八年级数学上册第三章分式分式的基本性质同步练习新版青岛版_1

合集下载

初二数学网课优选例习题--分式与分式的基本性质

初二数学网课优选例习题--分式与分式的基本性质

初二数学网课优选例习题--分式与分式的基本性质【学习目标】1. 理解分式的概念,能求出使分式有意义、分式无意义、分式值为0的条件.2.掌握分式的基本性质,并能利用分式的基本性质将分式恒等变形,进而进行条件计算.【基础知识】一、分式的概念一般地,如果A、B表示两个整式,并且B中含有字母,那么式子AB叫做分式.其中A叫做分子,B叫做分母.注意:(1)分式和分数的区别:分数是整式,不是分式,分式是两个整式相除的商式.分式的分母中含有字母;分数的分子、分母中都不含字母.(2)分式与分数是相互联系的:由于分式中的字母可以表示不同的数,所以分式比分数更具有一般性;分数是分式中字母取特定值后的特殊情况.二、分式有意义,无意义或等于零的条件1.分式有意义的条件:分母不等于零.2.分式无意义的条件:分母等于零.3.分式的值为零的条件:分子等于零且分母不等于零.注意:分式有无意义与分母有关但与分子无关,分式要明确其是否有意义,就必须分析、讨论分母中所含字母不能取哪些值,以避免分母的值为零.三、分式的基本性质分式的分子与分母同乘(或除以)一个不等于0的整式,分式的值不变,这个性质叫做分式的基本性质,用式子表示是:A A M A A MB B M B B M⨯÷==⨯÷,(其中M是不等于零的整式).注意:(1)基本性质中的A、B、M表示的是整式.其中B≠0是已知条件中隐含着的条件,一般在解题过程中不另强调;M≠0是在解题过程中另外附加的条件,在运用分式的基本性质时,必须重点强调M≠0这个前提条件.(2)在应用分式的基本性质进行分式变形时,虽然分式的值不变,但分式中字母的取值范围有可能发生变化.例如:,在变形后,字母x的取值范围变大了.四、分式的变号法则对于分式中的分子、分母与分式本身的符号,改变其中任何两个,分式的值不变;改变其中任何一个或三个,分式成为原分式的相反数.注意:根据分式的基本性质有b ba a-=-,b ba a-=-.根据有理数除法的符号法则有b b ba a a-==--.分式ab与ab-互为相反数.分式的符号法则在以后关于分式的运算中起着重要的作用. 五、分式的约分,最简分式与分数的约分类似,利用分式的基本性质,约去分子和分母的公因式,不改变分式的值,这样的分式变形叫做分式的约分.如果一个分式的分子与分母没有相同的因式(1除外),那么这个分式叫做最简分式. 注意:(1)约分的实质是将一个分式化成最简分式,即约分后,分式的分子与分母再没有公因式. (2)约分的关键是确定分式的分子与分母的公因式.分子、分母的公因式是分子、分母的系数的最大公约数与相同因式最低次幂的积;当分式的分子、分母中含有多项式时,要先将其分解因式,使之转化为分子与分母是不能再分解的因式积的形式,然后再进行约分. 六、分式的通分与分数的通分类似,利用分式的基本性质,使分式的分子和分母同乘适当的整式,不改变分式的值,把分母不同的分式化成相同分母的分式,这样的分式变形叫做分式的通分.注意:(1)通分的关键是确定各分式的最简公分母:一般取各分母所有因式的最高次幂的积作为公分母. (2)如果各分母都是单项式,那么最简公分母就是各系数的最小公倍数与相同字母的最高次幂的乘积;如果各分母都是多项式,就要先把它们分解因式,然后再找最简公分母.(3)约分和通分恰好是相反的两种变形,约分是对一个分式而言,而通分则是针对多个分式而言.【考点剖析】 考点一:分式的判断例1.(2022·四川·广安中学八年级月考)下列式子:22222123,,,,,x y a ax a a xy y aπ--+--,其中是分式的有( ) A .2个B .3个C .4个D .5个考点二:分式有意义的条件例2.(2022·湖南益阳·八年级期末)分式13x -有意义,则x 的取值范围是( ) A .3x >B .3x <C .3x ≠D .3x ≠-考点三:分式的值为正为负为零的条件例3.(2022·重庆市育才中学八年级月考)若分式22x x -+的值为0,则( )A .2x =B .2x =-C .2x =±D .12x =考点四:判断分式变形是否正确例4.(2022·河南·扶沟县第一初级中学八年级月考)下列化简中正确的是( )A .0.220.55a b a b a b a b ++=--B .a aa b a b=----C .22b b a a=D .22a b a b a b-=+-考点五:利用分式的基本性质判断分式值的变化例5.(2022·北京二中八年级月考)把分式a bab+中的a 、b 都扩大2倍,则分式的值( ) A .不变B .扩大2倍C .缩小2倍D .扩大4倍考点六:分式的约分例6.(2022·湖南·桂阳县第二中学八年级期中)下列分式中,不是最简分式的是( )A .22x y x y++B .243y xC .2ab aab- D .361xx + 考点七:分式的通分例7.下列各式计算正确的是( )A .623x x x=B .21221x x-=-- C .2933m m m-=+-D .11111x x x x +⋅=++ 【真题演练】1.(2021·江苏苏州·中考真题)已知两个不等于0的实数a 、b 满足0a b +=,则b aa b+等于( )A .2-B .1-C .1D .22.(2021·江苏扬州·中考真题)不论x 取何值,下列代数式的值不可能为0的是( ) A .1x +B .21x -C .11x + D .()21x +3.(2022·江苏南通·中考真题)分式22x -有意义,则x 应满足的条件是___________. 4.(2021·江苏泰州·中考真题)函数:1y x 1=+中,自变量x 的取值范围是_____. 【过关检测】 一、单选题1.(2022·黑龙江·哈尔滨德强学校八年级期中)在式子3a,7a b +,5,11x -,8x ,2212x y +中,分式的个数为( ) A .2个B .3个C .4个D .5个2.(2022·重庆实验外国语学校八年级月考)若代数式3xx-无意义,则实数x 的取值范围是( ) A .3x =B .3x ≠C .0x ≠D .0x =3.(2022·广西贵港·八年级期中)若分式12x +有意义,则( ) A .2x =-B .2x ≠C .2x =±D .2x ≠-4.(2022·河南·扶沟县第一初级中学八年级月考)已知分式a bab+(a ,b 均为正数),若分式中每个字母的值都扩大为原来的3倍,则分式的值( )A .扩大为原来3倍B .缩小为原来的13C .不变D .缩小为原来的195.(2022·重庆实验外国语学校八年级月考)下列各式从左到右的变形正确的是( )A .22a ax b bx=B .(1)(1)y a yx a x +=+ C .y m yx m x +=+ D .2111x x x -=--6.(2022·广西贵港·八年级期中)下列各式从左边到右边的变形正确的是( ) A .22x y y xx y x y--=++ B .a b a bc c-+-=- C .0.220.22a b a ba b a b++=++ D .1x y x y --=+ 二、填空题7.(2022·吉林省实验中学八年级期中)约分:25abab=___________. 8.三个分式3x,21x x -,31x +的最简公分母是___________.9.(2022·湖南·芷江侗族自治县第一中学八年级期中)分式22222,,121x x xx x x x x----++-的最简公分母是___________.10.(2022·山东烟台·八年级期中)若分式2x yx y-=+中的x ,y 的值都变为原来的3倍.则此分式的值为______. 11.(2022·江苏·张家港市梁丰初级中学八年级月考)如果分式21628x x -+的值为零,那么x =________.12.(2022·江苏·张家港市梁丰初级中学八年级月考)已知:45x y =,则32x y x y+-的值为______. 三、解答题13.(2022·湖南·新化县东方文武学校八年级期末)当x 为何值时,分式2256x x x -++的值为零?14.(2022·山东·龙口市龙矿学校八年级月考)化简下列分式(1)524371218x y z x z -(2)2239m m m --(3)2222a ab a ab b +++ (4)2()2()b a a b -- 15.将下列各分式通分: (1)212,3x x ax -;(2)31,22a a b b a---;(3)2212,969a a a -++;(4)21,442x x x --. 16.(2022·湖南永州·八年级期末)如果一个分式的分子或分母可以因式分解,且这个分式不可约分,那么我们称这个分式为“和谐分式”.(1)下列分式:①2222a b a b +-; ②22121x x x --+;③222)m n m n -+(;④3322a b a b ++其中不是“和谐分式”的是(填写序号即可);(2)若a 为整数,且2216x x ax +++为“和谐分式”请求出a 的值.考点一:分式的判断例1.(2022·四川·广安中学八年级月考)下列式子:22222123,,,,,x y a ax a a xy y aπ--+--,其中是分式的有( ) A .2个 B .3个 C .4个 D .5个【答案】C【分析】根据分式的定义逐个判断即可.【详解】解:根据分式定义得:222212,,,-+-x y aa a xy ay 是分式,共4个 故选:C考点二:分式有意义的条件例2.(2022·湖南益阳·八年级期末)分式13x -有意义,则x 的取值范围是( ) A .3x >B .3x <C .3x ≠D .3x ≠-【答案】C【分析】根据分式有意义的条件:分母不能为0,得出30x -≠,解得x 的取值范围. 【详解】解:分式13x -有意义, 30x ∴-≠, 3x ∴≠.故选:C考点三:分式的值为正为负为零的条件例3.(2022·重庆市育才中学八年级月考)若分式22x x -+的值为0,则( )A .2x =B .2x =-C .2x =±D .12x =【答案】A【分析】根据分式值为0的条件求解即可. 【详解】解:由题意,得20x -=,20x +≠, 解得2x =. 故选:A .考点四:判断分式变形是否正确例4.(2022·河南·扶沟县第一初级中学八年级月考)下列化简中正确的是( )A .0.220.55a b a b a b a b ++=--B .a aa b a b=----C .22b b a a=D .22a b a b a b-=+-【答案】D【分析】根据分式的性质一一判断即可.【详解】解:A 、0.22100.5510a b a ba b a b++=--,原式化简错误,不符合题意;B 、a aa b a b=---+,原式化简错误,不符合题意; C 、22b b a a≠,原式化简错误,不符合题意;D 、22()()a b a b a b a b a b a b -+-==+--,原式化简正确,符合题意;故选:D .考点五:利用分式的基本性质判断分式值的变化例5.(2022·北京二中八年级月考)把分式a bab+中的a 、b 都扩大2倍,则分式的值( ) A .不变 B .扩大2倍 C .缩小2倍 D .扩大4倍【答案】C【分析】依据分式的基本性质进行变化,分子分母上同时乘以或除以同一个非0的数或式子,分式的值不变.【详解】解:分式a bab+中的a 和b 都扩大2倍,得 分式的值缩小2倍, 故选:C .考点六:分式的约分例6.(2022·湖南·桂阳县第二中学八年级期中)下列分式中,不是最简分式的是( )A .22x y x y++B .243y xC .2ab aab- D .361xx + 【答案】C【分析】根据将每个选项的分子和分母分别进行因式分解,然后进行约分化简,如果无法继续进行化简则选项是最简分式,如果可以继续化简,则选项是最简分式.【详解】解:A 、22x y x y++无法继续化简,故是最简分式,不符合题意;B 、243y x无法继续化简,故是最简分式,不符合题意;C 、()11222a b ab a b ab ab b---==,可以继续化简,故不是最简分式,符合题意; D 、361xx +无法继续化简,故是最简分式,不符合题意; 故选:C .考点七:分式的通分例7.下列各式计算正确的是( )A .623x x x =B .21221x x-=-- C .2933m m m-=+-D .11111x x x x +⋅=++ 【答案】B【分析】根据分式的性质以及分式的混合运算法则进行计算即可.【详解】解:A 、633x x x =,原式计算错误,不符合题意;B 、221222(1)1x x x--==----,原式计算正确,符合题意; C 、29(3)(3)333m m x m m m -+-==----,原式计算错误,不符合题意;D 、11121111x x x x x x ++=+=+++,原式计算错误,不符合题意; 故选:B .【真题演练】1.(2021·江苏苏州·中考真题)已知两个不等于0的实数a 、b 满足0a b +=,则b a a b+等于( )A .2-B .1-C .1D .2【答案】A【分析】先化简式子,再利用配方法变形即可得出结果.【详解】解:∵22=b a b a a b ab++,∴()2222==a b ab b a b a a b ab ab+-++,∵两个不等于0的实数a 、b 满足0a b +=, ∴()22-2===-2a b ab b a ab a b ab ab+-+, 故选:A .2.(2021·江苏扬州·中考真题)不论x 取何值,下列代数式的值不可能为0的是( ) A .1x + B .21x - C .11x + D .()21x +【答案】C【分析】分别找到各式为0时的x 值,即可判断. 【详解】解:A 、当x =-1时,x +1=0,故不合题意; B 、当x =±1时,x 2-1=0,故不合题意; C 、分子是1,而1≠0,则11x +≠0,故符合题意;D 、当x =-1时,()210x +=,故不合题意; 故选C .3.(2022·江苏南通·中考真题)分式22x -有意义,则x 应满足的条件是___________. 【答案】2x ≠【分析】根据分式有意义的条件是分母不为0得出不等式,求解即可. 【详解】解:分式22x -有意义,即20x -≠, ∴2x ≠, 故答案为:2x ≠.4.(2021·江苏泰州·中考真题)函数:1y x 1=+中,自变量x 的取值范围是_____. 【答案】x 1≠-【详解】解:求函数自变量的取值范围,就是求函数解析式有意义的条件,根据分式分母不为0的条件,要使1x 1+在实数范围内有意义,必须x 10+≠,即x 1≠-. 故答案为:x 1≠-. 【过关检测】 一、单选题1.(2022·黑龙江·哈尔滨德强学校八年级期中)在式子3a,7a b +,5,11x -,8x ,2212x y +中,分式的个数为( ) A .2个 B .3个 C .4个 D .5个【答案】A【分析】判断分式的依据是看分母中是否含有字母,如果含有字母则是分式,如果不含有字母则不是分式. 【详解】解:在式子3a,7a b +,5,11x -,8x ,2212x y +中,分式有:3a,11x -,共有2个.故选:A .2.(2022·重庆实验外国语学校八年级月考)若代数式3xx-无意义,则实数x 的取值范围是( ) A .3x = B .3x ≠ C .0x ≠ D .0x =【答案】A【分析】直接利用分式有意义的条件分析得出答案.分式有意义的条件是分母不等于零. 【详解】解:代数式3xx-在实数范围内无意义, 30x ∴-=,解得3x =. 故选:A .3.(2022·广西贵港·八年级期中)若分式12x +有意义,则( ) A .2x =- B .2x ≠ C .2x =± D .2x ≠-【答案】D【分析】分式有意义的条件是分母不为零,据此解题即可. 【详解】解:由分式12x +有意义可得:20x +≠, 解得:2x ≠-. 故选:D .4.(2022·河南·扶沟县第一初级中学八年级月考)已知分式a bab+(a ,b 均为正数),若分式中每个字母的值都扩大为原来的3倍,则分式的值( ) A .扩大为原来3倍 B .缩小为原来的13C .不变D .缩小为原来的19【答案】B【分析】根据分式的基本性质进行计算即可解答. 【详解】解:由题意可得:333()13393a b a b a ba b ab ab+++==⨯⨯,∴分式的值缩小为原来的13,故选:B .5.(2022·重庆实验外国语学校八年级月考)下列各式从左到右的变形正确的是( )A .22a ax b bx=B .(1)(1)y a yx a x +=+ C .y m yx m x +=+ D .2111x x x -=--【答案】B【分析】根据分式的基本性质对各个选项进行判断.【详解】解:A .分式的分子和分母同时乘上一个不为0的数时,分式的值不改变,2x 可能等于0,故A 错,不符合题意; B .(1)(1)y a yx a x+=+正确,分式的分子和分母同时除一个不为0的数时值不变,故B 正确,符合题意;C .分式的分子和分母同时加减一个相同的数,值可能会改变,故C 错,不符合题意;D .2111x x x -=+-,故D 错,不符合题意;故选:B .6.(2022·广西贵港·八年级期中)下列各式从左边到右边的变形正确的是( ) A .22x y y xx y x y--=++ B .a b a bc c-+-=- C .0.220.22a b a ba b a b++=++ D .1x y x y --=+ 【答案】B【分析】根据分式的基本性质作答.【详解】解:A 、22x y y x x y x y --=-++,此选项变形错误; B 、a b a b c c -+-=-,此选项变形正确; C 、0.22100.2102a b a b a b a b ++=++,此选项变形错误; D 、1x y x y--=-+,此选项变形错误; 故选B .二、填空题7.(2022·吉林省实验中学八年级期中)约分:25ab ab=___________. 【答案】25 【分析】先找出分式的分子和分母的公因式,再根据分式的基本性质进行计算即可. 【详解】解:2255ab ab =, 故答案为:25. 8.三个分式3x ,21x x -,31x +的最简公分母是___________. 【答案】2(1)x x -【分析】根据最简公分母的定义求解即可.【详解】解:∵()()2111x x x -=+-, ∴三个分式3x ,21x x -,31x +的最简公分母是()()11x x x +-,即2(1)x x -. 故答案为:2(1)x x -.9.(2022·湖南·芷江侗族自治县第一中学八年级期中)分式22222,,121x x x x x x x x ----++-的最简公分母是___________.【答案】()()211x x x -+【分析】先对每个分母进行因式分解,再根据最简公分母的含义进行求解即可.【详解】()()222211,1x x x x x x x ++=+-=-,∴最简公分母是()()211x x x -+,故答案为:()()211x x x -+.10.(2022·山东烟台·八年级期中)若分式2x y x y-=+中的x ,y 的值都变为原来的3倍.则此分式的值为______.【答案】2【分析】根据分式基本性质解答即可.【详解】解:由题意可知:当x ,y 的值都变为原来的3倍时, 分式变为33233--==++x y x y x y x y. 故答案为:211.(2022·江苏·张家港市梁丰初级中学八年级月考)如果分式21628x x -+的值为零,那么x =________. 【答案】4【分析】先将分式化简,再根据分式的值为0,可知分式分子的值为0,分母的值不为0,据此作答即可. 【详解】()()()24416428242x x x x x x +---==++, 根据题意,有:40280x x -=⎧⎨+≠⎩, 解得:4x =,故答案为:4.12.(2022·江苏·张家港市梁丰初级中学八年级月考)已知:45x y =,则32x y x y+-的值为______. 【答案】193 【分析】根据45x y =,设4x k =,则:5y k =,代入分式求值即可. 【详解】解:∵45x y =,设4x k =, 则:5y k =, 把4x k =,5y k =代入,得:34351919224533x y k k k x y k k k ++⨯===-⨯-; 故答案为:193. 三、解答题13.(2022·湖南·新化县东方文武学校八年级期末)当x 为何值时,分式2256x x x -++的值为零? 【答案】2【分析】分式值为零,按照分子为零且分母不为零求解即可 【详解】解:∵2256x x x -++的值为零 ∴20x -=且2560x x ++≠解得:2x =±,当x =2时,256200x x ++=≠当x =-2时,2560x x ++=,故舍去综上:x =214.(2022·山东·龙口市龙矿学校八年级月考)化简下列分式 (1)524371218x y z x z - (2)2239m m m -- (3)2222a ab a ab b +++ (4)2()2()b a a b -- 【答案】(1)22332x y z - (2)3m m -+ (3)a ab + (4)2a b - 【分析】(1)将分子和分母的公因式约去即可;(2)先将分子和分母分解因式,然后约分即可;(3)先将分子和分母分解因式,然后约分即可;(4)先将分子和分母分解因式,然后约分即可.【详解】(1)解:524371218x y z x z -=34223432663x z x y x z z ⋅-⋅=22332x y z -; (2)解:2239m m m --=(333))()(m m m m -+--=3m m -+; (3)解:2222a ab a ab b +++=2(())a a a b b ++=a a b +; (4)解:2()2()b a a b --=2()2()a b a b --=2a b -. 15.将下列各分式通分:(1)212,3x x ax -;(2)31,22a a b b a---;(3)2212,969a a a -++;(4)21,442x x x --. 【答案】(1)()213a x ax -,263x ax ;(2)32a a b -,12a b -;(3)()()2333a a a ++-,()()()22333a a a +--;(4)()()2222x x +-,()()()2222x x x x ++-.【分析】将分母两式取各式的最小公倍式,相同因式的次数取最高次幂,分子分母同乘分母的最小公倍式即可得出答案.【详解】解:(1)221(1)33x a x x ax --=,2263x ax ax =; (2)32a a b -,1122b a a b -=--; (3)22139(3)(3)a a a a +=-+-,2222(3)69(3)(3)a a a a a -=+++-; (4)21124(2)(2)2(2)(2)x x x x x ==-+-+-,(2)422(2)2(2)(2)x x x x x x x x +=-=---+-. 16.(2022·湖南永州·八年级期末)如果一个分式的分子或分母可以因式分解,且这个分式不可约分,那么我们称这个分式为“和谐分式”.(1)下列分式:①2222a b a b +-; ②22121x x x --+;③222)m n m n -+(;④3322a b a b ++其中不是“和谐分式”的是(填写序号即可); (2)若a 为整数,且2216x x ax +++为“和谐分式”请求出a 的值. 【答案】(1)②③④(2)17a =±或10a =-或8a =±【分析】(1)根据“和谐分式”的定义,进行判断即可;(2)根据“和谐分式”的定义,可知216x ax ++可以进行因式分解,且不能有因式2x +,进行求解即可.【详解】(1)解:由题意,得: ①()()222222a b a b a b a b a b ++=--+,是“和谐分式”; ②()()()22211112111x x x x x x x x -+-+==-+--,分式可以约分,不是“和谐分式”; ③()()2222()()m n m n m n m n m n m n m n-+--==+++,分式可以约分,不是“和谐分式”; ④()()()3322222222a b a b a b a ab b a b a ab b ++==+-++-+,分式可以约分,不是“和谐分式”; 综上,不是“和谐分式”的是②③④;故答案为:②③④;(2)解:∵2216x x ax +++为“和谐分式”, ∴216x ax ++可以进行因式分解,且不能有因式2x +,∴()()216116x ax x x ++=++或()()216116x ax x x ++=--或()()21628x ax x x ++=--或()22164x ax x ++=±, ∴17a =±或10a =-或8a =±.。

8.2 分式的基本性质(第1课时) 同步练习 宝应县实验初级中学 辛乃青

8.2 分式的基本性质(第1课时) 同步练习 宝应县实验初级中学 辛乃青
C.

0.8 x 0.78 y 0.5 x 0.4 y
a 0.4b 2 ④ 3 0.6 a b 4
2. 不改变分式的值,使分式的分子、分母中的首项的系数都不含 “-” 号 2x 2x 1 ① ② 3y x 1

x 2 2x 1 x2

x 1 x 2 3x 1
正数,应该是 A. C. 4、当 ( B. D. )
xy 1 y 1 = xz 1 z 1 m2 m 2 m m ④ 2 = 2 = n n n n



3x 1 x 7x 2
2
2x 1 2k 2 3 时,k 代表的代数式是 xy 3x y
2 2
3x 1 x 7x 2
拓展提高: 已知 x2+3x-1=0,求 x-
1 x
和 x2 +
1 x2
翔宇教育集团宝应县实验初级中学教导处
初二数学作业活页纸
班级 课题 组别 姓名 日期 学号 等第
8.2 分式的基 本性质(1)
完成时间
30 分钟
命题人
辛ห้องสมุดไป่ตู้青
一、判断正误并改正: ab ab ① = =1 ( a b ( a b) ③

3a 3a = ( ) ( ) ab a b 二、填空: 1、写出等式中未知的分子或分母: x.( ) x xy x 2 y ① = ② x y ( x y ).( ) ( ) 3x 3x 2 y ( ) 7 1 ab 7 xy ③ 2 = ④ ; a b (a b).( ) ( ) 5x y 2、不改变分式的值,使分式的分子与分母都不含负号: 5x a ① ; ② ; 2y 3b 三、选择: 2x 1、 把分式 中的 x 和 y 都扩大为原来的 5 倍, 那么这个分式的值 ( ) 2x 3 y A.扩大为原来的 5 倍; B.不变 1 5 C.缩小到原来的 ; D.扩大为原来的 倍 5 2 7 7x 2、使等式 = 自左到右变形成立的条件是 ( ) x 2 x 2 2x A.x<0 B.x>0 C.x≠0 D.x≠0 且 x≠7 3x 1 3、不改变分式 的值,使分式的分子、分母中 x 的最高次数式的系数都是 x2 7x 2

八年级数学上册第三章分式教案(新版)青岛版

八年级数学上册第三章分式教案(新版)青岛版

第三章分式学习目标:1.掌握分式的基本性质,能熟练地进行分式的约分、通分和加减乘除运算,会解可以化为一元一次方程的分式方程(方程中的分式不超过两个),了解增根的原因,会检验分式方程的根。

2.会解决一些与分式和方式方程有关的实际问题,具有一定的分析问题、解决问题的能力和应用意识。

3.了解比、比例、连比的概念,掌握比例的基本性质,会利用比和比例刻画事物间的数量关系,并解决有关的实际问题。

重点、难点和关键1.学习重点:分式的基本性质,分式的加、减、乘、除运算法则,比例的基本性质,可以化为一元一次方程的分式方程的解法。

2.学习难点:连比、分式方程的增根,列出可以化为一元一次方程的分式方程解应用问题。

3.关键:(1)理解连比的概念和比例的基本性质。

(2)认识分式方程和变形后的整式方程中未知数取值范围的不同(这是理解解分式方程产生增根原因的关键),并理解验根的方法。

(3)学会恰当地设未知数,会用含有未知数的分式表示已知量,寻找问题中的等量关系等关键步骤。

一、知识网络(请同学们自己画本章网络图:越细越好)二、基础知识过关:1、分式的概念:形如的式子,其中A、B都是,并且B中含有2.在分式中,如果________则分式无意义;如果_______ _则分式有意义,如果________且________不为零时,则分式的值为零.3.分式的基本性质用字母表示为__ .4、分式的分子、分母和分式本身的符号改变其中任何________个,分式的值不变.5.分式约分的步骤:把分式的分子与分母________,然后约去分子与分母的公因式.6.分式的乘法法则表示为:分式的除法法则表示为_ .分式的乘方法则表示为_7.分式通分的定义:8.最简公分母的确定:一是取各分母所有系数的;二是取各分母所有字母因式的的.9.分式的加减法法则表示为:同分母的异分母的10:什么是比?比的后项与前项?11:什么是比例?比例的项,内项,外项,比例中项?12:比例的基本性质(文字与符号语言)13:分式方程:的方程.14:解分式方程的一般步骤是:①在方程的两边都乘_______,约去分母,化成_______;②解这个_______;③把解得的根代入_______,看结果是不是零,使________为零的根是原方的________,必须舍去.知识点突破:(一)、分式定义及有关题型题型一:考查分式的定义例1:下列式子中:是分式的有:整式的有:,题型二:考查分式有意义和无意义的条件例2当有何值时,下列分式有意义和无意义(1)(2)(3)(4)(5)题型三:考查分式的值为0的条件例3当取何值时,下列分式的值为0.(1)(2)(3)(二)分式的基本性质及有关题型题型四:化分数系数、小数系数为整数系数【例4】不改变分式的值,把分子、分母的系数化为整数.(1)(2)题型五:分数的系数变号【例5】不改变分式的值,把下列分式的分子、分母的首项的符号变为正号.(1)(2)(3)题型六:化简求值题【例6】已知:,求的值.提示:整体代入,①,②转化出.【例7】已知:,求的值.【例8】若,求的值.(三)分式的运算题型七:通分【例9】将下列各式分别通分.(1);(2);中国书法艺术说课教案今天我要说课的题目是中国书法艺术,下面我将从教材分析、教学方法、教学过程、课堂评价四个方面对这堂课进行设计。

青岛版初中数学八年级上册全册学案-第三四章

青岛版初中数学八年级上册全册学案-第三四章
(二)预习新知阅读教材56页——57页,完成下列预习任务
任务一:确定分式中分子和分母的公因式
1、根据分数的约分,化简下面的分式
=_____; =_______ =__________
2、类比分数的约分,我们利用分式的基本性质,约去 的分子分母中的公因式a不改变分式的值,这样的分式变形叫做分式的_____其中约去的a叫做________同理分式 中的公因式是__________
A、扩大4倍;B、扩大2倍;C、不变;D缩小2倍
五、预习疑惑:
第3章第2节分式的约分
第课时(总第课时)
一、预习目标:1、了解约分和最简分式的概念,理解约分的依据是分式的基本性质。
2、能熟练的对分式进行约分,并会利用分式的约分进行整式的除法运算。
3、在对分式进行约分的过程中体会分式的基本性质的应用。
二、预习重点:体会分式约分的依据,会对分式进行约分。
分式的通分
一.预习目标:
1、理解分式通分、最简公分母的概念。
2、掌握通分的方法,并能熟练地进行通分。
3、能正确熟练地找最简公分母。
4.在对分式通分的过程中体会分式基本性质的应用。
二.预习重点:分式的通分
三.预习任务
(一)预习准备
1.分式的基本性质为:__________________________________________________.
分式的基本性质是:
任务二:变号规律
不改变分式的值,使下列分式的分子与分母都不含负号
(1) (2) (3)
(三)预习总结:
四、预习诊断:
1.下列各式中,正确的是()
A. = ; B. = ; C. = ; D. =
2.下列各式与 相等的是( )

青岛版数学八年级上册3.1《分式的基本性质》教学设计

青岛版数学八年级上册3.1《分式的基本性质》教学设计

青岛版数学八年级上册3.1《分式的基本性质》教学设计一. 教材分析《分式的基本性质》是青岛版数学八年级上册第三章第一节的内容。

本节课主要让学生了解分式的概念,掌握分式的基本性质,包括分式的分子、分母的乘除性质,以及分式的乘除运算。

通过学习,学生能够理解和运用分式解决实际问题。

二. 学情分析八年级的学生已经掌握了实数、分数等基础知识,具备一定的逻辑思维能力。

但是,对于分式的概念和性质,学生可能初次接触,需要通过实例和练习来逐步理解和掌握。

同时,学生对于数学符号和运算规则的掌握程度不同,需要在教学过程中关注学生的个体差异。

三. 教学目标1.理解分式的概念,掌握分式的基本性质。

2.能够运用分式的基本性质进行分式的化简和运算。

3.培养学生的逻辑思维能力和解决实际问题的能力。

四. 教学重难点1.分式的概念和基本性质的理解。

2.分式的化简和运算方法的掌握。

五. 教学方法1.采用问题驱动的教学方法,引导学生主动探究分式的基本性质。

2.利用实例和练习,让学生通过动手操作、思考和交流,加深对分式概念和性质的理解。

3.采用分组讨论和合作学习的方式,培养学生的团队协作能力和沟通能力。

4.运用多媒体教学手段,生动展示分式的图形和运算过程,提高学生的学习兴趣。

六. 教学准备1.多媒体教学设备。

2.分式的相关教案、PPT和教学素材。

3.分式的练习题和答案。

七. 教学过程1.导入(5分钟)利用生活中的实际问题,如盐水的浓度问题,引入分式的概念。

提问:如何表示盐水中盐的质量与盐水总质量的比例?引导学生思考和讨论,引出分式的定义。

2.呈现(15分钟)呈现分式的基本性质,包括分子、分母的乘除性质。

通过示例和讲解,让学生理解分式的基本性质,并能运用到实际问题中。

3.操练(10分钟)让学生分组进行分式的化简和运算练习。

每组选择一道练习题,互相讨论和解答。

教师巡回指导,解答学生的疑问,并给予反馈。

4.巩固(10分钟)针对学生的练习情况,选取一些具有代表性的题目进行讲解和分析。

新青岛版八年级数学上册《分式的约分》精品课件(共15张PPT)

新青岛版八年级数学上册《分式的约分》精品课件(共15张PPT)

2
知识应用: 1.下列各式中是最简分式的是( ) x2 y 2 x 2 ab a b C. A. (x y )2 B. x 2 a2 a 2 D. ab
b x 1 x y x y , 2 , , 2 2.下列各式 2 2ax x 1 (x y ) x y
2 2 2 2
2 2 2
分析:把整式的除法写成分式的形式,可 以利用约分进行计算。
知识应用: 1.约分:
25a bc (1) 2 15ab c
2
3
x 9 (2) 2 x 6x6b) ÷(a-4ab+4b2) (2) (m2-16) ÷(3m-12)
系统总结
分式的约分 两个概念
探究二:如何找分子、分母的公因式? 仔细观察刚才的第(1)题,并思考如何找分 子、分母的公因式?
2 3y 2 x y 3y 6x y ( 1 ) 3 2 2 x y 5 xz 5xz 10x yz
2 2
公因式为 2x y
找分子分母的公因式的方法: (1)定系数:分子、分母系数的最大公因数 (2)定字母:相同字母取最低次幂
中,最简分式的个数是(

A.1个 C .3个
B.2个 D.4个
例题引领
约分 2 2 2 2x y a b ab (1) (2) 2 3 4axy a ab 思考:分式约分的关键是什么?约分的基本 步骤有哪些?应注意什么? 约分的关键是确定分子与分母的公因式。 约分的基本步骤: (1)找出分式的分子、分母的公因式。 (2)约去公因式,化为最简分式。
教学目标
1.理解约分和最简分式的概念,掌握约分的 方法,会将一个分式约分成最简分式或整式。 2.利用分式的意义和分式的约分进行整式的 除法运算。

八年级数学人教版上册同步练习分式的基本性质(解析版)

八年级数学人教版上册同步练习分式的基本性质(解析版)

15.1.2分式的基本性质一、单选题1.下列约分计算结果正确的是 ( )A .22a b a b a b+=++ B .a m m a n n +=+ C .1a b a b -+=-- D .632a a a= 【答案】C 【分析】利用因式分解,确定分子,分母的公因式,后约分化简,计算即可.【详解】∵22a b +与a +b 没有公因式, ∴22a b a b++无法计算, ∴22a b a b a b+=++的计算是错误的, ∴选项A 不符合题意;∵a +m 与a +n 没有公因式, ∴++a m a n 无法计算, ∴a m m a n n+=+的计算是错误的; ∴选项B 不符合题意;∵-a +b = -(a +b )与a +b 的公因式是a +b , ∴()1a b a b a b a b-+--==---, ∴选项C 符合题意; ∵642a a a=, ∴632a a a=的计算是错误的; ∴选项D 不符合题意;故选C .【点评】本题考查了分式的化简,同底数幂的除法,熟练掌握化简计算的要领是解题的关键.2.下列分式中,属于最简分式的个数是( )①42x ,②221x x +,③211x x --,④11x x --,⑤22y x x y -+,⑥2222x y x y xy++. A .1个B .2个C .3个D .4个【答案】B【分析】根据最简分式的定义判断即可. 【详解】①422x x =,③21111x x x -=-+,④111x x -=--,⑤22y x y x x y-=-+,可约分,不是最简分式; ②221x x +,⑥2222x y x y xy++分子分母没有公因式,是最简分式,一共有二个; 故选:B .【点评】本题考查了最简分式,解题关键是明确最简分式的定义,准确判断分子分母是否含有公因式. 3.下列命题中的真命题是( )A .多项式x 2-6x +9是完全平方式B .若∠A ∶∠B ∶∠C =3∶4∶5,则△ABC 是直角三角形C .分式211x x +-是最简分式 D .命题“对顶角相等”的逆命题是真命题【答案】A【分析】根据完全平方公式、直角三角形性质、分式化简、和对顶角相等的逆命题进行判断即可.【详解】∵x 2-6x +9=(x -3)2,故A 选项是真命题;∵∠A ∶∠B ∶∠C =3∶4∶5,∴∠A =45°,∠B =60°,∠C =75°,故B 选项是假命题; ∵21111x x x +=--,故C 选项是假命题; “对顶角相等”的逆命题是相等的角是对顶角,是假命题,故D 选项是假命题;故选:A【点评】本题考查了分式的性质、完全平方公式、直角三角形性质、逆命题,解题关键是熟练掌握相关知识,准确进行判断.4.化简211x x --的结果是( ) A .11x -+ B .11x - C .11x + D .11x-【答案】A【分析】分母因式分解,再约分即可. 【详解】2111(1)(1)11x x x x x x --==-+-+-, 故选:A .【点评】本题考查了分式的约分,解题关键是把多项式因式分解,然后熟练运用分式基本性质进行约分. 5.若把x ,y 的值同时扩大为原来的2倍,则下列分式的值保持不变的是( )A .()22x y x + B .xy x y + C .22x y ++ D .22x y -- 【答案】A 【分析】根据分式的基本性质即可求出答案.【详解】A 、()22224x y x +=()22x y x +,故A 的值保持不变. B 、42=22xy xy x y x y++,故B 的值不能保持不变. C 、221=221x x y y ++++,故C 的值不能保持不变. D 、221=221x x y y ----,故D 的值不能保持不变. 故选:A .【点评】本题考查了分式,解题的关键是正确理解分式的基本性质,本题属于基础题型.6.下列关于分式2x x+的各种说法中,错误的是( ). A .当0x =时,分式无意义 B .当2x >-时,分式的值为负数C .当2x <-时,分式的值为正数D .当2x =-时,分式的值为0 【答案】B【分析】根据分式的定义和性质,对各个选项逐个分析,即可得到答案.【详解】当0x =时,分式无意义,选项A 正确;当2x >-时,分式的值可能为负数,可能为正数,故选项B 错误;当2x <-时,20x +<,分式的值为正数,选项C 正确;当2x =-时,20x +=,分式的值为0,选项D 正确;故选:B .【点评】本题考查了分式的知识;解题的关键是熟练掌握分式的性质,从而完成求解.7.下列命题中,属于真命题的是( )A .如果0ab =,那么0a =B .253x x x -是最简分式C .直角三角形的两个锐角互余D .不是对顶角的两个角不相等【答案】C【分析】根据有理数的乘法、最简分式的化简、直角三角形的性质、对顶角的概念判断即可.【详解】A. 如果 ab=0,那么a=0或b=0或a 、b 同时为0,本选项说法是假命题,不符合题意; B. ()2555==333x x x x x x x ---,故253x x x-不是最简分式,本选项说法是假命题,不符合题意; C. 直角三角形的两个锐角互余,本选项说法是真命题,符合题意;D. 不是对顶角的两个角可能相等,本选项说法是假命题,不符合题意;故选:C .【点评】本题考查的是命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉教材中的性质定理.8.若a b ,则下列分式化简中,正确的是( ) A .22a a b b+=+ B .22a a b b -=- C .33a a b b = D .22a a b b = 【答案】C【分析】根据ab ,可以判断各个选项中的式子是否正确,从而可以解答本题; 【详解】∵ab A 、22a a b b+≠+ ,故该选项错误; B 、22a a b b-≠- ,故该选项错误; C 、33a a b b= ,故该选项正确; D 、22a a b b≠ ,故该选项错误; 故选:C .【点评】本题考查了分式的混合运算,解题时需要熟练掌握分式的性质,分式的分子与分母同乘(或除以)一个不等于0的整式,分式的值不变,熟练掌握分式的基本性质是解题的关键;二、填空题目9.已知a 、b 、c 、d 、e 、f 都为正数,12 bcdef a =,14 acdef b =,18 abdef c =,2 abcef d=,4 abcdf e=,8 abcde f =,则222222a b c d e f +++++=________. 【答案】1198【分析】根据等式性质及分式性质进行计算即可求得结果. 【详解】由12 bcdef a =,14 acdef b =,18 abdef c =,2 abcef d =,4 abcdf e=,8 abcde f =,可将每个等式的左右两边相乘得: ()51abcdef abcdef =,∴1abcdef =,2112bcdef a a a a ⋅==⋅, ∴22a =,同理可得:24b =,28c =,212d =,214e =,218f =, ∴2222221198a b c d e f +++++=; 故答案为1198. 【点评】本题主要考查等式性质及分式性质,熟练掌握等式性质及分式性质是解题的关键. 10.已知114y x -=,则分式2322x xy y x xy y+---的值为______. 【答案】112 【分析】先根据题意得出x-y=4xy ,然后代入所求的式子,进行约分就可求出结果. 【详解】∵114y x-=,∴x-y=4xy ,∴原式=2()383112422x y xy xy xy x y xy xy xy -++==---, 故答案为:112 . 【点评】此题考查分式的基本性质,正确对已知式子进行化简,约分,正确进行变形是关键.11.已知2310x x --=,求4231x x x x ++=-__________. 【答案】4 【分析】将分式整理成()()2222131x x x x -+-,根据2310x x --=可得213x x -=,代入分式并约分即可求解.【详解】∵2310x x --=,∴213x x -=∴4231x x x x++- ()()2222131x x x x -+=- ()223343x x x x+==⋅, 故答案为:4. 【点评】本题考查分式的性质,将分式整理成()()2222131x x x x -+-的形式是解题的关键. 12.将分式132132a b a b +-的分子、分母各项系数化为整数,其结果为_______________. 【答案】6243a b a b+- 【分析】根据分式的基本性质,分子分母都乘以最小公倍数6,分式的值不变,并且其分子、分母各项系数化为整数.【详解】1623214332a b a b a ba b ++=--. 故答案为:6243a b a b+-. 【点评】本题考查了分式的基本性质:分式的分子与分母同乘(或除以)一个不等于0的整式,分式的值不变.三、解答题13.我们知道:分式和分数有着很多的相似点,如类比分数的基本性质,我们得到了分式的基本性质,等等.小学里,把分子比分母小的数叫做真分数.类似的,我们把分子的次数小于分母的次数的分式称为真分式,反之,称为假分式.对于任何一个假分式都可以化成整式与真分式的和的形式.如:11211x x x x +-+=--=1211x x x -+-- =1+21x -. (1)请写出分式的基本性质 ;(2)下列分式中,属于真分式的是 ;A .21x x -B .11x x -+C .﹣321x -D .2211x x +- (3)将假分式231m m ++,化成整式和真分式的形式. 【答案】(1)分式的分子和分母乘(或除以)同一个不等于0的整式,分式的分式值不变;(2)C ;(3)231m m ++=m ﹣1+41m + 【分析】(1)根据分式的基本性质回答即可;(2)根据分子的次数小于分母的次数的分式称为真分式进行判断即可;(3)先把23m +转化为214m -+得到22314111m m m m m +-=++++,其中前面一个分式约分后化为整式,后面一个是真分式.【详解】(1)分式的分子和分母乘(或除以)同一个不等于0的整式,分式的分式值不变.(2)根据题意得:选项C 的分子次数是0,分母次数是1,分子的次数小于分母的次数是真分式.而其他选项是分子的次数均不小于分母的次数的分式,故AB D 选项是假分式,故选:C .(3)∵22231441411111m m m m m m m m +-+-=+=++++++=m ﹣1+41m +, ∴故答案为:m ﹣1+41m +. 【点评】本题考察了分式的基本性质以及未知数的次数问题,解答本题的关键是熟悉掌握未知数次数的判断以及分式的分子和分母乘(或除以)同一个不等于0的整式,分式的分式值不变.14.约分(1)1232632418a x y a x; (2)ma mb mc a b c+-+-; (3)2222444a ab b a b-+-. 【答案】(1)6243a y ;(2)m ;(3)22a b a b-+ 【分析】(1)约去分子分母的公因式636a x 即可得到结果;(2)将分子进行因式分解,约去公因式(a b c +-)即可得到结果;(3)首先把分子分母分解因式,然后再约掉分子分母的公因式即可.【详解】(1)1232632418a x y a x=6362636463a x a y a x ⨯ =6243a y ; (2)ma mb mc a b c+-+- =()m a b c a b c +-+- =m ;(3)2222444a ab b a b-+-=2(2)(2)(2)a b a b a b -+- =22a b a b-+. 【点评】此题主要考查了分式的约分,关键是正确确定分子分母的公因式.15.先约分,再求值:32322444a ab a a b ab--+ 其中12,2a b ==-. 【答案】2123a b a b +-, 【分析】先把分式的分子分母分解因式,约分后把a 、b 的值代入即可求出答案.【详解】原式=2222444a a b a a ab b ()()--+ =2(2)(2)(2)a a b a b a a b +-- =22a b a b +- 当122a b ==-,时 原式=2121-+=13. 【点评】本题考查了分式的约分,解题的关键是熟练进行分式的约分,本题属于基础题型.16.已知32(1)(1)11x A B x x x x -=++--+,求A 、B 的值. 【答案】A=12, B=52 【分析】先对等式右边通分,再利用分式相等的条件列出关于A 、B 的方程组,解之即可求出A 、B 的值. 【详解】∵()()()()(1)(1)()111111A B A x B x A B x A B x x x x x x ++-++-+==-++-+- , 又∵()()321111A B x x x x x -+=-++-, ∴()()()()()321111A B x A B x x x x x ++--=+-+-,∴32A B A B +=⎧⎨-=-⎩ , 解得1252A B ⎧=⎪⎪⎨⎪=⎪⎩. ∴A =12, B =52. 【点评】本题考查了分式的基本性质.利用分式的基本性质进行通分,再利用系数对应法列出方程组是解题的关键.17.若分式,A B 的和化简后是整式,则称,A B 是一对整合分式.(1)判断22244x x x ---与22x x -是否是一对整合分式,并说明理由; (2)已知分式M ,N 是一对整合分式,2a b M a b-=+,直接写出两个符合题意的分式N . 【答案】(1)是一对整合分式,理由见解析;(2)答案不唯一,如1224,b a a b N N a b a b -+==++. 【分析】(1)根据整合分式的定义即可求出答案.(2)根据整合分式的定义以及分式的运算法则即可求出答案.【详解】(1)是一对整合分式,理由如下: ∵2222222424(2)424x x x x x x x x x x x ----+++==---, 满足一对整合分式的定义,22244x x x --∴-与22x x -是一对整合分式. (2)答案不唯一,如1224,b a a b N N a b a b-+==++. 【点评】本题考查了分式的加减法,解题的关键是熟练运用分式的运算法则,本题属于基础题型.18.已知430,4520,x y z x y z +-=⎧⎨-+=⎩0xyz ≠. (1)用含z 的代数式表示x ,y ;(2)求222232x xy z x y+++的值. 【答案】(1)13x z =,23y z =;(2)165. 【分析】(1)根据加减消元法解关于x 、y 的方程组即可(2)将(1)中的结果代入分式中进行运算即可【详解】(1)430,4520,x y z x y z +-=⎧⎨-+=⎩①② ①4⨯-②得21140y z -=,解得23y z =. 把23y z =代入①,得24303x z z +⨯-=, 解得13x z =. (2)2222222211232321633351233z z z z x xy z x y z z ⎛⎫⨯+⨯⨯+ ⎪++⎝⎭==+⎛⎫⎛⎫+ ⎪ ⎪⎝⎭⎝⎭. 【点评】本题考查了用加减法解方程组的特殊解法,把x 、y 看作未知数解方程组是解题的关键19.一个矩形的面积为223()x y -,如果它的一边为()x y +,求这个矩形的周长.【答案】这个矩形的周长为:84x y -【分析】根据整式的除法运算法则与合并同类项法则,即可求解.【详解】∵矩形的一边长为()x y +,面积为223()x y -, ∴矩形的另一边长为:223()3()()x y x y x y -=-+ ∴该矩形的周长为:2[()3()]x y x y ++-2(42)x y =-84x y =-.答:这个矩形的周长为:84x y -.【点评】本题主要考查整式的除法法则与加法法则,掌握因式分解与合并同类项法则,是解题的关键. 20.阅读理解:对于二次三项式a 2+2ab+b 2,能直接用完全平方公式进行因式分解,得到结果为(a+b )2.而对于二次三项式a 2+4ab ﹣5b 2,就不能直接用完全平方公式了,但我们可采用下述方法:a2+4ab﹣5b2=a2+4ab+4b2﹣4b2﹣5b2=(a+2b)2﹣9b2,=(a+2b﹣3b)(a+2b+3b)=(a﹣b)(a+5b).像这样把二次三项式分解因式的方法叫做添(拆)项法.解决问趣:(1)请利用上述方法将二次三项式a2+6ab+8b2分解因式;(2)如图,边长为a的正方形纸片1张,边长为b的正方形纸片8张,长为a,宽为b的长方形纸片6张,这些纸片可以拼成一个不重叠,无空隙的长方形图案,请画出示意图;(3)已知x>0,且x≠2,试比较分式2244812x xx x++++与22428xx x-+-的大小.【答案】(1)(a+2b)(a+4b);(2)见解析;(3)222244428812 x x xx x x x-++>+-++【分析】(1)根据题目的引导,先分组,后运用公式法对原式进行因式分解;(2)根据第一问的因式分解结果,对图形进行排列即可;(3)对两个分式的分子和分母分别进行因式分解,然后对分式进行化简并比较大小.【详解】(1)原式=a2+6ab+9a2﹣b2=(a+3b)2﹣b2=(a+3b﹣b)(a+3b+b)=(a+2b)(a+4b);(2)如图:(3)224(2)(2)(2)28(4)(2)(4)x x x xx x x x x-+-+==+-+-+;22244(2)(2)812(2)(6)(6)x x x xx x x x x++++==+++++;∵x>0,∴x+4<x+6,∴222244428812 x x xx x x x-++>+-++.【点评】本题考查了因式分解的应用,通过因式分解化简分式,根据分母大,分数值反而小来比较大小是解题的关键.祝福语祝你考试成功!。

青岛版八年级数学上册《第3章分式》PPT课件

青岛版八年级数学上册《第3章分式》PPT课件

(2)2abc32
5a 2 b 2 4cd
(3)2ab ( 3b2 ) a
[注意]:运算结果如不是最简形式时,一定要进行约分,使运 算结果化为最简形式.
例解
计算: a + 1 a-1
× a
a 2-1
a+1 a
a-1
× a
2-1
a1• a a 1 (a 1)(a 1)
a (a 1)2
在进行分式的乘除时,如果分子与分母是 多项式,应当先进行因式分解
8
3.如果客船在静水中的平均速度为 v千米/时,江 水流动的平均速度为20千米/时.那么,客船顺水而 下,航行600千米需要多长时间?客船逆水航行s千 米,需要多长时间?
顺水航行的速度=船在静水中的速度+水流的速度
逆水航行的速度=船在静水中的速度-水流的速度
600
s
v 20
v 20
600 s 12 8
分母为零
分母不为零 分子为零且 分母不为0
能力提升
已知分式 2x - a ,当x =3时分式
xb
无意义,当 x = -1时,分式的值为 0,求 a b 的值。
a2 b2
第3章 分式
3.1分式的基本性质 第2课时
复习导入
1.判断下列各式哪些是整式?哪些是分式?
x 2 ,n , x 2 - 9 , 2y , 3 5 m (x -1)(x - 2) y 3 5
约分:
(1)
36ab3c 6abc2
(2) (a+b)3 (a+b)(a-b)
合作探究
探究一:约分、最简分式的概念
类比分数约分的意义,约去下列分式的分 子和分母中除1以外的公因式:

2020年人教版八年级数学上册 分层练习作业本 《分式的基本性质》(含答案)

2020年人教版八年级数学上册 分层练习作业本 《分式的基本性质》(含答案)

15.1.2 分式的基本性质 第1课时 分式的基本性质1.下列分式从左到右变形正确的是( ) A.x y =x 2y 2 B.x y =x 2xy C.x y =x +a y +a D.x y =xc yc(c≠0) 2.若分式2a a +b中a ,b 的值同时扩大到原来的10倍,则此分式的值( ) A .是原来的20倍 B .是原来的10倍 C .是原来的110D .不变 3.与分式-a -a +b的值相等的是( ) A.a a +b B .-a a +b C.a a -b D .-a a -b 4.填空:=( 4b )2ab 2; =10x 5x +5y ;( a 2+a )ab= .5.不改变分式的值,使下列分式的分子、分母都不含“-”号:-(x +1)5x +3= ,-3x -5y = ,a -4b= . 6.如果3(2a -1)5(2a -1)=35成立,则a 的取值范围是 . 7.不改变分式的值,使下列分式中分子和分母的最高次项的系数为正数:(1)7x -x 2+102-x2;(2)1-x 23+2x +5x2;(3)-m 3-m 2-m 2+m.8.已知x 2-3x -4=0,则代数式x x 2-x -4的值是( ) A .3 B .2 C.13 D.129.不改变分式的值,把下列各式的分子、分母中各项的系数化为整数.(1)a +13b 25a -2b ; (2)0.03a -0.2b 0.08a +0.5b .10. 某市的生产总值从2016年到2018年持续增长,每年的增长率都为p.求2018年该市的生产总值与2016年、2017年这两年生产总值之和的比.若p =8%,这个比值是多少?(结果精确到0.01)11. 阅读下列解题过程,然后解题.题目:已知x a -b =y b -c =z c -a(a ,b ,c 互不相等),求x +y +z 的值. 解:设x a -b =y b -c =z c -a=k , 则x =k(a -b),y =k(b -c),z =k(c -a),∴x+y +z =k(a -b +b -c +c -a)=k·0=0,∴x+y +z =0.依照上述方法解答下列问题:已知y +z x =z +x y =x +y z ,其中x ,y ,z 均不为0,且x +y +z≠0,求x +y -z x +y +z的值.参考答案 【知识管理】 1.不等于0 分式2.不变【归类探究】例1 D例2 (1)6a +4b 8a -3b (2)16x +5y 10x -12y例3 (1)2m 5n (2)-3a 2c b (3)-z x 2y 2 (4)-2xz 3y【当堂测评】1. C2.D3.y【分层作业】1.D 2.D 3.C 4.4b x +y a 2+a5.-x +15x +3 3x 5y -a 4b 6.a≠127.(1)x 2-7x -10x 2-2 (2)-x 2-15x 2+2x +3 (3)m 3+m 2m 2-m8.D 9.(1)15a +5b 6a -30b (2)3a -20b 8a +50b10.0.56 11. 13。

八年级数学上册分式的基本性质课时练习(含解析)

八年级数学上册分式的基本性质课时练习(含解析)

分式的基本性质一、选择题1、下列说法正确的是( )A.2y x 与23x y x+的最简公分母是5x 2B. 313a b 与316ab 的最简公分母是3ab C. 313a b 与316ab的最简公分母是3a 3b 3 D. 2y x 与23x y x +的最简公分母是6x 2【答案】D【解析】试题分析:根据最简公分母的定义求出结果.解:A 选项:2y x 与23x y x+的最简公分母是6x 2,故A 选项错误;B 选项:313a b 与316ab的最简公分母是6a 3b 3,故B 选项错误;C 选项:313a b 与316ab的最简公分母是6a 3b 3,故C 选项错误;D 选项:2y x 与23x y x +的最简公分母是6x 2,故D 选项正确.故应选D.考点:最简公分母2、下列分式是最简分式的( )A.223a a b B.23a a a - C.22a b a b ++ D. 222a ab a b --【答案】C【解析】试题分析:根据最简分式的定义进行判断.解:A 选项:223a a b 的分子、分母中有公因式a ,故A 选项不符合题意;B 选项:23a a a-的分子、分母中有公因式a ,故B 选项不符合题意;C 选项:22a b a b++的分子、分母没有公因式,所以是最简分式,故C 选项符合题意;D 选项:222a ab a b--的分子、分母中有公因式a-b ,故D 选项不符合题意.故应选C.考点:最简分式3、分式221x y -与1x y+的最简公分母为( )A. x-yB. x+yC. x 2-y 2D. (x 2-y 2)(x+y)【答案】C【解析】试题分析:先对可以分解因式的分母分解因式,再根据求最简公分母的方法求解即可.解:∵()()22x y x y x y -=+-∴分式221x y -与1x y+的最简公分母为x 2-y 2故应选C.考点:最简公分母4、如果把分式3x y x y+中的x 和y 都扩大为2倍,则分式的值( )A. 扩大为4倍 B. 扩大为8倍 C. 不变 D. 缩小为2倍【答案】B【解析】试题分析:根据分式的基本性质对分式进行变形,根据变形结果进行判断.解:如果x 和y 都扩大为2倍,则有()()()()333322821682222x y x y x y x y x y x y x y x y ⋅⋅===++++,所以分式的值扩大为原来的8倍.故应选B.考点:分式的基本性质5、已知2334b a b =-,则a b=( )A. 6 B. 119 C. 215 D. 27-【答案】B【解析】试题分析:根据比例的性质,可得8b=9a﹣3b,根据等式的性质,可得答案.解:由比例的性质,得8b=9a﹣3b.由等式的性质,得11b=9a ,119a b =故应选:B .考点:分式的基本性质.6、不改变分式的值,将分式20.020.23x x a b-+中各项系数均化为整数,结果为 ( )A. 2223x x a b -+ B.25010150x x a b -+ C. 2502103x x a b -+ D. 2210150x x a b-+【答案】B【解析】试题分析:利用分式的基本性质把分式的分子、分母都乘以100即可得到结果.解:()()2220.021000.02500.230.2310010150x x x x x x a b a b a b-⨯--==++⨯+,故应应选B.考点:分式的基本性质7、不改变分式的值,将下列各分式中的分子、分母的系数化为整数,其结果不正确的为( )A. 113223113223a b a b a ba b ++=-- B. 1.30.813820.7207x y x y x y x y --=-- C. 134624172748x y x y x yx y --=++ D. 135320.55x y x y x x --=【答案】D【解析】试题分析:根据分式的基本性质进行变形得到结果,根据得到的结果判断正误.解:A 选项,分子、分母同乘以6,正确;B 选项,分子、分母同乘以10,正确;C 选项,分子、分母同乘以8,正确;D 选项,分子、分母同乘以2,即得13620.5x y x y x x--=,错误.故应选D.考点:分式的基本性质8、根据分式的基本性质,分式a a b--可变形为( )A. a a b -- B. a a b + C. a a b -- D. a a b -+ 【答案】C【解析】试题分析:分式的符号法则:分式的分子、分母与分式本身的符号,改变其中任何两个,分式的值不变.依次分析各选项即可作出判断.解:.故应选C.考点:分式的基本性质二、填空题9、分式312x ;()216x x y -的最简公分母是_ .【答案】6x 3(x-y)【解析】试题分析:根据确定最简公分母的方法求出结果.解:分式312x ;()216x x y -的最简公分母是6x 3(x-y)考点:最简公分母10、不改变分式的值,使分式的分子与分母都不含负号.(1)5x y-=-_____________;(2)2a b--=-_____________.【答案】(1) 5x y ;(2) 2a b-【解析】试题分析:分式的符号法则:分式的分子、分母与分式本身的符号,改变其中任何两个,分式的值不变.依次分析各选项即可作出判断.解:(1)55x x y y-=-;(2) 22a a b b--=--.故答案是(1) 5x y ;(2) 2a b-.考点:分式的基本性质11、把分式32223a b a b -+的分子、分母中的各项系数都化为整数,且保持分式的值不变,则结果为_________________.【答案】12946a ba b-+【解析】试题分析:根据分式的基本性质把分子、分母同时乘以6,可得结果.解:33262129222246633a b a b a b a b a b a b ⎛⎫-⨯- ⎪-⎝⎭==+⎛⎫++⨯ ⎪⎝⎭.故答案是12946a b a b-+.考点:分式的基本性质. 12、若23b a =,则a b a b -=+ .【答案】15【解析】试题分析:根据23b a =,可设a=3k ,b=2k ,然后再利用代入法求出分式的值.解:因为23b a =,设a=3k ,b=2k ,3213255a b k k k a b k k k --===++.故答案是15.考点:分式的基本性质三、解答题13、化简:2223712a a a a ---+.【答案】14a a +-【解析】试题分析:首先把分式的分子、分母分别分解因式,然后再约去公因式.解:2223712a a a a ---+()()()()3134a a a a -+=--14a a +=-.考点:约分14、约分:22211m m m-+-.【答案】11mm -+【解析】试题分析:首先把分式的分子、分母分别分解因式,然后再约去公因式.解:22211m m m -+-()()()2111m m m -=-+11m m -=+.考点:约分15、先化简,再求值.(1)22969m m m -++,其中m=5.【答案】14【解析】试题分析:首先根据分式的基本性质把分式化简,然后再把字母的值代入化简后的分式中求值.解:22969m m m -++()()()2333m m m +-=+33m m -=+,当m=5时,原式33m m -=+5353-=+14=考点:分式的化简求值.。

2020-2021年八年级数学上册单元复习一遍过:第三章 分式【知识梳理】(青岛版)

2020-2021年八年级数学上册单元复习一遍过:第三章 分式【知识梳理】(青岛版)

初中上册单元复习一遍过Unit 1 of junior high school精品资源·备战中考第三章《分式》(知识梳理)【思维导图】【知识清单】知识点一:分式的概念一般地,如果,表示两个整式,并且中含有字母,那么式子叫作分式.分式会中叫作A B B A B ABA 分子,叫作分母.B 注意:(1)判断一个式子是否为分式,关键是看分母中是否有字母.(2)分式与整式的根本区别:分式的分母中含有字母,如,是整式,而是分式.122x 2x(3)分式有无意义的条件:①若,则分式有意义;②若,则分式无意义.0B ≠A B 0B =AB (4)分式的值为零的条件:若,则分式的值为零,反之也成立.{0A B =≠A B知识点二:分式的基本性质分式的基本性质:分式的分子与分母同乘(或除以)同一个不等于0的整式,分式的值不变.用式子表示是:,,其中,,是整式.A A MB B M ⋅=⋅()0A A M M B B M÷=≠÷A B M 注意:(1)分式的基本性质可类比分数的基本性质去理解记忆.利用分式的基本性质,可以在不改变分式的值的条件下,对分式作一系列的变形.(2)当分式的分子(或分母)是多项式,运用分式的基本性质时,要先把分式的分子(或分母)用括号括上.再将分子与分母同乘(或除以)相同的整式.知识点三:约分、最简分式及通分的概念1.约分:根据分式的基本性质,把一个分式的分子与分母的公因式约去,叫作分式的约分.说明:约分的关键是准确找出分子与分母的公因式,找公因式的方法:(1)当分子和分母都是单项式时,先找出它们系数的最大公约数,再确定相同字母的最低次幂,它们的乘积就是分子与分母的公因式.(2)当分子、分母是多项式时,先将分子、分母因式分解,把分子、分母化为几个因式的积后,再找出分子、分母的公因式.约分应注意一定要把公因式约尽,还应注意分子、分母的整体都要除以同一个公因式.当分子或分母是多项式时,要用分子、分母的公因式去除整个多项式,不能只除某一项,更不能减去某一项.例如是错误的.2233a x ab x b+=+2.最简分式:分子与分母没有公因式的分式叫作最简分式.判断一个分式是否为最简分式,关键是确定其分子与分母是否有公因式(1除外).分式的约分,一般要约去分子和分母的所有公因式,使所得结果成为最简分式或整式.注意:(1)最简分式与小学学过的最简分数类似.(2)最简分式是对一个独立的分式而言的,最大的特点是只有一条分数线.形如,322x y++的分式都不是最简分式.233ax y++3.通分:根据分式的基本性质,把几个异分母的分式分别化成与原来的分式相等的同分母的分式,叫作分式的通分.通分的关键是确定几个分式的最简公分母.4.最简公分母:各分母所有因式的最高次幂的积,叫作最简公分母.注意:确定最简公分母的一般方法:(1)如果各分母都是单项式,确定最简公分母的方法是:①取各分母系数的最小公倍数;②凡单独出现的字母,连同它的指数作为最简公分母的一个因式;③同底数幂取次数最高的.这样得到的积就是最简公分母.(2)如果各分母都是多项式,就要把它们分解因式,再按照分母是单项式求最简公分母的方法,从系数、相同因式、不同因式三个方面去求.知识点四:分式的乘除法分式的乘除法与分数的乘除法类似,法则如下:1.乘法法则:分式乘分式,用分子的积作为积的分子,分母的积作为积的分母,用式子表示是:.a c a c b d b d⋅⋅=⋅2.除法法则:分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘,用式子表示是:.a c a d a d b d b c b c⋅÷=⋅=⋅3.分式的乘方:分式乘方要把分子、分母分别乘方,用式子表示是:(是正整数).nn n a a b b ⎛⎫= ⎪⎝⎭n 注意:(1)法则中的字母,,,所代表的可以是单项式,也可以是多项式.a b c d (2)运算的结果必须是最简分式或整式.知识点五:分式的加减法1.同分母分式加减法的法则与同分母的分数加减法类似,同分母分式相加减,分母不变,把分子相加减.用式子表示是:.a b a bc c c±±=注意:(1)“同分母分式相加减”是把各个分式的“分子的整体”相加减,即当分子是多项式时,应将各分子加括号,括号不能省略,(2)运算结果必须化为最简分式或整式.2.异分母分式加减法的法则与异分母的分数加减法类似,异分母分式相加减,先通分,变为同分母的分式,再加减.用式子表示是:.a c ad bc ad bcb d bd bd bd±±=±=知识点六:分式的混合运算分式的混合运算的顺序是:先乘方,再乘除,最后算加减;遇到括号,先算括号内的;在同级运算中,从左向右依次进行.注意:(1)实数的运算律对分式同样适用,注意灵活运用,提高解题的质量和速度.(2)结果必须化为最简分式或整式.(3)分子或分母的系数是负数时,要把“-”提到分数线的前边.(4)对于分式的乘除混合运算,应先将除法运算转化为乘法运算,分子、分母是多项式时,可先将分子、分母分解因式,再相乘.知识点七:比和比例1、比:选用同一长度单位量得两条线段。

青岛版八年级上册数学学科素养解读课件第3章 分式

青岛版八年级上册数学学科素养解读课件第3章   分式

知识点 同分母分式的加减法
某人用电脑录入汉字文稿的效率相当于手抄文稿的3倍,设他手抄文稿
的速度为a字/时,那么他录入3000字文稿比手抄3000字文稿少用
小时.
所以这个人录入3000字文稿比手抄3000字文
稿少用
小时.本题中同分母分式的加减可以类比同分母分数的加减进
行计算.
知识点 异分母分式的加减法
欢欢有m本课外书,乐乐有n本课外书,这时欢欢的课外书本数是乐乐课外书本 数的 倍;若将他们的课外书本数都增加到原来的4倍时,欢欢的课外书本数是乐乐课 外书本数的 倍;若将他们的课外书本数都增加到原来的a(a≠0)倍,欢欢的课外书 本数是乐乐课外书本数的 倍;我们可以发现欢欢的课外书本数与乐乐的课外书 本数之间的关系没有发生变化,这就应用了分式的基本性质.
知识点 分式的符号法则
知识点 分式的符号法则
确定结果的符号.
第3章 分式
3.2 分式的约分
知识点 分式的约分
把3n个一样的苹果分给(6m+6)位小朋友,每位小朋友分到 3n 个
6m+6
苹果,分子、分母同时除以3,可将 3n 化简为 n .
6m+6
2m+2
知识点 最简分式
某综艺类节目火爆荧幕,给观众带来激情和欢乐的同时,也启示 我们,团队合作、互助友爱是成功的重要因素.瞧!“撕名牌”游戏正 在火热进行,其中只有“名牌”(1)上的分式是最简分式.
知识点 分式的通分
小明骑自行车沿公路以a km/h的速度行走全程的一半,又以b
km/h的速度行走余下的路程,则小明所用的时间是 h;小刚骑自行车
以a km/h的速度走全程时间的一半,又以b km/h的速度行走另一半时间

青岛版八年级上册数学《分式的基本性质》PPT教学课件

青岛版八年级上册数学《分式的基本性质》PPT教学课件

D. a 0或 b 0
x 2
x 8.如果分式 x2 x 6 的值为0,那么 的值是( )
A. x=2 B. x=-2 C. x=2或-2 D. x=0
达标检测
9.下列说法正确的是:( ) A.只要分子,分母都是整式,则代数式就是分式 B.分数属于分式 C.只要分式的分子为0,分式的值就是0 D.只要分式的分母为0,分式就无意义
10.某班共a名学生参加植树活动,其中男生 b名.
如果只由男生完成,每人需植树5颗,那么由女生
完成时,女生每人需植树 棵。当a=44,b=24时,
女生每人需植树 棵.
请同学们阅读课本第3章的情境导航和
通过刚才的阅读,我们算出了如下代数式:
l
1338
a 20
ab
A
如B子中果,含AB有与叫字B做都母分是时式整,的式把分,母可BA。以叫把做A分÷式B表,示其成中A叫B 做的分形式式的。分当
A B
其中,A叫做分式的
分子
,B叫做分式的
分母

分式是两个整式相除的商式。对于任意一个分式,
分母都不为零。分母为0,分式无意义。
分式的分子值是0,而分母的值不是0时,分式的 值为0。
分数线有除号和括号的作用,如:
x 1 可表示为(x -1) (x 3) x3
小测试
1、在下面四个有理式中,分式为( B )
分母等于零 分母不等于零
分子等于零且分母不等于零
达标检测
1、在下面四个有理式中,分式为( )
A.
2
x 7
5
1
B. 3x
x8
C. 8
D.
2.下列各式: 3
, 7 , a b, 1

八年级数学上册第3章分式测试卷新版青岛版

八年级数学上册第3章分式测试卷新版青岛版

第3章分式测试卷一、选择题(共10小题,每小题3分,满分30分)1.(3分)若将分式中的x,y的值变为原来的100倍,则此分式的值()A.不变B.是原来的100倍C.是原来的200倍D.是原来的2.(3分)当a=﹣1时,分式()A.等于0 B.等于1 C.等于﹣1 D.无意义3.(3分)化简的结果是()A.B.C.D.4.(3分)下列等式中,正确的是()A.B.C.D.5.(3分)计算:的结果为()A.1 B.C.D.6.(3分)解分式方程:时,去分母后得()A.3﹣x=4(x﹣2)B.3+x=4(x﹣2)C.3(2﹣x)+x(x﹣2)=4 D.3﹣x=47.(3分)方程=的解为()A.﹣1 B.1 C.﹣3 D.38.(3分)关于x的方程的解为x=1,则a=()A.1 B.3 C.﹣1 D.﹣39.(3分)已知,则的值等于()A.6 B.﹣6 C.D.10.(3分)某化肥厂原计划每天生产化肥x吨,由于采用了新技术,每天比计划多生产3吨,实际生产180吨化肥所用时间与原计划生产120吨化肥所用时间相同,那么适合题意的方程是()A.=B.=C.=D.=二、填空题(共6小题,每小题4分,满分16分)11.(4分)化简:(1)=;(2)=.12.(2分)分式、、﹣的最简公分母是.13.(4分)观察下列一组有规律的数:,,,,,…,根据其规律可知:(1)第10个数是;(2)第n个数是.14.(2分)已知,则=.15.(2分)某工厂库存原材料x吨,原计划每天用a吨,若现在每天少用b吨,则可以多用天.16.(2分)如果3x=4y,那么x:y=.三、解答题(共7小题,满分54分)17.(6分)计算:.18.(8分)计算:()•.19.(6分)先化简,再求值:()+,其中x=6.20.(6分)解方程:.21.(8分)某厂女工人数与全厂人数的比是3:4,若男、女工人各增加60人,这时女工与全厂人数的比是2:3,原来全厂共有多少人?22.(10分)一项工程,甲,乙两公司合作,12天可以完成,共需付施工费102000元;如果甲,乙两公司单独完成此项工程,乙公司所用时间是甲公司的1.5倍,乙公司每天的施工费比甲公司每天的施工费少1500元.(1)甲,乙两公司单独完成此项工程,各需多少天?(2)若让一个公司单独完成这项工程,哪个公司的施工费较少?23.(10分)有这样一道题:“计算÷﹣x的值,其中x=2008”甲同学把“x=2008”错抄成“x=2080”,但他的计算结果也正确,你说这是怎么回事?于是甲同学认为无论x取何值代数式的值都不变,你说对吗?答案一、选择题(共10小题,每小题3分,满分30分)1.(3分)若将分式中的x,y的值变为原来的100倍,则此分式的值()A.不变B.是原来的100倍C.是原来的200倍D.是原来的【考点】65:分式的基本性质.【分析】根据分式的分子分母都乘以或除以同一个不为零的数,分式的值不变,可得答案.【解答】解:将分式中的x,y的值变为原来的100倍,则此分式的值100倍,故选:B.【点评】本题考查了分式的基本性质,分式的分子分母都乘以或除以同一个不为零的数,分式的值不变.2.(3分)当a=﹣1时,分式()A.等于0 B.等于1 C.等于﹣1 D.无意义【考点】64:分式的值.【专题】11:计算题.【分析】根据分式的分母不为0求出x不能为1,且不能为﹣1,故a=﹣1代入分式无意义.【解答】解:根据题意得:a2﹣1≠0,即a≠1且a≠﹣1,则a=﹣1时,分式无意义.故选:D.【点评】此题考查了分式的值,注意考虑分母不为0.3.(3分)化简的结果是()A.B.C.D.【考点】66:约分.【分析】先把分式的分子与分母分别进行因式分解,然后约分即可.【解答】解:==;故选:D.【点评】此题考查了约分,解题的关键是对分式的分子与分母分别因式分解,然后约去公因式,分式的约分是分式运算的基础,应重点掌握.4.(3分)下列等式中,正确的是()A.B.C.D.【考点】6B:分式的加减法.【专题】11:计算题.【分析】解决本题首先对每个分式进行通分,然后进行加减运算,找出正确选项.【解答】解:A、,错误;B、,错误;C、,正确;D、,错误.故选:C.【点评】本题考查了分式的计算和化简.解决这类题关键是把握好通分与约分.分式加减的本质是通分,乘除的本质是约分.通分时,注意分母不变,分子相加减,还要注意符号的处理.5.(3分)计算:的结果为()A.1 B.C.D.【考点】6C:分式的混合运算.【专题】11:计算题.【分析】原式第二项利用除法法则变形,约分后两项利用同分母分式的加法法则计算即可得到结果.【解答】解:原式=+•=+==1.故选:A.【点评】此题考查了分式的混合运算,熟练掌握运算法则是解本题的关键.6.(3分)解分式方程:时,去分母后得()A.3﹣x=4(x﹣2)B.3+x=4(x﹣2)C.3(2﹣x)+x(x﹣2)=4 D.3﹣x=4【考点】B3:解分式方程.【专题】16:压轴题.【分析】本题考查对一个分式确定最简公分母,去分母得能力.观察式子x﹣2和2﹣x互为相反数,可得2﹣x=﹣(x﹣2),所以可得最简公分母为x﹣2,因为去分母时式子不能漏乘,所以方程中式子每一项都要乘最简公分母.【解答】解:方程两边都乘以x﹣2,得:3﹣x=4(x﹣2).故选:A.【点评】对一个分式方程而言,确定最简公分母后要注意不要漏乘,这正是本题考查点所在.切忌避免出现去分母后:3﹣x=4形式的出现.7.(3分)方程=的解为()A.﹣1 B.1 C.﹣3 D.3【考点】B3:解分式方程.【专题】11:计算题.【分析】观察可得方程最简公分母为2x(x﹣2),去分母,化为整式方程求解.【解答】解:去分母,得x=3(x﹣2),解得:x=3,经检验:x=3是原方程的解.故选:D.【点评】解分式方程的关键是两边同乘最简公分母,将分式方程转化为整式方程,易错点是忽视检验.8.(3分)关于x的方程的解为x=1,则a=()A.1 B.3 C.﹣1 D.﹣3【考点】B2:分式方程的解.【专题】11:计算题.【分析】根据方程的解的定义,把x=1代入原方程,原方程左右两边相等,从而原方程转化为含有a的新方程,解此新方程可以求得a的值.【解答】解:把x=1代入原方程得,去分母得,8a+12=3a﹣3.解得a=﹣3.故选:D.【点评】解题关键是要掌握方程的解的定义,使方程成立的未知数的值叫做方程的解.9.(3分)已知,则的值等于()A.6 B.﹣6 C.D.【考点】65:分式的基本性质;6B:分式的加减法.【专题】11:计算题.【分析】由已知可以得到a﹣b=﹣4ab,把这个式子代入所要求的式子,化简就得到所求式子的值.【解答】解:已知可以得到a﹣b=﹣4ab,则==6.故选:A.【点评】观察式子,得到已知与未知的式子之间的关系是解决本题的关键.10.(3分)某化肥厂原计划每天生产化肥x吨,由于采用了新技术,每天比计划多生产3吨,实际生产180吨化肥所用时间与原计划生产120吨化肥所用时间相同,那么适合题意的方程是()A.=B.=C.=D.=【考点】B6:由实际问题抽象出分式方程.【分析】原计划每天生产化肥x吨,则实际每天生产化肥(x+3)吨,由题意可得等量关系:180吨÷实际每天生产化肥(x+3)吨=120吨÷原计划每天生产化肥x吨,根据等量关系列出方程即可.【解答】解:原计划每天生产化肥x吨,则实际每天生产化肥(x+3)吨,由题意得:=,故选:A.【点评】此题主要由实际问题抽象出分式方程,关键是正确理解题意,找出题目中的等量关系,列出方程.二、填空题(共6小题,每小题4分,满分16分)11.(4分)化简:(1)=;(2)=.【考点】66:约分.【专题】11:计算题.【分析】(1)直接约分即可;(2)先把分子分母因式分解,然后约分即可.【解答】解:(1)原式=;(2)原式==.故答案为;.【点评】本题考查了约分:约去分式的分子与分母的公因式,不改变分式的值,这样的分式变形叫做分式的约分.12.(2分)分式、、﹣的最简公分母是abc2.【考点】69:最简公分母.【分析】利用最简公分母的定义求解即可.【解答】解:分式、、﹣的最简公分母是abc2.故答案为:abc2.【点评】本题主要考查了最简公分母,解题的关键是熟记如果各分母都是单项式,那么最简公分母就是各系数的最小公倍数,相同字母的最高次幂,所有不同字母都写在积里.13.(4分)观察下列一组有规律的数:,,,,,…,根据其规律可知:(1)第10个数是;(2)第n个数是.【考点】37:规律型:数字的变化类.【分析】由题意可知:分子都是1,分母可以拆成连续两个自然数的乘积,由此得出第n个数是,进一步解决问题即可.【解答】解:1)第10个数是=;(2)第n个数是.故答案为:;.【点评】此题考查数字的变化规律,把分数的分母拆成连续两个自然数的乘积是解决问题的关键.14.(2分)已知,则=.【考点】4C:完全平方公式;65:分式的基本性质.【专题】11:计算题.【分析】把已知两边平方后展开求出x2+的值,把代数式化成含有上式的形式,代入即可.【解答】解:x+=4,平方得:x2+2x•+=16,∴x2+=14,∴原式===.故答案为:.【点评】本题主要考查对分式的基本性质,完全平方公式等知识点的理解和掌握,能把代数式化成含有x2+的形式是解此题的关键.15.(2分)某工厂库存原材料x吨,原计划每天用a吨,若现在每天少用b吨,则可以多用天.【考点】6G:列代数式(分式).【分析】多用的天数=现在用的天数﹣原来用的天数.【解答】解:先求出原计划可用多少天,即,现在每天用原材料(a﹣b)吨,则现在可用天,所以,现在可以多用.【点评】解决问题的关键是读懂题意,找到所求的量的等量关系.16.(2分)如果3x=4y,那么x:y=4:3 .【考点】S1:比例的性质.【分析】根据等式的性质,可得答案.【解答】解:由3x=4y,得x:y=4:3,故答案为:4:3.【点评】本题考查了比例的性质,等式的两边都除以3y是解题关键.三、解答题(共7小题,满分54分)17.(6分)计算:.【考点】6B:分式的加减法.【分析】先通分,然后计算分式的加法.【解答】解:原式=﹣===.【点评】本题考查了分式的加减运算,题目比较容易.分式的加减运算中,如果是同分母分式,那么分母不变,把分子直接相加减即可;如果是异分母分式,则必须先通分,把异分母分式化为同分母分式,然后再相加减.18.(8分)计算:()•.【考点】6C:分式的混合运算.【专题】11:计算题.【分析】原式括号中先计算除法运算,再计算减法运算,约分即可得到结果.【解答】解:原式=(﹣•)•=•=1.【点评】此题考查了分式的混合运算,熟练掌握运算法则是解本题的关键.19.(6分)先化简,再求值:()+,其中x=6.【考点】6D:分式的化简求值.【分析】先根据分式混合运算的法则把原式进行化简,再把x=6代入原式进行计算即可.【解答】解:原式=[﹣]•=•=x﹣4.当x=6时,原式=4﹣6=﹣2.【点评】本题考查的是分式的化简求值,熟知分式混合运算的法则是解答此题的关键.20.(6分)解方程:.【考点】B3:解分式方程.【专题】11:计算题.【分析】首先两边同乘2x﹣5去掉分母,然后解整式方程即可求解.【解答】解:两边同乘2x﹣5得x﹣5=2x﹣5,∴x=0,检验当x=0时,2x﹣5≠0,∴原方程的根为x=0.【点评】此题主要考查了分式方程的解法,解题的关键去掉分母使分式方程变为整式方程即可解决问题.21.(8分)某厂女工人数与全厂人数的比是3:4,若男、女工人各增加60人,这时女工与全厂人数的比是2:3,原来全厂共有多少人?【考点】8A:一元一次方程的应用.【分析】设原来全厂共有4x人.依据“女工与全厂人数的比是2:3,”列出方程,并解答.【解答】解:设原来全厂共有4x人.依题意得(3x+60):(4x+60×2)=2:3,9x+180=8x+240,9x﹣8x=240﹣180,4x=240.答:原来全厂共有240人.【点评】本题考查了一元一次方程的应用.解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.22.(10分)一项工程,甲,乙两公司合作,12天可以完成,共需付施工费102000元;如果甲,乙两公司单独完成此项工程,乙公司所用时间是甲公司的1.5倍,乙公司每天的施工费比甲公司每天的施工费少1500元.(1)甲,乙两公司单独完成此项工程,各需多少天?(2)若让一个公司单独完成这项工程,哪个公司的施工费较少?【考点】8A:一元一次方程的应用;B7:分式方程的应用.【分析】(1)设甲公司单独完成此项工程需x天,则乙工程公司单独完成需1.5x天,根据合作12天完成列出方程求解即可.(2)分别求得两个公司施工所需费用后比较即可得到结论.【解答】解:(1)设甲公司单独完成此项工程需x天,则乙公司单独完成此项工程需1.5x 天.根据题意,得+=,解得x=20,经检验知x=20是方程的解且符合题意.1.5x=30故甲公司单独完成此项工程,需20天,乙公司单独完成此项工程,需30天;(2)设甲公司每天的施工费为y元,则乙公司每天的施工费为(y﹣1500)元,根据题意得12(y+y﹣1500)=102000,解得y=5000,甲公司单独完成此项工程所需的施工费:20×5000=100000(元);乙公司单独完成此项工程所需的施工费:30×(5000﹣1500)=105000(元);故甲公司的施工费较少.【点评】本题考查了分式方程的应用,解题的关键是从实际问题中整理出等量关系并利用等量关系求解.23.(10分)有这样一道题:“计算÷﹣x的值,其中x=2008”甲同学把“x=2008”错抄成“x=2080”,但他的计算结果也正确,你说这是怎么回事?于是甲同学认为无论x取何值代数式的值都不变,你说对吗?【考点】6D:分式的化简求值.【分析】先根据分式混合运算的法则把原式进行化简,根据化简结果即可得出结论.【解答】解:对.∵原式=•﹣x=x﹣x=0,∴把x=2008错抄成x=2080,他的计算结果也正确.【点评】本题考查的是分式的化简求值,熟知分式混合运算的法则是解答此题的关键.。

青岛版八年级数学上册分式的基本性质课件

青岛版八年级数学上册分式的基本性质课件

此时:
a3 2
所以,当a 3 时,分式 4a 3 无意义.
2
3 2a
4a 3 (2)当a取什么值时,分式 3 2a 的值为0?
当分式的分子为0,而分母不为0时,分式的
值为0.
由4a-3=0得,a
3 4
此时分母3-2a也不为0
所以,当 a 3 时,分式 4a 3 的值为0.
4
3 2a
早在1500多年前的魏晋时 期,地理学家郦道元就在他的 著作《水经注》中留下这样一 段生动的描述:“有时朝发白 帝,暮至江陵,其间千二里, 虽乘龙御风,不以疾也。”
你能列出下列算式吗?
1.如果客船早6时从白帝城启航,顺水而下,
傍晚6时到达江陵,航程600千米,客船航行的平均
速度约为多少千米/时?
sh v 20
比较上面列出的算式 600,s ,600 , s 12 8 v 20 v 20
哪些是整式?哪些不是整式,为什么?
600 ,s 12 8
是整式.
600 , s v 20 v 20
不是整式.
你能说出代数式
v
s 20
, 600 的共同点吗?
v 20
1.这两个代数式的分子和分母都是整式; 2.这两个代数式的分母都含有字母.
01 学习目标 02 情境导入 03 新知探究 04 例题精讲 05 随堂练习 06 课堂小结
1.能根据分式的概念,辨别出分式,理解当 分母为零时,分式无意义。
2.能确定分式中字母的取值范围,使分式有 意义、无意义,或使分式的值为零。
3.会用分式表示实际问题中的数量关系,并 会求分式的值,体验分式在实际中的价值。
分数的分子可以为0 ,但分母不能为0. 同样的,分式 A 中:

31分式的基本性质(1)-山东省安丘市东埠初级中学青岛版八年级数学上册教案

31分式的基本性质(1)-山东省安丘市东埠初级中学青岛版八年级数学上册教案

初二3.1分式的基本性质一课题 3.1分式的基本性质一课标分析 1. 对于分式的概念,《义务教育数学课程标准(2011年版)》的要求是“了解”,了解分式的概念.教学时,教师可从具体的实例出发,引导学生用分式表示问题的结果,体会分式与实际生活的紧密联系.2. 对于分式有意义的条件,《义务教育数学课程标准(2011年版)》的要求.会求分式意义时字母的取值范围.教学时,要让学生体会是分母不为零而不是分母中的字母不为零.学好本节课,是今后继续学习分式的性质、运算及解分式方程的前提,其中对分式有无意义的讨论为以后学习反比例函数作了铺垫.因此应让学生掌握.3.《义务教育数学课程标准(2011年版)》要求类比分数的基本性质,了解分式的基本性质.分数与分式是具体与抽象、特殊与一般的关系.由于分式和分数具有类似的形式,因此也具有类似的性质和运算.在本节分式的基本性质、约分、通分、最简分式的概念都应从学生已有的分数的基本性质、约分、通分、最简分数类比引入,再去猜想、验证、归纳出新知识.4.《义务教育数学课程标准(2011年版)》要求能利用分式的基本性质,进行约分和通分,了解最简分式的概念.分式的约分和通分,是进行分式的四则运算所必须掌握的分式变形.在学习分式的基本性质时,就应训练学生灵活运用分式的基本性质,进行分式化简、变形,为分式的约分、通分作好铺垫.在约分和通分的教学中,通过举例说明让学生了解分式的约分与通分,以及最简分式的概念,了解约分、通分的方法,能判别一个分式是否为最简分式.课堂上要注意抓住约分的关键——找出公因式,通分的关键——确定公分母进行教学,使学生更好地掌握分式的约分和通分.学情分析学生已学过分数知识,头脑中已经形成了分数的相关知识,知道分数的分母、分子都是具体的数,因此学生会用学生会用学习分数的思维定势去认知、理解分式。

但是在分式中,它的分母不是具体的数,而是抽象的含有字母的整式,会随着字母取值的变化而变化。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档