人教版八年级数学分式知识点及典型例题
人教版八年级数学上册《分式》知识点复习及典例解析
人教版八年级数学上册《分式》知识点复习及典例解析《分式》知识点复习及典例解析一、复习目标1.理解并记住分式的乘法法则、除法法则,会进行简单的分式乘除法计算.能解决一些与分式的乘除运算有关的简单的实际问题.2.了解同分母分式的加减法法则,会进行同分母分式的加减运算,理解通分的意义,会通过通分把异分母的分式加减转化为同分母的分式加减.3.能熟练地进行分式的加减乘除混合运算,提高类比的能力和代数化归的能力.4.了解分式方程的概念,掌握解一元一次方程的分式方程的方法,了解产生增根的原因,会检捡一个数是不是分式方程的增根.5.能够列出可化为一元一次方程的分式方程解简单实际问题.二、重点难点重点:分式乘除法、加减法法则的应用. 分式方程的概念,分式方程的解法难点:异分母分式加减法. 解分式方程时,去分母可能会出现增根。
三、知识概要1. 分式的乘除乘法法则:分式乘分式时,分子的积作积的分子,分母的积作积的分母. 除法法则:分式除以分式,把除式的分子和分母颠倒位置后与被除式相乘. 式子表示:.;bcad c d b a d c b a bd ac d c b a =?=÷=? 2. 分式的加减(1)分式的通分:把几个异分母的分式化成与原来的分式相等的同分母的分式叫通分.(2)法则:同分母分式相加减,分母不变,分子相加减.异分母分式相加减,先通分,变为同分母的分式,再加减.式子表示:;c b a c b c a ±=±.bdbc ad bd bc bd ad d c b a ±=±=± 3.分式方程的概念分式是一种表示具体情境中数量的模型,分式方程则是表示这些数量关系之间相等关系的模型,分式方程是分母中含有未知数的方程.4.分式方程的解法分式方程是转化为一元一次方程来求解,它是通过去分母实现转化的.主要步骤:去分母,去括号,移项,合并同类项,系数化为1,检验.因为分式方程可能产生增根,所以解分式方程最后一步“检验”,检查所解整式方程的根到底是不是分式方程的根.5.去分母的技巧解分式方程的基本思路是“转化”,即把分式方程化为我们熟悉的整式方程,转化的途径是“去分母”,即方程两边都乘以最简公分母.去分母是解分式方程的第一步,也是关键的一步,当分式方程中分式的分母是一次式时,可直接确定最简公分母,方程两边同乘以最简公分母后实现去分母,当各分式的分母中有二次式时,要先进行因式分解,再确定最简公分母,然后再去分母.6.验根的方法因为解分式方程可能出现增根,所以验根是必要的,验根的方法有两种,一种是把求得的未知数的值代入原方程进行检验,这种方法道理简单,而且可以检查解方程时有无计算错误,另一种是把求得的末知数的值代入最简公分母,看分母的值是否为零,这种方法比较简便,但不能检查解方程过程中出现的计算错误.7.列分式方程解决实际问题的方法步骤(1)、审:分析问题,寻找已知、未知及相相等关系,(2)、设:设恰当的未知数(3)、列:根据相等关系列出分式方程(4)、解:求出所列方程的解(5)、验:首先检验所求的解是不是分式方程的解,然后检验所求的解是否与实际符合(6)、答:写出答案.四、典例解析考点一、分式概念的运用例1.若分式||33x x --的值为零,则x 的值等于。
人教版初中八年级数学上册第十五章《分式》知识点(含答案解析)(1)
一、选择题1.使分式21xx -有意义的x 的取值范围是( )A .x ≠1B .x ≠0C .x ≠±1D .x 为任意实数2.若关于x 的一元一次不等式组()()1112232321x x x a x ⎧-≤-⎪⎨⎪-≥-⎩恰有3个整数解,且使关于y 的分式方程3133y ayy y++=--有正整数解,则所有满足条件的整数a 的值之和是( ) A .4B .5C .6D .33.若关于x 的分式方程3211m x x =---有非负实数解,且关于x 的不等式组102x x m +≥⎧⎨+≤⎩有解,则满足条件的所有整数m 的和为( ) A .9-B .8-C .7-D .6-4.如果关于x 的分式方程6312233ax x x x--++=--有正整数解,且关于y 的不等式组521510yy a -⎧≥-⎪⎨⎪+->⎩至少有两个整数解,则满足条件的整数a 的和为( ) A .2 B .3C .6D .115.已知分式34x x -+的值为0,则x 的值是( ) A .3B .0C .-3D .-46.如图,若x 为正整数,则表示3211327121(1)(1)543x x x x x x x x x--++--÷++++的值的点落在( ).A .段①B .段②C .段③D .段④7.下列各式中,正确的是( )A .22a a b b =B .11a ab b +=+ C .2233a b a ab b= D .232131a ab b ++=--8.已知2340x x --=,则代数式24xx x --的值是( )A .3B .2C .13D .129.若2x 11x x 1+--的值小于3-,则x 的取值范围为( ) A .x 4>- B .x 4<-C .x 2>D .x 2<10.若分式()22222x y x y a x a yax ay+-÷-+的值等于5,则a 的值是( )A .5B .-5C .15D .15-11.2222x y x y x y x y -+÷+-的结果是( ) A .222()x y x y ++B .222()x y x y +-C .222()x y x y -+D .222()x y x y ++12.020*******)(0.125)8+⨯的结果是( )A B 2C .2D .013.下列各式中,无论x 取何值,分式都有意义的是( ). A .132x - B .213x + C .231x x+ D .21xx + 14.当1x 0-<<时, 1x -,0x ,2x 的大小顺序是( ) A .102x x x -<< B .012x x x -<<C .021x x x -<<D .120x x x -<<15.计算a ba b a÷⨯的结果是() A .aB .2aC .2b aD .21a二、填空题16.已知5a b +=,6ab =,b aa b+=______. 17.已知3m n +=.则分式222m n m n n m m ⎛⎫+--÷- ⎪⎝⎭的值是_________. 18.已知5,3a b ab -==,则b aa b+的值是__________. 19.新冠疫情期间,口罩成为了人们出行必备的防护工具.某药店抓住商机购进甲、乙、丙三种口罩进行销售.已知销售每件甲种口罩的利润率为30%,每件乙种口罩的利润率为20%,每件丙种口罩的利润率为5%.当售出的甲、乙、丙口罩件数之比为1:3:2时,药店得到的总利润率为20%;当售出的甲、乙、丙口罩件数之比为3:2:2时,药店得到的总利润率为24%.因丙种口罩利润较低,现药店准备只购进甲、乙两种口罩进行销售,若该药店想要获得的总利润率为28%,则该药店应购进甲、乙两种口罩的数量之比是______.20.某班在“世界读书日”当天开展了图书交换活动,第一组同学共带图书24本,第二组同学共带图书27本.已知第一组同学比第二组同学平均每人多带1本图书,第二组人数是第一组人数的1.5倍,则第一组的人数为_________人.21.某危险品工厂采用甲型、乙型两种机器人代替人力搬运产品.甲型机器人比乙型机器人每小时多搬运10kg ,甲型机器人搬运800kg 所用时间与乙型机器人搬运600kg 所用时间相等.问乙型机器人每小时搬运多少kg 产品? 根据以上信息,解答下列问题.(1)小华同学设乙型机器人每小时搬运xkg 产品,可列方程为______小惠同学设甲型机器人搬运800kg 所用时间为y 小时,可列方程为____________. (2)乙型机器人每小时搬运产品_______________kg .22.计算:2120192-⎛⎫-= ⎪⎝⎭______. 23.如图,将形状大小完全相同的“□”按照一定规律摆成下列图形,第1幅图中“□”的个数为1a ,第2幅图中“□”的个数为2a ,第3幅图中“□”的个数为3a ,……,以此类推,若123201922222020n a a a a +++⋅⋅⋅+=(n 为正整数),则(1)5a =________;(2)n 的值为________.24.已知(3)1a a -=,则整数a 的值为______. 25.方程11212x x =+-的解是x =_____. 26.方程22020(1)1x x x ++-=的整数解的个数是_____.三、解答题27.雪梨是石家庄市某地的特色时令水果.雪梨上市后,水果店的老板用2400元购进一批雪梨,很快售完;老板又用3750元购进第二批雪梨,所购件数是第一批的32倍,但进价比第一批每件多了5元.(1)求第一批雪梨每件进价是多少元?(2)老板以每件225元的价格销售第二批雪梨,售出80%后,为了尽快售完,剩下的决定打折促销,要使得第二批雪梨的销售利润为2460元,剩余的雪梨每件售价应该打几折?(利润=售价-进价) 28.计算:(1)化简:()()22n m n m n -++;(2)解分式方程:2132163x x x -=---. 29.分式计算与解方程:(1)21211a a a a ----; (2)121221xx x +=-+. 30.先化简,再求值:22214244x x x x x x x x +--⎛⎫-÷ ⎪--+⎝⎭,其中5x =.。
人教版八年级数学上册 分式 知识点归纳
人教版八年级数学上册 第十五章 分式 知识点归纳15.1分式如果A 、B 表示两个整式,其中B ≠0,且B 中含有字母,那么A B 叫做分式。
A 叫做分子,B 叫做分母。
例1、60a 、207x 2、2a−53x+y 、xx 2都是分式。
分式的分母不能为0 ,否则这个分式无意义。
分式的分子可以为0 。
当分式的分母不为0,但分子为0,则这个分式的值为0 。
分式的基本性质:分式的分子和分母乘或除以同一个不为0的整式,分式的值不变。
字母表示:A B =A·C B·C (B ≠0,C ≠0)A B =A÷C B÷C (B ≠0,C ≠0)分式的基本性质是约分和通分的依据。
把一个分式的分子和分母的公因式约去,叫做分式的约分。
如果一个分式的分子和分母没有公因式,那么这个分式叫做最简分式。
对一个分式进行约分,一般要把这个分式化成最简分式。
把几个分母不同的分式化成与原来分式相等的相同分母的分式,叫做通分。
要对几个分式进行通分,通常取各分母系数的最小公倍数与字母因式的最高次幂的积作为公分母,这样的公分母叫做最简公分母。
15.2分式的运算分式的乘除法则:①乘法:分式乘分式,用分子的积作为积的分子,分母的积作为积的分母。
②除法:分式除以分式,把除式的分子、分母颠倒位置后,再与被除式相乘。
字母表示:①ab ·cd=a·cb·d②ab ÷cd=ab·dc=a·db·c运算的结果应化成最简分式。
例1、4b3a3×6a25b2=24a2b15a3b2=85ab例2、7y22x ÷5x2y4=7y22x×45x2y=28y210x3y=14y5x3如果运算的时候,分子和分母是多项式,通常要先分解因式,再约分要计算分式的乘除混合运算,可以先把除法转化成乘法,再用乘法法则来计算。
分式乘方,要把分子、分母分别乘方。
人教版 八年级数学上册 第15章分式 分式方程及其应用专题(含答案)
人教版 八年级数学上册 第15章 分式方程及其应用(含答案) 例1. 解方程:x x x --+=1211 分析:首先要确定各分式分母的最简公分母,在方程两边乘这个公分母时不要漏乘,解完后记着要验根解:方程两边都乘以,得()()x x +-11 x x x x x x x x x 22221112123232--=+---=--∴==()()(),即,经检验:是原方程的根。
例2. 解方程x x x x x x x x +++++=+++++12672356 解:原方程变形为:x x x x x x x x ++-++=++-++67562312 方程两边通分,得 167123672383692()()()()()()()()x x x x x x x x x x ++=++++=++=-∴=-所以即 经检验:原方程的根是x =-92。
例3. 解方程:121043323489242387161945x x x x x x x x --+--=--+-- 解:由原方程得:3143428932874145--++-=--++-x x x x 即2892862810287x x x x ---=---于是,所以解得:经检验:是原方程的根。
1898618108789868108711()()()()()()()()x x x x x x x x x x --=----=--== 例4. 解方程:61244444402222y y y y y y y y +++---++-=2 解:原方程变形为:622222220222()()()()()()()y y y y y y y y ++-+--++-= 约分,得62222202y y y y y y +-+-++-=()()方程两边都乘以()()y y +-22,得 622022()()y y y --++= 整理,得经检验:是原方程的根。
21688y y y =∴==5、中考题解:例1.若解分式方程产生增根,则m 的值是( )2111x x m x x x x +-++=+A. B. --12或-12或C. D. 12或12或- 分析:分式方程产生的增根,是使分母为零的未知数的值。
初二分式所有知识点总结和常考题提高难题压轴题练习(含答案解析)
初二分式所有知识点总结和常考题知识点:1.分式:形如AB,A B 、是整式,B 中含有字母且B 不等于0的整式叫做分式.其中A 叫做分式的分子,B 叫做分式的分母. 2.分式有意义的条件:分母不等于0. 3.分式的基本性质:分式的分子和分母同时乘以(或除以)同一个不为0的整式,分式的值不变.4.约分:把一个分式的分子和分母的公因式(不为1的数)约去,这种变形称为约分.5.通分:异分母的分式可以化成同分母的分式,这一过程叫做通分.6.最简分式:一个分式的分子和分母没有公因式时,这个分式称为最简分式,约分时,一般将一个分式化为最简分式.7.分式的四则运算:⑴同分母分式加减法则:同分母的分式相加减,分母不变,把分子相加减.用字母表示为:a b a bc c c±±=⑵异分母分式加减法则:异分母的分式相加减,先通分,化为同分母的分式,然后再按同分母分式的加减法法则进行计算.用字母表示为: a c ad cb b d bd±±= ⑶分式的乘法法则:两个分式相乘,把分子相乘的积作为积的分子,把分母相乘的积作为积的分母.用字母表示为:a c acb d bd⨯=⑷分式的除法法则:两个分式相除,把除式的分子和分母颠倒位置后再与被除式相乘.用字母表示为:a c a d adb d bc bc÷=⨯=⑸分式的乘方法则:分子、分母分别乘方.用字母表示为:nn n a a b b ⎛⎫= ⎪⎝⎭8.整数指数幂:⑴m n m n a a a +⨯=(m n 、是正整数) ⑵()nm mn aa =(m n 、是正整数)⑶()nn n ab a b =(n 是正整数)⑷m n m n a a a -÷=(0a ≠,m n 、是正整数,m n >)⑸nn n a a b b ⎛⎫= ⎪⎝⎭(n 是正整数)⑹1nnaa-=(0a≠,n是正整数)9.分式方程的意义:分母中含有未知数的方程叫做分式方程.10.分式方程的解法:①去分母(方程两边同时乘以最简公分母,将分式方程化为整式方程);②按解整式方程的步骤求出未知数的值;③验根(求出未知数的值后必须验根,因为在把分式方程化为整式方程的过程中,扩大了未知数的取值范围,可能产生增根).常考题:一.选择题(共14小题)1.在式子、、、、、中,分式的个数有()A.2个 B.3个 C.4个 D.5个2.化简的结果是()A.x+1 B.x﹣1 C.﹣x D.x3.如果把分式中的x和y都扩大2倍,则分式的值()A.扩大4倍B.扩大2倍C.不变D.缩小2倍4.把分式方程的两边同时乘以(x﹣2),约去分母,得()A.1﹣(1﹣x)=1 B.1+(1﹣x)=1 C.1﹣(1﹣x)=x﹣2 D.1+(1﹣x)=x﹣25.化简÷(1+)的结果是()A.B. C.D.6.计算的结果为()A.B. C. D.7.已知关于x的分式方程+=1的解是非负数,则m的取值范围是()A.m>2 B.m≥2 C.m≥2且m≠3 D.m>2且m≠38.下列运算正确的是()A.a2•a3=a6 B.()﹣1=﹣2 C.=±4 D.|﹣6|=69.某服装加工厂计划加工400套运动服,在加工完160套后,采用了新技术,工作效率比原计划提高了20%,结果共用了18天完成全部任务.设原计划每天加工x套运动服,根据题意可列方程为()A.B.C.D.10.货车行驶25千米与小车行驶35千米所用时间相同,已知小车每小时比货车多行驶20千米,求两车的速度各为多少?设货车的速度为x千米/小时,依题意列方程正确的是()A.B.C.D.11.如图,设k=(a>b>0),则有()A.k>2 B.1<k<2 C.D.12.A,B两地相距48千米,一艘轮船从A地顺流航行至B地,又立即从B地逆流返回A地,共用去9小时,已知水流速度为4千米/时,若设该轮船在静水中的速度为x千米/时,则可列方程()A.B.C.+4=9 D.13.计算的结果为()A.1 B.x+1 C. D.14.若分式(A,B为常数),则A,B的值为()A.B.C.D.二.填空题(共13小题)15.计算:=.16.若分式有意义,则实数x的取值范围是.17.分式方程的解x=.18.若代数式的值为零,则x=.19.化简的结果是.20.化简:=.21.计算÷(1﹣)的结果是.22.若关于x的方程=+1无解,则a的值是.23.已知关于x的方程的解是正数,则m的取值范围是.24.a、b为实数,且ab=1,设P=,Q=,则P Q(填“>”、“<”或“=”).25.如果实数x满足x2+2x﹣3=0,那么代数式的值为.26.某工厂现在平均每天比原计划多生产50台机器,现在生产600台机器所需时间与原计划生产450台机器所需时间相同,现在平均每天生产台机器.27.杭州到北京的铁路长1487千米.火车的原平均速度为x千米/时,提速后平均速度增加了70千米/时,由杭州到北京的行驶时间缩短了3小时,则可列方程为.三.解答题(共13小题)28.先化简,再求值:,其中.29.先化简代数式,然后选取一个使原式有意义的a值代入求值.30.已知x﹣3y=0,求•(x﹣y)的值.31.解方程:.32.先化简,再求值:,其中x是不等式3x+7>1的负整数解.33.先化简÷(a+1)+,然后a在﹣1、1、2三个数中任选一个合适的数代入求值.34.解分式方程:+=1.35.已知A=﹣(1)化简A;(2)当x满足不等式组,且x为整数时,求A的值.36.甲、乙两个工程队共同承担一项筑路任务,甲队单独施工完成此项任务比乙队单独施工完成此项任务多用10天,且甲队单独施工45天和乙队单独施工30天的工作量相同.(1)甲、乙两队单独完成此项任务需要多少天?(2)若甲、乙两队共同工作了3天后,乙队因设备检修停止施工,由甲队继续施工,为了不影响工程进度,甲队的工作效率提高到原来的2倍,要使甲队总的工作量不少于乙队的工作量的2倍,那么甲队至少再单独施工多少天?37.某商家预测一种应季衬衫能畅销市场,就用13200元购进了一批这种衬衫,面市后果然供不应求,商家又用28800元购进了第二批这种衬衫,所购数量是第一批购进量的2倍,但单价贵了10元.(1)该商家购进的第一批衬衫是多少件?(2)若两批衬衫按相同的标价销售,最后剩下50件按八折优惠卖出,如果两批衬衫全部售完后利润不低于25%(不考虑其他因素),那么每件衬衫的标价至少是多少元?38.从广州到某市,可乘坐普通列车或高铁,已知高铁的行驶路程是400千米,普通列车的行驶路程是高铁的行驶路程的1.3倍.(1)求普通列车的行驶路程;(2)若高铁的平均速度(千米/时)是普通列车平均速度(千米/时)的2.5倍,且乘坐高铁所需时间比乘坐普通列车所需时间缩短3小时,求高铁的平均速度.39.学校计划选购甲、乙两种图书作为“校园读书节”的奖品.已知甲图书的单价是乙图书单价的1.5倍;用600元单独购买甲种图书比单独购买乙种图书要少10本.(1)甲、乙两种图书的单价分别为多少元?(2)若学校计划购买这两种图书共40本,且投入的经费不超过1050元,要使购买的甲种图书数量不少于乙种图书的数量,则共有几种购买方案?40.某汽车销售公司经销某品牌A款汽车,随着汽车的普及,其价格也在不断下降.今年5月份A款汽车的售价比去年同期每辆降价1万元,如果卖出相同数量的A款汽车,去年销售额为100万元,今年销售额只有90万元.(1)今年5月份A款汽车每辆售价多少万元?(2)为了增加收入,汽车销售公司决定再经销同品牌的B款汽车,已知A款汽车每辆进价为7.5万元,B款汽车每辆进价为6万元,公司预计用不多于105万元且不少于99万元的资金购进这两款汽车共15辆,有几种进货方案?(3)如果B款汽车每辆售价为8万元,为打开B款汽车的销路,公司决定每售出一辆B款汽车,返还顾客现金a万元,要使(2)中所有的方案获利相同,a 值应是多少?此时,哪种方案对公司更有利?初二分式所有知识点总结和常考题提高难题压轴题练习(含答案解析)参考答案与试题解析一.选择题(共14小题)1.(2012春•潜江期末)在式子、、、、、中,分式的个数有()A.2个 B.3个 C.4个 D.5个【分析】判断分式的依据是看分母中是否含有字母,如果含有字母则是分式,如果不含有字母则不是分式.【解答】解:、、9x+这3个式子的分母中含有字母,因此是分式.其它式子分母中均不含有字母,是整式,而不是分式.故选:B.【点评】本题考查的是分式的定义,在解答此题时要注意分式是形式定义,只要是分母中含有未知数的式子即为分式.2.(2014•南通)化简的结果是()A.x+1 B.x﹣1 C.﹣x D.x【分析】将分母化为同分母,通分,再将分子因式分解,约分.【解答】解:=﹣===x,故选:D.【点评】本题考查了分式的加减运算.分式的加减运算中,如果是同分母分式,那么分母不变,把分子直接相加减即可;如果是异分母分式,则必须先通分,把异分母分式化为同分母分式,然后再相加减.3.(2012•岳麓区校级自主招生)如果把分式中的x和y都扩大2倍,则分式的值()A.扩大4倍B.扩大2倍C.不变D.缩小2倍【分析】把分式中的x和y都扩大2倍,分别用2x和2y去代换原分式中的x和y,利用分式的基本性质化简即可.【解答】解:把分式中的x和y都扩大2倍后得:==2•,即分式的值扩大2倍.故选:B.【点评】根据分式的基本性质,无论是把分式的分子和分母扩大还是缩小相同的倍数,都不要漏乘(除)分子、分母中的任何一项.4.(2005•扬州)把分式方程的两边同时乘以(x﹣2),约去分母,得()A.1﹣(1﹣x)=1 B.1+(1﹣x)=1 C.1﹣(1﹣x)=x﹣2 D.1+(1﹣x)=x﹣2【分析】分母中x﹣2与2﹣x互为相反数,那么最简公分母为(x﹣2),乘以最简公分母,可以把分式方程转化成整式方程.【解答】解:方程两边都乘(x﹣2),得:1+(1﹣x)=x﹣2.故选:D.【点评】找到最简公分母是解答分式方程的最重要一步;注意单独的一个数也要乘最简公分母;互为相反数的两个数为分母,最简公分母为其中的一个,另一个乘以最简公分母后,结果为﹣1.5.(2013•临沂)化简÷(1+)的结果是()A.B. C.D.【分析】首先对括号内的式子通分相加,然后把除法转化成乘法,进行约分即可.【解答】解:原式=÷=•=.故选A.【点评】本题主要考查分式的混合运算,通分、因式分解和约分是解答的关键.6.(2008•黄冈)计算的结果为()A.B. C. D.【分析】先算小括号里的,再把除法统一成乘法,约分化为最简.【解答】解:==,故选A.【点评】分式的四则运算是整式四则运算的进一步发展,在计算时,首先要弄清楚运算顺序,先去括号,再进行分式的乘除.7.(2014•黑龙江)已知关于x的分式方程+=1的解是非负数,则m的取值范围是()A.m>2 B.m≥2 C.m≥2且m≠3 D.m>2且m≠3【分析】分式方程去分母转化为整式方程,求出整式方程的解表示出x,根据方程的解为非负数求出m的范围即可.【解答】解:分式方程去分母得:m﹣3=x﹣1,解得:x=m﹣2,由方程的解为非负数,得到m﹣2≥0,且m﹣2≠1,解得:m≥2且m≠3.故选:C【点评】此题考查了分式方程的解,时刻注意分母不为0这个条件.8.(2009•潍坊)下列运算正确的是()A.a2•a3=a6 B.()﹣1=﹣2 C.=±4 D.|﹣6|=6【分析】幂运算的性质:①同底数的幂相乘,底数不变,指数相加;②一个数的负指数次幂等于这个数的正指数次幂的倒数,算术平方根的概念:一个正数的正的平方根叫它的算术平方根,0的算术平方根是0.绝对值的性质:正数的绝对值等于它本身,负数的绝对值等于它的相反数,0的绝对值是0.【解答】解:A、a2•a3=a5,故A错误;B、()﹣1=2,故B错误;C、=4,故C错误;D、根据负数的绝对值等于它的相反数,故D正确.故选D.【点评】本题涉及知识:负指数为正指数的倒数;任何非0数的0次幂等于1;绝对值的化简;二次根式的化简.9.(2013•本溪)某服装加工厂计划加工400套运动服,在加工完160套后,采用了新技术,工作效率比原计划提高了20%,结果共用了18天完成全部任务.设原计划每天加工x套运动服,根据题意可列方程为()A.B.C.D.【分析】关键描述语为:“共用了18天完成任务”;等量关系为:采用新技术前用的时间+采用新技术后所用的时间=18.【解答】解:采用新技术前用的时间可表示为:天,采用新技术后所用的时间可表示为:天.方程可表示为:.故选:B.【点评】列方程解应用题的关键步骤在于找相等关系.找到关键描述语,找到等量关系是解决问题的关键.本题要注意采用新技术前后工作量和工作效率的变化.10.(2014•黔南州)货车行驶25千米与小车行驶35千米所用时间相同,已知小车每小时比货车多行驶20千米,求两车的速度各为多少?设货车的速度为x千米/小时,依题意列方程正确的是()A.B.C.D.【分析】题中等量关系:货车行驶25千米与小车行驶35千米所用时间相同,列出关系式.【解答】解:根据题意,得.故选:C.【点评】理解题意是解答应用题的关键,找出题中的等量关系,列出关系式.11.(2013•杭州)如图,设k=(a>b>0),则有()A.k>2 B.1<k<2 C.D.【分析】分别计算出甲图中阴影部分面积及乙图中阴影部分面积,然后计算比值即可.【解答】解:甲图中阴影部分面积为a2﹣b2,乙图中阴影部分面积为a(a﹣b),则k====1+,∵a>b>0,∴0<<1,∴1<+1<2,∴1<k<2故选B.【点评】本题考查了分式的乘除法,会计算矩形的面积及熟悉分式的运算是解题的关键.12.(2016•本溪一模)A,B两地相距48千米,一艘轮船从A地顺流航行至B 地,又立即从B地逆流返回A地,共用去9小时,已知水流速度为4千米/时,若设该轮船在静水中的速度为x千米/时,则可列方程()A.B.C.+4=9 D.【分析】本题的等量关系为:顺流时间+逆流时间=9小时.【解答】解:顺流时间为:;逆流时间为:.所列方程为:+=9.故选A.【点评】未知量是速度,有速度,一定是根据时间来列等量关系的.找到关键描述语,找到等量关系是解决问题的关键.13.(2005•武汉)计算的结果为()A.1 B.x+1 C. D.【分析】先算括号里的通分,再进行因式分解,将除号换为乘号,最后再进行分式间的约分化简.【解答】解:===,故选C.【点评】注意:当整式与分式相加减时,一般可以把整式看作分母为1的分式,与其它分式进行通分运算.14.(2004•十堰)若分式(A,B为常数),则A,B的值为()A.B.C.D.【分析】对等式右边通分加减运算和,再根据对应项系数相等列方程组求解即可.【解答】解:.所以,解得.故选B.【点评】此题考查了分式的减法,比较灵活,需要熟练掌握分式的加减运算.二.填空题(共13小题)15.(2014•陕西)计算:=9.【分析】根据负整数指数幂的运算法则进行计算即可.【解答】解:原式===9.故答案为:9.【点评】本题考查的是负整数指数幂,即负整数指数幂等于该数对应的正整数指数幂的倒数.16.(2014•衢州)若分式有意义,则实数x的取值范围是x≠5.【分析】由于分式的分母不能为0,x﹣5为分母,因此x﹣5≠0,解得x.【解答】解:∵分式有意义,∴x﹣5≠0,即x≠5.故答案为:x≠5.【点评】本题主要考查分式有意义的条件:分式有意义,分母不能为0.17.(2013•梅州)分式方程的解x=1.【分析】本题的最简公分母是x+1,方程两边都乘最简公分母,可把分式方程转换为整式方程求解.结果要检验.【解答】解:方程两边都乘x+1,得2x=x+1,解得x=1.检验:当x=1时,x+1≠0.∴x=1是原方程的解.【点评】(1)解分式方程的基本思想是“转化思想”,方程两边都乘最简公分母,把分式方程转化为整式方程求解.(2)解分式方程一定注意要代入最简公分母验根.18.(2013•临夏州)若代数式的值为零,则x=3.【分析】由题意得=0,解分式方程即可得出答案.【解答】解:由题意得,=0,解得:x=3,经检验的x=3是原方程的根.故答案为:3.【点评】此题考查了分式值为0的条件,属于基础题,注意分式方程需要检验.19.(2013•凉山州)化简的结果是m.【分析】本题需先把(m+1)与括号里的每一项分别进行相乘,再把所得结果相加即可求出答案.【解答】解:=(m+1)﹣1=m故答案为:m.【点评】本题主要考查了分式的混合运算,在解题时要把(m+1)分别进行相乘是解题的关键.20.(2013•衢州)化简:=.【分析】先将x2﹣4分解为(x+2)(x﹣2),然后通分,再进行计算.【解答】解:===.【点评】本题考查了分式的计算和化简.解决这类题关键是把握好通分与约分.分式加减的本质是通分,乘除的本质是约分.21.(2015•黄冈)计算÷(1﹣)的结果是.【分析】原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分即可得到结果.【解答】解:原式=÷=•=,故答案为:.【点评】此题考查了分式的混合运算,熟练掌握运算法则是解本题的关键.22.(2013•绥化)若关于x的方程=+1无解,则a的值是2或1.【分析】把方程去分母得到一个整式方程,把方程的增根x=2代入即可求得a的值.【解答】解:x﹣2=0,解得:x=2.方程去分母,得:ax=4+x﹣2,即(a﹣1)x=2当a﹣1≠0时,把x=2代入方程得:2a=4+2﹣2,解得:a=2.当a﹣1=0,即a=1时,原方程无解.故答案是:2或1.【点评】首先根据题意写出a的新方程,然后解出a的值.23.(2013•德阳)已知关于x的方程的解是正数,则m的取值范围是m .>﹣6且m≠﹣4【分析】首先求出关于x的方程的解,然后根据解是正数,再解不等式求出m的取值范围.【解答】解:解关于x的方程得x=m+6,∵方程的解是正数,∴m+6>0且m+6≠2,解这个不等式得m>﹣6且m≠﹣4.故答案为:m>﹣6且m≠﹣4.【点评】本题考查了分式方程的解,是一个方程与不等式的综合题目,解关于x 的方程是关键,解关于x的不等式是本题的一个难点.24.(2009•枣庄)a、b为实数,且ab=1,设P=,Q=,则P =Q(填“>”、“<”或“=”).【分析】将两式分别化简,然后将ab=1代入其中,再进行比较,即可得出结论.【解答】解:∵P==,把ab=1代入得:=1;Q==,把ab=1代入得:=1;∴P=Q.【点评】解答此题关键是先把所求代数式化简再把已知代入即可.25.(2013•达州)如果实数x满足x2+2x﹣3=0,那么代数式的值为5.【分析】先根据分式混合运算的法则把原式进行化简,再根据实数x满足x2+2x ﹣3=0求出x2+2x的值,代入原式进行计算即可.【解答】解:原式=×(x+1)=x2+2x+2,∵实数x满足x2+2x﹣3=0,∴x2+2x=3,∴原式=3+2=5.故答案为:5.【点评】本题考查的是分式的化简求值,熟知分式混合运算的法则是解答此题的关键.26.(2013•呼和浩特)某工厂现在平均每天比原计划多生产50台机器,现在生产600台机器所需时间与原计划生产450台机器所需时间相同,现在平均每天生产200台机器.【分析】根据现在生产600台机器的时间与原计划生产450台机器的时间相同.所以可得等量关系为:现在生产600台机器时间=原计划生产450台时间.【解答】解:设:现在平均每天生产x台机器,则原计划可生产(x﹣50)台.依题意得:=.解得:x=200.检验:当x=200时,x(x﹣50)≠0.∴x=200是原分式方程的解.∴现在平均每天生产200台机器.故答案为:200.【点评】此题主要考查了分式方程的应用,重点在于准确地找出相等关系,这是列方程的依据.而难点则在于对题目已知条件的分析,也就是审题,一般来说应用题中的条件有两种,一种是显性的,直接在题目中明确给出,而另一种是隐性的,是以题目的隐含条件给出.本题中“现在平均每天比原计划多生产50台机器”就是一个隐含条件,注意挖掘.27.(2013•舟山)杭州到北京的铁路长1487千米.火车的原平均速度为x千米/时,提速后平均速度增加了70千米/时,由杭州到北京的行驶时间缩短了3小时,则可列方程为﹣=3.【分析】先分别求出提速前和提速后由杭州到北京的行驶时间,再根据由杭州到北京的行驶时间缩短了3小时,即可列出方程.【解答】解:根据题意得:﹣=3;故答案为:﹣=3.【点评】此题考查了由实际问题抽象出分式方程,关键是读懂题意,找出题目中的等量关系并列出方程.三.解答题(共13小题)28.(2013•眉山)先化简,再求值:,其中.【分析】这道求代数式值的题目,不应考虑把x的值直接代入,通常做法是先把代数式去括号,把除法转换为乘法化简,然后再代入求值.【解答】解:原式=+(x﹣2)(3分)=x(x﹣1)+(x﹣2)=x2﹣2;(2分)当x=时,则原式的值为﹣2=4.(2分)【点评】分式混合运算要注意先去括号;分子、分母能因式分解的先因式分解;除法要统一为乘法运算.29.(2005•徐州)先化简代数式,然后选取一个使原式有意义的a值代入求值.【分析】本题考查的化简与计算的综合运算,关键是正确进行分式的通分、约分,并准确代值计算.此题要注意的是a≠1.【解答】解:原式===,∵a﹣1≠0,∴a≠1,当a=2时,原式=2.【点评】此题考查了分式的化简求值,取合适的值代入原式求值时,要特注意原式及化简过程中的每一步都有意义.30.(2015•甘南州)已知x﹣3y=0,求•(x﹣y)的值.【分析】首先将分式的分母分解因式,然后再约分、化简,最后将x、y的关系式代入化简后的式子中进行计算即可.【解答】解:=(2分)=;(4分)当x﹣3y=0时,x=3y;(6分)原式=.(8分)【点评】分式混合运算要注意先去括号;分子、分母能因式分解的先因式分解;除法要统一为乘法运算.31.(2013•普洱)解方程:.【分析】观察可得2﹣x=﹣(x﹣2),所以可确定方程最简公分母为:(x﹣2),然后去分母将分式方程化成整式方程求解.注意检验.【解答】解:方程两边同乘以(x﹣2),得:x﹣3+(x﹣2)=﹣3,解得x=1,检验:x=1时,x﹣2≠0,∴x=1是原分式方程的解.【点评】(1)解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.(2)解分式方程一定注意要验根.(3)去分母时有常数项的不要漏乘常数项.32.(2013•重庆)先化简,再求值:,其中x是不等式3x+7>1的负整数解.【分析】首先把分式进行化简,再解出不等式,确定出x的值,然后再代入化简后的分式即可.【解答】解:原式=[﹣]×,=×,=×,=,3x+7>1,3x>﹣6,x>﹣2,∵x是不等式3x+7>1的负整数解,∴x=﹣1,把x=﹣1代入中得:=3.【点评】此题主要考查了分式的化简求值,以及不等式的整数解,关键是正确把分式进行化简.33.(2013•巴中)先化简÷(a+1)+,然后a在﹣1、1、2三个数中任选一个合适的数代入求值.【分析】先根据分式混合运算的法则把原式进行化简,再选取合适的a的值代入进行计算即可.【解答】解:原式=•+=+=,当a=2(a≠﹣1,a≠1)时,原式==5.【点评】本题考查的是分式的化简求值,熟知分式混合运算的法则是解答此题的关键.34.(2013•陕西)解分式方程:+=1.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:2+x(x+2)=x2﹣4,解得:x=﹣3,经检验x=﹣3是分式方程的解.【点评】此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.35.(2015•广州)已知A=﹣(1)化简A;(2)当x满足不等式组,且x为整数时,求A的值.【分析】(1)根据分式四则混合运算的运算法则,把A式进行化简即可.(2)首先求出不等式组的解集,然后根据x为整数求出x的值,再把求出的x 的值代入化简后的A式进行计算即可.【解答】解:(1)A=﹣=﹣=﹣=(2)∵∴∴1≤x<3,∵x为整数,∴x=1或x=2,①当x=1时,∵x﹣1≠0,∴A=中x≠1,∴当x=1时,A=无意义.②当x=2时,A==.【点评】(1)此题主要考查了分式的化简求值,注意化简时不能跨度太大,而缺少必要的步骤.(2)此题还考查了求一元一次不等式组的整数解问题,要熟练掌握,解决此类问题的关键在于正确解得不等式组或不等式的解集,然后再根据题目中对于解集的限制得到下一步所需要的条件,再根据得到的条件求得不等式组的整数解即可.36.(2013•哈尔滨)甲、乙两个工程队共同承担一项筑路任务,甲队单独施工完成此项任务比乙队单独施工完成此项任务多用10天,且甲队单独施工45天和乙队单独施工30天的工作量相同.(1)甲、乙两队单独完成此项任务需要多少天?(2)若甲、乙两队共同工作了3天后,乙队因设备检修停止施工,由甲队继续施工,为了不影响工程进度,甲队的工作效率提高到原来的2倍,要使甲队总的工作量不少于乙队的工作量的2倍,那么甲队至少再单独施工多少天?【分析】(1)设乙队单独完成此项任务需要x天,则甲队单独完成此项任务需要(x+10)天,根据甲队单独施工45天和乙队单独施工30天的工作量相同建立方程求出其解即可;(2)设甲队再单独施工a天,根据甲队总的工作量不少于乙队的工作量的2倍建立不等式求出其解即可.【解答】解:(1)设乙队单独完成此项任务需要x天,则甲队单独完成此项任务需要(x+10)天,由题意,得,解得:x=20.经检验,x=20是原方程的解,∴x+10=30(天)答:甲队单独完成此项任务需要30天,乙队单独完成此项任务需要20天;(2)设甲队再单独施工a天,由题意,得,解得:a≥3.答:甲队至少再单独施工3天.【点评】本题是一道工程问题的运用,考查了工作时间×工作效率=工作总量的运用,列分式方程解实际问题的运用,分式方程的解法的运用,解答时验根是学生容易忽略的地方.37.(2015•成都)某商家预测一种应季衬衫能畅销市场,就用13200元购进了一批这种衬衫,面市后果然供不应求,商家又用28800元购进了第二批这种衬衫,所购数量是第一批购进量的2倍,但单价贵了10元.(1)该商家购进的第一批衬衫是多少件?(2)若两批衬衫按相同的标价销售,最后剩下50件按八折优惠卖出,如果两批衬衫全部售完后利润不低于25%(不考虑其他因素),那么每件衬衫的标价至少是多少元?【分析】(1)可设该商家购进的第一批衬衫是x件,则购进第二批这种衬衫是2x件,根据第二批这种衬衫单价贵了10元,列出方程求解即可;(2)设每件衬衫的标价y元,求出利润表达式,然后列不等式解答.【解答】解:(1)设该商家购进的第一批衬衫是x件,则购进第二批这种衬衫是2x件,依题意有+10=,解得x=120,经检验,x=120是原方程的解,且符合题意.答:该商家购进的第一批衬衫是120件.(2)3x=3×120=360,设每件衬衫的标价y元,依题意有(360﹣50)y+50×0.8y≥(13200+28800)×(1+25%),解得y≥150.答:每件衬衫的标价至少是150元.【点评】本题考查了分式方程的应用和一元一次不等式的应用,弄清题意并找出题中的数量关系并列出方程是解题的关键.38.(2014•广州)从广州到某市,可乘坐普通列车或高铁,已知高铁的行驶路程是400千米,普通列车的行驶路程是高铁的行驶路程的1.3倍.(1)求普通列车的行驶路程;(2)若高铁的平均速度(千米/时)是普通列车平均速度(千米/时)的2.5倍,且乘坐高铁所需时间比乘坐普通列车所需时间缩短3小时,求高铁的平均速度.【分析】(1)根据高铁的行驶路程是400千米和普通列车的行驶路程是高铁的行驶路程的1.3倍,两数相乘即可得出答案;(2)设普通列车平均速度是x千米/时,根据高铁所需时间比乘坐普通列车所需时间缩短3小时,列出分式方程,然后求解即可;【解答】解:(1)根据题意得:400×1.3=520(千米),答:普通列车的行驶路程是520千米;(2)设普通列车平均速度是x千米/时,则高铁平均速度是2.5x千米/时,根据题意得:﹣=3,解得:x=120,。
分式典型知识点与例题总结
人教版八年级下册分式全章 知识点和典型例习题 知识点回顾知识点一:分式形如 的式子叫做分式 。
知识点二:分式B A 的值1.当 时,分式有意义;2.当 时,分式无意义;3.当 时,分式的值为0;4.当 时,分式的值为1;5.当 时, 分式的值为正;6.当 时,分式的值为负; 知识点三:分式的基本性质用式子表示 知识点四:分式中的符号法则用式子表示 知识点五: 分式的约分 约去分子、分母的最大公因式,使分式变成最简分式或者整式 1.最大公因式= 。
2.当分式的分子和分母为多项式时, 知识点六:分式的通分把异分母分式变成同分母分式的过程。
1.最简公分母= 。
2.当分式的分子和分母为多项式时,知识点七:分式的乘除法法则(用式子表示)乘法法则:用式子表示 除法法则: 用式子表示 知识点八:回顾因式分解总步骤:一提二套三分组1. 提公因式: 套 平方差公式: 2 . 公 完全平方和:式 完全平方差:知识点九:分式的加减法法则 加法法则:减法法则:知识点十:分式的混合运算先 再 最后再 。
知识点十一:整数指数幂七大公式1.同底数幂的乘法2.同底数幂的乘法3.幂的乘方4.积的乘方5.分式的乘方法则6.0指数幂7.负整数指数幂 知识点十二:科学计数法1.绝对值大于1数都可表示成2. 绝对值小于1数都可表示成 其中101<≤a 。
知识点十三:分式方程 1. 概念 2. 解法:①去分母:② ③知识点十四:分式方程解应用题的步骤 、 、 、 、【例题】下列有理式中是分式的有(1)-3x ;(2)yx ;(3)22732xy y x -;(4)x 81-;(5)35+y ; (6)112--x x ;(7)π12--m ; (8)5.023+m ;【练习】1、在下列各式ma m x xb a x xa,),1()3(,43,2,3222--÷++π中,是分式的有 个2.找出下列有理式中是分式的代号(1)-3x ;(2)yx ;(3)22732xyy x -;(4)-x 81;(5) 35+y ; (6)112--x x ;(7) π-12m ; (8)5.023+m .二.分式的值 【例题】 1.当a 时,分式321+-a a 有意义;2.当_____时,分式4312-+x x 无意义;3.若分式33x x --的值为零,则x = ;4.当_______时,分式534-+x x 的值为1;5.当______时,分式51+-x 的值为正;6.当______时分式142+-x 的值为负.【练习】1.①分式36122--x x 有意义,则x ;②当x_____时,分式1x x x-- 有意义;③当x ____时分式x x 2121-+有意义;④当x_____时,分式11x x +-有意义;⑤使分式9x 1x 2-+有意义的x 的取值范围是 ; 2.当x = 3时,分式bx a x +-无意义,则b ______ 3. ①若分式11x x -+的值为零,则x 的值为 ;②若分式)1x )(3x (1|x |=-+-,则x 的值为_________________; ③分式392--x x 当x __________时分式的值为0;④当x= _时,分式22943x x x --+的值为0;⑤当a=______时,分式2232a a a -++ 的值为零;4.当x __ 时,分式x -51的值为正.5.当x=_____时,分式232x x --的值为1.6.若分式231-+x x 的值为负数,则x 的取值范围是__________。
人教版八年级数学分式知识点及典型例题
分式的知识点及经典题型1、分式的定义: 例:下列式子中,y x +15、8a 2b 、-239a 、y x b a --25、4322b a -、2-a2、m 1、65xy x 1、21、212+x 、πxy 3、y x +3、ma 1+中分式的个数为( ) (A ) 5 (B ) 6 (C ) 7 (D) 8 2、分式有,无意义,总有意义:注意:(12+x ≠0)例1:当x 时,分式51-x 有意义; 例3:当x 时,分式112-x 有意义。
例4:当x 时,分式12+x x 有意义; 例5:x ,y 满足关系 时,分式x y x y -+无意义; 3、分式的值为零:例1:当x 时,分式112+-x x 的值为0 例2:如果分式22+-a a 的值为为零,则a 的值为( ) A. 2± B.2 C. 2- D.以上全不对例3:能使分式122--x x x 的值为零的所有x 的值是 ( ) A 0=x B 1=x C 0=x 或1=x D 0=x 或1±=x例4:要使分式65922+--x x x 的值为0,则x 的值为( )A.3或-3 B.3 C.-3 D 2 例5:若01=+aa ,则a 是( ) A.正数 B.负数 C.零 D.任意有理数 4、分式的基本性质的应用:分式的基本性质:分式的分子与分母同乘或除以一个不等于0的整式,分式的值不变。
例1:c b c b --=+- C B C A B A ⋅⋅=C B C A B A ÷÷=()0≠C例2:如果把分式yx xy +中的x 和y 都扩大2倍,即分式的值( ) A 、扩大2倍; B 、扩大4倍; C 、不变; D 缩小2倍例3:如果把分式yx y x +-中的x 和y 都扩大2倍,即分式的值( ) A 、扩大2倍; B 、扩大4倍; C 、不变; D 缩小2倍例4:若把分式x y x 23+的x 、y 同时缩小12倍,则分式的值( )A .扩大12倍B .缩小12倍C .不变D .缩小6倍 例5: 不改变分式的值,使分式的分子、分母中各项系数都为整数,=---05.0012.02.0x x ; 5、分式的约分及最简分式:例1:下列式子(1)y x y x y x -=--122;(2)ca b a a c a b --=--;(3)1-=--b a a b ;(4)y x y x y x y x +-=--+-中正确的是( )A 、1个 B 、2 个 C 、 3 个 D 、 4 个例2:约分: =--2)(y x y x =-+22y x ay ax ;=++-1681622x x x ;=+-6292x x 23314___________21a bc a bc -= 232()3y x = (3222⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛a b = 例3:分式3a 2a 2++,22b a b a --,)b a (12a 4-,2x 1-中,最简分式有( ) A .1个 B .2个 C .3个 D .4个6、分式的乘,除,乘方: 乘法法测:b a ·d c =bd ac . 除法法则:b a ÷d c =b a ·c d =bcad 分式的乘方:求n 个相同分式的积的运算就是分式的乘方,用式子表示就是(b a )n .分式的乘方,是把分子、分母各自乘方.用式子表示为:(ba )n =n nb a (n 为正整数) 7、分式的化简、求值12.,其中2m =-.3.然后从22x -≤≤范围内选取一个合适的整数作为x 的值代入求值.45x=26范围内选取一个合适的整数作为x 的值代入求值.7.化简,再求值:x 满足2320x x -+=.8、已经两未知量的关系求代数式的值1.已知:43=y x ,求xyx y xy y xy x y x -+÷+--2222222的值。
人教版八年级数学上册第十五章 分式知识点总结和题型归纳
人教版八年级数学上册第十五章分式知识点总结和题型归纳分式知识点总结和题型归纳第一部分分式的运算一)分式的定义及有关题型考查分式的定义:一般地,如果A,B表示两个整数,并且B中含有字母,那么式子A/B为分式。
例1:下列代数式中是分式的有:(x- y)/(2x+ y),π/(2x- y),(x+ y)/(a+ b)。
考查分式有意义的条件:分式有意义:分母不为0 (B≠0)分式无意义:分母为0 (B=0)例1:当x有何值时,下列分式有意义:1) (x-4)/(13x2-6x)2) 2/x3) 2/(x-4)4) (x+4|x|-3x+2)/(x-1)5) x/(x2-2x-3)考查分式的值为的条件:分式值为:分子为A且分母不为0 (A/B) 例1:当x取何值时,下列分式的值为0.1) (x-1)/(x+3)2) |x|-23) (x2-2x-3)/(x-5)(x+6)例2:当x为何值时,下列分式的值为零:1) 5-|x-1|/(x+4)2) (25-x2)/(x-6)(x+5)考查分式的值为正、负的条件:分式值为正或大于0:分子分母同号 (A/B>0) 分式值为负或小于0:分子分母异号 (A/B<0) 例1:(1) 当x为何值时,分式4/(8-x)为正;2) 当x为何值时,分式5-x/(5+x)为负;3) 当x为何值时,分式(x-2)/(x+3)为非负数.例2:解不等式|x|-2≤(x+1)/(x+5)考查分式的值为1,-1的条件:分式值为1:分子分母值相等 (A/B=1)分式值为-1:分子分母值互为相反数 (A+B=0)例1:若分式|x-2|/(x+2)的值为1,-1,则x的取值分别为3和-1.思维拓展练题:1、若a>b>0,a2+b2-6ab=0,则(a+b)/(a-b)=9/5.2、一组按规律排列的分式:-b/2.5/b。
-8/b。
11/b。
则第n 个分式为(3n-1)/b。
人教版初中八年级数学上册第十五章《分式》知识点总结(含答案解析)
一、选择题1.将分式2+x x y中的x ,y 的做同时扩大到原来的3倍,则分式的值( )A .扩大到原来的3倍B .缩小到原来的13C .保持不变D .无法确定2.下列命题中,属于真命题的是( )A .如果0ab =,那么0a =B .253xx x-是最简分式 C .直角三角形的两个锐角互余 D .不是对顶角的两个角不相等3.若关于x 的分式方程3211m x x =---有非负实数解,且关于x 的不等式组102x x m +≥⎧⎨+≤⎩有解,则满足条件的所有整数m 的和为( ) A .9-B .8-C .7-D .6-4.2020年新冠肺炎疫情影响全球,各国感染人数持续攀升,医用口罩供不应求,很多企业纷纷加入生产口罩的大军中来,重庆某企业临时增加甲、乙两个厂房生产口罩,甲厂房每天生产的数量是乙厂房每天生产数量的2倍,两厂房各加工6000箱口罩,甲厂房比乙厂房少用5天.设乙厂房每天生产x 箱口罩.根据题意可列方程为( )A .6000600052x x -= B .6000600052x x -= C .6000600052x x -=+ D .6000600052x x-=+ 5.如果a ,b ,c ,d 是正数,且满足a +b +c +d =2,11a b c b c d ++++++11a c d ab d+++++=4,那么d a a b c b c d ++++++b ca c d ab d+++++的值为( )A .1B .12C .0D .46.如果分式11m m -+的值为零,则m 的值是( ) A .1m =- B .1m = C .1m =±D .0m =7.下列说法:①解分式方程一定会产生增根;②方程4102x -=+的根为2;③方程11224=-x x 的最简公分母为2(24)-x x ;④1111x x x+=+-是分式方程.其中正确的个数是( ) A .1B .2C .3D .48.若x 2y 5=,则x y y+的值为( ) A .25 B .72C .57D .759.计算2m m 1m m-1+-的结果是( ) A .mB .-mC .m +1D .m -110.大爱无疆,在爆发新冠病毒疫情后,甲,乙两家单位分别组织了员工捐款.已知甲单位捐款7500元,乙单位捐款9800元,甲单位捐款人数比乙单位少10人,且甲单位人均捐款额比乙单位多20元,若设甲单位的捐款人数为x ,则可列方程为( ) A .7500980020x x 10-=- B .9800750020x 10x-=- C .7500980020x x 10-=+D .9800750020x 10x-=+ 11.下列式子的变形正确的是( )A .22b b a a=B .22+++a b a b a b=C .2422x y x yx x --=D .22m nn m-=- 12.3333x a a y x y y x+--+++等于( ) A .33x y x y-+B .x y -C .22x xy y -+D .22xy +13.当1x 0-<<时, 1x -,0x ,2x 的大小顺序是( )A .102x x x -<<B .012x x x -<<C .021x x x -<<D .120x x x -<<14.计算a ba b a÷⨯的结果是() A .a B .2aC .2b aD .21a 15.化简214a 2a 4---的结果为( ) A .1a 2+ B .a 2+C .1a 2- D .a 2-二、填空题16.已知5,3a b ab -==,则b aa b+的值是__________. 17.席卷全世界的新型冠状病毒是个肉眼看不见的小个子,它的身高(直径)约为0.0000012米,将数0.0000012用科学记数法表示为_________.18.已知13x x-=,则21x x ⎛⎫+= ⎪⎝⎭________.19.若关于x 的方程1322m x x x-+=--的解是正数,则m =____________. 20.101()()2π-+-=______,011(3.14)2--++=______. 21.化简分式:2121211a a a a +⎛⎫÷+= ⎪-+-⎝⎭_________.22.下列计算:①3100.0001-=;②()00.00011=;③()()352x x x --÷-=-;④22133a a-=;⑤()()321m m mm a a a -÷=-.其中运算正确的有______.(填序号即可)23.对于两个不相等的实数a ,b ,我们规定符号Min{,}a b 表示a ,b 中的较小的值,如Min{3,4}3=,按照这个规定,方程135Min ,2222x x x x -⎧⎫=-⎨⎬---⎩⎭的解为_____________.24.计算:11|1|3-⎛⎫-= ⎪⎝⎭______. 25.计算3224423y x x y⎛⎫-⋅ ⎪⎝⎭的结果是________.26.某工人现在平均每天比原计划多做20个零件,现在做4000个零件和原来做3000个零件的时间相同,问现在平均每天做______个零件.三、解答题27.某社区为了落实“惠民工程”,计划将社区的居民自来水管道进行改造.该工程若由甲队单独施工恰好在规定时间内完成;若乙队单独施工,则完成工程所需天数是规定天数的3倍.如果由甲、乙队先合做15天,那么余下的工程由甲队单独完成还需10天. (1)这项工程的规定时间是多少天?(2)已知甲队每天的施工费用为6500元,乙队每天的施工费用为3500元.为了缩短工期以减少对居民用水的影响,工程指挥部最终决定该工程由甲、乙队合做来完成.则该工程施工费用是多少?28.某快餐店欲购进A ,B 两种型号的餐盘,每个A 种型号的餐盘比每个B 种型号的餐盘费用多5元,且用120元购进的A 种型号的餐盘与用90元购进的B 种型号的餐盘的数量相同.(1)问A ,B 两种型号的餐盘单价为多少元?(2)若该快餐店决定在成本不超过1900元的前提下购进A ,B 两种型号的餐盘100个,则最多购进A 种型号餐盘多少个?29.鄂州市2020年被评为“全国文明城市”.创文期间,甲、乙两个工程队共同参与某段道路改造工程.如果甲工程队单独施工,恰好如期完成;如果甲、乙两工程队先共同施工10天,剩下的任务由乙工程队单独施工,也恰好能如期完成;如果乙工程队单独施工,就要超过15天才能完成.(1)求甲、乙两工程队单独完成此项工程各需多少天?(2)若甲工程队单独施工a 天,再由甲、乙两工程队合作______天(用含有a 的代数式表示)可完成此项工程.(3)现在要求甲、乙两个工程队都必须参加这项工程.如果甲工程队每天的施工费用为2万元,乙工程队每天的施工费用为1.5万元,甲工程队至少要单独施工多少天后,再由甲、乙两工程队合作施工完成剩下的工程,能使施工费用不超过61.5万元? 30.计算 (1)2152224-⨯+÷; (2)()()30201821 3.14413π-⎛⎫-⨯---+- ⎪⎝⎭;(3)()2222322xy x y x y xy ⎡⎤---⎣⎦; (4)()()()3323231333xx x x ⎛⎫-+--⋅ ⎪⎝⎭.。
八年级数学 分式章节知识点总结及典型例题解析
八年级数学分式章节知识点总结及典型例题解析1.分式的定义:分式是由分子、分母两个整式组成的表达式,分母不能为零。
例:下列式子中,有分式的是:$\frac{2x+1}{3xy^3a^{-b}5a^{-b}159a^{2}15xy^{11}}$、$\frac{8a^2b}{2}$、$\frac{1}{x-y}$、$\frac{4x-3y}{2x+y}$、$\frac{2}{b^2-5a^2}$、$\frac{-x-2xy^2}{x-7}$。
2.分式有意义和无意义:1)使分式有意义:令分母不等于零,解方程求解;2)使分式无意义:令分母等于零,解方程求解;注意:$(x+1)^2 \neq 0$ 有意义。
例如:分式$\frac{x-5}{2-x}$,当$x=2$时,分式无意义;当$x=5$时,分式有意义。
3.分式的值为零:使分式的值为零:令分子等于零且分母不等于零。
注意:当分子等于使分母等于零时,要舍去。
例如:分式$\frac{x^2-11}{x-2a}$,当$x=\sqrt{11}$时,分式的值为零。
4.分式的基本性质的应用:分式的分子与分母同乘或除以一个不等于零的整式,分式的值不变。
例如:$\frac{A}{B}=\frac{AC}{BC}$,$\frac{A}{B}=\frac{A/C}{B/C}$。
没有明显问题的段落,无需删除或改写。
1.如果成立,那么a的取值范围是什么?2.例2:求出33/(ab)的值。
3.例3:将分式(1-b+c)/(a(b-c))中的a和b扩大10倍后,分式的值会怎样变化?4.例4:将分式10x/(x+y)中的x和y都扩大10倍后,分式的值会怎样变化?5.例5:将分式xy/(x+y)中的x和y都扩大2倍后,分式的值会怎样变化?6.例6:将分式(x-y)/(x+y)中的x和y都扩大2倍后,分式的值会怎样变化?7.例7:将分式(x-y)/xy中的x和y都扩大2倍后,分式的值会怎样变化?8.例8:将分式2x/(x+3y)中的x和y都缩小12倍后,分式的值会怎样变化?9.例9:将分式3x^3/(2y^2)中的x和y都扩大2倍后,分式的值保持不变的是什么?10.根据分式的基本性质,分式(ABC-D)/(a-b)可变形为(a+b)(D-ABC)/(a-b)。
人教版八年级数学第十六章分式知识点总结
第十六章 分式知识点及典型例子一、分式的定义:如果A 、B 表示两个整式,且B 中含有未知数,那么式子BA 叫做分式。
二、在分式中,如果________,则分式AB 有意义;如果________,则分式A B无意义;如果________且_________不为零时,则分式A B的值为零;如果__________,则分式0A B > 如果____________,则分式0A B <; 例1.下列各式aπ,11x +,15x+y ,22a b a b --,-3x 2,0•中,是分式的有( )个。
例2.下列分式,当x 取何值时有意义。
(1)2132x x ++; (2)2323x x +-。
例3. 当x________时,分式2134x x +-的值为正数,当x________时,分式2134x x +-的值为负数 例4.当x______时,分式2134x x +-无意义。
当x_______时,分式2212x x x -+-的值为零。
当x_________时,分式2361x x -+的值为负数。
三、分式的基本性质:分式的分子与分母同乘或除以一个不等于0的整式,分式的值不变,用字母表示为_________________________________.分式的分子、分母和分式本身的符号改变其中任何____个,分式的值不变.四、约分:把分式的分子与分母的公因式约去,这样的分式变形叫做分式的约分,约分的理论依据是分式的___________________。
约分的方法:分式的分子与分母同除以他们的公因式,如果分式的分子、分母都是单项式,就直接约去分子、分母的__________;如果分式的分子或分母是多项式,就先__________,再判断公因式进行约分。
最简分式:分子与分母没有____________的分式,叫做最简分式。
(注意约分一定要彻底)五、通分:利用分式的基本性质把几个异分母的分式化为_________的分式,这样的分式变形叫做分式的通分。
新人教版八年级数学上册《分式》知识点归纳
新人教版八年级数学上册《分式》知识点归纳规则进行运算。
通分的方法是将各个分式的分母化为相同的多项式,然后将分子进行相应的乘法运算,最后再按同分母分式的加减法规则进行运算。
最后的计算结果必须化为最简分式或整式。
分式是数学中的重要概念之一,它表示了两个整式的比值,其中分母中含有字母的被称为分式,而分母中没有字母的则被称为整式。
分式的约分是指将分子和分母的公因式约去,化为最简分式或整式。
化异分母分式为同分母分式的过程称为分式的通分。
分式方程是指分母中含有未知数的方程,将其变形为整式方程时需要注意增根的情况。
分式的乘除法规则和同分母分式加减法规则都需要注意化为最简分式或整式的要求。
2x+1与2x+1的分母相同,则最简公分母为__________。
2.分式3x+2x-1的倒数为__________。
3.分式2x+1x-3的平方为__________。
4.分式2x+3x-1与分式x-42x-1的和为__________。
5.若分式a+bc与分式a-bc互为倒数,则a²-b²的值为__________。
6.若分式2x-1x-2的值等于分式3x+2x+1的值,则x的值为__________。
7.分式2x+1x-3与分式x-12x+5的差为__________。
8.若分式ab+c的值等于分式ba+c的值,则a:b:c的比值为__________。
9.若分式a+b2的值等于分式a-b3的值,则a:b的比值为__________。
10.分式2x-1x+2的平方根为__________。
二、选择题(每小题3分,共15分)1.下列关于分式的说法中,正确的是()A。
分式的分子和分母都是整式B。
分式的分母不能为0C。
分式的分子和分母都是单项式D。
分式的分子和分母都是多项式2.若分式a2b的值等于分式c3d的值,则()A。
ad=3bcB。
ac=2bdC。
ab=3cdD。
ad=2bc3.若分式ab+c的值等于分式ba+c的值,则a:b:c的比值为()A。
初中数学分式相关知识点及例题
分式模块一、分式的概念和基本性质1、分式的概念:如果A 、B 表示两个整式,并且B 中含有字母,那么代数式BA 叫做分式。
A 是分式的分子,B 是分式的分母。
2、注意点:分式的分母不能为0,如果分式中字母所取的值使分母的值为0,那么分式无意义。
3、分式的基本性质:分式的分子和分母都乘(或除以)同一个不等于0的整式,分式的值不变4、分式的约分:把一个分式的分子和分母分别除以他们的公因式,叫做分式的约分。
5、最简分式:分子与分母没有公因式的分式叫做最简分式。
6、分式的通分:根据分式的基本性质,把几个异分母的分式变形成同分母的分式,叫做分式的通分。
变形后的分母叫做这几个分式的公分母。
7、最简公分母。
几个分式中各分母系数(都是整数)的最小公倍数与所有字母的最高次幂的积叫做这几个分式的最简公分母例题:例1:当x 满足很忙条件时,分式x 11111++有意义例2:先化简:)1121(1222+---÷--x x x x x x ,再从33-<<x 的范围内选取一个合适的整数x 代入求值。
例3:已知0832=-+x x ,求代数式21144*212+--++--x x x x x x 的值模块二:分式的恒等变形分式恒等的概念:对于两个代数式而言,如果两个代数式里面的字母换成任意的数值,这两个代数式的值相等,就说这两个代数式恒等。
表示这两个代数式恒等的等式叫做恒等式。
恒等变形的概念:将一个代数式换成另一个和它恒等的代数式,叫做恒等变形,也叫恒等变换。
恒等变形的意义:将一个代数式从一种形式变成另一种形式,变形前和变形后的两个代数式是恒等的。
就是“形”变“值”不变。
例1:(1) 若b a 12=,则=-+ba b a 2____________ (2) 若b a b a -=-111,则_________=+ba ab (3) 已知211=+b a ,求ab a b b a ab 33++--的值例2:已知31=+x x ,求221x x +,441x x +,xx 1-的值例3:已知0142=++a a ,求:①a a 1+;②2241a a a ++;例4:先化简代数式xx x x x x x 2111422+-÷--++,并写出当x 为何整数时,该代数式的值也是整数模块三 分式方程的基本解法1、分式方程的概念:分式中含有未知数的方程叫做分式方程2、分式方程的解法(可化为一元一次方程)(1) 基本思想:把分式方程化为整式方程(2) 一般步骤:① 去分母,即在方程的两边同时乘以最简公分母,把原方程化为整式方程② 解这个整式方程③ 验根:把整式方程的根代入最简公分母中,使最简公分母不等于零的值是原方程的根;使最简公分母等于零的值是原方程的增根。
八年级数学《分式方程》知识点
一、基本概念
1.分式:分子和分母都是多项式的数叫做分式。
2.分式方程:含有一个或多个未知数的分式等式叫做分式方程。
二、分式方程的解
1.分式方程的解:使得方程两边分式等价的数叫做分式方程的解。
2.适合分式方程的解:使得分式方程的任意代入都可以使分式方程成立的解叫做适合分式方程的解。
三、分式方程的解的判定
1.分式方程的解的判定方法:将找到的解代入方程,若等式两边可以变成同一个数,则该解为分式方程的解。
2.分式方程的解的验证方法:将方程两边合并,并对两边进行化简,最后验证等式是否成立。
四、分式方程的解的性质
1.分式方程的根的性质:若一个数是分式方程的根,则这个数的相反数也是该方程的根。
2.分式方程的根的性质的应用:利用分式方程的根的性质,可以通过已知根推出其他根。
五、分式方程的解的求解
1.解分式方程的一般步骤:先合并同类项,再化简,最后通过代数运算求解未知数。
2.解分式方程的具体方法:可以通过交叉相乘、通分和消分的方法来解决不同类型的分式方程。
六、分式方程的应用
1.代入法解分式方程:利用推导和分项代入法,将问题转化为分式方程,然后再用分式方程的解来解决问题。
2.混合运算解分式方程:先利用等式性质将分子展开,再通过合并同类项化简,最后求解分式方程得到解。
总结:。
分式 知识点及典型例题
分式知识点及典型例题一、分式的定义如果 A、B 表示两个整式,并且 B 中含有字母,那么式子 A/B 就叫做分式。
其中 A 叫做分子,B 叫做分母。
需要注意的是,分式的分母不能为 0,因为分母为 0 时,分式没有意义。
例如:\(\frac{x}{y}\),\(\frac{a + b}{c}\)都是分式,而\(\frac{3}{5}\)(分母不含有字母)就不是分式。
二、分式有意义的条件分式有意义的条件是分母不为 0。
即:对于分式\(\frac{A}{B}\),当\(B ≠ 0\)时,分式有意义。
例如:对于分式\(\frac{x + 1}{x 2}\),要使其有意义,则\(x 2 ≠ 0\),即\(x ≠ 2\)。
三、分式的值为 0 的条件分式的值为 0 时,要同时满足两个条件:1、分子为 0,即\(A = 0\);2、分母不为 0,即\(B ≠ 0\)。
例如:若分式\(\frac{x 3}{x + 5}\)的值为 0,则\(x 3 = 0\)且\(x +5 ≠ 0\),解得\(x = 3\)。
四、分式的基本性质分式的分子与分母同时乘以(或除以)同一个不为 0 的整式,分式的值不变。
用式子表示为:\(\frac{A}{B} =\frac{A×C}{B×C}\),\(\frac{A}{B} =\frac{A÷C}{B÷C}\)(\(C ≠ 0\))例如:\(\frac{2}{3} =\frac{2×2}{3×2} =\frac{4}{6}\),\(\frac{6}{9} =\frac{6÷3}{9÷3} =\frac{2}{3}\)五、约分把一个分式的分子与分母的公因式约去,叫做分式的约分。
约分的关键是确定分子与分母的公因式。
例如:对分式\(\frac{6x}{9x^2}\)进行约分,分子分母的公因式为\(3x\),约分后为\(\frac{2}{3x}\)六、通分把几个异分母的分式分别化成与原来的分式相等的同分母的分式,叫做分式的通分。
分式 知识点及典型例题
分式知识点及典型例题正文:分式,又称有理数,是数学中的一个重要概念,它由分子和分母组成,表示两个数的比值关系。
在分式的运算中,我们需要了解一些基本知识点,并且通过典型的例题来加深理解。
一、分式的定义和基本性质分式可以用“a/b”的形式表示,其中a为分子,b为分母。
分子和分母都可以是整数、小数或者其他分式。
分式也可以是正数、负数或者零。
分式的基本性质有:1. 当分子为0时,分式的值为0,即0/b=0。
2. 当分母为1时,分式的值等于分子本身,即a/1=a。
3. 当分子和分母互为相反数时,分式的值为-1,即(-a)/a=-1。
二、分式的运算1. 分式的加减运算分式的加减运算遵循相同分母则分子相加减的原则。
具体步骤如下:(1)将两个分式的分母化为相同的分母;(2)将两个分式的分子按照相同分母相加减;(3)将结果化简为最简形式。
例如:计算1/3 + 1/4 - 1/6。
解:首先将三个分式的分母化为12,得到4/12 + 3/12 - 2/12,再将分子相加减,得到5/12。
2. 分式的乘除运算分式的乘除运算遵循分子相乘除,分母相乘除的原则。
具体步骤如下:(1)将两个分式的分子相乘或相除;(2)将两个分式的分母相乘或相除;(3)将结果化简为最简形式。
例如:计算2/3 × 5/8 ÷ 4/5。
解:根据乘除法的原则,分子相乘得到10,分母相乘得到24,再将结果化简为最简形式,得到5/12。
三、分式的简化分式的简化是将分子和分母的公因式约去,使其达到最简形式。
具体步骤如下:(1)求分子和分母的最大公因数;(2)将分子和分母分别除以最大公因数。
例如:将12/18简化为最简分式。
解:求12和18的最大公因数为6,将分子和分母都除以6,得到最简分式2/3。
四、分式的应用举例1. 问题:小明爸爸买了一块布长3米,要均分给他和他妹妹,他分到几分之几的布?解:设小明分到的布的长度为x米,他妹妹分到的布的长度为y米,则由题意可得分式x/y=3/2。
人教版八年级上册数学分式知识点
人教版八年级上册数学分式知识点
八年级上册数学中的分式知识点主要包括以下几个方面:
1. 分式的定义:分式是一个有分子和分母的数,分子和分母都是整数,分母不能为0。
2. 分式的性质:
- 两个分式相等的条件是它们的分子与分母成比例。
- 分式的倒数是将分式的分子和分母对调得到的新分式。
3. 分式的化简:
- 将分子和分母都除以它们的最大公约数,化简成最简形式。
- 分母是1的分式可以化简成整数。
- 含有多个分数的分式可以通过通分化为一个分数。
4. 分式的四则运算:
- 分式的加法和减法:将两个分式的分母取最小公倍数作为新分母,然后按照相应的分数运算规则进行计算。
- 分式的乘法:将两个分式的分子相乘作为新的分子,分母相乘作为新的分母。
- 分式的除法:将除数的分子和被除数的分母相乘作为新的分子,除数的分母和被除数的分子相乘作为新的分母。
5. 分式的应用:
- 在解决实际问题中,可以运用分式来表示比例、倍数、平均数等关系。
以上是八年级上册数学中有关分式的主要知识点,希望能对你有所帮助。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
分式的知识点及典型例题分析1、分式的定义:一般地,如果A,B表示两个整数,并且B 中含有字母,那么式子BA叫做分式,A 为分子,B为分母。
例:下列式子中,y x +15、8a 2b 、-239a 、y x b a --25、4322b a -、2-a 2、m 1、65xy x 1、21、212+x 、πxy 3、y x +3、ma 1+中分式的个数为( ) (A) 2 (B) 3 (C) 4 (D) 5 练习题:(1)下列式子中,是分式的有 .⑴275x x -+; ⑵ 123x -;⑶25a a -;⑷22x x π--;⑸22b b -;⑹222xy x y +. (2)下列式子,哪些是分式?5a -; 234x +;3y y ; 78x π+;2x xy x y +-;145b -+.2、分式有,无意义,总有意义:①使分式有意义:令分母≠0按解方程的方法去求解(0B ≠); ②使分式无意义:令分母=0按解方程的方法去求解;(0B =) ③分式值为0:分子为0且分母不为0(⎩⎨⎧≠=0B A )④分式值为正或大于0:分子分母同号(⎩⎨⎧>>00B A 或⎩⎨⎧<<00B A )⑤分式值为负或小于0:分子分母异号(⎩⎨⎧<>00B A 或⎩⎨⎧><0B A )⑥分式值为1:分子分母值相等(A=B)⑦分式值为-1:分子分母值互为相反数(A+B=0) 注意:(12+x ≠0)例1:当x 时,分式51-x 有意义; 例2:分式xx -+212中,当____=x 时,分式没有意义例3:当x 时,分式112-x 有意义。
例4:当x 时,分式12+x x有意义 例5:x ,y 满足关系 时,分式x yx y-+无意义; 例6:无论x 取什么数时,总是有意义的分式是( )A.122+x x B.12+x x C.133+x xD .25x x -例7:使分式2+x x有意义的x 的取值范围为( ) A .2≠x B.2-≠x C.2->x D .2<x例8:要是分式)3)(1(2-+-x x x 没有意义,则x的值为( ) A. 2 B.-1或-3 C. -1D.3 同步练习题:3、分式的值为零:使分式值为零:令分子=0且分母≠0,注意:当分子等于0使,看看是否使分母=0了,如果使分母=0了,那么要舍去。
例1:当x 时,分式121+-a a的值为0 例2:当x 时,分式112+-x x 的值为0例3:如果分式22+-a a 的值为为零,则a 的值为( ) A . 2± B.2 C. 2- D .以上全不对例4:能使分式122--x xx 的值为零的所有x 的值是 ( )A 0=x B 1=x C 0=x 或1=x D 0=x 或1±=x例5:要使分式65922+--x x x 的值为0,则x 的值为( )A.3或-3 ﻩB.3 C.-3 D 2例6:若01=+aa,则a 是( )A.正数 B.负数 C.零 D.任意有理数 4、分式的基本性质的应用:分式的基本性质:分式的分子与分母同乘或除以一个不等于0的整式,分式的值不变。
例1:aby a xy = ; z y z y z y x +=++2)(3)(6 ;如果75)13(7)13(5=++a a 成立,则a 的取值范围是________; 例2:)(1332=ba ab )(cb acb --=+-例3:如果把分式ba ba ++2中的a 和b 都扩大10倍,那么分式的值( ) A 、扩大10倍 B 、缩小10倍 C、是原来的20倍 D 、不变 例4:如果把分式yx x+10中的x ,y都扩大10倍,则分式的值( ) A.扩大100倍 B.扩大10倍 C.不变 D.缩小到原来的101 例5:如果把分式yx xy+中的x和y 都扩大2倍,即分式的值( ) A 、扩大2倍; B 、扩大4倍; C、不变; D缩小2倍 例6:如果把分式yx yx +-中的x 和y都扩大2倍,即分式的值( ) A 、扩大2倍; B 、扩大4倍; C、不变; D 缩小2倍 例7:如果把分式xyyx -中的x 和y 都扩大2倍,即分式的值( ) A 、扩大2倍; B 、扩大4倍; C 、不变; D缩小21倍 例8:若把分式xyx 23+的x、y 同时缩小12倍,则分式的值( ﻩ) A.扩大12倍 B .缩小12倍ﻩC.不变ﻩD.缩小6倍例9:若x 、y 的值均扩大为原来的2倍,则下列分式的值保持不变的是( )A 、y x 23B 、223y xC 、y x 232D 、2323yx 例10:根据分式的基本性质,分式ba a--可变形为( ) A b a a -- B ba a + Cb a a -- D b a a +-例11:不改变分式的值,使分式的分子、分母中各项系数都为整数,=---05.0012.02.0x x ; CB C A B A ⋅⋅=C B C A B A ÷÷=()0≠C例12:不改变分式的值,使分子、分母最高次项的系数为正数, 211x x x-+--= 。
5、分式的约分及最简分式:①约分的概念:把一个分式的分子与分母的公因式约去,叫做分式的约分 ②分式约分的依据:分式的基本性质.③分式约分的方法:把分式的分子与分母分解因式,然后约去分子与分母的公因式. ④约分的结果:最简分式(分子与分母没有公因式的分式,叫做最简分式)约分主要分为两类:第一类:分子分母是单项式的,主要分数字,同字母进行约分。
第二类:分子分母是多项式的,把分子分母能因式分解的都要进行因式分解,再去找共同的因式约去。
例1:下列式子(1)y x y x y x -=--122;(2)ca ba a c ab --=--;(3)1-=--b a a b ;(4)y x y x y x y x +-=--+-中正确的是( )A 、1个 B 、2 个 C 、 3 个 D、 4 个例2:下列约分正确的是( )A 、326x x x =; B、0=++y x y x ; C 、x xy x y x 12=++; D 、214222=y x xy 例3:下列式子正确的是( ) A022=++y x y x B .1-=-+-y a y a C.x z y x z x y -+=+- D.0=+--=+--adc d c a d c a d c例4:下列运算正确的是( )A 、a a a b a b =--+B 、2412x x ÷= C 、22a a b b = D、1112m m m -= 例5:下列式子正确的是( )A.22a b a b = B.0=++b a b a C.1-=-+-b a b a D.ba ba b a b a +-=+-232.03.01.0例6:化简2293m m m --的结果是( )A 、3+m m B 、3+-m mC 、3-m mD 、m m -3 例7:约分:=-2264xy yx ;932--x x = ;()xy xy 132=; ()y x y x yx 536.03151+=-+。
例8:约分:22444a a a -++= ;=y x xy 2164 ;=++)()(b a b b a a ;=--2)(y x y x =-+22yx ayax;=++-1681622x x x;=+-6292x x23314___________21a bc a bc -= 29__________3m m -=+=b a ab2205__________=+--96922x x x __________。
例9:分式3a 2a 2++,22ba b a --,)b a (12a 4-,2x 1-中,最简分式有( ) A.1个 B.2个 C.3个 D .4个6、分式的乘,除,乘方:分式的乘法:乘法法测:b a ·dc =bdac . 分式的除法:除法法则:b a ÷d c =b a ·c d =bcad分式的乘方:求n 个相同分式的积的运算就是分式的乘方,用式子表示就是(ba )n.分式的乘方,是把分子、分母各自乘方.用式子表示为:(ba )n =n nb a (n 为正整数)例题:计算:(1)746239251526yx x x -• (2)13410431005612516a x a y x ÷ (3)a a a 1•÷ 计算:(4)24222aab a b a ab a b a --•+- (5)4255222--•+-x x x x (6)2144122++÷++-a a a a a 计算:(7)322346yx y x -• (8)a b ab 2362÷- (9)()2xy xy x x y -⋅- 计算:(10) 22221106532x yx y y x ÷⋅ (11) 22213(1)69x x x x x x x -+÷-•+++(12) ()22121441a a a a a a -+÷+⋅++- 计算:(13)1112421222-÷+--•+-a a a a a a (14)()633446222-+-÷--÷+--a a aa a a a 求值题:(1)已知:43=y x ,求xyx y xy y xy x y x -+÷+--2222222的值。
(2)已知:x y y x 39-=+,求2222yx y x +-的值。
(3)已知:311=-y x ,求yxy x y xy x ---+2232的值。
例题:计算:(1)232()3y x = (2)52⎪⎭⎫ ⎝⎛-b a = (3)32323⎪⎪⎭⎫⎝⎛-x y = 计算:(4)3222⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛a b = (5)()4322ab a b b a -÷⎪⎪⎭⎫⎝⎛-•⎪⎭⎫ ⎝⎛- (6)22221111⎪⎭⎫⎝⎛-+-•⎪⎭⎫ ⎝⎛-÷--a a a a a a a求值题:(1)已知:432zy x == 求222z y x xz yz xy ++++的值。
(2)已知:0325102=-++-y x x 求yxy xx 222++的值。
例题:计算yx x x y x y x +•+÷+222)(的结果是( )A y x x +22 B y x +2C y 1D y+11例题:化简x y x x 1⋅÷的结果是( )A. 1 B. xy C. xyD . y x计算:(1)422448223-+⨯++-x x x x x x ;(2)12211222+-÷-+-x x x x x (3)(a2-1)·22221a a a +-+÷122a a +-7、分式的通分及最简公分母:通分:主要分为两类:第一类:分母是单项式;第二类:分母是多项式(要先把分母因式分解) 分为三种类型:“二、三”型;“二、四”型;“四、六”型等三种类型。