线段与角的和差倍分计算
新人教版初中数学七年级上学期《角》知识点讲解及例题解析
![新人教版初中数学七年级上学期《角》知识点讲解及例题解析](https://img.taocdn.com/s3/m/6a643ea2f01dc281e43af0b4.png)
《角》知识讲解及例题解析【学习目标】1.掌握角的概念及角的表示方法,并能进行角度的互换;2. 借助三角尺画一些特殊角,掌握角大小的比较方法;3.会利用角平分线的意义进行有关表示或计算;4. 掌握角的和、差、倍、分关系,并会进行有关计算.【要点梳理】要点一、角的概念1.角的定义:(1)定义一:有公共端点的两条射线组成的图形叫做角,这个公共端点是角的顶点,这两条射线是角的两条边.如图1所示,角的顶点是点O,边是射线OA、OB.图1 图2(2)定义二:一条射线绕着它的端点旋转而形成的图形,射线旋转时经过的平面部分是角的内部.如图2所示,射线OA绕它的端点O旋转到OB的位置时,形成的图形叫做角,起始位置OA是角的始边,终止位置OB是角的终边.要点诠释:(1)两条射线有公共端点,即角的顶点;角的边是射线;角的大小与角的两边的长短无关.(2)平角与周角:如图1所示射线OA绕点O旋转,当终止位置OB和起始位置OA成一条直线时,所形成的角叫做平角,如图2所示继续旋转,OB和OA重合时,所形成的角叫做周角.2.角的表示法:角的几何符号用“∠”表示,角的表示法通常有以下四种:要点诠释:用数字或小写希腊字母表示角时,要在靠近角的顶点处加上弧线,且注上阿拉伯数字或小写希腊字母.3.角的画法(1)用三角板可以画出30°、45°、60°、90°等特殊角.(2)用量角器可以画出任意给定度数的角.(3)利用尺规作图可以画一个角等于已知角.要点二、角度制及其换算角的度量单位是度、分、秒,把一个周角平均分成360等份,每一份就是1°的角,1°的160为1分,记作“1′”,1′的160为1秒,记作“1″”.这种以度、分、秒为单位的角的度量制,叫做角度制.1周角=360°,1平角=180°,1°=60′,1′=60″.要点诠释:在进行有关度分秒的计算时,要按级进行,即分别按度、分、秒计算,不够减,不够除的要借位,从高一位借的单位要化为低位的单位后再进行运算,在相乘或相加时,当低位得数大于60时要向高一位进位.要点三、角的比较与运算1.角的比较角的大小比较与线段的大小比较相类似,方法有两种.方法1:度量比较法.先用量角器量出角的度数,然后比较它们的大小.方法2:叠合比较法.把其中的一个角移到另一个角上作比较.如比较∠AOB和∠A′O′B′的大小:如下图,由图(1)可得∠AOB<∠A′O′B′;由图(2)可得∠AOB =∠A′O′B′;由图(3)可得∠AOB>∠A′O′B′.2.角的和、差运算如图所示,∠AOB是∠1与∠2的和,记作:∠AOB=∠1+∠2;∠1是∠AOB与∠2的差,记作:∠1=∠AOB-∠2.要点诠释:(1)用量角器量角和画角的一般步骤:①对中(角的顶点与量角器的中心对齐);②重合(一边与刻度尺上的零度线重合);③读数(读出另一边所在线的度数).(2) 利用三角板除了可以做出30°、45°、60°、90°外,根据角的和、差关系,还可以画出15°,75°,105°,120°,135°,150°,165°的角.3.角平分线从一个角的顶点出发,把这个角分成相等的两个角的射线,叫做这个角的平分线.如图所示,OC是∠AOB的角平分线,∠AOB=2∠AOC=2∠BOC,∠AOC=∠BOC =12∠AOB.要点诠释:由角平分线的概念产生的合情推理其思维框架与线段中点的思维框架一样.要点四、方位角在航行和测绘等工作中,经常要用到表示方向的角.例如,图中射线OA的方向是北偏东60°;射线OB的方向是南偏西30°.这里的“北偏东60°”和“南偏西30°”表示方向的角,就叫做方位角.要点诠释:(1)正东,正西,正南,正北4个方向不需要用角度来表示.(2)方位角必须以正北和正南方向作为“基准”,“北偏东60°”一般不说成“东偏北30°”.(3)在同一问题中观察点可能不止一个,在不同的观测点都要画出表示方向的“十字线”,确定其观察点的正东、正西、正南、正北的方向.(4)图中的点O是观测点,所有方向线(射线)都必须以O为端点.要点五、钟表上有关夹角问题钟表中共有12个大格,把周角12等分、每个大格对应30°的角,分针1分钟转6°,时针每小时转30°,时针1分钟转0.5°,利用这些关系,可帮助我们解决钟表中角度的计算问题.【典型例题】类型一、角的概念1. 利用一副三角板上的角,能画出多少个小于180°的角,试一一画出来.【思路点拨】首先发现一副三角板上有30°,45°,60°,90°这样4个不相等的角,利用这些角进行一次和差,可得小于180°的所有角.【答案与解析】解:除了可以画30°,45°,60°,90°外,还可画15°,75°,105°,120°,135°,150°,165°的七个度数的角,画法如图所示.【总结升华】利用一副三角板共可以画出11个度数的角,分别是:30°,45°,60°,90°,15°,75°,105°,120°,135°,150°,165°.举一反三:【变式】下列说法中,正确的是()A.两条射线组成的图形叫做角B.有公共端点的两条线段组成的图形叫做角C.角可以看做是由一条射线绕着它的端点旋转而形成的图形D.角可以看做是由一条线段绕着它的端点旋转而形成的图形【答案】C.类型二、角度制的换算2. 计算下列各题:(1)152°49′12″+20.18°; (2)82°-36°42′15″;(3)35°36′47″×9; (4)41°37′÷3.【答案与解析】解:(1)解法一:∵ 20.18°=20°10′48″即:152°49′12″+20.18°=173°.解法二:∵ 152°49′12″=152.82°,∴ 152.82°+20.18°=173°.即:152°49′12″+20.18°=173°.(2)将82°化为81°59′60″,则∴ 82°-36°42′15″=45°17′45″.423″=7′3″, 324′+7′=5°31′,∴ 35°36′47″×9=320°31′3″.∴ 41°37′÷3=13°52′20″.【总结升华】在角度的和、差运算中应先统一单位,都化成度或分、秒表示,然后进行计算;在进行乘法运算时,往往先把度、分、秒分别乘以倍数,将结果满60″进1′,满60′进1°;对于除法运算则是从度开始除,将余数化为分和以前的分数相加再除,将余数再化成秒和以前的秒数相加再除,若除不尽往往四舍五入.举一反三:【变式】计算:(1)23°45′36″+66°14′24″;(2)180°-98°24′30″;(3)15°50′42″×3; (4)88°14′48″÷4.【答案】(1)23°45′36″+66°14′24″=90°;(2)180°-98°24′30″=81°35′30″;(3)15°50′42″×3=47°32′6″;(4)88°14′48″÷4=22°3′42″.类型三、角的比较与运算3. 如图所示表示两块三角板.(1)用叠合法比较∠1,∠α,∠2的大小;(2)量出图中各角的度数,并把图中的6个角从小到大排列,然后用“<”或“=”连接.【答案与解析】解:(1)如图所示,把两块三角板叠在一起,可得∠1>∠α,用同样的方法,可得∠α<∠2.所以∠2=∠1>∠α.(2)用量角器量出图中各个角的度数,分别是∠1=∠2=45°,∠3=90°,∠α=30°,∠β=60°,∠γ=90°,把它们从小到大排列,有∠α<∠1=∠2<∠β<∠3=∠γ.【总结升华】比较角的大小有叠合法和度量法两种:①先将两个角的顶点与顶点重合,一条边与一条边重合再比较.②先量出每个角的度数,然后按它们的度数来比较.举一反三:【变式】如图,∠AOB的平分线OM,ON为∠MOA内的一条射线,OG为∠AOB外的一条射线.某同学经过认真分析,得到一个关系式是∠MON=12(∠BON-∠AON),你认为这个同学得到的关系式正确吗?若正确,请把得到这个结论的过程写出来.【答案】解:正确,理由如下:∵∠AOB的平分线OM,∴∠AOM=∠MOB又∵∠MON=∠AOM-∠AON=∠MOB-∠AON=(∠BON-∠MON) -∠AON 即有∠MON=∠BON-∠MON -∠AON∴ 2∠MON=∠BON-∠AON∴∠MON=12(∠BON-∠AON)4. 如图,∠AOB=90°,∠AOC=30°,且OM平分∠BOC,ON平分∠AOC,(1)求∠MON的度数;(2)若∠AOB=α其他条件不变,求∠MON的度数;(3)若∠AOC=β(β为锐角)其他条件不变,求∠MON的度数;(4)从上面结果中看出有什么规律?【思路点拨】(1)要求∠MON,即求∠COM﹣∠CON,再根据角平分线的概念分别进行计算即可求得;(2)和(3)均根据(1)的计算方法进行推导即可.(4)根据(2)和(3)中的结论进行总结.【答案与解析】解:(1)∵∠AOB=90°,∠AOC=30°,∴∠BOC=120°∵OM平分∠BOC,ON平分∠AOC∴∠COM=60°,∠CON=15°∴∠MON=∠COM﹣∠CON=45°.(2)∵∠AOB=α,∠AOC=30°,∴∠BOC=α+30°∵OM平分∠BOC,ON平分∠AOC∴∠COM=+15°,∠CON=15°∴∠MON=∠COM﹣∠CON=.(3)∵∠AOB=90°,∠AOC=β,∴∠BOC=90°+β∵OM平分∠BOC,ON平分∠AOC∴∠COM=45°+,∠CON=.∴∠MON=∠COM ﹣∠CON=45°. (4)从上面的结果中,发现:∠MON 的大小只和∠AOB 得大小有关,与∠A0C 的大小无关.【总结升华】能够结合图形表示角之间的和差关系,根据角平分线的概念运用几何式子表示角之间的倍分关系.举一反三:【变式】如图,已知O 是直线AC 上一点,OD 平分∠AOB ,OE 在∠BOC 内,且∠BOE =12∠EOC ,∠DOE =70°,求∠EOC 的度数.【答案】解:设∠EOC=x °,则∠BOE =12∠EOC =12x °,根据题意可得:1180127022x xx --+= ,解得: 80x = .∠EOC =2∠BOE =80°. 类型四、方位角5.已知小岛A 位于基地O 的东南方向,货船B 位于基地O 的北偏东50°方向,那么∠AOB 的度数等于 . 【答案】85°. 【解析】解:如图:∵∠2=50°,∴∠3=40°, ∵∠1=45°,∴∠AOB=∠1+∠3=45°+40°=85°, 故答案为:85°.【总结升华】本题主要考查了方位角的概念,根据方位角的概念,画图正确表示出A ,B 的方位,注意东南方向是45度是解答此题的关键. 类型五、钟表上有关夹角问题6. 在7时到7时10分之间的什么时刻,时针与分针成一条直线? 【答案与解析】解:设7时x 分钟,时针与分针成一条直线,由题意得:16302x x -=,5511x =. 答:7时5511分钟时针与分针成一条直线.【总结升华】时钟上的分针与时针绕着中心顺时针均匀转动,在不同时刻,两针之间形成一定的角度.如果把单位时间分针和时针转过的度数当作它们的速度则: ① 分针的速度为36060=6°/分;②时针的速度为3060°分=0.5°/分. 故分针速度是时针速度的12倍. 举一反三:【变式】某人下午6点多外出购物,表上的时针和分针的夹角恰为110°,下午7点前回家时,发现表上的时针和分针的夹角又是110°,试算出此人外出用了多长时间? 【答案】解:设此人外出用了x 分钟,则分针转了6x 度,时针转了0.5x 度.根据题意得:6x-0.5x =110×2,解之得x =40. 答:此人外出购物用了40分钟的时间.。
最新2024人教版七年级数学上册6.3.2 角的比较与运算--教案
![最新2024人教版七年级数学上册6.3.2 角的比较与运算--教案](https://img.taocdn.com/s3/m/1f176da4fbb069dc5022aaea998fcc22bcd14386.png)
6.3 角6.3.2 角的比较与运算主要师生活动一、复习导入师生活动:教师引导学生回忆与梳理线段的知识点,然后告诉学生这节课我们学习角可以类比线段学习,比如上节课学习的定义,到表示方法,这节课也会学习大小比较和运算,同学们可以思考能否也通过叠合法和度量法比较大小,运算是否也是计算角的和差倍分的关系.二、探究新知知识点一:角的比较类比线段长短的比较,你认为该如何比较两个角的大小?师生活动:学生先自主思考并小组交流,再由小组代表发言,预测会有两种方法,度量法和叠合法.教师引导和规范学生操作步骤,得出结果如下:度量法:因为55°>40°,所以∠1>∠2.叠合法:想一想:你能用图形和几何语言说明两个角的大小关系吗(两个角分别记作∠AOB,∠A'O'B' )?师生活动:学生画出图形,并用符号表示,指出两个角的大小关系有且仅有三种情况.知识点二:角的运算探究1:如图,图中共有几个角?它们之间有什么关系?师生活动:预测学生能确定角的个数,明确角之间的和差关系如下:3个:∠AOB、∠AOC、∠BOC∠AOC =∠AOB +∠BOC∠AOB =∠AOC-∠BOC∠BOC =∠AOC -∠AOB教师关注学生是否能发现角的和差关系,教师可引导学生类比线段的和与差,发现角的和差关系.然后教师引导学生总结:共顶点的几个角,可进行加减.探究2 :如图,借助三角尺画出15°,75°的角.用一副三角尺,你还能画出哪些度数的角?试一试.师生活动:学生动手操作,小组合作探究,师生归纳,如下:用三角尺画特殊角,关键在于把它写成30°,45°,60°,90°角的和或差.凡是15的整数倍的角,都能用三角尺画出,而能用三角尺画出的,也只限于这样的角.例题精析:例1 如图,O是直线AB上一点,∠AOC = 53°17′,求∠BOC的度数.师生活动:学生独立思考,请学生代表发言,教师予以适当的评价并整理板书.解:由题意可知,∠AOB是平角,∠AOB =∠AOC +∠BOC所以∠BOC =∠AOB-∠AOC= 180° - 53°17′= 126°43′总结:∠同单位加减(度与度、分与分、秒与秒分别相加、减);∠度分秒是60进制(相加时逢60要进位,相减时要借1作60).师生活动:教师引导学生思考与总结解题思路与过程.知识点3:角平分线探究3:你能在∠AOC内找一条射线OB,使∠AOB =∠BOC吗?师生活动:教师提问,学生自主思考,教师巡堂指导,预测会有不同方法,教师可让这些学生代表分别展示,预测两种方法(如下):对折法:生巩固角的和与差概念外,也使学生对这些特殊角的大小有直观的认识,培养对角的大小的估计能力和动手操作能力,加深学生对角的认识.设计意图:通过题目锻炼学生运算能力,初步学习几何语言在解题中的运用,体会几何与代数之间的联系与不同,加深学生的数形结合思想.设计意图:从角的和差问题中,将射线OB的位置特殊化,并类比线段的中点,引出角的平分线的概念,不仅知识的产生、发展自然连续,也体现了由一般到特殊,由特殊到一般的研究方法,同时,也能建立知识间的联系,完善认知结构.度量法:教师追问:同学们知道图中三个角的数量关系吗?学生思考,学生代表回答,师生共同总结与填空.教师再以此引出角平分线的定义.定义总结:师生活动:教师讲解,再让学生朗读定义,加深印象.类比:仿照角平分线的结论,你能写出角的三等分线的结论吗?师生活动:学生独立思考,由学生代表发言,教师予以适当评价,帮助学生正确规范完成几何书写.例2 把一个周角7等分,每一份是多少度的角(精确到分)?师生活动:学生独立思考,由学生代表发言,教师与学生共同完成板书:解:360°÷7 = 51°+ 3°÷7= 51°+ 180′÷7≈51°26′答:每份是51°26′的角.教师引导学生总结:注意度、分、秒是60进制的,要把剩余的度数化成分.设计意图:进一步明晰角平分线的概念,为后续学习轴对称和研究有关图形的翻折问题打下基础.设计意图:通过类比让学生学会举一反三,体会几何知识的关联性,巩固几何语言的书写.设计意图:通过题目帮助学生巩固角平分线的知识与角的运算,提高学生的识图能力和运算能力.又通过思考题启发学生思考其他可能性,建立分类讨论思想,养成严谨思考的习惯.三、当堂练习例3 如图OC是∠AOB的平分线,OB是∠COD的三等平分线,∠BOD = 15°.则∠AOB等于( )A. 75B. 70C. 65D. 60师生活动:学生独立思考,学生代表发言,教师适时评价与引导.思考:除此题所给图片的情况,你还能想出其他情况与答案吗?师生活动:学生独立思考,学生代表上台展示,教师予以评价与指导,得出另一种结果,∠AOB = 15°.三、当堂练习1. 比较大小:60°25′60.25°(填“>”,“<”或“=”).2. 计算:(1) 180° - 98°24′30″(2) 62°24′17″×43. 如图,OB是∠AOC的平分线,OD是∠COE的平分线,若∠AOB = 50°,∠DOE = 30°,那么∠BOD是多少度?设计意图:通过练习巩固角的大小比较.设计意图:通过练习巩固角度的运算.设计意图:通过练习强化试图能力和运算能力.板书设计角的比较与运算一、角的概念二、角的表示三、角的度量和单位教师与学生一起回顾本节课所学的主要内容,梳理并完善知识思维导图.数形结合,培养识图能力。
第三讲--线段的和差倍分问题
![第三讲--线段的和差倍分问题](https://img.taocdn.com/s3/m/6c114699fd0a79563c1e72f0.png)
如图,在四边形ABCD中,∠B+∠D=180°,CB=CD,∠BCD=140°,以C为顶点作一个70°角,角的两边分别交AB,AD于E、F两点,连接EF,探索线段BE,DF,EF之间的数量关系,并加以证明.(3)解:BE+DF=EF;理由如下:延长AB至点N,使BN=DF,连接CN,如图3所示:∵∠ABC+∠D=180°,∠NBC+∠ABC=180°,∴∠NBC=∠D,在△NBC和△FDC中,,∴△NBC≌△FDC(SAS),∴CN=CF,∠NCB=∠FCD,∵∠BCD=140°,∠ECF=70°,∴∠BCE+∠FCD=70°,∴∠ECN=70°=∠ECF,在△NCE和△FCE中,,∴△NCE≌△FCE(SAS),∴EN=EF,∵BE+BN=EN,∴BE+DF=EF.26.已知:点P是平行四边形ABCD对角线AC所在直线上的一个动点(点P不与点A、C重合),分别过点A、C 向直线BP作垂线,垂足分别为点E、F,点O为AC的中点.(1)当点P与点O重合时如图1,易证OE=OF(不需证明)(2)直线BP绕点B逆时针方向旋转,当∠OFE=30°时,如图2、图3的位置,猜想线段CF、AE、OE之间有怎样的数量关系?请写出你对图2、图3的猜想,并选择一种情况给予证明.【考点】四边形综合题.【分析】(1)由△AOE≌△COF即可得出结论.(2)图2中的结论为:CF=OE+AE,延长EO交CF于点G,只要证明△EOA≌△GOC,△OFG是等边三角形,即可解决问题.图3中的结论为:CF=OE﹣AE,延长EO交FC的延长线于点G,证明方法类似.【解答】解:(1)∵AE⊥PB,CF⊥BP,∴∠AEO=∠CFO=90°,在△AEO和△CFO中,,∴△AOE≌△COF,∴OE=OF.(2)图2中的结论为:CF=OE+AE.图3中的结论为:CF=OE﹣AE.选图2中的结论证明如下:延长EO交CF于点G,∵AE⊥BP,CF⊥BP,∴AE∥CF,∴∠EAO=∠GCO,在△EOA和△GOC中,,∴△EOA≌△GOC,∴EO=GO,AE=CG,在RT△EFG中,∵EO=OG,∴OE=OF=GO,∵∠OFE=30°,∴∠OFG=90°﹣30°=60°,∴△OFG是等边三角形,∴OF=GF,∵OE=OF,∴OE=FG,∵CF=FG+CG,∴CF=OE+AE.选图3的结论证明如下:延长EO交FC的延长线于点G,∵AE⊥BP,CF⊥BP,∴AE∥CF,∴∠AEO=∠G,在△AOE和△COG中,,∴△AOE≌△COG,∴OE=OG,AE=CG,在RT△EFG中,∵OE=OG,∴OE=OF=OG,∵∠OFE=30°,∴∠OFG=90°﹣30°=60°,∴△OFG是等边三角形,∴OF=FG,∵OE=OF,∴OE=FG,∵CF=FG﹣CG,∴CF=OE﹣AE.26.如图,在正方形ABCD内作∠EAF=45°,AE交BC于点E,AF交CD于点F,连接EF,过点A作AH⊥EF,垂足为H.连接BD交AE于点M,交AF于点N.请探究并猜想:线段BM,MN,ND之间有什么数量关系?并说明理由.【解答】解:(1)①由旋转的性质可知:AF=AG,∠DAF=∠BAG.∵四边形ABCD为正方形,∴∠BAD=90°.又∵∠EAF=45°,∴∠BAE+∠DAF=45°.∴∠BAG+∠BAE=45°.∴∠GAE=∠FAE.在△GAE和△FAE中,∴△GAE≌△FAE.②∵△GAE≌△FAE,AB⊥GE,AH⊥EF,∴AB=AH,GE=EF=5.设正方形的边长为x,则EC=x﹣2,FC=x﹣3.在Rt△EFC中,由勾股定理得:EF2=FC2+EC2,即(x﹣2)2+(x﹣3)2=25.解得:x=6.∴AB=6.∴AH=6.(3)如图所示:将△ABM逆时针旋转90°得△ADM′.∵四边形ABCD为正方形,∴∠ABD=∠ADB=45°.由旋转的性质可知:∠ABM=∠ADM′=45°,BE=DM′.∴∠NDM′=90°.∴NM′2=ND2+DM′2.∵∠EAM′=90°,∠EAF=45°,∴∠EAF=∠FAM′=45°.在△AMN和△ANM′中,,∴△AMN≌△ANM′.∴MN=NM′.又∵BM=DM′,∴MN2=ND2+BM2.25.已知在矩形ABCD中,∠ADC的平分线DE与BC边所在的直线交于点E,点P是线段DE上一定点(其中EP<PD)(1)如图1,若点F在CD边上(不与D重合),将∠DPF绕点P逆时针旋转90°后,角的两边PD、PF分别交射线DA于点H、G.①求证:PG=PF;②探究:DF、DG、DP之间有怎样的数量关系,并证明你的结论.(2)拓展:如图2,若点F在CD的延长线上(不与D重合),过点P作PG⊥PF,交射线DA于点G,你认为(1)中DE、DG、DP之间的数量关系是否仍然成立?若成立,给出证明;若不成立,请写出它们所满足的数量关系式,并说明理由.【考点】四边形综合题.【分析】(1)①若证PG=PF,可证△HPG≌△DPF,已知∠DPH=∠HPG,由旋转可知∠GPF=∠HPD=90°及DE平分∠ADC 得△HPD为等腰直角三角形,即∠DHP=∠PDF=45°、PD=PH,即可得证;②由△HPD为等腰直角三角形,△HPG≌△DPF知HD=DP,HG=DF,根据DG+DF=DG+GH=DH即可得;(2)过点P作PH⊥PD交射线DA于点H,先证△HPD为等腰直角三角形可得PH=PD,HD=DP,再证△HPG≌△DPF 可得HG=DF,根据DH=DG﹣HG=DG﹣DF可得DG﹣DF=DP.【解答】解:(1)①∵∠GPF=∠HPD=90°,∠ADC=90°,∴∠GPH=∠FPD,∵DE平分∠ADC,∴∠PDF=∠ADP=45°,∴△HPD为等腰直角三角形,∴∠DHP=∠PDF=45°,在△HPG和△DPF中,∵,∴△HPG≌△DPF(ASA),∴PG=PF;②结论:DG+DF=DP,由①知,△HPD为等腰直角三角形,△HPG≌△DPF,∴HD=DP,HG=DF,∴HD=HG+DG=DF+DG,∴DG+DF=DP;(2)不成立,数量关系式应为:DG﹣DF=DP,如图,过点P作PH⊥PD交射线DA于点H,∵PF⊥PG,∴∠GPF=∠HPD=90°,∴∠GPH=∠FPD,∵DE平分∠ADC,且在矩形ABCD中,∠ADC=90°,∴∠HDP=∠EDC=45°,得到△HPD为等腰直角三角形,∴∠DHP=∠EDC=45°,且PH=PD,HD=DP,∴∠GHP=∠FDP=180°﹣45°=135°,在△HPG和△DPF中,∵∴△HPG≌△DPF,∴HG=DF,∴DH=DG﹣HG=DG﹣DF,∴DG﹣DF=DP.【点评】本题主要考查等腰直角三角形的性质、全等三角形的判定与性质、矩形的性质的综合运用,灵活运用全等三角形的判定与性质将待求证线段关系转移至其他两线段间关系是解题的关键.例4 (2013•黑龙江)正方形ABCD的顶点A在直线MN上,点O是对角线AC、BD的交点,过点O作OE⊥MN于点E,过点B作BF⊥MN于点F.(1)如图1,当O、B两点均在直线MN上方时,易证:AF+BF=2OE(不需证明)(2)当正方形ABCD绕点A顺时针旋转至图2、图3的位置时,线段AF、BF、OE之间又有怎样的关系?请直接写出你的猜想,并选择一种情况给予证明.思路分析:(1)过点B 作BG ⊥OE 于G ,可得四边形BGEF 是矩形,根据矩形的对边相等可得EF=BG ,BF=GE ,根据正方形的对角线相等且互相垂直平分可得OA=OB ,∠AOB=90°,再根据同角的余角相等求出∠AOE=∠OBG ,然后利用“角角边”证明△AOE 和△OBG 全等,根据全等三角形对应边相等可得OG=AE ,OE=BG ,再根据AF-EF=AE ,整理即可得证;(2)选择图2,过点B 作BG ⊥OE 交OE 的延长线于G ,可得四边形BGEF 是矩形,根据矩形的对边相等可得EF=BG ,BF=GE ,根据正方形的对角线相等且互相垂直平分可得OA=OB ,∠AOB=90°,再根据同角的余角相等求出∠AOE=∠OBG ,然后利用“角角边”证明△AOE 和△OBG 全等,根据全等三角形对应边相等可得OG=AE ,OE=BG ,再根据AF-EF=AE ,整理即可得证;选择图3同理可证.解:(1)证明:如图,过点B 作BG ⊥OE 于G ,则四边形BGEF 是矩形,∴EF=BG ,BF=GE ,在正方形ABCD 中,OA=OB ,∠AOB=90°,∵BG ⊥OE ,∴∠OBG+∠BOE=90°,又∵∠AOE+∠BOE=90°,∴∠AOE=∠OBG ,∵在△AOE 和△OBG 中,90AOE OBG AEO OGB OA OB ∠=∠⎧⎪∠=∠=︒⎨⎪=⎩,∴△AOE ≌△OBG (AAS ),∴OG=AE ,OE=BG ,∵AF-EF=AE ,EF=BG=OE ,AE=OG=OE-GE=OE-BF ,∴AF-OE=OE-BF ,∴AF+BF=2OE ;(2)图2结论:AF-BF=2OE ,图3结论:AF-BF=2OE .对图2证明:过点B 作BG ⊥OE 交OE 的延长线于G ,则四边形BGEF 是矩形,∴EF=BG ,BF=GE ,在正方形ABCD 中,OA=OB ,∠AOB=90°,∵BG ⊥OE ,∴∠OBG+∠BOE=90°,又∵∠AOE+∠BOE=90°,∴∠AOE=∠OBG ,∵在△AOE 和△OBG 中,90AOE OBG AEO OGB OA OB ∠=∠⎧⎪∠=∠=︒⎨⎪=⎩,∴△AOE ≌△OBG (AAS ),∴OG=AE ,OE=BG ,∵AF-EF=AE ,EF=BG=OE ,AE=OG=OE+GE=OE+BF ,∴AF-OE=OE+BF ,∴AF-BF=2OE ;若选图3,其证明方法同上.点评:本题考查了正方形的性质,矩形的判定与性质,全等三角形的判定与性质,同角的余角相等的性质,作辅助线构造出全等三角形与矩形是解题的关键,也是本题的难点.2.(2015•随州)问题:如图(1),点E 、F 分别在正方形ABCD 的边BC 、CD 上,∠EAF=45°,试判断BE 、EF 、FD 之间的数量关系.【类比引申】如图(2),四边形ABCD 中,∠BAD ≠90°,AB=AD ,∠B+∠D=180°,点E 、F 分别在边BC 、CD 上,则当∠EAF 与∠BAD 满足 关系时,仍有EF=BE+FD .26.已知二次函数y=x 2﹣(2k +1)x +k 2+k (k >0),若该二次函数与x 轴交于A 、B 两点(A 点在B 点的左侧),与y 轴交于C 点,P 是y 轴负半轴上一点,且OP=1,直线AP 交BC 于点Q ,求证:.(3)由题意可得:点P的坐标为(0,1),则0=x2﹣(2k+1)x+k2+k0=(x﹣k﹣1)(x﹣k),故A(k,0),B(k+1,0),当x=0,则y=k2+k,故C(0,k2+k)则AB=k+1﹣k=1,OA=k,可得,y BC=﹣kx+k2+k,当x﹣1=﹣kx+k2+k,解得:x=k+,则代入原式可得:y=,则点Q坐标为运用距离公式得:AQ2=()2+()2=,则OA2=k2,AB2=1,故+=+1==,则.。
线段与角的和差倍分计算
![线段与角的和差倍分计算](https://img.taocdn.com/s3/m/2a3c88d0dc88d0d233d4b14e852458fb760b384d.png)
线段与角的和差倍分计算
在几何学中,我们经常遇到线段与角之间的和、差和倍分计算问题。
这些计算方法是为了帮助我们更好地理解图形的性质和关系。
本文将详细
介绍线段与角之间的和、差和倍分计算方法。
一、线段的和、差计算
1.线段的和计算:给定线段AB和线段BC,我们需要计算出两个线段
的和,即线段AB+BC。
计算方法是将线段AB和BC的长度相加,即AB+BC。
2.线段的差计算:给定线段AB和线段BC,我们需要计算出两个线段
的差,即线段AB-BC。
计算方法是将线段AB的长度减去线段BC的长度,
即AB-BC。
二、角的和、差计算
1.角的和计算:给定角α和角β,我们需要计算出两个角的和,即
角α+角β。
计算方法是将两个角的度数相加,即α+β。
2.角的差计算:给定角α和角β,我们需要计算出两个角的差,即
角α-角β。
计算方法是将角α的度数减去角β的度数,即α-β。
三、线段与角的倍分计算
1.线段的倍分计算:给定线段AB,我们需要计算出线段AB的一半或
一四分之一的长度。
计算方法是将线段AB的长度除以2或4,即AB/2或AB/4
2.角的倍分计算:给定角α,我们需要计算出角α的一半或一四分
之一的度数。
计算方法是将角α的度数除以2或4,即α/2或α/4
以上是线段与角的和、差和倍分计算的基本方法。
在实际应用中,我们还可以利用一些几何定理和性质来简化计算,例如角的补角、互补角和对应角等关系。
线段与角的和差倍分计算
![线段与角的和差倍分计算](https://img.taocdn.com/s3/m/25380244a36925c52cc58bd63186bceb19e8ed90.png)
线段与角的和差倍分计算一、线段的和差倍分计算已知线段AB=a,延长BA至点C,使AC=AB.D为线段BC的中点。
求CD的长度和a的值。
解析:根据线段的定理,AC=AB+BC,又因为BC=2CD,所以AC=AB+2CD。
又因为AC=2AB.D,所以AB+2CD=2AB.D,化简得CD=(2D-1/2)a,a=3AD。
在一条直线上顺次取A,B,C三点,已知AB=5cm,点O是线段AC的中点,且OB=1.5 cm,求BC的长度。
解析:因为O是AC的中点,所以OC=OA,又因为OB=1.5 cm,所以BC=BO+OC=1.5+OA。
根据勾股定理,OA^2+AC^2=OC^2,代入已知条件,得到OA=√(25-3.75)=4.3301.所以BC=1.5+4.3301=5.8301,约等于6 cm。
某汽车公司所运营的公路AB段有四个车站依次是A,C,D,B,___。
现想在AB段建一个加油站M,要求使A,C,D,B站的各一辆汽车到加油站M所花的总时间最少,则M的位置在哪里?解析:根据三角形中位线定理,AC^2+BD^2=2AM^2+2MC^2.又因为AC=CD=DB,所以AM=MC=MD=MB=AC/2=CD/2=DB/2.所以AC^2+BD^2=4AM^2+4MC^2=8AM^2,所以AM^2=(AC^2+BD^2)/8.因为AC=CD=DB=AB/3,所以AB^2=3AC^2=3BD^2,代入上式得到AM^2=AB^2/12.所以M在AB的中点。
点D是线段AB的中点,C是线段AD的中点,若AB=4cm,求线段CD的长度。
解析:根据线段的定理,AC=AB/2=2cm,BD=AB/2=2cm,又因为CD=AC/2=1cm,所以CD的长度为1cm。
已知点C是线段AB上一点,AC<CB,D,E分别是AB,CB的中点,AC=8,EB=5,求线段DE的长。
解析:根据线段的定理,AC+CB=AB,所以AB=AC+CB=8+2EB=18.又因为D和E分别是AB和CB的中点,所以DE=AD-EB=AB/2-EB=9/2.线段AC∶CD∶DB=3∶4∶5,M,N分别是CD,AB的中点,且MN=2 cm,求AB的长。
角的度量与计算
![角的度量与计算](https://img.taocdn.com/s3/m/80121b5e0a4e767f5acfa1c7aa00b52acfc79cf6.png)
角的度量与计算角是几何学中常见的基本概念,用于描述两条线段之间的夹角或者两条射线之间的夹角。
想要精确地度量和计算角的大小,需要了解角的度量单位、角的类型以及角的计算公式等知识。
一、角的度量单位1. 弧度:弧度是用于度量角的标准单位,记作rad。
一个完整的圆周包含2π(约等于6.28)弧度,即360°等于2π弧度。
2. 度:度是另一种常见的角度量单位,记作°。
一个完整的圆周包含360度,即2π弧度等于360°。
二、角的类型1. 零角:零角是指两条相互重合的射线所形成的角,度数为0°,弧度数为0 rad。
2. 钝角:钝角是指大于90°但小于180°的角。
3. 直角:直角是指度数为90°,弧度数为π/2的角。
直角十分特殊,两条构成直角的射线互相垂直。
4. 锐角:锐角是指小于90°但大于0°的角。
5. 平角:平角是指度数为180°,弧度数为π的角。
平角表示两条射线平行。
三、角的计算公式1. 弧度与度的转换:弧度 = 度数× (π / 180)度数 = 弧度× (180 / π)2. 两个角的和/差:两个角的和等于它们的度数或弧度数之和,如 A + B。
两个角的差等于它们的度数或弧度数之差,如 A - B。
3. 角的倍数:一个角的 n 倍角等于它的度数或弧度数乘以 n,如 nA。
4. 角的补角/余角:一个角的补角是指与其相加等于 90°(或π/2弧度)的角,如 A 的补角为 90° - A。
一个角的余角是指与其相减等于 90°(或π/2弧度)的角,如 A 的余角为 A - 90°。
5. 角的相等/相似:两个角相等,意味着它们的度数或弧度数相等,如 A = B。
两个角相似,意味着它们的度数或弧度数成比例,如 A∽B。
四、角的计算实例1. 例题一:已知 A = 30°,求 A 的补角和余角。
三角形全等的应用3 证多条线段之间的和差倍分及不等关系(含详细解答)
![三角形全等的应用3 证多条线段之间的和差倍分及不等关系(含详细解答)](https://img.taocdn.com/s3/m/21a3a0e67c1cfad6195fa75e.png)
四、利用全等三角形证线段之间的和差倍分问题证一条线段等于其它两条线段的和或差,常将其转化成证明线段的相等问题,常用的方法如下:(1)利用图形中已有的线段和差关系进行证明。
(2)延长一条线段,作出两条线段的和,然后证明这条线段等于第三条线段。
(3)在第三条线段上截取一段等于第一条线段,然后证余下的线段等于第二条线段。
后两种方法,就是通常所说的截长补短。
例1.已知:如图在△ABC中,∠ABC的平分线与∠ACB相邻外角∠ACG的平分线相交于D,DE∥BC交AB于E,交AC于F,求证:EF=BE-CF分析:要证EF=BE-CF,而图中EF=ED-FD,若证出BE=ED,CF=FD,则此题可证出。
(证明略)例2.已知:如图,四边形ABCD中,AC平分∠BAD,CE⊥AB 于E,且∠B+∠D=180°,求证:AE=AD+BE分析:要证AE=AD+BE,则可转化为证AE-BE=AD,则需找到一条线段使它等于AE-BE,再证其与AD相等,在EA上截取EF=BE,连结CF,问题转化为证AF=AD,即要证出△AFC≌△ADC证明:在EA上截取EF=BE,连结CF∵CE⊥AB于E(已知)∴CF=CB(在线段垂直平分线上的点,到线段两个端点的距离相等)∴∠1=∠B(等边对等角)∵∠1+∠2=180°(平角定义)∠B+∠D=180°(已知)∴∠2=∠D(等角的补角相等)(再往下证明略)3.如图,△ABC是等边三角形,∠BDC=120°,且BD=CD,∠MDN=60°,AB=12cm. (1)证明MN=BM+NC.(2)求△AMN的周长。
(3)若点M、N分别是AB、CA延长线上的点,,请说明BM、MN、NC之间的关系。
分析:(1)证明MN=BM+NC.是典型的三条线段之间的关系的题型,这种题型一般是采用“截长补短法”来证明。
“截长法”是在最长的线段MN上找一点F,将MN截为两部分(如图4),比如截为MN=MF+NF,且使MF=BM(或NF=NC).再求证剩余的线段NF=NC,从而得到MN=BM+NC。
(完整版)线段和角知识点
![(完整版)线段和角知识点](https://img.taocdn.com/s3/m/8f279b6e910ef12d2bf9e733.png)
线段、射线、直线线段 射线 直线端点个数 两个一个 没有 延伸情况 没有延伸向一个方向延伸 向两个方向延伸 长度 有长度可以测量 没有长度不能测量 没有长度不能测量 表示方法 ①用表示两个端点的大写字母(无序) ②用一个小写字母 用两个大写字母,其中表示端点的字母写在前面(有序) ①用直线上表示任意两个点的大写字母(无序)②用一个小写字母表示1、线段的性质:两点之间,线段最短。
2、两点间的距离:连接两点之间的线段的长度。
三、直线的基本性质:经过两点有一条直线,并且只有一条直线,即两点确定一条直线。
四、线段的长短比较方法:度量法和叠合法五、画一条线段等于已知线段:1、画一条线段等于已知线段是用直尺和圆规的第一个基本作图,直尺的作用是画直线、射线或线段,圆规的作用是画弧、截取等长的线段。
2、常见的作图语言:①作射线××;②在射线××上截取××=××;③在线段××上截取××=××;则××就是所要求作的××。
说明:作图时用的直尺是没有刻度的,因此作图的痕迹要保留。
六、线段的中点:把一条线段分成两条相等的线段的点,叫做这条线段的中点。
如图所示点C 是线段AB 的中点,则有①AB=2AC=2BC ,②AC=BC=21AB 。
七、线段的和、差、倍、分的计算:1、逐段计算:求线段的长度,主要围绕线段的和差倍分展开。
若每一条线段的长度均已确定,所求问题可迎刃而解。
2、整体转化:巧妙转化是解题的关键,首先将所求的线段转化为两条线段的和或差,然后再通过线段的中点的等量关系进行替换,将未知线段转化为已知线段。
3、构造方程:利用各段线段的比值及中点关系建立起方程,求出未知数的值。
注意:有关线段长度的计算如果没有图形,题中又没有明确的点的位置,应该全面考虑,注意条件中的图形的多样性,防止漏解。
2022-2023学年上海六年级数学下学期同步知识点讲练 第11讲线段的相等与和、差、倍带讲解
![2022-2023学年上海六年级数学下学期同步知识点讲练 第11讲线段的相等与和、差、倍带讲解](https://img.taocdn.com/s3/m/36bb360be3bd960590c69ec3d5bbfd0a7956d52c.png)
第11讲线段的相等与和、差、倍(核心考点讲与练)一.线段的性质:两点之间线段最短线段公理两点的所有连线中,可以有无数种连法,如折线、曲线、线段等,这些所有的线中,线段最短.简单说成:两点之间,线段最短.二.两点间的距离(1)两点间的距离连接两点间的线段的长度叫两点间的距离.(2)平面上任意两点间都有一定距离,它指的是连接这两点的线段的长度,学习此概念时,注意强调最后的两个字“长度”,也就是说,它是一个量,有大小,区别于线段,线段是图形.线段的长度才是两点的距离.可以说画线段,但不能说画距离.三.比较线段的长短(1)比较两条线段长短的方法有两种:度量比较法、重合比较法.就结果而言有三种结果:AB>CD、AB=CD、AB<CD.(2)线段的中点:把一条线段分成两条相等的线段的点.(3)线段的和、差、倍、分及计算做一条线段等于已知线段,可以通过度量的方法,先量出已知线段的长度,再利用刻度尺画条等于这个长度的线段,也可以利用圆规在射线上截取一条线段等于已知线段.如图,AC=BC,C为AB中点,AC=AB,AB=2AC,D为CB中点,则CD=DB=CB=AB,AB=4CD,这就是线段的和、差、倍、分.一.线段的性质:两点之间线段最短(共3小题)1.(2022•石家庄模拟)星期日,小丽从家到书店购买复习资料,已知从家到书店有四条路线,由上到下依次记为路线l1、l2、l3、l4,如图所示,则从家到书店的最短路线是()A.l1B.l2C.l3D.l4【分析】根据两点之间线段最短即可得出答案.【解答】解:∵两点之间线段最短,∴从家到书店的最短路线是l2,故选:B.【点评】本题考查了线段的性质:两点之间线段最短,掌握两点之间线段最短是解题的关键.2.(2021秋•霸州市期末)如图,下列说法不正确的是()A.直线m,n相交于点P B.直线m不经过点QC.PA+PB<QA+QB D.直线m上共有三个点【分析】根据三角形的三边关系、结合图形判断即可.【解答】解:A、直线m与直线n相交于点P,本选项说法正确,不符合题意;B、直线m不经过点Q,本选项说法正确,不符合题意;C、在△ABQ中,AB<QA+QB,∴PA+PB<QA+QB,本选项说法正确,不符合题意;D、直线m上有无数个点,本选项说法错误,符合题意;故选:D.【点评】本题考查的是点与直线的位置关系、三角形的三边关系,掌握三角形两边之和大于第三边是解题的关键.3.(2021秋•两江新区期末)下列说法中正确的个数有()①两点之间的所有连线中,线段最短;②倒数等于它本身的数是﹣1、0、1;③不能作射线OA的延长线;④若|a|=|b|,则a=b;⑤方程(m﹣3)x|m|﹣2+4=0是关于x的一元一次方程,则m=±3.A.2个B.3个C.4个D.5个【分析】根据线段公理、倒数的定义、绝对值的定义,一元一次方程的定义进行判断即可.【解答】解:①两点之间的所有连线中,线段最短,符合题意;②倒数等于它本身的数是﹣1、1,不符合题意;③不能做射线OA的延长线,只能做射线OA的反向延长线,符合题意;④若|a|=|b|,则a=±b,不符合题意;⑤方程(m﹣3)x|m|﹣2+4=0是关于x的一元一次方程,则m=﹣3,不符合题意,正确的个数有2个.故选:A.【点评】本题考查了线段公理、倒数的定义、绝对值的定义,一元一次方程的定义,熟练掌握各定义是解题的关键.二.两点间的距离(共6小题)4.(2021秋•沂水县期末)已知射线OP,在射线OP上截取OC=10cm,在射线CO上截取CD=6cm,如果点A、点B分别是线段OC、CD的中点,那么线段AB的长等于2cm.【分析】根据OC、CD和中点A、B求出AC和BC,利用AB=AC﹣BC即可.【解答】解:如图所示,∵OC=10cm,CD=6cm,点A、点B分别是线段OC、CD的中点,∴AC=5,BC=3,∴AB=AC﹣BC=2.故答案为:2.【点评】本题考查线段的和差计算,能准确画出对应的图形是解题的关键.5.(2021秋•和平县期末)在直线MN上取A、B两点,使AB=10cm,再在线段AB上取一点C,使AC=2cm,P、Q分别是AB、AC的中点,则PQ=4cm.【分析】画出大致示意图进行解题即可【解答】解:如图,∵AB=10cm,P为AB的中点∴AP=PB=5cm∵AC=2cm,∴CP=3cm∵Q为AC的中点∴QC=AQ=1cm∴PQ=QC+CP=1+3=4cm故答案为:4【点评】此题主要考查两点间的距离(线段长度)计算,此类题目,通常利用图形结合进行解题.6.(2019秋•阳谷县期中)已知在数轴上的点A、B、C分别代表﹣2、﹣1.5、2.1这三个数,原点为O.(1)分别求线段OA、BC的长度;(2)求BC的中点D对应的数;(3)求点B关于点C的对称点E对应的数.【分析】(1)根据两点间的距离即可得到结论;(2)根据线段中点的定义即可得到结论;(3)根据中心对称的性质即可得到结论.【解答】解:(1)OA=|﹣2﹣0|=2;BC=|2.1﹣(﹣1.5)|=3.6;(2)BC中点D对应的数为=0.3;(3)点B关于点C的对称点E对应的数2.1+[2.1﹣(﹣1.5)]=5.7.【点评】本题考查了两点间的距离,数轴,正确的理解题意是解题的关键.7.(2021春•浦东新区期末)如图,已知点C在线段AB上,AC=6,点D是线段AB的中点,点E是线段BC的中点.求DE的长.请把下面的解题过程补充完整:解:因为点D是线段AB的中点,所以DB=AB;因为点E是线段BC的中点,所以BE=BC;因为DE=DB﹣BE,所以DE=AB﹣BC=AC;因为AC=6,所以DE=3.【分析】根据线段中点的定义和线段的和差即可得到结论.【解答】解:因为点D是线段AB的中点,所以DB=AB;因为点E是线段BC的中点,所以BE=BC;因为DE=DB﹣BE,所以DE=AB﹣BC=AC;因为AC=6,所以DE=3.故答案为:AB,BC,AB,BC,AC,3.【点评】本题主要考查两点间的距离,中点的定义,线段的计算,熟练掌握线段中点的定义是解本题的关键.8.(2021春•杨浦区期末)已知点C是线段AB的中点,点D是线段AB上一点,且CD=,若AD=4,求AB长度.【分析】设CD=x,则BD=3x,根据线段中点的性质表示AD的长(分两种情况),列方程进行计算可得结论.【解答】解:∵点C是线段AB的中点,∴AC=BC,∵点D是线段AB上一点,且CD=,∴设CD=x,则BD=3x,∴AD=4x+x=5x或AD=3x﹣x﹣x=x,∵AD=4,∴5x=4或x=4,∴x=或4,∴AB=或16.【点评】本题考查的是两点间的距离的计算,正确理解线段中点的概念和性质是解题的关键.9.(2021秋•南丹县期末)如图,点C是线段AB的中点,点D是线段CB上一点,DB=BC,若线段AC=6,则CD=4.【分析】根据中点的定义可求线段BC=AC=6,再根据DB=BC可求DB,再根据线段的和差关系即可求解.【解答】解:∵点C是线段AB的中点,∴BC=AC=6,∵DB=BC,∴DB=2,∴CD=BC﹣DB=6﹣2=4.故答案为:4.【点评】本题考查了两点间的距离,解答本题的关键是掌握线段中点的定义,注意数形结合思想的运用.三.比较线段的长短(共4小题)10.(2019春•松江区期末)如图,已知点C是线段AB的中点,点D是CB的中点,那么下列结论中错误的是()A.AC=CB B.BC=2CD C.AD=2CD D.CD=AB【分析】根据线段的中点定义可得到线段之间的关系,对各选项分析后即选出答案.【解答】解;∵点C是线段AB的中点,∴AC=CB=AB,故A正确;∵点D是CB的中点,∴BC=2CD=2DB,故B正确;∵CB=AB,BC=2CD∴CD=AB,故D正确;∴只有C错误;故选:C.【点评】此题主要考查了线段的中点,关键是正确理解中点的定义.11.(2020秋•丹阳市期末)点A、B、C在直线l上,AB=4cm,BC=6cm,点E是AB中点,点F是BC的中点,EF=5cm或1cm.【分析】因为A、B、C三点位置不明确,分点B在A、C之间和点A在B、C之间两种情况讨论,①根据中点定义先求出BE、BF的长,BE+BF=EF;②根据中点定义先求出BE、BF的长,BF﹣BE=EF.【解答】解:如图,∵AB=4cm,BC=6cm,点E是AB中点,点F是BC的中点,∴BE=AB=2cm,BF=BC=3cm,①点B在A、C之间时,EF=BE+BF=2+3=5cm;②点A在B、C之间时,EF=BF﹣BE=3﹣2=1cm.∴EF的长等于5cm或1cm.故答案为:5cm或1cm.【点评】本题利用线段中点定义,需要分两种情况讨论.12.(2021春•浦东新区月考)如图,已知B、C在线段AD上.(1)图中共有6条线段;(2)若AB=CD.①比较线段的大小:AC=BD(填:“>”、“=”或“<”);②若BD=4AB,BC=12cm,求AD的长.【分析】(1)根据图形依次数出线段的条数即可;(2)①根据等式的性质即可得到答案;②依据线段的和差关系进行计算,即可得出AD的长;【解答】解:(1)图中有线段:AB、BC、CD、AC、BD、AD,共6条,故答案为:6.(2)①∵AB=CD,∴AB+BC=CD+BC,即AC=BD,故答案为:=.②∵BD=4AB,AB=CD,∴BC=3AB,∵BC=12,∴AB=4,∴AD=AB+BD=4+4×4=20(cm),【点评】本题主要考查了线段的长度计算和线段中点的性质,关键是掌握线段的和、差、倍、分及计算方法.13.(2010秋•瑞金市期末)如图,P是定长线段AB上一点,C、D两点分别从P、B出发以1cm/s、2cm/s的速度沿直线AB向左运动(C在线段AP上,D在线段BP上)(1)若C、D运动到任一时刻时,总有PD=2AC,请说明P点在线段AB上的位置;(2)在(1)的条件下,Q是直线AB上一点,且AQ﹣BQ=PQ,求的值.(3)在(1)的条件下,若C、D运动5秒后,恰好有,此时C点停止运动,D点继续运动(D点在线段PB上),M、N分别是CD、PD的中点,下列结论:①PM﹣PN的值不变;②的值不变,可以说明,只有一个结论是正确的,请你找出正确的结论并求值.【分析】(1)根据C、D的运动速度知BD=2PC,再由已知条件PD=2AC求得PB=2AP,所以点P在线段AB上距离A的处;(2)由题设画出图示,根据AQ﹣BQ=PQ求得AQ=PQ+BQ;然后求得AP=BQ,从而求得PQ 与AB的关系;(3)当点C停止运动时,有,从而求得CM与AB的数量关系;然后求得以AB表示的PM与PN的值,所以.【解答】解:(1)根据C、D的运动速度知:BD=2PC∵PD=2AC,∴BD+PD=2(PC+AC),即PB=2AP,∴点P在线段AB上的处;(2)如图:∵AQ﹣BQ=PQ,∴AQ=PQ+BQ;又AQ=AP+PQ,∴AP=BQ,∴,∴.当点Q'在AB的延长线上时AQ'﹣AP=PQ'所以AQ'﹣BQ'=PQ=AB所以=1;(3)②.理由:当CD=AB时,点C停止运动,此时CP=5,AB=30①如图,当M,N在点P的同侧时MN=PN﹣PM=PD﹣(PD﹣MD)=MD﹣PD=CD ﹣PD=(CD﹣PD)=CP=②如图,当M,N在点P的异侧时MN=PM+PN=MD﹣PD+PD=MD﹣PD=CD﹣PD=(CD﹣PD)=CP=∴==当点C停止运动,D点继续运动时,MN的值不变,所以,=.【点评】本题考查了比较线段的长短.利用中点性质转化线段之间的倍分关系是解题的关键,在不同的情况下灵活选用它的不同表示方法,有利于解题的简洁性.同时,灵活运用线段的和、差、倍、分转化线段之间的数量关系也是十分关键的一点.四.线段的和差(共4小题)14.(2020秋•柳南区校级期末)如图,已知线段AC=7cm,AD=2cm,C为线段DB的中点,则线段AB=12cm.【分析】根据线段的和差和,线段中点的定义,即可得到结论.【解答】解:∵AC=7cm,AD=2cm,∴CD=AC﹣AD=5cm,∵C为线段DB的中点,∴BC=CD=5cm,∴AB=AC+BC=7+5=12(cm),答:线段AB=12cm,故答案为:12.【点评】本题主要考查了线段的和差,线段的中点的定义,掌握中点的定义是解本题的关键.15.(2020秋•虎林市期末)如图,C是线段AB上的一点,M是AB的中点,N是CB的中点,若AB =16,CB=6.线段MN的长.【分析】根据已知条件M是AB的中点,N是CB 的中点,可得MB和BN的长度,根据MN=MB﹣BN,代入计算即可得出答案.【解答】解:因为M是AB的中点,N是CB的中点,若AB=16,CB=6,所以MB==,BN=,所以MN=MB﹣BN=8﹣3=5.【点评】本题主要考查了两点的距离,熟练应用两点间的距离的计算方法进行求解是解决本题的关键.16.(2020秋•九龙坡区校级期末)如图,点D是线段AC的中点,点E是线段BC的中点,且AB=BC.(1)若BC=8,求DC的长;(2)若DE=6,求AC的长.【分析】(1)根据线段之间的和差关系及线段中点的性质求解即可;(2)结合图形易得AC=AB+BC=BC+BC=BC,再根据线段中点的性质推出DC=DA=AC=×BC=BC,EC=BE=BC,进而根据线段之间的和差关系求解即可.【解答】解:(1)∵BC=8,∴AB=BC=×8=6,∴AC=AB+BC=6+8=14,∵点D是线段AC的中点,∴DC=DA=AC=×14=7;(2)∵AB=BC,∴AC=AB+BC=BC+BC=BC,∵点D是线段AC的中点,点E是线段BC的中点,∴DC=DA=AC=×BC=BC,EC=BE=BC,∴DE=DC﹣EC=BC﹣BC=BC=6,解得BC=16,∴AC=×16=28.【点评】本题考查两点间的距离及线段的和差,解题的关键是根据线段中点的性质得出DC=DA=AC=×BC=BC,EC=BE=BC,并且应充分运用数形结合的思想方法,寻找各线段之间的和差关系.17.(2021秋•汝阳县期末)已知在数轴上,点O为原点,点A对应的数为9,点B对应的数为b,点C在点B右侧.线段BC的长度为2个单位,线段BC在数轴上移动.(1)如图在(1)中图BC位置情况下,当线段BC在O、A两点之间移动到某一位置时,恰好满足线段AC=OB,求此时b的值;(2)当线段BC在数轴上沿射线AO方向移动的过程中,若存在AC﹣OB=AB,求此时满足条件的b的值.【分析】(1)由题意可知B点表示的数比点C对应的数少2,进一步用b表示出AC、OB之间的距离,联立方程求得b的数值即可;(2)分别用b表示出AC、OB、AB,进一步利用AC﹣OB=AB建立方程求得答案即可.【解答】解:(1)由题意得:9﹣(b+2)=b,解得:b=3.5.答:线段AC=OB,此时b的值是3.5.(2)由题意得:①9﹣(b+2)﹣b=(9﹣b),解得:b=.②9﹣(b+2)+b=(9﹣b),解得:b=﹣5,答:若AC﹣OB=AB,满足条件的b值是或﹣5.【点评】本题考查了线段的和差,考查了数轴与两点间的距离的计算,根据数轴确定出线段的长度是解题的关键.分层提分题组A 基础过关练一.选择题(共7小题)1.(2019春•虹口区期末)已知线段AB,反向延长AB到C,使AC=AB,AC=2cm,则BC等于()A.4cm B.6cm C.8cm D.10cm【分析】根据线段中点的定义和线段的和差即可得到结论.【解答】解:如图,∵AC=AB,AC=2cm,∴AB=6cm,∴BC=AC+AB=2+6=8(cm),故选:C.【点评】本题考查了两点之间的距离,解决本题的关键是画出图形.2.(2019春•松江区期末)如图,已知点C是线段AB的中点,点D是CB的中点,那么下列结论中错误的是()A.AC=CB B.BC=2CD C.AD=2CD D.CD=AB【分析】根据线段的中点定义可得到线段之间的关系,对各选项分析后即选出答案.【解答】解;∵点C是线段AB的中点,∴AC=CB=AB,故A正确;∵点D是CB的中点,∴BC=2CD=2DB,故B正确;∵CB=AB,BC=2CD∴CD=AB,故D正确;∴只有C错误;故选:C.【点评】此题主要考查了线段的中点,关键是正确理解中点的定义.3.(2020秋•罗湖区校级期末)已知点A、B、C都是直线l上的点,且AB=5cm,BC=3cm,那么点A与点C之间的距离是()A.8cm B.2cm C.8cm或2cm D.4cm【分析】由于点A、B、C都是直线l上的点,所以有两种情况:①当B在AC之间时,AC=AB+BC,代入数值即可计算出结果;②当C在AB之间时,此时AC=AB﹣BC,再代入已知数据即可求出结果.【解答】解:∵点A、B、C都是直线l上的点,∴有两种情况:①如图,当B在AC之间时,AC=AB+BC,而AB=5cm,BC=3cm,∴AC=AB+BC=8cm;②如图,当C在AB之间时,此时AC=AB﹣BC,而AB=5cm,BC=3cm,∴AC=AB﹣BC=2cm.点A与点C之间的距离是8或2cm.故选:C.【点评】在未画图类问题中,正确理解题意很重要,本题渗透了分类讨论的思想,体现了思维的严密性,在今后解决类似的问题时,要防止漏解.4.(2017秋•洪山区期末)已知线段AB,在AB的延长线上取一点C,使AC=2BC,在AB的反向延长线上取一点D,使DA=2AB,那么线段AC是线段DB的()倍.A.B.C.D.【分析】熟悉线段的概念和定义,灵活运用线段的和、差、倍、分转化线段之间的数量关系.【解答】解:根据题意:AC=2BC,得:AB=BC,又DA=2AB,则DB=DA+AB=3AB,又AC =2BC=2AB.则AC是线段DB的倍.故选:A.【点评】能用同一条线段表示两条线段,从而找到它们的关系.5.(2015春•浦东新区校级月考)下列说法错误的有()(1)两点之间,直线最短;(2)延长线段AB到C,使得BC=2AC;(3)画射线AB=2厘米;(4)在射线AC上截取线段BC=2厘米.A.1个B.2个C.3个D.4个【分析】根据两点间的距离,即可解答.【解答】解:(1)应为两点之间,线段最短,故错误;(2)应为延长线段AB到C,使得AC=2BC,故错误;(3)应为画线段AB=2厘米,故错误;(4)在射线AC上截取线段BC=2厘米,正确;错误的有3个,故选:C.【点评】本题考查了两点间的距离,解决本题的关键是熟记两点间的距离.6.(2021秋•江油市期末)把弯曲的河道改直,能够缩短航程,这样做的道理是()A.两点之间,射线最短B.两点确定一条直线C.两点之间,直线最短D.两点之间,线段最短【分析】根据两点之间线段最短即可得出答案.【解答】解:由两点之间线段最短可知,把弯曲的河道改直,能够缩短航程,这样做根据的道理是两点之间线段最短,故选:D.【点评】本题考查了线段的性质,关键是掌握两点之间线段最短.7.(2021秋•八公山区期末)已知线段AB=60,点C为线段AB的中点,点D为射线CB上的一点,点E为线段BD的中点,且线段EB=5,则线段CD的长为()A.20B.30C.40D.20或40【分析】根据中点的定义求出BC,BD,再由CD=BC﹣BD或CD=BC+BD,可得出答案.【解答】解:∵AB=60,C是AB的中点,∴BC=AB=30,又∵E为BD的中点,EB=5,∴BD=2EB=10,∴CD=CB﹣BD=30﹣10=20,或CD=CB+BD=30+10=40.故选:D.【点评】本题考查了两点间的距离,解答本题的关键是掌握线段中点的定义,注意数形结合思想的运用.二.填空题(共13小题)8.(2021秋•太康县期末)如图,AC=12cm,AB=5cm,点D是BC的中点,那么CD=cm.【分析】首先根据线段的和差求出BC的长,再利用线段的中点可得CD.【解答】解:∵AC=12cm,AB=5cm,∴BC=AC﹣AB=7cm,∵点D是BC的中点,∴CD=BC=cm.故答案为:.【点评】本题考查线段的和差,掌握线段中点的定义是解题关键.9.(2021春•杨浦区期末)若线段AB=6cm,反向延长AB到C,使BC=4AC.则AC=2cm.【分析】先设出AC的长度,然后列出关于AC长度的方程,求出AC即可.【解答】解:设AC的长为x,则:x+6=4x,解得x=2,∴AC的长度为2cm,故答案为2.【点评】本题主要考查线段的知识,我们清楚的知道什么是延长,什么是反向延长,还有理解线段的和与差的含义.10.(2019春•黄浦区期末)延长线段AB到C,使BC=AB=2cm,则AC=6cm.【分析】根据BC与AB的关系,可得BC的长,根据线段的和差,可得答案.【解答】解:由BC=AB,若AB=4cm,由线段的和差,得AC=AB+BC=2+4=6cm;故答案为:6.【点评】本题考查了两点间的距离,利用线段BC与AB的关系得出BC的长是解题关键,又利用了线段的和差.11.(2021春•宝山区期末)如图,点C、点D是线段AB上的两个点,且AD=CB,如果AB=5cm,CD=1cm,那么BD的长等于2cm.【分析】根据AD=CB,得出AC=BD,再根据AB=5cm,CD=1cm求出BD.【解答】解:∵AD=CB,∴AD﹣CD=CB﹣CD,即AC=BD,∵AB=5cm,CD=1cm,∴BD=2cm.故答案为:2.【点评】本题考查了两点间的距离,准确利用线段的和差是解题的关键.12.(2020春•浦东新区期末)如图,C、D两点是线段AB的三等分点,点M、N分别是线段AC、BD的中点,则MN=AB.【分析】由已知可求得MC+DN的长度,再根据MN=MC+CD+DN不难求解.【解答】解:∵点C、D是线段AB的三等分点,∴AC=CD=BD=AB,M和N分别是AC和BD的中点,∴MC=AC=AB,DN=BD=AB,∴MN=MC+DN+CD=AB+AB+AB=AB,故答案为:.【点评】本题考查了两点间的距离,中点的定义,结合图形找准线段之间的关系是解题的关键.13.(2019秋•崇明区期末)已知线段AB=8cm,点C在线段AB上,且AC2=BC•AB,那么线段AC 的长4﹣4cm.【分析】根据黄金分割的定义得到点C是线段AB的黄金分割点,根据黄金比值计算得到答案.【解答】解:∵AC2=BC•AB,∴点C是线段AB的黄金分割点,AC>BC,∴AC=AB=×8=(4﹣4)cm,故答案为:4﹣4.【点评】本题考查的是黄金分割的概念和性质,掌握黄金比值为是解题的关键.14.(2020春•嘉定区期末)如图,点C、D是线段AB的三等分点,如果点M、N分别是线段AC、BD的中点,那么MN:AB的值等于.【分析】由已知可求得MC+DN的长度,再根据MN=MC+CD+DN不难求解.【解答】解:∵点C、D是线段AB的三等分点,∴AC=CD=BD=AB,M和N分别是AC和BD的中点,∴MC=AC=AB,DN=BD=AB,∴MN=MC+DN+CD=AB+AB+AB=AB,∴MN:AB=,故答案为:.【点评】本题考查了两点间的距离,中点的定义,结合图形找准线段之间的关系是解题的关键.15.(2019秋•东阳市期末)如图,点C在线段AB的延长线上,BC=2AB,点D是线段AC的中点,AB=4,则BD长度是2.【分析】先根据AB=4,BC=2AB求出BC的长,故可得出AC的长,再根据D是AC的中点求出AD的长度,由BD=AD﹣AB即可得出结论.【解答】解:∵AB=4,BC=2AB,∴BC=8.∴AC=AB+BC=12.∵D是AC的中点,∴AD=AC=6.∴BD=AD﹣AB=6﹣4=2.故答案为:2.【点评】本题考查的是两点间的距离,熟知各线段之间的和、差及倍数关系是解答此题的关键.16.(2010秋•闵行区期末)已知点P在线段AB上,AP=4PB,那么PB:AB=1:5.【分析】本题没有给出图形,在画图时,应考虑到A、B、P三点之间的位置关系,再根据正确画出的图形解题.【解答】解:如图,∵AP=4PB,那么PB:AB=PB:(AP+PB)=PB:5PB,∴那么PB:AB=1:5.故答案为1:5.【点评】在未画图类问题中,正确画图很重要,本题渗透了分类讨论的思想,体现了思维的严密性,在今后解决类似的问题时,要防止漏解.17.(2010春•黄浦区校级期末)如图,M是AC的中点,N是BC的中点,则=2.【分析】根据M是AC的中点,求MC,N是BC的中点,求CN,由MN=MC+CN求MN与AB的关系,再求比值.【解答】解:∵M是AC的中点,N是BC的中点,∴MC=AC,CN=CB,∴MN=MC+CN=AC+CB=AB,∴=2,故答案为:2.【点评】本题考查了比较线段的长短.关键是由中点求MC与AC,CN与CB的大小关系.18.(2021秋•大同期末)如图,点C,D在线段AB上,且AC=CD=DB,点E是线段AB的中点.若AD=8,则CE的长为2.【分析】根据线段中点的定义,可得AC=CD=DB=4,代入数据进行计算即可得解求出AB的长;再求出AE的长,最后CE=AE﹣AC.【解答】解:∵AC=CD=DB,点E是线段AB的中点,∴AD=AC+CD=8.AC=CD=DB=4,∴AB=12,AE=AB=6,则CE=AE﹣AC=6﹣4=2.故答案为:2.【点评】本题考查了线段的和差,两点间的距离,主要利用线段中点的定义,比较简单,准确识图是解题的关键.19.(2021秋•滨城区期末)如图,点A、B在直线l上,点C是直线l外一点,可知CA+CB>AB,其依据是两点之间,线段最短.【分析】依据线段的性质,即可得出结论.【解答】解:点A、B在直线l上,点C是直线l外一点,可知CA+CB>AB,其依据是:两点之间,线段最短.故答案为:两点之间,线段最短.【点评】本题主要考查了线段的性质,两点的所有连线中,可以有无数种连法,如折线、曲线、线段等,这些所有的线中,线段最短.20.(2021春•虹口区校级期末)已知直线AB上有一点C,AC=2AB,如果AB=3cm,则BC=3cm 或9cm.【分析】已知直线AB上有一点C,AC=2AB,有两种可能,一种是C在与B在A的两侧,此时BC =AB+AC,由于AC=2AB,因此,BC=3AB,AB=3cm,据此可求出BC;一种是C在与B在A的同侧,此时BC=AC﹣AB,由于AC=2AB,因此,BC=AB,AB=3cm,据此可求出BC.【解答】解:如图,有两种情况:C在与B在A的两侧时,BC=AB+AC,由于A=2AB,因此,BC=3AB,AB=3cm,因此BC=3AB=3×3=9(cm).C在与B在A的同侧,此时BC=AC﹣AB,由于A=2AB,因此,BC=AB,AB=3cm,因此BC=AB=3(cm).故答案为:9cm或3cm.【点评】本题考查了线段的计算,注意,分类讨论是解题的关键.三.解答题(共3小题)21.(2020秋•丘北县期末)如图,已知点C在线段AB上,且AC:CB=2:5,AB=28,若点D是线段AC的中点,求线段BD的长.【分析】根据按比例分配,可得BC的长,根据线段中点的性质,可得CD的长,最后BD=CD+BC解答即可.【解答】解:设AC=2x,BC=5x,则2x+5x=28,解得:x=4,∴AC=8,BC=20,∵点D是AC的中点,∴CD=4,∴BD=CD+BC=4+20=24.【点评】本题考查了线段的和差,两点间的距离,一元一次方程的应用,利用按比例分配得出BC和CD的长是解题关键.22.(2021春•杨浦区期末)已知点C是线段AB的中点,点D是线段AB上一点,且CD=,若AD=4,求AB长度.【分析】设CD=x,则BD=3x,根据线段中点的性质表示AD的长(分两种情况),列方程进行计算可得结论.【解答】解:∵点C是线段AB的中点,∴AC=BC,∵点D是线段AB上一点,且CD=,∴设CD=x,则BD=3x,∴AD=4x+x=5x或AD=3x﹣x﹣x=x,∵AD=4,∴5x=4或x=4,∴x=或4,∴AB=或16.【点评】本题考查的是两点间的距离的计算,正确理解线段中点的概念和性质是解题的关键.23.(2021春•浦东新区月考)如图,已知B、C在线段AD上.(1)图中共有6条线段;(2)若AB=CD.①比较线段的大小:AC=BD(填:“>”、“=”或“<”);②若BD=4AB,BC=12cm,求AD的长.【分析】(1)根据图形依次数出线段的条数即可;(2)①根据等式的性质即可得到答案;②依据线段的和差关系进行计算,即可得出AD的长;【解答】解:(1)图中有线段:AB、BC、CD、AC、BD、AD,共6条,故答案为:6.(2)①∵AB=CD,∴AB+BC=CD+BC,即AC=BD,故答案为:=.②∵BD=4AB,AB=CD,∴BC=3AB,∵BC=12,∴AB=4,∴AD=AB+BD=4+4×4=20(cm),【点评】本题主要考查了线段的长度计算和线段中点的性质,关键是掌握线段的和、差、倍、分及计算方法.题组B 能力提升练一.填空题(共8小题)1.(2021春•虹口区校级期末)线段AB被点M分成了1:2两段,同时又被点N分成了3:2两段,MN=4cm,则线段AB的长为15或60cm.【分析】根据题意M的位置是有两种可能性的,N的位置也有两种可能性,因此需要分4种情况每种情况具体分析才能得出最后的结果.【解答】解:①AM:BM=1:2,AN:BN=3:2时(图1),设AM=x,则BM=2x,∴AB=3x,∵AN:BN=3:2,∴,∴,∴x=5cm,∴AB=15cm.②AM:BM=1:2,AN:BN=2:3时(图2),设AM=x,则BM=2x,∴AB=3x,∵AN:BN=2:3,∴,∴,x=20cm,∴AB=3x=60cm.③AM:BM=2:1,AN:BN=2:3时(图3),设AM=2x,则BM=x,则AB=3x,∵AN:BN=2:3,∴,∴,∴x=5cm,∴AB=15cm.④AM:BM=2:1,AN:BN=3:2时(图4),设AM=2x,则BM=x,∴AB=3x,∵AN:BN=3:2,∴,∴,∴x=20cm,∴AB=60cm,综上,AB=15或60cm.故答案为:15或60.【点评】本题难点是分类讨论,对于此类题目在进行分类讨论时要做到不重不漏,才能得出正确结果.2.(2021春•奉贤区期末)如图,已知BD=16cm,BD=AB,点C是线段BD的中点,那么AC=32cm.【分析】先由BD=16cm,BD=AB知AB=BD=40cm,再由点C是线段BD的中点知BC=BD=8cm,根据AC=AB﹣BC求解可得答案.【解答】解:∵BD=16cm,BD=AB,∴AB=BD=×16=40(cm),又∵点C是线段BD的中点,∴BC=BD=8cm,则AC=AB﹣BC=40﹣8=32(cm),故答案为:32.【点评】本题主要考查两点间的距离,解题的关键是掌握线段的和差计算及线段的中点的性质.3.(2021春•浦东新区期末)如图,点B是线段AC上一点,且AB=15cm,,点O是线段AC的中点,则线段OB=5cm.【分析】由B在线段AC上可知AC=AB+BC,把AB=15cm,BC=AB 代入即可得AB的值,根据O是线段AC的中点及AC的长可求出CO的长,由OB=CO﹣BC即可得出答案.【解答】解:∵AB=15cm,BC=AB=5cm,∴AC=AB+BC=15+5=20(cm);∵点O是线段AC的中点,∴CO=AC=×20=10(cm),∴OB=CO﹣BC=10﹣5=5(cm).故答案为:5cm.【点评】本题主要考查两点间的距离,掌握线段的中点的性质、线段的和差运算是解题的关键.4.(2020秋•工业园区期末)已知点A、B、C在同一直线上,AB=12cm,BC=AC.若点P为AB 的中点,点Q为BC的中点,则PQ= 4.5或9cm.【分析】分类讨论点C在AB上,点C在AB的延长线上,根据线段的中点的性质,可得BP、BQ 的长,根据线段的和差,可得答案.【解答】解:(1)点C在线段AB上,如图1:∵AB=AC+BC,BC=AC,∴AB=3BC+BC=4BC又∵AB=12cm,∴BC=3cm,∵点P是线段AB的中点,点Q是线段BC的中点,∴PB=AB=6cm,QB=CB=1.5cm,∴PQ=BP﹣BQ=6﹣1.5=4.5cm;(2)点C在线段AB的延长线上,如:∵AB=AC﹣BC,BC=AC,。
七年级数学上《线段及角的和差倍分计算》练习题
![七年级数学上《线段及角的和差倍分计算》练习题](https://img.taocdn.com/s3/m/b97d7a1f19e8b8f67d1cb9f5.png)
专题:线段及角的和差倍分计算一、线段的和差倍分及计算1.如图,点C是线段AB上的点,点D是线段BC的中点,若AB=10,AC=6,求CD的长.2.如图:线段AB=14cm,C是AB上一点,且AC=9cm,O是AB的中点,求线段OC的长度.3.如图,已知C点为线段AB的中点,D点为BC的中点,AB=10cm,求AD的长度.4.如图,延长线段AB到C,使BC=3AB,点D是线段BC的中点,如果CD=3cm,那么线段AC的长度是多少?5.已知点P,Q是线段AB上的两点,且AP∶PB=3∶5,AQ∶QB=3∶4,若PQ=6cm,求AB的长.6.如图所示,线段AB 上有两点M ,N ,AM :MB=5:11,AN :NB=5:7,MN=1.5,求AB 长度.7.如图,点C 在线段AB 上,线段AC =5,BC =15,点M 、N 分别是AC 、BC 的中点. (1) 求MN 的长度.(2) 根据(1)的计算过程与结果,设AC +BC =a ,其它条件不变,你能猜出MN 的长度吗?请用一句简洁的语言表达你发现的规律.(3) 若把(1)中的“点C 在线段AB 上”改为“点C 在直线AB 上”,其它条件不变,结论又如何?请说明你的理由.8.已知C 为线段AB 的中点,D 为线段AC 的中点,解答下列问题: (1)画出相应的图形,并写出图中所有的线段;(2)若图中所有线段的长度和为26,求线段AC 的长度;(3)若E 为线段BC 上的点,M 为线段EB 的中点,DM=a ,CE=b ,求线段AB 的长度(用含有a ,b 的代数式表示)M C A BN二、角的和差倍分及计算1.如图,直线AD和BE相交于点O,∠COD=90°,∠COE=60°,求∠AOB的度数.2.如图,点A、O、B三点在一条直线上,C为直线AB外任意一点,OE、OF分别是∠AOC和∠BOC 的平分线.(1)你能求出∠EOF的度数吗?如果能,请直接写出∠EOF的度数;(2)写出∠COF的所有余角;(3)写出∠AOF的所有补角.3.如图,直线AB、CD相交于点O,OE是∠AOD的平分线,若∠AOC=60°,OF⊥OE.(1)判断OF把∠AOC所分成的两个角的大小关系,并证明你的结论;(2)求∠BOE的度数.O4.如图所示,直线AB、CD相交于点O,OE平分∠BOD.(1)指出图中与∠AOE互补的角;(2)若∠AOE=140°,求∠AOC的度数.5.如图,AB为直线,OC是∠AOD的平分线,OE在∠BOD内,∠DOE=∠BOD,∠COE=72°,求∠EOB.6.如图所示,∠AOB是平角,OM、ON分别是∠AOC、∠BOD的平分线.(1)已知∠AOC=30°,∠BOD=60°,求∠MON的度数;(2)如果只已知“∠COD=90°”,你能求出∠MON的度数吗?如果能,请求出;如果不能,请说明理由.7.如图,OD平分∠BOC,OE平分∠AOC.若∠BOC=70°,∠AOC=50°.(1)求出∠AOB及其补角的度数;(2)请求出∠DOC和∠AOE的度数,并判断∠DOE与∠AOB是否互补,并说明理由.8.如图,已知∠BOC=2∠AOC,OD平分∠AOB,且∠COD=20°,求∠AOB的度数.9.如图,直线AB与CD相交于O,OF,OD分别是∠AOE,∠BOE的平分线.(1)写出∠DOE的补角;(2)若∠BOE=62°,求∠AOD和∠EOF的度数;(3)试问射线OD与OF之间有什么特殊的位置关系?为什么?10.如图,已知O为AD上一点,∠AOC与∠AOB互补,OM,ON分别为∠AOC,∠AOB的平分线,若∠MON=40°,试求∠AOC与∠AOB的度数.11.如图,∠AOB=90°,OE是∠AOC的平分线,OD是∠BOC的平分线,若∠BOC=30°.求:(1)∠DOE的度数;(2)若没有绘出∠BOC的度数,你能否求出∠DOE的度数?请说明理由;(3)在(2)的条件下,若∠AOB=α,求∠DOE的度数,你能从中发现什么规律?教学反思。
证题技巧之三——证明线段或角的和差倍分
![证题技巧之三——证明线段或角的和差倍分](https://img.taocdn.com/s3/m/a4a8684e4b35eefdc8d333e0.png)
证题技巧之三——证明线段或角的和差倍分一、证明线段或角的倍分1、方法:①长(或大)折半②短(或小)加倍2、判断:两种方法有时对同一个题都能使用,但存在易繁的问题,因此,究竟是折半还是加倍要以有利于利用已知条件为准。
3、添线:①为折半或加倍而添;②为折半或加倍后创造条件或利于利用已知条件而添。
4、传递:在加倍或折半后,还不易或不能证明结论,则要找与被证二量有等量关系的量来传递,或者添加这个量来传递。
此时,添线从两方面考虑:①造等量②为证等量与被证二量相等而添。
参考例4、例5、例6。
例1 AD是△ABC的中线,ABEF和ACGH是分别以AB和AC为边向形外作的正方形。
求证:FH=2AD证明:延长AD至N使AD=DN则ABNC是平行四边形∴CN=AB=FA AC=AH又∠FAH+∠BAC=180°∠BAC+∠ACN=180°∴△FAH≌△NCA ∴FH=AN ∴FH=2AD例2、△ABC中,∠B=2∠C,AD是高,M是BC边上的中点。
求证:DM=12 AB证明:取AB 的中点N ,连接MN 、DN 则 MN ∥AC ∠1=∠C ∠2=∠B ∴∠2=2∠1 ∴∠1=∠DNM ∴DM=DN又 AN=DN=ND ∴DM=12 AB例3 △ABC 中,AB=AC ,E 是AB 的中点,D 在AB 的延长线上,且DB=AC 。
求证:CD=2CE证明:过B 作CD 的中线BF则 BF ∥12 AC ∠A=∠DBF∵AB=AC ,E 是AB 的中点∴BF=AE又DB=AC ∴△AEC ≌△BFD ∴DF=CE ∴CD=2CE作业:1、在△ABC 中,D 为BC 的中点,E 为AD 的中点,BE 的延长线交AC 于F ,求证:AF=12 FC2、AB 和AC 分别切⊙O 于B 和C ,BD 是直径。
求证∠BAC=2∠CBD3、圆内接△ABC 的AB=AC ,过C 作切线交AB 的延长线于D ,DE 垂直于AC 的延长线于E 。
三角形中位线定理的几种证明方法及教学中需要说明的地方
![三角形中位线定理的几种证明方法及教学中需要说明的地方](https://img.taocdn.com/s3/m/a7c7c4499b6648d7c1c74641.png)
三角形中位线定理的证明及其教学说明一、 三角形中位线定理的几种证明方法法1: 如图所示,延长中位线DE 至F ,使 ,连结CF ,则,有ADFC ,所以FCBD ,则四边形BCFD 是平行四边形,DFBC 。
因为,所以DEBC 21. 法2:如图所示,过C 作 交DE 的延长线于F ,则 ,有FCAD ,那么FC BD ,则四边形BCFD 为平行四边形,DFBC 。
因为 ,所以DEBC 21.法3:如图所示,延长DE 至F ,使 ,连接CF 、DC 、AF ,则四边形ADCF 为平行四边形,有ADCF ,所以FCBD ,那么四边形BCFD 为平行四边形,DF BC 。
因为 ,所以DEBC 21.法4:如图所示,过点E 作MN ∥AB ,过点A 作AM ∥BC ,则四边形ABNM 为平行四边形,易证CEN AEM ∆≅∆,从而点E 是MN 的中点,易证四边形ADEM 和BDEN 都为平行四边形,所以DE=AM=NC=BN ,DE ∥BC ,即DEBC 21。
法5:如图所示,过三个顶点分别向中位线作垂线.二、教学说明1、三角形中位线定理的另外一种猜想过程:“二维”转化为“一维”在引导学生探索三角形中位线定理时,由于学生画出中位线后,就不难直观地发现平行关系,难的是发现数量关系,我联想到在此之前认识线段中点时的一道典型例题,挖掘它与原有知识的内在联系,从而作如下探索引导。
⑴如图,A 为线段BC(或线段BC 的延长线)上的任意一点,D 、E 分别是AB 、AC 的中点,线段DE 与BC 有什么关系?AC图⑴:⑵如果点A 不在直线BC 上,图形如何变化?上述结论仍然成立吗?图⑵:说明:学生观察(几何画板制作的)课件演示:当△ABC 的顶点A 运动到直线BC 上时,中位线DE 也运动到BC 上,这样由“二维”转化为“一维”,学生就不难猜想性质的两方面,特别是数量关系,而想到去度量、验证和猜想,水到渠成.如果教师直接叫学生去度量角度和长度,是强扭的瓜不甜.2、教学重点:本课重点是掌握和运用三角形中位线定理。
专题复习—线段和角
![专题复习—线段和角](https://img.taocdn.com/s3/m/002198cd7fd5360cbb1adb39.png)
3.方位角定义及其应用定义:轮船、飞机等物体运动的方向与正北方向的夹角称为方位角,如下图所示.4.角的大小比较方法(1)度量法;(2)叠合法.5.画相等的角(尺规法)6.角的和、差、倍的画法7.角平分线的概念及画法概念:从一个角的顶点引出一条射线,把这个角分成两个相等的角,这条射线叫做这个角的平分线.8.余角、补角(1)余角的定义:如果两个角的和是一个直角,这两个角叫做互为余角.简称互余,其中一个角叫做另一个角的余角.(2)补角的定义:如果两个角的和是一个平角,这两个角叫做互为补角.简称互补,其中一个角叫做另一个角的补角.(3)余角的性质:同角(或等角)的余角相等.(4)补角的性质:同角(或等角)的补角相等.9.角的度量单位、角的换算及角的分类(1)角的度量单位:度、分、秒.(2)角的换算:160,160''''==(3)角的分类:小于90的角叫做锐角,等于90的角叫做直角,大于90小于180的角叫做钝角.二、练习一、填空题(本大题共30分,每小题3分)1、在所有连结两点的线中,__________最短.2、如图为同一直线上的A、B、C三点,图中共有_______条射线,_____条线段.(第2题)(第3题)3、如图,C、D是线段AB上两点,如果AC、CD、DB长之比为3:4:5,则AC=________AB,AC=___________CB。
4、如图,O为直线AD上一点,∠AOB=45º,OC平分∠BOD,则∠COD=_____度。
南偏西25北偏东20东北西北东南西南北西南东5、 如图, OC ⊥OA ,OD ⊥OB ,则∠AOB=∠_________.(第4题) (第5题) 6、 互为补角的两角之差为22º,则这个两角分别为______度和______度. 7、 如图,∠AOB=72º,OC 平分∠AOB ,OD ⊥OC ,则∠AOD=______度.8、如图,C 、D 是线段AB 上两点,AC 、CD 、DB 的长度比为1:2:3,又M 为AC 的中点,DN :NB=2:3,已知AB=30cm ,则MN=______cm.(第8题)(第7题)9、计算:28º46´+57º32´-60º15´=___________.10、α=(x+10)º,∠β=(x-30)º,且∠α和∠β互余,则∠α=______度. 二、单项选择题(本大题共24分,每小题3分) 1、以下说法中不正确的是( ) A 、 若OA=OB ,则O 是线段AB 的中点; B 、 若O 是线段AB 的中点,则OA=OB ; C 、 B 是线段AC 上一点,AB :BC=2:3,则AC BC 53=;D 、 延长线段AB 至C ,使BC=AB ,则B 是线段AC 的中点. 2、右图中线段的总数是( ) A 、4条. B 、5条.C 、6条.D 、7条. 3、如图,线段AD=90cm ,B 、C 是这条线段上两点,AC=70cm ,且CD=31BC ,则AB 的长是( ) A 、20cm. B 、15cm. C 、10cm. D 、8cm .4、如图,C 是线段AB 的中点,D 是线段CB 上任意一点,则下列表示线段关系的式子中错误的个数为( ) (1)CD=21(AD-BD ). (2)CD=2BD AB -.(3)BD=21(AB-2CD ). (4)BD=AD-2CD . A 、1个. B 、2个. C 、3个. D 、4个.5、如图,∠BOC=2∠AOB ,OP 平分∠AOB ,已知∠AOP=12º,则∠POC=( ) A 、60º. B 、72º.C 、78º.D 、84º. 6、∠α的余角是40º,则∠α的补角为( )A 、100º.B 、110º.C 、120º.D 、130º. 7、有几种说法,其中正确的有( )(1)只有补角而没有余角的角是钝角; (2)锐角既有余角又有补角;(3)一个锐角的余角比这个角的补角小90º;(4)互补的两个角一个是锐角一个是钝角。
角的比较和运算教案
![角的比较和运算教案](https://img.taocdn.com/s3/m/338d29657375a417876f8f01.png)
教学过程:一:创设情境,提出问题,引入新课(动)(一)、从实际生活中建立角的概念1.类比联想,提出问题前面学习了线段的概念之后,紧接着就学习了比较线段的大小以及线段的和、差、倍、分的画法问题.上节课我们已经学习了角的概念,类似的,今天我们也要学习如何比较角的大小,以及角的和、差、倍、分的画法问题.(板书课题)2.类比联想,探索解决问题的方法(1)师生共同回忆线段大小比较的方法,以及和、差、倍、分的画法.(2)分组讨论,发现方法.提出问题:如图1-26(a),试比较∠AOB和∠COD的大小并画出∠AOB+∠COD.1.习角的有关概念二:引入新课(动)三:新课:((板书))2:角的大小可以有两种比较方法:重叠比较法和度量法.(1)重叠比较法:由线段的重叠比较法知,将要比较的两条线段一端重合,再看另一端的位置.角的比较也类似,提问谁能用两个三角板演示一下,然后总结,在比较角的大小的过程中,要让角的顶点和角的一条边都重合,看另一条边落在角内还是角外.(让学生自己总结出三种不同的结论,并让学生在黑板上画出图形,量角器可起移角的作用,先测量的度数,然后以的顶点为顶点,其中一边为边作一个角等于.)记作:∠AOB=∠COD记作:∠AOB>∠COD记作:∠AOB<∠COD(2)度量法:因为角可以用量角器来量出度数,度数大的角大于度数小的角,通过角的度数来比较角的大小.(注意写法)例1如图4.6。
8,比较∠AOB与∠CDE的大小.(书上的154页的3图)因为量得∠AOB=35°,∠CDE=65°.所以∠CDE>∠AOB.(当然,书上的角不能剪下来,我们可以把一个角画到一张描图纸上,放在另一个角上面比较比较角的大小,也可以用量角器分别量出角的度数,然后加以比较.1:画角(做一做)3;画特殊的角30;45;60;75 ;15;105;(角的运算的一种)提出问题:如图1-26(a),试比较∠AOB和∠COD的大小并画出∠AOB+∠COD.4:角的运算(和差)我们可以对角进行简单的加减运算,如:(1) 34°34′+21°51′=55°85′=56°25′(2) 180°-52°31′=179°60′-52°31′=127°29′(如图并列式子)4.角的和、差、倍、分也可以有两种方法:作图法和度量计算法.(1)作图法:在图中作出两个角的和、差、倍、分.例2 已知∠AOB ,∠CED 且∠AOB >∠CED ,如图1-28.求作(i)∠AOB 与∠CED 的和;(ii)∠AOB 与∠CED 的差;(iii)∠CED 的二倍.教师在黑板上以草图的形式为学生演示,依照线段的和、差、倍、分的作法,从而发现作图中的问题,怎样做一个角等于已知角.由于这个基本作图没学,因此作图法暂时不能具体操作,所以目前切实可行的方法只有度量计算法.(2)度量计算法.依然选用例2,解法如下解:量得∠AOB=50°,∠CED=20°,∠AOB 与∠CED 的和是70°. ∠AOB 与∠CED 的差是30°.∠CED 的二倍是40°.6:例子练习(1)如图1-29,∠AOB=130°,∠AOE=50°,∠OEA=60°,求∠BOE ,∠OEB .(2)如图1-30,量出∠BAC ,∠ABD ,∠BDC ,∠ACD 的度数,并求出四个角的和,∠BAC 与∠ACD 的和.(3)如图1-31,已知∠A=∠B=25°,若∠A+∠B+∠BCA=180°,求∠ACE .2.如图1-35,1-36,∠AOD=∠BOC=90°,∠COD=42°,求∠AOC ,∠AOB .二、角平分线的概念(由)教师提问:1.回忆怎样求线段的中点.2.怎样平分一个角.总结:在现阶段只能用度量法解决这两个问题,由于在求一个角的几分之几的情况中,最特殊的就是求一个角的二分之一,它的地位相当于求线段的中点,因此我们下面重点研究角的二等分.将线段二等分的点,叫做线段的中点,由此,我们得一个新的概念——角平分线.(由4的和差引入一个特殊关系;做一做)角平分线定义:一条射线把一个角分成两个相等的角,这条射线叫做这个角的平分线.对这个定义的理解要注意以下几点:1.角平分线是一条射线,不是一条直线,也不是一条线段.如图1-32,它是由角的顶点出发的一条射线,这一点也很好理解,因为角的两边都是射线.2.当一个角有角平分线时,可以产生几个数学表达式.如图1-32,可写成因为 OC 是∠AOB 的角平分线,所以 ∠AOB=2∠AOC=2∠COB(1)∠AOC=∠COB(2)反过来,只要具备上述的式子之一,就能得到OC 为∠AOB 的角平分线.这一点学生要给以充分的注意. (在角的比较中有一个好题)练习:1.画一个三角形ABC ,然后作出这三个角的平分线.观察它们是否交于一点,如果交于一点,则交点的位置在哪里?2.如图1-33,若∠AOB=∠COB=∠DOC ,进行下列填空.(1)∠AOD=( )+( )+( );(2)∠AOB=( )∠AOD ;(3)∠AOD=( )∠COB ;(4)∠DOB=( )=( )+( ).3.如图1-37,OC 是∠AOB 的角平分线,∠CAO=90°,∠CBO=90°,比较∠ACO 与∠BCO 的大小.(三)、总结教师提问:这节课我们都学习了哪些内容和主要的思维方法?学生的回答可能不够全面,或者比较零散,教师最后给以归纳.1.学习的内容有三个:(1)比较角的大小.(2)角的和、差、倍、分.(3)角平分线的概念.2.学习了类比联想的思维方法.七、练习设计1. 156页的中1,2。
2024年人教版七年级上册数学期末复习专项突破10线段、角的计算的四种常见类型
![2024年人教版七年级上册数学期末复习专项突破10线段、角的计算的四种常见类型](https://img.taocdn.com/s3/m/fb64f9486d175f0e7cd184254b35eefdc9d31513.png)
所以 AE = AB =1.5 x , CF = CD =2 x .
所以 EF = AC - AE - CF =2.5 x .
因为 EF =20,所以2.5 x =20,解得 x =8.
所以 AB =24, CD =32.
1
2
3
4
5
6
7
8
类型4角平分线在计算中的应用
DE 的长;
1
2
3
4
5
6
7
8
解:(1)因为 AB =10 cm, AC =4 cm,
所以 BC = AB - AC =6(cm).
因为点 D , E 分别是线段 AC 和 BC 的中点,
所以 CE = CB =3
cm, DC = AC =2
所以 DE = DC + CE =2+3=5(cm).
1
2
3
4
5
6
7
8
(1)如图①,当∠ COD 的边 OD 在∠ AOB 内部时,若
∠ COE =40°,求∠ BOD 的度数;
1
2
3
4
5
6
7
8
解:(1)因为∠ COD =90°,∠ COE =40°,
所以∠ DOE =∠ COD -∠ COE =90°-40°=50°.
因为 OE 平分∠ AOD ,
如图②,当点 P 在点 B 右侧时,
②
根据题意可得,2 t +2=2(2 t -6),解得 t =7.
综上, t 的值为 或7.
1
2
线段之间关系
![线段之间关系](https://img.taocdn.com/s3/m/416824b11a37f111f1855b09.png)
利用全等三角形证线段之间的和差倍分问题证一条线段等于其它两条线段的和或差,常将其转化成证明线段的相等问题,常用的方法如下:(1)利用图形中已有的线段和差关系进行证明。
(2)延长一条线段,作出两条线段的和,然后证明这条线段等于第三条线段。
(3)在第三条线段上截取一段等于第一条线段,然后证余下的线段等于第二条线段。
后两种方法,就是通常所说的截长补短。
例1、已知:如图在△ABC中,∠ABC的平分线与∠ACB相邻外角∠ACG的平分线相交于D,DE∥BC交AB 于E,交AC于F,求证:EF=BE-CF例2、已知:如图,四边形ABCD中,AC平分∠BAD,CE⊥AB于E,且∠B+∠D=180°,求证:AE=AD+BE例3、如图,△ABC是等边三角形,∠BDC=120°,且BD=CD,∠MDN=60°,AB=12cm.证明:(1)MN=BM+NC.(2)求△AMN的周长证明三条线段之间的不等关系判断几条(三条或四条)线段之间的大小关系,通常是将这几条线段通过等量关系放在同一个三角形中,运用三角形三边关系判断它们之间的大小关系。
这种等量关系通常是通过证明三角形全等来实现的。
这个过程了是转化思想的运用。
例1、如图,已知△ABC是等腰三角形,且AB=AC,若点M、N分别是AB、CA延长线上的点,,请说明BM、MN、NC之间的关系。
例2、如图3,点P是△ABC的外角∠DAC平分线上一点,你能比较PB+PC与AB+AC的大小关系吗?说明你的理由。
例3、如图3-1,在△ABC中,AB>AC,∠1=∠2,P为AD上任意一点,求证:AB-AC>PB-PC.例4、如图3-2,AD是△ABC的外角∠FAC的平分线,D是这平分线上的一个动点,你能想出AB+AC与BD+DC的大小关系吗?并证明你的猜想。
例5、已知,如图,在△ABC,延长AC边上的中线BE至M,使EM=BE,延长AB边上的中线CD至N,使DN=CD,求证:(1)N,A,M三点在同一直线上。
线段及角的和差倍分计算
![线段及角的和差倍分计算](https://img.taocdn.com/s3/m/979fe8328f9951e79b89680203d8ce2f01666560.png)
线段及角的和差倍分计算
首先我们来介绍线段的和、差计算方法。
1.线段的和计算:
设线段AB的长度为a,线段BC的长度为b,那么线段AC的长度为
a+b。
2.线段的差计算:
设线段AB的长度为a,线段BC的长度为b,那么线段AC的长度为,
a-b,即两个线段长度的差的绝对值。
接下来我们来介绍角的和、差计算方法。
1.角的和计算:
设角A的度数为α,角B的度数为β,那么角A和角B的度数和为
α+β。
2.角的差计算:
设角A的度数为α,角B的度数为β,那么角A和角B的度数差为,α-β,即两个角度数的差的绝对值。
--------------------------------------------
下面我们来介绍线段和角的倍数计算方法。
1.线段的倍数计算:
设线段AB的长度为a,倍数为n,那么线段AB的n倍长度为na。
2.角的倍数计算:
设角A的度数为α,倍数为n,那么角A的n倍度数为nα。
需要注
意的是,角度的n倍有时候不是一个具体的度数,而是一种表示角度大小
关系的相对概念。
线段和角的等分计算方法:
1.线段的等分计算:
设线段AB的长度为a,要将其等分成n份,那么每一份的长度为a/n。
例如,要将线段AB等分成3份,那么每一份的长度为a/3
2.角的等分计算:
设角A的度数为α,要将其等分成n份,那么每一份的度数为α/n。
例如,要将角A等分成2份,那么每一份的度数为α/2。
线段和差倍分
![线段和差倍分](https://img.taocdn.com/s3/m/e3ff9edff78a6529647d53dc.png)
课堂检测
1.如果线段AB=13厘米,MA+MB=17厘米,那么下面说法正确的是( D )
A.M点在线段AB上 B.M点在直线AB上 C.M点在直线AB外 D.M点可能在直线AB上,也可能在直线AB外
2.如图,点C是线段AB上一点,点M是AC的中点,点N是BC的中点,
如果MC比NC长2cm,AC比BC长(B )
思路1:算数法
思路2:设未知数
∵AB:BC:CD=2:3:4
4 ∴CD= 9 AD=8,
∴AD=18
由AB:BC:CD=2:3:4,设 AB=2x,BC=3x,CD=4x,则 AD=9x
∵CD=8,即4x=8,解得:x=2
又∵M是AD的中点 1
∴MD= 2AD=9 ∴MC=MD-CD=1
∴AD=9x=18 又∵M是AD的中点 ∴MD= 12AD=9
1 2
AB
类似的可以这样处理三等分点、四等分点等。
3、线段比例关系的处理
若AB:BC:CD=1:2:3,有以下两种处理方式:
【方式1】算数法
AD被分成了1+2+3=6份,所以AB=
1 6
AD,BC= 13
AD,
1
CD= 2AD 【方式2】设未知数
由AB:BC:CD=1:2:3,设AB=x,BC=2x,CD=3x
专题学习
线段的和差倍分计算
学习目标
• 理解线段的和、差,以及线段中点的 意义,并能解决相关的问题。
1、线段的和差
AC=AB+BC AB=AC-BC BC=AC-AB
2、线段的倍分
知识梳理
若点C为线段AB的中点,则:
相等关系:AC=BC
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
专题八__线段与角的和差倍分计算__[学生用书A62]
一线段的和差倍分计算
教材P153作业题第4题)
已知线段AB=a(如图1),延长BA至点C,使AC=1
2AB.D为线段BC的中点.
(1)求CD的长;
(2)若AD=3 cm,求a的值.
在一条直线上顺次取A,B,C三点,已知AB=5 cm,点O是线段AC
的中点,且OB=1.5 cm,则BC的长是()
A.6 cm B.8 cm
C.2 cm或6 cm D.2 cm或8 cm
如图2,某汽车公司所运营的公路AB段有四个车站依次是A,C,D,B,
AC=CD=DB.现想在AB段建一个加油站M,要求使A,C,D,B站的各一辆汽车到加油站M所花的总时间最少,则M的位置在()
A.在AB之间B.在CD之间C.在AC之间D.在BD之间如图3,点D是线段AB的中点,C是线段AD的中点,若AB=4 cm,
求线段CD的长度.
如图4,已知点C是线段AB上一点,AC<CB,D,E分别是AB,CB
的中点,AC=8,EB=5,求线段DE的长.
如图5,线段AC ∶CD ∶DB =3∶4∶5,M ,N 分别是CD ,AB 的中点,且MN =2 cm ,求AB 的长.
如图6,点C 分线段AB 为5∶7,点D 分线段AB 为5∶11,已知CD =2 cm ,求AB 的长.
如图7,已知线段AB 上有两点C ,D ,且AC =BD ,M ,N 分别是线段
AC ,AD 的中点.若AB =a cm ,AC =BD =b cm ,且a ,b 满足(a -10)2+⎪⎪⎪⎪
⎪⎪b 2-4=0.求线段MN 的长度.
二 角的和差倍分计算
如图10,已知直线AB 上一点O ,∠AOD =44°,∠BOC =32°,∠EOD =90°,OF 平分∠COD ,求∠FOD 与∠EOB 的度数.
已知∠α和∠β互为补角,并且∠β的一半比∠α小
30°,求∠α,∠β.
如图11,从点O 引出6条射线OA ,OB ,OC ,OD ,OE ,OF ,且∠AOB =100°,OF 平分∠BOC ,∠AOE =∠DOE ,∠EOF =140°,求∠COD 的度数.。