2010年下学期数学院研究生《泛函分析》复习与练习

合集下载

泛函分析复习及练习思考题 (ch7)

泛函分析复习及练习思考题 (ch7)

(2 )
则内积(2)适合定义中的条件,这样 R n 就也成为一个内积空间. 对同一个线性空间可以引入不同的内积, 使得它作成内积空间.
7
例 3 令 l 2 是一切平方和收敛的实(复)数列
x
(x1 , x 2 , , x n ,), ∑ | x n |2 < +∞
n =1

所成的集合,定义
( x, y ) = ∑ x n η n
x0 称为 x 在 M 中的正交投影。
13
练习思考题 1 分别指出下列赋范线性空间 X 中的通常 意义下的范数为
C [a, b] :
; ; ; ; ; 。
lp :
l¥ :
Lp [a, b] :
L¥ [a, b] :
序列空间 S : 并指出这些空间 (1)是否是完备的线性赋范空间? (2)是否是可分的线性赋范空间?
2
一 线性赋范空间和巴拿赫空间 1.线性赋范空间和巴拿赫空间 定义 1.2 设 X 是实(或复)的线性空间,
2
若对每个 x ∈ X ,有一个确定的实数,记之 为 x ,与之对应,并且满足:
10
20
x ≥ 0 ,并且 x = 0 ⇔ x = 0 ;
α x =| α ||| x || ,其中 α 为任意实(或
10
若 M 中每个元素的范数都是 1,对所有 x, y ∈ M 有
0, ( x, y ) = 1, x≠ y x= y
(1) 则称 M 为标准正交系。 (2) 设 X 为一内积空间, {en } 是 X 的标准 0, i ∈ N , 正交系 , 若对 ∀x ∈ X ,由 ( x, e= i) 得出 x = 0 , 称 {en } 是 X 的完全标准正交 系. (3) 设 X 为一内积空间, {en } 是 X 的标准 正交系,若对 ∀x ∈ X ,称

2010年下学期数学院研究生《泛函分析》复习与练习1及答案

2010年下学期数学院研究生《泛函分析》复习与练习1及答案

这些是我根据提供的电子档答案整理出来的,时间有限,整理的比较粗糙,大家作为参考文献就可以了2011年下学期数学院研究生《泛函分析》复习与练习11、设(,)d x y 为空间X 上的距离,证明),(1),(),(___y x d y x d y x d +=是X 上的距离。

(第七章:P214,#4)证明 (1)若0),(___=y x d 则0),(=y x d ,必有x=y (2)因),(),(),(z y d z x d y x d +≤而tt+1在),[∞o 上是单增函数,于是),(),(1),(),(),(),(1),(),(______z y d z x d z y d z x d y x d y x d y x d y x d +++=≤+==),(),(1),(),(),(1),(z y d z x d z y d z y d z x d z x d +++++),(1),(),(1),(z y d z y d z x d z x d +++≤=),(),(_____z y d z x d +。

证毕。

2、求[]1,1C -线性泛函011()()()f x x t dt x t dt -=-⎰⎰的范数。

(第八章:P235,#2) 解 由010111()()()()()2f x x t dt xf t dt xf t dt xf t dt x --=-≤+≤⎰⎰⎰⎰2f ≤。

设11,,111,1,11,,n t n x t n nt t n n⎧⎡⎤-∈⎪⎢⎥⎣⎦⎪⎪⎡⎤=∈--⎨⎢⎥⎣⎦⎪⎪-∈-⎪⎩则[]1,1n x C ∈-,且1,1,2,x n ==011()()()n f x x t dt x t dt -=-⎰⎰()()101012(1)n nnt dt nt dt n -=-+---⎰⎰1112(1)22n n n =-++12n=-。

由此,1()2n f f x n≥=-。

实变函数与泛函分析总复习题

实变函数与泛函分析总复习题

实变函数与泛函分析总复习题第一章复习题(一)一、判断题1、大人全体构成集合。

(× )2、小个子全体构成集合。

(× )3、所有集合都可用列举法表示。

(× )4、所有集合都可用描述法表示。

(√ )5、对任意集合A ,总有A ??。

(√ )6、()A B B A -?=。

(× )7、()()A B B A B B A A -?=?=-?。

(√ ) 8、若B A ?,则()A BB A -?=。

(√ )9、c A A ?≠?,c A A X ?=,其中X 表示全集。

(× ) 10、A BB A ?=?。

(× )11、()c c c A B A B ?=?,()c c c A B A B ?=?。

(× )12、()()()A B C A C B C ??=,()()()A B C A C B C ??=。

(√ ) 13、若A B :,B C :,则A C :。

(√ ) 14、若A B :,则A B =,反之亦然。

(√ )15、若12A A A =?,12B B B =?,且11A B :,22A B :,则AB :。

(× ) 16、若A B ?,则A B ≤。

(√ ) 17、若A B ?,且A B ≠,则A B <。

(× ) 18、可数集的交集必为可数集。

(× )19、有限或可数个可数集的并集必为可数集。

(√ ) 20、因整数集Z ?有理数集Q ,所以Q 为不可数集。

(× ) 21、()c c A A =。

(√ )第二章复习题一、判断题1、设P ,n Q R ∈,则(,)0P Q ρ=?P Q =。

(× )2、设P ,n Q R ∈,则(,)0P Q ρ>。

(× )3、设123,,n P P P R ∈,则121323(,)(,)(,)P P P P P P ρρρ≥+。

泛函分析习题答案第九章习题答案

泛函分析习题答案第九章习题答案

|q
1/ q
i1


(i ) l p
( 3)
此 外 , 因 为(i ) l q, 故( i |i |q1 ) l p (其 中 i signi )


记x0 ( i | i |q1 ), 则 f ( x0 ) i |i |q1 i | i |q (4)
n
n
n
f ( x0 ) ici | ci | f x0 f , 故 | ci | f
( 2)
i 1
i 1
i 1
n
结 合(1)、(2)得 f | ci | (3) i 1
由 此 可 知 , 对 每 个RMn 上 的 有 界 线 性 泛 函 , 存在 唯 一 的(c1 ,, cn ) Rn,
n
上 的 一 个 有 界 线 性 泛 函, 记ci f (ei ), 则(ci ) Rn, 且 f ( x) ici i 1
n
n
x

(1 ,,n ),f
( x)

max
1 i n
|

i
|
| ci
i 1
|,

f | ci | i 1
(1)
又 当 f 0时 , 记 i signci , x0 (1 ,, n ), 则 x0 1, 且
令 x

x
f (x) f ( x )
x,

f
(
x
)

0, 故x

N,


x
x
(x, N )
所以 f (x) f ( x )
f (x) f ( x ) x

泛函分析习题

泛函分析习题

第七章 度量空间和赋范线性空间复习题:1。

设(,)X d 为一度量空间,令0000(,){|,(,)},(,){|,(,)},U x x x X d x x S x x x X d x x εεεε=∈<=∈≤问0(,)U x ε的闭包是否等于0(,)S x ε?2.设[,]C a b ∞是区间[,]a b 上无限次可微函数的全体,定义()()()()01|()()|(,)max.21|()()|r r r r r a t b r f t g t d f g f t g t ∞≤≤=-=+-∑ 证明[,]C a b ∞按(,)d f g 成度量空间.3。

设B 是度量空间X 中闭集,证明必有一列开集12,,,,n O O O 包含B ,而且1.n n O B ∞==4.设(,)d x y 为空间X 上的距离,证明(,)(,)1(,)d x y d x y d x y =+也是X 上的距离.5。

证明点列{}n f 按题2中距离收敛于[,]f C a b ∞∈的充要条件为n f 的各阶导数在[,]a b 上一致收敛于f的各阶导数.6.设[,]B a b ⊂,证明度量空间[,]C a b 中的集 {|t , (t)=0}fB f ∈当时为[,]C a b 中的闭集,而集 {||()|}(0)A ft B f t a a =∈<>当时,为开集的充要条件是B 为闭集。

7。

设E 及F 是度量空间中两个集,如果(,)0d E F >,证明必有不相交开集O 及G 分别包含E 及F 。

8.设[,]B a b 表示[,]a b 上实有界函数全体,对[,]B a b 中任意两元素,[,]f g B a b ∈,规定距离为(,)sup |()()|.a t bd f g f t g t ≤≤=-证明[,]B a b 不是可分区间.9.设X 是可分距离空间,f 为X 的一个开覆盖,即f 是一族开集,使得对每个x X∈,有f 中开集O ,使x O ∈,证明必可从f 中选出可数个集组成X 的一个覆盖. 10。

泛函分析总复习

泛函分析总复习

泛函分析总复习(按与课本先后顺序排列)1、设M 是n R 中的有界闭集,映射M M T →:满足),(),(y x Ty Tx ρρ<()y x M y x ≠∈∀,,。

求证T 在M 中存在唯一的不动点。

证明: 因为),(),(00x x Tx Tx ρρ<,所以0),(0),(00→⇒→Tx Tx x x ρρ。

再由三角不等式,得到),(),(),(),(0000Tx Tx x x Tx x Tx x ρρρρ+≤-。

由此可见,),()(Tx x x f defρ==在M 上连续。

因为M 是n R 中的有界闭集,所以Mx ∈∃0,使得),(m i n )(m i n )(),(000Tx x x f x f Tx x Mx Mx ρρ∈∈===。

如果0),(00=Tx x ρ,那么0x 就是不动点。

今假设0),(00>Tx x ρ。

根据假设,我们有),(min ),(),(00020Tx x Tx x x T Tx Mx ρρρ∈=<。

但是M x T Tx ∈020,,这与),(00Tx x ρ是最小值矛盾。

故0),(00=Tx x ρ,即存在不动点0x 。

不动点的唯一性是显然的。

事实上,如果存在两个不动点1x ,2x ,则从),(),(),(212121x x Tx Tx x x ρρρ<<即得矛盾。

2、对于积分方程)()()(1t y ds s x e t x s t =∈⎰-λ,其中]1,0[)(C t y ∈为一给定函数,λ为常数,1<λ,求证存在唯一解]1,0[)(C t x ∈。

证明: 考虑由)()()(1t y ds s x e t x s t =∈⎰-λ),()()(10t y e ds s x e t x e tst---=-⇒⎰λ),()(),()(t y e t t x e t z t t def--===ζ则原方程等价于ds s z t t z ⎰+=1)()()(λζ。

《泛函分析》习题解答(不完全版)

《泛函分析》习题解答(不完全版)

第一章 练习题1. 记([,])C a b 是闭区间[,]a b 上连续函数全体构成的集合, 在([,])C a b 上定义距离如下:(,)|()()|,,([,])baf g f x g x dx f g C a b ρ=-∀∈⎰,(1)([,])C a b 按ρ是否完备?(2)(([,]),)C a b ρ的完备化空间是什么? 答:(1) 不完备, 例如对于[,][0,2]a b =以及1,2,n =,定义,01,():1,1 2.n n x x f x x ⎧≤<=⎨≤≤⎩则{()}([0,2])n f x C ⊂在本题所定义的距离的意义下是Cauchy 列, 因为111(,)|()()|110,(,).11n m n m n m f f f x f x dxx dx x dxm n n m ρ=-≤+=+→→∞++⎰⎰⎰另一方面, 点列{()}n f x 并不能在本题所定义的距离的意义下收敛到([0,2])C 中的某个元. 事实上, 在几乎处处收敛的意义下, 我们有0,[0,1)()()1,[1,2].n x f x g x x ∈⎧→=⎨∈⎩因此, 根据Lebesgue 有界收敛定理, 可以得到11100(,)|()()|1|0|0.1n n nnf g f x g x dxx dx x dx n ρ=-=-==→+⎰⎰⎰但()([0,2])g x C ∉.(2) ([,])C a b 的完备化空间是1([,])L a b . 因为(i) 在距离ρ的意义下, ([,])C a b 是1([,])L a b 的稠密子集. 事实上, 任意取定一个1()([,])f x L a b ∈, 需要证明: 对于任意的0ε>, 存在()[,]g x C a b ∈, 使得[,](,)|()()|a b f g f x g x dx ρε=-<⎰.事实上, 首先根据积分的绝对连续性, 存在0δ>, 使得当[,]E a b ⊂, 只要mE δ<, 就有|()|3Ef x dx ε<⎰.因为()f x (Lebesque)可积, 故几乎处处有限, 即10N N mE ∞==,其中{[,]||()|}N E x a b f x N =∈>. 由此可以得到 lim ()0N N m E →∞=(因为{}N E 是渐缩集列并且[,]a b 的测度有限),故存在某个自然数N , 使得N mE δ<且|()|3NE f x dx ε<⎰,因此有|()|f x N ≤,[,]\N x a b E ∈.引入一个新函数定义为(),[,]\():0,,NN f x x a b E f x E ∈⎧=⎨⎩显然对于[,]x a b ∈恒有|()|f x N ≤. 由Lusin 定理, 存在连续函数()(,)g x C ∈-∞+∞和闭集[,]F a b ⊂, 使得([,]\)min{,/3}m a b F N δε<且|()|g x N ≤, 进而()()g x f x ≡,x F ∈.则()g x 限制在[,]a b 即为所求, 因为:[,](,)|()()|a b f g f x g x dx ρ=-⎰([,]\)|()()|a b F Ff xg x dx ⋃=-⎰[,]\|()()||()()|a b FFf xg x dx f x f x dx ≤-+-⎰⎰[,]\\(|()|)|()()||()()|NNa b FF E F E f x N dxf x f x dx f x f x dx⋂≤++-+-⎰⎰⎰[,]\|()|([,]\)a b Ff x dx Nm a b F ≤+⎰\|()|0NNF E F E f x dx dx ⋂++⎰⎰333εεεε<++=.(ii) 1(([,]),)L a b ρ是完备的空间.2. 设(,)X ρ是距离空间,A 是X 的子集,对任意的x X ∈,记(,)inf (,)y Ax A x y ρρ∈=,则(1)(,)x A ρ是x 的连续函数.(2) 若{}n x 是X 中的点列, 使(,)0n x A ρ→,{}n x 是否为Cauchy 列? 为什么? 证:(1) 任意取定12,x x X ∈, 对于任意的y X ∈根据三角不等式, 有1122(,)(,)(,)x y x x x y ρρρ≤+, 2211(,)(,)(,)x y x x x y ρρρ≤+.对两端关于y A ∈取下确界, 可以得到1122inf (,)(,)inf (,)y Ay Ax y x x x y ρρρ∈∈≤+, 2211inf (,)(,)inf (,)y Ay Ax y x x x y ρρρ∈∈≤+. 即1122(,)(,)(,)x A x x x A ρρρ≤+, 2211(,)(,)(,)x A x x x A ρρρ≤+.由此可得1212|(,)(,)|(,)x A x A x x ρρρ-≤.由此容易证明()f x (,)x A ρ=是X 上的连续函数, 实际上, (,)x A ρ还满足Lipschitz 常数等于1的Lipschitz 条件.(2) 答: 未必是Cauchy 列. 例如取X =R , 其中的距离是Euclid 距离. 对于{1,1}A =-, 对于1,2,n =, 定义点列为1(1).n n x n=-+对于点列{}n x ,不难验证,1(,)0n x A nρ=→; 但显然{}n x 不是Cauchy 列. 这里的原因就在于(,)x A ρ不是点到点之间的距离, 而是点到集合的距离, 当这个集合A 含有不止一个点时, (,)x A ρ不再具有点点之间距离的性质. 3. E 是nR 中的Lebesgue 可测集合, 试证()L E ∞按距离(,)esssup |()()|x Ef g f x g x ρ∈=-是不可分空间.证法一:记为方便起见, 设[,]E a b =. 定义[,]1,[,],()()0,(,].a x a f x x x b λλλχλ∈⎧==⎨∈⎩显然()f x λ有界,可测, 因此必属于([,])L a b ∞. 记{()|(,]}A f x a b λλ=∈.则([,])A L a b ∞⊂.既然对于不同的12,[,]a b λλ∈, 1f λ与2f λ不同的部分是正测度集, 容易看出A 的势是ℵ.进而有(不妨设12λλ<)1212121212[,][,]\0[,][,]\0[,][,][,][,]\0(,][,][,]\0(,)infsup |()()|inf sup |()()|inf sup |()()|infsup () 1.E a b x a b EmE E a b x a b E mE a a E a b x a b E mE E a b x a b E mE f f f x f x f x f x x x x λλλλλλλλλλρχχχ⊂∈=⊂∈=⊂∈=⊂∈==-=-=-==我们用反证法证明所需的结论.设([,])L a b ∞是可分的,则其必有可数的稠密子集123{,,,,,}i g g g g ,因此至少有一个i g 属于两个不同的1(,1/3)S f λ和2(,1/3)S f λ.而由三角不等式, 我们有12121(,)(,)(,)112.333i i f f f g g f λλλλρρρ=≤+≤+=这是一个矛盾. 因此([,])L a b ∞不可能是可分的.证法二:既然E 是正测度集,存在0R >使得((0,))0m S R E ⋂>. 不难验证, 存在一列正数1{}i i R ∞=满足:120i R R R R <<<<<<;且1([(0,)\(0,)])0i i m E S R S R +⋂>.对于每一个12(,,,,)i λλλλ=,其中0i λ=或1, 定义1(),[(0,)\(0,)]i i i f x x E S R S R λλ+=∈⋂,1,2,i =. 显然()f x λ有界,可测, 因此必属于()L E ∞. 记{()|{0,1}}A f x λλ=∈N ,其中{0,1}N 表示具有上述性质的λ的全体. 则()A L E ∞⊂.既然对于不同的,λμ∈{0,1}N , (不妨设1(,,,)i λλλ=, 1(,,,)i μμμ=且对于某个i ,0i λ=1i μ=)f λ与f μ不同的部分至少是正测度集1[(0,)\(0,)]i i E S R S R +⋂, 容易看出A 的势与{0,1}N 的势都是连续统的势ℵ.进而有11\0((0,)\(0,))\0((0,)\(0,))\01(,)inf sup |()()|infsup|()()|inf sup|| 1.i i i i F E x E F mF F E x E S R S R FmF i i F E x E S R S R F mF f f f x f x f x f x λμλμλμρλμ++⊂∈=⊂∈⋂=⊂∈⋂=≥=-≥-=-= 我们用反证法证明所需的结论.设()L E ∞是可分的,则其必有可数的稠密子集123{,,,,,}i g g g g , 因此至少有一个j g 属于两个不同的(,1/3)S f λ和(,1/3)S f μ.而由三角不等式, 我们有1(,)(,)(,)11.33j j f f f g g f λμλμρρρ=≤+≤+这是一个矛盾. 因此()L E ∞不可能是可分的. 补充题.证明[,]L a b ∞是不可分空间. 证:记{}[,]()a t K x a t b χ=<<,其中[,]1,,():0,.a t a x t x t x b χ≤≤⎧=⎨<≤⎩显然[,]K L a b ∞⊂, 且只要12,[,]t t a b ∈,12t t ≠, 则有12[,][,],a t a t K χχ∈, 且因为(不妨设12t t <)12(,]t t 的测度为正, 故1212[,][,][,][,][,]||||sup |()()|a t a t a t a t L a b ess x x χχχχ∞-=-1212(,](,]sup |()|1t t x t t x χ∈==.因此, 由(,)a b 是不可数集, 而K 的基数与(,)a b 的基数相同, 故也是不可数集,且K 中任何两个不同元的距离均为1.如果[,]L a b ∞是可分的, 因此有一个可数的稠密子集合{()|1,2,}k A f x k ==, 且11(,)3k k S f K ∞=⊇.但这是荒谬的, 因为上式左端只有可数多个开球, 右端有不可数多个元, 所以至少有K 中的两个不同的12[,][,],a t a t χχ属于同一个开球01(,)3k S f , 由此得到矛盾:121002[,][,][,][,][,][,][,]1||||||||||||112.333a t a t L ab a t k k a t L a b L a b f f χχχχ∞∞∞=-≤-+-<+= 此矛盾表明[,]L a b ∞不可能是可分的.4. 设([,])k C a b 是闭区间[,]a b 上具有k 阶连续导数的函数全体, 定义:()()[,](,)max |()()|,,([,])ki i k x a b i f g f x g x f g C a b ρ∈==-∈∑试证:(1)([,])kC a b 是完备的距离空间; (2)若定义||||(,0)f f ρ=,则(([,]),||||)kC a b ⋅是Banach 空间.证:(1) 这里只证明该距离是完备的. 设1{()}n n f x ∞=是([,])k C a b (0k =时, 0([,])C a b 就理解为[,]C a b )中该距离意义下的Cauchy 列. 因此当,m n →∞时,有()()[,]0(,)max |()()|0ki i m n m n x a b i f f f x f x ρ∈==-→∑.由此容易知道对于每一个0,1,,i k =, ()1{()}i n n f x ∞=是0([,])C a b 中的Cauchy 列. 根据0([,])C a b 的完备性,知()1{()}i n n f x ∞=收敛到0([,])C a b 中的某个元, 记其为()i f x , 则0()([,])i f x C a b ∈, 且()()()i i n f x f x −−→−−→,,0,1,,n i n →∞=,其中“−−→−−→”表示是一致收敛. 如果我们记0()()f x f x =,利用数学分析中函数序列一致收敛的分析性质, 可以得到12()()(),()(),,()().k kf x f x f x f x fx f x '''=== (*)例如, 因为1()()n f x f x −−→−−→', 故 1()()xxn aaf t dt f t dt −−→−−→'⎰⎰, 即1()()()xn n af x f a f t dt −−→−−→-⎰, 又0()()n f x f x −−→−−→及0()()nf a f a −−→−−→, 故 001()()()xaf x f a f t dt -=⎰.求导即可得到01()()f x f x '=, 即 1()()f x f x '=.归纳地可得(*).因此0()()f x f x =([,])kC a b ∈且()[,](,)max |()()|ki i n n x a b i f f f x f x ρ∈==-∑()()[,]max |()()|0ki i n x a b i f x f x ∈==-→∑.即([,])kC a b 是完备的距离空间. (2)证略.7. 证明有限维线性赋范空间是完备的.证:记该有限维(实)线性赋范空间为E , 是n 维的,范数记为||||x ,需要证明(,||||)E ⋅是完备的. 记E 中的一组基为:12,,,n v v v .因此对于任意的x E ∈, 存在唯一一组实数12,,,n x x x , 使得1122n n x x x x =+++v v v ,反之亦然.(i) 我们断言存在一个与x 无关的常数0K >, 使得||||||i x K x ≤, 1,2,,i n =. (*)首先定义一个映射:nf →为: 对于任意的12(,,,)n x x x n∈,121122(,,,):||||||||n n n f x x x x x x x ==+++v v v .则对于任意的,x y E ∈(1122n n y y y y =+++v v v )有1122||||(,,,)n n x y f x y x y x y -=---111||||||||||||n n n x y x y ≤-⋅++-⋅v v2222111()()||||||||n n n x y x y ≤-++-⋅++v v .由此容易知道f 是n R 上的连续函数. 记1B ∂是n R 中的单位球面, 即21121{(,,,)|1}nn k k B x x x x =∂==∑. 则对于任意的11(,,)n x x B ∈∂, 有1(,,)0n f x x >.(事实上, 若有1(,,)0n f x x =则111(,,)||||0n n n f x x x x =++=v v ,因此110n n x x ++=v v , 但12,,,n v v v 线性无关, 故必有120n x x x ====, 此与11(,,)n x x B ∈∂相矛盾. )注意到1B ∂是n R 中的有界闭集(紧子集), 连续函数f 必可在其上达到正的最小值1/0K >.现在我们可以证明式(*). 事实上, 对于任意的x E ∈,存在唯一的一组实数12,,,n x x x , 使得1122n n x x x x =+++v v v , 不失一般性, 可设0x ≠因此,12,,,n x x x 不全为零, 注意到111222111,,,n nnn kkk k k k x x x y B xxx ===⎛⎫ ⎪ ⎪=∈∂ ⎪ ⎪⎝⎭∑∑∑,故111222211111222111()1,,,,nn nnnkkkk k k n nnn kkk k k k x x x f y xxxx x x f K xxx ======+++=⎛⎫ ⎪⎪=≥ ⎪ ⎪⎝⎭∑∑∑∑∑∑v v v或2112211||||nn n kk x x x x xK==+++≥∑v v v .由此容易得出(*)式.(ii) 设()1{}k k x ∞=是E 中的基本列, 这里()()()()1122k k k k n n x x x x =+++v v v ,即()()||||0k l x x -→, 当,k l →∞.利用(*)式便可以得到对于每一个1,2,,i n =, 成立()()()()||||||0k l k l i i x x K x x -≤-→, 当,k l →∞.即()1{}k i k x ∞=是1中的基本列, 因此收敛. 设()(0)k i i x x →, (k →∞,1,2,,i n =).记(0)()(0)(0)1122k n n xx x x =+++v v v , 显然(0)x E ∈. 根据E 中收敛的等价性(即按范数收敛意味着每个分量收敛或即按坐标收敛), 容易得到()(0)||||0k x x -→, 当k →∞.因此(,||||)E ⋅是完备的.9. 设X 为线性赋范空间, 0X 是X 的线性闭子空间. 在X 中定义等价关系为0xy x y X ⇔-∈. 对任意的x X ∈, 以[]x 记x 的等价类, 令0/{[]|}X X x x X =∈.称0/X X 为商空间, 在0/X X 上定义线性运算如下: (i) [][][]x y x y +=+, ,x y X ∈, (ii) [][]x x λλ=, ,x X λ∈∈C .并定义0||[]||inf ||||y X x x y ∈=+.试证: 0/X X 按0||[]||x 也是一个线性赋范空间.证:(一) 0/X X 按照所定义的线性运算是线性空间 (证明略).(二) 0||[]||x 是0/X X 中的范数. 按照定义, 对于每一个 0[]/x X X ∈显然0||[]||inf ||||y X x x y ∈=+是一个确定的数, 因此00||||:/X X ⋅→R 是映射.(i) (非负性) 对于x X ∈, 显然0||[]||inf ||||0y X x x y ∈=+≥.(正定性) 当0[]=[0]=x X 时, 有00||[]||||[0]||inf ||||0y X x y ∈===.反之, 如果我们假设0000||[]||inf ||||0y X x x y ∈=+=, 需要证明 00[]=[0]=x X , 也只需证明00x X ∈. 事实上, 根据下确界的定义, 对每一个自然数1,2,k =, 存在0k y X ∈, 使得00000111||||||[]||inf ||||k y X x y x x y k k k∈+<+=++=, 由此得到一个序列0{}k y X ⊂且||||0k y x ⋅−−−→-.因为0X 是闭子空间因此00x X -∈故00x X ∈, 即00[]=[0]=x X . (ii) (正齐性) 对于,x X λ∈∈C , 如果0λ=, 则000x x X λ==∈, 故0[][0]0[][]x X x x λλ====. 如果0λ≠, 则当y 取遍0X 中的所有元时,yλ也取遍0X 中的所有元, 反之亦然, 因此 00||[]||inf ||||inf ||||||y X y X yx x y x λλλλ∈∈=+=⋅+||inf ||||||inf ||||yy X X yyx x λλλλλ∈∈=+=+||inf ||||||||[]||z X x z x λλ∈=+=⋅,(iii) (三角不等式) 设,x y X ∈. 设0,u v X ∈, 当,u v 取遍0X 中的所有元时, u v +也取遍0X 中的所有元, 反之亦然, 进而, ,u v 的取法是相互独立的, 因此0||[]||inf ||||u X x y x y u ∈+=++,inf ||||u v X x y u v ∈=+++()0,inf ||||||||u v X x u y v ∈≤+++inf ||||inf ||||u X v X x u y v ∈∈=+++00||[]||||||x y =+.也可用下面的证明方法: 对于任意的0ε>, 由下确界的定义, 存在0,u v X εε∈使得0||||||[]||x u x εε+<+, 0||||||[]||y v y εε+<+,因此可以得到0||[]||inf ||||||||u X x y x y u x y u v εε∈+=++≤+++||||||||x u y v εε≤+++ 00||[]||||[]||2x y ε<++.因为0ε>的任意性, 可得0||[]||x y +00||[]||||[]||x y ≤+.10. 设X 为线性赋范空间,1nn x∞=∑收敛, 即1kk nn S x==∑按X 中的范数收敛, 则11nn n n xx ∞∞==≤∑∑.证:记1kk n n S x ==∑.对于有限项之和, 利用三角不等式, 成立111||||kk k nn n n n n S xx x ∞====≤≤∑∑∑. (*)又因为1kk nn S x==∑在范数意义下收敛, 其极限自然可以记为1nn x∞=∑, 即1k n n S x ∞=→∑,再一次利用三角不等式, 可以得到当k →∞时11||||0k nk n n n S xS x ∞∞==-≤-→∑∑,即1||||k nn S x∞=→∑, 因此在(*)式中令k →∞, 可得11nn n n xx ∞∞==≤∑∑.11. 设{0}X ≠为线性赋范空间, 试证X 是Banach 空间当且仅当{|||||1}x X x ∈=是完备的.证:记{|||||1}T x X x =∈=.(必要性) 设X 是Banach 空间, {}n x T ⊂是T 中的Cauchy 列, 即||||1n x =且||||0m n x x -→(当,m n →∞).因为X 是Banach 空间, 故{}n x 收敛, 即存在0x X ∈, 使得||||0n x x ⋅−−→, 由三角不等式容易得到:||||||||||||x y x y -≤-,因此00||||||||||||0n n x x x x -≤-→,知0||||||||n x x →, 故0||||1x =因此0x T ∈, 即T 完备.(充分性) 设T 是完备的, 并设{}n x X ⊂是X 中的Cauchy 列, 即||||0m n x x -→当,m n →∞. 由||||||||||||0m n m n x x x x -≤-→,知{||||}n x 是1中的Cauchy 数列, 因此收敛, 即存在某个数A ∈使得||||n x A →.如果0A =, 显然{}n x 收敛于X 中的零元, 故不妨设0A >. 由此知当n 充分大时, 总有||||0n x >, 不失一般性, 可设对所有的n , 都有||||0n x >. 考虑新的点列:||||nn n x y x =, 显然n y T ∈. 进而 ||||||||||||m n m n m n x xy y x x -=- ||||||||||||||||m m m n m n n n x x x xx x x x ≤-+- 111||||||||||||||||m m n m n n x x x x x x =-+-, 由此易知{}n y T ⊂是T 中的Cauchy 列. 因为T 作为距离空间是完备的, 故{}n y 收敛, 即存在0y T ∈, 使得||||0n y y ⋅−−→. 最后我们断言: ||||0n x Ay ⋅−−→.事实上,0||||||||||||||||n n n n n x Ay x Ay x x x -=- 0||||||||n n n Ay x y x =-00||||||||n n n Ay x y y y x ⎛⎫≤-+-⎪⎝⎭00||||1||||n n n A x y y y x ⎛⎫=-+- ⎪⎝⎭0→.综上可得X 是Banach 空间.15.试证定理4中(f)式定义的(,)x y 的确满足内积分的定义.证明: 即要证明: 对于赋范线性空间(,||||)X ⋅, 如果范数满足平行四边形法则:2222||||||||2(||||||||)x y x y x y ++-=+(*)则由221(,):[||||||||]4x y x y x y =+--R (K =R 时) (f ’)或221(,):[||||||||4x y x y x y =+--C22||||||||]i x iy i x iy ++-- (K =C 时) (f)所定义的确实是内积. (i) 对于x X ∈,221(,)[||||||||4x x x x x x =+--C22||||||||]i x ix i x ix ++--2||||0x =≥,因为|1||1|i i +=-, 并且根据范数的性质2(,)00(,)||||0x x x x x x =⇔==⇔=C C .同理可证(,)0x x ≥R 且(,)00x x x =⇔=R . (ii)首先考虑K =R 时的情形, 对于,,x y z X ∈, 可将(,)(,)x z y z +R R 表示为如下形式: (,)(,)x z y z +R R221[||||||||4x z x z =+--22||||||||]y z y z ++-- ()()22221||||||||||||||||4x z y z x z y z ⎡⎤=+++--+-⎣⎦ 22142222x y x yx y x yz z ⎛⎫+-+-=++++-⎪ ⎪⎝⎭ 22142222x y x y x y x y z z ⎛⎫+-+---++--⎪ ⎪⎝⎭, 再由平行四边形法则222222x y x yx y x yz z +-+-++++-22222x y x y z ⎛⎫+-=++ ⎪ ⎪⎝⎭; 222222x y x yx y x yz z +-+--++--22222x y x y z ⎛⎫+-=-+ ⎪ ⎪⎝⎭. 因此(,)(,)x z y z +R R 221222x y x yz z⎛⎫++=+-- ⎪ ⎪⎝⎭2,2x y z +⎛⎫= ⎪⎝⎭R.进而, 令0y =可以得到(,)x z R 2,2x z ⎛⎫= ⎪⎝⎭R,这里利用了(0,)0z =R . 因为x 是任意的, 故可将x 换为x y +, 即可得到(,)x y z +R 2,2x y z +⎛⎫= ⎪⎝⎭R. 对照上述二式, 即有(,)(,)x z y z +R R =(,)x y z +R .(**)至于K =C 时的情形, 注意到从形式上看(,)=(,)(,)x y x y i x iy +C R R ,利用上述已经证明了的等式(**)不难得到(,)(,)x z y z +C C =(,)x y z +C .(iii) 首先考虑K =R 时的情形, 对于,x z X ∈和任意实数,s t ∈R , 由已经证明的(**)式有(,)(,)sx z tx z +R R =((),)s t x z +R ,可知函数():(,)f t tx z =R 满足如下的函数方程:()()()f s f t f s t +=+.(***)又():(,)f t tx z =R 关于t 是连续的, 因此必有()(1)(,)f t f t t x z ==R .(事实上, 由(***)式对于任意的正整数n 和m , 利用数学归纳法有()()f ns f s s s =+++()()()()f s f s f s nf s =+++=;进而取1s n =, 有11()(1)f f n n=, 因此 1()()(1)n nf nf f m m m==. 又(***)中取0s t ==可得(0)0f =, 取s t =-可得()()f s f s -=-. 因此对于所有的有理数, 均成立()(1)f s sf =.利用()f s 的连续性, 可知对所有的实数也成立. ) 因此得到(,)()(1)(,)tx z f t f t t x z ===R R .至于K =C 时的情形, 注意到由(f)221(,)[||||||||4ix y ix y ix y =+--C 22||||||||]i ix iy i ix iy ++--221[||||||||4ix y ix y =+--22||||||||]i x y i x y ++-- 22221[||||||||4i ix y i ix y =-++-22||||||||]i x y i x y ++-- 22[||||||||4ii x iy i x iy =--++22||||||||]x y x y ++-- (,)i x y =C .由此也容易得到, 对于t ∈C(,)(,)tx z t x z =C C .(iv) 当K =R 时, 容易知道221(,)[||||||||](,)4x y x y x y y x =+--=R R ;而当K =C 时, 直接计算也可得到221(,)[||||||||4x y x y x y =+--C 22||||||||]i x iy i x iy -++-221[||||||||4y x y x =+--22||||||||]i y ix i y ix --++ (,)y x =C .16.设D 是C 中单位开圆盘, 即{|||1}D z z =∈<C . dA 是D 上的面积测度, 2()a L D 定义为22(){|()|}a L D f f Df z dz =<∞⎰在中解析且|. (见课本第六页例4)在2()a L D 中定义内积为,()()Df g f z g z dA =⎰.试证(1)1()n n nz z ϕπ-=(1,2,n =)构成2()a L D 的正交基.(2) 若2()a f L D ∈的Taylor 展开式是0()kk k f z a z∞==∑, 则21kk a k ∞=<∞+∑;(3) 若2()ag L D ∈的展开式是0()kk k g z b z∞==∑, 则0,1k kk a b f g kπ∞==+∑.证:先给出一个预备性结果: 对于2()a f L D ∈,因为()f z 是解析函数, 因此可以展开为幂级数: 0()kk k f z a z∞==∑.由此可以断言:(),()n f z z ϕ=1.n a nπ- (*)事实上,因为()f z 是解析函数,幂级数kk k a z∞=∑在D 中内闭一致收敛, 即对于D 的任意闭子集F ,kk k a z∞=∑在F 上一致收敛. 对于01ε<<, 以下取闭子集F 为:{|||1}D z D z εε=∈≤-.容易知道D ε是D 中的闭子集.对于每一个1,2,n =, 注意到级数10kn k k a z z π-=∑在D ε中仍旧一致收敛, 以下的积分号和求和号可以交换顺序:(),()()()n n Df z z f z z dA ϕϕ=⎰0lim ()()n D f z z dA εεϕ→=⎰100lim kn k D k na z z dA εεπ∞-→==∑⎰10limk n k D k na z z dA εεπ∞-→==∑⎰10lim(cos sin )(cos(1)sin(1))k n k D k na r k i k n i n dAεεθθπθθ∞+-→==+⋅⋅---∑⎰2110lim(cos sin )(cos(1)sin(1))k n k k na d r k i k n i n rdrπεεθθθπθθ∞-+-→==+⋅⋅---∑⎰⎰1210lim(cos sin )(cos(1)sin(1))k n k k na r rdr k i k n i n d επεθθπθθθ∞-+-→==+⋅⋅---∑⎰⎰12110lim2n n na r dr εεππ---→=⎰210(1)lim 22nn n a nεεππ-→-= 1.n a nπ-=因此(*)式得证.(1) 首先证明{}111()n n n n n z z ϕπ∞∞-==⎧⎫⎪⎪=⎨⎬⎪⎪⎩⎭是正交集.事实上, 对于复数(cos sin )z r i θθ=+,根据所给的定义11112(),()(cos sin )(cos sin )m n m n Dm n n m Dz z z z dAmni i r dAϕϕππθθθθππ----+-==+-⎰⎰2(cos(1)sin(1))(cos(1)sin(1))n m Dmnr m i m n i n dAθθπθθ+-=-+-⋅⋅---⎰2120(cos(1)sin(1))(cos(1)sin(1))n m mnd r m i m n i n rdrπθθθπθθ+-=-+-⋅⋅---⎰⎰122(cos(1)(1)sin )(cos(1)sin(1))n m mnrrdr m i m n i n d πθθπθθθ+-=-+-⋅---⎰⎰121,,20,.mm m n mm n ππ⎧==⎪=⎨⎪≠⎩因此{}1()n n z ϕ∞=是正交集. 因为2()a L D 是完备的空间, 故只需再证{}1()n n z ϕ∞=是完备的即可得知其也是正交基. 设有2()a f L D ∈且{}1()()n n f z z ϕ∞=⊥. 因为()f z 是解析函数, 因此可以展开为幂级数:()k k k f z a z ∞==∑.根据(*)式,可以得到,对于每一个1,2,n =,0(),()n f z z ϕ=1.n a nπ-=由此即得10n a -=, (1,2,n =). 所以()0f z ≡. 即{}1()n n z ϕ∞=是完备的, 因此是2()a L D 中的正交基.(2) 既然{}1()n n z ϕ∞=是基,由Parseval 等式可以得到221(),()||||n n f z z f ϕ∞==<∞∑.利用(*)式,上式的左端可以表示为:2122211110(),().1n n n n n n n n f z z a aa nn n ϕπππ∞=∞∞∞--======+∑∑∑∑由此可得所预期的结论. (3) 对于0()kk k f z a z∞==∑和0()kk k g z b z∞==∑, 有10()()1kk k f z a z k πϕ∞+==+∑和10()()1kk k g z b z k πϕ∞+==+∑,利用内积的连续性和(*)式,10,(),()1kk k f g a z g z k πϕ∞+==+∑10(),()1kk k a z g z k πϕ∞+==+∑10(),()1kk k a g z z k πϕ∞+==+∑11kk k a b k k ππ∞=⎛⎫= ⎪++⎝⎭∑0.1k kk a b k π∞==+∑18.设H 是内积空间,{}n e 是H 中的正交集, 求证:1(,)(,)||||||||nnn x e y e x y ∞=≤⋅∑, (,x y H ∀∈).证: 对于任意的正整数k , 由Cauchy 不等式和Bessel 不等式可以得到22111(,)(,)(,)(,)kkkn n n n n n n x e y e x e y e ===≤⋅∑∑∑2211(,)(,)n n n n x e y e ∞∞==≤⋅∑∑||||||||x y ≤⋅,由k 的任意性, 知正项级数1(,)(,)nnn x e y e ∞=∑收敛, 因此级数1(,)(,)nnn x e y e ∞=∑绝对收敛,并且11(,)(,)(,)(,)||||||||nnnnn n x e y e x e y e x y ∞∞==≤≤⋅∑∑.19.试证2sin nt π⎧⎫⎪⎪⎨⎬⎪⎪⎩⎭构成2([0,])L π的正交基, 但不是2([,])L ππ-的正交基. 证:(1) 首先证明{}112()sin n n n t nt ϕπ∞∞==⎧⎫⎪⎪=⎨⎬⎪⎪⎩⎭是2([0,])L π中的正交集. 事实上,[]022(),()sin sin 2cos()cos()2m n t t mtntdtm n t m n t dtππϕϕπππ==-+--⎰⎰1()1,,0,.m n m n ππ⎧--==⎪=⎨⎪≠⎩因此{}1()n n t ϕ∞=是2([0,])L π中的正交集. 同理, 也容易证明{}1()n n t ϕ∞=还是2([,])L ππ-中的正交集.(2) 因为2([0,])L π是完备的空间, 故只需再证{}1()n n t ϕ∞=是完备的即可得知其也是正交基.设有2([0,])f L π∈且{}1()()n n f t t ϕ∞=⊥. 将()f t 做奇延拓成为()f t :(),[0,],():(),[,0).f t t f t f t t ππ∈⎧=⎨--∈-⎩则()f t ∈2([,])L ππ-. 注意到对于1,2,n =, 利用{}1()()n n f t t ϕ∞=⊥,,()sin n f f t ntdt ππϕ-=⋅⎰()sin ()sin f t ntdt f t ntdt ππ-=⋅+⋅⎰⎰()sin ()sin f t ntdt f t ntdt ππ-=--⋅+⋅⎰⎰()sin ()sin f t ntdt f t ntdt ππ-=--⋅+⋅⎰⎰00()sin ()()sin f s n s ds f t ntdt ππ=-⋅-+⋅⎰⎰2()sin 0f t ntdt π=⋅=⎰.设{}{}00()cos n n n t nt ψ∞∞===,对于0,1,2,n =,利用()f t 是奇函数, 可得,()cos 0n f f t ntdt ππψ-=⋅=⎰.因此{}{}()10()()()n n n n f t t t ϕψ∞∞==⊥⋃.进而也容易得到()f t ⊥1cos sin cos sin ,,,,,,2t tnt ntπππππ⎧⎫⎨⎬⎩⎭. 又已经知道与{}{}{}{}1010()()sin )cos n n n n n n t t t nt ϕψ∞∞∞∞====⋃=⋃仅相差一个常数因子的三角函数系1cos sin cos sin ,,,,,,2t tnt ntπππππ⎧⎫⎨⎬⎩⎭是2([,])L ππ-中的正交基, 因此()0f t =, a.e. [,]t ππ∈-,即有()0f t =, a.e. [0,]t π∈.因此{}1()n n t ϕ∞=是2([0,])L π中的正交基.(3) 注意到2sin nt π⎧⎫⎪⎪⎨⎬⎪⎪⎩⎭在2([,])L ππ-中不是完备的, 例如对于恒等于常数1的函数2()1([,])f t L ππ≡∈-是非零元, 但对于1,2,n =,,1sin 0n f ntdt ππϕ-=⋅=⎰.因此, 2sin nt π⎧⎫⎪⎪⎨⎬⎪⎪⎩⎭虽然是2([,])L ππ-的正交集, 但不是正交基.24. 试给出1([,])C a b 中列紧集的判别条件. 证:设子集1([,])A C a b ⊂且0x 是[,]a b 中一个数. 记{()|()}A f x f x A ''=∈及0{()|()}B f x f x A =∈.则A 是1([,])C a b 中的列紧集的充分必要条件是 (i) A '在([,])C a b 中有界; (ii) B 是R 中的有界集;(iii) A '是([,])C a b 中等度连续的集合.[充分性] 设1([,])A C a b ⊂满足条件(i), (ii)和(iii). 根据1([,])C a b 中范数的定义: 对于1([,])f C a b ∈,1([,])[,][,]:max |()|max |()|C a b x a b x a b ff x f x ∈∈'=+,容易看出,1([,])([,])C a b C a b k k f f f f −−−−→⇔−−−−→且([,])C a b k f f ''−−−−→因此只需证明A 和A '分别是([,])C a b 中的列紧集即可, 根据Arzela-Ascoli 定理, 这也只需证明A 和A '分别在([,])C a b 中有界且等度连续即可. 事实上, A '在([,])C a b 中有界性和等度连续已由所给条件得到保证(即(i)和(iii)). 还需证明A 在([,])C a b 中的有界性和等度连续性. 记A '在([,])C a b 中的一个界为A M ',B 作为R 中的有界集, 一个界纪为B M .对于任意的[,]x a b ∈, 利用中值定理, 有0000|()||()()||()||()()||()|().A B f x f x f x f x f x x f x M b a M ξ'≤-+'=-+≤-+ 此即表明[,]m a x |()|()A B x a b f x Mb a M '∈≤-+, 所以A 在([,])C a b 中有界,且界为()A B M b a M '-+. 进而对于,[,]x y a b ∈|()()||()()|||.A f x f y f x y M x y ξ''-=-≤-由此易知A 具有等度连续性.[必要性] 设A 是1([,])C a b 中的列紧集, 即对于A 的任何点列1{()}n n f x ∞=, 1{()}n n f x ∞=在1([,])C a b 中的范数(距离)1([,])[,][,]:max |()|max |()|C a b x a b x a b ff x f x ∈∈'=+意义下都有收敛的子列1{()}k n k f x ∞=. 因此, 1{()}n n f x ∞=和1{()}n n f x ∞='分别在([,])C a b 中有收敛的子列的1{()}k n k f x ∞=和1{()}k n k f x ∞='. 这表明, 根据Arzela- Ascoli 定理, A 和A '均是([,])C a b 中的列紧集, 因此A 和A '均在([,])C a b 中有界且等度连续, 因此得到(i)和(iii). 由A 的有界性, 可以知道集合0{()|()}B f x f x A =∈对于任意的0x [,]a b ∈都是R 中的有界集, 因此得到(ii). 26. 设(,)X ρ是紧距离空间,映射:f X X →满足1212((),())(,)f x f x x x ρρ<. (12x x ≠)则(1) f 是否有唯一的不动点? (2) f 是否为压缩映射?解答: (1) f 存在唯一的不动点, 证明如下: (存在性) 定义映射:h X →R 为()(,())h x x f x ρ=.由所给条件知此映射是连续的, 而X 是紧空间表明此映射能在X 中取得上下确界. 因此存在y X ∈, 使得()(,())inf ()x Xh y y f y h x ρ∈==.断言()inf ()0x Xh y h x ∈==,则y 是f 的不动点:()y f y =. 若不然, ()0h y >, 则在所给的条件中取()x f y =有(())((),(()))(,())()h f y f y f f y y f y h y ρρ=<=,此与y 达到()h x 的下确界相矛盾.(唯一性) 若还有z X ∈使得()z f z =但z y ≠. 仍由所给的条件, 有0(,)((),())(,)z y f z f y z y ρρρ<=<.这是个矛盾. 故必有z y =.(2) f 可以不是压缩映射. 反例如下:[反例1] 记[0,1]X =, 其中距离定义为两点之间的Euclid 距离: ,x y X ∀∈,(,):||x y x y ρ=-.因为X 是R 的闭子集, 因此是完备的, 显然也是紧的. 定义映射:T X X →为: 对于x X ∈,():1x T x x=+. 显然T 是自映射, 且有唯一的不动点0.对于任意的,x y X ∈, 设x y ≠, 则,x y 中至少有一个不为零, 由此容易得到||(,)11(1)(1)x y x y Tx Ty x y x y ρ-=-=++++ ||x y <-(,)x y ρ=.所以T 满足所需的条件, 但T 不是压缩映射, 因为,[0,1],[0,1](,)1supsup 1(,)(1)(1)x y x y x yx yTx Ty x y x y ρρ∈∈≠≠==++.因此不存在常数[0,1)α∈, 使得对于所有的,x y X ∈,(,)(,)Tx Ty x y ραρ≤.[反例2] 记1{0}1,2,X n n ⎧⎫=⋃=⎨⎬⎩⎭, 其中距离定义为两点之间的Euclid 距离: ,x y X ∀∈, (,):||x y x y ρ=-.因为X 是R 的闭子集, 因此是完备的, 显然也是紧的. 定义映射:T X X →为: 对于x X ∈,11,,():10,0,x T x n n x ⎧=⎪=+⎨⎪=⎩显然T 是自映射, 且有唯一的不动点0.对于任意的,x y X ∈, 设x y ≠, 如果,\{0}x y X ∈, 则有正整数,m n , m n ≠, 使得11,x y n m==, 且11||(,)11(1)(1)m n Tx Ty n m n m ρ-=-=++++ ||m n nm -<11(,)x y n mρ=-=; 如果,x y 中有一个为零, 例如0x =, 也有11(,)011Tx Ty m m ρ=-=++1m<(,)x y ρ=. 所以T 满足所需的条件, 但T 不是压缩映射, 因为例如对于 11,x y n m==, 当,m n →∞时, 成立11(,)11111(,)(1)(1)Tx Ty mnn m x y n m n mρρ-++==→++-,即不存在[0,1)α∈, 使得(,)(,)Tx Ty x y ραρ≤..补充题. 设二元函数(,)([,][,])g x y C a b a b ∈⨯,A 是([,])C a b 中的一个有界集, 记():(,)()()ba A F x g x y f y dy f x A ⎧⎫⎪⎪==∈⎨⎬⎪⎪⎩⎭⎰.(i) 证明A 是([,])C a b 中的列紧集;(ii) 问当A 还是([,])C a b 中的闭集时, A 是不是紧集?证:(i) 因为(,)([,][,])g x y C a b a b ∈⨯, 不难得知A ⊆ ([,])C a b . 根据Arzela-Ascoli 定理, 只需再证明A 在([,])C a b 中有界且等度连续即可.(a) A 在([,])C a b 中有界, 即A 作为由连续函数组成的集合是一致有界的. 事实上, 如果记A 的一个界为M , |(,)|g x y 在[,][,]a b a b ⨯上的最大值为K , 则对于任意取定的()F x A ∈, 有某个()f x A ∈, 使得()(,)()baF x g x y f y dy =⎰, 由此得知|()|(,)()baF x g x y f y dy =⎰|(,)()|bag x y f y dy ≤⎰max |(,)|max |()|ba xb a y ba a y bg x y f y dy ≤≤≤≤≤≤≤⎰[,]||||bC a b af Kdy =⎰[,]||||()C a b f K b a ≤- ()KM b a ≤-.因此A 是([,])C a b 中有界集, 且A 的一个界为()KM b a -.(b) A 在([,])C a b 中等度连续. 对于()F x A ∈,有某个()f x A ∈, 使得()(,)()baF x g x y f y dy =⎰. 因为(,)([,][,])g x y C a b a b ∈⨯, 因此在[,][,]a b a b ⨯上一致连续, 故对于任意的0ε>,存在0δ>, 当,[,]x x a b '∈且||x x δ'-<时, 有|(,)(,)|g x y g x y ε'-< ([,]y a b ∀∈),由此可以得到|()()|(,)()(,)()bbaaF x F x g x y f y dy g x y f y dy ''-=-⎰⎰[(,)(,)]()bag x y g x y f y dy '=-⎰|(,)(,)||()|ba g x y g x y f y dy '≤-⎰max |()||(,)(,)|ba y ba f y g x y g x y dy ≤≤'≤-⎰[,]|||||(,)(,)|bC a b af g x y g x y dy '=-⎰()M b a ε≤-. 由此易知A 具有等度连续性.(ii) 当A 还是([,])C a b 中的闭集时, A 未必是紧集! 反例可以构造如下: 考虑([0,1])C 中的集合{|1,2,}k A x k ==,显然A 是([0,1])C 中的有界集, 一个界可以取为1.可以断言A 是([0,1])C 中的闭集, 因为对于任意的,klx x A ∈, 不妨设l k >, 则[0,1][0,1]max ||k lk l C x x x x x ∈-=-1k l k l kl kl kk k k k l l l l ---⎛⎫⎛⎫⎛⎫⎡⎤=-=- ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦, 对于任意固定的k , 当l 趋于无穷大时, 右端项趋向于1, 由此容易知道, 作为([0,1])C 中的子点列, 集合A 不是Cauchy 列, 因此不可能在([0,1])C 中有收敛的子列, 故集合A 没有聚点, 因此是([0,1])C 中的闭集.定义(,)1K x y =,显然(,)([0,1][0,1])K x y C ∈⨯. 对于上述的集合A , 不难计算{}11()|1,2,|1,2,1k A F x x dx k k k ⎧⎫=====⎨⎬+⎩⎭⎰ 显然, A 是([0,1])C 中列紧集,唯一的聚点是零函数,但零函数不在A 中,因此不是闭集. 补充题. 设A 是([,])C a b 中的一个有界集, 记():()()xa B F x f t dt f x A ⎧⎫⎪⎪==∈⎨⎬⎪⎪⎩⎭⎰.证明B 是([,])C a b 中的列紧集.证:根据Arzela-Ascoli 定理, 需证明B 在([,])C a b 中有界且等度连续即可.(i) B 在([,])C a b 中有界, 即B 作为由函数组成的集合是一致有界的. 事实上, 如果记A 的界为M ,则对于任意取定的()F xB ∈, 有某个()f t A ∈, 使得()()xaF x f t dt =⎰, 由此得知|()|()|()|xxaaF x f t dt f t dt =≤⎰⎰[,]max |()|||||x xC a b a t baaf t dt f dt ≤≤≤=⎰⎰[,]||||()()C a b f b a M b a ≤-≤-.因此B 是([,])C a b 中有界集, 且B 的界为()M b a -.(ii) B 在([,])C a b 中等度连续. 对于()F x B ∈,有某个()f t A ∈, 使得()()xaF x f t dt =⎰.对于,[,]x x a b ∈|()()|()()xxaaF x F x f t dt f t dt -=-⎰⎰()|()|xxxxf t dt f t dt =≤⎰⎰[,]max |()|||||xxC a b a t bxxf t dt f dt ≤≤≤=⎰⎰||M x x ≤-. 由此易知B 具有等度连续性.补充题.证明课本20页定理8:对于距离空间(,)X ρ中的任何集合G , G '与G 均是闭集. 证:(i) 根据闭集的定义, 仅需证明()G G '''⊆.事实上, 设()y G ''∈, 则对于任意的0ε>((,)\{})S y y G ε'⋂≠∅.设((,)\{})x S y y G ε'∈⋂, 根据极限点的定义, 对于min{(,),(,)}0x y x y δρερ=->,有((,)\{})S x x G δ⋂≠∅.又(,)(,)S x S y δε⊆,因此有((,)\{})((,)\{})S y y G S x x G εδ⋂⊇⋂≠∅.注意到0ε>的任意性, 即可得到y G '∈. 因此G '是闭集. (ii) 需证明的是G G '⊆. 因为G G G '=⋃, 又()A B A B '''⋃⊆⋃,(*)故由(i)中已经证明了的结果, 有()G G G G G G G '''''''=⋃⊆⋃⊆⊆,因此G 是闭集.如下证明(*): 设y A B ''∉⋃, 则y A '∉, 且 y B '∉.由前者知存在某个00ε>, 使得0((,)\{})S y y A ε⋂=∅;由后者知存在某个10ε>, 使得1((,)\{})S y y B ε⋂=∅.取001min{,}δεε=, 则00δ>, 且0((,)\{})()S y y A B δ⋂⋃=∅,所以()y A B '∉⋃, 即(*)得证.。

泛函分析答案泛函分析解答(张恭庆)

泛函分析答案泛函分析解答(张恭庆)

泛函分析答案泛函分析解答(张恭庆)第五章习题第⼀部分01-151. M 为线性空间X 的⼦集,证明span( M )是包含M 的最⼩线性⼦空间.[证明] 显然span( M )是X 的线性⼦空间.设N 是X 的线性⼦空间,且M ? N .则由span( M )的定义,可直接验证span( M ) ? N .所以span( M )是包含M 的最⼩线性⼦空间.2. 设B 为线性空间X 的⼦集,证明conv(B ) = {∑=ni i i x a 1| a i ≥ 0,∑=ni i a 1= 1, x i ∈B , n 为⾃然数}.[证明] 设A = {∑=ni i i x a 1| a i ≥ 0,∑=ni i a 1= 1, x i ∈B , n 为⾃然数}.⾸先容易看出A 为包含B 的凸集,设F 也是包含B 的凸集,则显然有A ? F ,故A 为包含B 的最⼩凸集.3. 证明[a , b ]上的多项式全体P [a , b ]是⽆限维线性空间,⽽E = {1, t , t 2, ..., t n , ...}是它的⼀个基底.[证明] ⾸先可以直接证明P [a , b ]按通常的函数加法和数乘构成线性空间,⽽P [a , b ]中的任⼀个元素皆可由E 中有限个元素的线性组合表⽰.设c 0, c 1, c 2, ..., c m 是m + 1个实数,其中c m ≠ 0,m ≥ 1.若∑=mn n n t c 0= 0,由代数学基本定理知c 0 = c 1 = c 2 = ... = c m = 0,所以E 中任意有限个元素线性⽆关,故P [a , b ]是⽆限维线性空间,⽽E 是它的⼀个基底。

4. 在 2中对任意的x = (x 1, x 2)∈ 2,定义|| x ||1 = | x 1 | + | x 2 |,|| x ||2 = (x 12 + x 22)1/2,|| x ||∞ = max{ | x 1 |, | x 2 | }.证明它们都是 2中的范数,并画出各⾃单位球的图形.[证明] 证明是直接的,只要逐条验证范数定义中的条件即可.单位球图形略.5. 设X 为线性赋范空间,L 为它的线性⼦空间。

泛函分析答案 第四章习题第一部分(1-18)

泛函分析答案  第四章习题第一部分(1-18)

第四章习题第一部分(1-18)1. 在 1中令ρ1(x , y ) = (x - y )2,ρ2(x , y ) = | x - y |1/2,,问ρ1, ρ2是否为 1上的距离? [解] 显然ρ1, ρ2满足距离空间定义中的非负性和对称性. 但ρ1不满足三角不等式:取点x = -1, y = 0, z = 1,则 ρ1(x , z ) = 4 > 2 = ρ1(x , y ) + ρ1(y , z ),所以ρ1不是 1上的距离。

而∀x , y , z ∈ 1,ρ2(x , y ) =||||2||||||||||y z z x y z z x y z z x y x -⋅-+-+-≤-+-≤-||||)||||(2y z z x y z z x -+-=-+-==ρ2(x , z ) + ρ2(z , y ); 所以ρ2是 1上的距离.2. 设(X , ρ)是距离空间,令ρ1(x , y ) =ny x ),(ρ,∀x , y ∈X .证明(X , ρ1)也是距离空间.[证明] 显然ρ1满足距离空间定义中的非负性和对称性, 故只需证明ρ1满足三角不等式即可. 实际上∀x , y , z ∈X ,nny z z x y x y x ),(),(),(),(1ρρρρ+≤=nnnn ny z z x n z y x M y z z x )),(),((),,,(),(),(ρρρρ+=++≤),(),(),(),(11y z z x y z z x n n ρρρρ+=+=.3. 设(X , ρ)是距离空间,证明| ρ(x , z ) - ρ(y , z ) | ≤ ρ(x , y ),∀x , y , z ∈X ;| ρ(x , y ) - ρ(z , w ) | ≤ ρ(x , z ) + ρ(y , w ),∀x , y , z , w ∈X .[证明] ∀x , y , z , w ∈X ,由三角不等式有- ρ(x , y ) ≤ ρ(x , z ) - ρ(y , z ) ≤ ρ(x , y ),故第一个不等式成立. 由第一个不等式可直接推出第二个不等式:| ρ(x , y ) - ρ(z , w ) | ≤ | ρ(x , y ) - ρ(y , z ) | + | ρ(y , z ) - ρ(z , w ) | ≤ ρ(x , z ) + ρ(y , w ).4. 用Cauchy 不等式证明(| ζ1 | + | ζ1 | + ... + | ζn | )2 ≤ n (| ζ1 |2 + | ζ1 |2 + ... + | ζn |2 ). [证明] 在P159中的Cauchy 不等式中令a i = | ζi |,b i = 1,∀i = 1, 2, ..., n 即可.5. 用图形表示C [a , b ]上的S (x 0, 1). [注] 我不明白此题意义,建议不做.6. 设(X , d )是距离空间,A ⊆ X ,int(A )表示A 的全体内点所组成的集合.证明int(A )是开集.[证明] 若A = ∅,则int(A ) = ∅,结论显然成立. 若A ≠ ∅,则∀x ∈ A ,∃r > 0使得S (x , r ) ⊆ A .对∀y ∈ S (x , r ),令s = r - d (x , y ),则s > 0,并且S (y , s ) ⊆ S (x , r ) ⊆ A ; 所以y ∈ int(A ).故S (x , r ) ⊆ int(A ),从而int(A )是开集.7. 设(X , d )是距离空间,A ⊆ X ,A ≠ ∅.证明:A 是开集当且仅当A 是开球的并. [证明] 若A 是开球的并,由于开球是开集,所以A 是开集.若A 是开集,∀x ∈A ,存在r (x ) > 0,使得S (x , r (x )) ⊆ A . 显然A = ⋂x ∈A S (x , r (x )).8. 举例说明对于一般的距离空间X ,并不是总有),(),(r x S r x S =,∀x ∈X ,r > 0. [例] 设X = {a , b },定义d : X ⨯ X → 为d (a , a ) = d (b , b ) = 0,d (a , b ) = 1. 则(X , d )是距离空间.当r = 1时,不论x 为a 还是b ,总有),(}{),(r x S X x r x S =≠=.9. 设(X , d )是距离空间,X B A ⊆,.证明:B A B A ⋃=⋃,B A B A ⋂⊆⋂. [证明] 由于A A ⊆,B B ⊆,故B A B A ⋃⊆⋃.由于A 和B 都是闭集,所以B A ⋃也是闭集,所以B A B A ⋃⊆⋃.另一方面,由B A B A ⋃⊆,,得B A B A ⋃⊆,,所以B A B A ⋃⊆⋃; 这样就证明了第一个等式.由B A B A ,⊆⋂得B A B A ,⊆⋂,所以B A B A ⋂⊆⋂。

《 泛函分析》期末试题

《 泛函分析》期末试题
6 (20 分) 设1 p , xn (xni ) l p (n 1), 并且范数有界, 则当 i 1, xni xi (n ) 时, 存在{ xn }的凸组合的序列{ yn }依范数收敛于 x (xi ) .
存在 xn X , xn 0 使得 Txn . 3 (15 分) 设 X 是 Banach 空间, An , A B( X ), 则 An x Ax, x X 当且仅当{ An }
有界并且存在子集合 G 使得 spanG X ,在 G 上 An x Ax. 4 (15 分) 对于内积空间 H 中的规范正交集{e1, , en}和 H 中的 x ,证明函数
n
f (1, , n ) x iei 当且仅当 i (x, ei ) ( i 1, , n) 时达到 i1
极小值。

5 (15 分) 设 H 是 Hilbet 空间,{en , n 1}是其中的规范正交系。证明级数 nen 按 n1 H 的范数收敛等价于弱收敛。
《 泛函分析》期末试题
1(20 分) 证明非ቤተ መጻሕፍቲ ባይዱ性积分方程
b
x(t) a K (t, s, x(s))ds y(t), t [a,b]
在 足够小时有唯一连续解。这里 y(t) C[a,b], K : [a,b][a,b] R R
连续并且满足
K(t, s,1) K(t, s, 2 ) L1 2 , t, s [a,b]. 2 (15 分) 设 X ,Y 是线性赋范空间,T : X Y 是线性算子, 则T 不是有界的当且仅当

泛函分析试卷与答案

泛函分析试卷与答案

泛函分析试卷与答案【篇一:泛函分析习题参考答案】证明:显然为空间x上的距离,试证:~d(y,x)也是xd(y,x)?1?d(y,x)上的距离。

~~d(x,y)?0,并且d(x,y)?0d(x,y)0xy。

~~d(y,x)d(x,y)d(y,x)d(x,y);1?d(y,x)1?d(x,y)t1?1?1?t1?t的单调增加性及再者,最后,由d(x,y)?d(x,z)?d(z,y),可得~d(x,y)d(x,z)?d(z,y)d(x,z)d(z,y)d(x,y)1?d(x,y)1?d(x,z)?d(z,y)1?d(x,z)?d(z,y)1?d(x,z)?d(z,y)~~d(x,z)d(z,y)d(x,z)?d(z,y)。

1?d(x,z)1?d(z,y)、设二p?1,xn?(?1(n),?,?i(n),?)?lp,n?1,2,?,x?(?1,?,?i,?)?lp,则n??时,p??d(xn,x)i(n)??i??0的充要条件为(1)n??时,?i(n)??i,i?1,2,?;(2)0,i1存在n?0,使得i?n?1i(n)p对任何自然数n成立。

(n)(n)必要性证明:由d(x,x)?ni??i??0可知,?i??i,i?1,2,?。

i1p由x?(?1,?,?i,?)?l。

p可知,,存在n1?0,使得i?n1?1p?(n)ii?(p?i?1pi(p2,并且n?n1时,2p由此可得,i?n1?1i(n)ppppi(n)??ii????p对n?n1成立。

i?n1?1i?n1?1p对于n?1,2,?n1,存在n2?0,i?n2?1i(n)pp。

取n?max?n1,n2?,则i?n?1(n)pip对任何自然数n成立。

0,存在k?0,使得充分性证明:由条件可知,i?k?1时,k(n)pi(2ip对任何自然数n成立,并且i?k?1pi(p2。

由(n)i??i可知,存在n?0,使得n?n i?1(n)ipp,并且d(xn,x)pi?1(n)i??ipi?1k(n)i??i?pi?k?1pi(n)ipi(n)??ii?1kp(n)ppp?(i)?(i)p2?p。

泛函分析习题测验解答

泛函分析习题测验解答

泛函分析习题测验解答第一章练习题1.记([,])C a b 是闭区间[,]a b 上连续函数全体构成的集合, 在([,])C a b 上定义距离如下:(,)|()()|,,([,])baf g f x g x dx f g C a b ρ=-?∈?,(1)([,])C a b 按ρ是否完备?(2)(([,]),)C a b ρ的完备化空间是什么?答:(1) 不完备, 例如对于[,][0,2]a b =以及1,2,n =L ,定义,01,():1,1 2.n n x x f x x ?≤<=?≤≤? 则{()}([0,2])n f x C ?在本题所定义的距离的意义下是Cauchy 列, 因为111(,)|()()|110,(,).11n m n m n m f f f x f x dxx dx x dxm n n m ρ=-≤+=+→→∞++另一方面, 点列{()}n f x 并不能在本题所定义的距离的意义下收敛到([0,2])C 中的某个元. 事实上, 在几乎处处收敛的意义下, 我们有0,[0,1)()()1,[1,2].n x f x g x x ∈?→=?∈?因此, 根据Lebesgue 有界收敛定理, 可以得到11100(,)|()()|1|0|0.1n n nnf g f x g x dxx dx x dx n ρ=-=-==→+但()([0,2])g x C ?.(2) ([,])C a b 的完备化空间是1([,])L a b . 因为(i) 在距离ρ的意义下, ([,])C a b 是1([,])L a b 的稠密子集. 事实上, 任意取定一个1()([,])f x L a b ∈, 需要证明: 对于任意的0ε>, 存在()[,]g x C a b ∈, 使得[,](,)|()()|a b f g f x g x dx ρε=-<?.事实上, 首先根据积分的绝对连续性, 存在0δ>, 使得当[,]E a b ?, 只要mE δ<, 就有|()|3Ef x dx ε<.因为()f x (Lebesque)可积, 故几乎处处有限, 即10N N m E ∞==I ,其中{[,]||()|}N E x a b f x N =∈>. 由此可以得到 lim ()0N N m E →∞=(因为{}N E 是渐缩集列并且[,]a b 的测度有限),故存在某个自然数N , 使得N mE δ<且|()|3NE f x dx ε<,因此有|()|f x N ≤,[,]\N x a b E ∈.引入一个新函数定义为(),[,]\():0,,NNf x x a b E f x E ∈?=?% 显然对于[,]x a b ∈恒有|()|f x N ≤%. 由Lusin 定理, 存在连续函数()(,)g x C ∈-∞+∞和闭集[,]F a b ?, 使得([,]\)min{,/3}m a b F N δε<且|()|g x N ≤, 进而()()g x f x ≡%,x F ∈.则()g x 限制在[,]a b 即为所求, 因为: [,](,)|()()|a b f g f x g x dx ρ=-?([,]\)|()()|a b F Ff xg x dx ?=-?[,]\|()()||()()|a b FFf xg x dx f x f x dx ≤-+-?%[,]\\(|()|)|()()||()()|NNa b FF E F E f x N dxf x f x dx f x f x dx≤++-+-??%%[,]\|()|([,]\)a b Ff x dx Nm a b F ≤+?\|()|0NNF E F E f x dx dx ?++?333εεεε<++=.(ii) 1 (([,]),)L a b ρ是完备的空间.2.设(,)X ρ是距离空间,A 是X 的子集,对任意的x X ∈,记(,)inf (,)y Ax A x y ρρ∈=,则(1)(,)x A ρ是x 的连续函数.(2)若{}n x 是X 中的点列, 使(,)0n x A ρ→,{}n x 是否为Cauchy 列? 为什么? 证:(1) 任意取定12,x x X ∈, 对于任意的y X ∈根据三角不等式, 有1122(,)(,)(,)x y x x x y ρρρ≤+, 2211(,)(,)(,)x y x x x y ρρρ≤+.对两端关于y A ∈取下确界, 可以得到1122inf (,)(,)inf (,)y Ay Ax y x x x y ρρρ∈∈≤+, 2211inf (,)(,)inf (,)y Ay Ax y x x x y ρρρ∈∈≤+.即1122(,)(,)(,)x A x x x A ρρρ≤+, 2211(,)(,)(,)x A x x x A ρρρ≤+.由此可得1212|(,)(,)|(,)x A x A x x ρρρ-≤.由此容易证明()f x (,)x A ρ=是X 上的连续函数, 实际上, (,)x A ρ还满足Lipschitz 常数等于1的Lipschitz 条件.(2) 答: 未必是Cauchy 列. 例如取X =R , 其中的距离是Euclid 距离. 对于{1,1}A =-, 对于1,2,n =L , 定义点列为1(1).n n x n=-+对于点列{}n x ,不难验证,1(,)0n x A nρ=→; 但显然{}n x 不是Cauchy 列. 这里的原因就在于(,)x A ρ不是点到点之间的距离, 而是点到集合的距离, 当这个集合A 含有不止一个点时, (,)x A ρ不再具有点点之间距离的性质.3. E 是nR 中的Lebesgue 可测集合, 试证()L E ∞按距离(,)esssup |()()|x Ef g f x g x ρ∈=-是不可分空间.证法一:记为方便起见, 设[,]E a b =. 定义[,]1,[,],()()0,(,].a x a f x x x b λλλχλ∈?==?∈?显然()f x λ有界,可测, 因此必属于([,])L a b ∞. 记{()|(,]}A f x a b λλ=∈.则([,])A L a b ∞.既然对于不同的12,[,]a b λλ∈, 1f λ与2f λ不同的部分是正测度集, 容易看出A 的势是?.进而有(不妨设12λλ<)1212121212[,][,]\0[,][,]\0[,][,][,][,]\0(,][,][,]\0(,)infsup |()()|inf sup |()()|inf sup |()()|infsup () 1.E a b x a b E mE E a b x a b E mE a a E a b x a b E mE E a b xa b E mE f f f x f x f x f x x x x λλλλλλλλλλρχχχ?∈=?∈=?∈=?∈==-=-=-==我们用反证法证明所需的结论.设([,])L a b ∞是可分的,则其必有可数的稠密子集123{,,,,,}i g g g g L L , 因此至少有一个i g 属于两个不同的1(,1/3)S f λ和2(,1/3)S f λ.而由三角不等式, 我们有12121(,)(,)(,)112.333i i f f f g g f λλλλρρρ=≤+≤+=这是一个矛盾. 因此([,])L a b ∞不可能是可分的.证法二:既然E 是正测度集,存在0R >使得((0,))0m S R E ?>. 不难验证, 存在一列正数1{}i i R ∞=满足:120i R R R R <<<<<<="" l="" p="">且1([(0,)\(0,)])0i i m E S R S R +?>.对于每一个12(,,,,)i λλλλ=L L ,其中0i λ=或1, 定义1(),[(0,)\(0,)]i i i f x x E S R S R λλ+=∈?,1,2,i =L . 显然()f x λ有界,可测, 因此必属于()L E ∞. 记{()|{0,1}}A f x λλ=∈N ,其中{0,1}N表示具有上述性质的λ的全体. 则()A L E ∞.既然对于不同的,λμ∈{0,1}N, (不妨设1(,,,)i λλλ=L L , 1(,,,)i μμμ=L L 且对于某个i ,0i λ=1i μ=)f λ与f μ不同的部分至少是正测度集1[(0,)\(0,)]i i E S R S R +?, 容易看出A 的势与{0,1}N的势都是连续统的势?.进而有11\0((0,)\(0,))\0((0,)\(0,))\01(,)inf sup |()()|infsup|()()|inf sup|| 1.i i i i F E x E F mF F E x E S R S R FmF i i F E x E S R S R F mF f f f x f x f x f x λμλμλμρλμ++?∈=?∈?=?∈?=≥=-≥-=-= 我们用反证法证明所需的结论.设()L E ∞是可分的,则其必有可数的稠密子集123{,,,,,}i g g g g L L , 因此至少有一个j g 属于两个不同的(,1/3)S f λ和(,1/3)S f μ.而由三角不等式, 我们有1(,)(,)(,)11.33j j f f f g g f λμλμρρρ=≤+≤+这是一个矛盾. 因此()L E ∞不可能是可分的. 补充题.证明[,]L a b ∞是不可分空间. 证:记{}[,]()a t K x a t b χ=<<,其中[,]1,,():0,.a t a x t x t x b χ≤≤?=?<≤?显然[,]K L a b ∞, 且只要12,[,]t t a b ∈,12t t ≠, 则有12[,][,],a t a t K χχ∈, 且因为(不妨设12t t <)12(,]t t 的测度为正, 故1212[,][,][,][,][,]||||sup |()()|a t a t a t a t L a b ess x x χχχχ∞-=- 1212(,](,]sup |()|1t t x t t x χ∈==.因此, 由(,)a b 是不可数集, 而K 的基数与(,)a b 的基数相同, 故也是不可数集,且K 中任何两个不同元的距离均为1.如果[,]L a b ∞是可分的, 因此有一个可数的稠密子集合{()|1,2,}k A f x k ==L , 且11(,)3kk S f K ∞=?U . 但这是荒谬的, 因为上式左端只有可数多个开球, 右端有不可数多个元, 所以至少有K 中的两个不同的12[,][,],a t a t χχ属于同一个开球01(,)3k S f , 由此得到矛盾:121002[,][,][,][,][,][,][,]1||||||||||||112.333a t a t L ab a t k k a t L a b L a b f f χχχχ∞∞∞=-≤-+-<+= 此矛盾表明[,]L a b ∞不可能是可分的.4.设([,])kC a b 是闭区间[,]a b 上具有k 阶连续导数的函数全体, 定义:()()[,](,)max |()()|,,([,])ki i k x a b i f g f x g x f g C a b ρ∈==-∈∑试证:(1)([,])kC a b 是完备的距离空间; (2)若定义||||(,0)f f ρ=,则(([,]),||||)kC a b ?是Banach 空间.证:(1) 这里只证明该距离是完备的. 设1{()}n n f x ∞=是([,])k C a b (0k =时, 0([,])C a b 就理解为[,]C a b )中该距离意义下的Cauchy 列. 因此当,m n →∞时,有()()[,]0(,)max |()()|0ki i m n m n x a b i f f f x f x ρ∈==-→∑.由此容易知道对于每一个0,1,,i k =L , ()1{()}i n n f x ∞=是0([,])C a b 中的Cauchy 列. 根据0([,])C a b 的完备性,知()1{()}i n n f x ∞=收敛到0([,])C a b 中的某个元, 记其为()i f x , 则0()([,])i f x C a b ∈, 且()()()i i n f x f x ?→??→,,0,1,,n i n →∞=L , 其中“??→??→”表示是一致收敛. 如果我们记0()()f x f x =利用数学分析中函数序列一致收敛的分析性质, 可以得到12()()(),()(),,()().k kf x f x f x f x fx f x '''===L (*)例如, 因为1()()n f x f x ?→??→', 故 1()()xxn aaf t dt f t dt ??→??→'?, 即1()()()xn n af x f a f t dt ??→??→-?, 又0()()n f x f x ?→??→及0()()nf a f a ??→??→, 故 001()()()xaf x f a f t dt -=?.求导即可得到01()()f x f x '=, 即 1()()f x f x '=.归纳地可得(*).因此0()()f x f x =([,])kC a b ∈且()[,](,)max |()()|ki i n n x a b i f f f x f x ρ∈==-∑()()[,]max |()()|0ki i n x a b i f x f x ∈==-→∑.即([,])kC a b 是完备的距离空间.(2)证略.7.证明有限维线性赋范空间是完备的.证:记该有限维(实)线性赋范空间为E , 是n 维的,范数记为||||x ,需要证明(,||||)E ?是完备的. 记E 中的一组基为:12,,,n v v v L .因此对于任意的x E ∈, 存在唯一一组实数12,,,n x x x L , 使得1122n n x x x x =+++v v v L , 反之亦然.(i) 我们断言存在一个与x 无关的常数0K >, 使得||||||i x K x ≤, 1,2,,i n =L .(*)首先定义一个映射:nf ?→?为: 对于任意的12(,,,)n x x x L n ∈?,121122(,,,):||||||||n n n f x x x x x x x ==+++v v v L L .则对于任意的,x y E ∈(1122n n y y y y =+++v v v L )有1122||||(,,,)n n x y f x y x y x y -=---L 111||||||||||||n n n x y x y ≤-?++-?v v L2222111()()||||||||n n n x y x y ≤-++-?++v v L L .由此容易知道f 是n R 上的连续函数. 记1B ?是nR 中的单位球面, 即21121{(,,,)|1}nn k k B x x x x =?==∑L . 则对于任意的11(,,)n x x B ∈?L , 有1(,,)0n f x x >L .(事实上, 若有1(,,)0n f x x =L 则111(,,)||||0n n n f x x x x =++=v v L L ,因此110n n x x ++=v v L , 但12,,,n v v v L 线性无关, 故必有120n x x x ====L , 此与11(,,)n x x B ∈?L 相矛盾. )注意到1B ?是n R 中的有界闭集(紧子集), 连续函数f 必可在其上达到正的最小值1/0K >.现在我们可以证明式(*). 事实上, 对于任意的x E ∈,存在唯一的一组实数12,,,n x x x L , 使得1122n n x x x x =+++v v v L , 不失一般性, 可设0x ≠因此, 12,,,n x x x L 不全为零, 注意到111222111,,,n n n n k k k k k k x x x y B x x x ===?? ?=∈? ? ??∑∑∑L , 故111222211111222111()1,,,,nn nnnkkkk k k n n n n k k k k k k x x x f y xxxx x x f K x x x ======+++=?? ?=≥ ? ??∑∑∑∑∑∑v v v L L或2112211||||nn n kk x x x x xK==+++≥∑v v v L .由此容易得出(*)式.(ii) 设()1{}k k x ∞=是E 中的基本列, 这里()()()()1122k k k k n n x x x x =+++v v v L ,即()()||||0k l x x -→, 当,k l →∞.利用(*)式便可以得到对于每一个1,2,,i n =L , 成立()()()()||||||0k l k l i i x x K x x -≤-→, 当,k l →∞.即()1{}k i k x ∞=是1中的基本列, 因此收敛. 设()(0)k i i x x →, (k →∞,1,2,,i n =L ).记(0)()(0)(0)1122k n n xx x x =+++v v v L , 显然(0)x E ∈. 根据E 中收敛的等价性(即按范数收敛意味着每个分量收敛或即按坐标收敛), 容易得到()(0)||||0k x x -→, 当k →∞.因此(,||||)E ?是完备的.9.设X 为线性赋范空间, 0X 是X 的线性闭子空间. 在X 中定义等价关系:为0x y x y X ?-∈:. 对任意的x X ∈, 以[]x 记x 的等价类, 令0/{[]|}X X x x X =∈.称0/X X 为商空间, 在0/X X 上定义线性运算如下: (i) [][][]x y x y +=+, ,x y X ∈, (ii) [][]x x λλ=, ,x X λ∈∈C .并定义0||[]||inf ||||y X x x y ∈=+.试证: 0/X X 按0||[]||x 也是一个线性赋范空间.证:(一) 0/X X 按照所定义的线性运算是线性空间 (证明略).(二) 0||[]||x 是0/X X 中的范数. 按照定义, 对于每一个0[]/x X X ∈显然0||[]||inf ||||y X x x y ∈=+是一个确定的数, 因此00||||:/X X ?→R 是映射.(i) (非负性) 对于x X ∈, 显然0||[]||inf ||||0y X x x y ∈=+≥.(正定性) 当0[]=[0]=x X 时, 有00||[]||||[0]||inf ||||0y X x y ∈===.反之, 如果我们假设0000||[]||inf ||||0y X x x y ∈=+=, 需要证明 00[]=[0]=x X , 也只需证明00x X ∈. 事实上, 根据下确界的定义, 对每一个自然数1,2,k =L , 存在0k y X ∈, 使得00000111||||||[]||inf ||||k y X x y x x y k k k∈+<+=++=, 由此得到一个序列0{}k y X ?且||||0k y x →-.因为0X 是闭子空间因此00x X -∈故00x X ∈, 即00[]=[0]=x X . (ii) (正齐性) 对于,x X λ∈∈C , 如果0λ=, 则000x x X λ==∈, 故0[][0]0[][]x X x x λλ====. 如果0λ≠, 则当y取遍0X 中的所。

泛函分析习题

泛函分析习题

泛函分析练习题一名词解释:1.范数与线性赋范空间2.无处稠密子集与第一纲集3.紧集与相对紧集4.开映射5.共轭算子6. 内点、内部:7. 线性算子、线性范函:8. 自然嵌入算子9. 共轭算子10. 内积与内积空间:11. 弱有界集:12. 紧算子:13. 凸集14. 有界集15. 距离16. 可分17. Cauchy列18.自反空间二、定理叙述1、压缩映射原理2. 共鸣定理3.逆算子定理4. 闭图像定理5.实空间上的Hahn-Banach延拓定理6、Baire 纲定理7、开映射定理8、Riesz 表现定理三证明题:1.若(,)x ρ是度量空间,则1d ρρ=+也使X 成为度量空间。

证明:,,x y z X ∀∈显然有 (1)(,)0d x y ≥,(,)0d x y =当且仅当x y =。

(2)(,)(,)d x y d y x =(3)由1()111t f t t t ==-++,(0)t >关于t 单调递增,得(,)(,)(,)(,)1(,)1(,)(,)x z x y y z d x z x z x y y z ρρρρρρ+=≤+++(,)(,)1(,)1(,)x y y z x y y z ρρρρ≤+++(,)(,)d x y d y z =+故d 也是X 上的度量。

2, 设H 是内积空间,,,,n n x x y y H ∈,则当,n n x x y y →→时,(,)(,)n n x y x y →,即内积关于两变元连续。

证明:22|(,)(,)||(,)|||||||||n n n n n n x y x y x x y y x x y y -=--≤-⋅-已知 ,n n x x y y →→,即||||0,||||0n n x x y y -→-→。

故有2|(,)(,)|0n n x y x y -→即 (,)(,)n n x y x y →。

3.考虑[,]C a b 上的非线性积分方程()(,,())()bax t k t s x s ds t λϕ-=⎰其中[,],(,,)C a b k t s ϕω∈是[,][,]a b a b R ⨯⨯上的连续函数,满足1212|(,,)(,,)|||k t s k t s b ωωωω-≤-证明当||λ足够小时,此方程存在唯一解0[,]x C a b ∈。

泛函分析答案(完整版)

泛函分析答案(完整版)

1.}{ .1的极限是唯一的中的收敛列证明距离空间n x X *.** 0*)**,( )( 0*)*,(*),(*)**,(0)( *** x x x x n x x x x x x n x x x x n n n n ==∞→→+≤≤∞→→→,即所以,则,设ρρρρ第七章距离空间、赋范线性空间2.* }{* }{ .2x x X x x X n n 的任一子列收敛于收敛于中的序列试证距离空间⇔∈.* 0*),( 0*),(}{}{)( *x x x x x x x x n x x kkk n n n n n n →→→∞→→,所以,故的任一子列,依条件,是,设ρρ.*}{.*}{*),( }{}{*),(0*}{*}{000x x x x x x x x x x N n N x x x x n n n n n n n n k k k收敛于此与假设矛盾,故不收敛于显然使的一个子列,于是可选取,使,都存在,使对任意的自然数则必存在,不收敛于,如果的任一子列收敛于反之,设ερερε≥≥>>3),(),(|),(),(| )ii (),(|),(),(| )i ( .3w z y x w y z x y x z y z x X w z y x ρρρρρρρ+≤−≤−:中的任意四个点,证明是距离空间、、、设),(|),(),(|)2()1()2( ),(),(),( ),(),(),()1( ),(),(),( ),(),(),( )i (y x z y z x y x z x z y z x x y z y y x z y z x z y y x z x ρρρρρρρρρρρρρρρ≤−≤−+≤≤−+≤即得:、结合得再由得由),(),(|),(),(|)4()3()4( ),(),(),(),( ),(),(),(),()3( ),(),(),(),( ),(),(),(),(),(),( )ii (w z y x w y z x w z y x z x w y w z z x x y w y w z y x w y z x z w w y y x z y y x z x ρρρρρρρρρρρρρρρρρρρρρρ+≤−+≤−++≤+≤−++≤+≤即得:、结合得再由得由4距离吗?是定义在实数集合上的2)(),( .4y x y x −=ρ.,24120),(),(),(),(.)(),(2上式就不成立时,,,比如取满足、、不能对所有的因为的距离不是定义在实数集合上>===+≤⋅⋅−=z y x y z z x y x z y x y x y x ρρρρρ.),( }{}{ .5收敛中的基本列,证明是距离空间、设n n n n n y x X y x ρα=.Cauchy }{),(),( |),(),(|||),( 0),( ),( 0),(数列,故收敛是即知再由依条件:n m n m n m m n n m n m n m n y y x x y x y x m n y y m n x x αρρρρααρρ+≤−=−∞→→∞→→5的闭包是闭集。

(完整word版)泛函分析题目集

(完整word版)泛函分析题目集

泛函分析复习题一.选择题:1. 设 },,,,{21 n e e e 是希尔伯特空间H 上的一组规范正交系,则下列论断未必正确的是 ( )A. },,,,{21 n e e e 线性无关;B. 对任何的H x ∈,都有∑∞==122|),(|n n xe x ;C. 任意两组数N a a a ,,,21 ,N b b b ,,,21 都有 ∑∑∑====⎪⎭⎫ ⎝⎛Nn n n N n N n n n n n b a e b e a 111,;D. ()⎩⎨⎧≠==ji j i e e j i ,0,1,, ,3,2,1,=j i 。

2. 下列关于p L 空间(1≥p 且2≠p )的论述不正确的是( )A. pL 空间是一个赋范线性空间;B. p L 空间是完备的;C. p L 空间是距离空间;D. p L 空间是希尔伯特空间。

3. 下列关于2L 空间的论述不正确的是( )A. 2L 空间是一个赋范线性空间;B. 2L 空间不一定完备的;C. 2L 空间是内积空间;D. 2L 空间是可分的。

4. 设X为一个实赋范线性空间,⋅为他上面的范数,则下面不正确的是( )A. 对任何X x ∈,都有0≥x ,B. 对任何X x ∈,R a ∈都有x a ax ||=,C. 对任何X x ∈,X y ∈,都有222y x y x +=+, D. 对任何X x ∈,X y ∈,都有y x y x +≤+。

5. 设X 为一个距离空间,下面不正确的是( )A. X 和空集φ都是开集;B. 任意多个开集的并还是开集;C. 任意多个开集的交也是开集;D. 有限多个开集的交也是开集。

6. 设X 为一个距离空间,下面不正确的是( )A. X 和空集φ都是闭集;B. 任意多个闭集的并还是闭集;C. 任意多个闭集的交也是闭集;D. 有限多个闭集的并也是闭集。

7. 下面论述正确的是( )A. 紧集不一定是有界的。

B. 紧集的子集一定是紧集。

泛函分析复习与总结

泛函分析复习与总结

《泛函分析》复习与总结第一部分 空间及其性质泛函分析的主要内容分为空间和算子两大部分. 空间包括泛函分析所学过的各种抽象空间, 函数空间, 向量空间等, 也包括空间的性质, 例如完备性, 紧性, 线性性质, 空间中集合的各种性质等等。

以下几点是对第一部分内容的归纳和总结。

一.空间(1)距离空间 (集合+距离)!验证距离的三个条件:(,)X ρ称为是距离空间,如果对于,,x y z X ∈(i) 【非负性】(,)0x y ρ≥,并且(,)0x y ρ=当且仅当x y =【正定性】;(ii) 【对称性】(,)(,)x y y x ρρ=;(iii) 【三角不等式】(,)(,)(,)x y x y y z ρρρ≤+。

距离空间的典型代表:s 空间、S 空间、所有的赋范线性空间、所有的内积空间。

(2)赋范线性空间 (线性空间 + 范数)!验证范数的三个条件:(,||||)X ⋅称为是赋范线性空间,如果X是数域K =¡(或K =£)上的线性空间,对于a K ∈和,x y X ∈,成立(i) 【非负性】||||0x ≥,并且||||0x =当且仅当0x =【正定性】; (ii) 【齐次性】||||||||||ax a x =⋅;(iii) 【三角不等式】||||||||||||x y x y +≤+。

赋范线性空间的典型代表:n ¡空间(1,2,3,n =L )、n £空间(1,2,3,n =L )、p l 空间(1p ≤≤∞)、([,])p L ab 空间(1p ≤≤∞)、[,]Cab 空间、[,]k C a b 空间、Banach 空间、所有的内积空间(范数是由内积导出的范数)。

(3)内积空间 (线性空间 + 内积)!验证内积的四个条件:(,(,))X ⋅⋅称为是内积空间,如果X 是数域K =¡(或K =£)上的线性空间,对于a K ∈和,,x y z X ∈,成立(i) 【非负性】(,)0x x ≥,并且(,)0x x =当且仅当0x =【正定性】;(ii) 【第一变元可加性】(,)(,)(,)x y z x z x z +=+;(iii) 【第一变元齐次性】(,)(,)ax z a x z =;(iv) 【共轭对称性】(,)(,)x z z x =。

泛函分析答案

泛函分析答案

泛函分析答案(总5页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--泛函分析答案:1、 所有元素均为0的n ×n 矩阵2、 设E 为一线性空间,L 是E 中的一个子集,若对任意的x,y ∈L ,以及变数λ和μ均有λx +μy ∈L ,则L 称为线性空间E 的一个子空间。

子空间心室包含零元素,因为当λ和μ均为0时,λx +μy =0∈L ,则L 必定含零元素。

3、 设L 是线性空间E 的子空间,x 0∈E\L,则集合x 0+L={x 0+l,l ∈L}称为E 中一个线性流形。

4、 设M 是线性空间E 中一个集合,如果对任何x,y ∈M ,以及λ+μ=1,λ≥0,μ≥0的λ和μ,都有λx +μy ∈M ,则称M 为E 中的凸集。

5、 设x,y 是线性空间E 中的两个元素,d(x,y)为其之间的距离,它必须满足以下条件:(1) 非负性:d(x,y)>0,且d(x,y)=0<―――>x=y (2) d(x,y)=d(y,x)(3) 三角不等式:d(x,y)≤d(x,z)+d(y,z) for every x,y,z ∈E n 维欧几里德空间常用距离定义: 设x={x 1,x 2,…x n }T ,y={y 1y 2,…y n }Td 2(x,y)=(21||ni i i x y =-∑)1/2d 1(x,y)=1||ni i i x y =-∑d p (x,y) = (1||np i i i x y =-∑ )1/p d ∞(x,y)=1max ||i i i nx y ≤≤-6、距离空间(x,d)中的点列{x n }收敛到x 0是指d(x n ,x 0)?0(n?∞),这时记作0lim nn xx -->∞=,或简单地记作x n ?x 07、设||x||是线性空间E 中的任何一个元素x 的范数,其须满足以下条件: (1)||x||≥0,且||x||=0 iff x=0 (2)||λx||=λ||x||,λ为常数(3)||x+y||≤||x||+||y||,for every x,y ∈E8、设E 为线性赋范空间,{x n }∞n=1是其中的一个无穷列,如果对于任何ε>0,总存在自然数N ,使得当n>N,m>N 时,均有|x m -x n |<ε,则称序列{x n }是E 中的基本列。

《泛函分析》课后习题答案(张恭庆)

《泛函分析》课后习题答案(张恭庆)

2 a
n
fn
2 b
ba
.
1.4.6 设 X 1, X 2 是两个线性赋范空间,定义
X
X1 X2
x1, x2 | x1
X1, x2
X2 称
为 X1 与 X2 的 Decard笛卡尔空间. 规定线性运算如下:
x1, x2
y1, y2
x1
y1, x2
y2
5
,
K, x1, y1
X1, x2, y2
X 2 ,并赋以范数
n 1
x1
,
1
x
n 2
x2 2
2
n N.
1.4.7 设 X 是 B 空间,求证: X 是 B 空间,必须且仅须

6
xn
X,
xn
n1
mp
xn
n1 mp
收敛.
xn
xn


m
m
显然.
设 xn 是基本列, 由1.2.2 只要 xn 存在一
串收敛子列.
事实上, 对 k 是基本列,
, 取k
1 2k
,
因为
xn
所以 N k, 使得
但因为 F 2 紧, 存在它们的子序列 ynkj 收敛,设
y nk j
x2
F 2 , 即有
d
xnkj , ynkj
d
1
j
nkj
d
x1, x2 .
1.3.5 设 M 是 C a, b 中的有界集,求证集合
x
M
Fx
f t dt | f M
a
是列紧集.
证: 设 E
Fx
x f t dt | f

泛函分析期末考试题库及答案

泛函分析期末考试题库及答案

泛函分析期末考试题库及答案一、选择题(每题5分,共20分)1. 下列哪个选项不是泛函分析中的基本概念?A. 线性空间B. 线性算子C. 微分方程D. 范数答案:C2. 希尔伯特空间中的内积满足的性质不包括以下哪一项?A. 线性B. 对称性C. 正定性D. 可逆性答案:D3. 以下哪个是紧算子的性质?A. 有界B. 可逆C. 连续D. 可微答案:A4. 以下哪个定理是泛函分析中的基本定理?A. 泰勒定理B. 格林定理C. 里斯表示定理D. 牛顿-莱布尼茨定理答案:C二、填空题(每题5分,共20分)1. 在泛函分析中,一个线性空间的基是一组线性______的向量。

答案:无关2. 一个线性算子是______的,如果它将一个有界集映射到一个有界集。

答案:有界3. 一个线性算子是______的,如果它将一个紧集映射到一个紧集。

答案:紧4. 一个线性算子是______的,如果它在某个线性空间上是连续的。

答案:连续三、简答题(每题10分,共30分)1. 简述什么是线性空间,并给出其基本性质。

答案:线性空间是一个集合,其中的元素称为向量,满足加法和数乘两种运算,并且满足加法交换律、加法结合律、数乘分配律等性质。

2. 解释什么是紧算子,并给出一个例子。

答案:紧算子是一个线性算子,它将任意有界序列映射到一个收敛序列。

例如,考虑在L^2空间上的算子K,定义为K(f)(x) =∫f(t)sin(x-t)dt,它是一个紧算子。

3. 描述什么是希尔伯特空间,并说明其与欧几里得空间的关系。

答案:希尔伯特空间是一个完备的内积空间,它允许无限维向量的存在。

希尔伯特空间是欧几里得空间的推广,其中欧几里得空间是有限维的希尔伯特空间。

四、计算题(每题15分,共30分)1. 给定线性算子A: L^2(0,1) → L^2(0,1),定义为A(f)(x) =∫₀^x f(t)dt,证明A是一个紧算子。

答案:略2. 考虑在L^2(-1,1)上的算子B,定义为B(f)(x) = xf(x),证明B是一个有界算子,并求出其范数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1设(,)d x y 为空间X 上的距离,证明)
,(1)
,(),(___
y x d y x d y x d +=
是X 上的距离P214-1
2、求[]1,1C -线性泛函0
1
1
()()()f x x t dt x t dt -=-⎰⎰的范数。

P235-2
3、设12,,,n e e e 为内积空间X 规范正交系,证明:X 到{}12,,,n span e e e 的投影算子P 为()1,,n
v v v Px x e e x X ==∈∑。

P265-8
4、设U 是Hilbert 空间[]20,2L π中如下定义的算子:
()()()[]2,0,2it Uf t e f t f L π=∈
证明:U 是酉空间。

P266-17
5、设X 是赋范线性空间,Z 是X 的线性子空间,0x X ∈,又0(,)0d x Z >,证明存在
'f X ∈,满足条件:
1)当x Z ∈时,()0f x =; 2)00()(,)f x d x Z = ; 3) 1f = 。

P294-2
6、设是12{,,,}n y ηηη= 一列复数,若对任何120{,,,}n x C ξξξ=∈ ,级数1j j j ηξ∞
=∑都
收敛,证明:1y l ∈。

P295-9
7、设 X ,Y ,Z 为三个度量空间,f 是X 到Y 中的连续映射,g 是Y 到Z 中的连续映射,证明复合映射))((())(.(x f g x f g =是X 到Y 中的连续映射P215-12 8 设[0,1],()()(),X C Ax t tx t x X ==∈。

证明()[0,1]A σ=,且其中没有特征 值. P319-1
1、X 是度量空间,证明f 是连续映射的充要条件是对每个实数c ,集合
})(,|{c x F X x x ≤∈和集合})(,|{c x F X x x ≥∈都是闭集 P215-13
2、设0C 表示极限为0 的实数列全体,按通常的加法和乘法,以及sup i i
x ξ=,
()12n x ξξξ= ,,,构成Banach 空间,证明:()10C l '=。

P236-8
3、设X 和Y 为Hilbert 空间,A 是X 到Y 中的有界线性算子,()A 和()A ℜ分别表示算子A 的零空间和值域,证明()A = ()A ⊥
*ℜ,()A *= ()A ⊥
ℜ,()()A A ⊥
*ℜ= ,
()()A A *⊥ℜ= P265-11
4、设X 是内积空间,X *是它的共轭空间,z f 表示λ上线性范函z f x z =,,若X 到X *的映射z F z f →:是一一到上的映射,则X 是Hilbert 空间。

P265-10
5、设(),(1,2,)n T X Y n ∈B →= ,其中X 是Banach 空间,Y 是赋泛线性空间,若对每个x X ∈,{}n T x 都收敛,令lim n n Tx T x →∞
=,证明T 是X 到Y 中有界线性算子,并且
lim n
n T T →∞
≤。

P295-12
6、证明 :在完备度量空间X 中成立闭球套定力,即若
{(,)},v v v S x d x x ε=≤ 1,2
,v = 且 12,n S S S ⊃⊃⊃⊃
0()v v ε→→∞, 则存在唯一的1
v v x S ∞
=∈ ;反之,
若在度量空间X 中成立闭球套定理,则X 是完备度量空间。

P295-8
7、证明点列{n f }按题2中距离收敛与],[b a C f ∞∈的充要条件为n f 的各阶导数在[,]a b 上一致收敛于f 的各阶导数。

P215-5
8、设[0,2],()()(),.it
X C Ax t e x t x X π==∈,证明:(){1}A σλλ==。

P319-2
1、设X 为完备度量空间,A 是X 到X 中的映射,记),()
,(sup 11x x d x A x A d a n n z
x n ≠=
若∞<∑∞
=n n a 1,则映射A 有唯一不动点。

P216-17
2、按范数max j j
x ξ=,()12,,n x ξξξ= 成赋范线性空间,问n R 的共轭空间是什么?
P236-8
3、设X 是Hilbert 空间,M X ⊂,并且 M ≠∅,证明()M ⊥
⊥是X 中包含M 的最小闭
子集 。

P265-6
4、设T 为Hilbert 空间X 上正常算子,T A iB =+为T 的笛卡儿分解,证明:
()
12
22T
A B =+
()
22
2T T =。

P265-15
5、设()f t 是[,]a b 上的L 可测函数,1p ≥,若对一切[,]p g L a b ∈,函数()()f t g t 都在[,]
a b 上L 可积,则[,]q f L a b ∈,其中
11
1p q
+=。

P295-10 6、用闭图像定理证明逆算子定理。

P296-19
7、X 为距离空间,A 为X 中子集,令,.),,(inf )(X x y x d x f A
y ∈=∈证明)(x f 是X 上连续函
数。

P215-10
8、设1T 是 1X 到2X 的全连续算子,2T 是2X 到3X 的有界线性算子,则21T T 是1X 到3
X 的全连续算子。

P319-10
2010年下学期数学院研究生《泛函分析》复习与练习4
1、证明 ∞l 与C (0,1]的一个子空间等距同构。

P216-16
2、设T 是赋范线性空间X 到赋范线性空间Y 的线性算子,若T 的零空间是闭集,T 是否一定有界?P236-6
3、证明:A 是实内积空间X 上的自伴算子时,0A =的充要条件是对所有x X ∈,成立
(),0Ax x =。

P266-10
4、设X 是实内积空间,若222
x y x y +=+,则x y ⊥,当X 是复内积空间时,这个结论是否依然成立?P265-4
5、证明:(1)p l p >中点列()()
12{,,}n n n x ξξ= ,1,2,n = 。

弱收敛于12{,,}p x l ξξ=∈ 的
充要条件为sup n n
x <∞,且对每个k ,()lim n k k n ξξ→∞
=。

P296-16
6、设A 及B 是定义在Hilbert 空间X 上的两个线性算子,满足,
,,Ax y x By =
其中,x y 为X 中任意向量,证明A 是有界算子。

P296-20
7、设F 是n 维欧几里得空间n R 的有界闭集,A 是F 到自身中的映射,并且适合下列条件:对任何F y x ∈,)(y x ≠,有),(),(y x d Ay Ax d <。

证明映射A 在F 中存在唯一的不动点。

P216-17
8、设A 是Hilbert 空间H 上的有界线性算子,*A 为A 的共轭算子,证明
(*){()}()A A A σλλσσ=∈=。

P319-9
2010年下学期数学院研究生《泛函分析》复习与练习5
1、设C 为一切收敛数列所组成的空间,其中的线性运算与通常序列空间相同。

在C 中令,}{,sup C x x x x n i i
∈==证明:C 是可分的Banach 空间。

P217-25
2、证明:()p q l l '=,其中 11
1p q
+=,1,1p q >>。

P230-例2
3、设T 是Hilbert 空间X 中的有界线性算子,1T ≤,证明:
{}x Tx x = {}x T
x x *
==。

P265-12
4、设H 是Hilbert 空间。

M 是H 的闭子空间,则M 为H 上某个非零连续线性范函的零空间的 充要条件是M ⊥是一维子空间。

P265-14
5、设X 是赋范线性空间,12,,,k x x x 是X 中k 个线性无关向量,12,,,n ααα 是一组数,证明:在X 上存在满足下列两条件: (1) (),1,2,,
v v f x v k α== ,
(2 ) M f ≤ 的线性连续泛函f 的充要条件为:对任何数12,,,k t t t ,
1
1
k
k
v v
v v
v v t M
t x
α
==≤∑∑
都成立。

P294-1
6、设X 是线性空间,1x 和2x 是X 上两个范数,若X 按1x 及2x 都完备,并且由点列{}n x 按1x 收敛于0,必有按2x 也收敛于0,证明存在正数a 和b ,使
121a x x b x ≤≤。

P296-17
7证明第一节中空间S ,()B A 以及离散的度量空间都是完备的度量空间P215-15 8、设A 是为Banach 空间X 上的有界线性算子,则当A λ>时,1
1
0()n
n n A R A I λλλ

-+==-=∑

1
R A
λλ≤
-。

P319-7。

相关文档
最新文档