求法向量的练习题

合集下载

专题:平面的法向量

专题:平面的法向量

总结反思
在空间直角坐标系下,如何求平面的法向量? 在空间直角坐标系下,如何求平面的法向量?
1.用常用方法求平面的法向量 1.用常用方法求平面的法向量 设平面法向量的方法: 设平面法向量的方法:
r r 跟向量a =(m,0,0)垂直的法向量 n = (0, y, z ) 垂直的法向量
r r 跟向量a =(n,m,0)垂直的法向量 n = (− 1 , 1 , z) 垂直的法向量 n m 2.利用特殊平面的法向量结论 利用特殊平面的法向量结论: 2.利用特殊平面的法向量结论:
ZHEJIANG DONGYANG HIGH SCHOOL
探究规律
问题4:平面 是原点, 在 轴上 问题 :平面AOBD,O是原点,A在z轴上 , 是原点 则平面AOBD的一个法向量为 点B(a,b,0),则平面 则平面 的一个法向量为 1 1 (− , ,0) z a b ____________
ZHEJIANG DONGYANG HIGH SCHOOL
D E(0, 3 ,0) y
C(1,0,0)
随堂练习
2.在棱长为 的正方体 1中,P、 Q、R分别为棱 在棱长为3的正方体 的正方体AC 、 、 分别为棱
A1D1、AB、BC的一个三等分点,A1P=AQ=BR=1, 的一个三等分点, 、 的一个三等分点 , 、 求平面PQR的一个法向量 z 的一个法向量. 求平面 的一个法向量 D1 C1 1 1 (1, , ) P (2,0,3) 2 2 A1 B1
D O
ZHEJIANG DONGYANG HIGH SCHOOL
C y R(2,3,0) B
x
A
Q (3,1,0)
随堂练习
3.已知 已知ABCD是上下底边长分别为 和6,高为 3 的 是上下底边长分别为2和 , 是上下底边长分别为

求曲线的法向量

求曲线的法向量

求曲线的法向量
在数学中,曲线的法向量通常是曲线上某一点的切线的垂直方向上的向量。

对于曲线上的一点,曲线的切线可以通过求曲线在该点的导数来获得。

法向量则是该切线的垂直向量。

给定一个参数方程表示的曲线:
\[\mathbf{r}(t)=\langle x(t),y(t),z(t)\rangle\]
其中\(t\)是参数,可以通过求导数得到切向量:
\[\mathbf{T}(t)=\frac{d\mathbf{r}}{dt}=\langle x'(t),y'(t),z'(t)
\rangle\]
曲线的法向量通常取切向量的单位向量,即:
\[\mathbf{N}(t)=\frac{\mathbf{T}(t)}{\|\mathbf{T}(t)\|}\]
这里,\(\|\mathbf{T}(t)\|\)表示切向量的模或长度。

法向量\(\mathbf{N}(t)\)就是曲线在参数值\(t\)处的法向量。

需要注意的是,对于平面曲线,法向量通常沿着\(z\)-轴的方向,可以通过以下方式获取:
\[\mathbf{N}(t)=\langle-y'(t),x'(t),0\rangle\]
这是因为平面曲线的法向量垂直于曲线平面,而在\(xy\)-平面上的向量可以通过交换\(x\)和\(y\)分量得到。

在三维空间中,曲线的法向量在曲线上的每一点都会有所变化,所以需要根据具体的参数值\(t\)计算。

用空间向量研究直线、平面的位置关系4种常见考法归类(80题)(学生版)25学年高二数学(人教A选修一

用空间向量研究直线、平面的位置关系4种常见考法归类(80题)(学生版)25学年高二数学(人教A选修一

专题1.4.1 用空间向量研究直线、平面的位置关系4种常见考法归类(80题)题型一 求直线的方向向量题型二 求平面的法向量题型三 用空间向量证明平行问题(一)判断直线、平面的位置关系(二)已知直线、平面的平行关系求参数(三)证明直线、平面的平行问题(1)利用向量方法证明线线平行(2)利用向量方法证明线面平行(3)利用向量方法证明面面平行(4)与平行有关的探索性问题题型四 利用空间向量证明垂直问题(一)判断直线、平面的位置关系(二)已知直线、平面的垂直关系求参数(三)证明直线、平面的垂直问题(1)利用向量方法证明线线垂直(2)利用向量方法证明线面垂直(3)利用向量方法证明面面垂直(4)与垂直有关的探索性问题在空间中,我们取一定点O 作为基点,那么空间中任意一点P 就可以用向量OP 表示.我们把向量OP称为点P 的位置向量.如图.注:线段中点的向量表达式:对于AP → =tAB →,当t =12时,我们就得到线段中点的向量表达式.设点M 是线段AB 的中点,则OM → =12(OA → +OB →),这就是线段AB 中点的向量表达式.2、直线的方向向量如图①,a 是直线l 的方向向量,在直线l 上取AB a =,设P 是直线l上的任意一点,则点P 在直线l 上的充要条件是存在实数t ,使得AP ta = ,即AP t AB=3、空间直线的向量表示式如图②,取定空间中的任意一点O ,可以得到点P 在直线l 上的充要条件是存在实数t ,使OP OA ta =+ ①或OP OA t AB =+ ②①式和②式都称为空间直线的向量表示式.由此可知,空间任意直线由直线上一点及直线的方向向量唯一确定.4、用向量表示空间平面的位置根据平面向量基本定理,存在唯一实数对(,)x y ,使得AP xa yb =+,如图;取定空间任意一点O ,空间一点P 位于平面ABC 内的充要条件是存在实数x ,y ,使OP OA xAB y AC =++ .5.直线的方向向量若A 、B 是直线上的任意两点,则为直线的一个方向向量;与平行的任意非零向量也是直线的方向向量.【注意】①在直线上取有向线段表示的向量,或在与它平行的直线上取有向线段表示的向量,均为直线的方向向量;②在解具体立体几何题时,直线的方向向量一般不再叙述而直接应用,可以参与向量运算或向量的坐标运算.6.平面的法向量定义:AB l ABl直线l ⊥α,取直线l 的方向向量a ,我们称向量a 为平面α的法向量.给定一个点A 和一个向量a ,那么过点A ,且以向量a.注:一个平面的法向量不是唯一的,在应用时,可适当取平面的一个法向量.已知一平面内两条相交直线的方向向量,可求出该平面的一个法向量.7.平面法向量的性质(1)平面a 的一个法向量垂直于平面a 内的所有向量;(2)一个平面的法向量有无限多个,它们互相平行.8.平面的法向量的求法求一个平面的法向量时,通常采用待定系数法,其一般步骤如下:设向量:设平面a 的法向量为(,,)n x y z =选向量:选取两不共线向量,AB AC列方程组:由00n AB n AC ì×=ïí×=ïî列出方程组解方程组:解方程组00n AB n AC ì×=ïí×=ïî赋非零值:取其中一个为非零值(常取±1)得结论:得到平面的一个法向量.题型一 求直线的方向向量解题策略:1、理解直线方向向量的概念(1)直线上任意两个不同的点都可构成直线的方向向量.(2)直线的方向向量不唯一.(空间中一条直线的方向向量有无数个).2.求直线的方向向量,首先是找到直线上两点,然后用坐标表示以这两点为起点和终点的向量,该向量就是直线的一个方向向量.1.(23-24高二下·江苏扬州·期末)已知一直线经过点()()2,3,2,1,0,1A B --,下列向量中是该直线的方向向量的为( )A .()1,1,1a =-B .()1,1,1a =-C .()1,1,1a =-D .()1,1,1a =2.【多选】(2024·湖北十堰·高二校联考阶段练习)如图,在正方体1111ABCD A B C D -中,E 为棱1CC上不与1C ,C 重合的任意一点,则能作为直线1AA 的方向向量的是( )A .1AAB .1C EC .ABD .1A A3.(2024·高二课时练习)如图,在四棱锥P -ABCD 中,底面ABCD 为矩形,PA ⊥平面ABCD ,E 为PD的中点,AB =AP =1,AD PC 的一个方向向量.4.(2024·高二课时练习)已知直线1l 的一个方向向量为()5,3,2-,另一个方向向量为(),,8x y ,则x =________,y = ________.5.(2024·江苏常州·高二校联考期中)已知直线l 的一个方向向量()2,1,3m =-,且直线l 过A (0,y ,3)和B (-1,2,z )两点,则y -z 等于( )A .0B .1C .2D .36.(23-24高二上·江西赣州·期中)已知直线1l 的方向向量是()2,2,a x =-,直线2l 的方向向量是()2,,2b y =-,若3a = ,且12l l ^,则x y -的值是( )A .-4或0B .4或1C .-4D .07.(23-24高二上·湖北武汉·期中)两条不同直线1l ,2l 的方向向量分别为()1,1,2m =-,()2,2,1n =- ,则这两条直线( )A .相交或异面B .相交C .异面D .平行题型二 求平面的法向量解题策略:1.求平面法向量的方法①设出平面的法向量为n =(x ,y ,z );②找出(或求出)平面内的两个不共线的向量的坐标:a =(a 1,a 2,a 3),b =(b 1,b 2,b 3);③依据法向量的定义建立关于x ,y ,z 的方程组00{=×=×b n a n ④解方程组,取其中的一个解,即得法向量,由于一个平面的法向量有无数多个,故可在方程组的解中取一个最简单的作为平面的法向量.注:利用待定系数法求平面的法向量,求出向量的横、纵、竖坐标是具有某种关系的,而不是具体的值,可设定某个坐标为常数,再表示其他坐标.2.求平面法向量的三个注意点(1)选向量:在选取平面内的向量时,要选取不共线的两个向量(2)取特值:在求n 的坐标时,可令x ,y ,z 中一个为一特殊值得另两个值,就是平面的一个法向量(3)注意0:提前假定法向量n =(x ,y ,z )的某个坐标为某特定值时一定要注意这个坐标不为08.【多选】(23-24高二上·浙江绍兴·期中)直线l 的方向向量是(1,2,0)a =,若l a ^,则平面a 的法向量可以是( )A .()1,2,0n = B .()2,4,0n =--C .()2,1,0n =-D .()2,1,2n =-9.(2024·江苏淮安·高二校考阶段练习)空间直角坐标系O xyz -中,已知点()2,0,2A ,()2,1,0B ,()0,2,0C ,则平面ABC 的一个法向量可以是( ).A .()2,1,2B .()1,2,1-C .()2,4,2D .()2,1,2-10.(2024·高二课时练习)已知()()()1,1,0,1,0,1,0,1,1A B C ,则平面ABC 的一个单位法向量是( )A .()1,1,1B .C .111(,,)333D .11.(2023秋·湖北荆州·高二沙市中学校考期末)已知正方体1111ABCD A B C D -的棱长为 1, 以D 为原点, {}1,,DA DC DD为单位正交基底, 建立空间直角坐标系, 则平面1AB C 的一个法向量是( )A .(1,1,1)B .(1,1,1)-C .(1,1,1)-D .(1,1,1)-12.(2024·高二课时练习)在如图所示的坐标系中,1111ABCD A B C D -为正方体,给出下列结论:①直线1DD 的一个方向向量为(0,0,1);②直线1BC 的一个方向向量为(0,1,1);③平面11ABB A 的一个法向量为(0,1,0);④平面1B CD 的一个法向量为(1,1,1).其中正确的个数为( )A .1个B .2个C .3个D .4个13.(2023春·高二课时练习)已知四边形ABCD 是直角梯形,90ABC ∠= ,SA ^平面ABCD ,1SA AB BC ===,12A D =,求平面SCD 的一个法向量.14.(2024·高二课时练习)在棱长为2的正方体1111ABCD A B C D -中,E ,F 分别为棱1111,A D A B 的中点,在如图所示的空间直角坐标系中,求:(1)平面11BDD B 的一个法向量;(2)平面BDEF 的一个法向量.15.(2024·福建龙岩·高二校联考期中)《九章算术》中,将四个面都为直角三角形的四面体称为鳖臑.在鳖臑A BCD -中,AB ^平面BCD ,=90BDC ∠°,BD AB CD ==.若建立如图所示的“空间直角坐标系,则平面ACD 的一个法向量为( )A .()0,1,0B .()0,1,1C .()1,1,1D .()1,1,016.(2024·全国·高三专题练习)放置于空间直角坐标系中的棱长为2的正四面体ABCD 中,H 是底面中心,DH ^平面ABC ,写出:平面BHD 的一个法向量___________;17.(2023春·高二课时练习)如图的空间直角坐标系中,PD 垂直于正方形ABCD 所在平面,2,AB PB =与平面xDy 的所成角为4p,E 为PB 中点,则平面ABE 的单位法向量0n =______.(用坐标表示)18.【多选】(2024·福建宁德·高二校联考期中)已知空间中三个向量()2,1,0AB =,()1,2,1AC =- ,()3,1,1BC =-,则下列说法正确的是( )A .AB与AC 是共线向量B .与AB同向的单位向量是ö÷÷øC .BC 在AB方向上的投影向量是()2,1,0--D .平面ABC 的一个法向量是()1,2,5-19.(2024·四川成都·高二成都市锦江区嘉祥外国语高级中学校考期中)已知()2,0,2a =,()3,0,0= b 分别是平面a ,b 的法向量,则平面a ,b 交线的方向向量可以是( )A .()1,0,0B .()0,1,0C .()0,0,1D .()1,1,120.(2024·湖北·高二校联考阶段练习)已知点()2,6,2A -在平面a 内,()3,1,2=n 是平面a 的一个法向量,则下列点P 中,在平面a 内的是( )A .()1,1,1P -B .31,3,2P æöç÷èøC .31,3,2P æö-ç÷èøD .31,3,4P æö---ç÷èø(1)线线平行的向量表示:设u 1,u 2分别是直线l 1,l 2的方向向量,则l 1∥l 2⇔u 1∥u 2⇔∃λ∈R ,使得u 1=λu 2.(2)线面平行的向量表示:设u 是直线 l 的方向向量,n 是平面α的法向量,l ⊄α,则l ∥α⇔u ⊥n ⇔u ·n =0.注:(1)在平面a 内取一个非零向量a ,若存在实数x ,使得u xa =,且l a Ë,则//l a .(2)在平面a 内取两个不共线向量,a b ,若存在实数,x y ,使得u xa yb =+,且l a Ë,则//l a .(3)面面平行的向量表示:设n 1 ,n 2 分别是平面α,β的法向量,则α∥β⇔n 1∥n 2⇔∃λ∈R ,使得n 1=λn 2 .2.利用向量证明线线平行的思路:证明线线平行只需证明两条直线的方向向量共线即可.3.证明线面平行问题的方法:(1)证明直线的方向向量与平面内的某一向量是共线向量且直线不在平面内;(2)证明直线的方向向量可以用平面内两个不共线向量表示且直线不在平面内;(3)证明直线的方向向量与平面的法向量垂直且直线不在平面内.4.证明面面平行问题的方法:(1)利用空间向量证明面面平行,通常是证明两平面的法向量平行.(2)将面面平行转化为线线平行然后用向量共线进行证明.题型三 用空间向量证明平行问题(一)判断直线、平面的位置关系21.(2024·湖北黄石·高二校考阶段练习)若直线l 的一个方向向量为()257,,a =,平面α的一个法向量为()111,,u ®=-,则( )A .l ∥α或l ⊂αB .l ⊥αC .l ⊂αD .l 与α斜交22.(2024·高二单元测试)若平面a 与b 的法向量分别是()1,0,2a =- ,()1,0,2b =-r,则平面a 与b 的位置关系是( )A .平行B .垂直C .相交不垂直D .无法判断23.(2024·山东菏泽·高二统考期末)已知平面a 与平面ABC 是不重合的两个平面,若平面α的法向量为(2,1,4)m =-,且(2,0,1)AB =- ,(1,6,1)AC = ,则平面a 与平面ABC 的位置关系是________.24.(2024·陕西宝鸡·高二统考期末)在长方体ABCD A B C D -¢¢¢¢中,222AA AB AD ¢===,以点D 为坐标原点,以,,DA DC DD ¢分别为x 轴,y 轴,z 轴建立空间直角坐标系,设对角面ACD ¢所在法向量为(,,)x y z ,则::x y z =__________.25.【多选】(2024·甘肃张掖·高二高台县第一中学校考期中)下列利用方向向量、法向量判断线、面位置关系的结论中正确的是( )A .若两条不重合直线1l ,2l 的方向向量分别是()2,3,1a =- ,()2,3,1b =--,则12//l l B .若直线l 的方向向量()0,3,0a = ,平面a 的法向量是()0,5,0m =-,则l //a C .若两个不同平面a ,b 的法向量分别为()12,1,0n =- ,()24,2,0n =-,则//a bD .若平面a 经过三点()1,0,1A -,()0,1,0B ,()1,2,0C -,向量()11,,n u t =是平面a 的法向量,则1u t +=(二)已知直线、平面的平行关系求参数26.(2023春·四川成都·高二四川省成都市新都一中校联考期中)已知直线l 的方向向量为1,2,4)m (-=,平面a 的法向量为,1,2)n x =(-,若直线l 与平面a 平行,则实数x 的值为( )A .12B .12-C .10D .10-27.(2024·广东广州·高二广州市第九十七中学校考阶段练习)直线l 的方向向量是()1,1,1s =-,平面a 的法向量()222,,n x x x =+- ,若直线//l 平面a ,则x =______.28.(2024·上海浦东新·高二上海南汇中学校考期末)已知直线l 的一个方向向量为(1,2,1)d =-,平面a 的一个法向量(,4,2)n x =-,若//l a ,则实数x =_______.29.(2024·天津蓟州·高二校考期中)直线l 的方向向量是()1,1,1s ®=,平面a 的法向量()21,,n x x x ®=--,若直线l a ∥,则x =___________.30.(2023·全国·高三专题练习)在长方体1111ABCD A B C D -中,E 是1BB 的中点,111B F B D l =,且//EF 平面1ACD ,则实数l 的值为( )A .15B .14C .13D .1231.【多选】(2023春·高二课时练习)在正方体1111ABCD A B C D -中,E 为1AA 中点,若直线//EF 平面11A BC ,则点F 的位置可能是( )A .线段1CC 中点B .线段BC 中点C .线段CD 中点D .线段11C D 中点32.(2024·上海·高二校联考阶段练习)已知平面a 的一个法向量为()11,2,3n =-,平面b 的一个法向量为()22,4,n k =--,若//a b ,则k 的值为______(三)证明直线、平面的平行问题(1)利用向量方法证明线线平行解题策略:向量法证明两条直线平行的方法:两直线的方向向量共线时,两直线平行或共线,否则两直线相交或异面.33.(2023·江苏·高二专题练习)在正方体1111ABCD A B C D -中,点P 在线段1A D 上,点Q 在线段AC 上,线段PQ 与直线1A D 和AC 都垂直,求证:1PQ BD .34.(2023·江苏·高二专题练习)已知长方体1111ABCD A B C D -中,4AB =,3AD =,13AA =,点S 、P 在棱1CC 、1AA 上,且112CS SC =,12AP PA =,点R 、Q 分别为AB 、11D C 的中点.求证:直线PQ ∥直线RS .35.(2023·江苏·高二专题练习)已知在正四棱柱1111ABCD A B C D -中,1AB =,12AA =,点E 为1CC 的中点,点F 为1BD 的中点.(1)求证:1EF BD ^ 且1EF CC ^ ;(2)求证:EF AC ∥.(2)利用向量方法证明线面平行解题策略:1.利用向量法证明平行问题的两种途径(1)利用三角形法则、平行四边形法则和空间向量基本定理实现向量间的相互转化,得到向量的共线关系.(2)通过建立空间直角坐标系,借助直线的方向向量和平面的法向量进行平行关系的证明.2.利用向量法证明线面平行的三种思路(1)与法向量垂直:设直线l 的方向向量是a ,平面α的法向量是u , 则要证明l //α,只需证明u a ^,即0=×u a .(2)与平面内一个向量平行:在平面内找一个向量与已知直线的方向向量是共线向量即可.(3)用平面内两个不共线向量线性表示:证明这条直线的方向向量能够用平面内两个不共线向量线性表示即可.注:证明直线与平面平行,只需证明直线的方向向量与平面的法向量的数量积为零,或证直线的方向向量与平面内的两个不共线的向量共面,或证直线的方向向量与平面内某直线的方向向量共线,再说明直线在平面外即可.这样就把几何的证明问题转化为向量的运算.36.(2022春·江苏镇江·高二江苏省镇江第一中学校联考期末)如图,三棱柱11ABC AB C -中侧棱与底面垂直,且AB =AC =2,AA 1=4,AB ⊥AC ,M ,N ,P ,D 分别为CC 1,BC ,AB ,11B C 的中点.求证:PN ∥面ACC 1A 1;37.(2024·湖北黄冈·浠水县第一中学校考模拟预测)如图,在三棱柱111ABC A B C -中,1BB ^平面ABC ,D ,E 分别为棱AB ,11B C 的中点,2BC =,AB =114A C =.证明://DE 平面11ACC A ;38.(2023春·高二课时练习)如图,在四面体A BCD -中,AD ^平面BCD ,BC CD ^,2AD =,BD =.M 是AD 的中点,P 是BM 的中点,点Q 在线段AC 上,且3AQ QC =.证明:PQ 平面BCD ;39.(2023·全国·高二专题练习)如图,在四棱锥P ABCD -中,底面ABCD 为直角梯形,其中//AD BC .,3,2,AD AB AD AB BC PA ^===^平面ABCD ,且3PA =,点M 在棱PD 上,点N 为BC 中点.若2DM MP =,证明:直线//MN 平面PAB .40.(2024·天津和平·耀华中学校考二模)如图,四棱锥P ABCD -中,侧面PAD 为等边三角形,线段AD 的中点为O 且PO ^底面ABCD ,112AB BC AD ===,π2BAD ABC ∠==∠,E 是PD 的中点.证明:CE ∥平面PAB ;41.(2024·江苏盐城·高二盐城市大丰区南阳中学校考阶段练习)如图,在三棱锥-P ABC 中,PA ^底面ABC ,90BAC ∠=°.点D ,E ,N 分别为棱PA ,PC ,BC 的中点,M 是线段AD 的中点,2PA AC ==,1AB =.求证://MN 平面BDE ;42.(2024·天津南开·南开中学校考模拟预测)在四棱锥P ABCD -中,PA ^底面ABCD ,且2PA =,四边形ABCD 是直角梯形,且AB AD ^,//BC AD ,2AD AB ==,4BC =,M 为PC 中点,E 在线段BC 上,且1BE =.求证://DM 平面PAB ;43.(2024·高二课时练习)如图所示,在直角梯形ABCP 中,AP BC ∥,AP AB ^,122AB BC AP ===,D 是AP 的中点,,,E F G 分别为,,PC PD CB 的中点,将PCD V 沿CD 折起,使得PD ^平面ABCD ,试用向量方法证明AP 平面EFG .(3)利用向量方法证明面面平行解题策略:(1)由面面平行的判定定理,要证明面面平行,只要转化为证明相应的线面平行、线线平行即可;(2)若能求出平面b a ,的法向量υm ,,则要证明b a //,只需证明υm //.值得注意的是,虽然空间向量的坐标运算比线性运 算更为简单,但法向量的求解有时比较烦琐,有时在 平面内找与直线平行的向量也不直观,因此求解时,需要灵活选择解题方法.44.(2024·高二课时练习)如图,在长方体1111ABCD A B C D -中,点E ,F ,G 分别在棱1A A ,11A B ,11A D 上,1111A E A F A G ===;点P ,Q ,R 分别在棱1CC ,CD ,CB 上,1CP CQ CR ===.求证:平面//EFG 平面PQR .45.(2024·上海普陀·曹杨二中校考模拟预测)如图所示,正四棱柱ABCD ﹣A 1B 1C 1D 1的底面边长1,侧棱长4,AA 1中点为E ,CC 1中点为F .求证:平面BDE ∥平面B 1D 1F ;46.(2023春·高二课时练习)如图所示,平面PAD ^平面ABCD ,四边形ABCD 为正方形,PAD ∆是直角三角形,且2PA AD ==,E ,F ,G 分别是线段PA ,PD ,CD 的中点,求证:平面EFG 平面PBC .47.(23-24高二上·新疆·期末)已知正方体1111ABCD A B C D -的棱长为a ,M ,N ,E ,F 分别是棱11A D ,11A B ,11D C ,11B C 的中点.求证:平面//AMN 平面BDEF .(4)与平行有关的探索性问题解题策略:平行关系中的探究性问题探究点的位置时,可先设出对应点的坐标,然后根据面面平行的判定定理转化为向量共线问题或者利用两个平面的法向量共线,建立与所求点的坐标有关的方程,通过解方程可得点的坐标.48.(2023秋·高二课时练习)如图,已知空间几何体P ABCD -的底面ABCD 是一个直角梯形,其中90BAD ∠=,//AD BC ,BA BC a ==,2AD a =,且PA ^底面ABCD ,PD 与底面成30 角.(1)若8BC PD ×= ,求该几何体的体积;(2)若AE 垂直PD 于E ,证明:BE PD ^;(3)在(2)的条件下,PB 上是否存在点F ,使得//EF BD ,若存在,求出该点的坐标;若不存在,请说明理由.49.(2023·全国·高三专题练习)如图,在斜三棱柱111ABC A B C - 中,已知ABC ∆为正三角形,四边形11ACC A 是菱形,D ,E 分别是AC ,1CC 的中点,平面11ACC A ⊥平面ABC .(1)求证:1A C ^平面BDE ;(2)若160C CA ∠= ,在线段1DB 上是否存在点M ,使得//AM 平面BDE ?若存在,求1DM DB 的值,若不存在,请说明理由.50.(2023·江苏·高二专题练习)如图所示,在直三棱柱111ABC A B C -中,3AC =,4BC =,5AB =,14AA =.(1)求证:1AC BC ^;(2)在AB 上是否存在点D ,使得1//AC 平面1CDB ,若存在,确定D 点位置并说明理由,若不存在,说明理由.51.(2022·高二课时练习)如图,在正方体1111ABCD A B C D -中,O 为底面ABCD 的中心,P 是1DD 的中点.在棱1CC 上是否存在一点Q ,使得平面1//D BQ 平面PAO ?若存在,指出点Q 的位置;若不存在,请说明理由.(1)线线垂直的向量表示:设 u 1,u 2 分别是直线 l 1 , l 2 的方向向量,则l 1⊥l 2⇔u 1⊥u 2⇔u 1·u 2=0.(2)线面垂直的向量表示:设u 是直线 l 的方向向量,n 是平面α的法向量, l ⊄α,则l ⊥α⇔u ∥n ⇔∃λ∈R ,使得u =λn .注:在平面a 内取两个不共线向量,a b ,若0a u b u ×=×= .则l a ^.(3)面面垂直的向量表示:设n 1,n 2 分别是平面α,β的法向量,则α⊥β⇔n 1⊥n 2⇔n 1·n 2=0.2.利用向量法证明空间中的平行、垂直可以通过建立空间直角坐标系,把要证的空间中的平行与垂直问题转化为证明空间向量之间的平行和垂直问题.破解此类题的关键点如下:①合理建系,抓住空间几何体的结构特征,充分利用图形中的垂直关系(或在图形中构造垂直关系)建立空间直角坐标系.②确定坐标,利用题设条件写出相关点的坐标,进而获得相关向量的坐标.③准确运算,验证两向量平行或垂直的条件成立.④得出结论,由运算结果说明原问题得证.题型四 利用空间向量证明垂直问题(一)判断直线、平面的位置关系52.(2021秋·北京·高二校考期中)直线12,l l 的方向向量分别为(1,3,1),(8,2,2)a b =--= ,则( )A .12l l ^B .1l ∥2lC .1l 与2l 相交不平行D .1l 与2l 重合53.(2024·北京·高二校考阶段练习)若直线l 的方向向量为e (2,3,1)=- ,平面a 的法向量为311,,22n æö=--ç÷èø ,则直线l 和平面a 位置关系是( )A .l a ^B .//l a C .l a ÌD .不确定54.【多选】(2024·广东珠海·高二珠海市斗门区第一中学校考期末)已知v 为直线l 的方向向量,12,n n 分别为平面a ,b 的法向量(a ,b 不重合),那么下列说法中正确的有( ).A .12n n a bÛ∥∥ B .12n n a b ^Û^ C .1v n l Û a ∥∥D .1v n l ^Û^ a55.(23-24高二上·浙江·期中)如图,在正方体1111ABCD A B C D -中,不能互相垂直的两条直线是( )A .1AB 和1AC B .1A B 和1CD C .1C D 和1B C D .1A B 和11B C 56.(2024·江苏·高二南师大二附中校联考阶段练习)下列利用方向向量、法向量判断线、面位置关系的结论中,正确的是( )A .两条不重合直线12,l l 的方向向量分别是()()2,3,1,2,3,1a b =-=-- ,则12l l ∥B .直线l 的方向向量()112a ,,=- ,平面a 的法向量是()6,4,1u =- ,则l a^C .两个不同的平面,a b 的法向量分别是()()2,2,1,3,4,2u v =-=- ,则a b^D .直线l 的方向向量()0,3,0a = ,平面a 的法向量是()0,5,0u =- ,则l a∥57.【多选】(2024·高二课时练习)下列命题是真命题的有( )A .A ,B ,M ,N 是空间四点,若,,BA BM BN 不能构成空间的一个基底,那么A ,B ,M ,N 共面B .直线l 的方向向量为()1,1,2a =- ,直线m 的方向向量12,1,2b æö=-ç÷èør 为,则l 与m 垂直C .直线l 的方向向量为()1,1,2a =- ,平面α的法向量为10,1,2n æö=ç÷èø ,则l ⊥αD .平面α经过三点()()()1,0,1,0,1,0,1,2,0A B C --,()1,,=r n u t 是平面α的法向量,则u +t =1(二)已知直线、平面的垂直关系求参数58.(2023·全国·高三专题练习)设直线12,l l 的方向向量分别为(1,2,2),(2,3,)a b m =-=- ,若12l l ^,则实数m等于()A .1B .2C .3D .459.(2024·北京海淀·高二中央民族大学附属中学校考开学考试)已知平面a 的法向量为()1,2,0n = ,直线l的方向向量为v ,则下列选项中使得l a ^的是( )A .()2,1,0v =- B .()2,1,0v = C .()2,4,0v = D .()1,2,0v =- 60.(江苏省扬州市2023-2024学年高二下学期6月期末数学试题)已知直线l 的方向向量为()2,1,2e =- ,平面a 的法向量为()()2,,,n a b a b a b =--+ÎR .若l a ^,则3a b +的值为( )A .5-B .2-C .1D .461.(2024·高二课时练习)已知()()3,,,R u a b a b a b =-+Î 是直线l 的方向向量,()1,2,4n =r 是平面a 的法向量.若l a ^,则ab =______.62.(2024·广东珠海·高二珠海市实验中学校考阶段练习)若直线l 方向向量为()2,1,m ,平面a 的法向量为11,,22æöç÷èø,且l a ^,则m 为( )A .1B .2C .4D .54-63.(2023秋·北京石景山·高二统考期末)已知(2,,)(,)=-+-Î m a b a b a b R 是直线l 的方向向量,(2,1,2)=- n 是平面a 的法向量.若l a ^,则下列选项正确的是( )A .340a b --=B .350a b --=C .13,22a b =-=D .13,22a b ==-64.(2024·江苏盐城·高二江苏省响水中学校考阶段练习)如图,在正三棱锥D -ABC 中,AB =2DA =,O 为底面ABC 的中心,点P 在线段DO 上,且PO DO l =uuu r uuu r ,若PA ^平面PBC ,则实数l =( )A .12B .13-C D 65.(2023春·高二课时练习)如图,在棱长为2的正方体1111ABCD A B C D -中,,E F 分别为棱11B C ,1BB 的中点,G 为面对角线1A D 上的一点,且1(01)DG DA l l =££ ,若1A C ^平面EFG ,则l =( )A .14B .13C D .1266.(2023·江苏·高二专题练习)如图,在四棱锥E ABCD -中,平面ADE ^平面ABCD ,O ,M 分别为AD ,DE 的中点,四边形BCDO 是边长为1的正方形,AE DE =,AE DE ^.点N 在直线AD 上,若平面BMN ^平面ABE ,则线段AN 的长为_________.(三)证明直线、平面的垂直问题(1)利用向量方法证明线线垂直解题策略:利用空间向量证明两直线垂直的常用方法及步骤(1)基向量法:①选取三个不共面的已知向量(通常是它们的模及其两两夹角为已知)为空间的一个基底;②把两直线的方向向量用基底表示;③利用向量的数量积运算,计算出两直线的方向向量的数量积为0;④由方向向量垂直得到两直线垂直.(2)坐标法:①根据已知条件和图形特征,建立适当的空间直角坐标系,正确地写出各点的坐标;②根据所求出点的坐标求出两直线方向向量的坐标;③计算两直线方向向量的数量积为0;④由方向向量垂直得到两直线垂直.67.【多选】(2023春·江苏盐城·高二盐城中学校考期中)点P 在正方体1111ABCD A B C D -的侧面11CDD C 及其边界上运动,并保持1BP A C ^,若正方体边长为,则1A P 的可能取值是( )A B C D 68.(2023秋·高二课时练习)如图,在棱长为1的正方体1111ABCD A B C D -中,,E F 分别是1DD BD 、的中点,建立适当的空间直角坐标系,证明:1EF B C ^.69.(2023·江苏·高二专题练习)如图,在直棱柱111ABC A B C -中,12AA AB AC ===,π2BAC ∠=,,,D E F 分别是11A B ,1CC ,BC 的中点.求证:AE DF ^;70.(2023·四川雅安·统考模拟预测)已知下面给出的四个图都是各棱长均相等的直三棱柱,A 为一个顶点,D ,E ,F 分别是所在棱的中点.则满足直线AD EF ^的图形个数是( )A .1B .2C .3D .4(2)利用向量方法证明线面垂直解题策略:向量法证明线面垂直的两种思路(1)根据线面垂直的判定定理证明:求出直线的方向向量,在平面内找两条相交直线,并分别求出表示它们的方向向量,计算两组向量的数量积为0,得到该直线与平面内的两条相交直线都垂直.(2)法向量法:求出直线的方向向量与平面的法向量,用向量法判断直线的方向向量与平面的法向量平行.71.(2024·高二课时练习)如图,在三棱锥P -ABC 中,AB =AC ,D 为BC 的中点,PO ⊥平面ABC ,垂足O 落在线段AD 上.已知BC =8,PO =4,AO =3,OD =2.(1)证明:AP ⊥BC ;(2)若点M 是线段AP 上一点,且AM =3,试证明AM ⊥平面BMC .72.(2023春·高二课时练习)如图所示,正三棱柱111ABC A B C -的所有棱长都为2,D 为1CC 的中点.求证:1AB ^平面1A BD .73.(2024·安徽合肥·合肥市第八中学校考模拟预测)如图,在三棱柱111ABC A B C -中,底面ABC V 是等腰三角形,且π,26ACB AB AC ∠===,又侧棱1BB =面对角线116A C A B ==,点,D F 分别是棱11,A B CB 的中点,11344AE AC AC =+ .证明:1B E ^平面AEF ;74.(2024·河北唐山·唐山市第十中学校考模拟预测)如图,在四棱台1111ABCD A B C D -中,平面11ADD A ^平面ABCD ,底面ABCD 为正方形,2AD =,11111DD D A A A ===.求证:1AD ^平面11CDD C .(3)利用向量方法证明面面垂直解题策略:证明面面垂直的两种方法(1)常规法:利用面面垂直的判定定理转化为线面垂直、线线垂直去证明.(2)向量法:证明两个平面的法向量互相垂直.75.(2024秋·广东深圳·高二深圳外国语学校校考期末)已知:在四棱锥P ABCD -中,底面ABCD 为正方形,侧棱PA ^平面ABCD ,点M 为PD 中点,1PA AD ==.求证:平面MAC ^平面PCD ;76.(2024·高二课时练习)如图所示,△ABC 是一个正三角形,EC ⊥平面ABC ,BD ∥CE ,且CE =CA =2BD .求证:平面DEA ⊥平面ECA .77.(2024·全国·高二专题练习)如图,在四棱锥P ABCD -中,PA ^平面ABCD ,底面ABCD 是梯形,点E 在BC 上,,,22248AD BC AB AD BC AB AD AP BE ^=====∥.求证:平面PDE ^平面PAC ;(4)与垂直有关的探索性问题解题策略:解决立体几何中探索性问题的基本方法(1)通常假设题中的数学对象存在(或结论成立),然后在这个前提下进行逻辑推理.(2)探索性问题的关键是设点:①空间中的点可设为(x ,y ,z );②坐标平面内的点其中一个坐标为0,如xOy 面上的点为(x ,y,0);③坐标轴上的点两个坐标为0,如z 轴上的点为(0,0,z );④直线(线段)AB 上的点P ,可设为AP → =λAB →,表示出点P 的坐标,或直接利用向量运算.78.(2024·江苏连云港·高二统考期中)如图,在多面体ABCDE 中,ABC V ,BCD △,CDE V 都是边长为2的等边三角形,平面ABC ^平面BCD ,平面CDE ^平面BCD .(1)判断A ,B ,D ,E 四点是否共面,并说明理由;(2)在ABC V 中,试在边BC 的中线上确定一点Q ,使得DQ ^平面BCE .79.(2023春·广东汕尾·高二陆丰市龙山中学校考阶段练习)如图,在四棱锥P ABCD -中,PA ^平面ABCD ,正方形ABCD 的边长为2,E 是PA 的中点.(1)求证://PC 平面BDE .(2)若2PA =,线段PC 上是否存在一点F ,使AF ^平面BDE ?若存在,求出PF 的长度;若不存在,请说明理由.80.(2023春·高二课时练习)如图1,在边长为2的菱形ABCD 中,60,BAD DE AB ∠=^ 于点E ,将ADE △沿DE 折起到1A DE △的位置,使1A D BE ^,如图2.(1)求证:1A E ^平面BCDE ;(2)在线段BD 上是否存在点P ,使平面1A EP ^平面1A BD ?若存在,求BP BD 的值;若不存在,说明理由.。

高中数学平面的法向量与平面的向量表示题库

高中数学平面的法向量与平面的向量表示题库

3.2.2 平面的法向量与平面的向量表示学习目标 1.理解平面的法向量的概念,会求平面的法向量.2.会用平面的法向量证明平面与平面平行、垂直.3.了解三垂线定理及其逆定理.知识点一 平面的法向量已知平面α,如果向量n 的基线与平面α垂直,则向量n 叫做平面α的法向量或说向量n 与平面α正交.知识点二 平面的向量表示设A 是空间任一点,n 为空间内任一非零向量,则适合条件AM →·n =0的点M 的集合构成的图形是过空间内一点A 并且与n 垂直的平面.这个式子称为一个平面的向量表示式. 知识点三 两平面平行或垂直的判定及三垂线定理 1.两平面平行或垂直的判定方法设n 1,n 2分别是平面α,β的法向量,则容易得到 α∥β或α与β重合⇔n 1∥n 2; α⊥β⇔n 1⊥n 2⇔n 1·n 2=0. 2.三垂线定理如果在平面内的一条直线与平面的一条斜线在这个平面内的射影垂直,则它也和这条斜线垂直.1.已知直线垂直于α,向量a 平行直线l ,则a 是平面α的法向量.( × )2.若向量n 1,n 2为平面的法向量,则以这两个向量为方向向量的直线一定平行.( × ) 3.若平面外的一条直线的方向向量与平面的法向量垂直,则该直线与平面平行.( √ ) 4.直线的方向向量与平面的法向量的方向相同或相反时,直线与平面垂直.( √ )题型一 求平面的法向量例1 如图,在四棱锥P -ABCD 中,底面ABCD 为矩形,P A ⊥平面ABCD ,E 为PD 的中点.AB =AP =1,AD =3,试建立恰当的空间直角坐标系,求平面ACE 的一个法向量.解 因为P A ⊥平面ABCD ,底面ABCD 为矩形, 所以AB ,AD ,AP 两两垂直.如图,以A 为坐标原点,AB 所在直线为x 轴建立空间直角坐标系Axyz ,则D (0,3,0),E ⎝⎛⎭⎫0,32,12,B (1,0,0),C (1,3,0), 于是AE →=⎝⎛⎭⎫0,32,12,AC →=(1,3,0).设n =(x ,y ,z )为平面ACE 的法向量, 则⎩⎪⎨⎪⎧n ·AC →=0,n ·AE →=0,即⎩⎪⎨⎪⎧x +3y =0,32y +12z =0,所以⎩⎪⎨⎪⎧x =-3y ,z =-3y ,令y =-1,则x =z = 3.所以平面ACE 的法向量为n =(3,-1,3). 引申探究若本例条件不变,试求直线PC 的一个方向向量和平面PCD 的一个法向量. 解 如图所示,建立空间直角坐标系Axyz ,则P (0,0,1),C (1,3,0),所以PC →=(1,3,-1)即为直线PC 的一个方向向量.设平面PCD 的法向量为n =(x ,y ,z ). 因为D (0,3,0),所以PD →=(0,3,-1). 由⎩⎪⎨⎪⎧n ·PC →=0,n ·PD →=0,即⎩⎪⎨⎪⎧x +3y -z =0,3y -z =0,所以⎩⎪⎨⎪⎧x =0,z =3y ,令y =1,则z = 3.所以平面PCD 的法向量为n =(0,1,3). 反思感悟 利用待定系数法求平面法向量的步骤 (1)设向量:设平面的法向量为n =(x ,y ,z ). (2)选向量:在平面内选取两个不共线向量AB →,AC →. (3)列方程组:由⎩⎪⎨⎪⎧ n ·AB →=0,n ·AC →=0列出方程组.(4)解方程组:⎩⎪⎨⎪⎧n ·AB →=0,n ·AC →=0.(5)赋非零值:取其中一个为非零值(常取±1). (6)得结论:得到平面的一个法向量.跟踪训练1 如图,在四棱锥P -ABCD 中,平面P AB ⊥平面ABCD ,△P AB 是边长为1的正三角形,ABCD 是菱形.∠ABC =60°,E 是PC 的中点,F 是AB 的中点,试建立恰当的空间直角坐标系,求平面DEF 的法向量.解 连接PF ,CF ,因为P A =PB ,F 为AB 的中点,所以PF ⊥AB , 又因为平面P AB ⊥平面ABCD ,平面P AB ∩平面ABCD =AB ,PF ⊂平面P AB . 所以PF ⊥平面ABCD ,因为AB =BC ,∠ABC =60°,所以△ABC 是等边三角形,所以CF ⊥AB .以F 为坐标原点,建立空间直角坐标系Fxyz (如图所示). 由题意得F (0,0,0),P ⎝⎛⎭⎫0,0,32,D ⎝⎛⎭⎫-1,32,0,C ⎝⎛⎭⎫0,32,0, E ⎝⎛⎭⎫0,34,34. 所以FE →=⎝⎛⎭⎫0,34,34,FD →=⎝⎛⎭⎫-1,32,0.设平面DEF 的法向量为m =(x ,y ,z ). 则⎩⎪⎨⎪⎧m ·FE →=0,m ·FD →=0,即⎩⎨⎧34y +34z =0,-x +32y =0.所以⎩⎪⎨⎪⎧z =-y ,x =32y ,令y =2,则x =3,z =-2.所以平面DEF 的法向量为m =(3,2,-2). 题型二 利用空间向量证明平行问题例2 已知正方体ABCDA 1B 1C 1D 1的棱长为2,E ,F 分别是BB 1,DD 1的中点,求证: (1)FC 1∥平面ADE ; (2)平面ADE ∥平面B 1C 1F .证明 (1)建立如图所示的空间直角坐标系Dxyz ,则有D (0,0,0),A (2,0,0),C (0,2,0),C 1(0,2,2),E (2,2,1),F (0,0,1),B 1(2,2,2),所以FC 1→=(0,2,1),DA →=(2,0,0),AE →=(0,2,1).设n 1=(x 1,y 1,z 1)是平面ADE 的法向量, 则n 1⊥DA →,n 1⊥AE →,即⎩⎪⎨⎪⎧n 1·DA →=2x 1=0,n 1·AE →=2y 1+z 1=0,得⎩⎪⎨⎪⎧x 1=0,z 1=-2y 1,令z 1=2,则y 1=-1,所以n 1=(0,-1,2). 因为FC 1→·n 1=-2+2=0,所以FC 1→⊥n 1. 又因为FC 1⊄平面ADE ,所以FC 1∥平面ADE .(2)因为C 1B 1—→=(2,0,0),设n 2=(x 2,y 2,z 2)是平面B 1C 1F 的法向量.由n 2⊥FC 1→,n 2⊥C 1B 1—→, 得⎩⎪⎨⎪⎧n 2·FC 1→=2y 2+z 2=0,n 2·C 1B 1—→=2x 2=0,得⎩⎪⎨⎪⎧x 2=0,z 2=-2y 2.令z 2=2,得y 2=-1,所以n 2=(0,-1,2), 因为n 1=n 2,所以平面ADE ∥平面B 1C 1F .反思感悟 利用向量证明平行问题,可以先建立空间直角坐标系,求出直线的方向向量和平面的法向量,然后根据向量之间的关系证明平行问题.跟踪训练2 如图,在四棱锥P-ABCD 中,P A ⊥平面ABCD ,PB 与底面所成的角为45°,底面ABCD 为直角梯形,∠ABC =∠BAD =90°,P A =BC =12AD =1,问在棱PD 上是否存在一点E ,使CE ∥平面P AB ?若存在,求出E 点的位置;若不存在,请说明理由.解 分别以AB ,AD ,AP 所在直线为x 轴,y 轴,z 轴建立空间直角坐标系Axyz ,∴P (0,0,1),C (1,1,0),D (0,2,0),设E (0,y ,z ),则PE →=(0,y ,z -1), PD →=(0,2,-1), ∵PE →∥PD →,∴(-1)×y -2(z -1)=0,①∵AD →=(0,2,0)是平面P AB 的法向量, 又CE →=(-1,y -1,z ),CE ∥平面P AB , ∴CE →⊥AD →,∴(-1,y -1,z )·(0,2,0)=0. ∴y =1,代入①得z =12,∴E 是PD 的中点,∴存在E 点,当点E 为PD 的中点时,CE ∥平面P AB . 题型三 利用空间向量证明垂直问题例3 三棱锥被平行于底面ABC 的平面所截得的几何体如图所示,截面为A 1B 1C 1,∠BAC =90°,A 1A ⊥平面ABC ,A 1A =3,AB =AC =2A 1C 1=2,D 为BC 的中点.证明:平面A 1AD ⊥平面BCC 1B 1.证明 方法一 如图,以点A 为坐标原点,AB ,AC ,AA 1所在直线分别为x 轴,y 轴,z 轴,建立空间直角坐标系Axyz ,则A (0,0,0),B (2,0,0),C (0,2,0),A 1(0,0,3),C 1(0,1,3). ∵D 为BC 的中点,∴D 点坐标为(1,1,0), ∴AD →=(1,1,0),AA 1→=(0,0,3),BC →=(-2,2,0), ∴AD →·BC →=1×(-2)+1×2+0×0=0,AA 1→·BC →=0×(-2)+0×2+3×0=0, ∴AD →⊥BC →,AA 1→⊥BC →, ∴BC ⊥AD ,BC ⊥AA 1.又A 1A ∩AD =A ,∴BC ⊥平面A 1AD .又BC ⊂平面BCC 1B 1,∴平面A 1AD ⊥平面BCC 1B 1. 方法二 同方法一建系后,得AA 1→=(0,0,3), AD →=(1,1,0),BC →=(-2,2,0),CC 1→=(0,-1,3). 设平面A 1AD 的法向量为n 1=(x 1,y 1,z 1), 平面BCC 1B 1的法向量为n 2=(x 2,y 2,z 2). 由⎩⎪⎨⎪⎧n 1·AA 1→=0,n 1·AD →=0,得⎩⎪⎨⎪⎧3z 1=0,x 1+y 1=0,令y 1=-1,则x 1=1,z 1=0, ∴n 1=(1,-1,0).由⎩⎪⎨⎪⎧n 2·BC →=0,n 2·CC 1→=0,得⎩⎪⎨⎪⎧-2x 2+2y 2=0,-y 2+3z 2=0,令y 2=1,则x 2=1,z 2=33, ∴n 2=⎝⎛⎭⎫1,1,33. ∵n 1·n 2=1-1+0=0,∴n 1⊥n 2, ∴平面A 1AD ⊥平面BCC 1B 1.反思感悟 利用空间向量证明面面垂直通常可以有两个途径,一是利用两个平面垂直的判定定理将面面垂直问题转化为线面垂直进而转化为线线垂直;二是直接求解两个平面的法向量,证明两个法向量垂直,从而得到两个平面垂直.跟踪训练3 在正方体ABCD -A 1B 1C 1D 1中,E ,F 分别是BB 1,CD 的中点. (1)求证:平面AED ⊥平面A 1FD 1;(2)在直线AE 上求一点M ,使得A 1M ⊥平面AED . 考点 向量法求解平面与平面的位置关系 题点 向量法解决面面垂直(1)证明 以点D 为坐标原点,分别以DA ,DC ,DD 1所在直线为x 轴,y 轴,z 轴建立如图所示的空间直角坐标系Dxyz .设正方体的棱长为2,则D (0,0,0),A (2,0,0),E (2,2,1),F (0,1,0),A 1(2,0,2),D 1(0,0,2), ∴DA →=D 1A 1—→=(2,0,0),DE →=(2,2,1),D 1F →=(0,1,-2). 设平面AED 的法向量为n 1=(x 1,y 1,z 1). 由⎩⎪⎨⎪⎧n 1·DA →=0,n 1·DE →=0,得⎩⎪⎨⎪⎧2x 1=0,2x 1+2y 1+z 1=0.令y 1=1,得n 1=(0,1,-2).同理,平面A 1FD 1的法向量为n 2=(0,2,1). ∵n 1·n 2=(0,1,-2)·(0,2,1)=0,∴n 1⊥n 2, ∴平面AED ⊥平面A 1FD 1. (2)解 由于点M 在直线AE 上, 因此可设AM →=λAE →=λ(0,2,1)=(0,2λ,λ), 则M (2,2λ,λ),∴A 1M →=(0,2λ,λ-2). 要使A 1M ⊥平面AED ,只需A 1M →∥n 1, 即2λ1=λ-2-2,解得λ=25.故当AM =25AE 时,A 1M ⊥平面AED .利用向量求解空间中的探索性问题典例 在正方体ABCD -A 1B 1C 1D 1中,E 是棱BC 的中点,试在棱CC 1上求一点P ,使得平面A 1B 1P ⊥平面C 1DE .考点 向量法求解平面与平面的位置关系 题点 向量法解决面面垂直解 如图,以D 为原点,DA ,DC ,DD 1所在直线分别为x 轴、y 轴、z 轴建立空间直角坐标系.设正方体的棱长为1,P (0,1,a ),则A 1(1,0,1),B 1(1,1,1),E ⎝⎛⎭⎫12,1,0,C 1(0,1,1), A 1B 1—→=(0,1,0),A 1P →=(-1,1,a -1),DE →=⎝⎛⎭⎫12,1,0,DC 1→=(0,1,1). 设平面A 1B 1P 的一个法向量为n 1=(x 1,y 1,z 1), 则⎩⎪⎨⎪⎧n 1·A 1B 1—→=0,n 1·A 1P →=0,即⎩⎪⎨⎪⎧y 1=0,-x 1+y 1+(a -1)z 1=0,∴x 1=(a -1)z 1,y 1=0. 令z 1=1,得x 1=a -1, ∴n 1=(a -1,0,1).设平面C 1DE 的一个法向量为n 2=(x 2,y 2,z 2), 则⎩⎪⎨⎪⎧ n 2·DE →=0,n 2·DC 1→=0,即⎩⎪⎨⎪⎧12x 2+y 2=0,y 2+z 2=0,∴⎩⎪⎨⎪⎧x 2=-2y 2,z 2=-y 2.令y 2=1,得x 2=-2,z 2=-1, ∴n 2=(-2,1,-1).∵平面A 1B 1P ⊥平面C 1DE ,∴n 1·n 2=0,即-2(a -1)-1=0,得a =12.∴当P 为CC 1的中点时,平面A 1B 1P ⊥平面C 1DE .[素养评析] 立体几何中探索性、存在性问题的思维层次较高,分析时应特别注意.本例由题意设出探求点的坐标,利用两平面垂直,法向量的位置关系及严密的逻辑推理,从而得出点P 的坐标.1.若直线l ∥α,且l 的方向向量为(2,m,1),平面α的法向量为⎝⎛⎭⎫1,12,2,则m 等于( ) A .-4 B .-6 C .-8 D .8 答案 C解析 ∵l ∥α,平面α的法向量为⎝⎛⎭⎫1,12,2, ∴(2,m,1)·⎝⎛⎭⎫1,12,2=0, 即2+12m +2=0,∴m =-8.2.若两个不同平面α,β的法向量分别为u =(1,2,-1),v =(-3,-6,3),则( ) A .α∥βB .α⊥βC .α,β相交但不垂直D .以上均不正确答案 A解析 ∵v =-3u ,∴v ∥u .故α∥β.3.若a =(1,2,3)是平面γ的一个法向量,则下列向量中能作为平面γ的法向量的是( ) A .(0,1,2) B .(3,6,9) C .(-1,-2,3) D .(3,6,8) 答案 B解析 向量(1,2,3)与向量(3,6,9)共线.4.已知平面α的法向量是(2,3,-1),平面β的法向量是(4,λ,-2),若α∥β,则λ的值是( )A .-103B .6C .-6 D.103答案 B解析 ∵α∥β,∴α的法向量与β的法向量也互相平行.∴24=3λ=-1-2.∴λ=6. 5.已知平面α与平面β垂直,若平面α与平面β的法向量分别为μ=(-1,0,5),v =(t,5,1),则t 的值为________.答案 5解析 ∵平面α与平面β垂直,∴平面α的法向量μ与平面β的法向量v 互相垂直,∴μ·v =0,即-1×t +0×5+5×1=0,解得t =5.1.用法向量来解决平面与平面的关系问题,思路清楚,不必考虑图形的位置关系,只需通过向量运算,就可得到要证明的结果.2.利用三垂线定理证明线线垂直,需先找到平面的一条垂线,有了垂线,才能作出斜线的射影,同时要注意定理中的“平面内的一条直线”这一条件,忽视这一条件,就会产生错误结果.一、选择题1.直线l 的方向向量s =(-1,1,1),平面α的一个法向量为n =(2,x 2+x ,-x ),若直线l ∥α,则x 的值为( )A .-2B .- 2 C. 2 D .±2答案 D解析 由题意知,-1×2+1×(x 2+x )+1×(-x )=0,解得x =±2.2.若平面α,β的法向量分别为u =(2,-3,5),v =(-3,1,-4),则( )A .α∥βB .α⊥βC .α,β相交但不垂直D .以上均不正确答案 C3.已知平面α内有一个点A (2,-1,2),α的一个法向量为n =(3,1,2),则下列点P 中,在平面α内的是( )A .(1,-1,1)B.⎝⎛⎭⎫1,3,32C.⎝⎛⎭⎫1,-3,32 D.⎝⎛⎭⎫-1,3,-32 答案 B解析 对于A ,P A →=(1,0,1),则P A →·n =(1,0,1)·(3,1,2)=5≠0,故排除A ;同理可排除C ,D ;对于B ,P A →=⎝⎛⎭⎫1,-4,12,则P A →·n =⎝⎛⎭⎫1,-4,12·(3,1,2)=0. 4.若n 1,n 2分别是平面α,β的法向量,且α⊥β,n 1=(1,2,x ),n 2=(x ,x +1,x ),则x 的值为( )A .1或2B .-1或-2C .-1D .-2 答案 B解析 由题意可知,n 1·n 2=(1,2,x )·(x ,x +1,x )=x +2x +2+x 2=x 2+3x +2=0,解得x =-1或x =-2.5.设直线l 的方向向量为a ,平面α的法向量为b ,若a ·b =0,则( )A .l ∥αB .l ⊂αC .l ⊥αD .l ⊂α或l ∥α 答案 D解析 当a ·b =0时,l ⊂α或l ∥α.6.已知平面α内两向量a =(1,1,1),b =(0,2,-1)且c =m a +n b +(4,-4,1).若c 为平面α的法向量,则m ,n 的值分别为( )A .-1,2B .1,-2C .1,2D .-1,-2答案 A解析 c =m a +n b +(4,-4,1)=(m ,m ,m )+(0,2n ,-n )+(4,-4,1)=(m +4,m +2n -4,m -n +1), 由c 为平面α的法向量,得⎩⎪⎨⎪⎧ c ·a =0,c ·b =0,得⎩⎪⎨⎪⎧m =-1,n =2.7.两平面α,β的法向量分别为μ=(3,-1,z ),v =(-2,-y ,1),若α⊥β,则y +z 的值是( )A .-3B .6C .-6D .-12答案 B解析 α⊥β⇒μ·v =0⇒-6+y +z =0,即y +z =6.8.已知A (1,0,0),B (0,1,0),C (0,0,1),则平面ABC 的一个单位法向量是( )A.⎝⎛⎭⎫33,33,-33 B.⎝⎛⎭⎫33,-33,33 C.⎝⎛⎭⎫-33,33,33 D.⎝⎛⎭⎫-33,-33,-33 答案 D解析 AB →=(-1,1,0),AC →=(-1,0,1).设平面ABC 的一个法向量为n =(x ,y ,z ).∵⎩⎪⎨⎪⎧ AB →·n =0,AC →·n =0, ∴⎩⎪⎨⎪⎧-x +y =0,-x +z =0. 令x =1,则y =1,z =1,∴n =(1,1,1),单位法向量为⎝⎛⎭⎫33,33,33或⎝⎛⎭⎫-33,-33,-33. 二、填空题9.已知A (4,1,3),B (2,3,1),C (3,7,-5),点P (x ,-1,3)在平面ABC 内,则x 的值为________. 答案 11解析 ∵点P 在平面ABC 内,∴存在实数k 1,k 2,使AP →=k 1AB →+k 2AC →,即(x -4,-2,0)=k 1(-2,2,-2)+k 2(-1,6,-8), ∴⎩⎪⎨⎪⎧ 2k 1+6k 2=-2,k 1+4k 2=0,解得⎩⎪⎨⎪⎧k 1=-4,k 2=1.∴x -4=-2k 1-k 2=8-1=7,即x =11.10.设平面α的法向量为m =(1,2,-2),平面β的法向量为n =(-2,-4,k ),若α∥β,则k =________.答案 4解析 由α∥β,得1-2=2-4=-2k (kD =/0),解得k =4. 11.在三棱锥S -ABC 中,∠SAB =∠SAC =∠ACB =90°,AC =2,BC =13,SB =29,则直线SC 与BC 是否垂直________.(填“是”“否”)答案 是解析 如图,以A 为坐标原点,AC ,AS 所在直线分别为y 轴,z 轴建立空间直角坐标系Axyz ,则由AC =2,BC =13,SB =29,得B (-13,2,0),S (0,0,23),C (0,2,0),SC →=(0,2,-23),CB →=(-13,0,0).因为SC →·CB →=0,所以SC ⊥BC .三、解答题12.已知平面α经过点A (1,2,3),B (2,0,-1),C (3,-2,0),试求平面α的一个法向量. 解 ∵A (1,2,3),B (2,0,-1),C (3,-2,0),∴AB →=(1,-2,-4),AC →=(2,-4,-3).设平面α的法向量为n =(x ,y ,z ),依题意有⎩⎪⎨⎪⎧ n ·AC →=0,n ·AB →=0,即⎩⎪⎨⎪⎧2x -4y -3z =0,x -2y -4z =0, 解得⎩⎪⎨⎪⎧z =0,x =2y ,令y =1,则x =2, ∴平面α的一个法向量为n =(2,1,0).13.如图,在四棱锥P -ABCD 中,P A ⊥底面ABCD ,AB ⊥AD ,∠ABC =60°,P A =AB =BC ,AD =233AB ,E 是PC 的中点.求证:PD ⊥平面ABE .证明 ∵P A ⊥底面ABCD ,AB ⊥AD ,∴AB ,AD ,AP 两两垂直,建立如图所示的空间直角坐标系Axyz ,设P A =AB =BC =1,则P (0,0,1),A (0,0,0),B (1,0,0),D ⎝⎛⎭⎫0,233,0. ∵∠ABC =60°,∴△ABC 为正三角形.∴C ⎝⎛⎭⎫12,32,0,E ⎝⎛⎭⎫14,34,12. ∴AB →=(1,0,0),AE →=⎝⎛⎭⎫14,34,12, ∴设平面ABE 的法向量为n =(x ,y ,z ),则⎩⎪⎨⎪⎧ n ·AB →=0,n ·AE →=0,即⎩⎪⎨⎪⎧ x =0,14x +34y +12z =0,令y =2,则z =-3,∴n =(0,2,-3).∵PD →=⎝⎛⎭⎫0,233,-1, 显然PD →=33n ,∴PD →∥n ,∴PD →⊥平面ABE ,即PD ⊥平面ABE .14.如图所示,△ABC 是一个正三角形,EC ⊥平面ABC ,BD ∥CE ,且CE =CA =2BD ,M 是EA 的中点.求证:平面DEA ⊥平面ECA .证明 建立如图所示的空间直角坐标系Cxyz ,不妨设CA =2,则CE =2,BD =1,C (0,0,0),A (3,1,0),B (0,2,0),E (0,0,2),D (0,2,1).所以EA →=(3,1,-2),CE →=(0,0,2),ED →=(0,2,-1).分别设平面CEA 与平面DEA 的法向量为n 1=(x 1,y 1,z 1),n 2=(x 2,y 2,z 2),则⎩⎪⎨⎪⎧n 1·EA →=0,n 1·CE →=0, 即⎩⎪⎨⎪⎧3x 1+y 1-2z 1=0,2z 1=0.解得⎩⎪⎨⎪⎧ y 1=-3x 1,z 1=0.⎩⎪⎨⎪⎧ n 2·EA →=0,n 2·ED →=0, 即⎩⎪⎨⎪⎧ 3x 2+y 2-2z 2=0,2y 2-z 2=0.解得⎩⎪⎨⎪⎧x 2=3y 2,z 2=2y 2.不妨取n 1=(1,-3,0),n 2=(3,1,2),因为n 1·n 2=0,所以两个法向量相互垂直.所以平面DEA ⊥平面ECA .15.如图,已知ABCD -A 1B 1C 1D 1是棱长为3的正方体,点E 在AA 1上,点F 在CC 1上,且AE =FC 1=1.(1)求证:E ,B ,F ,D 1四点共面;(2)若点G 在BC 上,BG =23,点M 在BB 1上,GM ⊥BF ,垂足为H ,求证:ME ⊥平面BCC 1B 1. 考点 向量法求解直线与平面的位置关系题点 向量法解决线面垂直证明 (1)以点B 为坐标原点,BA ,BC ,BB 1所在直线分别为x 轴,y 轴,z 轴,建立如图所示的空间直角坐标系Bxyz ,则BE →=(3,0,1),BF →=(0,3,2),BD 1→=(3,3,3),∴BD 1→=BE →+BF →,故BD 1→,BE →,BF →共面.又它们有公共点B ,∴E ,B ,F ,D 1四点共面.(2)设M (0,0,z ),则GM →=⎝⎛⎭⎫0,-23,z , 而BF →=(0,3,2),由题设得GM →·BF →=-23·3+z ·2=0,得z =1. ∵M (0,0,1),E (3,0,1),∴ME →=(3,0,0),又BB 1→=(0,0,3),BC →=(0,3,0),∴ME →·BB 1→=0,ME →·BC →=0,从而ME⊥BB1,ME⊥BC. 又BB1∩BC=B,故ME⊥平面BCC1B1.。

法向量的题目

法向量的题目

1、已知平面α内有一个三角形ABC,其顶点A, B, C的坐标分别为(1,2,0), (2,3,1), (3,4,3),求平面α的一个法向量n可以是:A. (1,1,-1)B. (1,-1,1)C. (-1,1,1)D. (1,1,1)(答案:C)2、设平面π通过三点A(1,0,-1), B(0,1,0), C(-1,2,0),则平面π的一个法向量是:A. (1,1,1)B. (1,-1,-1)C. (-1,1,-1)D. (1,-2,1)(答案:A)3、给定平面方程2x - y + 3z = 6,则该平面的一个法向量为:A. (2,-1,3)B. (2,1,-3)C. (-2,1,3)D. (2,1,3)(答案:D)4、若直线l的方向向量为(1,2,-3),且直线l在平面α内,平面α内另有一点P(1,-1,2),则平面α内不可能与直线l垂直的向量是:A. (-6,3,2)B. (3,-6,-2)C. (2,-1,1)D. (-1,2,3)(答案:C)5、已知平面β由点A(1,2,3), B(4,5,6), C(7,8,9)确定,则下列向量中,不可能是平面β的法向量的是:A. (-1,-1,-1)B. (1,1,1)C. (1,-2,1)D. (-1,1,-1)(答案:C)6、设平面γ通过原点及两点M(1,2,3), N(4,5,6),则平面γ的一个法向量可以是:A. (1,1,1)B. (1,-1,1)C. (-1,1,1)D. (1,1,-1)(答案:A)7、已知平面δ的法向量为n=(a,b,c),且向量m=(1,2,3)在平面δ上,若n与m的点积为4,则下列哪组(a,b,c)可能是n的坐标?A. (1,1,1)B. (-1,-1,-1)C. (1,-1,1)D. (-1,2,-1)(答案:D)8、给定三个点A(1,2,3), B(4,5,6), C(7,8,10),若平面ε经过这三点,则下列向量中哪一个不可能是平面ε的法向量?A. (1,-2,1)B. (-1,1,-1)C. (1,1,-1)D. (3,-3,3)(答案:A)。

法向量及平行关系

法向量及平行关系
一、复习:直线的方向向量
空间中任意一条直线 l 的位置可以由 l 上一 个定点 A 以及一个定方向确定. 注意:L的方向向
l
a
B A
和直线L上的向量 e 做直线l的方向向量。
量是非零向量; 而且有无数多个。 平行的向量 叫
确定一条直线需要两个要素:
e

定点A


定位置
定方向 定位置
② 方向向量 a
巩固性训练1
问题:如何求平面的法向量?
(1)设出平面的法向量为 n ( x, y, z)
(2)找出(求出)平面内的 两个不共线的 向量的坐标 a (a1 , b1 , c1 ), b (a2 , b2 , c2 )平面的法向
(3)根据法向量的定义建立关于x , y , z的 n a 0 a1 x b1 y c1 z 0 方程组 n b 0 a2 x b2 y c2 z 0
l 给定一点A和一个向量 n ,那么过点A, 以向量 n 为法向量的平面是完全确定的.
n
A
P

几点注意: 1.法向量一定是非零向量; 2.一个平面的所有法向量都互相平行; 3.经过A点,以向量 n为平面的法向量 的平面 表示为:
AP n 0
例1:已知AB (2, 2,1), AC (4,5,3), 求平面ABC的
2 1
z
A1
M
N
C1
D1
方法一:线//线 线 / / 面
方法二:面//面 线 / / 面() x 方法三:平面向量分解定理()
D
A
B
C
y
方法四:向量--坐标法
例4 如图,已知矩形 ABCD 和矩形 ADEF 所在平面互相垂直,点 1 1 M , N 分别在对角线 BD, AE 上,且 BM BD, AN AE, 3 3 求证:MN // 平面CDE 简证:因为矩形ABCD和矩形ADEF F 所在平面互相垂直,所以AB,AD, AF互相垂直。以 AB, AD, AF 为正交 基底,建立如图所示空间坐标系, A 设AB,AD,AF长分别为3a,3b,3c, B 则可得各点坐标,从而有

快速求平面的法向量

快速求平面的法向量

快速求平面的法向量
用向量方法做立几题,必须会的一种功夫是求平面的法向量。

不少理科同学为经常算错平面的法向量而苦恼,下面介绍一种快速求平面的法向量方法,简直就是秒杀。

结论:向量a r =(x 1,y 1,z 1),b r
=(x 2,y 2,z 2)是平面α内的两个不共线向量,则向量 n r
=(y 1z 2-y 2z 1,-(x 1z 2-x 2z 1),x 1y 2-x 2y 1)是平面α的一个法向量.
如果用二阶行列式表示,则
n r =(1
12
2
y z y z ,-
112
2
x z x z ,
112
2
x y x y ) ,这更便
于记忆和计算.
结论证明(用矩阵与变换知识可以证明,此处
略去),但你可以验证 n r
一定满足0
m a m b ⎧•=⎪⎨•=⎪⎩u r r u
r r ⇔111222
00x x y y z z x x y y z z ++=⎧⎨++=⎩; 而且∵a r 、b r 不共线,∴n r 一定不是0r
.
怎样用该结论求平面的法向量呢?举例说明.
例、向量a r =(1,2,3),b r
=(4,5,6)是平
面α内的两个不共线向量,求平面α的法向量
解:设平面α的法向量为n r
=(x ,y ,z ),
则00n a n b ⎧•=⎪⎨•=⎪⎩r r r r ⇒2304560x y z x y z ++=⎧⎨
++=⎩ 令z =1,得n r
=(1,-2,1).
注意:
① 一定按上述格式书写,否则易被扣分.
② n r
的计算可以在草稿纸上完成,过程参照右边“草稿纸上演算过程”.。

已知平面方程求平面法向量

已知平面方程求平面法向量

已知平面方程求平面法向量
平面法向量是垂直于平面的向量,可以通过平面方程中的系数来计算。

具体步骤如下:
1. 将平面方程写成标准形式:ax + by + cz + d = 0,其中a、
b、c为平面方程的系数,d为常数项。

2. 平面法向量的方向与平面法线相同,因此,将系数a、b、c 分别作为向量的x、y、z分量,构造平面法向量n = (a, b, c)。

3. 如果需要单位向量,则可以将平面法向量n除以其模长即可:n' = n / ||n||。

因此,已知平面方程求平面法向量的步骤是:将平面方程写成标准形式,将系数a、b、c分别作为向量的x、y、z分量,构造平面法向量n = (a, b, c)。

如果需要单位向量,则将平面法向量n除以其模长即可。

直线的方向向量与法向量的求法

直线的方向向量与法向量的求法

精品文档
直线的方向向量与法向量的求法
如图所示,当直线l :Ax By C =0的斜率存在时,直线与坐标轴分
别交于M N 两点,过点N 作直线l 的垂线NP,交横轴于点P,则,向 量m'是直线的方向向量,向量n 是直线的法向量,那么,如何求这两 个向量呢?
又••• k NP 二 B ,•••直线 NP 的方程为 y 二"Bx- C ,
A
A B 易知p 當0,故NP 珂晋,B)罟(诗罟(1厂或号(AB),
—■ 1 —■
所以,直线的法向量 n =(1,)或n 二(A, B) • k
说明:当直线的斜率不存在时,就分别用其后一个公式即可.
例、求下列直线的方向向量与法向量:
(1) 2x -3y 5 = 0 ; (2) 3x 7 = 0 .
解:(1)直线的方向向量为m' = (-3,-2)或m = (1,2),
3 直线的法向量为n 、
所以,直线的方向向量 m = (1,k)或m=(B,-A);
C C
「(1,k)或二 ABg ,
(2,-3)或n = (1^|);
(2)直线的方向向量为m〔(0,-3)或(0,1)或(0,-1),
直线的法向量为二(3,0)或(1,0)或(-1,0).
精品文档
欢迎您的下载,
资料仅供参考!
致力为企业和个人提供合同协议,策划案计划书,学习资料等等
打造全网一站式需求。

直线的方向向量与法向量的求法

直线的方向向量与法向量的求法

直线的方向向量与法向量的求法
如图所示,当直线0:=++C By Ax l 的斜率存在时,直线与坐标轴分别交于M 、N 两点,过点N 作直线l 的垂线NP ,交横轴于点P,则,向量→m 是直线的方向向量,向量→
n 是直线的法向量,那么,如何求这两个向量呢?
【解析】易知),0(),0,(B C N A C M --,故),(),1(),(A B AB C k A C B C A C MN -==-=→
或, 所以,直线的方向向量),1(k m =→或),(A B m -=→; 又∵A B k NP =
,∴直线NP 的方程为B
C x A B y -=, 易知)0,(2B AC P ,故),()1,1(),1(),(2222B A B
C k B AC A B B AC B C B AC NP 或-===→, 所以,直线的法向量),()1,1(B A n k n =-=→→或. 说明:当直线的斜率不存在时,就分别用其后一个公式即可.
例、求下列直线的方向向量与法向量:
(1)0532=+-y x ; (2)073=+x .
解:(1)直线的方向向量为)2,3(--=→m 或)32,1(=→m , 直线的法向量为)23,1()3,2(-=-=→→n n 或;
(2)直线的方向向量为)1,0(1,0)3,0(--=→)或或(m ,
直线的法向量为)0,1()0,1()0,3(-==→→或或n n .。

秒杀求平面的法向量

秒杀求平面的法向量

秒杀求平面的法向量用向量方法做立几题,必须会求平面的法向量。

不少同学为繁琐地计算平面的法向量而苦恼,下面介绍一种快速求平面的法向量方法,简直就是秒杀。

结论:向量a =(x 1,y 1,z 1),b =(x 2,y 2,z 2)是平面α内的两个不共线向量,则向量 n =(y 1z 2-y 2z 1,-(x 1z 2-x 2z 1),x 1y 2-x 2y 1)是平面α的一个法向量.如果用二阶行列式表示,则n =(1122y z y z,1122z x zx ,1122x y x y ) ,这更便于记忆和计算.怎样用该结论求平面的法向量呢?举例说明.例、向量a =(1,2,3),b =(4,5,6)是平草稿纸上演算过程时,a 、b 的横坐标就不参与运算,a =(1,2,3),b =(4,5, 交叉相乘的差就是x =2×时,a 、b 的纵坐标就不参与运算,a =(1,2,3), b =(4,5,交叉相乘的差的时,a 、b 的竖坐标就不参与运算,a =(1,2,3), b =(4,5, 交叉相乘的差就是∴n =(-3,6面α内的两个不共线向量,求平面α的法向量 解:设平面α的法向量为n =(x ,y ,z ),则00n a n b ⎧∙=⎪⎨∙=⎪⎩⇒2304560x y z x y z ++=⎧⎨++=⎩令z =1,得n =(1,-2,1). 注意:① 一定按上述格式书写,否则易被扣分. ② n 的计算可以在草稿纸上完成,过程参照右边“草稿纸上演算过程”.。

求法向量

求法向量

z
B1
C1
3)面BDE
(1,-1,0)
A1
4)面ACE (-1,1,-2)
5)面DC1E (1,-2,2) 6)面A1CE (-1,1,2)
x
A
E D B
y
C
作业:1、 右图是AD=1, DC=2,DD1 =3的长方体, E、F分别是B1C、BD1 的中点 分别以DA,DC,DD1所在直 线建立右手直角坐标系, 1)求面AC的一个法向量.
z
D1
C1 B1
A1
F
D A
E
C
) 2)求面ACE的一个法向量 3)求面DD1F的一个法向量 x
y
B
4)求面DEF的一个法向量 5)求面AEF的一个法向量
2、已知A(1,1,2)B(3,3,3),C(5,6,5), 求平面ABC的单位法向量
1 2 2 ( , ,) 3 3 3
作业:1、在棱长为1的正方体ABCD-A1B1C1D1 中,E是BB1的中点,求下列平面的一个法向量 1)面AC.
• 第三步(解):把z(或x或y)看作常数,用z(或x或y) 表示另外两个量 • 第四步(取):取z为任意一个数(当然取得越特殊 越好),便得到平面法向量n的坐标.
练::在棱长为1的正方体ABCD-A1B1C1D1中,E 是BB1的中点,求下列平面的一个法向量 1)面AC.
2)面A1D与面C1D
D1
取z =1 得平面OA1D1的法向量的坐标n=(2,0,1).
求平面法向量的坐标的步骤
• 第一步(设):设出平面法向量的坐标为n=(x,y,z). • 第二步(列):根据n· a = 0且n· b = 0可列出方程组
x1 x y1 y z1z 0 x2 x y2 y z2 z 0

立体几何中的向量方法真题与解析

立体几何中的向量方法真题与解析

立体几何中的向量方法A 级 基础一、选择题1.如图,F 是正方体ABCD-A 1B 1C 1D 1的棱CD 的中点.E 是BB 1上一点,若D 1F ⊥DE ,则有( )A .B 1E =EB B .B 1E =2EBC .B 1E =12EBD .E 与B 重合2.如图,点A ,B ,C 分别在空间直角坐标系O-xyz 的三条坐标轴上,OC →=(0,0,2),平面ABC 的法向量为n =(2,1,2),设二面角C-AB-O 的大小为θ,则cos θ等于( )A.43B.53C.23D .-233.在三棱柱ABC-A 1B 1C 1中,底面是边长为1的正三角形,侧棱AA 1⊥底面ABC ,点D 在棱BB 1上,且BD =1,若AD 与平面AA 1C 1C 所成的角为α,则sin α的值是( )A.32B.22C.104D.644.如图所示,在平行六面体ABCD-A 1B 1C 1D 1中,点M ,P ,Q 分别为棱AB ,CD ,BC 的中点,若平行六面体的各棱长均相等,则:①A 1M ∥D 1P ; ②A 1M ∥B 1Q ; ③A 1M ∥平面DCC 1D 1; ④A 1M ∥平面D 1PQB 1. 以上说法正确的个数为( ) A .1B .2C .3D .45.(2018·全国卷Ⅱ)在长方体ABCD -A 1B 1C 1D 1中,AB =BC =1,AA 1=3,则异面直线AD 1与DB 1所成角的余弦值为( )A.15B.56C.55D.22二、填空题6.(2019·东莞中学检测)在我国古代数学名著《九章算术》中,将四个面都为直角三角形的四面体称为鳖臑,如图,在鳖臑ABCD 中,AB ⊥平面BCD ,且AB =BC =CD ,则异面直线AC 与BD 所成的角的大小是________.7.如图所示,在正方体ABCD-A 1B 1C 1D 1中,AB =2,A 1C 1∩B 1D 1=E ,直线AC 与直线DE 所成的角为α,直线DE 与平面BCC 1B 1所成的角为β,则cos(α-β)=________.三、解答题8.(2018·北京卷)如图,在三棱柱ABC-A1B1C1中,CC1⊥平面ABC,D,E,F,G分别为AA1,AC,A1C1,BB1的中点,AB=BC=5,AC=AA1=2.(1)求证:AC⊥平面BEF;(2)求二面角B-CD-C1的余弦值;(3)证明:直线FG与平面BCD相交.9.(2019·长郡中学模拟)如图1,直角梯形ABCD中,AD∥BC 中,∠ABC=90°,E,F分别为边AD和BC上的点,且EF∥AB,AD=2AE=2AB=4FC=4.将四边形EFCD沿EF折起成如图2的位置,使AD=AE.(1)求证:AF∥平面CBD;(2)求平面CBD与平面DAE所成锐角的余弦值.B级能力提升10.(2019·天津卷)如图,AE⊥平面ABCD,CF∥AE,AD∥BC,AD⊥AB,AB=AD=1,AE=BC=2.(1)求证:BF∥平面ADE;(2)求直线CE与平面BDE所成角的正弦值;(3)若二面角E-BD-F的余弦值为13,求线段CF的长.11.(2019·六安一中模拟)如图,四棱锥S-ABCD的底面是正方形,每条侧棱的长都是底面边长的2倍,P为侧棱SD上的点.(1)求证:AC⊥SD;(2)若SD⊥平面PAC,求二面角P-AC-D的大小;(3)在(2)的条件下,侧棱SC上是否存在一点E,使得BE∥平面PAC.若存在,求SE∶EC的值;若不存在,试说明理由.A 级 基础一、选择题1.解析:以D 为坐标原点,以DA ,DC ,DD 1所在直线为坐标轴建立坐标系,设正方体的棱长为2,则D (0,0,0),F (0,1,0),D 1(0,0,2),设E (2,2,z ),则D 1F →=(0,1,-2),DE →=(2,2,z ),因为D 1F →·DE →=0×2+1×2-2z =0,所以z =1,所以B 1E =EB.答案:A2.解析:由题意可知,平面ABO 的一个法向量为OC →=(0,0,2), 由图可知,二面角C-AB-O 为锐角,由空间向量的结论可知,cos θ=|OC →·n ||OC →||n |=|4|2×3=23.答案:C3.解析:如图,建立空间直角坐标系,易求点D ⎝ ⎛⎭⎪⎫32,12,1,平面AA 1C 1C 的一个法向量是n =(1,0,0),所以sin α=|cos 〈n ,AD →〉|=322=64.答案:D4. 解析:A 1M →=A 1A →+AM →=A 1A →+12AB →,D 1P →=D 1D →+DP →=A 1A →+12AB →,所以A 1M →∥D 1P →,所以A 1M ∥D 1P ,由线面平行的判定定理可知,A 1M ∥平面DCC 1D 1,A 1M ∥平面D 1PQB 1.①③④正确.答案:C5.解析:以D 为坐标原点,DA ,DC ,DD 1所在直线分别为x 轴,y 轴,z 轴建立空间直角坐标系,如图所示.由条件可知D (0,0,0),A (1,0,0),D 1(0,0,3),B 1(1,1,3),所以AD 1→=(-1,0,3),DB 1→=(1,1,3). 则cos 〈AD 1→,DB 1→〉=AD 1→·DB 1→|AD 1→|·|DB 1→|=225=55.故异面直线AD 1与DB 1所成角的余弦值为55.答案:C 二、填空题 6.解析:依题意,以C 为原点,建立如图所示的直角坐标系,设AB =BC =CD =a ,AB ⊥平面BCD .则B (a ,0,0),D (0,a ,0),C (0,0,0),A (a ,0,a ). 所以BD →=(-a ,a ,0),CA →=(a ,0,a ).所以cos 〈BD →,CA →〉=BD →·CA→|BD →|·|CA →|=-a 22a ·2a=-12,则〈BD →,CA →〉=2π3,故AC 与BD 所成角为π3.答案:π37. 解析:因为AC ⊥BD 且AC ⊥BB 1,BD ∩BB 1=B , 所以AC ⊥平面BB 1D 1D ⇒AC ⊥DE ,所以α=π2.取A 1D 1的中点F ,连EF ,FD ,易知EF ⊥平面ADD 1A 1,则β=∠EDF .cos(α-β)=cos ⎝ ⎛⎭⎪⎫π2-∠EDF =sin ∠EDF =EFED =66.答案:66三、解答题8.(1)证明:在三棱柱ABC-A1B1C1中,因为CC1⊥平面ABC,所以四边形A1ACC1为矩形.又E,F分别为AC,A1C1的中点,所以AC⊥EF.因为AB=BC,所以AC⊥BE.又EF∩BE=E,所以AC⊥平面BEF.(2)解:由(1)知AC⊥EF,AC⊥BE,EF∥CC1.又CC1⊥平面ABC,所以EF⊥平面ABC.因为BE⊂平面ABC,所以EF⊥BE.如图建立空间直角坐标系E-xyz.由题意得B(0,2,0),C(-1,0,0),D(1,0,1),E(0,0,0),F(0,0,2),G(0,2,1).所以BC→=(-1,-2,0),BD→=(1,-2,1).设平面BCD的法向量为n=(x0,y0,z0).则⎩⎪⎨⎪⎧n·BC→=0,n·BD→=0,即⎩⎪⎨⎪⎧x0+2y0=0,x0-2y0+z0=0.令y0=-1,则x0=2,z0=-4.于是n =(2,-1,-4).又因为平面CC 1D 的法向量为EB →=(0,2,0), 所以cos 〈n ,EB →〉=n ·EB →|n ||EB →|=-2121.由题意知二面角B -CD -C 1为钝角,所以其余弦值为-2121. (3)证明:由(2)知平面BCD 的法向量为n =(2,-1,-4),FG →=(0,2,-1).因为n ·FG →=2×0+(-1)×2+(-4)×(-1)=2≠0, 所以直线FG 与平面BCD 相交.9.(1)证明:取DE 中点G ,连接FG ,AG ,CG . 由条件CFDG ,所以CFGD 为平行四边形,所以FG ∥CD .又FG ⊄平面CBD ,CD ⊂平面CBD , 所以FG ∥平面CBD . 同理AG ∥平面CBD .又FG ∩AG =G ,FG ⊂平面AFG ,AG ⊂平面AFG . 所以平面AFG ∥平面CBD . 又AF ⊂平面AFG , 所以AF ∥平面CBD .(2)解:因为EF ⊥AE ,EF ⊥DE ,AE ∩DE =E ,所以EF ⊥平面ADE .又AD =AE =DE ,以AE 中点H 为原点,AE 为x 轴建立如图所示的空间直角坐标系,则A (-1,0,0),D (0,0,3),B (-1,-2,0),E (1,0,0), F (1,-2,0).因为CF →=12DE →,所以C ⎝ ⎛⎭⎪⎫12,-2,32,所以BC →=⎝ ⎛⎭⎪⎫32,0,32,BD →=(1,2,3).易知BA →是平面ADE 的一个法向量,BA →=n 1=(0,2,0), 设平面BCD 的一个法向量为n 2=(x ,y ,z ),由⎩⎨⎧n 2·BC →=(x ,y ,z )·⎝ ⎛⎭⎪⎫32,0,32=32x +32z =0,n 2·BD →=(x ,y ,z )·(1,2,3)=x +2y +3z =0,令x =2,则y =2,z =-23,所以n 2=(2,2,-23). cos 〈n 1,n 2〉=n 1·n 2|n 1||n 2|=2×0+2×2-23×02×25=55.所以平面CBD 与平面DAE 所成锐角的余弦值为55.B 级 能力提升10.(1)证明:依题意,建立以A 为原点,分别以AB →,AD →,AE →的方向为x 轴、y 轴、z 轴正方向的空间直角坐标系(如图),可得A (0,0,0),B (1,0,0),C (1,2,0),D (0,1,0),E (0,0,2).设CF =h (h >0),则F (1,2,h ).依题意,AB →=(1,0,0)是平面ADE 的法向量. 又BF →=(0,2,h ),可得BF →·AB →=0, 又因为直线BF ⊄平面ADE . 所以BF ∥平面ADE .(2)解:依题意,BD →=(-1,1,0),BE →=(-1,0,2),CE →=(-1,-2,2).设n =(x ,y ,z )为平面BDE 的法向量, 则⎩⎪⎨⎪⎧n ·BD →=0,n ·BE →=0.即⎩⎪⎨⎪⎧-x +y =0,-x +2z =0.不妨令z =1,可取n =(2,2,1). 因此有cos 〈CE →·n 〉=CE →·n |CE →||n |=-49.所以直线CE 与平面BDE 所成角的正弦值为49.(3)解:设m =(x 1,y 1,z 1)为平面BDF 的法向量,则⎩⎪⎨⎪⎧m ·BD →=0,m ·BF →=0,即⎩⎪⎨⎪⎧-x 1+y 1=0,2y 1+hz 1=0,不妨令y 1=1,可得m =⎝ ⎛⎭⎪⎫1,1,-2h .由题意,有|cos 〈m ,n 〉|=|m ·n ||m ||n |=⎪⎪⎪⎪⎪⎪4-2h 32+4h2=13, 解得h =87 .经检验,符合题意.所以线段CF 的长为87.11.(1)证明:连接BD ,设AC 交BD 于点O ,连接SO ,由题意知SO ⊥平面ABCD ,以O 为坐标原点,OB →,OC →,OS →分别为x 轴、y 轴、z 轴正方向,建立坐标系O-xyz , 设底面边长为a ,则高SO =62a ,于是S ⎝ ⎛⎭⎪⎫0,0,62a ,D ⎝ ⎛⎭⎪⎫-22a ,0,0,C ⎝ ⎛⎭⎪⎫0,22a ,0,于是,OC →=⎝ ⎛⎭⎪⎫0,22a ,0,SD →=⎝ ⎛⎭⎪⎫-22a ,0,-62a .则OC →·SD →=0,故OC ⊥SD ,从而AC ⊥SD .(2)解:由题设知,平面PAC 的一个法向量DS →=⎝ ⎛⎭⎪⎫22a ,0,62a ,平面DAC 的一个法向量OS →=⎝⎛⎭⎪⎫0,0,62a .设所求二面角为θ,则cos θ=OS →·DS →|OS →||DS →|=32,所以所求二面角的大小为30°.(3)解:在棱SC 上存在一点E 使BE ∥平面PAC .根据第(2)问知DS →是平面PAC 的一个法向量,且DS →=⎝ ⎛⎭⎪⎫22a ,0,62a ,CS →=⎝⎛⎭⎪⎫0,-22a ,62a .设CE →=tCS →.则BE →=BC →+CE →=BC →+tCS →=⎝ ⎛⎭⎪⎫-22a ,22a (1-t ),62at .由BE →·DS →=0,得-a 22+0+64a 2t =0,则t =13.所以当SE ∶EC =2∶1时,BE →⊥DS →. 由于BE ⊄平面PAC ,故BE ∥平面PAC .因此在棱SC 上存在点E ,使BE ∥平面PAC ,此时SE ∶EC =2∶1.。

快速求平面的法向量

快速求平面的法向量

快速求平面的法向量用向量方法做立几题,必须会的一种功夫是求平面的法向量。

不少理科同学为经常算错平面的法向量而苦恼,下面介绍一种快速求平面的法向量方法,简直就是秒杀。

结论:向量a =(x 1,y 1,z 1),b =(x 2,y 2,z 2)是平面α内的两个不共线向量,则向量n =(y 1z 2-y 2z 1,-(x 1z 2-x 2z 1),x 1y 2-x 2y 1)是平面α的一个法向量.如果用二阶行列式表示,则n =(1122y z y z ,-1122x z x z ,1122x y x y ) ,这更便于记忆和计算.结论证明(用矩阵与变换知识可以证明,此处略去),但你可以验证 n 一定满足m a m b ⎧∙=⎪⎨∙=⎪⎩⇔1112220x x y y z z x x y y z z ++=⎧⎨++=⎩; 而且∵a 、b 不共线,∴n 一定不是0.怎样用该结论求平面的法向量呢?举例说明. 例、向量a =(1,2,3),b =(4,5,6)是平面α内的两个不共线向量,求平面α的法向量解:设平面α的法向量为n =(x ,y ,z ),则0n a n b ⎧∙=⎪⎨∙=⎪⎩⇒2304560x y z x y z ++=⎧⎨++=⎩ 令z =1,得n =(1,-2,1). 注意:① 一定按上述格式书写,否则易被扣分.② n 的计算可以在草稿纸上完成,过程参照右边“草稿纸上演算过程”.草稿纸上演算过程时,a 、b 的横坐标就不参与运算,a =(1,2,3),b =(4,5, 交叉相乘的差就是x =2×时,a 、b 的纵坐标就不参与运算,a =(1,2,3), b =(4,5,交叉相乘的差的时,a 、b 的竖坐标就不参与运算,a =(1,2,3), b =(4,5, 交叉相乘的差就是∴n =(-3,6。

四边形法向量求法

四边形法向量求法

四边形的法向量可以通过以下步骤求得:
1. 确定四边形的四个顶点,记作A、B、C和D。

2. 计算每条边的向量,例如,向量AB = B - A,向量BC = C - B,以此类推。

3. 根据四边形的特性,确定两个面的法向量。

假设一个面的法向量是n1,另一个面的法向量是n2。

4. 如果四边形是凸的,那么法向量就是这两个面的法向量的平均值,即n = (n1 + n2) / 2。

5. 如果四边形是凹的,那么法向量就是这两个面的法向量的差值,即n = (n1 - n2) / 2。

6. 最后,对法向量进行归一化处理,使其长度为1。

如果存在多个可能的法向量,可以取平均值或者任意选择一个作为结果。

需要注意的是,求出的法向量可能不唯一,因为四边形的形状和大小会影响法向量的方向和大小。

因此,在应用四边形法向量时应该根据具体问题进行判断和处理。

两点求法向量

两点求法向量

两点求法向量
在二维平面上,对于给定的两个点 $P_1(x_1,y_1)$ 和 $P_2(x_2,y_2)$,有多种方法可以求出它们的法向量,其中比较常用的是以下两种:
1. 通过计算斜率
从几何的角度来说,两个点的法向量是与它们所在直线垂直的向量,而直线的斜率可以与其垂直的向量相关联。

因此,我们可以通过计算直线的斜率来求出法向量。

设点 $P_1$ 和 $P_2$ 所在的直线方程为 $y = ax + b$,则其斜率为 $a$,垂直的向量为 $(1, -a)$ 或 $(-1, a)$。

这里需要注意的是,因为$a$可能为零或无穷大,所以有时需要额外讨论。

例如,对于点 $P_1(1, 2)$ 和 $P_2(3, 4)$,其斜率为 $a =
\frac{y_2-y_1}{x_2-x_1} = \frac{4-2}{3-1} = 1$。

因此,其法向量可以取为 $(1,
-1)$ 或 $(-1, 1)$。

2. 通过向量叉积
向量叉积是向量运算中的一种,它可以用来求出两个向量的垂直向量(法向量)。

设给定的两个向量为 $\vec{u}=(u_x, u_y)$ 和 $\vec{v}=(v_x, v_y)$,则它们的叉积$\vec{u} \times \vec{v}$ 的长度为 $|\vec{u}|\cdot|\vec{v}|\cdot \sin\theta$,其中 $|\vec{u}|$ 和 $|\vec{v}|$ 分别为 $\vec{u}$ 和 $\vec{v}$ 的长度,
$\theta$ 为 $\vec{u}$ 和 $\vec{v}$ 之间的夹角。

立体几何中的向量方法之方向向量与法向量平行垂直

立体几何中的向量方法之方向向量与法向量平行垂直

Z
P E
所以PA 2EG ,即PA// EG
而EG 平面EDB, 且PA 平面EDB
所以,PA // 平面EDB
A X D
G
C B
Y
解法3:如图所示建立空间直角坐标系,点D为坐标原点,设DC=1
1 1 1,0) 依题意得A(1, 0, 0), P (0, 0,1), E (0, , ), B(1, (1)证明: 2 2 1 1 PA (1,0, 1), DE (0, , ) Z DB =(1, 1,0) 2 2
C
y
x
例 2.在空间直角坐标系中,已知 A(3,0,0), B(0,4,0) , C (0,0, 2) ,试求平面 ABC 的一个法向量. n (4, 3, 6)
解:设平面 ABC 的一个法向量为 n ( x, y, z )
则 n AB , n AC .∵ AB (3,4,0) , AC (3,0, 2)
1 2 2 求平面ABC的单位法向量为 ( , - ,) 3 3 3
1 n ( , 1,1), 2
3 | n | 2
用向量方法解决立体问题
因为方向向量与法向量可以确定 直线和平面的位置,所以我们可以利 用直线的方向向量与平面的法向量表 示空间直线、平面间的平行、垂直、 夹角、距离等位置关系.
2 2 ( DA DC ) DE ( DA DE ) B 3 3
D
2 1 DC DE 3 3
几何法呢?
所以MN、DC、DE共面
但MN 平面CDE
别为 a , b , 平面 , 的法向量分别为 u, v ,则
二、垂直关系:
(1) l m a b a b 0
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

求法向量的作业化考试-----2014-11-28 一、选择题(每小题6分,共24分)
1、m ={8,3,a },n ={2b ,6,5},若m ∥n ,则a +b 的值为( ) A.0
B.25
C.2
21 D.8
2、已知()()()2,5,1,2,2,4,1,4,1A B C ---,则向量AB AC u u u r u u u r
与的夹角为( )
A. 0
30 B.0
45 C.0
60 D.0
90
3、已知a =(2,-1,3),b =(-1,4,-2),c =(7,5,λ),若a ,b ,c 共面,则实数λ等于( )
A.627
B.637
C.607
D.657
4.如图,在长方体ABCD -A 1B 1C 1D 1中,AB =BC =2,AA 1=1,则BC 1与平面BB 1D 1D 所成角的正弦值为( )A.
6 B.552 C.15 D.10
二、解答题(每小题15分,共计75分) 1.如图,已知正四棱柱ABCD -A 1B 1C 1D 1的棱长AA 1=2,AB=1,按图中所建立的坐标系,求平面BDC 1,平面A 1BC 1,平面ABC 1D 1的法向量。

2如图,在长方体1111ABCD A B C D -中,E 、F 分别是棱BC ,1CC 上的点,
2CF AB CE ==,1::1:2:4AB AD AA =
(1) 求异面直线EF 与1A D 所成角的余弦值; (2) 求平面1A ED 、1A ED F --的法向量。

3.如图,已知棱长为1的正方体ABCD -A 1B 1C 1D 1中,E 是A 1B 1的中点,求平面ABC 1D 1的法向量。

4.已知棱长为1的正方体ABCD -A 1B 1C 1D 1,求平面A 1BC 1、 平面ABCD 的法向量。

A 1
B 1
C 1
D 1 A
B C D
x y z
y x
D 1
A 1
D B 1
C 1
C B
A F
E
D 1
C 1
B 1
A 1
D
C
B
A
o
z
y
E z D 1 y
A C 1
B 1
A 1
B
D C。

相关文档
最新文档