陕西省石泉县池河中学中考数学复习课件12:二次函数的综合应用(共25张PPT)
合集下载
二次函数的应用课件ppt课件ppt课件ppt
要点一
导数在二次函数中的应用
利用导数研究二次函数的单调性、极值和拐点,解决实际 问题。
要点二
定积分在二次函数中的应用
利用定积分计算二次函数的面积,解决与面积相关的实际 问题。
THANKS
感谢观看
详细描述
二次函数是数学中一类重要的函数,其形式由参数$a$、$b$ 和$c$决定。当$a > 0$时,函数图像开口向上;当$a < 0$ 时,函数图像开口向下。
二次函数的图像
总结词
二次函数的图像是一个抛物线, 其形状由参数$a$、$b$和$c$决 定。
详细描述
二次函数的图像是一个抛物线, 其顶点的位置由参数$b$和$c$决 定,而开口的大小和方向则由参 数$a$决定。
在生产和生活中,经常需要解决诸如利润最大化、成本最小化等最优化问题。利 用二次函数开口方向和顶点坐标的性质,可以快速找到最优解,为决策提供依据 。
利用二次函数解决周期性问题
总结词
利用二次函数的对称性和周期性,解 决具有周期性规律的问题。
详细描述
在物理学、工程学和生物学等领域, 许多现象具有周期性规律。通过将实 际问题转化为二次函数模型,可以更 好地理解和预测这些周期性现象。
利用二次函数解决面积问题
总结词
利用二次函数与坐标轴的交点,解决 与面积相关的实际问题。
详细描述
在几何学和实际生活中,经常需要计 算图形的面积。通过将问题转化为求 二次函数与坐标轴围成的面积,可以 简化计算过程,提高解决问题的效率 。
04
如何提高二次函数的应用能力
掌握基本概念和性质
理解二次函数的一般 形式: $y=ax^2+bx+c$, 其中$a neq 0$。
导数在二次函数中的应用
利用导数研究二次函数的单调性、极值和拐点,解决实际 问题。
要点二
定积分在二次函数中的应用
利用定积分计算二次函数的面积,解决与面积相关的实际 问题。
THANKS
感谢观看
详细描述
二次函数是数学中一类重要的函数,其形式由参数$a$、$b$ 和$c$决定。当$a > 0$时,函数图像开口向上;当$a < 0$ 时,函数图像开口向下。
二次函数的图像
总结词
二次函数的图像是一个抛物线, 其形状由参数$a$、$b$和$c$决 定。
详细描述
二次函数的图像是一个抛物线, 其顶点的位置由参数$b$和$c$决 定,而开口的大小和方向则由参 数$a$决定。
在生产和生活中,经常需要解决诸如利润最大化、成本最小化等最优化问题。利 用二次函数开口方向和顶点坐标的性质,可以快速找到最优解,为决策提供依据 。
利用二次函数解决周期性问题
总结词
利用二次函数的对称性和周期性,解 决具有周期性规律的问题。
详细描述
在物理学、工程学和生物学等领域, 许多现象具有周期性规律。通过将实 际问题转化为二次函数模型,可以更 好地理解和预测这些周期性现象。
利用二次函数解决面积问题
总结词
利用二次函数与坐标轴的交点,解决 与面积相关的实际问题。
详细描述
在几何学和实际生活中,经常需要计 算图形的面积。通过将问题转化为求 二次函数与坐标轴围成的面积,可以 简化计算过程,提高解决问题的效率 。
04
如何提高二次函数的应用能力
掌握基本概念和性质
理解二次函数的一般 形式: $y=ax^2+bx+c$, 其中$a neq 0$。
中考数学复习课件:二次函数的综合应用(共21张PPT)
∵∠DME=∠OCB,∠DEM=∠BOC,
������������ ������������ ∴△DEM∽△BOC,∴ = , ������������ ������������ 4 ∵OB=4,OC=3,∴BC=5,∴DE= DM 5 3 12 3 12 ∴DE=﹣ a2+ a=﹣( (a﹣2)2+ , 5 5 5 5 12 当 a=2 时,DE 取最大值,最大值是 , 5
∵点 B(4,1),直线 l 为 y=﹣1, ∴点 B′的坐标为(4,﹣3). 设直线 AB′的解析式为 y=kx+b(k≠0), 将 A(1, )、B′(4,﹣3)代入 y=kx+b,得:
,解得:
,
∴直线 AB′的解析式为 y=﹣
x+
,
当 y=﹣1:x=
,
∴点 P 的坐标为(
【例3】如图,在平面直角坐标系 ∠ACB=90°,OC=2OB,tan∠ABC=2,点B 的坐标为(1,0).抛物线y=﹣x2+bx+c经 过A、B两点. (1)求抛物线的解析式;
解题过程 (1)∵B(1,0), ∴OB=1, ∵OC=2OB=2, ∴C(﹣2,0), Rt△ABC中,tan∠ABC=2
当x=-0.75时y=6.625即M2(-0.75,6.625)
例4.如图,抛物线y=-x2+bx+c
与x 轴的两个交点分别为A(3,0),D(-1, 0),与y轴交于点C,点B在y轴正半轴上, 且OB=OD(1)求抛物线的解析式
解:(1)把A(3,0),D(﹣1,0)代入
y=﹣x2+bx+c得到, 解得,
K
E D
解:S△ABP=
PE×BC =
△APE △BPE=
初三数学-二次函数和几何综合应用PPT共25页
13、遵守纪律的风气的培养,只有领 导者本 身在这 方面以 身作则 才能收 到成效 。—— 马卡连 柯 14、劳动者的组织性、纪律性、坚毅 精神以 及同全 世界劳 动者的 团结一 致,是 取得最 后胜利 的保证 。—— 列宁 摘自名言网
15、机会是不守纪律的。——雨果
16、业余生活要有意义,不要越轨。——华盛顿 17、一个人即使已登上顶峰,也仍要自强不息。——罗素·贝克 18、最大的挑战和突破在于用人,而用人最大的突破在于信任人。——马云 19、自己活着,就是为了使别人过得更美好。——雷锋 20、要掌握书,莫被书掌握;要为生而读,莫为读而用
11、战争满足了,或曾经满足过人的 好斗的 本能, 但它同 时还满 足了人 对掠夺 ,破坏 以及残 酷的纪 律和专 制力的 欲望。 ——查·埃利奥 特 12、不应把纪律仅仅看成教育的手段 。纪律 是教育 过程的 结果, 首先是 学生集 体表现 在一切 生活领 域—— 生产、 日常生 活、学 校、文 化等领 域中努 力的结 果。— —马卡 连柯(名 言网)
15、机会是不守纪律的。——雨果
16、业余生活要有意义,不要越轨。——华盛顿 17、一个人即使已登上顶峰,也仍要自强不息。——罗素·贝克 18、最大的挑战和突破在于用人,而用人最大的突破在于信任人。——马云 19、自己活着,就是为了使别人过得更美好。——雷锋 20、要掌握书,莫被书掌握;要为生而读,莫为读而用
11、战争满足了,或曾经满足过人的 好斗的 本能, 但它同 时还满 足了人 对掠夺 ,破坏 以及残 酷的纪 律和专 制力的 欲望。 ——查·埃利奥 特 12、不应把纪律仅仅看成教育的手段 。纪律 是教育 过程的 结果, 首先是 学生集 体表现 在一切 生活领 域—— 生产、 日常生 活、学 校、文 化等领 域中努 力的结 果。— —马卡 连柯(名 言网)
陕西省安康市石泉县池河镇九年级数学上册 22.3 实际问题与二次函数课件3 (新版)新人教版.ppt
22.3 实际问题与二次函数
一.复习回顾
问题1 解决上节课所讲的实际问题时,你用到了什么知识? 所用知识在解决生活中问题时,还应注意哪些问题?
用二次函数解决实际问题的方法
归纳: 1.由于抛物线 y = ax2 + bx + c 的顶点是最低(高) 点,当
x b 2a
时,二次函数 y = ax2 + bx + c 有最小(大) 值 y 4ac b2 . 4a
y 0.5 x 2 2
当水面下降1m时,水面的 纵坐标为y=-1,这时有:
1 0.5 x2 2 x 6 这时水面宽度为2 6m
∴当水面下降1m时,水面宽度 增加了 ( 2 6 4 )m
解三 如图所示,以抛物线和水面的两个交点的连线为x轴,以其中
的一个交点(如左边的点)为原点,建立平面直角坐标系.
x1 2 6 , x2 2 6
∴这时水面的宽度为:
x2 x1 2 6m
∴当水面下降1m时,水面宽度 增加了 ( 2 6 4 )m
一般步骤: (1).建立适当的坐标系,并将已知条件转化为点的坐 标,
(2).合理地设出所求的函数的表达式,并代入已知 条件或点的坐标,求出关系式,
(3).利用关系式求解实际问题.
此时,抛物线的顶点为(2,2) ∴可设这条抛物线所表示 的二次函数的解析式为:
y a( x 2 )2 2
∵抛物线过点(0,0)
0 a ( 2 )2 2
a 0.5
∴这条抛物线所表示的二 次函数为:
y 0.5( x 2 )2 2
当水面下降1m时,水面的 纵坐标为y=-1,这时有:
1 0.5( x 2 )2 2
解二
如图所示,以抛物线和水面的两个交点的连线为x轴,以抛物线 的对称轴为y轴,建立平面直角坐标系.
一.复习回顾
问题1 解决上节课所讲的实际问题时,你用到了什么知识? 所用知识在解决生活中问题时,还应注意哪些问题?
用二次函数解决实际问题的方法
归纳: 1.由于抛物线 y = ax2 + bx + c 的顶点是最低(高) 点,当
x b 2a
时,二次函数 y = ax2 + bx + c 有最小(大) 值 y 4ac b2 . 4a
y 0.5 x 2 2
当水面下降1m时,水面的 纵坐标为y=-1,这时有:
1 0.5 x2 2 x 6 这时水面宽度为2 6m
∴当水面下降1m时,水面宽度 增加了 ( 2 6 4 )m
解三 如图所示,以抛物线和水面的两个交点的连线为x轴,以其中
的一个交点(如左边的点)为原点,建立平面直角坐标系.
x1 2 6 , x2 2 6
∴这时水面的宽度为:
x2 x1 2 6m
∴当水面下降1m时,水面宽度 增加了 ( 2 6 4 )m
一般步骤: (1).建立适当的坐标系,并将已知条件转化为点的坐 标,
(2).合理地设出所求的函数的表达式,并代入已知 条件或点的坐标,求出关系式,
(3).利用关系式求解实际问题.
此时,抛物线的顶点为(2,2) ∴可设这条抛物线所表示 的二次函数的解析式为:
y a( x 2 )2 2
∵抛物线过点(0,0)
0 a ( 2 )2 2
a 0.5
∴这条抛物线所表示的二 次函数为:
y 0.5( x 2 )2 2
当水面下降1m时,水面的 纵坐标为y=-1,这时有:
1 0.5( x 2 )2 2
解二
如图所示,以抛物线和水面的两个交点的连线为x轴,以抛物线 的对称轴为y轴,建立平面直角坐标系.
初三二次函数ppt课件ppt课件
轴是$x = - \frac{b}{2,利用描点法可以 绘制出二次函数的图像。
与x轴交点
当$\Delta > 0$时,二次函数的 图像与x轴有两个交点;当
$\Delta = 0$时,二次函数的图 像与x轴只有一个交点;当
$\Delta < 0$时,二次函数的图 像与x轴没有交点。
理解二次函数的基本 概念和图像表示。
能够运用二次函数解 决实际问题。
掌握二次函数的性质 ,包括开口方向、顶 点坐标和对称轴。
课程计划
通过PPT演示,引导学生了解 二次函数的概念和图像表示。
通过例题讲解,帮助学生掌握 二次函数的性质和应用。
组织课堂练习和讨论,加深学 生对二次函数的理解和应用能 力。
二次函数的表达式
01
02
03
表达式
二次函数的表达式为$y = ax^{2} + bx + c$,其中 $a \neq 0$。
各项的意义
$a$是二次项系数,$b$ 是一次项系数,$c$是常 数项。
如何确定表达式
通过已知条件,利用待定 系数法可以确定二次函数 的表达式。
二次函数的图像
图像特点
二次函数的图像是一个抛物线, 其顶点坐标是$( - \frac{b}{2a}, \frac{4ac - b^{2}}{4a})$,对称
06
参考资料
初三二次函数ppt课件
初三二次函数的概念
介绍二次函数的基本定义、表达式和 图像特征。
初三二次函数的图像和性质
详细描述了如何绘制二次函数的图像 ,并分析了图像的开口方向、顶点坐 标、对称轴和增减性等性质。
初三二次函数的实际应用
通过实例和练习题,展示了二次函数 在解决实际问题中的应用,如最值问 题、行程问题等。
与x轴交点
当$\Delta > 0$时,二次函数的 图像与x轴有两个交点;当
$\Delta = 0$时,二次函数的图 像与x轴只有一个交点;当
$\Delta < 0$时,二次函数的图 像与x轴没有交点。
理解二次函数的基本 概念和图像表示。
能够运用二次函数解 决实际问题。
掌握二次函数的性质 ,包括开口方向、顶 点坐标和对称轴。
课程计划
通过PPT演示,引导学生了解 二次函数的概念和图像表示。
通过例题讲解,帮助学生掌握 二次函数的性质和应用。
组织课堂练习和讨论,加深学 生对二次函数的理解和应用能 力。
二次函数的表达式
01
02
03
表达式
二次函数的表达式为$y = ax^{2} + bx + c$,其中 $a \neq 0$。
各项的意义
$a$是二次项系数,$b$ 是一次项系数,$c$是常 数项。
如何确定表达式
通过已知条件,利用待定 系数法可以确定二次函数 的表达式。
二次函数的图像
图像特点
二次函数的图像是一个抛物线, 其顶点坐标是$( - \frac{b}{2a}, \frac{4ac - b^{2}}{4a})$,对称
06
参考资料
初三二次函数ppt课件
初三二次函数的概念
介绍二次函数的基本定义、表达式和 图像特征。
初三二次函数的图像和性质
详细描述了如何绘制二次函数的图像 ,并分析了图像的开口方向、顶点坐 标、对称轴和增减性等性质。
初三二次函数的实际应用
通过实例和练习题,展示了二次函数 在解决实际问题中的应用,如最值问 题、行程问题等。
陕西省石泉县池河中学人教版九年级上册数学课件:第22章《二次函数》(共11张PPT)
知识点2:二次函数的图像及性质(重点和基础)
y
另几个关键的
y
点:二次函数
0
关键的点
x 图像与坐标轴 的交点
0
x
抛物线 开口方向
y=ax2+bx+c(a>0)
a>0,开口向上
y=ax2+bx+c(a<0)
a<0,开口向下
顶点坐标 对称轴
增减性
b 2a
,
4ac 4a
b2
直线x b 2a
在对称轴的左侧,y随着x的增大而减小. 在对称轴的右侧, y随着x的增大而增大.
①a ≠ 0 ②最高次数为2 ③代数式一定是整式
当堂训练一(2分钟):
1、在 y=-x², y=2x²- 2 ,
X
y=100-5x²,y=3 x²-2x³+5,其中是二
次函数的有__2__个。
2、当m_=__2_时,函数y=(m+2)χ
m²-2
-
2χ+1
是二次函数?
方法指导:把握住 概念的“三要素”
二次函数的概念、图像与性质
复习目标: 1.掌握二次函数概念的三要素,并会解决相
关问题; 2.会灵活运用二次函数的图像与性质解决问
题。
自主梳理:(时间3分钟)
基础梳理:
知识点1:二次函数的概念(注意几种特殊情况)
y=ax² + bx + c ( a 、 b 、 c 是常数, a ≠ 0 ) 。
*定义要点*(三要素):
2
x2
2、填空(5分钟) :
方法点
(1)二次函数y=x2-x-6的图象顶点坐 拨:记
标(是2)_(_抛—_12_物,_-_线2—45_)_y_=_-2_x对2+称4x轴与是x轴_x_=的_—12_交__点__坐_。住 函 键二 数 点关次
初三数学中考复习:二次函数的应用 复习课 课件(共32张PPT)
二次函数的应用
知识总览 主要知识内容回顾 典型例题分析 小结
二次函数
一、 知识总览
二次函数
概念 图像性质 用函数观点看方程与不等式
应用
一1.从、二二次次函函数数角与度方看程二次、方不程等、式不等式
(形)
(数)
解法一:观察图像, 解法二:解方程,
(形)
(数)
解法一:观察图像,
一、二次函数与方程、不等式
优秀ppt公开课ppt免费课件下载免费 课件20 20届 初三数 学中考 复习: 二次函 数的应 用 复习课 课件(共32张PPT)
例2:
某商店经营一种水产品,成本为每千克40元的水产品,据市场分析,若按每千克50 元销售,一个月能售出500千克;销售价每涨1元,月销售量就减少10千克,针对这种 水产品的销售情况,销售单价定为多少元时,获得的利润最多?
优秀ppt公开课ppt免费课件下载免费 课件20 20届 初三数 学中考 复习: 二次函 数的应 用 复习课 课件(共32张PPT)
解决最值类的主要步骤:
第三步:确定自变量取值范围。(与自变量相关的量) 第四步:利用二次函数性质解决最值等问题。(顶点、图像) 第五步:回归实际题。
优秀ppt公开课ppt免费课件下载免费 课件20 20届 初三数 学中考 复习: 二次函 数的应 用 复习课 课件(共32张PPT)
例2:
分析:
优秀ppt公开课ppt免费课件下载免费 课件20 20届 初三数 学中考 复习: 二次函 数的应 用 复习课 课件(共32张PPT)
优秀ppt公开课ppt免费课件下载免费 课件20 20届 初三数 学中考 复习: 二次函 数的应 用 复习课 课件(共32张PPT)
➢ 构造函数解方程,利用两个函数图象交点确定解。 ➢ 可对方程进行同解变形,再构造函数。
知识总览 主要知识内容回顾 典型例题分析 小结
二次函数
一、 知识总览
二次函数
概念 图像性质 用函数观点看方程与不等式
应用
一1.从、二二次次函函数数角与度方看程二次、方不程等、式不等式
(形)
(数)
解法一:观察图像, 解法二:解方程,
(形)
(数)
解法一:观察图像,
一、二次函数与方程、不等式
优秀ppt公开课ppt免费课件下载免费 课件20 20届 初三数 学中考 复习: 二次函 数的应 用 复习课 课件(共32张PPT)
例2:
某商店经营一种水产品,成本为每千克40元的水产品,据市场分析,若按每千克50 元销售,一个月能售出500千克;销售价每涨1元,月销售量就减少10千克,针对这种 水产品的销售情况,销售单价定为多少元时,获得的利润最多?
优秀ppt公开课ppt免费课件下载免费 课件20 20届 初三数 学中考 复习: 二次函 数的应 用 复习课 课件(共32张PPT)
解决最值类的主要步骤:
第三步:确定自变量取值范围。(与自变量相关的量) 第四步:利用二次函数性质解决最值等问题。(顶点、图像) 第五步:回归实际题。
优秀ppt公开课ppt免费课件下载免费 课件20 20届 初三数 学中考 复习: 二次函 数的应 用 复习课 课件(共32张PPT)
例2:
分析:
优秀ppt公开课ppt免费课件下载免费 课件20 20届 初三数 学中考 复习: 二次函 数的应 用 复习课 课件(共32张PPT)
优秀ppt公开课ppt免费课件下载免费 课件20 20届 初三数 学中考 复习: 二次函 数的应 用 复习课 课件(共32张PPT)
➢ 构造函数解方程,利用两个函数图象交点确定解。 ➢ 可对方程进行同解变形,再构造函数。
二次函数初三ppt课件ppt课件ppt课件
二次函数初三ppt课件ppt 课件ppt课件
contents
目录
• 二次函数的基本概念 • 二次函数的性质 • 二次函数的应用 • 二次函数的解析式 • 二次函数与一元一次方程的关系 • 综合练习与提高
01 二次函数的基本 概念
二次函数的定义
总结词
二次函数是形如$y=ax^2+bx+c$的 函数,其中$a$、$b$、$c$为常数 ,且$a neq 0$。
详细描述
二次函数的一般形式是 $y=ax^2+bx+c$,其中$a$、$b$、 $c$是常数,且$a neq 0$。这个定义 表明二次函数具有一个自变量$x$,一 个因变量$y$,并且$x$的最高次数为 2。
二次函数的表达式
总结词
二次函数的表达式可以因形式多样而变化,但一般包括三个部分:常数项、一 次项和二次项。
02 二次函数的性质
二次函数的开口方向
总结词
二次函数的开口方向取决于二次 项系数a的正负。
详细描述
如果二次项系数a大于0,则抛物 线开口向上;如果二次项系数a小 于0,则抛物线开口向下。
二次函数的顶点
总结词
二次函数的顶点坐标为(-b/2a, c-b^2/4a)。
详细描述
二次函数的顶点是抛物线的最低点或最高点,其坐标为(-b/2a, c-b^2/4a),其中 a、b、c分别为二次项、一次项和常数项的系数。
解一元二次方程的方法包括公式法和 因式分解法等。
利用二次函数解决一元一次方程问题
当一元一次方程有重根时,可以通过构建二次函数来求解。
构建二次函数的方法是将一元一次方程转化为二次函数的形 式,然后利用二次函数的性质找到根。
06 综合练习与提高
contents
目录
• 二次函数的基本概念 • 二次函数的性质 • 二次函数的应用 • 二次函数的解析式 • 二次函数与一元一次方程的关系 • 综合练习与提高
01 二次函数的基本 概念
二次函数的定义
总结词
二次函数是形如$y=ax^2+bx+c$的 函数,其中$a$、$b$、$c$为常数 ,且$a neq 0$。
详细描述
二次函数的一般形式是 $y=ax^2+bx+c$,其中$a$、$b$、 $c$是常数,且$a neq 0$。这个定义 表明二次函数具有一个自变量$x$,一 个因变量$y$,并且$x$的最高次数为 2。
二次函数的表达式
总结词
二次函数的表达式可以因形式多样而变化,但一般包括三个部分:常数项、一 次项和二次项。
02 二次函数的性质
二次函数的开口方向
总结词
二次函数的开口方向取决于二次 项系数a的正负。
详细描述
如果二次项系数a大于0,则抛物 线开口向上;如果二次项系数a小 于0,则抛物线开口向下。
二次函数的顶点
总结词
二次函数的顶点坐标为(-b/2a, c-b^2/4a)。
详细描述
二次函数的顶点是抛物线的最低点或最高点,其坐标为(-b/2a, c-b^2/4a),其中 a、b、c分别为二次项、一次项和常数项的系数。
解一元二次方程的方法包括公式法和 因式分解法等。
利用二次函数解决一元一次方程问题
当一元一次方程有重根时,可以通过构建二次函数来求解。
构建二次函数的方法是将一元一次方程转化为二次函数的形 式,然后利用二次函数的性质找到根。
06 综合练习与提高
初三数学复习《二次函数》(专题复习)PPT课件
面积问题
面积问题
在二次函数中,可以通过求函数与坐标轴的交点来计算图形的面积。例如,当函数与x轴交于两点时 ,可以计算这两点之间的面积;当函数与y轴交于一点时,可以计算这一点与原点之间的面积。这些 方法在解决实际问题时非常有用,例如在计算利润、产量等方面。
求解方法ቤተ መጻሕፍቲ ባይዱ
求出二次函数与x轴和y轴的交点坐标,然后根据这些坐标计算图形的面积。对于更复杂的问题,可能 需要使用积分或其他数学方法来求解。
05
综合练习与提高
基础练习题
巩固基础 覆盖全面 由浅入深
基础练习题主要针对二次函数的基本概念、性质和公 式进行设计,旨在帮助学生巩固基础知识,提高解题的 准确性和速度。
基础练习题应涵盖二次函数的各个方面,包括开口方 向、顶点坐标、对称轴、与坐标轴的交点等,确保学生 对二次函数有全面的了解。
题目难度应从易到难,逐步引导学生深入理解二次函 数,从简单的计算到复杂的综合题,逐步提高学生的解 题能力。
初三数学复习《二次函数》(专题复习)ppt课 件
目录 Contents
• 二次函数的基本概念 • 二次函数的解析式 • 二次函数的图像与性质 • 二次函数的实际应用 • 综合练习与提高
01
二次函数的基本概念
二次函数的定义
总结词
理解二次函数的定义是掌握其性 质和图像的基础。
详细描述
二次函数是形式为$f(x) = ax^2 + bx + c$的函数,其中$a, b, c$是 常数,且$a neq 0$。这个定义表 明二次函数具有两个变量$x$和 $y$,并且$x$的最高次数为2。
03
二次函数的图像与性质
开口方向
总结词:根据二次项系数a的正负判断开口方向 a>0时,开口向上
初三二次函数课件ppt课件
02
二次函数的解析式
一般式
总结词
最通用的二次函数形式,包含三个系数a、b和c。
详细描述
一般式为y=ax^2+bx+c,其中a、b和c为实数,且a≠0。它可以表示任意二次 函数,通过调整系数a、b和c的值,可以改变函数的形状、开口方向和大小。
顶点式
总结词
包含顶点坐标的二次函数形式。
详细描述
顶点式为y=a(x-h)^2+k,其中(h,k)为抛物线的顶点坐标。通过顶点式可以直接 读出顶点的坐标,并且可以快速判断抛物线的开口方向和对称轴。
伸缩变换
总结词
伸缩变换是指二次函数的图像在平面坐标系中沿x轴或y轴方向进行缩放。
详细描述
伸缩变换包括沿x轴方向的伸缩和沿y轴方向的伸缩。沿x轴方向的伸缩是指将图像在x轴方向上放大或 缩小,对应的函数变换是将x替换为kx(k>1表示放大,0<k<1表示缩小)。沿y轴方向的伸缩是指将图 像在y轴方向上放大或缩小,对应的函数变换是将y替换为ky(k>1表示放大,0<k<1表示缩小)。
利用二次函数求面积
详细描述
通过设定一个变量为常数,将 二次函数转化为一次函数,再 根据一次函数的性质求出面积 。
总结词
几何图形面积
详细描述
在几何图形中,如矩形、三角 形、圆等,可以利用二次函数
来求解面积。
生活中的二次函数问题
总结词
生活中的二次函数
总结词
实际应用案例
详细描述
在生活中,许多问题都可以用二次函数来 描述和解决,如速度、加速度、位移等物 理量之间的关系。
二次函数的图像
总结词
二次函数的图像是一个抛物线,其形 状由系数$a$决定。
初三二次函数课件ppt
详细描述
图像法是通过绘制二次函数的图 像,观察其开口方向、对称轴、 顶点坐标等特征,从而求解二次 函数的解析式。
05
实际应用案例
生活中的二次函数应用
自由落体运动
在物理学中,自由落体运动可以用二 次函数来描述。物体下落时,下落的 高度与时间的平方成正比,即h = 1/2gt^2,其中g是重力加速度。
一次函数的应用
一次函数可以用于解决一些实际问 题,如速度、成本、时间等。
一次函数与二次函数的关系
一次函数与二次函数的区别
一次函数是一条直线,而二次函数是一个抛物线。
一次函数与二次函数的联系
二次函数可以看作是由两个一次函数组成的,其中一个一次函数的系数为0。
二次函数的意义与重要性
二次函数的意义
二次函数是函数中的一种,一般形如y=ax^2+bx+c(a,b,c是常数,a≠0),其中x 是自变量,y是因变量。
二次函数的对称轴与开口方向
对称轴:直线$x = \frac{b}{2a}$,是二次函数图像
的对称轴
开口方向:取决于二次项系数a ,a>0时开口向上,a<0时开口
向下
以上是初三二次函数课件的相关 内容。
04
二次函数的求解方法
配方法
详细描述:配方法是通过配方的 方式,将二次函数的一般形式转 化为顶点式或直接用配方法求出 抛物线的顶点坐标及对称轴。
$y = a(x - x_{1})(x - x_{2})$
二次函数的图像性质
开口方向
取决于二次项系数a,a>0时开口向上,a<0时开口向下
对称轴
直线$x = -\frac{b}{2a}$
顶点坐标
$(-\frac{b}{2a}, f(-\frac{b}{2a}))$
图像法是通过绘制二次函数的图 像,观察其开口方向、对称轴、 顶点坐标等特征,从而求解二次 函数的解析式。
05
实际应用案例
生活中的二次函数应用
自由落体运动
在物理学中,自由落体运动可以用二 次函数来描述。物体下落时,下落的 高度与时间的平方成正比,即h = 1/2gt^2,其中g是重力加速度。
一次函数的应用
一次函数可以用于解决一些实际问 题,如速度、成本、时间等。
一次函数与二次函数的关系
一次函数与二次函数的区别
一次函数是一条直线,而二次函数是一个抛物线。
一次函数与二次函数的联系
二次函数可以看作是由两个一次函数组成的,其中一个一次函数的系数为0。
二次函数的意义与重要性
二次函数的意义
二次函数是函数中的一种,一般形如y=ax^2+bx+c(a,b,c是常数,a≠0),其中x 是自变量,y是因变量。
二次函数的对称轴与开口方向
对称轴:直线$x = \frac{b}{2a}$,是二次函数图像
的对称轴
开口方向:取决于二次项系数a ,a>0时开口向上,a<0时开口
向下
以上是初三二次函数课件的相关 内容。
04
二次函数的求解方法
配方法
详细描述:配方法是通过配方的 方式,将二次函数的一般形式转 化为顶点式或直接用配方法求出 抛物线的顶点坐标及对称轴。
$y = a(x - x_{1})(x - x_{2})$
二次函数的图像性质
开口方向
取决于二次项系数a,a>0时开口向上,a<0时开口向下
对称轴
直线$x = -\frac{b}{2a}$
顶点坐标
$(-\frac{b}{2a}, f(-\frac{b}{2a}))$
初三二次函数ppt课件ppt课件ppt课件
03
二次函数的图像变换
平移变换
总结词
平移变换是指二次函数的图像在平面坐标系 中沿x轴或y轴方向进行移动。
详细描述
平移变换包括沿x轴方向的左移和右移,以 及沿y轴方向的上移和下移。对于一般形式 的二次函数y=ax^2+bx+c,当b≠0时,图 像为抛物线。当b>0时,图像向右平移b/2a个单位;当b<0时,图像向左平移 |b|/2a个单位。
总结词
顶点式二次函数解析式是y=a(xh)^2+k,其中(h,k)为函数的顶点。
详细描述
顶点式二次函数解析式表示的是一个 开口向上或向下的抛物线,其顶点为 (h,k)。该形式简化了函数的对称轴和 顶点,便于分析函数的性质。
交点式二次函数解析式
总结词
交点式二次函数解析式是y=a(x-x1)(x-x2),其中x1、x2为函数与x轴的交点。
02
二次函数的解析式
一般二次函数解析式
总结词
一般二次函数解析式是y=ax^2+bx+c,其中a、b、c为常数 ,且a≠0。
详细描述
一般二次函数解析式是二次函数的基本形式,它可以表示任 意二次函数。其中a控制函数的开口方向和开口大小,b控制 函数的对称轴,c为函数与y轴的交点。
顶点式二次函数解析式
值的变化。
04
二次函数的实际应用
最大利润问题
总结词
通过建立二次函数模型,解决最大利润问题。
详细描述
在生产和经营过程中,常常需要寻求最大利润。通过将实际问题转化为数学模型,利用二次函数求导 数的方法,可以找到获得最大利润的条件和对应的最大利润值。
抛物线形拱桥问题
总结词
利用二次函数解析式表示抛物线形拱桥的形 状,进而解决相关问题。
中考数学专题《二次函数》复习课件(共54张PPT)
当x b 时, y最小值为 4ac b2
2a
4a
y=ax2+bx+c(a<0)
b 2a
,
4ac 4a
b2
直线x b
2a
由a,b和c的符号确定
a<0,开口向下
在对称轴的左侧,y随着x的增大而增大. 在对 称轴的右侧, y随着x的增大而减小.
当x b 时, y最大值为 4ac b2
2a
例1: 已知二次函数 y 1 x2 x 3
2
2
(1)求抛物线开口方向,对称轴和顶点M的坐标。
(2)设抛物线与y轴交于C点,与x轴交于A、B两
点,求C,A,B的坐标。
(3)x为何值时,y随的增大而减少,x为何值时,
y有最大(小)值,这个最大(小)值是多少?
(4)x为何值时,y<0?x为何值时,y>0?
写出满足此条件的抛物线的解析式.
解:抛物线y=ax2+bx+c与抛物线y=-x2-3x+7的形状相同
a=1或-1 又顶点在直线x=1上,且顶点到x轴的距离为5,
二次函数复习
二次函数知识点:
• 1、二次函数的定义 • 2、二次函数的图像及性质 • 3、求解析式的三种方法 • 4、a,b,c及相关符号的确定 • 5、抛物线的平移 • 6、二次函数与一元二次方程的关系 • 7、二次函数的应用题 • 8、二次函数的综合运用
1、二次函数的定义
• 定义: y=ax² + bx + c ( a 、 b 、 c 是常数, a ≠ 0)
a= ___. -2
2、二次函数的图像及性质
y
y
0
x
0
x
抛物线 顶点坐标 对称轴
(新)初三数学中考复习二次函数的应用复习课PPT幻灯片(32页)
一、二次函数与方程、不等式
(新)初三数学中考复习:二次函数 的应用 复习课 教学PPT-(32页)-PPT执教课件【推荐 】
(形)
(数)
解法一:观察图像,
(新)初三数学中考复习:二次函数 的应用 复习课 教学PPT-(32页)-PPT执教课件【推荐 】
一、二次函数与方程、不等式
(新)初三数学中考复习:二次函数 的应用 复习课 教学PPT-(32页)-PPT执教课件【推荐 】
一、二次函数与方程、不等式
(新)初三数学中考复习:二次函数 的应用 复习课 教学PPT-(32页)-PPT执教课件【推荐 】
(新)初三数学中考复习:二次函数 的应用 复习课 教学PPT-(32页)-PPT执教课件【推荐 】
三、典型例题分析
(新)初三数学中考复习:二次函数 的应用 复习课 教学PPT-(32页)-PPT执教课件【推荐 】
➢ 认识从函数角度看二次方程、不等式的联系 ➢ 抛物线与直线交点是关键点。
(新)初三数学中考复习:二次函数 的应用 复习课 教学PPT-(32页)-PPT执教课件【推荐 】 (新)初三数学中考复习:二次函数 的应用 复习课 教学PPT-(32页)-PPT执教课件【推荐 】
(新)初三数学中考复习:二次函数 的应用 复习课 教学PPT-(32页)-PPT执教课件【推荐 】
(新)初三数学中考复习:二次函数 的应用 复习课 教学PPT-(32页)-PPT执教课件【推荐 】
(新)初三数学中考复习:二次函数 的应用 复习课 教学PPT-(32页)-PPT执教课件【推荐 】
(形)
(数)
解法一:观察图像,
(新)初三数学中考复习:二次函数 的应用 复习课 教学PPT-(32页)-PPT执教课件【推荐 】
二次函数应PPT课件
y = (20 - x)(300 + 18x) = -18x2 + 60x + 6000
当答x:定 2价ba 为 535时8 1,y元最大时,利18润 最53 大2 ,60最大53 利6润000为66005500元 3
由(1)(2)的讨论及现在的销售 情况,你知道应该如何定价能
使利润最大了吗?
(1)列出二次函数的解析式,并根 据自变量的实际意义,确定自变量的 取值范围; (2)在自变量的取值范围内,运用 公式法或通过配方求出二次函数的最 大值或最小值。
-2
55 6 7 8 9 10
X
用抛物线的知识解决运动场上或者生活 中的一些实际问题的一般步骤:
建立直角坐标系
二次函数
问题求解
找出实际问题的答案
y
解:设这条抛物线表示的二次
函数为 y ax2
0
由抛物线经过点(-2,2),
x
可得 a 1
2
(-2,-2)
(2,-2)
所以,这条抛物线的二次函数
●
部分,这条抛物线的顶
点是函数图像的最高点,
也就是说当x取顶点坐
标的横坐标时,这个函
数有最大值。由公式可
30
x \ 元 以求出顶点的横坐标.
做一做
在降价的情况下,最大利润是多少? 请你参考(1)的过程得出答案。
解:设降价x元时利润最大,则每星期可多卖18x件,实 际卖出(300+18x)件,每件的利润为 (20-x)因此,得利润
二次函数的实际应用
1.二次函数的概念:
形如y=ax2+bx+c (a,b,c是常数, a≠0)的函数叫做二次函数
自变量x的取值范围是:任意实数
13、二次函数的综合与应用PPT课件
(3)已知-6≤k≤6,若平移后抛物线的对称 轴与x轴交于点Ak,以AkPk为边向右作正方形 AkPkBkCk,判断正方形的顶点Bk是否恰好是其 他的“整数系列抛物线”上的点,若恰好 是,求出该整数k的值;若不存在,说明理 由.
中考新突破 · 数学(江西)
知识要点 · 归纳
三年中考 · 讲练
202X权威 · 预测
第一部分 教材同步复习
9
②依题意得,∠AkBkBk+1=∠AmBmBm+1=90°, 有两种情况:i)当 Rt△AkBkBk+1∽Rt△AmBmBm+1 时, AAmkBBkm=BBmkBBkm++11,121222mk--33=1212mk ,(12)2k-2m=(12)k-m, 所以,k=m(舍去), ii)当 Rt△AkBkBk+1∽Rt△Bm+1BmAm 时, BmA+kB1kBm=BBkBmkA+m1,12212k-m 3=12212m-k 3,(12)2k-3-m=(12)k-2m+3,∴k+m=6,
中考新突破 · 数学(江西)
知识要点 · 归纳
三年中考 · 讲练
202X权威 · 预测
第一部分 教材同步复习
7
【思路点拨】 本题考查二次函数综合题.(1)直接把点 A1 的坐标代入 y=ax2 求出 a 的值;(2)由题意可知:A1B1 是点 A1 的纵坐标:则 A1B1=2×12=2;A2B2 是点 A2 的纵坐标:则 A2B2=2×(12)2=12;…则 AnBn=2x2=2×[( 12)n-1]2=(12)2n-3;B1B2 =1-12=12,B2B3=12-(12)2=14=(12)2,…,BnBn+1=(12)n;(3)①当 AnBn=BnBn+1 时, Rt△AnBnBn+1 是等腰三角形; ②因为 Rt△AkBkBk+1 与 Rt△AmBmBm+1 是直角 三角形,所以分两种情况讨论:根据(2)的结论代入所得的对应边的比例式,计算求 出 k 与 m 的关系,并与 1≤k<m≤n(k,m 均为正整数)相结合,得出两种符合条件 的值,分别代入两相似直角三角形计算相似比.
中考新突破 · 数学(江西)
知识要点 · 归纳
三年中考 · 讲练
202X权威 · 预测
第一部分 教材同步复习
9
②依题意得,∠AkBkBk+1=∠AmBmBm+1=90°, 有两种情况:i)当 Rt△AkBkBk+1∽Rt△AmBmBm+1 时, AAmkBBkm=BBmkBBkm++11,121222mk--33=1212mk ,(12)2k-2m=(12)k-m, 所以,k=m(舍去), ii)当 Rt△AkBkBk+1∽Rt△Bm+1BmAm 时, BmA+kB1kBm=BBkBmkA+m1,12212k-m 3=12212m-k 3,(12)2k-3-m=(12)k-2m+3,∴k+m=6,
中考新突破 · 数学(江西)
知识要点 · 归纳
三年中考 · 讲练
202X权威 · 预测
第一部分 教材同步复习
7
【思路点拨】 本题考查二次函数综合题.(1)直接把点 A1 的坐标代入 y=ax2 求出 a 的值;(2)由题意可知:A1B1 是点 A1 的纵坐标:则 A1B1=2×12=2;A2B2 是点 A2 的纵坐标:则 A2B2=2×(12)2=12;…则 AnBn=2x2=2×[( 12)n-1]2=(12)2n-3;B1B2 =1-12=12,B2B3=12-(12)2=14=(12)2,…,BnBn+1=(12)n;(3)①当 AnBn=BnBn+1 时, Rt△AnBnBn+1 是等腰三角形; ②因为 Rt△AkBkBk+1 与 Rt△AmBmBm+1 是直角 三角形,所以分两种情况讨论:根据(2)的结论代入所得的对应边的比例式,计算求 出 k 与 m 的关系,并与 1≤k<m≤n(k,m 均为正整数)相结合,得出两种符合条件 的值,分别代入两相似直角三角形计算相似比.
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
形式二 已知顶点和任意一点坐标 练习2 已知二次函数的图象以A(-1,4)为顶点,且过点B(2,-5),求该 抛物线的表达式. 解:由顶点A(-1,4),可设二次函数表达式为y=a(x+1)2+4(a≠0). ∵二次函数的图象过点B(2,-5), ∴-5=a(2+1)2+4, 解得a=-1, ∴二次函数的表达式是y=-(x+1)2+4.
2
(2)将该抛物线平移后得到抛物线C1,且其正好经过A、O两点,求出平移
后的抛物线的表达式;
【解题思路】根据函数平移的规律,可知a不变,设出平移后的抛物线表
达式,将点A、O坐标代入表达式即可求解.
解:根据平移的性质可得,抛物线平移后图象的开口方向和开口大小不
变,即a=-
1 2
,
设平移后的抛物线表达式为y=- 1 x2+b′x+c′,
综上可得,点Q的坐标为Q1(1,1),Q2(1,11 ),Q3(1,- 11 ),
Q4(1,4+ 19 ),Q5(1,4- 19 );
(5)连接AC,点M在线段AC上,连接OM,若△COM为等腰三角形,确定 点M的坐标; 【方法指导】要使△COM为等腰三角形,则只需满足三边有任意两边相 等即可.分OC=OM、CO=CM、MC=MO三种情况讨论,注意结果要 符合题目条件“点M在线段AC上”. 解:存在M点,使△COM为等腰三角形. 如解图②,连接AC, 设线段AC的表达式为y=kx+d,
解:∵P(m,0), 则OP=|m|,BP=|2+m|. 在Rt△COP中,CP= OC2 OP2 42 m2 16 m2 . ∵CP=BP,即m2+16=(2+m)2, 解得m=3;
(4)在原抛物线的对称轴上,是否存在一点Q,使得△QBC为等腰三角形?
若存在,求出点Q的坐标;若不存在,请说明理由;
例1题解图①
当BQ=CQ时,32+n2=12+(n-4)2, 解得n=1,即Q1(1,1);当BQ=BC=2 5 时,32+n2=20, 解得n=± 11 ,∴Q2(1,11),Q3(1,- 11 ); 当CQ=BC=2 5 时, 12+(n-4)2=20, 解得n=4± 19, ∴Q4(1,4+ 19 ),Q5(1,4- 19 ).
未给出
对称轴为直线x=h
当已知抛物线与x轴的两个交点坐标或对称轴、抛物线与x
轴的一个交点时,通常设表达式为y=a(x-x1)(x-x2)(a≠0), 其中抛物线与x轴交点为(x1,0),(x2,0)
二、二次函数综合题
类型一 二次函数与特殊三角形判定 例 1 如图①,抛物线y=ax2+bx+c(a≠0)与x轴交于A(4,0)、B(-2,0) 两点,与y轴交于点C(0,4). (1)求该抛物线的表达式和对称轴;
练习3 如图,在平面直角坐标系中,抛物线与x轴交于A、B两点(A在B的
左侧),与y轴交于点C(0,4),顶点为(1,9 ),求抛物线的表达式.
2
解:设抛物线的表达式为y=a(x-1)2+9 ,
把C(0,4)代入得a(0-1)2+
9 2
=4,
2
解得a=-
1 2
,
∴y=-
1 2
(x-1)2+
9 2
.
练习3题图
2
将点A(4,0),O(0,0)代入,得
8 4b ' c ' 0 c ' 0
,解得
b ' 2 c ' 0
,
则平移后的抛物线表达式为y=-1 x2+2x;
2
(3)点P(m,0)是线段AB上的一点,连接CP,若CP=BP,求m的值; 【解题思路】用含有m的代数式表示出CP和BP,根据CP=BP,列方程 求解即可.
∴抛物线的表达式为y=2x2+3x-4.
满分技法 待定系数法求表达式方法如下:
表达式已给出
找出抛物线上的两个点或三个点坐标代入即可
当已知抛物线上任意三点时,通常设抛物线的表达式为y= ax2+bx+c(a≠0) 当已知抛物线的顶点坐标或对称轴及最大(小)值时,通常
表达式 设表达式为y=a(x-h)2+k(a≠0),其中顶点坐标为(h,k),
例1题图①
解:(1)∵抛物线经过点A、B、C,把点A(4,0),B(-2,0),C(0,4)代
入y=ax2+bx+c中,
得 146aa24bbcc00,解得
a
1 2
b 1
,
c 4
c 4
∴该抛物线的表达式为y=- 1 x2+x+4. 2
由抛物线与x轴交于点A(4,0),B(-2,0),可得对称轴为直线x= 4 2 =1;
其顶点式为y=(x-1)2-4,故其顶点坐标为(1,-4).
练习4题图
练习5 已知抛物线y=-x2+bx+c经过点B(-1,0)和点C(2,3),求此抛 物线的表达式.
解:将点B(-1,0)、C(2,3)代入y=-x2+bx+c,
得14
bc 2b
0 c3
,解得
b 2 c 3
,
∴此抛物线的表达式为y=-x2+2x+3.
形式四 已知任意三点坐标 练习6 已知二次函数的图象经过点(-1,-5)、(0,-4)和(1,1),求二 次函数表达式.
解:设抛物线的表达式为y=ax2+bx+c,将(-1,-5)、(0,-4)、(1,1)
5 a b c
a 2
代入,得 4 c
,解得 b 3
,
1 a b c
c 4
【方法指导】要使得△QBC为等腰三角形,则只需满足三边中有任意两
边相等即可.分BQ=CQ、BC=BQ和BC=CQ三种情况进行讨论.
解:存在Q点,使△QBC为等腰三角形.
如解图①,连接BC,设Q(1,n),
BC= OB2 OC2 22 42 2 5 ,
BQ= 32 n2 ,
CQ= 12 (n 4)2 ,
第三章 函 数
第六节 二次函数的综合应用
重难点突破
一、二次函数解析式的确定
形式一 已知顶点坐标和系数a、b、c中的一个 练习1 已知抛物线y=x2-2bx+c,若抛物线的顶点坐标为(2,-3),求b, c的值.
解:∵抛物线表达式为y=x2-2bx+c,∴a=1, ∵抛物线的顶点坐标为(2,-3),∴y=(x-2)2-3, ∴y=x2-4x+1,∴b=2,c=1.
形式三 已知两点坐标和系数a、b、c中的一个 练习4 如图,已知抛物线y=x2+bx+c经过A(-1,0)、B(3,0)两点,求 抛物线的表达式和顶点坐标.
解:把A(-1,0)、B(3,0)分别代入y=x2+bx+c中,
得19b3b ccBiblioteka 0 ,解得0
b 2 c 3
,
∴抛物线的表达式为y=x2-2x-3,