陆地生态系统氮循环共25页文档
氮循环在生态系统中的作用与影响
氮循环在生态系统中的作用与影响在自然界中,生态系统中元素的循环变换是一个复杂的过程。
其中,氮循环是一种至关重要的元素循环。
氮元素在生态系统中存在于不同物种和环境中,并通过氮循环在这些不同的环境之间转移。
氮循环影响着许多生态系统过程,包括能量流动、植物生长、有机物分解、土壤侵蚀以及水体中营养物的含量。
本文将探讨氮循环在生态系统中的作用及其影响。
氮的生态角色氮是生命必须的元素之一,是许多生物体内关键的成分。
氮存在于物质的形态有许多不同形式,包括氨气(NH3)、氨基酸、硝酸盐和尿素等化合物。
氮在自然界中的四种主要形式包括氮气(N2)、氨(NH3)、硝酸盐(NO3-)和亚硝酸盐 (NO2-)。
其中,氮气是大气中最大的氮来源,而氨被广泛用于农业和工业生产中。
氮化物在水体中的存在(如硝酸盐和亚硝酸盐)是由自然过程和人类活动共同贡献的。
氮元素主要进入生态系统中的方式是通过植物根吸收,有机质分解,以及土地和水体的化学反应和降雨。
在形式上,氮元素的循环在生态系统中主要分为两个关键的过程,即硝化和脱硝。
硝化是一种转化氨基为硝化盐的过程,而脱硝是一种氧化硝酸盐或亚硝酸盐,产生氮气的过程。
氮循环对生态系统的影响氮循环对生态系统有着广泛的影响,这些影响包括:1. 植物生长氮是植物生长所必须的元素之一。
通过氮循环,氮元素被转换为植物所需的形式,并进入植物生长过程中。
缺少氮元素会影响生物的生产力和生态系统的稳定性。
2. 有机物分解氮循环对有机物分解也起着重要作用。
很多物质含有不同形式的氮,在分解过程中,硝化作用将氮转化为硝酸盐和亚硝酸盐,并被用于植物生长和给其他微生物作为食物。
但如果这些物质放置时间过长,就会分解不彻底,残留的有机物会成为环境污染源。
3. 活动的土壤生态系统氮在土壤中的循环及转化过程对土壤生态系统有着重要的作用。
不同的微生物可以协同合作进行氮循环,从而保证生态系统的稳定和可持续性。
4. 行为氮元素形式的变化过程还会影响多种形式的氮污染和防治工作。
自然界中的氮循环
这两个过程通常在不同的环境和条件下进行,但也有可能在同一环境 中同时进行。
05
氮循环的影响因素
气候变化对氮循环的影响
气温升高
气温升高会导致土壤中氮的挥发和流失增加,影响氮 的固定和转化。
降水变化
降水量的增加或减少会影响土壤中氮的吸收和释放, 从而影响氮循环。
气形式存在。
氮循环涉及一系列生物和化学过程,包括固氮、硝化、反硝化
03
等,对维持地球生态平衡和生物多样性具有重要意义。
氮循环的环节
01
固氮
将空气中的游离态氮转化为含氮 化合物的过程,主要通过生物固 氮和工业固氮两种方式进行。
03
反硝化
将硝酸盐还原为氮气,释放到大 气中的过程,是氮循环中重要的
脱氮过程。
促进生物多样性
氮循环过程中涉及多种微生物和植物的共生关系,促进了生物多样 性的发展。
减缓全球气候变化
通过固氮作用,将大气中的氮气转化为含氮化合物,有助于减缓全球 气候变化。
02
氮的固定
自然固氮
生物固氮
通过微生物的作用,将大气中的氮气 转化为氨的过程,是自然固氮的主要 方式。
高温高压固氮
在高温高压条件下,地壳中的岩石和 矿物能够将大气中的氮气转化为氮化 合物。
反硝化作用通常发生在缺氧或 厌氧环境中,如土壤、水体等 。
反硝化作用是自然界氮循环的 另一个重要环节,能够将化合 态的氮转化为气态的氮,释放 到大气中。
硝化与反硝化的关系
01 02 03 04
硝化作用和反硝化作用是自然界氮循环的两个相互联系的环节,它们 共同维持着氮的循环和平衡。
硝化作用将氨氧化成硝酸盐,为反硝化作用提供了所需的硝酸盐。
自然界的氮循环
氮的释放是指自然界中氮气被转化为其他氮化 合物的过程。
03
火山活动可以将大量的氮气释放到大气中,同时岩 石风化也可以将氮气转化为硝酸盐等化合物。
02
自然界的氮释放主要来源于火山活动、岩石风 化和微生物的固氮作用等。
04
微生物的固氮作用是自然界中最重要的氮释放途径, 通过微生物的作用,大气中的氮气可以被转化为氨
等有机氮化合物。
氮的回归
土壤微生物固氮是指土壤中的微 生物将有机氮化合物转化为氨, 然后进一步转化为氮气。
自然界的氮回归主要通过生物呼 吸作用、土壤微生物固氮和燃烧 等途径实现。
05
04
03
02
01
燃烧也是氮回归的一种途径,例 如森林火灾和草原火灾可以将有 机氮化合物转化为氮气。
生物呼吸作用是植物和动物将有 机氮化合物转化为氮气和二氧化 碳的过程,这是自然界中最重要 的氮回归途径。
某些植物能够通过自生固氮作用将大 气中的氮气转化为硝酸盐,供自身吸 收利用。
03 氮的转化
有机氮的转化
1 2
有机氮的来源
有机氮主要来源于生物固氮和动植物残体的分解。
有机氮的转化过程
有机氮在微生物的作用下,经过一系列的分解和 转化,最终转化为氨、硝酸盐等无机氮形式。
3
有机氮的转化意义
有机氮的转化是自然界氮循环的重要组成部分, 对于维持生态系统的平衡和稳定具有重要意义。
氮的回归是指自然界中有机氮化 合物被转化为氮气的过程。
氮的循环平衡
氮的循环平衡是指自然界中氮的释放和回归达 到动态平衡的状态。
在这种状态下,大气中的氮气浓度保持相对稳 定,同时各种有机氮化合物在生物和非生物界 之间进行循环转化。
如果氮的循环平衡被打破,例如过度的农业活 动导致土壤中氮素过量积累或大气中氮气浓度 过高,就会对环境和生态系统造成负面影响。
氮循环及其在生态系统中的作用机制
氮循环及其在生态系统中的作用机制氮循环是指地球上氮元素在大气、水体和生物体之间进行循环的过程。
氮元素在生态系统中的循环是维持生物体生命活动和生态系统稳定性的关键过程之一、氮元素是构成生物体蛋白质、核酸和氨基酸的重要元素,因此氮循环对于生物体的生长和发育具有重要的意义。
氮循环涉及到多种转化过程,主要包括固氮、硝化、反硝化和氨化等。
固氮是指将空气中的氮气转化为植物和微生物可利用的氨或氮化合物的过程,这一过程主要由一些氮固定菌和闪光菌完成。
硝化是指将氨氮在土壤中氧化成亚硝酸盐和硝酸盐的过程,该过程由硝化细菌完成。
反硝化是指一些厌氧微生物将硝酸盐还原成氮气,从而将土壤中氮氧化产生的氮气重新释放到大气中。
氨化是指将有机氮转化为无机氮的过程,这一过程主要由分解细菌完成。
氮循环在生态系统中的作用机制主要表现在以下几个方面:1.维持生物体的正常生长和发育:氮元素是构成生物体蛋白质、核酸和氨基酸的重要组成部分,对于植物和动物的正常生理功能具有重要作用。
通过氮循环,生物体可以从大气中获取氮源,从而合成所需的生命物质,维持正常的生长和发育。
2.影响土壤营养和植物生产力:氮元素是土壤中的重要养分之一,对于土壤的肥力和植物的生产力具有重要的影响。
通过氮循环,氮元素在土壤中被转化成植物可利用的形式,提供给植物作为营养源,促进植物的生长和产量。
3.调控水体中氮的浓度:大量的氮排放到水体中会引起水体富营养化,导致水体中的藻类、浮游生物等生物种群过度繁殖,形成赤潮和水华等问题。
氮循环中的硝化和反硝化过程可以调控水体中氮的含量,从而维持水体生态系统的平衡。
4.影响气候变化:氮循环通过调控大气中氮氧化物的浓度,对大气中温室气体的生成和消耗起着重要作用。
硝化和反硝化过程会生成一氧化氮(NO)和氮氧化物(N2O),它们是重要的温室气体。
因此,氮循环对于调控全球气候变化具有重要意义。
综上所述,氮循环在生态系统中发挥着重要作用。
通过维持生物体的正常生长和发育、调控土壤养分和植物生产力、影响水体富营养化和气候变化等方面的机制,氮循环对于维持生态系统的稳定性和健康发展具有重要的意义。
氮循环的主要过程
氮循环(Nitrogen Cycle)是描述自然界中氮单质和含氮化合物之间相互转换过程的生态系统的物质循环.氮在自然界中的循环转化过程.是生物圈内基本的物质循环之一.如大气中的氮经微生物等作用而进入土壤,为动植物所利用,最终又在微生物的参与下返回大气中,如此反覆循环,以至无穷.空气中含有大约78%的氮气,占有绝大部分的氮元素.氮是许多生物过程的基本元素;它存在于所有组成蛋白质的氨基酸中,是构成诸如DNA等的核酸的四种基本元素之一.在植物中,大量的氮素被用于制造可进行光合作用供植物生长的叶绿素分子.加工,或者固定,是将气态的游离态氮转变为可被有机体吸收的化合态氮的必经过程.一部分氮素由闪电所固定,同时绝大部分的氮素被非共生或共生的固氮细菌所固定.这些细菌拥有可促进氮气和氢化和成为氨的固氮酶,生成的氨再被这种细菌通过一系列的转化以形成自身组织的一部分.某一些固氮细菌,例如根瘤菌,寄生在豆科植物(例如豌豆或蚕豆)的根瘤中.这些细菌和植物建立了一种互利共生的关系,为植物生产氨以换取糖类.因此可通过栽种豆科植物使氮素贫瘠的土地变得肥沃.还有一些其它的植物可供建立这种共生关系.其它植物利用根系从土壤中吸收硝酸根离子或铵离子以获取氮素.动物体内的所有氮素则均由在食物链中进食植物所获得.氨氨来源于腐生生物对死亡动植物器官的分解,被用作制造铵离子(NH4+).在富含氧气的土壤中,这些离子将会首先被亚硝化细菌转化为亚硝酸根离子(NO2-),然后被消化细菌转化为硝酸根离子(NO3-).铵的两步转化过程被叫做氨化作用.铵对于鱼类来说有剧毒,因此必须对废水处理植物排放到水中的铵的浓度进行严密的监控.为避免鱼类死亡的损失,应在排放前对水中的铵进行硝化处理,在陆地上为硝化细菌通风提供氧气进行硝化作用成为一个充满吸引力的解决办法.铵离子很容易被固定在土壤尤其是腐殖质和粘土中.而硝酸根离子和亚硝酸根离子则因它们自身的负电性而更不容易被固定在正离子的交换点(主要是腐殖质)多于负离子的土壤中.在雨后或灌溉后,流失(可溶性离子譬如硝酸根和亚硝酸根的移动)到地下水的情况经常会发生.地下水中硝酸盐含量的提高关系到饮用水的安全,因为水中过量的硝酸根离子会影响婴幼儿血液中的氧浓度并导致高铁血红蛋白症或蓝婴综合征(Blue-baby Syndrome).如果地下水流向溪川,富硝酸盐的地下水会导致地面水体的富营养作用,使得蓝藻菌和其它藻类大量繁殖,导致水生生物因缺氧而大量死亡.虽然不像铵一样对鱼类有毒,硝酸盐可通过富营养作用间接影响鱼类的生存.氮素已经导致了一些水体的富营养化问题.从2006年起,在英国和美国使用氮肥将受到更严厉的限制,磷肥的使用也将受到了同样的限制.这些措施被普遍认为是为了治理恢复被富营养化的水体而采取的.在无氧(低氧)条件下,厌氧细菌的“反硝化作用”将会发生.最终将硝酸中氮的成分还原成氮气归还到大气中去.氮气(N2)的转化有三种将游离态的N2(大气中的氮气)转化为化合态氮的方法:生物固定–一些共生细菌(主要与豆科植物共生)和一些非共生细菌能进行固氮作用并以有机氮的形式吸收.工业固氮–在哈伯-博施法中,N2与氢气被化合生成氨(NH3)肥.化石燃料燃烧–主要由交通工具的引擎和热电站以NOx的形式产生.另外,闪电亦可使N2和O2化合形成NO,是大气化学的一个重要过程,但对陆地和水域的氮含量影响不大.由于豆科植物(特别是大豆、紫苜蓿和苜蓿)的广泛栽种、使用哈伯-博施法生产化学肥料以及交通工具和热电站释放的含氮污染成分,人类使得每年进入生物利用形态的氮素提高了不止一倍.这所导致的富营养作用已经对湿地生态系统产生了破坏.。
氮的循环课件
氮循环与生态系统氮素利用
氮循环与生态系统氮素利用氮循环是生态系统中一个重要的循环过程,它对生态系统的氮素利用具有至关重要的作用。
在自然界中,氮是生物体构成蛋白质和核酸的重要元素,也是植物生长和动物生命活动所必需的。
然而,氮素的利用和循环并不是一个简单的过程,它涉及到多种微生物和化学反应的参与。
首先,让我们来了解一下氮的循环过程。
氮循环主要包括氮的固定、氨化、硝化、反硝化和氮素的损失等环节。
其中,氮的固定是指将大气中的氮气转化为植物可利用的氨的过程。
这一过程主要由一些特殊的微生物如根瘤菌和蓝藻菌完成。
氨化是指将氨转化为氨基酸的过程,这一过程主要发生在植物体内。
硝化是指将氨氧化为亚硝酸和硝酸的过程,这一过程主要由硝化细菌完成。
反硝化是指将硝酸还原为氮气的过程,这一过程主要由反硝化细菌完成。
氮素的损失是指氮在生态系统中的丢失,主要包括挥发、淋溶和沉积等。
在生态系统中,氮循环对维持生态系统的稳定性和健康发展具有重要意义。
首先,氮循环可以提供植物所需的氮素,促进植物的生长和发育。
植物通过根系吸收土壤中的氮素,然后经过氨化和硝化等过程将其转化为植物可利用的形式。
植物利用氮素合成蛋白质和核酸,从而促进细胞分裂和生长发育。
同时,植物还可以通过根系释放一部分氮素,与土壤中的微生物共生,形成氮素循环的闭合循环,提高氮素的利用效率。
其次,氮循环还可以调节生态系统中的氮素流动和分配。
在生态系统中,氮素通过植物、动物和微生物的相互作用,不断在不同的组织和生物体之间流动和转化。
植物通过根系吸收土壤中的氮素,然后通过食物链的传递,将氮素转化为动物体内的蛋白质和核酸。
动物通过摄食植物或其他动物,摄入氮素,然后将其利用于自身的生命活动。
微生物在氮循环中起着重要的作用,它们通过固定、氨化、硝化和反硝化等过程,将氮素转化为不同的形式,并参与到植物和动物的氮素循环中。
然而,生态系统中的氮循环也存在一些问题和挑战。
首先,人类活动对氮循环产生了重要影响。
工业化、农业化和城市化等活动导致了大量的氮素排放和释放,破坏了生态系统中氮的平衡和循环。
氮循环
氮循环(Nitrogen Cycle)是描述自然界中氮单质和含氮化合物之间相互转换过程的生态系统的物质循环。
氮在自然界中的循环转化过程。
是生物圈内基本的物质循环之一。
如大气中的氮经微生物等作用而进入土壤,为动植物所利用,最终又在微生物的参与下返回大气中,如此反覆循环,以至无穷。
基本概念空气中含有大约78%的氮气,占有绝大部分的氮元素。
氮是许多生物过程的基本元素;它存在于所有组成蛋白质的氨基酸中,是构成诸如DNA等的核酸的四种基本元素之一。
在植物中,大量的氮素被用于制造可进行光合作用供植物生长的叶绿素分子。
加工,或者固定,是将气态的游离态氮转变为可被有机体吸收的化合态氮的必经过程。
一部分氮素由闪电所固定,同时绝大部分的氮素被非共生或共生的固氮细菌所固定。
这些细菌拥有可促进氮气和氢化和成为氨的固氮酶,生成的氨再被这种细菌通过一系列的转化以形成自身组织的一部分。
某一些固氮细菌,例如根瘤菌,寄生在豆科植物(例如豌豆或蚕豆)的根瘤中。
这些细菌和植物建立了一种互利共生的关系,为植物生产氨以换取糖类。
因此可通过栽种豆科植物使氮素贫瘠的土地变得肥沃。
还有一些其它的植物可供建立这种共生关系。
其它植物利用根系从土壤中吸收硝酸根离子或铵离子以获取氮素。
动物体内的所有氮素则均由在食物链中进食植物所获得。
氨氨来源于腐生生物对死亡动植物器官的分解,被用作制造铵离子(NH4+)。
在富含氧气的土壤中,这些离子将会首先被亚硝化细菌转化为亚硝酸根离子(NO2-),然后被硝化细菌转化为硝酸根离子(NO3-)。
铵的两步转化过程被叫做氨化作用。
铵对于鱼类来说有剧毒,因此必须对废水处理植物排放到水中的铵的浓度进行严密的监控。
为避免鱼类死亡的损失,应在排放前对水中的铵进行硝化处理,在陆地上为硝化细菌通风提供氧气进行硝化作用成为一个充满吸引力的解决办法。
铵离子很容易被固定在土壤尤其是腐殖质和粘土中。
而硝酸根离子和亚硝酸根离子则因它们自身的负电性而更不容易被固定在正离子的交换点(主要是腐殖质)多于负离子的土壤中。
氮的循环与氮代谢网络
氮的循环与氮代谢网络氮是地球上最重要的元素之一,它在生物体内起着关键的作用。
氮的循环是指氮在生态系统中的各种不同形态之间的转化过程,而氮代谢网络则是指在生物体内进行氮代谢的一系列反应和调节机制。
一、氮的循环1. 大气固氮大气中的氮气(N2)经过雷电、太阳辐射等自然因素的作用,会发生固氮反应,将氮气转化为硝酸盐(NO3-)的形式。
这些硝酸盐通过降水沉淀到地面,进入水体或土壤中。
2. 水中氮循环水体中的硝酸盐被水生植物吸收利用,通过光合作用将其转化为有机氮物质。
水生植物会释放出部分废弃物和死亡植物体,其中包含有机氮,这些有机氮又会通过微生物的分解作用转化为氨(NH3)或氨根离子(NH4+)的形式。
氨和氨根离子可由水生动物直接摄取或通过硝化作用转化为硝酸盐。
3. 土壤中氮循环氨和氨根离子在土壤中由硝化细菌氧化为亚硝酸盐(NO2-),再由亚硝酸盐继续氧化为硝酸盐。
硝酸盐被植物吸收,进入植物体内,并通过食物链传递至消费者。
当植物或动物死亡时,氮又以有机物的形式返回土壤,通过分解作用转化为氨或氨根离子。
4. 氮的损失氮的损失主要有两种方式,一种是通过反硝化作用将硝酸盐还原为氮气排放到大气中,另一种是通过固氮细菌的作用将氮气转化为氨或氨根离子,从而进入水体。
二、氮代谢网络氮代谢网络是生物体内进行氮代谢的一系列反应和调节机制。
在生物体内,氮主要以氨基酸的形式存在,而氨基酸是构成蛋白质的基本单位。
氨基酸的合成和降解是氮代谢的核心过程。
1. 氨基酸的合成氨基酸的合成过程称为氨基酸的固氮。
在生物体内,氨基酸的合成主要通过氨基酸合成酶的作用进行。
氨基酸合成的底物一般来自于氨根离子和有机酸。
氨根离子可通过硝酸盐还原或通过谷氨酸酶催化产生。
有机酸则主要来自于糖酵解和柠檬酸循环。
2. 氨基酸的降解氨基酸在代谢过程中会发生降解,主要通过氨基酸氧化酶的作用将氨基酸转化为氨和酮酸。
氨被进一步转化为尿素或氨气消耗掉,酮酸则可以经过柠檬酸循环产生能量。
氮的循环课件
NH3 + HCl
NH4HCO3
NH3 ↑ +CO2 ↑ +H2O
结论:
1.固体铵盐均受热易分解,若是非氧化性的酸形 成的铵盐则放出NH3,并生成相应的酸或酸酐。 2.氧化性酸的铵盐,受热分解情况复杂,产物可 能为NH3或N2或氮的氧化物等[(NH4)2SO4, NH4NO3]。
3.铵盐分解并不一定有氨气生成。 △ 如 5NH4NO3 4N2 ↑ +2HNO3 ↑ +9H2O
3、在持续通入氧气的情况下能否使倒扣 在水槽中的一试管的二氧化氮液面不断 上升,直至试管完全被液体充满?
分析:
3NO2+H2O=2HNO3+NO
2NO+O2 = 2NO2 在这个过程中要通入多少O2, NO2才能完全
转变成HNO3呢?
3NO2+H2O=2HNO3+NO 2NO+O2 = 2NO2
① ② ③
酸 雨
光 化 学 烟 雾
二、氮循环中的重要物质及氮的固定:
(一)、N2
1、物理性质:
无色无味无嗅的气体,氮气占大气总量的78%(体积分数),
密度比空气略小,微溶于水(体积比 水:N2=1:0.02)。
2、化学性质(不活泼):
(1)还原性: N2+O2 放电 2NO
N 2分子中两个氮原子共用三对 雷雨天气或汽车发动 机中可发生 电子, 相互作用力强,在通常情况下, 结构特别稳定 ,化学性质不活泼 (有毒、无色、难溶于水 )
毒性
转化
剧毒
剧毒
2NO+O2=2NO2 3NO2+H2O=2HNO3+NO
1、NO的性质:
无 色______ 无 气味___ 难 溶于水的剧毒 NO是一种___ NO2 气体。 气体,常温下可与氧气反应生成_____
完整word版氮的循环知识点总结推荐文档
第2节氮的循环1氮在自然界中的循环1.自然界中氮元素循环示意图(1)游离态T化合态①是豆科植物根部的根瘤菌,把氮气转变为硝酸盐等含氮化合物;②放电条件下,与氧气结合为氮氧化合物,并随降水进入水体中;③合成氨工厂、汽车发动机都可以将一部分氮气转化成化合态。
(2)化合态T游离态:硝酸盐在某些细菌作用下转化成氮气。
(3)化合态-化合态:化石燃料燃烧、森林和农作物枝叶燃烧所产生的氮氧化合物通过大气进入陆地和海洋,进入氮循环。
3.氮气与氮的固定(1)氮气的物理性质:无色无味气体,难溶于水,与空气密度相近。
(2)氮气的化学性质:① 与Q 的反应在放电条件下,氮气跟氧气能直接化合生成无色的一氧化氮( NQ 。
反应式为:N +Q 竺昱2NQ说明:在雷雨天气,汽车的发动机中均可以发生该反应。
在该反应中, 表现出还原性。
② 与H 反应咼温、咼压N+3冬催化剂2曲说明:a 该反应是工业上合成氨的反应原理,具有非常重要的现实意义。
在 该反应中,2表现出氧化性。
b 在氮气跟氢气反应生成氨的同时,氨气也在分解生成氮和氢气。
像这样同时向正反两个方向进行的反应称为可逆反应。
在可逆反应的化学方程式中用(3)氮的固定将空气中游离的氮转变成氮的化合物的方法叫做氮的固定。
②分类:「高能固氮(闪电,约占10%) 广自然固氮< 生物固氮(约占90%)合成氨L 人工固氮3I 仿生固氮①定义: 氮的固定(3) NO和NO2氨与铵态氮肥1 .氨(1)物理性质:无色、有刺激性气味比空气轻;极易溶于水,在常温、常压下1体积水能溶解约700体积氨气。
(2)化学性质:①碱性:氨与水、酸反应时显碱性与水反应:NH+ HO =^NH • H2^=^NH++ OH与酸反应:NH+ HCI= NHCI说明:a氨溶于水,大部分与水结合成一水合氨(NH • H0), —水合氨少部分电离,因此,氨水显弱碱性。
氨气是中学阶段唯一的一种碱性气体,利用这一点,可以检验NH。
环境微生物学中的氮循环过程
环境微生物学中的氮循环过程氮循环是环境微生物学中非常重要的过程。
它可以促进生态系统中氮元素的转化和利用,维持着生态系统的稳定,调节着环境中的氮含量。
本文将介绍氮循环的各个环节以及微生物在其中的作用。
氮的来源和类型氮在大气中占据了78%,但它却不易被生物利用。
因此,在环境中,氮的主要来源为土壤中的有机氮和无机氮,以及在水中溶解的氨态氮和硝酸盐。
氮分为氨态氮、硝态氮、亚硝态氮、氮气和有机氮等多种形式,它们的转化过程就构成了氮循环。
氮的输入和输出生态系统中的氮输入的方式有两种,一种是大气中的氮化合物通过氮沉降进入土壤,另一种是污染源中的氮化合物进入水体中。
而氮的输出主要是氨气通过挥发进入大气中,以及氮氧化物和氮酸盐通过河流等方式从生态系统中排出。
氮固定和氮矿化氮固定是将空气中的氮气转化成氨,从而成为生态系统中可利用的氮的过程。
氮固定既可以在非生物条件下发生,也可以在生物条件下发生。
比如,闪电、合成氨工厂等非生物条件下的氮固定,以及植物和一些细菌中的生物氮固定。
其中,植物中的生物氮固定是生态系统中最为重要的过程,它是将大气氮转化为生态系统中有机氮的主要途径。
氮矿化是将有机氮转化为无机氮的过程。
有机氮可以来源于动植物尸体、粪便、枯萎植物等,也可以来源于土壤中的蛋白质、氨基酸等化合物。
而有机氮在经过微生物的分解作用后,可以转化为氨态氮、亚硝态氮和硝态氮等无机氮。
氨化和亚硝化氨化是将氨氧化为亚硝酸盐和硝酸盐的过程,它是由产氨细菌完成的。
当有机氮矿化为氨之后,就会有产氨细菌将其进行氧化,产生亚硝酸盐。
产氨细菌广泛分布在土壤和水中,它们是利用氢离子和电子向氧化的氨添加氧的氧化细菌。
因此,在环境微生物学中,它们也被称为氧化氨细菌。
亚硝化是指氨一氧化为亚硝酸盐的过程。
它是由氨氧化细菌和亚硝化细菌共同完成的。
其中氨氧化细菌将氨氧化成亚硝酸盐,而亚硝化细菌则进一步形成了硝酸盐。
亚硝化细菌主要分为硝化细菌1和硝化细菌2。
硝化硝化是氨氧化为亚硝酸盐,亚硝酸盐进一步氧化生成硝酸盐的过程。
自然界的氮循环共19页
Thank you
自然界的氮循环
11、获得的成功越大,就越令人高兴 。野心 是使人 勤奋的 原因, 节制使 人枯萎 。 12、不问收获,只问耕耘。如同种树 ,先有 根茎, 再有枝 叶,尔 后花实 ,好好 劳动, 不要想 太多, 那样只 会使人 胆孝懒 惰,因 为不实 践,甚 至不接 触社会 ,难道 你是野 人。(名 言网) 13、不怕,不悔(虽然只有四个字,但 常看常 新。 14、我在心里默默地为每一个人祝福 。我爱 自己, 我用清 洁与节 制来珍 惜我的 身体, 我用智 慧和知 识充实 我的头 脑。 15、这世上的一切都借希望而完成。 农夫不 会播下 一粒玉 米,如 果他不 曾希望 它长成 种籽; 单身汉 不会娶 妻,如 果他不 曾希望 有小孩 ;商人 或手艺 人不会 工作, 如果他 不曾希 望因此 而有收 益。-- 马钉路 德。