 90º,∴ ABCD 是一个边长为c 的正方形,它的面积等于c 2. ∵ EF = FG =GH =HE = b ―a , ∠HEF = 90º.∴ EFGH 是一个边长为b ―a 的正方形,它的面积等于()2a b -.∴ ()22214c a b ab =-+⨯.∴ 222c b a =+. 【证法4】(1876年美国总统Garfield 证明)以a 、b 为直角边,以c 为斜边作两个全等的直角三角形,则每个直角三角形的面积等于ab 21. 把这两个直角三角形拼成如图所示形状,使A 、E 、B 三点在一条直线上.∵ Rt ΔEAD ≌ Rt ΔCBE, ∴ ∠ADE = ∠BEC .∵ ∠AED + ∠ADE = 90º,∴ ∠AED + ∠BEC = 90º.∴ ∠DEC = 180º―90º= 90º. ∴ ΔDEC 是一个等腰直角三角形,它的面积等于221c .又∵ ∠DAE = 90º, ∠EBC = 90º,∴ AD ∥BC .∴ ABCD 是一个直角梯形,它的面积等于()221b a +. ∴ ()222121221c ab b a +⨯=+. ∴ 222c b a =+.【证法5】(梅文鼎证明)做四个全等的直角三角形,设它们的两条直角边长分别为a 、b ,斜边长为c . 把它们拼成如图那样的一个多边形,使D 、E 、F 在一条直线上. 过C 作AC 的延长线交DF 于点P .∵ D 、E 、F 在一条直线上, 且Rt ΔGEF ≌ Rt ΔEBD, ∴ ∠EGF = ∠BED ,∵ ∠EGF + ∠GEF = 90°, ∴ ∠BED + ∠GEF = 90°, ∴ ∠BEG =180º―90º= 90º.又∵ AB = BE = EG = GA = c ,∴ ABEG 是一个边长为c 的正方形. ∴ ∠ABC + ∠CBE = 90º.∵ Rt ΔABC ≌ Rt ΔEBD, ∴ ∠ABC = ∠EBD .∴ ∠EBD + ∠CBE = 90º. 即 ∠CBD= 90º. 又∵ ∠BDE = 90º,∠BCP = 90º, BC = BD = a . ∴ BDPC 是一个边长为a 的正方形. 同理,HPFG 是一个边长为b 的正方形. 设多边形GHCBE 的面积为S ,则,21222ab S b a ⨯+=+ abS c 2122⨯+=,∴ 222c b a =+.【证法6】(项明达证明)做两个全等的直角三角形,设它们的两条直角边长分别为a 、b (b>a ) ,斜边长为c . 再做一个边长为c 的正方形. 把它们拼成如图所示的多边形,使E 、A 、C 三点在一条直线上.过点Q 作QP ∥BC ,交AC 于点P . 过点B 作BM ⊥PQ ,垂足为M ;再过点 F 作FN ⊥PQ ,垂足为N . ∵ ∠BCA = 90º,QP ∥BC , ∴ ∠MPC = 90º, ∵ BM ⊥PQ , ∴ ∠BMP = 90º, ∴ BCPM 是一个矩形,即∠MBC = 90∵ ∠QBM + ∠MBA = ∠QBA = 90º,∠ABC + ∠MBA = ∠MBC = 90º, ∴ ∠QBM = ∠ABC ,又∵ ∠BMP = 90º,∠BCA = 90º,BQ = BA = c , ∴ Rt ΔBMQ ≌ Rt ΔBCA .同理可证Rt ΔQNF ≌ Rt ΔAEF . 从而将问题转化为【证法4】(梅文鼎证明). 【证法7】(欧几里得证明)做三个边长分别为a 、b 、c 的正方形,把它们拼成如图所示形状,使H 、C 、B 三点在一条直线上,连结BF 、CD . 过C 作CL ⊥DE ,交AB 于点M ,交DE 于点L . ∵ AF = AC ,AB = AD , ∠FAB = ∠GAD , ∴ ΔFAB ≌ ΔGAD , ∵ ΔFAB 的面积等于221aΔGAD 的面积等于矩形ADLM的面积的一半,∴ 矩形ADLM 的面积 =2a 同理可证,矩形MLEB 的面积 =2b .∵ 正方形ADEB 的面积= 矩形ADLM 的面积 + 矩形MLEB 的面积 ∴ 222b a c += ,即 222c b a =+. 【证法8】(利用相似三角形性质证明)如图,在Rt ΔABC 中,设直角边AC 、BC 的长度分别为a 、b ,斜边AB 的长为c ,过点C 作CD ⊥AB ,垂足是D .在ΔADC 和ΔACB 中,∵ ∠ADC = ∠ACB = 90º,∠CAD = ∠BAC , ∴ ΔADC ∽ ΔACB .AD ∶AC = AC ∶AB , 即 AB AD AC ∙=2.同理可证,ΔCDB ∽ ΔACB ,从而有 AB BD BC ∙=2.∴ ()222AB AB DB AD BC AC =∙+=+,即 222c b a =+.【证法9】(杨作玫证明)做两个全等的直角三角形,设它们的两条直角边长分别为a 、b (b>a ),斜边长为c .再做一个边长为c 的正方形. 把它们拼成如图所示的多边形. 过A 作AF ⊥AC ,AF 交GT 于F ,AF 交DT 于R . 过B 作BP ⊥AF ,垂足为P . 过D 作DE 与CB 的延长线垂直,垂足为E ,DE 交AF 于H .∵ ∠BAD = 90º,∠PAC = 90º, ∴ ∠DAH = ∠BAC .又∵ ∠DHA = 90º,∠BCA = 90º,AD = AB = c ,∴ Rt ΔDHA ≌ Rt ΔBCA .∴ DH = BC = a ,AH = AC = b . 由作法可知, PBCA 是一个矩形, 所以 Rt ΔAPB ≌ Rt ΔBCA . 即PB = CA = b ,AP= a ,从而PH = b ―a .∵ Rt ΔDGT ≌ Rt ΔBCA , Rt ΔDHA ≌ Rt ΔBCA . ∴ Rt ΔDGT ≌ Rt ΔDHA .∴ DH = DG = a ,∠GDT = ∠HDA . 又∵ ∠DGT = 90º,∠DHF = 90º,∠GDH = ∠GDT + ∠TDH = ∠HDA+ ∠TDH = 90º, ∴ DGFH 是一个边长为a 的正方形.∴ GF = FH = a . TF ⊥AF ,TF = GT ―GF = b ―a .∴ TFPB 是一个直角梯形,上底TF=b ―a ,下底BP= b ,高FP=a +(b ―a ). 用数字表示面积的编号(如图),则以c 为边长的正方形的面积为543212S S S S S c ++++= ①∵()[]()[]a b a a b b S S S -+∙-+=++21438 =ab b 212-, 985S S S +=,∴ 824321S ab b S S --=+= 812S S b -- . ②把②代入①,得98812212S S S S b S S c ++--++== 922S S b ++ = 22a b +.∴ 222c b a =+.【证法10】(李锐证明)设直角三角形两直角边的长分别为a 、b (b>a ),斜边的长为c . 做三个边长分别为a 、b 、c 的正方形,把它们拼成如图所示形状,使A 、E 、G 三点在一条直线上. 用数字表示面积的编号(如图).∵ ∠TBE = ∠ABH = 90º, ∴ ∠TBH = ∠ABE . 又∵ ∠BTH = ∠BEA = 90º,BT = BE = b , ∴ Rt ΔHBT ≌ Rt ΔABE . ∴ HT = AE = a . ∴ GH = GT ―HT = b ―a .又∵ ∠GHF + ∠BHT = 90º,∠DBC + ∠BHT = ∠TBH + ∠∴ ∠GHF = ∠DBC .∵ DB = EB ―ED = b ―a , ∠HGF = ∠BDC = 90º,∴ Rt ΔHGF ≌ Rt ΔBDC . 即 27S S =.过Q 作QM ⊥AG ,垂足是M . 由∠BAQ = ∠BEA = 90º,可知 ∠ABE = ∠QAM ,而AB = AQ = c ,所以Rt ΔABE ≌ Rt ΔQAM . 又Rt ΔHBT ≌ Rt ΔABE . 所以Rt ΔHBT ≌ Rt ΔQAM . 即 58S S =.由Rt ΔABE ≌ Rt ΔQAM ,又得QM = AE = a ,∠AQM = ∠BAE .∵ ∠AQM + ∠FQM = 90º,∠BAE + ∠CAR = 90º,∠AQM = ∠BAE , ∴ ∠FQM = ∠CAR .又∵ ∠QMF = ∠ARC = 90º,QM = AR = a ,∴ Rt ΔQMF ≌ Rt ΔARC . 即64S S =.∵ 543212S S S S S c ++++=,612S S a +=,8732S S S b ++=,又∵ 27S S =,58S S =,64S S =,∴8736122S S S S S b a ++++=+ =52341S S S S S ++++=2c , 即 222c b a =+.【证法11】(利用切割线定理证明)在Rt ΔABC 中,设直角边BC = a ,AC = b ,斜边AB = c . 如图,以B 为圆心a 为半径作圆,交AB 及AB 的延长线分别于D 、E ,则BD = BE = BC = a . 因为∠BCA = 90º,点C 在⊙B 上,所以AC 是⊙B 的切线. 由切割线定理,得AD AE AC ∙=2=()()BD AB BE AB -+=()()a c a c -+= 22a c -,即222a c b -=,∴ 222c b a =+.【证法12】(利用多列米定理证明)在Rt ΔABC 中,设直角边BC = a ,AC = b ,斜边AB = c (如图). 过点A 作AD ∥CB ,过点B 作BD ∥CA ,则ACBD 为矩形,矩形ACBD 内接于一个圆. 根据多列米定理,圆内接四边形对角线的乘积等于两对边乘积之和,有BD AC BC AD DC AB ∙+∙=∙,∵ AB = DC = c ,AD = BC = a , AC = BD = b ,∴ 222AC BC AB +=,即 222b a c +=, ∴ 222c b a =+.【证法13】在Rt ΔABC 中,设直角边BC = a ,AC = b ,斜边AB = c . 作Rt ΔABC 的内切圆⊙O ,切点分别为D 、E 、F (如图),设⊙O 的半径为r .∵ AE = AF ,BF = BD ,CD = CE ,∴ ()()()BF AF CD BD CE AE AB BC AC +-+++=-+= CD CE += r + r = 2r,即 r c b a 2=-+, ∴ c r b a +=+2.∴ ()()222c r b a +=+,即 ()222242c rc r ab b a ++=++,∵ab S ABC 21=∆,∴ ABC S ab ∆=42, 又∵ AOC BOCAOB ABC S S S S ∆∆∆∆++= = br ar cr 212121++ = ()r c b a ++21= ()r c c r ++221= rc r +2,∴()ABC S rc r ∆=+442, ∴ ()ab rc r242=+,∴ 22222c ab ab b a +=++, ∴ 222c b a =+. 【证法14】(利用反证法证明)如图,在Rt ΔABC 中,设直角边AC 、BC 的长度分别为a 、b ,斜边AB 的长为c ,过点C 作CD ⊥AB ,垂足是D .假设222c b a ≠+,即假设 222AB BC AC ≠+,则由AB AB AB ∙=2=()BD AD AB +=BD AB AD AB ∙+∙可知 AD AB AC ∙≠2,或者 BD AB BC ∙≠2. 即 AD :AC ≠AC :AB ,或者 BD :BC ≠BC :AB .在ΔADC 和ΔACB 中,∵ ∠A = ∠A ,∴ 若 AD :AC ≠AC :AB ,则∠ADC ≠∠ACB . 在ΔCDB 和ΔACB 中, ∵ ∠B = ∠B , ∴ 若BD :BC ≠BC :AB ,则 ∠CDB ≠∠ACB . 又∵ ∠ACB = 90º,∴ ∠ADC ≠90º,∠CDB ≠90º.这与作法CD ⊥AB 矛盾. 所以,222AB BC AC ≠+的假设不能成立.∴ 222c b a =+.【证法15】(辛卜松证明)设直角三角形两直角边的长分别为a 、b ,斜边的长为c . 作边长是a+b 的正方形ABCD . 把正方形ABCD 划分成上方左图所示的几个部分,则正方形ABCD 的面积为()ab b a b a 2222++=+;把正方形ABCD划分成上方右图所示的几个部分,则正方形ABCD 的面积为 ()22214c ab b a +⨯=+ =22c ab +.∴ 22222c ab ab b a +=++,∴ 222c b a =+.【证法16】(陈杰证明)D设直角三角形两直角边的长分别为a 、b (b>a ),斜边的长为c . 做两个边长分别为a 、b 的正方形(b>a ),把它们拼成如图所示形状,使E 、H 、M 三点在一条直线上. 用数字表示面积的编号(如图). 在EH = b 上截取ED = a ,连结DA 、则 AD = c .∵ EM = EH + HM = b + a , ED = a ∴ DM = EM ―ED = ()a b +―a = b . 又∵ ∠CMD = 90º,CM = a , ∠AED = 90º, AE = b , ∴ Rt ΔAED ≌ Rt ΔDMC .∴ ∠EAD = ∠MDC ,DC = AD = c . ∵ ∠ADE + ∠ADC+ ∠MDC =180º,∠ADE + ∠MDC = ∠ADE + ∠EAD = 90º, ∴ ∠ADC = 90º.∴ 作AB ∥DC ,CB ∥DA ,则ABCD 是一个边长为c 的正方形. ∵ ∠BAF + ∠FAD = ∠DAE + ∠FAD = 90º, ∴ ∠BAF=∠DAE .连结FB ,在ΔABF 和ΔADE 中,∵ AB =AD = c ,AE = AF = b ,∠BAF=∠DAE , ∴ ΔABF ≌ ΔADE .∴ ∠AFB = ∠AED = 90º,BF = DE = a . ∴ 点B 、F 、G 、H 在一条直线上. 在Rt ΔABF 和Rt ΔBCG 中,∵ AB = BC = c ,BF = CG = a , ∴ Rt ΔABF ≌ Rt ΔBCG .∵ 54322S S S S c +++=, 6212S S S b ++=, 732S S a +=,76451S S S S S +===,∴6217322S S S S S b a ++++=+ =()76132S S S S S ++++=5432S S S S +++=2c ∴ 222c b a =+.。
2022秋八年级数学上册第2章三角形2.2命题与证明第2课时真假命题与定理课件新版湘教版
1.下列命题是真命题的是( D ) A.同旁内角互补 B.三角形的一个外角大于内角 C.三角形的一个外角等于它的两个内角之和 D.同角的余角相等
谢谢观赏
You made my day!
解:如果两个角是钝角,那么这两个角的和一定大于 180°, 它是真命题.
(2)判断命题“若a12<b12,则1a<1b”是真命题还是假命题,若是假命 题,请举一个反例.
解:该命题是假命题,反例:a=-2,b=-1.(反例不唯一)
13.已知:三条不同的直线 a,b,c 在同一平面内: ①a∥b;②a⊥c;③b⊥c; ④a⊥b. 请你用其中的两个作为条件,其中的一个作为结论.
11.下列命题中,原命题与逆命题都是真命题的是( C ) A.两个锐角的和是钝角 B.如果 a∥b,b∥c,那么 a∥c C.同位角相等,两直线平行 D.若 ac2=bc2,则 a=b
12.按要求完成下列各题. (1)将命题“两个钝角的和一定大于 180°”写成“如果……,那
么……”的形式,并判断该命题是真命题还是假命题;
(1)写出一个真命题,并说明它的正确性; 解:答案不唯一.如果 a⊥c,b⊥c,那么 a∥b. 理由:如图, 因为 a⊥c,b⊥c,所以∠1=90°, ∠2=90°,所以∠1=∠2,所以 a∥b.
13.已知:三条不同的直线 a,b,c 在同一平面内: ①a∥b;②a⊥c;③b⊥c; ④a⊥b. 请你用其中的两个作为条件,其中的一个作为结论.
2.要判断一个命题是真命题,常常要从命题的条件出发,通过 讲道理(推理),得出其__结__论____成立,从而判断这个命题为 真命题,这个过程叫证明.
八年级数学上册13.2命题与证明教案(新版)沪科版
13.2 命题与证明第1课时命题1.了解命题的含义.2.对命题的概念有正确的理解.3.会区分命题的条件和结论.重点找出命题的条件(题设)和结论.难点命题概念的理解.一、创设情境,导入新课教师:我们已经学过一些图形的特性,如“三角形的内角和等于180度”,“等腰三角形两底角相等”等.根据我们已学过的图形特性,试判断下列句子是否正确.1.如果两个角是对顶角,那么这两个角相等;2.两直线平行,同位角相等;3.同旁内角相等,两直线平行;4.直角都相等.二、合作交流,探究新知学生回答后,教师给出答案:根据已有的知识可以判断出句子1、2、4是正确的,句子3是错误的.像这样对某一事件作出正确或不正确判断的语句叫做命题.上面判断性语句1、2、4都是正确的命题,称为真命题,3是错误的命题,称为假命题.教师:在数学中,许多命题是由题设(或已知条件)、结论两部分组成的.题设是已知事项,结论是由已知事项推出的事项,这样的命题常可写成“如果,,那么,,”的形式.用“如果”开始的部分就是题设,而用“那么”开始的部分就是结论.例如,在命题1中,“两个角是对顶角”是题设,“这两个角相等”就是结论.有的命题的题设与结论不十分明显,可以将它写成“如果,,那么,,”的形式,就可以分清它的题设和结论了.例如,命题4可写成“如果两个角是直角,那么这两个角相等.”应用迁移、巩固提高1.教师提出问题1:把命题“三个角都相等的三角形是等边三角形”改写成“如果,,那么,,”的形式,并分别指出命题的题设和结论.学生回答后,教师总结:这个命题可以写成“如果一个三角形的三个角都相等,那么这个三角形是等边三角形”.这个命题的题设是“一个三角形的三个角都相等”,结论是“这个三角形是等边三角形”.2.教师提出问题2:把下列命题写成“如果,,那么,,”的形式,并说出它们的条件和结论.(1)对顶角相等;(2)如果a>b,b>c, 那么a>c.学生小组交流后回答,学生回答后,教师给出答案.(1)条件:如果两个角是对顶角;结论:那么这两个角相等.(2)条件:如果a>b,b>c;结论:那么a>c.对于两个命题,如果一个命题的条件和结论分别是另一个命题的结论和条件,我们把这样的两个命题称为互逆命题,其中一个叫原命题,另一个命题叫逆命题.说出上题的逆命题,并讨论.三、运用新知,深化理解例1 写出下列命题的题设和结论:(1)如果a2=b2,那么a=b;(2)对顶角相等;(3)三角形内角和等于180°.分析:第(1)题中有“如果”“那么”,条件结论明显,第(2)(3)题可先改写成“如果,,那么,,”的形式,再找出题设和结论.解:(1)题设是“a2=b2”,结论是“a=b”;(2)改写:如果两个角是对顶角,那么这两个角相等.题设:“两个角是对顶角”,结论:“这两个角相等”;(3)改写:如果三个角是一个三角形的三个内角,那么这三个角的和等于180°.题设:“三个角是一个三角形的三个内角”,结论:“三个角的和等于180°”.【归纳总结】通常情况下命题都可以写成“如果,,那么,,”的形式,当条件结论不是很明显的时候,把所给命题改写成“如果,,那么,,”的形式可以帮助我们找出题设和结论,在改写时,要做到语句通顺,措辞准确.例2 写出下列命题的逆命题,并判断逆命题的真假.(1)如果∠α与∠β是邻补角,那么∠α+∠β=180°;(2)如果△ABC是直角三角形,那么△ABC的内角中一定有两个锐角.分析:(1)交换原命题中“如果”和“那么”后面的部分即可得到原命题的逆命题,然后根据邻补角的定义判断命题的真假;(2)交换原命题中“如果”和“那么”后面的部分即可得到原命题的逆命题,然后根据三角形的角的关系判断命题的真假.解:(1)逆命题为:如果∠α+∠β=180°,那么∠α与∠β是邻补角,此逆命题为假命题;(2)逆命题为:如果一个三角形中有两个锐角,那么这个三角形是直角三角形,此逆命题为假命题.【归纳总结】将命题的条件与结论互换,得到新命题,我们把这样的两个命题称为互逆命题,其中一个叫原命题,另一个叫做原命题的逆命题.当一个命题是真命题时,它的逆命题不一定是真命题,所举的例子,如果符合命题条件,但不满足命题的结论,称之为反例;要说明一个命题是假命题,只要举出一个反例即可.四、课堂练习,巩固提高1.教材P77练习.2.请同学们完成《探究在线·高效课堂》“随堂演练”内容.五、反思小结,梳理新知命题命题的概念:对某一事件作出正确或者不正确判断的语句(或式子)叫做命题;命题的结构:由题设和结论两部分组成,常写成“如果,,那么,,”的形式;命题的分类:真命题和假命题(要说明一个命题是假命题,只要举出一个反例即可);逆命题:原命题为“如果p,那么q”,逆命题则为“如果q,那么p”.六、布置作业1.请同学们完成《探究在线·高效课堂》“课时作业”内容.2.教材P84习题13.2第1~3题.第2课时证明(一)1.理解和掌握定理的概念,了解证明(演绎推理)的概念.2.了解证明的基本步骤和书写格式,能运用已学过的几何知识证明一些简单的几何问题.重点证明的含义和表述格式.难点按规定格式表述证明的过程.一、创设情境,导入新课教师借助多媒体设备向学生演示,比较线段AB和线段CD的长度.通过简单的观察,并尝试用数学的方法加以验证,体会验证的必要性和重要性.二、合作交流,探究新知证明的引入(1)命题“等腰直角三角形的斜边是直角边的2倍”是真命题吗?请说明理由.分析:根据需要画出图形,用几何语言描述题中的已知条件和要说明的结论.教师对具体的说理过程予以详细的板书.小结归纳得出证明的含义,让学生体会证明的初步格式.(2)通过教材例3,例4的教学理解证明的含义,体会证明的格式和要求.【归纳总结】证明几何命题的表述格式:①按题意画出图形;②分清命题的条件和结论,结合图形,在“已知”中写出条件,在“求证”中写出结论;③在“证明”中写出推理过程.三、运用新知,深化理解例1 如图,下列推理中正确的有( )①因为∠1=∠2,所以b∥c(同位角相等,两直线平行);②因为∠3=∠4,所以a∥c(内错角相等,两直线平行);③因为∠4+∠5=180°,所以b∥c(同旁内角互补,两直线平行).A.0个B.1个C.2个D.3个分析:结合图形,根据平行线的判定方法逐一进行判断.①因为∠1、∠2不是同位角,所以不能证明b∥c,故错误;②因为∠3=∠4,所以a∥c(内错角相等,两直线平行),正确;③因为∠4+∠5=180°,所以b∥c(同旁内角互补,两直线平行),正确.故正确的是②③,共2个.故选 C.【归纳总结】本题主要考查了平行线的判定.解答此类要判定两直线平行的题,可围绕截线找同位角、内错角和同旁内角.例2 完成下面的证明过程:已知:如图,∠D=110°,∠EFD=70°,∠1=∠2.求证:∠3=∠B.证明:∵∠D=110°,∠EFD=70°(已知),∴∠D+∠EFD=180°,∴AD∥______(同旁内角互补,两直线平行).又∵∠1=∠2(已知),∴______∥BC(内错角相等,两直线平行),∴EF∥______,∴∠3=∠B(两直线平行,同位角相等).分析:求出∠D+∠EFD=180°,根据平行线的判定推出AD∥EF,AD∥BC,即可推出答案.∵∠D=110°,∠EFD=70°,∴∠D+∠EFD=180°,∴AD∥EF.又∵∠1=∠2,∴AD ∥BC,∴EF∥BC.故答案为:EF,AD,BC.【归纳总结】本题考查了平行线的性质和判定的应用,平行线的性质有:①两直线平行,同位角相等;②两直线平行,内错角相等;③两直线平行,同旁内角互补.反过来就是平行线的判定.四、课堂练习,巩固提高1.教材P78~79练习及P80练习.2.请同学们完成《探究在线·高效课堂》“随堂演练”内容.五、反思小结,梳理新知(1)证明的含义.(2)真命题证明的步骤和格式.(3)思考、探索:假命题的判断如何说理、证明?六、布置作业1.请同学们完成《探究在线·高效课堂》“课时作业”内容.2.教材P84~85习题13.2第5~8题.第3课时证明(二)1.通过对三角形内角和定理的探究,进一步了解证明的基本过程.2.能将几何命题的文字语言用图形语言和符号语言表示出来.重点根据具体的证明过程,填写推理的理由.难点将文字语言表述的证明题改写成用图形语言和符号语言表述的证明题.一、创设情境,导入新课在前面的学习中,我们已经知道三角形的内角和等于180°,你还记得这个结论的探索过程吗?(1.度量法; 2.折叠法; 3.剪拼法.)但观察和实验得到的结论并不一定可靠,这样就需要进行几何证明.二、合作交流,探究新知1.三角形内角和定理的证明(1)理解题意,分清题目的条件和结论;(2)请同学们分别用图形语言和符号语言表述命题.已知:△ABC,求证:∠A+∠B+∠C=180°.证法一:(请学生参照剪贴的方法去证明)证法二:(引导学生仿照证法一添加辅助线转化成平角去证明)除此之外还有哪些证法呢?引导学生积极思考.2.总结证明命题的一般步骤:(1)理解题意:分清命题的条件(已知),结论(求证);(2)根据条件画出图形并在图形上标出字母;(3)结合图形和命题写出已知和求证;(4)分析因果关系,探索证明思路;(5)依据思路,运用数学符号和数学语言条理清晰地写出证明过程;(6)检查表述过程是否正确,完善.3.小试牛刀尝试写出下列问题的已知、求证并画图:(1)求证:直角三角形的两个锐角互余.(2)求证:对顶角相等.4.证明:直角三角形的两个锐角互余.(请学生画图口答即可.)推论1:直角三角形两锐角互余.由公理、定理直接得出的真命题叫做推论.推论2:有两个角互余的三角形是直角三角形.三、运用新知,深化理解例1 如图,在△ABC内任意取一点P,过点P画三条直线分别平行于△ABC的三条边.(1)∠1、∠2、∠3分别和△ABC的哪一个角相等?请说明理由;(2)利用(1)说明三角形三个内角的和等于180°.分析:(1)利用平行线的性质即可证得;(2)根据对顶角相等,以及∠HPE+∠2+∠3=180°和(1)的结论即可证得.解:(1)∠1=∠A,∠2=∠B,∠3=∠C.理由如下:∵HI∥AC,∴∠1=∠CEP,又∵DE∥AB,∴∠CEP=∠A,∴∠1=∠A.同理,∠2=∠B,∠3=∠C;(2)如图,∵∠HPE=∠1,∠HPE+∠2+∠3=180°,∴∠1+∠2+∠3=180°,∵∠1=∠A,∠2=∠B,∠3=∠C,∴∠A+∠B+∠C=180°.【归纳总结】本题考查了平行线的性质,正确观察图形,熟练掌握平行线的性质和对顶角相等是解答本题的关键.例2 如图所示,AB∥CD,∠BAC和∠DCA的平分线相交于H点,那么△AHC是直角三角形吗?为什么?分析:要判断△AHC的形状,首先观察它的三个内角,其中∠1与∠2与已知条件角平分线有关,而两条角平分线分别平分∠BAC和∠DCA,这两个角是同旁内角,于是联想到已知条件中的AB∥CD.解:△AHC是直角三角形.理由如下:因为AB∥CD,所以∠BAC+∠DCA=180°.又因为AH,CH分别平分∠BAC和∠DCA,所以∠1=12∠BAC,∠2=12DCA,所以∠1+∠2=12(∠BAC+∠DCA),所以∠1+∠2=90°,所以△AHC为直角三角形.【归纳总结】判定一个三角形是否为直角三角形,既可以通过这个三角形有一个角是直角来判定(直角三角形的定义),也可以通过有两个角度数之和为90°来判定.四、课堂练习,巩固提高1.教材P81~82练习.2.请同学们完成《探究在线·高效课堂》“随堂演练”内容.五、反思小结,梳理新知三角形内角和定理的证明及推论1、2三角形内角和定理:三角形的内角和等于180°.证明定理的一般步骤①找出命题的题设和结论,画出图形;②题设部分是已知部分,结论部分是要证明的部分;③利用已知条件,依据定义、基本事实、已证定理,并按照逻辑规则,推导出结论.推论1:直角三角形的两锐角互余.推论2:有两个角互余的三角形是直角三角形.六、布置作业请同学们完成《探究在线·高效课堂》“课时作业”内容.第4课时三角形的外角1.了解三角形的外角.2.知道三角形的一个外角等于与它不相邻的两个内角的和,一个外角大于与它不相邻的任何一个内角.3.学会运用简单的说理来计算三角形的相关的角.重点三角形外角的性质.难点运用三角形外角性质进行有关计算时能准确地推理.一、创设情境,导入新课什么是三角形的内角?它是由什么组成的?三角形的内角和定理的内容是什么?教师提出问题,学生举手回答问题.【教学说明】为本节课进一步学习与三角形有关的角作准备.二、合作交流,探究新知探究问题1:如图,把△ABC的一边BC延长到D,得∠ACD,它不是三角形的内角,那它是三角形的什么角?练习:如图,∠ADB,∠BPC,∠BDC,∠DPC分别是哪个三角形的外角?问题2:观察问题1图,∠ACD与∠ACB是什么关系,由此你能得到什么结论?教师利用投影出示图形,并提出问题.教师指出像这样的角叫做三角形的外角,它是由三角形的一边和另一边的延长线组成的.然后教师利用投影出示练习,安排学生举手回答,并按照外角的定义一一指明这些角分别由哪些边组成.完成以后,教师提出问题2,并让学生进行讨论.然后师生共同归纳总结,得出结论:1.三角形的一个外角等于与它不相邻的两个内角的和.2.三角形的一个外角大于与它不相邻的任何一个内角.归纳总结的过程就是让学生说理证明的过程,教师要让学生说一说,练一练.【教学说明】教师指明外角的定义以后,马上进行练习,便于巩固学生对概念的理解.结合图形,培养学生的图形变换能力.通过学生的归纳,总结,证明,让学生自己去发现结论,让学生体验主动探究的成功与快乐.通过观察、讨论等一系列活动,再让学生进行证明,由于准备进行得比较充分,学生能够较顺利地说出证明的过程.培养学生的推理论证能力.三、运用新知,深化理解教师出示教材例5,先让学生进行分析,教师可以适当加以引导学生,将三角形的外角转化为三角形的内角.然后师生共同写出规范的解答过程.思考:还有没有其他的方法可以证明?【教学说明】先让学生分析,培养学生的分析图形能力,然后师生共同解决,规范学生的解答过程.继续提出新的问题,培养学生的发散思维和创新能力.例1 已知:如图为一五角星,求证:∠A+∠B+∠C+∠D+∠E=180°.分析:根据三角形外角性质得出∠EFG=∠B+∠D,∠EGF=∠A+∠C,根据三角形内角和定理得出∠E+∠EGF+∠EFG=180°,代入即可得证.证明:∵∠EFG,∠EGF分别是△BDF,△ACG的外角,∴∠EFG=∠B+∠D,∠EGF=∠A +∠C.又∵在△EFG中,∠E+∠EGF+∠EFG=180°,∴∠A+∠B+∠C+∠D+∠E=180°.【归纳总结】解决此类问题的关键是根据图形的特点,利用三角形外角的性质将分散的角集中到某个三角形中,利用三角形内角和进行解决.例2 如图,求证:(1)∠BDC>∠A;(2)∠BDC=∠B+∠C+∠A.如果点D在线段BC的另一侧,结论会怎样?分析:通过学生的探索活动,使学生进一步了解辅助线的作法及重要性,理解掌握三角形的内角和定理及推论.证法一:(1)连接AD,并延长AD,如图,则∠1是△ABD的一个外角,∠2是△ACD的一个外角.∴∠1>∠3.∠2>∠4(三角形的一个外角大于任何一个和它不相邻的内角).∴∠1+∠2>∠3+∠4(不等式的性质).即:∠BDC>∠BAC.(2)由(1)作图知∠1=∠3+∠B,∠2=∠4+∠C(三角形的一个外角等于和它不相邻的两个内角的和).∴∠1+∠2=∠3+∠4+∠B+∠C(等式的性质),即:∠BDC=∠B+∠C+∠BAC.证法二:(1)延长BD交AC于E(或延长CD交AB于E),如图.则∠BDC是△CDE的一个外角.∴∠BDC>∠DEC(三角形的一个外角大于任何一个和它不相邻的内角).∵∠DEC是△ABE的一个外角(已作),∴∠DEC>∠A(三角形的一个外角大于任何一个和它不相邻的内角),∴∠BDC>∠A(不等式的性质).(2)由(1)作图知∠BDC=∠C+∠DEC(三角形的一个外角等于和它不相邻的两个内角的和),∵∠DEC是△ABE的一个外角,∴∠DEC=∠A+∠B(三角形的一个外角等于和它不相邻的两个内角的和).∴∠BDC=∠B+∠C+∠A(等量代换).【教学说明】让学生接触各种类型的几何证明题,提高逻辑推理能力,培养学生的证明思路,特别是不等关系的证明题,因为学生接触较少,因此更需要加强练习.注意事项:学生对于几何图形中的不等关系的证明比较陌生,因此有必要在证明过程中,引导学生作辅助线找到一个过渡角.四、课堂练习,巩固提高1.教材P83练习.2.请同学们完成《探究在线·高效课堂》“随堂演练”内容.五、反思小结,梳理新知教师引导学生谈谈对三角形外角的认识.主要从定义和性质两个方面.六、布置作业1.请同学们完成《探究在线·高效课堂》“课时作业”内容.2.教材P85习题13.2第9题.。
八年级数学十二道全等几何证明题(难度适中型)
全等几何证明(1)如图,已知点D为等腰直角△ABC内一点,∠CAD=∠CBD=15°.E 为AD延长线上的一点,且CE=CA,求证:AD+CD=DE;全等几何证明(2)如图,在正方形ABCD中,F是CD的中点,E是BC边上的一点,且AF平分∠DAE,求证:AE=EC+CD.全等几何证明(3)已知:如图,在梯形ABCD中,AD∥BC,BC=DC,CF平分∠BCD,DF∥AB,BF的延长线交DC于点E.求证:AD=DE.全等几何证明(4)如图,在直角梯形ABCD中,AD⊥DC,AB∥DC,AB=BC,AD 与BC延长线交于点F,G是DC延长线上一点,AG⊥BC于E.求证:CF=CG;全等几何证明(5)如图,已知P为∠AOB的平分线OP上一点,PC⊥OA于C,PA=PB,求证AO+BO=2CO全等几何证明(6)已知:如图,在直角梯形ABCD中,AD∥BC,∠ABC=90°,DE⊥AC 于点F,交BC于点G,交AB的延长线于点E,且AE=AC.求证:BG=FG;全等几何证明(7)如图,在△ABC中,∠ABC=60°,AD、CE分别平分∠BAC、∠ACB,求证:AC=AE+CD.全等几何证明(7)如图,AD∥BC,AE平分∠BAD,AE⊥BE;说明:AD+BC=AB.全等几何证明(8)将两个全等的直角三角形ABC和DBE如图方式摆放,其中∠ACB=∠DEB=90°,∠A=∠D=30°,点E落在AB上,DE所在直线交AC所在直线于点F.求证:AF+EF=DE全等几何证明(9)如图,在△ABC 中,AD 平分∠BAC ,AB =AC -BD,则∠B ∶∠C 的值为多少?ABCD全等几何证明(10)已知:如图,P是正方形ABCD内点,∠PAD=∠PDA=150.求证:△PBC是正三角形.ADPCB全等几何证明(11)如图,四边形ABCD为正方形,DE∥AC,AE=AC,AE 与CD相交于F.求证:CE=CF.AF DE CB全等几何证明(12)设P 是正方形ABCD 一边BC 上的任一点,PF ⊥AP ,CF 平分∠DCE .求证:PA =PF .DFE PCBA。
人教版八年级数学下册勾股定理证明方法
勾股定理的证明【证法1】(课本的证明)做8个全等的直角三角形,设它们的两条直角边长分别为a 、b ,斜边长为c ,再做三个边长分别为a 、b 、c 的正方形,把它们像上图那样拼成两个正方形.从图上可以看到,这两个正方形的边长都是a + b ,所以面积相等. 即abc ab b a 214214222⨯+=⨯++, 整理得 222c b a =+.【证法2】(邹元治证明)以a 、b 为直角边,以c 为斜边做四个全等的直角三角形,则每个直角三角形的面积等于ab 21. 把这四个直角三角形拼成如图所示形状,使A 、E 、B 三点在一条直线上,B 、F 、C 三点在一条直线上,C 、G 、D 三点在一条直线上. ∵ Rt ΔHAE ≌ Rt ΔEBF, ∴ ∠AHE = ∠BEF .∵ ∠AEH + ∠AHE = 90º, ∴ ∠AEH + ∠BEF = 90º. ∴ ∠HEF = 180º―90º= 90º.∴ 四边形EFGH 是一个边长为c 的 正方形. 它的面积等于c 2.∵ Rt ΔGDH ≌ Rt ΔHAE, ∴ ∠HGD = ∠EHA .∵ ∠HGD + ∠GHD = 90º, ∴ ∠EHA + ∠GHD = 90º. 又∵ ∠GHE = 90º,∴ ∠DHA = 90º+ 90º= 180º.∴ ABCD 是一个边长为a + b 的正方形,它的面积等于(a +∴ ()22214c ab b a +⨯=+. ∴ 222c b a =+.【证法3】(赵爽证明) 以a 、b 为直角边(b>a ), 以c 为斜边作四个全等的直角三角形,则每个直角三角形的面积等于ab 21. 把这四个直角三角形拼成如图所示形状.∵ Rt ΔDAH ≌ Rt ΔABE, ∴ ∠HDA = ∠EAB .∵ ∠HAD + ∠HAD = 90º, ∴ ∠EAB + ∠HAD = 90º,∴ ABCD 是一个边长为c 的正方形,它的面积等于c 2. ∵ EF = FG =GH =HE = b ―a , ∠HEF = 90º.∴ EFGH 是一个边长为b ―a 的正方形,它的面积等于()2a b -.∴ ()22214c a b ab =-+⨯.∴ 222c b a =+. 【证法4】(1876年美国总统Garfield 证明)以a 、b 为直角边,以c 为斜边作两个全等的直角三角形,则每个直角三角形的面积等于ab 21. 把这两个直角三角形拼成如图所示形状,使A 、E 、B 三点在一条直线上.∵ Rt ΔEAD ≌ Rt ΔCBE, ∴ ∠ADE = ∠BEC .∵ ∠AED + ∠ADE = 90º,∴ ∠AED + ∠BEC = 90º.∴ ∠DEC = 180º―90º= 90º. ∴ ΔDEC 是一个等腰直角三角形,它的面积等于221c .又∵ ∠DAE = 90º, ∠EBC = 90º,∴ AD ∥BC .∴ ABCD 是一个直角梯形,它的面积等于()221b a +. ∴ ()222121221c ab b a +⨯=+. ∴ 222c b a =+.【证法5】(梅文鼎证明)做四个全等的直角三角形,设它们的两条直角边长分别为a 、b ,斜边长为c . 把它们拼成如图那样的一个多边形,使D 、E 、F 在一条直线上. 过C 作AC 的延长线交DF 于点P .∵ D 、E 、F 在一条直线上, 且Rt ΔGEF ≌ Rt ΔEBD,∴ ∠EGF = ∠BED ,∵ ∠EGF + ∠GEF = 90°, ∴ ∠BED + ∠GEF = 90°, ∴ ∠BEG =180º―90º= 90º. 又∵ AB = BE = EG = GA = c ,∴ ABEG 是一个边长为c 的正方形. ∴ ∠ABC + ∠CBE = 90º. ∵ Rt ΔABC ≌ Rt ΔEBD, ∴ ∠ABC = ∠EBD .∴ ∠EBD + ∠CBE = 90º. 即 ∠CBD= 90º.又∵ ∠BDE = 90º,∠BCP = 90º,BC = BD = a .∴ BDPC 是一个边长为a 的正方形. 同理,HPFG 是一个边长为b 的正方形. 设多边形GHCBE 的面积为S ,则,21222ab S b a ⨯+=+ abS c 2122⨯+=,∴ 222c b a =+.【证法6】(项明达证明)做两个全等的直角三角形,设它们的两条直角边长分别为a 、b (b>a ) ,斜边长为c . 再做一个边长为c 的正方形. 把它们拼成如图所示的多边形,使E 、A 、C 三点在一条直线上.过点Q 作QP ∥BC ,交AC 于点P . 过点B 作BM ⊥PQ ,垂足为M ;再过点 F 作FN ⊥PQ ,垂足为N . ∵ ∠BCA = 90º,QP ∥BC , ∴ ∠MPC = 90º, ∵ BM ⊥PQ ,∴ ∠BMP = 90º, ∴ BCPM 是一个矩形,即∠MBC = 90∵ ∠QBM + ∠MBA = ∠QBA = 90º,∠ABC + ∠MBA = ∠MBC = 90º, ∴ ∠QBM = ∠ABC ,又∵ ∠BMP = 90º,∠BCA = 90º,BQ = BA = c , ∴ Rt ΔBMQ ≌ Rt ΔBCA .同理可证Rt ΔQNF ≌ Rt ΔAEF .从而将问题转化为【证法4】(梅文鼎证明). 【证法7】(欧几里得证明)做三个边长分别为a 、b 、c 的正方形,把它们拼成如图所示形状,使H 、C 、B 三点在一条直线上,连结BF 、CD . 过C 作CL ⊥DE ,交AB 于点M ,交DE 于点L . ∵ AF = AC ,AB = AD , ∠FAB = ∠GAD , ∴ ΔFAB ≌ ΔGAD , ∵ ΔFAB 的面积等于221aΔGAD 的面积等于矩形ADLM的面积的一半,∴ 矩形ADLM 的面积 =2a 同理可证,矩形MLEB 的面积 =2b .∵ 正方形ADEB 的面积= 矩形ADLM 的面积 + 矩形MLEB 的面积 ∴ 222b a c += ,即 222c b a =+. 【证法8】(利用相似三角形性质证明)如图,在Rt ΔABC 中,设直角边AC 、BC 的长度分别为a 、b ,斜边AB 的长为c ,过点C 作CD ⊥AB ,垂足是D .在ΔADC 和ΔACB 中,∵ ∠ADC = ∠ACB = 90º,∠CAD = ∠BAC , ∴ ΔADC ∽ ΔACB .AD ∶AC = AC ∶AB , 即 AB AD AC •=2.同理可证,ΔCDB ∽ ΔACB ,从而有 AB BD BC •=2.∴ ()222AB AB DB AD BC AC =•+=+,即 222c b a =+. 【证法9】(杨作玫证明)做两个全等的直角三角形,设它们的两条直角边长分别为a 、b (b>a ),斜边长为c . 再做一个边长为c 的正方形. 把它们拼成如图所示的多边形. 过A 作AF ⊥AC ,AF 交GT 于F ,AF 交DT 于R . 过B 作BP ⊥AF ,垂足为P . 过D 作DE 与CB 的延长线垂直,垂足为E ,DE 交AF 于H .∵ ∠BAD = 90º,∠PAC = 90º,∴ ∠DAH = ∠BAC .又∵ ∠DHA = 90º,∠BCA = 90º, AD = AB = c ,∴ Rt ΔDHA ≌ Rt ΔBCA .∴ DH = BC = a ,AH = AC = b . 由作法可知, PBCA 是一个矩形, 所以 Rt ΔAPB ≌ Rt ΔBCA . 即PB = CA = b ,AP= a ,从而PH = b ―a .∵ Rt ΔDGT ≌ Rt ΔBCA , Rt ΔDHA ≌ Rt ΔBCA . ∴ Rt ΔDGT ≌ Rt ΔDHA .∴ DH = DG = a ,∠GDT = ∠HDA . 又∵ ∠DGT = 90º,∠DHF = 90º,∠GDH = ∠GDT + ∠TDH = ∠HDA+ ∠TDH = 90º, ∴ DGFH 是一个边长为a 的正方形.∴ GF = FH = a . TF ⊥AF ,TF = GT ―GF = b ―a .∴ TFPB 是一个直角梯形,上底TF=b ―a ,下底BP= b ,高FP=a +(b ―a ). 用数字表示面积的编号(如图),则以c 为边长的正方形的面积为543212S S S S S c ++++= ①∵()[]()[]a b a a b b S S S -+•-+=++21438 =ab b 212-, 985S S S +=,∴ 824321S ab b S S --=+= 812S S b -- . ②把②代入①,得98812212S S S S b S S c ++--++== 922S S b ++ = 22a b +.∴ 222c b a =+.【证法10】(李锐证明)设直角三角形两直角边的长分别为a 、b (b>a ),斜边的长为c . 做三个边长分别为a 、b 、c 的正方形,把它们拼成如图所示形状,使A 、E 、G 三点在一条直线上. 用数字表示面积的编号(如图).∵ ∠TBE = ∠ABH = 90º, ∴ ∠TBH = ∠ABE . 又∵ ∠BTH = ∠BEA = 90º, BT = BE = b , ∴ Rt ΔHBT ≌ Rt ΔABE . ∴ HT = AE = a . ∴ GH = GT ―HT = b ―a .又∵ ∠GHF + ∠BHT = 90º,∠DBC + ∠BHT = ∠TBH + ∠∴ ∠GHF = ∠DBC .∵ DB = EB ―ED = b ―a , ∠HGF = ∠BDC = 90º,∴ Rt ΔHGF ≌ Rt ΔBDC . 即 27S S =.过Q 作QM ⊥AG ,垂足是M . 由∠BAQ = ∠BEA = 90º,可知 ∠ABE = ∠QAM ,而AB = AQ = c ,所以Rt ΔABE ≌ Rt ΔQAM . 又Rt ΔHBT ≌ Rt ΔABE . 所以Rt ΔHBT ≌ Rt ΔQAM . 即 58S S =.由Rt ΔABE ≌ Rt ΔQAM ,又得QM = AE = a ,∠AQM = ∠BAE .∵ ∠AQM + ∠FQM = 90º,∠BAE + ∠CAR = 90º,∠AQM = ∠BAE , ∴ ∠FQM = ∠CAR .又∵ ∠QMF = ∠ARC = 90º,QM = AR = a ,∴ Rt ΔQMF ≌ Rt ΔARC . 即64S S =.∵ 543212S S S S S c ++++=,612S S a +=,8732S S S b ++=,又∵ 27S S =,58S S =,64S S =,∴ 8736122S S S S S b a ++++=+=52341S S S S S ++++ =2c , 即 222c b a =+.【证法11】(利用切割线定理证明)在Rt ΔABC 中,设直角边BC = a ,AC = b ,斜边AB = c . 如图,以B 为圆心a 为半径作圆,交AB 及AB 的延长线分别于D 、E ,则BD = BE = BC = a . 因为∠BCA = 90º,点C 在⊙B 上,所以AC 是⊙B 的切线. 由切割线定理,得AD AE AC •=2=()()BD AB BE AB -+=()()a c a c -+= 22a c -,即222a cb -=,∴ 222c b a =+.【证法12】(利用多列米定理证明)在Rt ΔABC 中,设直角边BC = a ,AC = b ,斜边AB = c (如图). 过点A 作AD ∥CB ,过点B 作BD ∥CA ,则ACBD 为矩形,矩形ACBD 内接于一个圆. 根据多列米定理,圆内接四边形对角线的乘积等于两对边乘积之和,有BD AC BC AD DC AB •+•=•,∵ AB = DC = c ,AD = BC = a ,AC = BD = b ,∴ 222AC BC AB +=,即 222b a c +=,∴ 222c b a =+.【证法13】(作直角三角形的内切圆证明)在Rt ΔABC 中,设直角边BC = a ,AC = b ,斜边AB = c . 作Rt ΔABC 的内切圆⊙O ,切点分别为D 、E 、F (如图),设⊙O 的半径为r .∵ AE = AF ,BF = BD ,CD = CE ,∴ ()()()BF AF CD BD CE AE AB BC AC +-+++=-+= CD CE += r + r = 2r,即 r c b a 2=-+, ∴ c r b a +=+2.∴ ()()222c r b a +=+,即 ()222242c rc r ab b a ++=++,∵ab S ABC 21=∆,∴ ABC S ab ∆=42, 又∵ AOC BOCAOB ABC S S S S ∆∆∆∆++= = br ar cr 212121++ = ()r c b a ++21= ()r c c r ++221= rc r +2,∴()ABC S rc r ∆=+442, ∴ ()ab rc r242=+,∴ 22222c ab ab b a +=++, ∴ 222c b a =+.【证法14】(利用反证法证明)如图,在Rt ΔABC 中,设直角边AC 、BC 的长度分别为a 、b ,斜边AB 的长为c ,过点C 作CD ⊥AB ,垂足是D .假设222c b a ≠+,即假设 222AB BC AC ≠+,则由AB AB AB •=2=()BD AD AB +=BD AB AD AB •+•可知 AD AB AC •≠2,或者 BD AB BC •≠2. 即 AD :AC ≠AC :AB ,或者 BD :BC ≠BC :AB .在ΔADC 和ΔACB 中,∵ ∠A = ∠A ,∴ 若 AD :AC ≠AC :AB ,则∠ADC ≠∠ACB . 在ΔCDB 和ΔACB 中, ∵ ∠B = ∠B , ∴ 若BD :BC ≠BC :AB ,则 ∠CDB ≠∠ACB.又∵ ∠ACB = 90º,∴ ∠ADC ≠90º,∠CDB ≠90º.这与作法CD ⊥AB 矛盾. 所以,222AB BC AC ≠+的假设不能成立.∴ 222c b a =+.【证法15】(辛卜松证明)设直角三角形两直角边的长分别为a 、b ,斜边的长为c . 作边长是a+b 的正方形ABCD . 把正方形ABCD 划分成上方左图所示的几个部分,则正方形ABCD 的面积为()ab b a ba 2222++=+;把正方形ABCD划分成上方右图所示的几个部分,则正方形ABCD 的面积为 ()22214c ab b a +⨯=+ =22c ab +.∴ 22222c ab ab b a +=++,∴ 222c b a =+.【证法16】(陈杰证明)设直角三角形两直角边的长分别为a 、b (b>a ),斜边的长为c . 做两个边长分别为a 、b 的正方形(b>a ),把它们拼成如图所示形状,使E 、H 、M 三点在一条直线上. 用数字表示面积的编号(如图). 在EH = b 上截取ED = a ,连结DA 、则 AD = c .∵ EM = EH + HM = b + a , ED = a ∴ DM = EM ―ED = ()a b +―a = b . 又∵ ∠CMD = 90º,CM = a , ∠AED = 90º, AE = b , ∴ Rt ΔAED ≌ Rt ΔDMC .∴ ∠EAD = ∠MDC ,DC = AD = c . ∵ ∠ADE + ∠ADC+ ∠MDC =180º,∠ADE + ∠MDC = ∠ADE + ∠EAD = 90º, ∴ ∠ADC = 90º.∴ 作AB ∥DC ,CB ∥DA ,则ABCD 是一个边长为c 的正方形.D∵ ∠BAF + ∠FAD = ∠DAE + ∠FAD = 90º, ∴ ∠BAF=∠DAE .连结FB ,在ΔABF 和ΔADE 中,∵ AB =AD = c ,AE = AF = b ,∠BAF=∠DAE , ∴ ΔABF ≌ ΔADE .∴ ∠AFB = ∠AED = 90º,BF = DE = a . ∴ 点B 、F 、G 、H 在一条直线上. 在Rt ΔABF 和Rt ΔBCG 中,∵ AB = BC = c ,BF = CG = a , ∴ Rt ΔABF ≌ Rt ΔBCG .∵ 54322S S S S c +++=, 6212S S S b ++=, 732S S a +=,76451S S S S S +===,∴ 6217322S S S S S b a ++++=+=()76132S S S S S ++++=5432S S S S +++ =2c ∴ 222c b a =+.。
张北县第四中学八年级数学上册 第2章 三角形2.2 命题与证明第2课时 真假命题、证明、定理与逆定理
第2课时真假命题、证明、定理与逆定理1.下列命题中,是真命题的是( )A.对顶角相等B.同位角相等C.内错角相等D.同旁内角互补2.[2012·温州]下列选项中,可以用来证明命题“若a2>1,则a>1”是假命题的反例是( )A.a=-2 B.a=-1C.a=1 D.a=23.下列命题中,错误的是( )A.三角形两边之和大于第三边B.三角形的外角等于与它不相邻的两个内角的和C.三角形的一条中线能将三角形面积分成相等的两部分D.若|x|=5,则x=5.4.下列命题中,是真命题的是( )A.若a·b>0,则a>0,b>0B.若a·b<0,则a<0,b<0C.若a·b=0,则a=0,且b=0D.若a·b=0,则a=0,或b=05.[2011·广州]已知三条不同的直线a、b、c在同一平面内,下列四个命题:①如果a∥b,a⊥c,那么b⊥c;②如果b∥a,c∥a,那么b∥c;③如果b⊥a,c⊥a,那么b⊥c;④如果b⊥a,c⊥a,那么b∥c.其中真命题是________(填写所有真命题的序号).6.请写出一个原命题是真命题,逆命题是假命题的命题____________________.7.判断下列命题是真命题还是假命题,如果是假命题,举一个反例.(1)两条直线被第三条直线所截,同位角相等;(2)如果a>b,那么ac>bc;(3)两个锐角的和是钝角.8.已知命题“若a>b,则a2>b2”.(1)此命题是真命题还是假命题?若是真命题,请给予证明;若是假命题,请举出一个反例;(2)写出此命题的逆命题,并判断此逆命题的真假;若是真命题,请给予证明;若是假命题,请举出一个反例.9.命题:若a >b ,则1a <1b.(1)请判断这个命题是真命题还是假命题.若是真命题,请证明;若是假命题,请举一个反例;(2)请你适当修改命题的条件使其成为一个真命题.10.如图2-2-3,点B ,A ,E 在同一条直线上,(1)AD ∥BC ,(2)∠B =∠C ,(3)AD 平分∠EAC .请你用其中两个作为条件,另一个作为结论,构造命题,并说明你构造的命题是真命题还是假命题.图2-2-3答案解析1.A 【解析】 对顶角相等,正确;在两条平行线被第三条直线所截的条件下,B 、C 、D 才正确.故选A.2.A 【解析】 用来证明命题“若a 2>1,则a >1”是假命题的反例可以是:a =-2,因为(-2)2>1,但是a =-2<1,所以选项A 正确;故选A. 3.D4.D 【解析】 选项A ,a ·b >0可得a 、b 同号,可能同为正,也可能同为负,是假命题;选项B ,a ·b <0可得a 、b 异号,所以错误,是假命题;选项C ,a ·b =0可得a 、b 中必有一个字母的值为0,但不一定同时为零,是假命题;选项D ,若a ·b =0,则a =0,或b =0,是真命题.故选D. 5.①②④6.对顶角相等(答案不唯一)7.解:(1)假命题,两直线不平行时不成立,可通过画图说明;(2)假命题,当c ≤0时不成立,如3>2,但3×0=2×0等;(3)假命题,如∠α=20°,∠β=50°,则∠α+∠β=70°不是钝角. 8.解:(1)假命题.反例:a =2,b =-3,有a >b ,但a 2<b 2; (2)逆命题:若a 2>b 2,则a >b . 此命题为假命题.反例:a =-2,b =-1,有a 2>b 2,但a <b .9.解:(1)假命题.如a =1,b =-2符合a >b ,但不满足1a <1b.(2)改成:若a >b >0,则1a <1b.10.解:命题:如果AD ∥BC ,∠B =∠C ,那么AD 平分∠EAC .(答案不唯一)它是真命题,理由如下: 因为AD ∥BC ,所以∠B =∠EAD ,∠C =∠DAC . 又因为∠B =∠C ,所以∠EAD =∠DAC ,即AD 平分∠EAC . 故是真命题.第2课时矩形的判定【知识与技能】理解并掌握矩形的判定方法,能用判定定理判断一个四边形是否是矩形.【过程与方法】在观察、探究的过程中,逐步感受矩形的判定定理,增强学生分析问题、解决问题的能力.【情感态度】进一步锻炼学生的数学应用能力,增强合作交流,探究创新意识.【教学重点】矩形的判定定理.【教学难点】对角线相等的平行四边形是矩形及对角线相等且互相平分的四边形是矩形的理解.一、情境导入,初步认识问题在前面,我们己探讨出判别一个四边形是平行四边形还是矩形?也可以说,用什么方法来判别一个四边形是矩形呢?想想看,与同伴交流.二、思考探究,获取新知【教学说明】教师提出问题,让学生思考,在相互交流中加深认识.同时,教师可根据学生的探讨结论进行适当评析,帮助学生获取正确认知.请观察图(1),在四边形ABCD 中,尽管AC=BD,但它不是矩形,图(2)中,在ABCD中,若有AC=BD,则此ABCD是一个矩形.你能说明理由吗?【教学说明】教师引导学生对图(2)进行论证,此时只要证明△ABC≌△DCB即可得到∠ABC=∠DCB,又AB∥CD,∴∠ABC=∠DCB=90°,由定义知,ABCD是矩形.【归纳结论】对角线相等的平行四边形是矩形.也可以说:对角线相等且互相平分的四边形是矩形.想一想工人师傅在做门框或矩形零件时,不仅要测量两组对边的长度是否分别相等,常常还要测量它的对角线是否相等,以确保图形是矩形.请你说说其中的道理,不妨试试看.练一练求证:有三个角是直角的四边形是矩形.【教学说明】这一结论的证明不难,可由学生自己完成.教师应关注学生是否能规范地画图,写已知,求证,并给予证明.【归纳结论】有三个角是直角的四边形是矩形.三、典例精析,掌握新知例1 如图,在ABCD中,对角线AC、BD相交于O,且AC=8cm,若AOB是等边三角形,求此平行四边形的面积.解:在ABCD中,对角线AC、BD相交于O,∴OA=OC,OB=OD.又∵△AOB是等边三角形,∴OA=OB,∴OA=OB=OC=OD,∴ABCD是矩形.又∵AC=8cm,∴OA=OB=AB=4cm.在Rt△ABC中,AC=8cm,AB=4cm,∴BC=43cm.∴S ABCD=AB×BC=4×43=163cm2.例2 如图,ABCD的四个内角的平分线分别相交于E、F、G、H,试说明四边形EFGH为矩形.解:∵AB∥CD,∴∠ABC+∠BCD=180°.∵BG平分∠ABC,CG平分∠BCD,∴∠GBC+∠GCB=12×180°=90°,得∠BGC=90°.同理可知∠AFB=∠AED=90°.∴∠GFE=90°.∴四边形EFGH为矩形.【教学说明】以上两例也可先让学生探究,然后教师予以评讲,加深学生对矩形判定定理的理解和应用.四、运用新知,深化理解1.如图,在ABCD中,点E、F为BC边上的点,且BE=CF,AF=DE,求证:ABCD 是矩形.2.如图,O是直线MN上一点,C是射线OP上一点,OA、OB分别平分∠MOP,∠NOP,F 为CO的中点,过F作DE∥MN,交OA、OB于点D、E.求证:四边形CDOE为矩形.【教学说明】让学生自主探究,独立完成,然后相互交流,探寻结论,教师巡视,发现问题及时予以点拨.【答案】1.证明:∵四边形ABCD是平行四边形.∴AB=CD,∵BE=CF,∴BF=CE.又∵AF =DE,∴△ABF≌△DCE.∴∠B=∠C,又∵AB∥CD,∠B+∠C=180°,∴∠B=∠C=90°.∴ABCD是矩形.2.证明:∵DE∥MN,∴∠1=∠3,而∠2=∠3.∴∠1=∠2.∴OF=EF.同理可得OF=DF,∴DF=EF.又CF=OF,故FC=FD=FO=FE.∴四边形CDOE为矩形.五、师生互动,课堂小结通过这节课的学习你有哪些收获?与同伴交流.【教学说明】学生在反思学习的过程中,巩固矩形的判定定理的理解,系统地掌握本节知识.1.布置作业:从教材“习题18.2”中选取.2.完成练习册中本课时练习.本课时是有关矩形判定的问题.由于有前面的知识作铺垫,教师可让学生自己尝试探讨矩形的判定方法,并将矩形的判定与平行四边形的判定作比较,再与其他同学交流,说出矩形与平行四边形的区别与联系,进而更好地掌握知识.在本课时的教学中,教师应最大限度地将课堂交给学生,提高学生学习的积极性与主动性.14.3.2 公式法第1课时 运用平方差公式因式分解1.理解平方差公式,弄清平方差公式的形式和特点.(重点)2.掌握运用平方差公式分解因式的方法,能正确运用平方差公式把多项式分解因式.(难点)一、情境导入1.同学们,你能很快知道992-1是100的倍数吗?你是怎么想出来的?请与大家交流.2.你能将a 2-b 2分解因式吗?你是如何思考的?二、合作探究探究点:运用平方差公式分解因式【类型一】 判定能否利用平方差公式分解因式下列多项式中能用平方差公式分解因式的是( ) A .a 2+(-b )2 B .5m 2-20mnC .-x 2-y 2D .-x 2+9解析:A 中a 2+(-b )2符号相同,不能用平方差公式分解因式,错误;B 中5m 2-20mn两项都不是平方项,不能用平方差公式分解因式,错误;C 中-x 2-y 2符号相同,不能用平方差公式分解因式,错误;D 中-x 2+9=-x 2+32,两项符号相反,能用平方差公式分解因式,正确.故选D.方法总结:能够运用平方差公式分解因式的多项式必须是二项式,两项都能写成平方的形式,且符号相反.【类型二】 利用平方差公式分解因式分解因式:(1)a 4-116b 4;(2)x 3y 2-xy 4.解析:(1)a 4-116b 4可以写成(a 2)2-(14b 2)2的形式,这样可以用平方差公式进行分解因式,而其中有一个因式a 2-14b 2仍可以继续用平方差公式分解因式;(2)x 3y 2-xy 4有公因式xy 2,应先提公因式再进一步分解因式.解:(1)原式=(a 2+14b 2)(a 2-14b 2)=(a 2+14b 2)(a -12b )(a +12b );(2)原式=xy 2(x 2-y 2)=xy 2(x +y )(x -y ).方法总结:分解因式前应先分析多项式的特点,一般先提公因式,再套用公式.分解因式必须进行到每一个多项式都不能再分解因式为止.【类型三】 底数为多项式或单项式时,运用平方差公式分解因式分解因式:(1)(a +b )2-4a 2;(2)9(m +n )2-(m -n )2.解析:将原式转化为两个式子的平方差的形式后,运用平方差公式分解因式.解:(1)原式=(a +b -2a )(a +b +2a )=(b -a )(3a +b );(2)原式=(3m +3n -m +n )(3m +3n +m -n )=(2m +4n )(4m +2n )=4(m +2n )(2m +n ).方法总结:在平方差公式a 2-b 2=(a +b )(a -b )中,a 和b 可以代表单项式、多项式或单独一个数.【类型四】 利用因式分解整体代换求值已知x 2-y 2=-1,x +y =12,求x -y 的值. 解析:已知第一个等式左边利用平方差公式化简,将x +y 的值代入计算即可求出x -y 的值.解:∵x 2-y 2=(x +y )(x -y )=-1,x +y =12,∴x -y =-2. 方法总结:有时给出的条件不是字母的具体值,就需要先进行化简,求出字母的值,但有时很难或者根本就求不出字母的值,根据题目特点,将一个代数式的值整体代入可使运算简便.【类型五】 利用因式分解解决整除问题248-1可以被60和70之间某两个自然数整除,求这两个数.解析:先利用平方差公式分解因式,再找出范围内的解即可.解:248-1=(224+1)(224-1)=(224+1)(212+1)(212-1)=(224+1)(212+1)(26+1)(26-1).∵26=64,∴26-1=63,26+1=65,∴这两个数是65和63.方法总结:解决整除的基本思路就是将代数式化为整式乘积的形式,然后分析被哪些数或式子整除.【类型六】 利用平方差公式进行简便运算利用因式分解计算:(1)1012-992;(2)5722×14-4282×14. 解析:(1)根据平方差公式进行计算即可;(2)先提取公因式,再根据平方差公式进行计算即可.解:(1)1012-992=(101+99)(101-99)=400;(2)5722×14-4282×14=(5722-4282)×14=(572+428)(572-428)×14=1000×144×14=36000.方法总结:一些比较复杂的计算,如果通过变形转化为平方差公式的形式,则可以使运算简便.【类型七】在实数范围内分解因式在实数范围内分解因式.(1)x2-5;(2)x3-2x.解析:(1)直接利用平方差公式分解,即可求得答案;(2)首先提取公因式x,然后利用平方差公式进行二次分解,即可求得答案.解:(1)x2-5=(x+5)(x-5);(2)x3-2x=x(x2-2)=x(x+2)(x-2).方法总结:注意因式分解的步骤为:一提公因式;二看公式.在实数范围内进行因式分解的结果可以出现无理数.【类型八】因式分解的实际应用如图,100个正方形由小到大套在一起,从外向里相间画上阴影,最里面一个小正方形没有画阴影,最外面一层画阴影,最外面的正方形的边长为100cm,向里依次为99cm,98cm,…,1cm,那么在这个图形中,所有画阴影部分的面积和是多少?解析:相邻两正方形面积的差表示一块阴影部分的面积,而正方形的面积是边长的平方,所以能用平方差公式进行因式分解.解:每一块阴影的面积可以表示成相邻正方形的面积的差,而正方形的面积是其边长的平方,这样就可以逆用平方差公式计算了.则S阴影=(1002-992)+(982-972)+…+(22-12)=100+99+98+97+…+2+1=5050(cm2).答:所有阴影部分的面积和是5050cm2.方法总结:首先应找出图形中哪些部分发生了变化,是按照什么规律变化的,通过分析找到各部分的变化规律后直接利用规律求解.探寻规律要认真观察、仔细思考,善用联想来解决这类问题.三、板书设计运用平方差公式因式分解1.平方差公式:a2-b2=(a+b)(a-b);2.平方差公式的特点:能够运用平方差公式分解因式的多项式必须是二项式,两项都能写成平方的形式,且符号相反.运用平方差公式因式分解,首先应注意每个公式的特征.分析多项式的次数和项数,然后再确定公式.如果多项式是二项式,通常考虑应用平方差公式;如果多项式中有公因式可提,应先提取公因式,而且还要“提”得彻底,最后应注意两点:一是每个因式要化简,二是分解因式时,每个因式都要分解彻底.。
八年级下册数学证明题的技巧
八年级下册数学证明题的技巧八年级下册数学证明题技巧总结在八年级下册数学学习中,遇到证明题是一项非常重要的内容。
掌握证明题的解题技巧,不仅能够提高数学水平,还能培养逻辑思维和推理能力。
本文将详细介绍一些解决八年级下册数学证明题的技巧。
1. 矩形证明法矩形证明法是一种经典的证明思路,通常适用于关于几何形状(如矩形、三角形等)的证明题。
其基本思路是将需要证明的问题转化成一个矩形的性质,再通过对该矩形进行几何推理和计算,最终完成证明。
•确定证明目标•找到合适的矩形•运用几何推理和计算,证明目标得以实现2. 数学归纳法数学归纳法是一种常见的证明方法,通常适用于需要证明某个特定性质对任意正整数是否成立的问题。
其基本思路是通过证明当某个特定性质对某个正整数成立时,它对于下一个正整数也成立,再通过归纳推理证明该性质对所有正整数都成立。
•确定归纳假设•进行归纳基础的证明•进行归纳步骤的证明3. 逻辑推理法逻辑推理法是一种常用的证明方法,通常适用于需要推理判断的问题。
其基本思路是通过利用已知条件和逻辑关系,进行推理判断,得出需要证明的结论。
•确定已知条件•运用逻辑关系进行推理•得出结论,并进行论证4. 反证法反证法是一种常见的证明方法,通常适用于需要判断某个命题是否正确的问题。
其基本思路是通过假设命题不正确,得出与已知事实或已证明事实相矛盾的结论,从而反证命题的正确性。
•假设命题不正确•推理得出与已知事实或已证明事实相矛盾的结论•得出结论与已知事实或已证明事实相矛盾,证明命题的正确性5. 数学定理法当遇到一些已被证明的数学定理时,可以直接运用这些定理来解决相关的证明题。
熟练掌握常见的数学定理,并能够灵活应用,将会在解决证明题时起到事半功倍的效果。
•确定需要运用的数学定理•运用定理进行推理和计算•完成证明过程以上是一些常用的在八年级下册数学学习中解决证明题的技巧总结。
通过熟练掌握这些技巧,相信能够在数学学习中取得好的成绩,并培养自己的逻辑思维和推理能力。
八年级上册数学三角形全等证明之二次全等练习题(含答案)
在证明线段相等或者角相等时,常见的方法是通过证明线段或角所在的三角形全等来证明线段或者角相等.但有的时候,根据题目条件无法简单地通过一次全等证明来得到最终的结论,这时就需要证明两次三角形全等,即证明图中的两对三角形全等.这种方法较多见于对称型全等和旋转型全等的题目中.第2节 二次全等一、典型例题[例]图2-1是某产品商标的示意图,已知AB =CD,∠A =∠D,有人认为△ABC ≌△DCB,他的思考过程是:∵AB =CD,∠A =∠D,BC =CB,∴△ABC ≌△DCB.你认为这个思考过程对吗?如果正确,请指出他用的是判定三角形全等的哪个定理?如果不正确,请写出你的思考过程.解:他的思考过程不正确.在△ABE 和△DCE 中,∵{∠AEB =∠DEC∠A =∠D AB =DC∴△ABE ≌△DCE (AAS ).∴AE =DE,BE =CE.∴AE+EC =DE+EB,即AC =BD.在△ABC 和△DCB 中,∴{AC =BDAB =DC BC =CB∴△ABC ≌△DCB (SSS ).二、分层练习1.如图2-2所示,点A,E,C 在一条直线上,∠1=∠2,∠3=∠4.求证:△ABE ≌△ADE.图2-22143E B2.如图2-3所示,点A,E,F,C 在一条直线上,AE =CF,分别过点E,F 作DE ⊥ AC,BF ⊥AC,连接AB,CD,且AB ∥CD,连接BD 交AC 于点C.求证:△DEG ≌△BFG.3.如图2-4所示,AB =AC,DB =DC,F 是AD 延长线上的一点.求证:BF =CF.4.如图2-5所示,AE 是∠BAC 的角平分线,EB ⊥AB 于点B,EC ⊥AC 于点C,点D 是AE 上一点.求证:BD =CD.5.如图2-6所示,DE ⊥AC,BF ⊥AC,AD =BC,DE =BF.求证:AB ∥DC.图2-3C图2-4图2-5图2-66.如图2-7所示,点E,F 在BD 上,且AB =CD,BF =DE,AE =CF.求证:AO =CO.7.如图2-8所示,AB 之间有一条河.想要测量AB 的长,但无法过河接近点A,于是在AB 外任取一点D,在AB 的延长线上任取一点E,连接ED 和BD,并延长BD 到点G,使DG =DB,延长ED 到点F,使DF =DE,连接FG,并延长FG 到点H,使点H,D,A 在一条直线上,则HG =AB.试说明这种测量方法的原理.8.如图2-9所示,在Rt △ABC 和Rt △ADE 中,∠ABC =∠ADE =90°,BC 与DE 相交于点F,且AB =AD,AC =AE,连接CD,EB.求证:(1)∠CAD =∠EAB;(2)CF =EFDH图2-8图2-99.如图2-10所示,在等边△ABC 内取一点D,使DA =DB,在△ABC 外取一点E,使∠DBE =∠DBC,且BE =BA,则∠BED =_______°.10.如图2-11所示,∠BAC 是钝角,AB =AC,点D,E 分别在AB,AC 上,且CD =BE.试说明:∠ADC =∠AEB.一个同学的解法是这样的: 在△ACD 和△ABE 中, ∵{AB =AC BE =CD ∠BAE =∠CAD ∴△ABE ≌△ACD.∴∠ADC =∠AEB.这种解法遭到了其他同学的质疑.理由是错在不能用“SSA ”判定三角形全等.请你给出正确的解法.图2-10E D CB A E DC B A答案解析1.证明:在△DEC和△BEC中,{∠1=∠2 EC=EC ∠3=∠4∴△DEC≌△BEC(ASA).∴DE=BE.∵∠3=∠4,∴∠DEA=∠BEA.在△ABE和△ADE中,{AE=AE∠AEB=∠AED BE=DE∴△ABE≌△ADE(SAS).2.证明:∵DE⊥AC,BF⊥AC, ∴∠AFB=90°=∠CED. ∵AE=CF,∴AE+EF=CF+FE,即AF=CE.∵AB∥CD,∴∠A=∠C.在△ABF和△CDE中,{∠A=∠CAF=CE∠AFB=∠CED∴△ABF≌△CDE(ASA).∴DE=BF.在△BFG和△DEG中,{∠BFG=∠DEG ∠BGF=∠DGE BF=DE∴△BFG≌△DEG(AAS).3.证明:在△ABD和△ACD中,{AB=ACBD=CDAD=AD ∴△ABD≌△ACD(SSS).∴∠BAD=∠CAD.在△BAF和△CAF中,{AB=AC∠BAF=∠CAFAF=AF∴△BAF≌△CAF(SAS).∴BF=CF.4.证明:∵AE是∠BAC的角平分线, ∴∠CAE=∠BAE. ∵EB⊥AB,EC⊥AC, ∴∠ECA=∠EBA=90°.在△CAE和△BAE中,{∠CAE=∠BAE ∠ECA=∠EBA AE=AE∴△CAE≌△BAE(AAS).∴AC=AB.在△CAD和△BAD中,{AC=AB ∠CAD=∠BAD AD=AD∴△CAD≌△BAD(SAS).∴BD=CD.5.证明:∵DE⊥AC,BF⊥AC, ∴∠AED=∠CFB=90°, ∠AFB=∠CED=90°,在Rt△ADE和Rt△CBF中,∵{AD=CBDE=BF∴Rt△ADE≌Rt△CBF(HL).∴AE=CF.∴AE+EF=CF+FE,即AF=CE.在△AFB和△CED中,∵{AF=CE∠AFB=∠CED DE=BF∴△AFB≌△CED(SAS).∴∠BAF=∠DCE.∴AB∥DC.∴AO=CO.6.证明:∵BF=DE, ∴BF-EF=DE-FE,即BE=DF.在△ABE和△CDF中,{AB=CD AE=CF BE=DF∴△ABE≌△CDF(SSS).∴∠B=∠D.在△AOB和△COD中,{∠AOB=∠COD ∠B=∠DAB=CD∴△AOB≌△COD(AAS).7.解:在△BED 和△GFD 中, {DB =DG ∠BDE =∠GDF DE =DF∴△BED ≌△GFD (SAS ).∴∠EBD =∠FGD.∴∠ABD =∠HGD.在△ABD 和△HGD 中,{∠ABD =∠HGDBD =GD∠BDA =∠GDH∴△ABD ≌△HGD (ASA ).∴HG =AB.8.证明:(1)在Rt △ABC 和Rt △ADE 中,{AC =AE AB =AD∴Rt △ABC ≌Rt △ADE (HL ).∴∠BAC =∠DAE.∴∠BAC-∠DAB =∠DAE-∠DAB,即∠CAD =∠EAB.(2)在△ACD 与△AEB 中,{AC =AE ∠CAD =∠EAB AD =AB∴△ACD ≌△AEB (SAS ).∴CD =BE,∠ACD =∠AEB.∵Rt △ABC ≌Rt △ADE (HL ), ∴∠ACB =∠AED.∴∠ACB-∠ACD =∠AED-∠AEB,即∠DCF =∠BEF.又∵∠DFC =∠BFE, ∴△DFC ≌△BFE (AAS ).∴CF =EF.9.解:如图2所示,连接CD.∵△ABC 是等边三角形, ∴AB =BC =CA.∵BE =BA,BA =BC, ∴BE =BC.在△BDC 和△BDE 中,{BD =BD ∠DBE =∠DBC BE =BC∴△BDC ≌△BDE (SAS ).∴∠BED =∠BCD.在△BCD 和△ACD 中,{BC =AC BD =AD CD =CD∴△BCD ≌△ACD (SSS ).∴∠BCD =∠ACD =30°.∴∠BED =30°.C10.证明:因为∠BAC 是钝角,故过点B,C 分别作CA,BA 的垂线,垂足分别为点F, G,如图3所示.在△ABF 和△ACG 中,{∠F =∠G =90°∠FAB =∠GAC AC =AB∴△ABF ≌△ACG (AAS ).∴BF =CG.在Rt △BEF 和Rt △CDG 中,{BF =CGBE =CD ∴Rt △BEF ≌Rt △CDG (HL ).∴∠ADC =∠AEB.。
北师版八年级数学下册教学课件(BS) 第一章 三角形的证明 第2课时 直角三角形全等的判定
B
C
画图方法视频(点击文字
播放)
画图思路
N
A
B
C
M
C′
(1)先画∠M C′ N=90°
画图思路
N
A
B
C
M
B′
C′
(2)在射线C′M上截取B′C′=BC
画图思路
N
A
A′
B
C
M B′
C′
(3)以点B′为圆心,AB为半径画弧,交射线C′N于A′
画图思路
N
A
A′
B
C
M B′
C′
(4)连接A′B′
思考:通过上面的探究,你能得出什么结论?
(2)当P运动到与C点重合时,AP=AC. 在Rt△ABC与Rt△QPA中, ∵PQ=AB,AP=AC, ∴Rt△QAP≌Rt△BCA(HL), ∴AP=AC=10cm, ∴当AP=5cm或10cm时,△ABC才能和△APQ全等.
【方法总结】判定三角形全等的关键是找对应边和对应角,由于本 题没有说明全等三角形的对应边和对应角,因此要分类讨论,以免漏 解.
B
A
C
如图,Rt△ABC中,∠C =90°,直角边是_____、_____,A斜C边是
__B__C__.
AB
前面学过的四种判定三角形全等的方法,对直角三角形是否适用?
口答:
A
A′
1.两个直角三角形中,斜边和一个锐 角对应相等,这两个直角三角形全等 吗?为什么?
B
C B′
C′
2.两个直角三角形中,有一条直角边和一锐角对应相等,这两个直角三
BC=B′C′,
∴Rt△ABC ≌ Rt△ A′B′个直角三角形是否全等,不全等的画“×”,
沪教版 八年级(上)数学 秋季课程 第15讲 举例证明(二)(解析版)
命题与证明是八年级数学上学期第十九章第一节内容,主要对演绎证明和命题、公理、定理的概念及举例证明进行讲解,重点是真假命题的判定,难点是改写出已知命题和举例证明.通过这节课的学习一方面为我们后面学习垂直平分线和角平分线等几何内容提供依据,另一方面也为后面学习直角三角形性质奠定基础.1、证明垂直:证明两直线垂直的一般方法为:(1)通过夹角是90°;(2)垂直的传递性;(3)等腰三角形底边上三线合一.几何证明(二)知识结构模块一:证明垂直知识精讲内容分析【例1】 以下依据不能得到两直线垂直的是().A .夹角是90度;B .邻补角的角平分线互相垂直;C .等腰三角形底边上的中线垂直于底边;D .同旁内角的角平分线互相垂直. 【答案】D【解析】D 正确答案为平行线同旁内角的角平分线互相垂直 【总结】主要考查证明垂直的方法.【例2】 如图,AB =AC ,D 是BC 上一点,当 ________或___________时,AD ⊥BC . 【答案】DC BD =;CAD BAD ∠=∠.【解析】等腰三角形的底边上的高线、顶角的角平分线和底边上的中线三线合一.【总结】考察等腰三角形的三线合一的性质.【例3】 如例2图,在△ABC 中,AD ⊥BC ,D 是BC 中点,则下列结论不正确的是().A .ABD ACD ∆≅∆;B .BC ∠=∠;C .AD BAC ∠是的平分线; D .ABC ∆是等边三角形. 【答案】D【解析】由S A S ..可知两个三角形全等,则可得A 、B 、C 正确. 【总结】考察三角形全等的判定.【例4】 如图,在△ABC 中,∠ABC =45°,在高AD 上截取DH =DC ,联结BH 并延长交AC 于点E ,求证: (1) BH =AC ;例题解析AB CDA BCDEH(2) BH ⊥AC . 【答案】略.【解析】(1)∵︒=∠45ABC ,AD BC ⊥,∴BD AD =. ∵AD BD BDH ADC DH DC =∠=∠=,,,∴ADC BDH ≌△△,∴AC BH =,DAC HBD ∠=∠. (2)∵︒=∠+∠90C DAC ,∴︒=∠+∠90C HBD , ∴()︒=∠+∠-︒=∠90180C HBD BEC ,∴BH ⊥AC .【总结】考察全等三角形的判定及其性质,注意等腰直角三角形的性质的运用.【例5】 如图,点D 、E 、F 在BC 上,∠B =∠C ,∠1 =∠2,BD =EC ,F 是DE 的中点.求证:AF ⊥BC .【解析】∵∠B =∠C ,∠1 =∠2,BD =EC , ∴()S A A ACE ABD ..≌△△, ∴AE AD =. ∵F 是DE 的中点,∴AF ⊥BC .【总结】考察三角形全等的判定以及等腰三角形的三线合一.【例6】 如图,已知△ABC 中,AB =AC ,BD 、CF 分别是AC 、AB 边上的高,BD 与CF 交于点O ,延长AO 交BC 于点E ,求证:AE ⊥EC . 【答案】见解析【解析】∵AC AB =,CAF BAD ∠=∠,AFC ADB ∠=∠=90°∴ABD ACF ≌△△ABCD2EF1ABCDOFE∴ACO ABO ∠=∠∵AB =AC ,∴ACB ABC ∠=∠ ∴OCB OBC ∠=∠,∴OC OB = ∵AC AB =,ACO ABO ∠=∠,OC OB = ∴ACO ABO ≌△△ ∴CAE BAE ∠=∠ ∵AB =AC ,∴AE ⊥EC .【总结】考察三角形全等的判定和性质以及等腰三角形的三线合一.【例7】 如图,已知△ABD 、△ACE 都是等腰直角三角形,∠DAB =∠EAC =90°,判断BE 和CD 的位置及长度关系,并证明.【答案】CD BE =,DC BE ⊥;证明过程见解析. 【解析】∵∠DAB =∠EAC =90°, ∴BAC EAC BAC DAB ∠+∠=∠+∠, 即BAE DAC ∠=∠∵AB AD DAC BAE AE AC =∠=∠=,, ∴DAC BAE ≌△△∴CD BE =,ABE ADC ∠=∠ ∵︒=∠+∠+∠90DBA CDA ADC ,∴︒=∠+∠+∠90DBA CDA ABE ,即DC BE ⊥.【总结】考察全等三角形的判定.两个等腰直角三角形共直角顶点则可产生全等三角形.【例8】 如图,三角形ABC 中,AC = BC ,∠ACB =90°,AD 是BC 边的中线,CE ⊥AD ,BF ⊥BC ,CF 与AB 、BF 分别相交于点E 、F ,联结DE ,求证:∠1 =∠2.【解析】∵︒=∠+∠90ACF BCF ,︒=∠+∠90CAD ACF ∴CAD BCF ∠=∠∵CAD BCF ∠=∠,BC AC =,CBF ACD ∠=∠ABCD E F12ABCDE∴BCF CAD ≌△△,∴F ∠=∠1,BF CD = ∵BD CD =,∴BF BD =∵AC = BC ,∠ACB =90°,∴︒=∠45CBA ∵︒=∠90CBF ,︒=∠45FBE∵DB BF DBE FBE BE BE =∠=∠=,,,∴F ∠=∠2∵F ∠=∠1,∴21∠=∠【总结】考察全等三角形判定以及等腰直角三角形的性质.证明边角关系的常用方法: (1) 利用等腰三角形的性质;(2) 利用三角形全等的性质得出边或者角的关系,得出要求解的边角关系; (3) 利用两次全等得出结论.【例9】 具备下列条件的两个三角形中,一定全等的是().A .有一边对应相等的等腰三角形;B .有两边对应相等的等腰三角形;C .有一边相等的等边三角形;例题解析知识精讲模块二:证明边、角关系D .有两边对应相等的两个直角三角形. 【答案】C【解析】A 、B 、D 不确定是否是对应边. 【总结】考察全等三角形的判定方法.【例10】 如图,△ABC ≌△ADE ,若∠BAE =120°,∠BAD =40°,则∠B +∠C =_________. 【答案】100°【解析】∵若∠BAE =120°,∠BAD =40°, ∴︒=︒-︒=∠8040120DAE .∵△ABC ≌△ADE ,∴︒=∠=∠80DAE BAC∴︒=︒-︒=∠-︒=∠+∠10080180180BAC C B .【总结】考察全等三角形的性质及三角形的内角和.【例11】 如图,P 是∠BAC 平分线AD 上的一点,PE ⊥AB 于点E ,PF ⊥AC 于点F ,下列结论中不正确的是( ).A .PE =PF ;B .AE =AF ;C .△APE ≌△APF ;D .AP =PE +PF . 【答案】D【解析】由S A A ..可知:AFP AEP ≌△△,则可知A 、B 、C 正确.则可知D 不正确.【总结】考察全等三角形的判定.【例12】 已知,如图,E 是等腰△ABC 的腰AC 上任意一点,DE ⊥BC ,垂足为D ,延长DE 交BA 的延长线于点F . 求证:△AEF 为等腰三角形. 【答案】见解析【解析】∵△ABC 是等腰三角形, ∴C B ∠=∠ ∵DE ⊥BC ,∴︒=∠+∠90B F ,︒=∠+∠90DEC C ∴DEC F ∠=∠, 又∵AEF DEC ∠=∠, ∴AEF F ∠=∠,∴AF AE =,即△AEF 为等腰三角形.【总结】考察角度之间关系的转换以及等腰三角形的性质和判定.AB CDEABCD EPFABCDE F【例13】 已知,如图E 是四边形ABCD 的边AD 上的一点,且△ABC 和△CDE 都是等边三角形,求证:BE =AD .【解析】∵︒=∠=∠60ECD ACB , ∴ACE ECD ACE ACB ∠+∠=∠+∠,即ACD BCE ∠=∠ ∵BC AC =,ACD BCE ∠=∠,CD EC =∴()S A S BCE ACD ..≌△△,∴AD BE =【总结】考察三角形全等的判定以及等边三角形的性质.【例14】 已知,如图,在△ABC 中,∠DEF =∠B =∠C ,点D 、E 、F 分别在边AB 、BC 、AC 上,且BD =CE . 求证:DE =EF .【解析】∵BDE B DEC ∠+∠=∠,FEC DEF DEC ∠+∠=∠, B DEF ∠=∠,∴FEC BDE ∠=∠∵FEC BDE ∠=∠,C B ∠=∠,CE BD =∴()A S A CFE BED ..≌△△,∴EF DE =【总结】本题主要考察三角形的外角性质以及三角形全等的判定. 【例15】 已知:如图,点E 在△ABC 的边AC 上,且∠AEB =∠ABC .(1) 求证:∠ABE =∠C ;(2) 若∠BAE 的平分线AF 交BF 于点F ,FD ∥BC 交AC 于点D ,设AB =5,AC =8,求DC 的长 . 【答案】(1)见解析;(2)3.【解析】(1)∵︒=∠+∠+∠180AEB ABE BAC , ︒=∠+∠+∠180ABC C BAC ,ABC AEB ∠=∠∴C ABE ∠=∠.(2)∵BC FD ∥,∴ADF C ∠=∠由(1)可得:C ABE ∠=∠,∴ADF ABE ∠=∠ ∵DAF BAF ∠=∠,ADF ABE ∠=∠,AF AF = ∴()S A A ADF ABF ..≌△△,∴5AD AB ==,∴3=-=-=AB AC AD AC DC .ABCDEABCDEFA BCDEFEDC BA【总结】考察三角形全等的判定和性质的综合运用.【例16】 已知:如图,△ABC 是等边三角形,点M 是射线BC 上任意一点,点N 是射线CA上任意一点,且BM =CN ,直线BN 与MA 的延长线交于点Q ,求∠BQM 的大小.【答案】60°.【解析】∵CN BM =,60ABM BCN ∠=∠=,BC AB = ∴()S A S CBN ABM ..≌△△ ∴N M ∠=∠∴︒=∠=∠+∠=∠+∠=∠60ACB CAM M NAQ N BQM .【总结】考察三角形全等的判定和性质以及三角形的外角的 性质的综合运用.【例17】 在△ABC 中,∠ABC =∠C ,BD ⊥AC 于D ,求证:∠A =2∠DBC .【解析】过A 作AE ⊥BC ,垂足为E . ∵︒=∠+∠90DBC C ,︒=∠+∠90EAC C , ∴EAC DBC ∠=∠.∵∠ABC =∠C ,∴AC AB =∵BC AE ⊥,∴EAC A ∠=∠2,∴∠A =2∠DBC .【总结】考察等腰三角形的性质的运用.【例18】 已知,如图,在△ABC 中,∠B =2∠C ,AD 平分∠BAC .求证:AB +BD = AC .【答案】见解析MABCN Q【解析】在AC 上截取一点E ,使得AE=AB ,联结DE . ∵AE AB =,CAD BAD ∠=∠,AD AD = ∴()S A S AED ABD ..≌△△ ∴AED B ∠=∠,DE BD = ∵C B ∠=∠2,∴C AED ∠=∠2∵EDC C AED ∠+∠=∠,∴EDC C ∠=∠,∴EC ED = ∵DE BD =,∴EC BD =∵EC AE AC +=,AB AE =,EC ED =∴AB +BD = AC .【总结】考察截长补短辅助线的添法以及三角形外角性质和三角形全等的性质的综合运用.【例19】 已知,在直角△ABC 中,AB =AC ,∠BAC =90°,直线AE 是经过点A 的任一直线,BD ⊥AE 于点D ,CE ⊥AE 于点E ,若BD ≠CE ,试问: (1)AD 与CE 的大小关系如何?并证明; (2)DE 、BD 、CE 的数量关系如何?并证明. 【答案】(1)相等,证明见解析; (2)CE BD DE -=,证明见解析.【解析】(1)∵︒=∠+∠90EAC BAE ,ECA EAC ∠+∠=90° ∴ECA BAE ∠=∠.∵ECA BAE ∠=∠,ADB AEC ∠=∠,AC AB =∴()S A A CEA ADB ..≌△△, ∴CE AD =.(2)CE BD DE -=.由(1)可得:AE BD =,∵AE BD =,CE AD =,DE AD AE =-,∴CE BD DE -=【总结】考察全等三角形的判定和性质的综合运用.【例20】 已知A 、C 、E 在同一直线上,△ABC 和△CDE 都是等边三角形,M 、N 分别是AB CDEAD 、BE 的中点,求证:△CMN 是等边三角形.【解析】∵︒=∠=∠60ECD ACB , ∴BCD ECD BCD ACB ∠+∠=∠+∠, 即ACD BCE ∠=∠.∵BC AC =,ACD BCE ∠=∠,CD EC = ∴()S A S BCE ACD ..≌△△,∴AD BE =,21∠=∠∵M 、N 分别是AD 、BE 的中点,AD BE =,∴BN AM =. ∵BC AC =,21∠=∠,BN AM =,∴()S A S BCN ACM ..≌△△, ∴CN CM =,43∠=∠∵︒=∠+∠603MCB ,∴︒=∠+∠604MCB ,即︒=∠60MCN∵CN CM =,∴△CMN 是等边三角形.【总结】考察三角形全等三角形判定和性质以及等边三角形的性质与判定的综合运用.【例21】 如图,在△ABC 中,108AB AC BAC =∠=,°,点D 在AC 上且BC AB CD =+. 求证:BD 平分ABC ∠.【答案】见解析【解析】在BC 上截取一点E 使得BE=AB ,联结ED 、AE . ∵108AB AC BAC =∠=,°,∴︒=∠=∠36C ABC . ∵BC AB CD =+,BE AB =,∴EC CD = ∵︒=∠36C ,∴︒=∠=∠72CED CDE∴︒=∠-︒=∠108180BAC DEB ,∴DEB BAC ∠=∠ ∵BE AB =, ∴BEA BAE ∠=∠∴BAE DEB BAE BAC ∠-∠=∠-∠,即DEA DAE ∠=∠,∴DE AD =. ∵BE AB =,DE AD =,BD BD =,∴()S S S EBD ABD ..≌△△.∴CBD ABD ∠=∠,即BD 平分ABC ∠.【总结】考察截长补短辅助线的做法以及三角形全等判定的综合运用.【例22】 如图,已知AB AC =,100A ∠=°,BD 平分ABC ∠.求证:BC BD AD =+. 【答案】见解析FE DCBA【解析】在BC 上截取一点E 使得BE=BD , 截取一点F 使得BF=AB ,联结ED 、DF .∵100AB AC BAC =∠=,°,∴︒=∠=∠40C ABC , ∵BD 平分ABC ∠,∴︒=∠=∠20DBE ABD ∵BE BD =,∴︒=∠=∠80BDE BED∵EDC C BED ∠+∠=∠,∴︒=∠40EDC ,∴C EDC ∠=∠,∴EC DE = ∵BF AB =,DBF ABD ∠=∠,BD BD =,∴()S A S FBD ABD ..≌△△ ∴︒=∠=∠100BFD BAC ,DF AD =,∴︒=︒-︒=∠80100180DFE . ∵︒=∠80BED ,∴BED DEF ∠=∠,∴DF DE = ∵EC DE =,∴EC DF = ∵DF AD =,∴CE AD =∵BC BE CE =+,BE BD =,CE AD =∴BC BD AD =+【总结】本题综合性较强,主要考查截长补短辅助线的添加以及等腰三角形性质的综合运用. 【例23】 已知:如图,△ABC 是等腰直角三角形,∠ACB =90°,△ADB 是等边三角形,点C 在△ADB 的内部,DE ⊥AC 交直线AC 于点E . (1) 求证:DE =CE ;(2) 若点C 在△ADB 外部,DE =CE 的关系是否成立?如不成立,请说明理由;如成立,请证明.【解析】(1)联结DC 并延长交AB 于F . ∵DB AD =,DC DC =,CB AC = ∴BDC ADC ≌△△ ∴ADF BDF ∠=∠ ∴AB DF ⊥ ∴︒=∠45FCB∴︒=∠-∠-︒=∠45180ECB FCB DCE ∵CE DE ⊥∴︒=∠=∠45EDC DCE ∴CE DE =(2)证明方法同(1)一样.【总结】考察全等三角形的判定和性质以及等腰三角形的性质的综合运用.FE DCBA文字题的证明解决的步骤是:(1) 已知(条件).不要漏写、多写,尽量多用几何符号表示; (2) 求证(结论).不能写错,画图要精准; (3) 证明.【例24】 求证:三角形一边的两端到这边的中线所在直线的距离相等 .【解析】如图,已知△ABC 中,D 为BC 的中点,过C 作AD 的垂线,垂足为F ,过B 作 AD 的垂线,垂足为E . 求证:CF =BE .证明:∵90CFD BED ∠=∠=,CD BD =,BDE CDF ∠=∠∴CFD BED ≌△△,∴CF =BE .【总结】考察全等三角形的判定和性质的综合运用.【例25】 求证:等腰三角形的顶点到两腰中线的距离相等.【解析】如图,已知△ABC 中,AB=AC ,D 为AC 的中点,E 为AB 的中点,过A 作CE 的例题解析模块三:文字题的证明知识精讲垂线,垂足为N ,过A 作BD 的垂线,垂足为M . 求证:AM =AN证明:∵AC AB =,AE AD =,BAC BAC ∠=∠ ∴ACE ABD ≌△△,∴ACE ABD ∠=∠ ∵AC AB =,AMB ANC ∠=∠,ACE ABD ∠=∠∴ACN ABM ≌△△,∴AM =AN【总结】考察全等三角形的判定和性质的综合运用.【例26】 求证:等腰三角形底边上任一点到两腰的距离和等于一腰上的高.【解析】如图,已知△ABC 中,AB=AC ,D 为AC 上一点,DE ⊥AB ,DF ⊥AC ,CG ⊥AB , 求证:CG DF DE =+证明:联结AD∵DE AB S ABD ⋅⋅=21△,DF AC S ACD ⋅⋅=21△,CG AB S ABC ⋅⋅=21△∴CG AB DF AC DE AB ⋅⋅=⋅⋅+⋅⋅212121∵AC AB =,∴CG DF DE =+【总结】本题主要考察利用面积相等证明线段相等的方法.【例27】 求证:有两角及夹边上的高对应相等的两个三角形全等. 【答案】见解析【解析】如图,在△ABC 和△DEF 中,E B ∠=∠,D A ∠=∠,CM 是AB 边上的高,NF 是 DE 边上的高,且NF CM =.求证:DEF ABC ≌△△.证明:∵E B ∠=∠,90CMB FNE ∠=∠=,NF CM = ∴ENF BMC ≌△△,∴EN BM =同理可证:DNF AMC ≌△△,∴DN AM = ∴ED BA =,∵E B ∠=∠,D A ∠=∠∴EDF BAC ≌△△.【总结】本题主要考察全等三角形的判定.【习题1】 如图,在△ABC 中,∠B =∠C ,下列结论正确的是().A .ABD ACD ∆≅∆B .AB =ACC .AD 是△ACD 的高 D .△ABC 是等边三角形【答案】B【解析】因为∠B =∠C ,所以AB =AC ,由于不知点D 是否为中点, 因此其余选项都不对.【总结】考察等腰三角形的等角对等边的性质的运用.【习题2】 如习题1图所示AB =AC ,D 为BC 上一点,若AD ⊥BC ,则BD =______________,∠BAD =_____________. 【答案】DC ,CAD ∠【解析】等腰三角形三线合一性质可得答案. 【总结】考察等腰三角形三线合一性质.【习题3】 已知:如图,B 是CE 的中点,AD =BC ,AB =DC . DE 交AB 于点F ,求证:AF =BF .随堂检测ABCD【解析】∵AD =BC ,AB =DC ,BD BD =∴CDB ABD ≌△△∴CBD ADB ∠=∠,∴BC AD ∥ ∴ABE A ∠=∠∵BC BE =,AD =BC ,∴BE AD = ∵ABE A ∠=∠,BE AD =,BFE AFD ∠=∠ ∴BFE AFD ≌△△,∴AF =BF .【总结】考察全等三角形的判定和性质以及平行线的性质与判定的综合运用.【习题4】 △ABC 中,AB =AC ,E 在BC 上,D 在AE 上(不与A 重合),则下列说法中正确的有().①若E 为BC 的中点,则有BD =CD ; ②若BD =CD ,则E 为BC 中点; ③若AE ⊥BC ,则有BD =CD ; ④若BD =CD ,则AE ⊥BC . A .1B .2C .3D .4【答案】D【解析】可由等腰三角形的三线合一及全等三角形的性质得四个选项全对. 【总结】本题主要考察等腰三角形的三线合一的性质.【习题5】 如图,∠ACB =90°,AC =BC ,D 为AB 上一点,AE ⊥CD 于点E ,BF 交CD 的延长线于点F ,且CF =AE .求证:BF ⊥DC .【解析】∵︒=∠+∠90ACE BCF ,︒=∠+∠90ACE EAC , ∴CAE BCF ∠=∠.∵AC =BC ,CAE BCF ∠=∠,CF =AE , ∴ACE BCF ≌△△∴︒=∠=∠90AEC BFC ,即BF ⊥DC .【总结】考察全等三角形的判定和性质以及证明两直线垂直的方法.AB CDE ABCDEFA BCDEFNMABCD EDEFNQPMCBA 【习题6】 如图,在△ABC 中,AD 平分∠BAC ,DE ∥AC ,过点E 作EF ⊥AD 于点O ,交BC 的延长线于点F ,联结AF ,求证:AF =DF .【解析】∵AD 平分∠BAC ,DE ∥AC , ∴AE DE = ∵EF ⊥AD ,∴FED AEF ∠=∠∵FED AEF ∠=∠,AE DE =,FE FE =∴AEF DEF ≌△△,∴AF =DF .【总结】考察全等三角形的判定和性质以及等腰三角形的三线合一. 【习题7】 已知:如图,∠D =∠E ,DN =CN =EM =AM ,求证:点B 是AC 的中点.【解析】∵∠D =∠E ,EBD DBE ∠=∠,ME DN =,∴EBM DBN ≌△△,∴DNB EMB ∠=∠,BM BN = ∴CNB AMB ∠=∠∵CN AM =,CNB AMB ∠=∠,BN BM =, ∴CNB AMB ≌△△,∴BC AB =,即点B 是AC 的中点.【总结】考察全等三角形的判定和性质的综合运用.【习题8】 有两边和第三边上的中线对应相等的两个三角形全等 .【解析】如图,在△ABC 和△DEF 中,DE AB =,AC DF =,M 为BC 的中点,N 为EF的中点,且ND AM =.求证:DEF ABC ≌△△. 证明:分别延长AM 、DN 到点P 和点Q ,使PM AM =, QN DN =,连接CP 、FQ .∵M 为BC 的中点, ∴BM CM =. ∵PM AM =,AMB PMC ∠=∠, ∴AMB PMC ≅.∴AB PC =,BAM P ∠=∠. 同理,可证:DEN QFN ≅, ∴DE QF =,EDN Q ∠=∠.∵DE AB =,ND AM =∴PC QF =,AP DQ =.AC BD E F GODECBA又∵AC DF =, ∴APC DQF ≅, ∴PAC QDF ∠=∠,P Q ∠=∠.∴BAM EDN ∠=∠, ∴BAC EDF ∠=∠∵DE AB =,AC DF =,∴DEF ABC ≌△△.【总结】本题一方面考察中线倍长辅助线的添加,另一方面考查全等三角形的判定和性质的综合运用.【习题9】 已知,如图,在△ABC 中,AD ⊥BC ,AB +BD = CD ,求证:∠B =2∠C .【解析】在CD 上截取一点E 使得DE=DB ,联结AE .∵DE BD =,ADE ADB ∠=∠,DA AD = ∴ADE ADB ≌△△ ∴AE AB =,AEB B ∠=∠∵AB +BD = CD ,DE=DB ,CE +ED = CD , ∴AB CE =,∵AE AB =,∴AE CE =∴CAE C ∠=∠.∴C CAE C AEB ∠=∠+∠=∠2 ∵AEB B ∠=∠,∴∠B =2∠C .【总结】考察截长补短的辅助线的添法以及三角形外角性质的综合运用.【习题10】 如图,已知AB AC =,BD 平分ABC ∠且BC AB CD =+,求证:108A ∠=.【解析】在BC 上截取一点E 使得BE=AB ,联结ED .∵BE AB =,DBE ABD ∠=∠,BD BD = ∴()S A S EBD ABD ..≌△△ ∴BED A ∠=∠∵BC AB CD =+,BE AB =, ∴EC CD =设x C 2=∠,∴90CDE CED x ∠=∠=-∴x CED DEB +=∠-︒=∠90180,∴x DEB BAC +=∠=∠90∵AC AB =,∴x C ABC 2=∠=∠ ∵︒=∠+∠+∠180C BAC ABC , ∴︒=+++1809022x x x ,则︒=18x ∴︒=︒+︒=∠1081890BAC【总结】考察截长补短辅助线的添法以及三角形内角和的综合运用.【习题11】 如图,在△ABC 中,已知AC =BC ,∠ACB =90°,D 是BC 边上一点,CE ⊥AD ,BF ⊥BC ,CE 与AB 、BF 分别相交于点E 、F ,联结DE ,且有∠1=∠2. 求证:D 是BC 的中点.【解析】∵︒=∠+∠90ACF BCF ,︒=∠+∠90CAD ACF ,∴CAD BCF ∠=∠.∵CAD BCF ∠=∠,BC AC =,90ACD CBF ∠=∠=, ∴BCF CAD ≌△△, ∴F ∠=∠1,BF CD = ∵21∠=∠,∴F ∠=∠2∵AC = BC ,∠ACB =90°,∴︒=∠45CBA ∵︒=∠90CBF ,︒=∠45FBE∵2F DBE FBE BE BE ∠=∠∠=∠=,,, ∴FBE DBE ≌△△,∴BF DB =∵BF CD =,∴BD CD =,即D 是BC 的中点. 【总结】本题综合性较强,要多次利用全等证明线段相等.【习题12】 已知:如图,△ABC 的高AD 所在的直线与高BE 所在的直线相交于点F(1) 如图1,若△ABC 为锐角三角形,且∠ABC =45°,过点F 作FG ∥BC 、交直线AB 于点G ,求证:FG +DC =AD ;(2) 如图2,若∠ABC =135°,过点F 作FG ∥BC 、交直线AB 于点G , FG 、DC 、AD 之间的数量关系是___________,并证明.【答案】(1)见解析;(2)FG CD AD =+;证明见解析. 【解析】(1)∵∠ABC =45°,BC AD ⊥ ∴︒=∠=∠45BAD ABC ,BD AD =∵FG ∥BC ,∴︒=∠=∠45AGF GAF , ∴GF AF =ABC D EF12 ABCDE FG图1∵︒=∠+∠90FBD C ,︒=∠+∠90CAD C , ∴CAD FBD ∠=∠∵CAD FBD ∠=∠,CDA FDB ∠=∠,BD AD = ∴ACD BFD ≌△△∴FD CD =,∵GF AF =,FD CD =,DF AF AD +=, ∴FG +DC =AD .(2)FG CD AD =+. ∵∠ABC =135°,BC AD ⊥ ∴︒=∠=∠45BAD ABD ,BD AD = ∵FG ∥BC ,∴︒=∠=∠45AGF GAF , ∴GF AF =∵︒=∠+∠90DFB FAE ,︒=∠+∠90FAE C ∴DFB C ∠=∠∵DFB C ∠=∠,CDA FDB ∠=∠,BD AD = ∴ACD BFD ≌△△ ∴FD CD =∵GF AF =,FD CD =,AF DF AD =+∴FG CD AD =+.【总结】考察全等三角形的性质和判定以及等腰直角三角形性质的综合运用.【作业1】 以下命题的逆命题是真命题的是().A .等边三角形的三个角相等;B .同角的补角相等;C .在三角形中,钝角作对的边长最长;D .同位角相等. 【答案】A【解析】A 的逆命题为:三个内角相等的三角形为等边三角形,为真命题;B 的逆命题为:两个角的补角相等,则这两个角为同一个角,为假命题;课后作业ABCDEFG图2C 的逆命题为:在三角形中,边长最长的边所对的角为钝角,为假命题;D 的逆命题为:两个相等的角为同位角,为假命题. 【总结】考察逆命题的概念以及对真假命题的判定.【作业2】 已知:在△ABC 中,BD 是AC 上的中线,BD =12AC . 求证:△ABC 是直角三角形.【解析】∵BD 是AC 上的中线,BD =12AC . ∴AD BD BD CD ==,∴DBC C ABD A ∠=∠∠=∠,. ∵︒=∠+∠+∠+∠180DBC C ABD A ∴︒=∠+∠90DBC ABD ,即︒=∠90ABC ∴△ABC 是直角三角形.【总结】本题主要考察三角形内角和的运用,另外这个命题也可以在作为判定一个三角形是直角三角形的方法.【作业3】 已知:如图,AC =BD ,AB = CD .求证:OB =OC .【解析】联结AD .∵AD =AD ,AC =BD ,AB = CD , ∴DCA ABD ≌△△ ∴C B ∠=∠,∵C B ∠=∠,COD AOB ∠=∠,AB = CD∴DCO ABO ≌△△,∴OC OB =.【总结】考察三角形全等的判定和性质的综合运用.【作业4】 等腰△ABC 中,AB =AC ,取腰AC 上一点E ,取AB 的反向延长线上的一点D ,使AE =AD ,联结DE 交BC 于F . 求证:DF ⊥BC .【解析】∵AB =AC ,∴C B ∠=∠,∵AE =AD ,∴AED D ∠=∠.∵AED FEC ∠=∠,∴FEC D ∠=∠,∵B D BFD ∠-∠-︒=∠180,FEC C EFC ∠-∠-︒=∠180, ∴EFC BFD ∠=∠.ABCDO∵︒=∠+∠180EFC BFD ,∴︒=∠90BFD ,即DF ⊥BC . 【总结】考察等腰三角形的性质的综合运用.【作业5】 已知,如图,AE =AC ,BE =BD ,∠EAD =∠CAD . 求证:∠ABC =2∠C .【解析】∵AE =AC ,AD =AD ,∠EAD =∠CAD .∴ACD AED ≌△△, ∴E C ∠=∠ ∵BE =BD ,∴BDE E ∠=∠∴E BDE E ABC ∠=∠+∠=∠2 ∵E C ∠=∠,∴∠ABC =2∠C .【总结】考察三角形的外角性质和三角形全等的判定和性质的综合运用.【作业6】 求证:等腰三角形底边延长线上的任意一点到两腰的距离之差等于一腰上的高.【解析】如图,已知△ABC 中,AB=AC ,D 为BC 延长线上一点,DE ⊥AB ,DF ⊥AC ,CG ⊥AB ,求证:CG DF DE =-.证明:联结AD∵DE AB S ABD ⋅⋅=21△,DF AC S ACD ⋅⋅=21△,CG AB S ABC ⋅⋅=21△ ∴CG AB DF AC DE AB ⋅⋅=⋅⋅-⋅⋅212121∵AC AB =,∴CG DF DE =-.【总结】本题主要考察利用面积相等证明线段相等,这是一种 常见的证明方法,注意归纳总结.ABCDE【作业7】 如图,在△ABC 中,108AB AC BAC =∠=,°,点D 在AC 上且BD 平分ABC ∠. 求证:BC AB CD =+.【解析】在BC 上截取一点E 使得BE=AB ,联结ED 、AE ∵108AB AC BAC =∠=,°, ∴︒=∠=∠36C ABC∵BE AB =,EBD ABD ∠=∠,BD BD =∴()S A S EBD ABD ..≌△△,∴108DEB BAC ∠=∠=︒ ∴72CED ∠=︒, ∵︒=∠36C ,∴︒=∠=∠72CED CDE . ∴CE CD =,∵BC EB CE =+,BE AB =,CE CD =∴BC AB CD =+.【总结】考察截长补短辅助线的做法以及三角形内角和和等腰三角形性质的综合运用.【作业8】 已知:如图,在△ABC 中,AB =AC ,AD ⊥BC ,点O 在线段AD 上,延长CO 交AB 于点Q ,延长BO 交AC 于点P ,求证:OP =OQ .【解析】∵ODC ODB ∠=∠,CD BD =,OD OD =∴OCD OBD ≌△△,∴OCD OBD ∠=∠. ∵AC AB =,∴ACB ABC ∠=∠ ∴ACQ ABP ∠=∠∵ACQ ABP ∠=∠,PAB QAC ∠=∠,AC AB = ∴AQC APB ≌△△,∴AP AQ =. ∵AB =AC ,AD ⊥BC , ∴PAO QAO ∠=∠∵AP AQ =,PAO QAO ∠=∠,OA OA = ∴AQO APO ≌△△ ∴OP OQ =.【总结】考察全等三角形的判定和性质的综合运用.【作业9】 如图,CE 、BD 分别是△ABC 的边AB 、AC 上的高,点P 在BD 的延长线上,BP =AC ,点Q 在CE 上,CQ =AB .ABCDQPOADE P求证:(1)AP =AQ ; (2)AP ⊥AQ .【解析】∵90ACE CAE ∠+∠=︒,90CAE ABP ∠+∠=︒, ∴ABP ACE ∠=∠∵BP =AC ,ABP ACE ∠=∠,CQ =AB ∴QCA ABP ≌△△ ∴AQ AP =,QAC P ∠=∠ ∵︒=∠+∠90PAD P∴︒=∠+∠90PAD QAC ,即AP ⊥AQ【总结】考察全等三角形的判定和性质的综合运用.【作业10】 已知△ABC 中,∠BAC=90°,AB =2AC ,AD 平分∠BAC ,AD =BD .求证:CD ⊥AC .【解析】过D 作DE ⊥AB .∵∠BAC=90°,AD 平分∠BAC ∴︒=∠45BAD ∵DE ⊥AB ,AD =BD ,∴E 是AB 中点,即2AB AE =.∵DE ⊥AB ,︒=∠45BAD , ∴45ADE ∠=,∴ADE EAD ∠=∠, ∴AE DE =.∵2AB AE =,∴2AB DE =.∵AB =2AC ,∴DE AE AC ==∵AE AC =,EAD CAD ∠=∠,AD AD = ∴AED ACD ≌△△∴︒=∠=∠90AED ACD ,即CD ⊥AC .【总结】考察全等三角形的判定和性质及等角对等边性质的综合运用.【作业11】 操作:在△ABC 中,AC =BC ,∠C=90°,将一块直角三角板的直角顶点放在斜边AB 的中点P 处,将三角形板绕P 旋转,三角板的两直角边分别交射线AC 、CB 于点D 、E 两点,如图(1)(2)(3)是旋转三角板所得到的图形中的3种情况,研究:ACBDE三角形绕点P 旋转,观察线段PD 与PE 之间有什么数量关系?结合图形3说明理由.【答案】相等,证明见解析. 【解析】PE PD =.∵AC =BC ,∠C=90°,P 为AB 的中点 ∴CP =PB ,CP ⊥AB ,PCB B ∠=∠∵︒=∠+∠90CPE EPB ,︒=∠+∠90CPE CPD ∴CPD EPB ∠=∠∵PCB B ∠=∠,CP =PB ,CPD EPB ∠=∠ ∴BPE CPD ≌△△ ∴PE PD =【总结】考察全等三角形的判定和性质.【作业12】 已知:如图所示在等边三角形ABC 中,D 为AC 上一点,E 为AB 延长线上一点,CD =BE ,DE 交BC 于点P .(1) 判断DP 与EP 有怎样的数量关系,并证明你的结论;ABCD EP图2ABC DEP图1图3ABCD EP(2) 设等边三角形ABC 的边长为a ,当D 为AC 的中点时,求BP 的长.【答案】(1)EP DP =,证明见解析;(2)a 41.【解析】(1)EP DP =.过D 作DF ∥AB 交CB 于F ∵等边三角形ABC ,DF ∥AB ∴△CDF 是等边三角形. ∴DF CD =∵CD =BE ,∴DF BE =∵FDP E ∠=∠,DF BE =,BPE EPD ∠=∠ ∴BPE FPD ≌△△ ∴EP DP =(2)由(1)可得:CF BP FP 21==.∵D 为AC 的中点, ∴12CD AC =∵CF CD =,BC AC =, ∴12BF CF BC == ∴a BC BP 4141==. 【总结】考察全等三角形的判定和性质以及等边三角形性质的综合运用.CABDEPF。
八年级数学上册 第13章 全等三角形 13.1 命题、定理与证明 2 定理与证明导学课件
13.1 命题(mìng tí)、定理与证明
【归纳总结(zǒngjié)】证明文字叙述的真命题的一般步骤: (1)分清条件和结论;(2)画出图形;(3)根据条件写出已知,根据结论写出
求证;(4)证明.
第十二页,共十七页。
13.1 命题、定理与证明
总结(zǒngjié)反思
小结(xiǎojié)
图 13-1-1
第九页,共十七页。
13.1 命题、定理(dìnglǐ)与证明
解:可以判定(pàndìng)AB∥CD.理由: ∵ ∠1+∠2=80°+100°=180°, ∴AB∥CD(同旁内角互补,两直线平行).
【归纳总结】证明(zhèngmíng)几何命题的依据: 已知条件、定义、基本事实、定理等.
正确性需要进行证明;如果要说明它是假命题,只要举一个反例就可以 了.
第八页,共十七页。
13.1 命题(mìng tí)、定理与证明
目标三 会进行(jìnxíng)简单的推理证明
例 3 教材补充例题如图 13-1-1,直线 AB,CD 被直线 EF 所截, 若∠1=80°,∠2=100°. 由此你可以判定 AB 和 CD 平行吗?为什 么? [全品导学号:90702083]
第十六页,共十七页。
内容(nèiróng)总结
第13章 全等三角形。13.1 命题、定理与证明。2.经过观察(guānchá)、讨论、发现,理解由特殊事例得到的结论不一 定正确.。于是小华猜想:不论a,b为何值,总有a2+b2>2ab.。理由:∵a2+b2-2ab=(a-b)2≥0,。【归纳总结】由特 殊事例递推猜想所得到的命题不一定是真命题,其正确性需要进行证明。解:可以判定AB∥CD.理由:。已知条件、定义、 基本事实、定理等.。【归纳总结】证明文字叙述的真命题的一般步骤:
初中数学北师大版八年级上册第七章 平行线的证明2 定义与命题-章节测试习题
章节测试题1.【答题】命题“垂直于同一条直线的两条直线互相平行”的条件是()A.如果两条直线垂直于同一条直线B.两条直线互相平行C.两条直线互相垂直D.两条直线垂直于同一条直线【答案】D【分析】命题有条件和结论两部分组成,条件是已知的部分,结论是由条件得出的推论.【解答】命题“垂直于同一条直线的两条直线互相平行”的条件是“两条直线垂直于同一条直线”,结论是“两条直线互相平行”.选D.2.【答题】下列命题的逆命题是真命题的是()A.直角都相等B.钝角都小于180°C.如果x2+y2=0,那么x=y=0D.对顶角相等【答案】C【分析】根据逆命题是否为真命题逐一进行判断即可.【解答】相等的角不都是直角,故A选项不符合题意,小于180°的角不都是钝角,故B选项不符合题意,如果x=y=0,那么x2+y2=0,正确,是真命题,符合题意,相等的角不一定都是对顶角,故D选项不符合题意,选C.3.【答题】把命题”对顶角相等”写成“如果……那么……”的形式是______.【答案】如果两个角是对顶角,那么这两个角相等【分析】对顶角相等的条件是两个角是对顶角,结论是两角相等,据此即可改写成“如果…,那么…”的形式.【解答】∵原命题的条件是:“两个角是对顶角”,结论是:“这两个角相等”,∴命题“对顶角相等”写成“如果…那么…”的形式为:“如果两个角是对顶角,那么这两个角相等”,故答案为:如果两个角是对顶角,那么两个角相等.4.【答题】命题“两个锐角的和是直角”是______命题(填“真”或“假”).【答案】假【分析】根据真、假命题的定义判断即可。
【解答】两个锐角的和可能是锐角,直角或钝角,即两个锐角的和是直角是假命题.5.【题文】判断下列命题是真命题还是假命题,如果是假命题,请举出一个反例.(1)如果一个数是偶数,那么这个数是4的倍数.(2)两个负数的差一定是负数.【答案】(1)假命题(2)假命题【分析】分析是否为真命题,需要分别分析各题设是否能推出结论,从而利用排除法得出答案,假命题举出反例即可.【解答】解:(1)假命题.反例:6是偶数,但6不是4的倍数.(2)假命题.反例:(-5)-(-8)=+3.6.【题文】把命题改写成“如果……那么……”的形式.(1)对顶角相等.(2)两直线平行,同位角相等.(3)等角的余角相等.【答案】见解答【分析】根据命题由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,命题常常可以写为“如果…那么…”的形式,如果后面接题设,而那么后面接结论.由此可得结论.【解答】解:(1)如果两个角是对顶角,那么这两个角相等.(2)如果两条直线平行,那么同位角相等.(3)如果两个角同为等角的余角,那么这两个角相等.7.【题文】指出下列命题的条件和结论.(1)两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行.(2)如果∠1=∠2,∠2=∠3,那么∠1=∠3.(3)锐角小于它的余角.【答案】见解析【分析】根据命题由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,命题常常可以写为“如果…那么…”的形式,如果后面接题设,而那么后面接结论.由此可得结论.【解答】解:(1)条件:两条直线被第三条直线所截,同旁内角互补;结论:这两条直线平行.(2)条件:∠1=∠2,∠2=∠3;结论:∠1=∠3.(3)条件:一个角是锐角;结论:这个角小于它的余角.8.【答题】下列句子中,不是命题的是()A. 两点之间,线段最短B. 对顶角相等C. 同位角相等D. 连结A.B两点【答案】D【分析】判断一件事情的语句叫做命题.【解答】解:A、B、C都符合命题的概念,故正确;D、没有作出判断,故错误.选D.9.【答题】下列语句不是命题的()A. 鲸鱼是哺乳动物B. 植物都需要水C. 你必须完成作业D. 实数包括零【答案】C【分析】可以判定真假的语句是命题,根据其定义对各个选项进行分析,从而得到答案.【解答】解:A,是,因为可以判定这是个真命题;B,是,因为可以判定其是真命题;C,不是,因为这是一个陈述句,无法判断其真假;D,是,可以判定其是真命题;选C.10.【答题】“两条直线相交只有一个交点”的题设是()A. 两条直线B. 相交C. 只有一个交点D. 两条直线相交【答案】D【分析】任何一个命题,都由题设和结论两部分组成.题设,是命题中的已知事项,结论,是由已知事项推出的事项.【解答】解:“两条直线相交只有一个交点”的题设是两条直线相交.选D.11.【答题】命题“同位角相等,两直线平行”中,条件是______,结论是A. 同位角相等;两直线平行B. 同位角不相等;两直线平行C. 同位角不相等;两直线不平行D. 同位角相等;两直线不平行【答案】A【分析】由命题的题设和结论的定义进行解答.【解答】解:命题中,已知的事项是“同位角相等”,由已知事项推出的事项是“两直线平行”,所以“同位角相等”是命题的题设部分,“两直线平行”是命题的结论部分.故空中填:同位角相等;两直线平行,选A.12.【答题】如果两条直线相交,那么它们只有一个交点.这个命题的条件是______,结论是______.A. 两条直线不相交;它们不只有一个交点B. 两条直线不相交;它们只有一个交点C. 两条直线相交;它们只有一个交点D. 两条直线相交;它们不只有一个交点【答案】C【分析】命题分为题设和结论两部分,题设是如果后面的部分,结论是那么后面的部分.【解答】解:这个命题的条件是两条直线相交,结论是它们只有一个交点,选C.13.【答题】命题:“内错角相等,两直线平行”的题设是______,结论是______.A. 内错角相等;两直线平行B. 内错角相等;两直线不平行C. 内错角不相等;两直线平行D. 内错角不相等;两直线不平行【答案】A【分析】根据题设与结论的定义即可判断.【解答】解:内错角相等,两直线平行”的题设是:内错角相等,结论是:两直线平行.故答案是: A.14.【答题】命题“直角三角形两个锐角互余”的条件是______,结论是______.A. 两个锐角互余,则这两个锐角不在一个直角三角形中B. 一个直角三角形中的两个锐角;这两个锐角互余C. 一个直角三角形中的两个锐角;这两个锐角互补D. 两个锐角互补,则这两个锐角在一个直角三角形中【答案】B【分析】命题有条件和结论两部分组成,条件是已知的,结论是结果.【解答】解:“直角三角形两个锐角互余”的条件是一个直角三角形中的两个锐角,结论是这两个锐角互余,选B.15.【答题】把命题“等角的补角相等”改写成“如果…那么…”的形式是(______ )A. 如果两个角相等,那么它们是等角的补角B. 如果两个角是补角,那么它们相等C. 如果两个角是等角的补角,那么它们相等D. 如果两个角相等,那么它们是等角的余角【答案】C【分析】命题中的条件是两个角相等,放在“如果”的后面,结论是这两个角的补角相等,应放在“那么”的后面.【解答】解:题设为:两个角是等角的补角,结论为:相等,故写成“如果…那么…”的形式是:如果两个角是等角的补角,那么它们相等.故答案为: C.16.【答题】命题“等角的余角相等”写成“如果…,那么…”的形式(______)A. 如果两个角的补角相等,那么这两个角相等B. 如果两个角的余角相等,那么这两个角相等C. 如果两个角相等,那么这两个角的余角相等D. 如果两个角相等,那么这两个角的补角相等【答案】C【分析】任何一个命题都可以写成“如果…,那么…”的形式如果后面是题设,那么后面是结论.【解答】解:命题“等角的余角相等”的题设是“两个角相等”,结论是“这两个角的余角相等”.故命题“等角的余角相等”写成“如果…,那么…”的形式是:如果两个角相等,那么这两个角的余角相等,选C.17.【答题】下列语句中不是命题的是()A. 两点之间线段最短B. 连接A,B两点C. 两条直线相交有且只有一个交点D. 对顶角不相等【答案】B【分析】找到不是判断一件事情的语句的选项即可.【解答】解:A、判断出两点之间,线段最短,是命题,不符合题意;B、没有做出任何判断,不是命题,符合题意;C、由两条直线相交可得只有一个交点,是命题,不符合题意;D、判断是对顶角不相等,是命题,不符合题意;选B.18.【答题】下列四个命题:①对顶角相等;②同位角相等;③等角的余角相等;④凡直角都相等.其中真命题的个数的是()A. 1个B. 2个C. 3个D. 4个【答案】C【分析】分析是否为真命题,需要分别分析各题设是否能推出结论,从而利用排除法得出答案.【解答】解:①对顶角相等,是真命题,②只有在两直线平行时,同位角才相等,假命题,③等角的余角相等,是真命题,④直角都等于90°,是真命题,真命题有3个,选C.19.【答题】对于命题“如果∠1+∠2=90°,那么∠1≠∠2”,能说明它是假命题的反例是()A. ∠1=50°,∠2=40°B. ∠1=50°,∠2=50°C. ∠1=∠2=45°D. ∠1=40°,∠2=40°【答案】C【分析】能说明是假命题的反例就是能满足已知条件,但不满足结论的例子.【解答】解:A,满足条件∠1+∠2=90°,也满足结论∠1≠∠2,故错误;B、不满足条件,故错误;C、满足条件,不满足结论,故正确;D、不满足条件,也不满足结论.选C.20.【答题】a、b是实数,下列命题是真命题的是()A. a≠b,则a2≠b2B. 若a2>b2,则a>bC. 若|a|>|b|,则a>bD. 若|a|>|b|,则a2>b2【答案】D【分析】分析是否为真命题,需要分别分析各题设是否能推出结论,从而利用排除法得出答案.【解答】解:A、假命题,反例:2≠-2,但2 2 =(-2)2;B、假命题,反例:-3 2>0 2,但-3<0;C、假命题,反例:|-9|>|0|,则-9<0;D、真命题,|a|>|b|,则a 2>b 2.选D.。
八年级数学 第13章 全等三角形 13.1 命题、定理与证明 2 定理与证明数学
基本事实、定理、命题的关系:
真命题 命题
假命题
基本事实(正确性由实践总结) 定理(正确性通过推理证实)
12/13/2021
思考
(1)一位同学在钻研数学题时发现: 2+1=3, 2×3+1=7, 2×3×5+1=31, 2×3×5×7+1=211,
于是,他根据上面的结果并利用质数表得出结论: 从质数2开始,排在前面的任意多个质数的乘积加1一定 也是质数.他的结论正确吗? 试一试:
A
∴ l1∥l2 (同位角相等,两直线平行).
注意: 如果要证明一个文字语言叙述的证明题,而没有给出图形、 已知、求证, 我们要证明这个命题,必须: 1.首先必须根据命题的要求准确的画出图形,标出字母. 2.再根据要求按照图中所标字母写出数学语言表示的已知 和求证. 3.如果命题已给出已知和求证,就可以按照所学有关公理、 定理、性质等直接进行证明了.
∵OF平分 ∠BOC, ∴∠2=1 ∠BOC.
2
∴∠1 + ∠2 = 1
( ∠AOB +
=1
2
∠AOC
=
1 2
2
×180°=90°.
∴OE⊥OF(垂直定义).
12/13/2021
O
∠BOC
B F C
)
2.用演绎推理证明下面的定理: (1)同旁内角互补两直线平行; (2)三角形的外角和等于360°.
12/13/2021
当堂练习
1.证明:邻补角的平分线互相垂直.
已知:如图,∠AOB+∠BOC=180°,OE平分∠AOB,
OF平分∠BOC.
E
求证:OE⊥OF.
分析:要证明OE⊥OF,只要证明 ∠EOF= 90°,即∠1+∠2= 90°即 A
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
• 通过这节课的学习,你有哪些收获?
谢谢各位领导 和老师的指导
∠D、∠E的和等于多少度?并证明. A
B C
M
N
E
D
生活数学
老李早晨跑步,总是绕着① ② ③ 三个图形各跑一圈(O为出发点).
O O O
①
②
③
⑴绕着①图形回到O点,老李转过的度数是
360° 。
⑵绕着②图形回到O点,老李转过的度数是
⑶绕着③图形回到O点,老李转过的度数是 ⑷你发现了什么?
360° 。
三角形3个内角的和是
你知道吗?
180 °.
如何证明三角形内角和等于180°?
A
已知:△ABC, 求证:∠A+∠B+∠C=180°.
B
E
1
2 CDBiblioteka 证明:如图,作BC的延长线CD, 过点C作CE∥AB. ∠1= ∠A(两直线平行,内错角相等) ∠2= ∠B(两直线平行,同位角相等) ∵∠1+∠2+∠ACB=180°(平角的定义), ∴ ∠A+∠B+∠ACB=180°(等量代换).
求证:∠A+∠B=90°.
A
B
C
2、四边形的内角和等于多少度?
证明你的结论.
已知:四边形ABCD.
求证:∠A+∠B+∠C+∠D=360°. 证明:连接AC,
D C B
A
3 、 如图,∠α、∠β、∠γ
是△ABC的3个外角;
猜想△ABC的3个外角的和是多 少?证明你的猜想。
β C γ B α A
4、如图,在五角星中,∠A、∠B、∠C、
D
A
E
你还有什么 不同的方法?
B A C
P
Q
B
H
C
关于辅助线:
1、辅助线是为了证明需要在原图上添画的线. (辅助线通常画成虚线) 2、它的作用是把分散的条件集中,把隐含的 条件显现出来,起到牵线搭桥的作用. 三角形内角和定理 :
三角形三个内角的和等于180°.
如图,∠α 是△ABC的一个外角, ∠α 与△ABC的内角有怎样的大小 γ
360° 。
如图,在△ ABC中, P是△ABC内任意一点,比较∠BPC 与∠A 的大小?证明你的结论.
A Q P B C
Q
我们通过添加辅助线,证明了三角形 内角和定理及推论。添加辅助线,可 构造新图形,形成新关系,找到联系 已知与未知的桥梁,把问题转化。不 同的添加辅助线方法的实质是相的 —— 把一个我们不会解决的新问题, 转化为我们会解决的问题。
A 关系?
α C 进而, ∠α >∠A, ∠α >∠B.
B
β
由三角形内角和定理,可 以知道:∠α =∠A+∠B
三角形内角和定理的推论:
1.三角形的一个外角等于和它不相邻的两个内角的和; 2.三角形的一个外角大于任何一个和它不相邻的内角.
1、证明:直角三角形两个锐角互余。 已知:如图,△ABC中,∠C=90°.