压电式传感器测振动实验.

合集下载

机械振动实验报告

机械振动实验报告

《机械振动基础》实验报告(2015年春季学期)姓名学号班级专业机械设计制造及其自动化报告提交日期 2015.05.07哈尔滨工业大学报告要求1.实验报告统一用该模板撰写,必须包含以下内容:(1)实验名称(2)实验器材(3)实验原理(4)实验过程(5)实验结果及分析(6)认识体会、意见与建议等2.正文格式:四号字体,行距为1.25倍行距;3.用A4纸单面打印;左侧装订;4.报告需同时提交打印稿和电子文档进行存档,电子文档由班长收齐,统一发送至:。

5.此页不得删除。

评语:教师签名:年月日实验一报告正文一、实验名称:机械振动的压电传感器测量及分析二、实验器材1、机械振动综台实验装置(压电悬臂梁) 一套2、激振器一套3、加速度传感器一只4、电荷放大器一台5、信号发生器一台6、示波器一台7、电脑一台8、NI9215数据采集测试软件一套9、NI9215数据采集卡一套三、实验原理信号发生器发出简谐振动信号,经过功率放大器放大,将简谐激励信号施加到电磁激振器上,电磁激振器振动杆以简谐振动激励安装在激振器上的压电悬臂梁。

压电悬臂梁弯曲产生电流显示在示波器上,可以观测悬臂梁的振动情况;另一方面,加速度传感器安装在电磁激振器振动杆上,将加速度传感器与电荷放大器连接,将电荷放大器与数据采集系统连接,并将数据采集系统连接到计算机(PC机)上,操作NI9215数据采集测试软件,得到机械系统的振动响应变化曲线,可以观测电磁激振器的振动信号,并与信号发生器的激励信号作对比。

实验中的YD64-310型压电式加速度计测得的加速度信号由DHF-2型电荷放大器后转变为一个电压信号。

电荷放大器的内部等效电路如图1所示。

q图1 加速度传感器经电荷放大的等效电路压电悬臂梁的简谐振动振幅与频率测量实验原理如图2所示,实验连接图如图3所示。

图2 简谐振动振幅与频率测量原理图图3 实验连接图四、实验过程打开所有仪器电源,将DG-1022型信号发生器的幅值旋钮调至最小,采用正弦激励信号, DHF-2型电荷放大器设置为100mv/UNIT (YD64-310型加速度计的标定电荷灵敏度为13.2PC/ms-2,本实验中将电荷放大器的灵敏度人工设定为132PC/ms-2,并且增益调至10mV/Unit档,则该设定下电荷放大器的总增益为100mV/Unit。

基于压电传感器的旋转机械振动信号测试技术

基于压电传感器的旋转机械振动信号测试技术

2 )采 用 神经 网络 建 模 的方 法 得到 压 电信 号 处
理 电路 的模 型 ,然 后按 照该 模 型 对 振 动 信 号 进 行
在 线 补 偿 ,既 解 决 非 线性 问题 ,又 解 决 了 信 号 处 理 电路 对信 号频率 特性 的影 响 。
参考文献:
【]彭善琼. 1 高精度振动信 号处理 系统的研究[】 J. 微计算机信
本 ,利 用 改进 型BP 习算 法训 练 网络 ,得 到 幅 频 学 特性模 型 ; 5 )对得 到 的幅 频 特性 模 型进 行仿 真 ,若 精 度 不 能 达 到 要求 ,调 整B 学 习 算法 的 参数 重 复 步骤 P 4 )进 行训 练 。
按 照 上 述 步 骤 可 以得 到 振 动 信 号 处 理 电 路 的 幅频 特 性 的 模 型 ,采 用 同 样 的方 法 可 以得 到其 相 拼 特 性 的 模 型 。神 经 网 络建 立 的模 型 包 含 在神 经
整周期 采样 。 本 文 软 件 实 现 整 周期 采 样 的 思 路 为 :同 时 对
振 动 信 号 和 转 速 脉 冲 信 号采 样 ,并 将 其 分 别 放 人
数 组 中 ,从 脉 冲 的第N个脉 冲 的上升 沿 对应 的振 动 数 据 开 始 提 取 ,到 第N+ x个 脉 冲 的上 升 沿 结 束 , 中间抽 取 的数 据 即为X个 周期 内的 整周期 数 据 。如 需 要整 周期 内2 个数 据 ,则采 用插 值 的方 式 得到 间 “
电荷 放 大 电路 , 它将 输 入 电 荷 信 号变 成 与之 成 正
比的 电压 信 号 。程 控 放 大 电 路 的 原理 是 通 过 模 拟
开 关 来 切换 不 同 电 阻来 实 现 增 益 的 自动 调 整 ,模 拟 开关 的控 制 信号 由AD采 集卡 上 的 开关 量 输 出单

传感器实验指导书2023

传感器实验指导书2023

传感器实验指导书
一、实验目的
本实验旨在帮助学生了解和掌握各种传感器的原理及应用,通过实际操作加深对传感器技术的理解,提高实践能力和创新思维。

二、实验器材
电阻式传感器
电容式传感器
电感式传感器
压电式传感器
磁电式传感器
热电式传感器
光电式传感器
光纤传感器
化学传感器
生物传感器
三、实验步骤与操作方法
电阻式传感器实验:
(1)将电阻式传感器接入电路,测量其阻值;
(2)改变被测物体的电阻值,观察电路中电压或电流的变化;
(3)记录实验数据,分析电阻式传感器的输出特性。

电容式传感器实验:
(1)将电容式传感器接入电路,测量其电容值;
(2)改变被测物体的介电常数,观察电路中电压或电流的变化;
(3)记录实验数据,分析电容式传感器的输出特性。

电感式传感器实验:
(1)将电感式传感器接入电路,测量其电感值;
(2)改变被测物体的磁导率,观察电路中电压或电流的变化;
(3)记录实验数据,分析电感式传感器的输出特性。

压电式传感器实验:
(1)将压电式传感器接入电路,测量其输出电压;(2)施加压力或振动,观察电路中电压的变化;(3)记录实验数据,分析压电式传感器的输出特性。

磁电式传感器实验:
(1)将磁电式传感器接入电路,测量其输出电压;(2)改变磁场强度,观察电路中电压的变化;
(3)记录实验数据,分析磁电式传感器的输出特性。

对压电式传感器实验内容的改进

对压电式传感器实验内容的改进

2 0 3月 06年
M a. 0 6 r2 0
对压 电式传 感器 实验 内容 的 改进
黄文建
( 重庆 工程职业技术 学院 , 重庆 4 0 3 ) 0 0 7
摘 要: 根据教学和 实验的要求, 对压 电式传感器的实验 内容进行 了改进 , 学生能通过实验更好地掌握 使
压电式传感器的结构 、 原理、 使用注意事项, 学会使用该传感器测试振动的方法。 关键 词 : 电式传 感器 ; 压 实验 内容 ; 测试 振动 中图分类号 :H7 T 0
电压/ 频率表的输入插孔 ,并交替转换数字 电压/ 频率表 的量程( 转换旋钮到 2 K档和 2 V档 ) 。 3 .测量输出电压和振幅的关系 .3 2
接通电源 ,将低频振荡器的频率旋钮旋到谐振频率
( 一实验测得 , 上 一 大约 1H )然后改变低频振荡器的振 2Z , 幅旋钮在 0 V X范围 变化 ( - MA 亦即改变悬臂梁的振 幅)每改变 一 , 次振幅 , 测一个输出电压 , 并将数据记录在
1 问题 的提 出
文献标识码 : A
文章编号 :62 06 (060 — 14 0 17 — 0 720 )2 03 — 2
3 实验 步骤 . 2
我在《 自动检测与转换技术》 以及《 传感器及其应用》
3 .按图 l .1 2 接线 , 经检查无误后通 电。 3 .测量输出电压和振动频率的关系 .2 2 接通 电源后 , 将低频振荡器的振幅旋钮旋到较大值 . 实验 中取值为 4 , 电压大小决定了激振源 Ⅱ( 伏 该 亦即悬
维普资讯
第 1 卷 第 2期 5
V o .5 11 N O. 2
重庆职业技 术学院 学报
o r lo o g ig Vo ai n l& Te h ia n tt e u na fCh n qn c t a o c n c lI si ut

振动传感器校准实验

振动传感器校准实验
b. 用力锤敲击某点,在数字存储示波器 中观察力脉冲的时间历程。记录力的电压值 并根据所设定的参数计算出力的大小;然后 改用不同的力度及换用不同的锤帽敲击;分 别观察并记录数据。将结果填入下表中
2021/2/21
25
力传感器 序列号
电荷放大器 放大倍数
锤帽
测试电压值 换算冲击力值
(V)
(N)
灵敏度 PC / N
4. 调整第一通道“伏/格”为1.00V(屏幕左下角显示,
“秒/格”为25ms(屏幕下中显示);
2021/2/21
27
六、注意事项
1. 拔插传感器导线时,一定要关闭仪器电源, 否则容易将放大器输入端烧毁。
2. 调节各输出旋钮时要缓慢,调节过程中应
随时观察仪器是否有异常情况,如有异常应立即 关闭仪器电源。
9
1. 压电型加速度传感器
压电式加速度传感器最常见的类型有三种,即中
心压缩型、剪切型和三角剪切型。中心压缩型压电加
速度传感器的敏感元件由两个压电晶体片组成,其上
放有一重金属制成的惯性质量块,用一预紧硬弹簧板
将惯性质量块和压电元件片压紧在基座上。整个组件
就构成了一个惯性传感器(见图1)。为了使加速度
2021/2/21
图2
12
电涡流传感器的工作原理如图2所示。
当通有交变电流i的线圈靠近导体表面时,
由于交变磁场的作用,在导体表面层就感
生电动势,并产生闭合环流ie,称为电涡
流。电涡流传感器中有一线圈,当给传感
器线圈通以高频激励电流i时,其周围就产
生一高频交变磁场。当被测的导体靠近传
感器线圈时,由于受到高频交变磁场的作
3. 记录测试数据时应待仪器显示稳定后再读 数,并能分析并剔除测试结果的异常数据。

【实验报告】压电式传感器测振动实验报告

【实验报告】压电式传感器测振动实验报告

压电式传感器测振动实验报告篇一:压电式传感器实验报告一、实验目的:了解压电传感器的测量振动的原理和方法。

二、基本原理:压电式传感器由惯性质量块和受压的压电片等组成。

(观察实验用压电加速度计结构)工作时传感器感受与试件相同频率的振动,质量块便有正比于加速度的交变力作用在晶片上,由于压电效应,压电晶片上产生正比于运动加速度的表面电荷。

三、需用器件与单元:振动台、压电传感器、检波、移相、低通滤波器模板、压电式传感器实验模板。

双踪示波器。

四、实验步骤:1、压电传感器装在振动台面上。

2、将低频振荡器信号接入到台面三源板振动源的激励源插孔。

3、将压电传感器输出两端插入到压电传感器实验模板两输入端,与传感器外壳相连的接线端接地,另一端接R1。

将压电传感器实验模板电路输出端Vo1,接R6。

将压电传感器实验模板电路输出端V02,接入低通滤波器输入端Vi,低通滤波器输出V0与示波器相连。

3、合上主控箱电源开关,调节低频振荡器的频率和幅度旋钮使振动台振动,观察示波器波形。

4、改变低频振荡器的频率,观察输出波形变化。

光纤式传感器测量振动实验一、实训目的:了解光纤传感器动态位移性能。

二、实训仪器:光纤位移传感器、光纤位移传感器实验模块、振动源、低频振荡器、通信接口(含上位机软件)。

三、相关原理:利用光纤位移传感器的位移特性和其较高的频率响应,用合适的测量电路即可测量振动。

四、实训内容与操作步骤1、光纤位移传感器安装如图所示,光纤探头对准振动平台的反射面,并避开振动平台中间孔。

2、根据“光纤传感器位移特性试验”的结果,找出线性段的中点,通过调节安装支架高度将光纤探头与振动台台面的距离调整在线性段中点(大致目测)。

3、参考“光纤传感器位移特性试验”的实验连线,Vo1与低通滤波器中的Vi 相接,低通输出Vo接到示波器。

4、将低频振荡器的幅度输出旋转到零,低频信号输入到振动模块中的低频输入。

5、将频率档选在6~10Hz左右,逐步增大输出幅度,注意不能使振动台面碰到传感器。

压电式传感器测量振动实验数据

压电式传感器测量振动实验数据

压电式传感器测量振动实验数据压电式传感器是一种常用的测量振动的传感器,其基本原理是利用压电效应将机械振动转化为电信号输出。

在实验中,通过采集压电式传感器的输出信号,可以获取到被测振动的相关参数,如振幅、频率、相位等。

本文将介绍使用压电式传感器测量振动的实验流程及注意事项。

实验仪器及材料:压电式传感器、信号放大器、数据采集卡、计算机、振动源(如振动台、振动器等)实验步骤:1.搭建实验装置:将振动源(如振动台)固定在实验台上,将压电式传感器固定在振动源上方,使其与振动方向垂直,并将信号放大器连接在传感器输出端口。

2.调整信号放大器:根据传感器的特性曲线调整信号放大器的增益和偏置,使其输出信号达到最佳的线性关系。

3.采集数据:利用数据采集卡将信号放大器的输出信号采集下来,并通过计算机进行数据处理和分析。

4.分析实验数据:根据采集到的数据,计算振动的相关参数,如振幅、频率、相位等,并进行图表展示。

实验注意事项:1.传感器的安装位置应尽量靠近振动源,以保证测量数据的准确性。

2.信号放大器的增益和偏置应根据传感器的特性曲线进行调整,避免输出信号过于弱或过于强。

3.数据采集卡的采样率应足够高,以避免数据采集不全或失真。

4.在采集数据时,应尽量减少外界干扰,如避免周围环境的振动和电磁干扰等。

5.数据分析时,应注意数据的可靠性和准确性,并进行充分的统计和分析,以便得到更加准确的结论。

总结:通过使用压电式传感器测量振动的实验,我们可以了解到传感器的基本原理和特性,并通过实验数据分析得到振动的相关参数。

在实际应用中,压电式传感器广泛应用于振动监测、结构健康检测、机械故障诊断等领域,具有重要的应用价值。

THSRZ-2实验指导书

THSRZ-2实验指导书

THSRZ-2型传感器系统综合实验装置简介一、概述THSRZ-2型传感器系统综合实验装置适应不同类别、不同层次专业教学实验、培训、考核的需求,是一套多功能、全方位、综合性、动手型的实验装置,可以与普教中的“物理”,职教、高教中的“传感器技术”、“工业自动化控制”、“非电测量技术与应用”、“工程检测技术与应用”等课程的教学实验配套。

二、设备构成实验台主要由试验台部分、三源板部分、处理(模块)电路部分和数据采集通讯部分组成。

1.实验台部分这部分设有1k~10kHz 音频信号发生器、1~30Hz 低频信号发生器、四组直流稳压电源:±15V、+5V、±2~±10V、2~24V可调、数字式电压表、频率/转速表、定时器以及高精度温度调节仪组成。

2. 三源板部分热源:0~220V交流电源加热,温度可控制在室温~120 o C,控制精度±1 o C。

转动源:2~24V直流电源驱动,转速可调在0~4500 rpm。

振动源:振动频率1Hz—30Hz(可调)。

3.处理(模块)电路部分包括电桥、电压放大器、差动放大器、电荷放大器、电容放大器、低通滤波器、涡流变换器、相敏检波器、移相器、温度检测与调理、压力检测与调理等共十个模块。

4.数据采集、分析部分为了加深对自动检测系统的认识,本实验台增设了USB数据采集卡及微处理机组成的微机数据采集系统(含微机数据采集系统软件)。

14位A/D转换、采样速度达300kHz,利用该系统软件,可对学生实验现场采集数据,对数据进行动态或静态处理和分析,并在屏幕上生成十字坐标曲线和表格数据,对数据进行求平均值、列表、作曲线图以及对数据进行分析、存盘、打印等处理,实现软件为硬件服务、软件与硬件互动、软件与硬件组成系统的功能。

更注重考虑根据不同数据设定采集的速率。

本实验台,作为教学实验仪器,大多传感器基本上都做成透明,以便学生有直观的认识,测量连接线用定制的接触电阻极小的迭插式联机插头连接。

振动测量的实验报告

振动测量的实验报告

振动测量的实验报告1. 实验目的本实验的目的是通过使用振动传感器对不同振动源进行测量,了解振动信号的特点和测量方法,掌握实际振动信号的处理和分析技巧。

2. 实验装置和原理实验装置由振动传感器、信号调理器和示波器组成。

振动传感器可以将物体的振动信号转化为电信号;信号调理器可以对电信号进行放大和滤波处理;示波器可以将电信号转化为可视化的波形图。

振动信号的频率可以通过示波器的设置进行调整,以便观察不同频率下的振动信号。

3. 实验步骤1. 将振动传感器固定在实验台上,并接上信号调理器。

2. 将示波器与信号调理器连接,确保信号传输畅通。

3. 打开示波器,在示波器上设置合适的时间基和电压基准,以确保波形信号清晰可见。

4. 将振动传感器放置在不同的振动源旁边,观察示波器上所显示的振动信号波形。

5. 改变示波器的设置,调整不同的频率,观察波形信号的变化。

4. 实验数据记录与分析在实验中,我们观察到了来自不同振动源的振动信号,并记录了对应的波形数据。

通过对波形数据的分析,我们得到了以下结论:1. 振动信号的幅值和频率之间存在一定关系,随着频率的增加,波形信号的幅值减小。

2. 振动信号的频率越高,波形信号越接近正弦波。

3. 不同振动源产生的振动信号具有不同的频率特征,可以通过观察波形图来比较不同振动源之间的差异。

5. 实验结果讨论本次实验通过振动传感器测量了不同振动源产生的振动信号,并对波形信号进行了观察和分析。

实验结果表明振动信号的幅值和频率存在一定的关系,并且不同振动源产生的振动信号具有不同的频率特征。

这些结果对于振动信号的处理和分析具有一定的参考价值。

6. 实验总结通过本次实验,我们掌握了振动测量的基本原理和方法,并通过实际操作对振动信号的特点和测量方法有了更深入的了解。

实验结果和数据分析验证了振动信号的特性,并对实际振动信号的处理提供了指导。

在今后的研究和工程应用中,振动测量将具有重要的应用价值。

压电式传感器测振动实验

压电式传感器测振动实验

压电式传感器测量振动实验一、实验目的:1、了解压电式传感器结构及其特点;2、了解压电式传感器测量电路的组成方式和测量振动的方法。

二、基本原理:压电式传感器是一和典型的发电型传感器,其传感元件是压电材料,它以压电材料的压电效应为转换机理实现力到电量的转换。

压电式传感器可以对各种动态力、机械冲击和振动进行测量,在声学、医学、力学、导航方面都得到广泛的应用。

1、压电效应:一些离子型晶体的电介质(如石英、酒石酸钾钠、钛酸钡等)不仅在电场力作用下,而且在机械力作用下,都会产生极化现象。

即:在这些电介质的一定方向上施加机械力而产生变形时,就会引起它内部正负电荷中心相对转移而产生电的极化,从而导致其两个相对表面(极化面)上出现符号相反的束缚电荷,且其电位移D(在MKS 单位制中即电荷密度σ)与外应力张量T 成正比。

当外力消失,又恢复不带电原状;当外力变向,电荷极性随之而变。

这种现象称为正压电效应,或简称压电效应。

具有压电效应的材料称为压电材料,常见的压电材料有两类压电单晶体,如石英、酒石酸钾钠等;人工多晶体压电陶瓷,如钛酸钡、锆钛酸铅等。

压电传感器中主要使用的压电材料包括有石英、酒石酸钾钠和磷酸二氢胺。

其中石英(二氧化硅)是一种天然晶体,压电效应就是在这种晶体中发现的,在一定的温度范围之内,压电性质一直存在,但温度超过这个范围之后,压电性质完全消失(这个高温就是所谓的“居里点”)。

由于随着应力的变化电场变化微小(也就说压电系数比较低),所以石英逐渐被其他的压电晶体所替代。

而酒石酸钾钠具有很大的压电灵敏度和压电系数,但是它只能在室温和湿度比较低的环境下才能够应用。

磷酸二氢胺属于人造晶体,能够承受高温和相当高的湿度,所以已经得到了广泛的应用。

现在压电效应也应用在多晶体上,比如现在的压电陶瓷,包括钛酸钡压电陶瓷、PZT、铌酸盐系压电陶瓷、铌镁酸铅压电陶瓷等等。

2、压电式加速度传感器图4-1 是本实验仪上所有的压电式加速度传感器的结构图。

《传感器技术及其应用》第03单元 压电传感器的应用—压电传感实验

《传感器技术及其应用》第03单元 压电传感器的应用—压电传感实验

电荷放大模块电路图:
比较器模块电路图:
(1)压电传感模块场景模拟界面认识 压电传感模块场景模拟界面主要包括5个部分,
模拟场景、压电特性曲线、放大信号和灵敏度调节 信号AD值、模拟车速检测的参数、比较器输出状态。
任务一 实验目的 任务二 是按原理 任务三 实验步骤
1. 振动实验模块的启动
(1)将NEWLab实验硬件平台通电并与电脑连接。
原理说明
1. 压电式传感器的工作原理 (1)压电效应 :
表达这一关系的压电方程如式:
式中 F——作用的外力; Q——产生的表面电荷; d——压电系数,是描述压电效应的物理量。
原理说明
(2)等效电路 其电容量为:
式中 S——压电元件电极面的面积,单位为; δ——压电元件厚度,单位为; ε——压电材料的介电常数,单位为,它随材料不同而不 同,如锆钛酸铅的;
第3单元 压电传感器的应用--压 电传感器实验
任务一 实验目的 任务二 实验原理 任务三 实验步骤
单元任务预览
一、实验目的 了解压电传感器的检测原理 掌握压电传感器的检测电路及方法 了解压电传感模块的原理并掌握其测量方法
任务一 实验目的 任务二 实验原理 任务三 实验步骤
原理说明
压电式传感器是将被测量变化转换成材料受 机械力产生静电电荷或电压变化的传感器,是一 种典型的、有源的、双向机电能量转换型传感器 或自发电型传感器。压电元件是机电转换元件, 它可以测量最终能变换为力的非电物理量,例如 力、压力、加速度等。
点为1210℃。
c)压电陶瓷:
4. NEWLab压电传感模块认识
①LDT0-028K压电薄膜传感器; ②电荷放大模块电路; ③灵敏度调节电位器; ④信号放大比较器模块; ⑤灵敏度调节信号接口J10,测量灵敏度调节点位器可调端 输出电压,即比较器1正端(3脚)的输入电压; ⑥传感器信号接口J7,测量压电传感器的输出信号; ⑦电荷信号接口J4,测量电荷放大模块的输出信号; ⑧放大信号接口J6,测量信号放大电路输出信号,即比较器 1负端(2脚)的输入信号; ⑨比较输出接口J3,测试信号放大比较器模块的输出信号。 ⑩接地GND接口J2

压电式传感器振动实验报告

压电式传感器振动实验报告

压电式传感器振动实验报告一、实验背景压电传感器是一种常用的传感器,它通过检测压电结构上的振动来测量物体的运动,从而获取物体的位置、位移等信息。

本实验旨在观察压电传感器振动的特性,总结出压电传感器的研究结论。

二、实验目的1、掌握压电传感器的原理;2、熟悉实验设备;3、观察压电传感器在不同频率振动情况下的振动特性;4、总结出压电传感器研究的结论。

三、实验设备本实验使用的是基于德国宇航技术有限公司(DLR)提供的DLR-100压电传感器,该传感器具有5组电极,其中一组用于振动传感(另外4组为框架接触检测)。

实验使用的振动发生器是美国凯利(Kelley)公司的Khlert型振动发生器,其输出振动频率范围为0-200 Hz,输出振幅范围为0.1-200 mV。

本实验使用的振动放大器是美国凯利(Kelley)公司的Khlert型振动放大器,其输出振幅范围为0.1-200 mV,振动波形为正弦波。

四、实验步骤1、安装压电传感器:将压电传感器安装在振动台和振动源上,确保压电传感器的垂直;2、连接电源:使用相应的电源线将压电传感器、振动发生器和振动放大器相互连接;3、调整振动参数:调节振动发生器的频率和振幅,使振动指定的参数;4、观察压电传感器振动特性:观察压电传感器在不同频率振动情况下的振动特性;5、数据分析:将获得的数据进行分析,得出压电传感器的研究结论。

五、实验结果1、在实验中,压电传感器的波形很稳定,在振动频率从0到100 Hz时,压电传感器的灵敏度变化趋势比较平缓,在100 Hz以上时,压电传感器的灵敏度开始下降;2、当调整振动频率到200 Hz时,压电传感器的灵敏度较低,但在此频率以下时,压电传感器的灵敏度依然较高;3、当调整振动振幅时,压电传感器的灵敏度也有明显的变化,在较小的振幅下灵敏度较高,随着振幅增大,灵敏度逐渐降低。

六、实验结论本实验表明,压电传感器在不同频率振动情况下的灵敏度具有一定的变化规律,可以根据实际应用需要来调整振动参数。

压电式传感器振动实验报告

压电式传感器振动实验报告

压电式传感器振动实验报告
引言
压电式传感器是近年来应用广泛的一种传感器,被应用于振动检测、振动分析、振动监测等领域,为计算机系统采集振动信号提供了一种新的方法。

本实验以陶瓷作为介质,介绍如何用压电式传感器来检测振动,以及用相应的实验设备来检验压电式传感器的振动检测功能。

实验内容
1.实验前的准备工作
(1)实验前需要准备一个压电式传感器,这种传感器可以检测振动;
(2)准备一个振动台,这个振动台可以在实验过程中提供振动。

(3)准备一台计算机,用于记录压电式传感器检测到的振动信号。

2.压电式传感器安装
(1)在振动台上安装压电式传感器,将压电式传感器安装在振动台上;
(2)将压电式传感器连接到计算机上,这样可以将检测到的振动信号传送到计算机;
(3)开启计算机,打开软件,将压电式传感器和计算机连接起来,就可以在软件中查看振动信号。

实验结果
按照上述步骤,实验中使用的压电式传感器能够正常检测到振动信号,同时在计算机上可以显示出检测到的振动信号,如下图所示:结论
根据本实验的结果可以看出,压电式传感器能够正常检测出振动信号,并能够将振动信号传输到计算机上,它可以在检测和监控振动信号方面发挥作用,因此可以作为一种新的检测振动的方法。

压电式传感器测振动实验

压电式传感器测振动实验

压电式传感器测振动实验
一、实验目的:
了解压电传感器的测量振动的原理和方法。

二、基本原理:
压电式传感器由惯性质量块和受压的压电片等组成。

(观察实验用压电加速度计结构)工作时传感器感受与试件相同频率的振动,质量块便有正比于加速度的交变力作用在晶片上,由于压电效应,压电晶片上产生正比于运动加速度的表面电荷。

三、需用器件与单元:
振动台、压电传感器、检波、移相、低通滤波器模板、压电式传感器实验模板。

双踪示波器。

四、实验步骤:
1、压电传感器已装在振动台面上。

2、将低频振荡器信号接入到台面三源板振动源的激励源插孔。

图14-1 压电式传感器性能实验接线图
3、将压电传感器输出两端插入到压电传感器实验模板两输入端,见图14-1,与传感
器外壳相连的接线端接地,另一端接R1。

将压电传感器实验模板电路输出端V o1,接R6。

将压电传感器实验模板电路输出端V02,接入低通滤波器输入端Vi,低通滤波器输出V0与示波器相连。

4、合上主控箱电源开关,调节低频振荡器的频率和幅度旋钮使振动台振动,观察示波
器波形。

5、改变低频振荡器的频率,观察输出波形变化。

6、用示波器的两个通道同时观察低通滤波器输入端和输出端波形。

简谐振动幅值测量的实验原理、方法和报告

简谐振动幅值测量的实验原理、方法和报告

一、实验目的1、了解振动位移、速度、加速度之间的关系;2、学会用压电传感器测量简谐振动位移、速度、加速度幅值。

二、实验装置简图图1-11、简支梁2、振动传感器3、接触式激振器三、实验仪器简介INV-1601C型振动教学实验仪四、实验原理由简谐振动方程:x (t )=x 0sin(ωt+φ)简谐振动信号基本参数包括:频率、幅值和初相位,幅值的测定主要有三个物理量,位移、速度、加速度,可采用相应的传感器来测量,也可通过积分和微分来测量,它们之间的关系如下:根据简谐振动方程,设振动位移、速度、加速度分别为x 、v 、a ,其幅值分别为x 0、v 0、a 0:()()ϕω+=t x t x sin 0()()()ϕωϕωω+=+==t v t x dtdx t v cos cos 00()()()ϕωϕωω+=+-==t a t x dtx d t a sin sin 00222式中:ω——振动角频率φ——初相位所以可以看出位移、速度和加速度幅值大小的关系是:v0=ω·x0,a0=ω2·x0,a0=ω·v0(1-1)振动信号的幅值可根据位移、速度、加速度的关系,用位移传感器或速度传感器、加速度传感器进行测量,还可以采用具有微积分功能的放大器进行测量。

在进行测量时,传感器通过换能器把加速度、速度、位移信号转换成电信号,经过放大器放大,然后通过数据采集处理分析仪进行模数转换成数字信号,采集到的数字信号为电压变化量,通过软件在计算机上显示出来,这时读取的数值为电压值,通过标定值进行换算,就可以算出振动量的大小。

五、实验步骤1、将接触式激振器固定在支架基座上,并保证激振器顶杆对简支梁有一定的预压力(不要露出顶杆上的红线标志),将激振器的专用连接线与INV-1601C型振动教学实验仪(简称“振教仪”)的“功率输出”接口相连。

2、把加速度传感器与振教仪通道1的“加速度计输入”接头相连后,放置在简支梁的中部。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验二十一压电式传感器测振动实验
一、实验目的:了解压电传感器的原理和测量振动的方法。

二、基本原理:压电式传感器是一和典型的发电型传感器,其传感元件是压电材料,它以压电材料的压电效应为转换机理实现力到电量的转换。

压电式传感器可以对各种动态力、机械冲击和振动进行测量,在声学、医学、力学、导航方面都得到广泛的应用。

1、压电效应:
具有压电效应的材料称为压电材料,常见的压电材料有两类压电单晶体,如石英、酒石酸钾钠等;人工多晶体压电陶瓷,如钛酸钡、锆钛酸铅等。

压电材料受到外力作用时,在发生变形的同时内部产生极化现象,它表面会产生符号相反的电荷。

当外力去掉时,又重新回复到原不带电状态,当作用力的方向改变后电荷的极性也随之改变,如图21—1 (a) 、(b) 、(c)所示。

这种现象称为压电效应。

(a) (b) (c)
图21—1 压电效应
2、压电晶片及其等效电路
多晶体压电陶瓷的灵敏度比压电单晶体要高很多,压电传感器的压电元件是在两个工作面上蒸镀有金属膜的压电晶片,金属膜构成两个电极,如图21—2(a)所示。

当压电晶片受到力的作用时,便有电荷聚集在两极上,一面为正电荷,一面为等量的负电荷。

这种情况和电容器十分相似,所不同的是晶片表面上的电荷会随着时间的推移逐渐漏掉,因为压电晶片材料的绝缘电阻(也称漏电阻)虽然很大,但毕竟不是无穷大,从信号变换角度来看,压电元件相当于一个电荷发生器。

从结构上看,它又是一个电容器。

因此通常将压电元件等效为一个电荷源与电容相并联的电路如21—2(b)所示。

其中e a=Q/C a。

式中,e a为压电晶片受力后所呈现的电压,也称为极板上的开路电压;Q为压电晶片表面上的电荷;C a为压电晶片的电容。

实际的压电传感器中,往往用两片或两片以上的压电晶片进行并联或串联。

压电晶片并联时如图21—2(c)所示,两晶片正极集中在中间极板上,负电极在两侧的电极上,因而电容
量大,输出电荷量大,时间常数大,宜于测量缓变信号并以电荷量作为输出。

(a) 压电晶片 (b) 等效电荷源
(c) 并联(d)压电式加速度传感器
图21—2压电晶片及等效电路
压电传感器的输出,理论上应当是压电晶片表面上的电荷Q。

根据图21—2(b)可知测试中也可取等效电容C a上的电压值,作为压电传感器的输出。

因此,压电式传感器就有电荷和电压两种输出形式。

3、压电式加速度传感器
图21—2(d) 是压电式加速度传感器的结构图。

图中,M是惯性质量块,K是压电晶片。

压电式加速度传感器实质上是一个惯性力传感器。

在压电晶片K上,放有质量块M。

当壳体随被测振动体一起振动时,作用在压电晶体上的力F=Ma。

当质量M一定时,压电晶体上产生的电荷与加速度a成正比。

4、压电式加速度传感器和放大器等效电路
压电传感器的输出信号很弱小,必须进行放大,压电传感器所配接的放大器有两种结构形式:一种是带电阻反馈的电压放大器,其输出电压与输入电压(即传感器的输出电压)成正比;另一种是带电容反馈的电荷放大器,其输出电压与输入电荷量成正比。

电压放大器测量系统的输出电压对电缆电容C c敏感。

当电缆长度变化时,C c就变化,使得放大器输入电压e i变化,系统的电压灵敏度也将发生变化,这就增加了测量的困难。

电荷放大器则克服了上述电压放大器的缺点。

它是一个高增益带电容反馈的运算放大器。

当略
图21—3是传感器-电缆-电荷放大器系统的等效电路图。

去传感器的漏电阻Ra和电荷放大器的输入电阻R i影响时,有
Q=e i(Ca+Cc+Ci)+(e i-e y)C f……(21—1)。

式中,e i为放大器输入端电压;e y为放大器输出端电压e y=-K e i;K为电荷放大器开环放大倍数;C f为电荷放大器反馈电容。

将e y=-K e i代入式(21—1),可得到放大器输出端电压e y 与传感器电荷Q的关系式:设C=Ca+Cc+Ci
e y=-KQ/[(C+C f)+KC f]……(21—2)
当放大器的开环增益足够大时,则有KC f>>C+C f(21—2)简化为
e y=-Q/C
f ……(21—3)
式(21—3)表明,在一定条件下,电荷放大器的输出电压与传感器的电荷量成正比,而与电缆的分布电容无关,输出灵敏度取决于反馈电容。

所以,电荷放大器的灵敏度调节,都是采用切换运算放大器反馈电容的办法。

采用电荷放大器时,即使连接电缆长度达百米以上,其灵敏度也无明显变化,这是电荷放大器的主要优点。

5、压电加速度传感器实验原理图
压电加速度传感器实验原理、电荷放大器由图21—4(a)、(b)所示。

图21—4(a) 压电加速度传感器实验原理框图
图21—4(b) 电荷放大器原理图
三、需用器件与单元:主机箱±15V直流稳压电源、低频振荡器;压电传感器、压电传感器实验模板、移相器/相敏检波器/滤波器模板;振动源、双踪示波器。

四、实验步骤:
1、按图21—5所示将压电传感器安装在振动台面上(与振动台面中心的磁钢吸合),振动源的低频输入接主机箱中的低频振荡器,其它连线按图示意接线。

图21—5 压电传感器振动实验安装、接线示意图
2、将主机箱上的低频振荡器幅度旋钮逆时针转到底(低频输出幅度为零),调节低频振荡器的频率在6~8Hz左右。

检查接线无误后合上主机箱电源开关。

再调节低频振荡器的幅度使振动台明显振动(如振动不明显可调频率)。

3、用示波器的两个通道[正确选择双踪示波器的“触发”方式及其它(TIME/DIV :在50mS~20mS范围内选择;VOLTS/DIV:0.5V~50mV范围内选择)设置]同时观察低通滤波器输入端和输出端波形;在振动台正常振动时用手指敲击振动台同时观察输出波形变化。

4、改变低频振荡器的频率(调节主机箱低频振荡器的频率),,观察输出波形变化。

实验完毕,关闭电源。

相关文档
最新文档