初中数学勾股定理
初中数学-勾股定理16种证明方法
勾股定理的16种证明方法【证法1】(课本的证明)做8个全等的直角三角形,设它们的两条直角边长分别为a 、b,斜边长为c,再做三个边长分别为a 、b 、c 的正方形,把它们像上图那样拼成两个正方形.从图上可以看到,这两个正方形的边长都是a + b,所以面积相等. 即abc ab b a 214214222⨯+=⨯++, 整理得 222c b a =+.【证法2】(邹元治证明) 以a 、b 为直角边,以c 为斜边做四个全等的直角三角形,则每个直角三角形的面积等于ab 21. 把这四个直角三角形拼成如图所示形状,使A 、E 、B 三点在一条直线上,B 、F 、C三点在一条直线上,C 、G 、D 三点在一条直线上. ∵ Rt ΔHAE ≌ Rt ΔEBF, ∴ ∠AHE = ∠BEF .∵ ∠AEH + ∠AHE = 90º, ∴ ∠AEH + ∠BEF = 90º. ∴ ∠HEF = 180º―90º= 90º.∴ 四边形EFGH 是一个边长为c 的 正方形. 它的面积等于c 2.∵ Rt ΔGDH ≌ Rt ΔHAE, ∴ ∠HGD = ∠EHA .∵ ∠HGD + ∠GHD = 90º, ∴ ∠EHA + ∠GHD = 90º. 又∵ ∠GHE = 90º,∴ ∠DHA = 90º+ 90º= 180º.∴ ABCD 是一个边长为a + b 的正方形,它的面积等于()2b a +. ∴()22214c ab b a +⨯=+. ∴ 222c b a =+.【证法3】(赵爽证明)以a 、b 为直角边(b>a ), 以c 为斜D 边作四个全等的直角三角形,则每个直角三角形的面积等于ab 21. 把这四个直角三角形拼成如图所示形状.∵ Rt ΔDAH ≌ Rt ΔABE, ∴ ∠HDA = ∠EAB .∵ ∠HAD + ∠HAD = 90º, ∴ ∠EAB + ∠HAD = 90º,∴ ABCD 是一个边长为c 的正方形,它的面积等于c 2. ∵ EF = FG =GH =HE = b ―a , ∠HEF = 90º.∴ EFGH 是一个边长为b ―a 的正方形,它的面积等于()2a b -.∴ ()22214c a b ab =-+⨯.∴ 222c b a =+. 【证法4】(1876年美国总统Garfield 证明)以a 、b 为直角边,以c 为斜边作两个全等的直角三角形,则每个直角三角形的面积等于ab 21. 把这两个直角三角形拼成如图所示形状,使A 、E 、B 三点在一条直线上.∵ Rt ΔEAD ≌ Rt ΔCBE, ∴ ∠ADE = ∠BEC .∵ ∠AED + ∠ADE = 90º,∴ ∠AED + ∠BEC = 90º.∴ ∠DEC = 180º―90º= 90º. ∴ ΔDEC 是一个等腰直角三角形,它的面积等于221c .又∵ ∠DAE = 90º, ∠EBC = 90º,∴ AD ∥BC .∴ ABCD 是一个直角梯形,它的面积等于()221b a +.∴ ()222121221c ab b a +⨯=+. ∴ 222c b a =+.【证法5】(梅文鼎证明)做四个全等的直角三角形,设它们的两条直角边长分别为a 、斜边长为c . 把它们拼成如图那样的一个多边形,使D 、E 、F 在一条直线上. 过C 作AC 的延长线交DF 于点P . ∵ D 、E 、F 在一条直线上, 且Rt ΔGEF ≌ Rt ΔEBD, ∴ ∠EGF = ∠BED,C∵ ∠EGF + ∠GEF = 90°, ∴ ∠BED + ∠GEF = 90°, ∴ ∠BEG =180º―90º= 90º. 又∵ AB = BE = EG = GA = c,∴ ABEG 是一个边长为c 的正方形. ∴ ∠ABC + ∠CBE = 90º. ∵ Rt ΔABC ≌ Rt ΔEBD, ∴ ∠ABC = ∠EBD .∴ ∠EBD + ∠CBE = 90º. 即 ∠CBD= 90º.又∵ ∠BDE = 90º,∠BCP = 90º,BC = BD = a .∴ BDPC 是一个边长为a 的正方形. 同理,HPFG 是一个边长为b 的正方形. 设多边形GHCBE 的面积为S,则,21222ab S b a ⨯+=+ abS c 2122⨯+=,∴ 222c b a =+.【证法6】(项明达证明)做两个全等的直角三角形,设它们的两条直角边长分别为a 、b (b>a ) ,斜边长为c . 再做一个边长为c 的正方形. 把它们拼成如图所示的多边形,使E 、A 、C 三点在一条直线上. 过点Q 作QP ∥BC,交AC 于点P . 过点B 作BM ⊥PQ,垂足为M;再过点F 作FN ⊥PQ,垂足为N .∵ ∠BCA = 90º,QP ∥BC, ∴ ∠MPC = 90º, ∵ BM ⊥PQ, ∴ ∠BMP = 90º,∴ BCPM 是一个矩形,即∠MBC = 90º. ∵ ∠QBM + ∠MBA = ∠QBA = 90º,∠ABC + ∠MBA = ∠MBC = 90º, ∴ ∠QBM = ∠ABC,又∵ ∠BMP = 90º,∠BCA = 90º,BQ = BA = c, ∴ Rt ΔBMQ ≌ Rt ΔBCA .同理可证Rt ΔQNF ≌ Rt ΔAEF . 从而将问题转化为【证法4】(梅文鼎证明).【证法7】(欧几里得证明)做三个边长分别为a 、b 、c 的正方形,把它们拼成如图所示形状,使H 、C 、B 三点在一条直线上,连结 BF 、CD . 过C 作CL ⊥DE,交AB 于点M,交DE 于点L . ∵ AF = AC,AB = AD,∠FAB = ∠GAD, ∴ ΔFAB ≌ ΔGAD,∵ ΔFAB 的面积等于221a,ΔGAD 的面积等于矩形ADLM 的面积的一半,∴ 矩形ADLM 的面积 =2a .同理可证,矩形MLEB 的面积 =2b .∵ 正方形ADEB 的面积= 矩形ADLM 的面积 + 矩形MLEB 的面积 ∴ 222b a c += ,即 222c b a =+. 【证法8】(利用相似三角形性质证明)如图,在Rt ΔABC 中,设直角边AC 、BC 的长度分别为a 、b,斜边AB 的长为c,过点C 作CD ⊥AB,垂足是D .在ΔADC 和ΔACB 中,∵ ∠ADC = ∠ACB = 90º,∠CAD = ∠BAC, ∴ ΔADC ∽ ΔACB .AD ∶AC = AC ∶AB, 即 AB AD AC •=2.同理可证,ΔCDB ∽ ΔACB,从而有 AB BD BC •=2. ∴ ()222AB AB DB AD BC AC =•+=+,即 222c b a =+. 【证法9】(杨作玫证明)做两个全等的直角三角形,设它们的两条直角边长分别为a 、b (b>a ),斜边长为c . 再做一个边长为c 的正方形. 把它们拼成如图所示的多边形. 过A 作AF ⊥AC,AF 交GT 于F,AF 交DT 于R . 过B 作BP ⊥AF,垂足为P . 过D 作DE 与CB 的延长线垂直,垂足为E,DE 交AF 于H .∵ ∠BAD = 90º,∠PAC = 90º, ∴ ∠DAH = ∠BAC .又∵ ∠DHA = 90º,∠BCA = 90º, AD = AB = c,∴ Rt ΔDHA ≌ Rt ΔBCA .K∴ DH = BC = a,AH = AC = b . 由作法可知, PBCA 是一个矩形, 所以 Rt ΔAPB ≌ Rt ΔBCA . 即PB = CA = b,AP= a,从而PH = b ―a .∵ Rt ΔDGT ≌ Rt ΔBCA , Rt ΔDHA ≌ Rt ΔBCA . ∴ Rt ΔDGT ≌ Rt ΔDHA .∴ DH = DG = a,∠GDT = ∠HDA . 又∵ ∠DGT = 90º,∠DHF = 90º,∠GDH = ∠GDT + ∠TDH = ∠HDA+ ∠TDH = 90º, ∴ DGFH 是一个边长为a 的正方形.∴ GF = FH = a . TF ⊥AF,TF = GT ―GF = b ―a .∴ TFPB 是一个直角梯形,上底TF=b ―a,下底BP= b,高FP=a +(b ―a ). 用数字表示面积的编号(如图),则以c 为边长的正方形的面积为543212S S S S S c ++++= ①∵()[]()[]a b a a b b S S S -+•-+=++21438 = ab b 212-, 985S S S +=,∴824321S ab b S S --=+= 812S S b -- . ②把②代入①,得98812212S S S S b S S c ++--++== 922S S b ++ = 22a b +.∴ 222c b a =+.【证法10】(李锐证明)设直角三角形两直角边的长分别为a 、b (b>a ),斜边的长为c . 做三个边长分别为a 、b 、c 的正方形,把它们拼成如图所示形状,使A 、E 、G 三点在一条直线上. 用数字表示面积的编号(如图).∵ ∠TBE = ∠ABH = 90º,∴ ∠TBH = ∠ABE .又∵ ∠BTH = ∠BEA = 90º,BT = BE = b, ∴ Rt ΔHBT ≌ Rt ΔABE .∴ HT = AE = a . ∴ GH = GT ―HT = b ―a . 又∵ ∠GHF + ∠BHT = 90º,∠DBC + ∠BHT = ∠TBH + ∠BHT = 90º,∴ ∠GHF = ∠DBC.R∵ DB = EB ―ED = b ―a, ∠HGF = ∠BDC = 90º,∴ Rt ΔHGF ≌ Rt ΔBDC . 即 27S S =.过Q 作QM ⊥AG,垂足是M . 由∠BAQ = ∠BEA = 90º,可知 ∠ABE = ∠QAM,而AB = AQ = c,所以Rt ΔABE ≌ Rt ΔQAM . 又Rt ΔHBT ≌ Rt ΔABE . 所以Rt ΔHBT ≌ Rt ΔQAM . 即 58S S =.由Rt ΔABE ≌ Rt ΔQAM,又得QM = AE = a,∠AQM = ∠BAE . ∵ ∠AQM + ∠FQM = 90º,∠BAE + ∠CAR = 90º,∠AQM = ∠BAE, ∴ ∠FQM = ∠CAR .又∵ ∠QMF = ∠ARC = 90º,QM = AR = a,∴ Rt ΔQMF ≌ Rt ΔARC . 即64S S =.∵ 543212S S S S S c ++++=,612S S a +=,8732S S S b ++=,又∵ 27S S =,58S S =,64S S =,∴8736122S S S S S b a ++++=+ =52341S S S S S ++++=2c , 即 222c b a =+.【证法11】(利用切割线定理证明)在Rt ΔABC 中,设直角边BC = a,AC = b,斜边AB = c . 如图,以B 为圆心a 为半径作圆,交AB 及AB 的延长线分别于D 、E,则BD = BE = BC = a . 因为∠BCA = 90º,点C 在⊙B 上,所以AC 是⊙B 的切线. 由切割线定理,得AD AE AC •=2=()()BD AB BE AB -+=()()a c a c -+= 22a c -,即222a cb -=,∴ 222c b a =+.【证法12】(利用多列米定理证明)在Rt ΔABC 中,设直角边BC = a,AC = b,斜边AB = c (如图). 过点A 作AD ∥CB,过点B 作BD ∥CA,则ACBD为矩形,矩形ACBD 内接于一个圆. 根据多列米定理,圆内接四边形对角线的乘积等于两对边乘积之和,有BD AC BC AD DC AB •+•=•, ∵ AB = DC = c,AD = BC = a, AC = BD = b,∴ 222AC BC AB +=,即 222b a c +=,∴ 222c b a =+.【证法13】(作直角三角形的内切圆证明)在Rt ΔABC 中,设直角边BC = a,AC = b,斜边AB = c . 作Rt ΔABC 的内切圆⊙O,切点分别为D 、E 、F (如图),设⊙O 的半径为r .∵ AE = AF,BF = BD,CD = CE,∴ ()()()BF AF CD BD CE AE AB BC AC +-+++=-+= CD CE += r + r = 2r,即 r c b a 2=-+, ∴ c r b a +=+2.∴ ()()222c r b a +=+,即 ()222242c rc r ab b a ++=++,∵ab S ABC 21=∆,∴ ABC S ab ∆=42, 又∵ AO C BO CAO B ABC S S S S ∆∆∆∆++= = brar cr 212121++ = ()r c b a ++21= ()r c c r ++221= rc r +2,∴()ABC S rc r ∆=+442, ∴ ()ab rc r242=+,∴ 22222c ab ab b a +=++, ∴ 222c b a =+.【证法14】(利用反证法证明)如图,在Rt ΔABC 中,设直角边AC 、BC 的长度分别为a 、b,斜边AB 的长为c,过点C 作CD ⊥AB,垂足是D .假设222c b a ≠+,即假设 222AB BC AC ≠+,则由AB AB AB •=2=()BD AD AB +=BD AB AD AB •+•可知 AD AB AC •≠2,或者 BD AB BC •≠2. 即 AD :AC ≠AC :AB,或者 BD :BC ≠BC :AB .在ΔADC 和ΔACB 中,∵ ∠A = ∠A,∴ 若 AD :AC ≠AC :AB,则∠ADC ≠∠ACB . 在ΔCDB 和ΔACB 中, ∵ ∠B = ∠B, ∴ 若BD :BC ≠BC :AB,则 ∠CDB ≠∠ACB . 又∵ ∠ACB = 90º,∴ ∠ADC ≠90º,∠CDB ≠90º.这与作法CD ⊥AB 矛盾. 所以,222AB BC AC ≠+的假设不能成立.∴ 222c b a =+.【证法15】(辛卜松证明)设直角三角形两直角边的长分别为a 、b,斜边的长为c . 作边长是a+b 的正方形ABCD . 把正方形ABCD 划分成上方左图所示的几个部分,则正方形ABCD 的面积为()ab b a b a2222++=+;把正方形ABCD 划分成上方右图所示的几个部分,则正方形ABCD 的面积为()22214c ab b a +⨯=+ =22c ab +.∴ 22222c ab ab b a +=++,∴ 222c b a =+.【证法16】(陈杰证明)设直角三角形两直角边的长分别为a 、b (b>a ),斜边的长为c . 做两个边长分别为a 、b 的正方形(b>a ),把它们拼成如图所示形状,使E 、H 、M 三点在一条直线上. 用数字表示面积的编号(如图).在EH = b 上截取ED = a,连结DA 、DC,则 AD = c .∵ EM = EH + HM = b + a , ED = a, ∴ DM = EM ―ED = ()a b +―a = b . 又∵ ∠CMD = 90º,CM = a, ∠AED = 90º, AE = b, ∴ Rt ΔAED ≌ Rt ΔDMC . ∴ ∠EAD = ∠MDC,DC = AD = c .∵ ∠ADE + ∠ADC+ ∠MDC =180º,∠ADE + ∠MDC = ∠ADE + ∠EAD = 90º, ∴ ∠ADC = 90º.∴ 作AB ∥DC,CB ∥DA,则ABCD 是一个边长为c 的正方形. ∵ ∠BAF + ∠FAD = ∠DAE + ∠FAD = 90º,D D∴ ∠BAF=∠DAE .连结FB,在ΔABF 和ΔADE 中,∵ AB =AD = c,AE = AF = b,∠BAF=∠DAE, ∴ ΔABF ≌ ΔADE .∴ ∠AFB = ∠AED = 90º,BF = DE = a . ∴ 点B 、F 、G 、H 在一条直线上. 在Rt ΔABF 和Rt ΔBCG 中, ∵ AB = BC = c,BF = CG = a, ∴ Rt ΔABF ≌ Rt ΔBCG .∵ 54322S S S S c +++=, 6212S S S b ++=, 732S S a +=,76451S S S S S +===,∴6217322S S S S S b a ++++=+ =()76132S S S S S ++++=5432S S S S +++=2c ∴ 222c b a =+.。
初中数学勾股定理教案 初中数学勾股定理教案优秀3篇
初中数学勾股定理教案初中数学勾股定理教案优秀3篇初中数学勾股定理教案优秀3篇由作者为您收集整理,希望可以在初中数学勾股定理教案方面对您有所帮助。
初中数学勾股定理教案篇一一、教案背景概述:教材分析:勾股定理是直角三角形的重要性质,它把三角形有一个直角的形的特点,转化为三边之间的数的关系,它是数形结合的榜样。
它可以解决许多直角三角形中的计算问题,它是直角三角形特有的性质,是初中数学教学内容重点之一。
本节课的重点是发现勾股定理,难点是说明勾股定理的正确性。
学生分析:1、考虑到三角尺学生天天在用,较为熟悉,但真正能仔细研究过三角尺的同学并不多,通过这样的情景设计,能非常简单地将学生的注意力引向本节课的本质。
2、以与勾股定理有关的人文历史知识为背景展开对直角三角形三边关系的讨论,能激发学生的学习兴趣。
设计理念:本教案以学生手中舞动的三角尺为知识背景展开,以勾股定理在古今中外的发展史为主线贯穿课堂始终,让学生对勾股定理的发展过程有所了解,让他们感受勾股定理的丰富文化内涵,体验勾股定理的探索和运用过程,激发学生学习数学的兴趣,特别是通过向学生介绍我国古代在勾股定理研究和运用方面的成就,激发学生热爱祖国,热爱祖国悠久文化的思想感情,培养他们的民族自豪感和探究创新的精神。
教学目标:1、经历用面积割、补法探索勾股定理的过程,培养学生主动探究意识,发展合理推理能力,体现数形结合思想。
2、经历用多种割、补图形的方法验证勾股定理的过程,发展用数学的眼光观察现实世界和有条理地思考能力以及语言表达能力等,感受勾股定理的文化价值。
3、培养学生学习数学的兴趣和爱国热情。
4、欣赏设计图形美。
二、教案运行描述:教学准备阶段:学生准备:正方形网格纸若干,全等的直角三角形纸片若干,彩笔、直角三角尺、铅笔等。
老师准备:毕达哥拉斯、赵爽、刘徽等证明勾股定理的图片以及其它有关人物历史资料等投影图片。
三、教学流程:(一)引入同学们,当你每天手握三角尺绘制自己的宏伟蓝图时,你是否想过:他们的边有什么关系呢?今天我们来探索这一小秘密。
勾股定理小结与复习初中数学原创课件
二、勾股定理的逆定理
1.勾股定理的逆定理
A
c
如果三角形的三边长a,b,c满足 b
a2 +b2=c2 ,那么这个三角形是直角三角形. C a B
2.勾股数 满足a2 +b2=c2的三个正整数,称为勾股数.
3.原命题与逆命题 如果两个命题的题设、结论正好相反,那么把其中 一个叫做原命题,另一个叫做它的逆命题.
考点二 勾股定理的逆定理及其应用
例4 已知在△ABC中,∠A,∠B,∠C的对边分别是a,b, c,a=n2-1,b=2n,c=n2+1(n>1),判断△ABC是否为 直角三角形. 【解析】要证∠C=90°,只要证△ABC是直角三角形,并且 c边最大.根据勾股定理的逆定理只要证明a2+b2=c2即可.
解:如图,过半圆直径的中点O,作直径的垂线交下底边 于点D,取点C,使CD=1.4米,过C作OD的平行线交半圆直 径于B点,交半圆于A点. 在Rt△ABO中,由题意知OA=2米,DC=OB=1.4米, 所以AB2=22-1.42=2.04. 因为4-2.6=1.4,1.42=1.96, 2.04>1.96, 所以卡车可以通过. 答:卡车可以通过,但要小心.
∴AC= AB2 BC2 =24米,
已知AD=4米,则CD=24-4=20(米), ∵在直角△CDE中,CE为直角边,
∴CE= DE2 CD2 =15(米),
BE=15-7=8(米).故选C.
针对训练
3.如图,某住宅社区在相邻两楼之间修建一个上方是一个 半圆,下方是长方形的仿古通道,现有一辆卡车装满家 具后,高4米,宽2.8米,请问这辆送家具的卡车能否通 过这个通道?
第十七章 勾股定理
要点梳理
一、勾股定理
1.如果直角三角形两直角边分别为a,b,斜边为c,
勾股定理整数公式
勾股定理整数公式勾股定理是古希腊数学家毕达哥拉斯提出的,它是数学中的一个基本定理,也是初中数学课程中重要的一部分。
勾股定理的数学表达式为:在直角三角形中,直角边的平方等于两个直角边平方和的和。
即$a^2 + b^2 = c^2$,其中$a$、$b$为直角边,$c$为斜边。
而勾股定理的整数公式则是指能够满足$a^2 + b^2 = c^2$的三个正整数$a$、$b$和$c$的组合。
下面我们来逐一分析这个整数公式。
我们需要注意的是,满足勾股定理整数公式的三个数$a$、$b$和$c$必须是正整数。
这是因为在直角三角形中,边长都是正数,且无法为负数或零。
我们需要了解的是,满足勾股定理整数公式的三个数必须满足什么条件。
根据勾股定理的定义,我们可以推导出一个重要的结论:满足整数公式的三个数$a$、$b$和$c$必须构成一个勾股数。
而勾股数是指能够满足$a^2 + b^2 = c^2$的三个正整数的组合。
那么,如何找到满足勾股定理整数公式的勾股数呢?有很多方法可以用来寻找勾股数,其中最著名的方法是欧几里得的辗转相除法。
这种方法是通过枚举所有可能的正整数$a$和$b$的组合,然后判断是否满足$a^2 + b^2 = c^2$,从而找到满足整数公式的勾股数。
在实际应用中,我们常常需要求解特定范围内的勾股数。
例如,我们希望找到满足$a^2 + b^2 = c^2$且$a$、$b$、$c$均小于等于100的所有勾股数。
这时,我们可以使用编程语言来编写程序,通过循环和条件判断来实现求解。
程序会逐个判断所有可能的组合,然后输出满足条件的勾股数。
除了欧几里得的辗转相除法,还有其他方法可以用来寻找勾股数。
例如,勾股数可以通过生成素数三元组来得到。
素数三元组是指满足$a$、$b$和$c$都是素数且$a^2 + b^2 = c^2$的三个数的组合。
通过生成素数三元组,我们可以得到满足整数公式的勾股数。
总结起来,勾股定理整数公式是数学中的一个重要定理,它描述了直角三角形中各边之间的关系。
初中数学 如何使用勾股定理证明勾股数的存在性
初中数学如何使用勾股定理证明勾股数的存在性要证明勾股数的存在性,我们需要使用勾股定理的逆定理,也称为勾股数定理。
该定理说明,如果存在整数a、b和c,满足勾股定理的条件,即a² + b² = c²,那么这组整数就可以被称为勾股数。
以下是证明勾股数存在性的步骤:步骤1:假设存在整数a、b和c我们首先假设存在整数a、b和c,满足勾股定理的条件,即a² + b² = c²。
步骤2:推导出两个方程根据我们的假设,我们可以得到两个方程:方程1:a² + b² = c²方程2:a、b和c互为素数(即它们没有除1和自身之外的公因数)步骤3:证明方程2我们需要证明方程2,即a、b和c互为素数。
为了证明这一点,我们可以使用反证法。
假设a、b和c不互为素数,那么它们存在一个公因数d,且d大于1。
那么我们可以将a、b 和c分别表示为a = dx,b = dy和c = dz,其中x、y和z是整数。
将这些表示代入方程1中,我们得到:(d²x² + d²y²) = d²z²d²(x² + y²) = d²z²可以观察到,方程左边是d²乘以一个整数,因此方程右边也必须是d²乘以一个整数。
这意味着z²也必须是一个整数。
然而,根据平方数的性质,唯有当z也是一个整数时,z²才是一个整数。
因此,我们得出结论:a、b和c互为素数。
步骤4:寻找勾股数的示例通过使用方程1和方程2,我们可以寻找勾股数的示例。
我们可以通过试验和计算来找到满足勾股定理的整数a、b和c的组合。
一些常见的勾股数示例包括(3, 4, 5)、(5, 12, 13)和(8, 15, 17)等。
例如,我们可以验证(3, 4, 5)是否满足勾股定理的条件:3² + 4² = 9 + 16 = 25 = 5²步骤5:总结综上所述,我们通过假设存在整数a、b和c,满足勾股定理的条件,推导出了两个方程。
初中数学 如何使用勾股定理判断一个三角形是否为直角三角形
初中数学如何使用勾股定理判断一个三角形是否为直角三角形判断一个三角形是否为直角三角形是初中数学中一个非常重要的问题。
勾股定理是判断三角形是否为直角三角形的基本工具之一。
在本文中,我们将介绍如何使用勾股定理来判断一个三角形是否为直角三角形。
一、勾股定理的基本知识在一个直角三角形ABC中,如果边AC是直角边,那么勾股定理表明有:AB²+BC²=AC²。
如果我们知道三角形的边长,我们可以使用勾股定理来判断这个三角形是否为直角三角形。
如果勾股定理的两边相等,那么这个三角形就是直角三角形。
二、如何使用勾股定理判断一个三角形是否为直角三角形1. 已知三角形的三个边长如果我们已知三角形的三个边长a、b和c,我们可以使用勾股定理来判断这个三角形是否为直角三角形。
首先,我们需要将三个边长按照大小排列。
然后,我们可以使用勾股定理来判断这个三角形是否为直角三角形。
如果a²+b²=c²,那么这个三角形就是直角三角形。
例如,如果一个三角形的三个边长为3、4和5,我们可以按照大小排列它们为3、4、5。
然后,我们可以使用勾股定理来计算这个三角形是否为直角三角形。
如果3²+4²=5²,那么这个三角形就是直角三角形。
因此,这个三角形是一个直角三角形。
2. 已知三角形的两个边长和它们夹角的大小如果我们已知三角形的两个边长和它们夹角的大小,我们也可以使用勾股定理来判断这个三角形是否为直角三角形。
首先,我们需要计算出这个三角形的第三个边长。
然后,我们可以使用勾股定理来判断这个三角形是否为直角三角形。
如果勾股定理的两边相等,那么这个三角形就是直角三角形。
例如,如果一个三角形的两个边长为3和4,它们夹角的大小为90度,我们可以计算出这个三角形的第三个边长为5。
然后,我们可以使用勾股定理来计算这个三角形是否为直角三角形。
如果3²+4²=5²,那么这个三角形就是直角三角形。
初中数学勾股定理知识点小结
初中数学勾股定理知识点小结0 1勾股定理内容:直角三角形两直角边的平方和等于斜边的平方;表示方法:如果直角三角形的两直角边分别为a,b,斜边为c,那么.勾股定理的由来:勾股定理也叫商高定理,在西方称为毕达哥拉斯定理.我国古代把直角三角形中较短的直角边称为勾,较长的直角边称为股,斜边称为弦.早在三千多年前,周朝数学家商高就提出了“勾三,股四,弦五”形式的勾股定理,后来人们进一步发现并证明了直角三角形的三边关系为:两直角边的平方和等于斜边的平方0 2勾股定理的证明勾股定理的证明方法很多,常见的是拼图的方法用拼图的方法验证勾股定理的思路是①图形进过割补拼接后,只要没有重叠,没有空隙,面积不会改变②根据同一种图形的面积不同的表示方法,列出等式,推导出勾股定理常见方法如下:方法一:化简可证.方法二:四个直角三角形的面积与小正方形面积的和等于大正方形的面积.四个直角三角形的面积与小正方形面积的和为大正方形面积为所以方法三:化简得证.0 3勾股定理的适用范围勾股定理揭示了直角三角形三条边之间所存在的数量关系,它只适用于直角三角形,对于锐角三角形和钝角三角形的三边就不具有这一特征,因而在应用勾股定理时,必须明了所考察的对象是直角三角形0 4勾股定理的应用①已知直角三角形的任意两边长,求第三边在中,,则,,②知道直角三角形一边,可得另外两边之间的数量关系③可运用勾股定理解决一些实际问题0 5勾股定理的逆定理如果三角形三边长a,b,c满足,那么这个三角形是直角三角形,其中c为斜边.①勾股定理的逆定理是判定一个三角形是否是直角三角形的一种重要方法,它通过“数转化为形”来确定三角形的可能形状,在运用这一定理时,可用两小边的平方和与较长边的平方作比较,若它们相等时,以a,b,c 为三边的三角形是直角三角形;若,时,以a,b,c 为三边的三角形是钝角三角形;若,时,以a,b,c 为三边的三角形是锐角三角形;②定理中a,b,c 及只是一种表现形式,不可认为是唯一的,如若三角形三边长a,b,c 满足,那么以a,b,c 为三边的三角形是直角三角形,但是b为斜边.③勾股定理的逆定理在用问题描述时,不能说成:当斜边的平方等于两条直角边的平方和时,这个三角形是直角三角形0 6勾股数①能够构成直角三角形的三边长的三个正整数称为勾股数,即中,a,b,c 为正整数时,称a,b,c 为一组勾股数②记住常见的勾股数可以提高解题速度,如3、4、5;6、8、10;5、12、13;7、24、25等。
初中数学-第十七章 勾股定理 - 副本
初中数学勾股定理【学习目标】1. 掌握勾股定理的内容及证明方法,能够熟练地运用勾股定理由已知直角三角形中的两条边长求出第三条边长.2. 掌握勾股定理,能够运用勾股定理解决简单的实际问题,会运用方程思想解决问题.3. 熟练应用勾股定理解决直角三角形中的问题,进一步运用方程思想解决问题.【要点梳理】要点一、勾股定理直角三角形两直角边的平方和等于斜边的平方.如果直角三角形的两直角边长分别为,斜边长为,那么.要点诠释:(1)勾股定理揭示了一个直角三角形三边之间的数量关系.(2)利用勾股定理,当设定一条直角边长为未知数后,根据题目已知的线段长可以建立方程求解,这样就将数与形有机地结合起来,达到了解决问题的目的.(3)理解勾股定理的一些变式:,, .要点二、勾股定理的证明方法一:将四个全等的直角三角形拼成如图(1)所示的正方形.图(1)中,所以.方法二:将四个全等的直角三角形拼成如图(2)所示的正方形.图(2)中,所以.方法三:如图(3)所示,将两个直角三角形拼成直角梯形.,所以.要点三、勾股定理的作用1. 已知直角三角形的任意两条边长,求第三边; a b ,c 222a b c +=222a c b =−222b c a =−()222c a b ab =+−2. 用于解决带有平方关系的证明问题;3. 利用勾股定理,作出长为的线段. 【典型例题】类型一、勾股定理的应用1、如图所示,在多边形ABCD 中,AB =2,CD =1,∠A =45°,∠B =∠D =90°,求多边形ABCD 的面积. 举一反三:【变式】(2015•西城区模拟)已知:如图,在△ABC,BC=2,S △ABC =3,∠ABC=135°,求AC 、AB 的长.2、已知直角三角形斜边长为2,周长为,求此三角形的面积.3、(2015春•黔南州期末)长方形纸片ABCD 中,AD=4cm ,AB=10cm ,按如图方式折叠,使点B 与点D 重合,折痕为EF ,求DE 的长.类型二、利用勾股定理解决实际问题4、如图所示,在一棵树的10高的B 处有两只猴子,一只爬下树走到离树20处的池塘A 处,另外一只爬到树顶D 后直接跃到A 处,距离的直线计算,如果两只猴子所经过的距离相等,试问这棵树有多高?举一反三:【变式】如图①,有一个圆柱,它的高等于12,底面半径等于3,在圆柱的底面A 点有一只蚂蚁,它想吃到上底面上与A 点相对的B 点的食物,需要爬行的最短路程是多少?(π取3)【巩固练习】一.选择题26+m m cm cm1.如图,数轴上点A 所表示的数为,则的值是( )AB . CD2.(2015•东莞模拟)如图,所有三角形都是直角三角形,所有四边形都是正方形,已知S 1=4,S 2=9,S 3=8,S 4=10,则S=( )A .25B .31C .32D .403. 如图所示,折叠矩形ABCD 一边,点D 落在BC 边的点F 处,若AB =8,BC =10,EC 的长为( )cm .A .3B .4C .5D .64.如图,长方形AOBC 中,点A 的坐标为(0,8),点D 的纵坐标为3,若将矩形沿直线AD 折叠,则顶点C 恰好落在边OB 上E 处,那么图中阴影部分的面积为( )A. 30 B .32 C .34 D .165.如图,已知△ABC 中,∠ABC =90°,AB =BC ,三角形的顶点在相互平行的三条直线,,上,且,之间的距离为2 , ,之间的距离为3 ,则AC 的长是( )A .B .C .D .76.在△ABC 中,AB =15,AC =13,高AD =12则, △ABC 的周长为( )A.42B.32C.42或32D.37或33a a 111cm cm 1l 2l 3l 1l 2l 2l 3l 1725224二.填空题7.若一个直角三角形的两边长分别为12和5,则此三角形的第三边长为______.8. 如图,将长8,宽4的长方形纸片ABCD 折叠,使点A 与C 重合,则折痕EF 的长为__________.9.(2015•黄冈)在△ABC 中,AB=13cm ,AC=20cm ,BC 边上的高为12cm ,则△ABC 的面积为cm 2.10. 如图,在平面直角坐标系中,点A ,B 的坐标分别为(-6,0)、(0,8).以点A 为圆心,以AB 长为半径画弧,交x 正半轴于点C ,则点C 的坐标为________.11. 已知长方形ABCD ,AB =3,AD =4,过对角线BD 的中点O 做BD 的垂直平分线EF ,分别交AD 、BC 于点E 、F ,则AE 的长为_______________.12.在直线上依次摆着7个正方形(如图),已知倾斜放置的3个正方形的面积分别为1,2,3,水平放置的4个正方形的面积是则______.三.解答题13.(2015春•无棣县期中)如图所示,一架长为2.5米的梯子,斜靠在竖直的墙上,这时梯子的底端距离底0.7米,求梯子顶端离地多少米?如果梯子顶端沿墙下滑0.4m ,那么梯子底端将向左滑动多少m ?14. 现有10个边长为1的正方形,排列形式如左下图, 请把它们分割后拼接成一个新的正方形.要求: 在左下图中用实线画出分割线, 并在右下图的正方形网格图(图中每个小正方形的边长均为1)中用实线画出拼接成的cm cmcm cmcm 1234S S S S ,,,,1234S S S S +++=新正方形.15. 将一副三角尺如图拼接:含30°角的三角尺(△ABC )的长直角边与含45°角的三角尺(△ACD )的斜边恰好重合.已知AB =2,P 是AC 上的一个动点.(1)当点P 在∠ABC 的平分线上时,求DP 的长;(2)当点PD =BC 时,求此时∠PDA 的度数.勾股定理的逆定理【学习目标】1. 理解勾股定理的逆定理,并能与勾股定理相区别;2. 能运用勾股定理的逆定理判断一个三角形是否是直角三角形;3. 理解勾股数的含义;4. 通过探索直角三角形的判定条件的过程,培养动手操作能力和逻辑推理能力.【要点梳理】要点一、勾股定理的逆定理如果三角形的三条边长,满足,那么这个三角形是直角三角形.要点诠释:(1)勾股定理的逆定理的作用是判定某一个三角形是否是直角三角形.(2)勾股定理的逆定理是把“数”转为“形”,是通过计算来判定一个三角形是否为直角三角形. 要点二、如何判定一个三角形是否是直角三角形(1) 首先确定最大边(如).(2) 验证与是否具有相等关系.若,则△ABC 是∠C =90°的直角三角形;若,则△ABC 不是直角三角形.要点诠释:当时,此三角形为钝角三角形;当时,此三角形为锐角三角形,其中为三角形的最大边.要点三、勾股数满足不定方程的三个正整数,称为勾股数(又称为高数或毕达哥拉斯数),显然,以为三边长的三角形一定是直角三角形.熟悉下列勾股数,对解题会很有帮助:① 3、4、5; ②5、12、13;③8、15、17;④7、24、25;⑤9、40、41……如果是勾股数,当为正整数时,以为三角形的三边长,此三角形必为直角三角形.a b c ,,222a b c +=c 2c 22a b +222c a b =+222c a b ≠+222a b c +<222a b c +>c 222x y z +=x y z 、、a b c 、、t at bt ct 、、要点诠释:(1)(是自然数)是直角三角形的三条边长;(2)(是自然数)是直角三角形的三条边长;(3) (是自然数)是直角三角形的三条边长;【典型例题】类型一、勾股定理的逆定理1、(2014春•防城区期末)如图所示,在△ABC 中,AB :BC :CA=3:4:5,且周长为36cm ,点P 从点A 开始沿边向B 点以每秒1cm 的速度移动;点Q 从点B 沿BC 边向点C 以每秒2cm 的速度移动,如果同时出发,问过3秒时,△BPQ 的面积为多少?2、如图,点D 是△ABC 内一点,把△ABD 绕点B 顺时针方向旋转60°得到△CBE ,若AD=4,BD=3,CD=5.(1)判断△DEC 的形状,并说明理由;(2)求∠ADB 的度数.举一反三:【变式】如图所示,在△ABC 中,已知∠ACB =90°,AC =BC ,P 是△ABC 内一点,且PA =3,PB =1,PC =CD =2,CD ⊥CP ,求∠BPC 的度数.类型二、勾股定理逆定理的应用3、已知a 、b 、c 是△ABC 的三边,且满足,且a +b +c =12,请你探索△ABC 的形状. 22121n n n −+,,1,n n >2222,21,221n n n n n ++++n 2222,,2m n m n mn −+,m n m n >、438324a b c +++==举一反三:【变式】(2015春•渝中区校级月考)△ABC 的三边a 、b 、c 满足|a+b ﹣50|++(c ﹣40)2=0.试判断△ABC的形状是.4、如图所示,MN 以左为我国领海,以右为公海,上午9时50分我国缉私艇A 发现在其正东方向有一走私艇C 并以每小时13海里的速度偷偷向我国领海开来,便立即通知距其5海里,并在MN 线上巡逻的缉私艇B 密切注意,并告知A 和C 两艇的距离是13海里,缉私艇B 测得C 与其距离为12海里,若走私艇C 的速度不变,最早在什么时间进入我国海域?【巩固练习】一.选择题1.下列几组数中,为勾股数的一组是( )A .1.4,4.8,5B .15,36,39C .21,45,51D .8,15,172.(2015春•凉山州期末)△ABC 中,∠A ,∠B ,∠C 所对的边分别是a ,b ,c ,满足下列条件的△ABC ,不是直角三角形的是( )A.a :b :c=1:1B.∠A :∠B :∠C=3:4:5C.(a+b )(a ﹣b )=cD.∠A :∠B :∠C=1:2:3224. 有下面的判断:①△ABC 中,a 2+b 2≠c 2,则△ABC 不是直角三角形.②△ABC 是直角三角形,∠C=90°,则a 2+b 2=c 2.③若△ABC 中,a 2﹣b 2=c 2,则△ABC 是直角三角形.④若△ABC 是直角三角形,则(a +b )(a ﹣25.五根小木棒,其长度分别为7,15,20,24,25,现将他们摆成两个直角三角形,其中正确的是( )6. 为直角三角形的三边,且为斜边,为斜边上的高,下列说法:①能组成一个三角形 ②能组成直角三角形 2c b a ,,c h 222,,c b a 222111,,a b c③能组成直角三角形 ④三个内角的度数之比为3:4:5能组成一个三角形 其中正确结论的个数是( )A .1B .2C .3D .4二.填空题7.若△ABC 中,,则∠B =____________. 8.如图,正方形网格中,每个小正方形的边长为1,则网格上的△ABC 是______三角形.9.若一个三角形的三边长分别为1、、8(其中为正整数),则以、、为边的三角形的面积为______.10.△ABC 的两边分别为5,12,另一边为奇数,且是3的倍数,则应为______,此三角形为______.11.(2014春•寿县期中)在某港口有甲乙两艘渔船,若甲沿北偏东60°方向以每小时8海里的速度前进,同时,乙船沿南偏东角度以每小时15海里速度前进,2小时后,甲乙两船相距34海里,那么,乙船航行的方向是南偏东___________度.12. 如果线段能组成一个直角三角形,那么________组成直角三角形.(填“能”或“不能”).三.解答题13.(2014秋•广州校级期末)如图,已知某经济开发区有一块四边形空地ABCD ,现计划在该空地上种植草皮,经测量∠B=90°,AB=300m ,AD=400m ,CD=1300m ,BC=1200m .请计算种植草皮的面积.14.在Rt △ABC 中,∠C=90°,∠A 、∠B 、∠C 所对的边分别是a 、b 、c .三角形的面积与周长的比值 (2)若a +b ﹣c =m ,则猜想= (并证明此结论). hb a 1,1,1()()2b a b ac −+=a a 2a −a 2a +a b ,c a b c ++c a b c ,,2,2,2c b a s l15. 我们给出如下定义:若一个四边形中存在相邻两边的平方和等于一条对角线的平方,则称这个四边形为勾股四边形,这两条相邻的边称为这个四边形的勾股边.(1)写出你所学过的特殊四边形中是勾股四边形的两种图形的名称正方形、长方形、直角梯形(任选两个均可);(2)如图1,已知格点(小正方形的顶点)O (0,0),A (3,0),B (0,4),请你画出以格点为顶点,OA ,OB 为勾股边且对角线相等的勾股四边形OAMB ;(3)如图2,将△ABC 绕顶点B 按顺时针方向旋转60°,得到△DBE,连接AD ,DC ,∠DCB=30度.求证:DC 2+BC 2=AC 2,即四边形ABCD 是勾股四边形.《勾股定理》全章复习与巩固【学习目标】1.了解勾股定理的历史,掌握勾股定理的证明方法;2.理解并掌握勾股定理及逆定理的内容;3.能应用勾股定理及逆定理解决有关的实际问题.【知识网络】【要点梳理】要点一、勾股定理1.勾股定理:直角三角形两直角边的平方和等于斜边的平方.(即:)2.勾股定理的应用勾股定理反映了直角三角形三边之间的关系,是直角三角形的重要性质之一,其主要应用是:(1)已知直角三角形的两边,求第三边;(2)利用勾股定理可以证明有关线段平方关系的问题;(3)解决与勾股定理有关的面积计算;(4)勾股定理在实际生活中的应用.要点二、勾股定理的逆定理1.勾股定理的逆定理如果三角形的三边长,满足,那么这个三角形是直角三角形.要点诠释:应用勾股定理的逆定理判定一个三角形是不是直角三角形的基本步骤:a b 、c 222a b c +=a b c 、、222a b c +=(1)首先确定最大边,不妨设最大边长为;(2)验证:与是否具有相等关系:若,则△ABC 是以∠C 为90°的直角三角形;若时,△ABC 是锐角三角形;若时,△ABC 是钝角三角形.2.勾股数满足不定方程的三个正整数,称为勾股数(又称为高数或毕达哥拉斯数),显然,以为三边长的三角形一定是直角三角形.要点诠释:常见的勾股数:①3、4、5; ②5、12、13;③8、15、17;④7、24、25;⑤9、40、41.如果()是勾股数,当t 为正整数时,以为三角形的三边长,此三角形必为直角三角形. 观察上面的①、②、④、⑤四组勾股数,它们具有以下特征:1.较小的直角边为连续奇数;2.较长的直角边与对应斜边相差1.3.假设三个数分别为,且,那么存在成立.(例如④中存在=24+25、=40+41等)要点三、勾股定理与勾股定理逆定理的区别与联系区别:勾股定理是直角三角形的性质定理,而其逆定理是判定定理;联系:勾股定理与其逆定理的题设和结论正好相反,两者互为逆定理,都与直角三角形有关.【典型例题】类型一、勾股定理及逆定理的应用1、如图所示,等腰直角△ABC 中,∠ACB =90°,E 、F 为AB 上两点(E 左F 右),且∠ECF =45°,求证:.举一反三:【变式】已知凸四边形ABCD 中,∠ABC =30°,∠ADC =60°,AD =DC ,求证:.2、如图,在△ABC 中,∠ACB=90°,AC=BC ,P 是△ABC 内的一点,且PB=1,PC=2,PA=3,求∠BPC 的度数.c 22a b +2c 222a b c +=222a b c +>222a b c +<222x y z +=x y z 、、a b c 、、at bt ct 、、a b c 、、a b c <<2a b c =+2729222AE BF EF +=222BD AB BC =+类型二、勾股定理及逆定理的综合应用3、(2014•顺义区一模)在△ABC中,BC=a,AC=b,AB=c,设c为最长边.当a2+b2=c2时,△ABC是直角三角形;当a2+b2≠c2时,利用代数式a2+b2和c2的大小关系,可以判断△ABC的形状(按角分类).(1)请你通过画图探究并判断:当△ABC三边长分别为6,8,9时,△ABC为三角形;当△ABC三边长分别为6,8,11时,△ABC为三角形.(2)小明同学根据上述探究,有下面的猜想:“当a2+b2>c2时,△ABC为锐角三角形;当a2+b2<c2时,△ABC 为钝角三角形.”请你根据小明的猜想完成下面的问题:当a=2,b=4时,最长边c在什么范围内取值时,△ABC是直角三角形、锐角三角形、钝角三角形?4、如图:正方形ABCD中,E是DC中点,F是EC中点.求证:∠BAF=2∠EAD.举一反三:【变式】(2014春•防城区期末)如图所示,在△ABC中,AB:BC:CA=3:4:5,且周长为36cm,点P从点A 开始沿边向B点以每秒1cm的速度移动;点Q从点B沿BC边向点C以每秒2cm的速度移动,如果同时出发,问过3秒时,△BPQ的面积为多少?类型三、勾股定理的实际应用5、如图所示,牧童在A处放牛,其家在B处,A、B到河岸的距离分别为AC=400米,BD=200米,CD=800米,牧童从A处把牛牵到河边饮水后再回家.试问在何处饮水,所走路程最短?最短路程是多少?举一反三:【变式】如图所示,正方形ABCD 的AB 边上有一点E ,AE =3,EB =1,在AC 上有一点P ,使EP +BP 最短.求EP +BP 的最小值.6、台风是一种自然灾害,它以台风中心为圆心,在周围数十千米范围内形成气旋风暴,有极强的破坏力.如图台风中心在我国台湾海峡的B 处,在沿海城市福州A 的正南方向240千米,其中心风力为12级,每远离台风中心25千米,台风就会减弱一级,如图所示,该台风中心正以20千米/时的速度沿北偏东30°方向向C 移动,且台风中心的风力不变,若城市所受风力达到或超过4级,则称受台风影响.试问:(1)该城市是否会受到台风影响?请说明理由.(2)若会受到台风影响,那么台风影响该城市的持续时间有多长?(3)该城市受到台风影响的最大风力为几级?【巩固练习】一.选择题1. 在△中,若,则△ABC 是( )A. 锐角三角形B. 钝角三角形C. 等腰三角形D. 直角三角形2. 如图,每个小正方形的边长为1,A 、B 、C 是小正方形的顶点,则∠ABC 的度数为( )A .90°B .60°C .45°D .30°3.(2015春•西华县期末)下列满足条件的三角形中,不是直角三角形的是( )A .三内角之比为1:2:3 B.三边长的平方之比为1:2:3C .三边长之比为3:4:5 D.三内角之比为3:4:54.如图,一牧童在A 处牧马,牧童家在B 处,A 、B 处距河岸的距离AC 、BD 的长分别为500m 和700m ,且C 、D 两地的距离为500m ,天黑前牧童从A 点将马牵引到河边去饮水后,再赶回家,那么牧童至少要走( )ABC 1,2,122+==−=n c n b n aA .2900mB . 1200mC . 1300mD . 1700m5. 直角三角形的两条直角边长为a ,b ,斜边上的高为h ,则下列各式中总能成立的是( )A .ab =h 2B .a 2+b 2=h 2C .D . 6.如图,Rt △ABC 中,∠C =90°,CD ⊥AB 于点D ,AB =13,CD =6,则(AC +BC)2等于( )A.25B.325C.2197D.4057. 已知三角形的三边长为,由下列条件能构成直角三角形的是( )A. B. C. D. 8. 勾股定理是几何中的一个重要定理.在我国古算书《周髀算经》中就有“若勾三,股四,则弦五”的记载.如图1是由边长相等的小正方形和直角三角形构成的,可以用其面积关系验证勾股定理.图2是由图1放入矩形内得到的,∠BAC=90°,AB=3,AC=4,点D ,E ,F ,G ,H ,I 都在矩形KLMJ 的边上,则矩形KLMJ 的面积为( )9. 如图,AB =5,AC =3,BC 边上的中线AD =2,则△ABC 的面积为______.111a b h +=222111a b h+=a b c 、、()()2222221,4,1amb mc m =−==+()()222221,4,1a m b m c m =−==+()()222221,2,1a m b m c m =−==+()()2222221,2,1a m b m c m =−==+10.如图所示,有一块直角三角形纸片,两直角边AB =6,BC =8,将直角边AB 折叠使它落在斜边AC 上,折痕为AD ,则BD =______.11.已知:△ABC 中,AB =15,AC =13,BC 边上的高AD =12,BC =_______.12.如图,E 是边长为4cm 的正方形ABCD 的边AB 上一点,且AE=1cm ,P 为对角线BD 上的任意一点,则AP+EP 的最小值是 cm .13.如图,长方体的底面边长分别为1cm 和2cm ,高为4cm ,点P 在边BC 上,且BP=BC .如果用一根细线从点A 开始经过3个侧面缠绕一圈到达点P ,那么所用细线最短需要 cm .14.(2014春•监利县期末)小明把一根70cm 长的木棒放到一个长宽高分别为30cm ,40cm ,50cm 的木箱中,他能放进去吗?答: (选填“能”或“不能”).15. 已知长方形OABC ,点A 、C 的坐标分别为OA=10,OC=4,点D 是OA 的中点,点P 在BC 边上运动,当△ODP 是腰长为5的等腰三角形时,CP 的长为________.16. 如图所示,在△ABC 中,AB =5,AC =13,BC 边上的中线AD =6,∠BAD =________.三.解答题17.如图所示,已知D 、E 、F 分别是△ABC 中BC 、AB 、AC 边上的点,且AE =AF ,BE =BD ,CF =CD ,AB=144,AC =3,,求:△ABC 的面积.18.如图等腰△ABC 的底边长为8cm ,腰长为5cm ,一个动点P 在底边上从B 向C 以0.25cm/s 的速度移动,请你探究,当P 运动几秒时,P 点与顶点A 的连线PA 与腰垂直.19.(2015•永州)如图,有两条公路OM 、ON 相交成30°角,沿公路OM 方向离O 点80米处有一所学校A .当重型运输卡车P 沿道路ON 方向行驶时,在以P 为圆心50米长为半径的圆形区域内都会受到卡车噪声的影响,且卡车P 与学校A 的距离越近噪声影响越大.若一直重型运输卡车P 沿道路ON 方向行驶的速度为18千米/时.(1)求对学校A 的噪声影响最大时卡车P 与学校A 的距离;(2)求卡车P 沿道路ON 方向行驶一次给学校A 带来噪声影响的时间.20. 如图1,四根长度一定....的木条,其中AB =6,CD =15,将这四根木条用小钉绞合在一起,构成一个四边形ABCD (在A 、B 、C 、D 四点处是可以活动的).现固定AB 边不动,转动这个四边形,使它的形状改变,在转动的过程中有以下两个特殊位置.位置一:当点D 在BA 的延长线上时,点C 在线段AD 上(如图2);位置二:当点C 在AB 的延长线上时,∠C =90°.(1)在图2中,若设BC 的长为,请用的代数式表示AD 的长;(2)在图3中画出位置二的准确..图形;(各木条长度需符合题目要求) (3)利用图2、图3求图1的四边形ABCD 中,BC 、AD 边的长.32BD CD=cm cm xx。
勾股定理知识点总结
勾股定理知识点总结勾股定理是数学中一个著名的定理,也是初中数学学习的重点内容之一。
它描述了直角三角形中三条边的关系,并且可以应用于解决许多与三角形和几何有关的问题。
本文将对勾股定理的相关知识点进行总结和探讨。
一、勾股定理的表述和公式勾股定理的表述是:“直角三角形斜边上的正方形面积等于其他两边上的正方形面积之和。
”这就是我们通常所说的勾股定理。
勾股定理的公式可以表示为:a² + b² = c²其中,a、b代表直角三角形的两条直角边,c代表直角三角形的斜边。
二、勾股定理的证明勾股定理的证明有多种方法,在此我们以几何证明和代数证明为例进行说明。
几何证明:通过图形的构造和推理来证明勾股定理。
一种常见的几何证明方法是构造以a、b、c为边长的正方形,然后计算正方形的面积,从而证明等式成立。
代数证明:通过数学计算和变换来证明勾股定理。
一种常见的代数证明方法是将直角三角形的三条边的平方进行计算,然后将其相加和化简,最终得到等式成立的结果。
三、勾股定理的应用勾股定理不仅仅是一个数学定理,还有着广泛的应用。
1. 解决三角形的边长和角度问题:通过勾股定理,我们可以已知两条边长来求解第三条边长,或者已知两条边长和一个角度来求解其他角度。
2. 判断三角形的形状:我们可以利用勾股定理来判断一个三角形是直角三角形、锐角三角形还是钝角三角形,从而进一步研究和分析三角形的性质。
3. 解决几何问题:勾股定理还可以应用于解决一些几何问题,例如求解两条直线的交点坐标、求解平面图形的面积、判断是否存在重合图形等等。
四、勾股定理的推广除了直角三角形,勾股定理还可以推广到其他形状的图形。
1. 平方和定理:平方和定理是勾股定理的推广,它描述了非直角三角形中三条边平方的关系。
2. 多边形的对角线:在多边形中,通过某个顶点可以连接其他顶点,形成对角线。
对角线之间的关系也可以通过勾股定理进行研究和计算。
3. 空间中的勾股定理:在空间几何中,勾股定理可以推广到三维空间,描述直角棱柱、直角锥等图形的三条棱或边之间的关系。
初中数学勾股定理的多种证明
勾股定理的证明方法1做8个全等的直角三角形,设它们的两条直角边长分别为a、b,斜边长为c,再做三个边长分别为a、b、c的正方形,把它们像上图那样拼成两个正方形.从图上可以看到,这两个正方形的边长都是a+b,所以面积相等.即a的平方加b 的平方,加4乘以二分之一ab等于c的平方,加4乘以二分之一ab,整理得a 的平方加b的平方等于c的平方。
勾股定理的证明方法2以a、b为直角边,以c为斜边做四个全等的直角三角形,则每个直角三角形的面积等于二分之一ab.把这四个直角三角形拼成如图所示形状,使A、E、B三点在一条直线上,B、F、C三点在一条直线上,C、G、D三点在一条直线上.∵RtΔHAE≌RtΔEBF,∴∠AHE=∠BEF.∵∠AEH+∠AHE=90o,∴∠AEH+∠BEF=90o.∴∠HEF=180o―90o=90o.∴四边形EFGH是一个边长为c的正方形.它的面积等于c2.∵RtΔGDH≌RtΔHAE,∴∠HGD=∠EHA.∵∠HGD+∠GH D=90o,∴∠EHA+∠GHD=90o.又∵∠GHE=90o,∴∠DHA=90o+90o=180o.∴ABCD是一个边长为a+b的正方形,它的面积等于a+b的平方。
∴a加b的平方等于4乘二分之一ab,加上c的平方。
.∴a的平方加b的平方等于c的平方。
勾股定理的证明方法3以a、b为直角边(b>a),以c为斜边作四个全等的直角三角形,则每个直角三角形的面积等于二分之一ab。
把这四个直角三角形拼成如图所示形状。
∵RtΔDAH≌RtΔABE,∴∠HDA=∠EAB.∵∠HAD+∠HAD=90o,∴∠EAB+∠HAD=90o,∴ABCD是一个边长为c的正方形,它的面积等于c2.∵EF=FG=GH=HE=b―a,∠HEF=90o.∴EFGH是一个边长为b―a的正方形,它的面积等于b减a的平方。
∴4乘二分之一ab加上,b减a的平方等于c的平方。
∴a^2+b^2=c^2(说明a^2为a的平方)。
初中数学勾股定理
初中数学--勾股定理聚智堂学科教师辅导讲义勾股定理:如果直角三角形两直角边分别为a,b,斜边为c,那么2c22+a=b即直角三角形两直角边的平方和等于斜边的平方。
说明:(1)勾股定理只有在直角三角形中才适用,如果不是直角三角形,那么三条边之间就没有这种关系了。
(2)我国古代把直角三角形中较短的直角边称为勾,较长的直角边称为股,斜边称为弦。
在没有特殊说明的情况下,直角三角形中,a,b是直角边,c是斜边,但有时也要考虑特殊情况。
(3)除了利用a,b,c表示三边的关系外,还应会利用AB,BC,CA表示三边的关系,在△ABC中,∠B=90°,利用勾股定理有222AC+。
AB=BC2. 利用勾股定理的变式进行计算由22c2+,可推出如下变形公式:a=b如(1)3,4,5;(2)5,12,13;(3)6,8,10;(4)8,15,17(5)7,24,25 (6)9, 40, 41四、例题讲解(一)基本知识勾股定理求边长例1、如图所示,已知Rt△ABC中,∠ACB=90°, CD⊥AB,若AC=4,BC=3,求CD的长。
例2、如图所示,一棵36米高的树被风刮断了,树顶落在离树根24米处,求折断处的高度AB。
例3 、如图所示,在高为3米,斜坡长为5米的楼梯表面铺地毯,则地毯的长度至少需要多少米?若楼梯宽2米,每平、方米地毯需50元,那么这块地毯需花多少元?例4、如图,在△ABC中,∠ACB=90º, CD⊥AB,D为垂足,AC=6cm,BC=8cm.求①△ABC的面积;②斜边AB的长;③斜边AB上的高CD的长。
ADB练习C1. 若一直角三角形两边长分别为12和5,则第三边长的平方为()A. 169B. 169或119C. 169或225A. b 2=c 2-a 2B. a ∶b ∶c=3∶4∶5C. ∠C=∠A -∠BD. ∠A ∶∠B ∶∠C=12∶13∶15 例2、三角形的三边长为abc b a 2)(22+=+,则这个三角形是( )A. 等边三角形B. 钝角三角形C. 直角三角形D. 锐角三角形例3、一个零件的形状如图所示,按规定这个零件中的∠A 和∠BDC 都应为直角,将量得的这个零件的各边尺寸标注在图中,由此可知( )A. ∠A 符合要求B. ∠BDC 符合要求C. ∠A 和 ∠ BDC 都符合要求D. ∠A 和∠BDC 都不符合要求例4、如图己知13,12,4,3,====⊥AD CD BC AB BC AB 求四边形ABCD 的面积练习1.下列各组线段中,能构成直角三角形的是( ) A .2,3,4 B .3,4,6 C .5,12,13 D .4,6,72. 三角形的三边为a 、b 、c ,由下列条件不能判断它是直角三角形的是( )A .a:b:c=8∶16∶17B . a 2-b 2=c 2C .a 2=(b+c)(b-c)D . a:b:c =13∶5∶123. 三角形的三边长为abc b a 2)(22+=+,则这个三角形是( )A. 等边三角形B. 钝角三角形C. 直角三角形D. 锐角三角形. 4、已知:如图,四边形ABCD 中,AB=20,BC=15,CD=7,AD=24,∠B=90°,求证:∠A+∠C=180°。
初中数学《勾股定理》说课稿5篇
初中数学《勾股定理》说课稿5篇初中数学《勾股定理》说课稿1一、教材分析^p :〔一〕、本节课在教材中的地位作用“勾股定理的逆定理”一节,是在上节“勾股定理”之后,继续学习的一个直角三角形的判断定理,它是前面知识的继续和深化,勾股定理的逆定理是初中几何学习中的重要内容之一,是今后判断某三角形是直角三角形的重要方法之一,在以后的解题中,将有非常广泛的应用,同时在应用中浸透了利用代数计算的方法证明几何问题的思想,为将来学习解析几何埋下了伏笔,所以本节也是本章的重要内容之一。
课标要求学生必须掌握。
〔二〕、教学目的:根据数学课标的要求和教材的详细内容,结合学生实际我确定了本节课的教学目的。
知识技能:1、理解勾股定理的逆定理的证明方法并能证明勾股定理的逆定理。
2、掌握勾股定理的逆定理,并能利用勾股定理的逆定理断定一个三角形是不是直角三角形过程与方法:1、通过对勾股定理的逆定理的探究,经历知识的发生、开展与形成的过程2、通过用三角形三边的数量关系来判断三角形的形状,体验数与形结合方法的应用3、通过勾股定理的逆定理的证明,体会数与形结合方法在问题解决中的作用,并能运用勾股定理的逆定理解决相关问题。
情感态度:1、通过用三角形三边的数量关系来判断三角形的形状,体验数与形的内在联络,感受定理与逆定理之间的和谐及辩证统一的关系2、在探究勾股定理的逆定理的活动中,通过一系列富有探究性的问题,浸透与别人交流、合作的意识和探究精神〔三〕、学情分析^p :尽管已到初二下学期学生知识增多,才能增强,但思维的局限性还很大,才能也有差距,而勾股定理的逆定理的证明方法学生第一次见到,它要求根据条件构造一个直角三角形,根据学生的智能状况,学生不容易想到,因此勾股定理的逆定理的证明又是本节的难点,这样如何添辅助线就是解决它的关键,这样就确定了本节课的重点、难点和关键。
重点:勾股定理逆定理的应用难点:勾股定理逆定理的证明关键:辅助线的添法探究二、教学过程:本节课的设计原那么是:使学生在动手操作的根底上和合作交流的良好气氛中,通过巧妙而自然地在学生的认识构造与几何知识构造之间筑了一个信息流通渠道,进而到达完善学生的数学认识构造的目的。
《勾股定理》数学教学PPT课件(10篇)
=BD·
CD.
D
B
E
C
课堂小
结
利用勾股定理解
决实际问题
勾股定理
的应用
构造直角三角形
解决实际问题
第十七章 勾股定理
17.1 勾股定理
第3课时
利用勾股定理作图和计算
知识要点
1.勾股定理与数轴、坐标系
2.勾股定理与网格
3.勾股定理与几何图形
新知导入
想一想:
我们知道数轴上的点有的表示有理数,有的表示无理数,你
能在数轴上画出表示 13 的点吗?
如果能画出长为 13 的线段,就能在数轴上画出表示 13 的
2
点.容易知道,长为
的线段是两条直角边的长都为1的直角三
角形的斜边.
长为 13 的线段能是直角边的长为正整数的直角三角形的
斜边吗?
新知导入
想一想:
利用勾股定理,可以发现,直角边的长为正整数2, 3
知识
的直角三角形的斜边长为
AC2+BC2=AB2
由上面的例子,我们猜想:
命题1 如果直角三角形的两条直角边长分别为a,b,斜边
长为c,那么a2+b2=c2.两直角边的平方和等于斜边的平方.
a
c
b
课程讲授
1
勾股定理
下面让我们跟着以前的数学家们用拼图法来证明这一猜想.
c
证明:∵S大正方形=c2,
S小正方形=(b-a)2,
b
a
b-a
例 如图是由4个边长为1的正方形构成的“田字格”,只用没有刻
度的直尺在这个“田字格”中最多可以作出长度为
8
_____条.
初中数学勾股定理
勾股定理:如果直角三角形两直角边长分别为a,b,斜边长为 c , 那么a2+b2=c2
勾股定理的应用:已知直角三角形的任意两边,求第三边;已知 直角三角形的一边,确定另两边的关系;证明含有平方(算术平 方根)关系的几何问题;构造方程(或方程组)计算有关线段的 长度解决生活、生产中的实际问题.
所以另一直角边长为8 cm,
故直角三角形的面积是:
(cm2).
9 如图,为了测得湖边上点A和点C间的距离,一观测者在点
B设立了一根标杆,使∠ACB=90°.测得AB=200m,
BC=160m.根据测量结果,求点A和点C间的距离.
解:在△ABC中,∵∠ACB=90°.
C
∴AC2+BC2=AB2(勾股定理).
C ∵AC=50-40-26=9(mm),
BC=40-18-10=12(mm),
AB AC 2 BC 2 10
B
26 A
92 122 15(mm)
15
答:A和B间的距离是15mm.
11.有一个高为1.5 m,半径是1 m的圆柱形油桶,在靠近 边的地方有一小孔,从孔中插入一铁棒,已知铁棒在油桶 外的部分为0.5 m,问这根铁棒有多长?
图中有几个直角三角形,你是如何判断的?
与你的同伴交流. A 2E 2
4
解:△ABE,△DEF,△FCB均为
D 直角三角形. 1 F 由勾股定理知
BE2=22+42=20,EF2=22+12=5, 3
BF2=32+42=25,
B
4
C ∴BE2+EF2=BF2, ∴ △BEF是直角三角形.
15.一个零件的形状如图1所示,按规定这个零件中∠A和 ∠DBC都应为直角,工人师傅量得这个零件各边的尺寸如图2 所示,这个零件符合要求吗?
初中数学:勾股定理及勾股定理的运用
初中数学:勾股定理及勾股定理的运用1、定理内容:文字形式:直角三角形的两直角边的平方和,等于斜边的平方。
几何形式:如果直角三角形的直角边分别为a、b,斜边为c,那么a2+b2=c22、相关知识链接:直角三角形1)我国古代把直角三角形中较短的直角边叫作勾,较长的直角边叫作股,斜边叫作弦;2)汉代数学家赵爽把勾股定理叙述成:勾股各自乘,并之为弦实,开方除之即弦;3)国外称之为毕达哥拉斯定理;4)也有人称勾股定理为千古第一定理。
3、勾股定理的作用:1)已知直角三角形的两边长,求第三边长;2)知道一边长时,能够确定直角三角形的其余两个边长之间的关系;3)在证明含平方问题时,有时就可以考虑构造直角三角形帮助解决问题。
4、勾股定理的各种表达式在中,,A、B、C的对边分别为a、b、c,则,,,,,。
5、定理证明及典型例题:例1、已知:在△ABC中,∠C=90°,∠A、∠B、∠C的对边为a、b、c。
求证:a2+b2=c2。
证明方法一:取四个与Rt△ABC全等的直角三角形,把它们拼成如图所示的正方形。
如图,正方形ABCD的面积= 4个直角三角形的面积+正方形PQRS的面积∴ ( a + b )2=1/2 ab × 4+ c2a2+ 2ab + b2= 2ab + c2故 a2+ b2=c2证明方法二:图1中,甲的面积= (大正方形面积) - ( 4个直角三角形面积)。
图2中,乙和丙的面积和=(大正方形面积)-( 4个直角三角形面积)。
因为图1和图2的面积相等,所以甲的面积=乙的面积+丙的面积即:c2= a2+ b2证明方法三:四个直角三角形的面积和+小正方形的面积=大正方形的面积,2ab + ( a -b ) 2= c2,2ab + a2- 2ab + b2= c2故 a2+ b2=c2证明方法四:梯形面积=三个直角三角形的面积和1/2 × ( a+b ) × ( a+ b ) =2 × 1/2 × a × b+1/2 × c × c(a + b )2= 2ab + c2a 2+ 2ab + b2= 2ab + c2故 a2+ b2=c2例2、在Rt△ABC,∠C=90°⑴已知a=b=5,求c。
初中数学知识归纳勾股定理与三角形的三边关系
初中数学知识归纳勾股定理与三角形的三边关系数学是一门基础学科,而数学中的勾股定理和三角形的三边关系是初中数学中重要的知识点。
它们不仅具有理论意义,而且在实际生活中也有很多应用。
本文将对勾股定理和三角形的三边关系进行归纳总结,并探讨其应用。
一、勾股定理勾股定理是关于直角三角形的重要定理,它描述了直角三角形中直角边平方和等于斜边平方的关系。
根据勾股定理,我们可以计算任意直角三角形的边长。
勾股定理可以表示为:在一个直角三角形中,直角边的平方和等于斜边的平方。
即a² + b² = c²,其中a、b为直角边的长度,c为斜边的长度。
我们可以用勾股定理解决一些与直角三角形有关的问题。
例如,已知两条直角边的长度,可以求解斜边的长度;已知一条直角边和斜边的长度,可以求解另一条直角边的长度。
勾股定理的应用不仅局限于直角三角形,还可以拓展到其他几何图形中,比如矩形和正方形。
通过勾股定理,我们可以计算矩形的对角线长度或者正方形的边长。
二、三角形的三边关系除了勾股定理,我们还可以通过三边关系来研究三角形的性质。
三角形的三边关系是指三条边长度之间的关系,包括三角形两边之和大于第三边、两边之差小于第三边等。
1. 三角形两边之和大于第三边对于任意一个三角形ABC,其三边为a、b、c,其中a、b为两边的长度,c为第三边的长度。
根据三角形的两边之和大于第三边的关系,我们可以得到以下结论:a+b>c,b+c>a,c+a>b。
这个结论的意义在于,如果三条边的长度不能满足这个关系,那么就无法构成一个三角形。
2. 三角形两边之差小于第三边三角形的两边之差小于第三边的关系与前述关系相似。
对于任意一个三角形ABC,其三边为a、b、c,其中a、b为两边的长度,c为第三边的长度。
根据三角形的两边之差小于第三边的关系,我们可以得到以下结论:|a-b|<c,|b-c|<a,|c-a|<b。
复习初中数学勾股定理与三角形的性质
复习初中数学勾股定理与三角形的性质数学是一门基础学科,它的知识贯穿我们的整个学习生涯。
在初中阶段学习数学的过程中,我们接触到了许多重要的数学定理和性质。
其中,勾股定理和三角形的性质是我们初步掌握的重要内容。
在这篇文章中,我们将对这两个主题进行复习。
一、勾股定理勾股定理是初中数学中最基本也是最重要的定理之一。
它在解决直角三角形问题时起着关键的作用。
勾股定理的表述如下:定理:在直角三角形中,直角边的平方等于两个直角边的平方和。
勾股定理由毕达哥拉斯提出,形式化地表达为a²+b²=c²。
其中,a和b是直角三角形的两个直角边,c是斜边。
这一定理的证明方法多种多样,其中最常用的是几何证明和代数证明。
我们可以根据实际问题的特点选择合适的证明方法。
在应用勾股定理解题时,我们可以根据已知的条件和问题的要求,利用勾股定理进行求解。
例如,已知两条直角边的长度,求斜边的长度;已知两边的长度,求另一条边的长度等。
只要我们灵活运用勾股定理,结合数学模型进行逻辑推理,就能够有效地解决各种与直角三角形相关的问题。
二、三角形的性质在初中数学中,我们还学习了许多三角形的性质。
掌握这些性质有助于我们分析和解决与三角形相关的各种问题。
1. 三角形的内角和性质:三角形的三个内角的和等于180°。
这个性质是研究三角形的基础,它揭示了三角形内部角度的关系。
2. 三角形的外角性质:三角形的一个内角和与其相邻的一个外角的和等于180°。
这个性质使我们能够从不同的角度去观察和研究三角形的特征。
3. 三角形的边长和角度关系:三角形的任意两边之和大于第三边;任意两角的和大于第三角。
这个性质可以帮助我们判断一组边长或角度是否能够构成一个三角形。
4. 等腰三角形性质:等腰三角形的两边相等,两底角相等。
这个性质在解决关于等腰三角形的问题时十分有用。
5. 直角三角形性质:直角三角形的两条直角边之间满足勾股定理,同时直角三角形的两个锐角之和为90°。
初中数学中的勾股定理
勾股定理是数学中的重要概念,它被广泛应用于几何学和物理学等领域。
在初中数学课程中,勾股定理是一个必须掌握的知识点。
本文将详细介绍勾股定理的定义、应用以及相关推导过程。
一、什么是勾股定理勾股定理是古希腊数学家毕达哥拉斯提出的一个定理。
它描述了直角三角形中,直角边的平方之和等于斜边平方的关系。
这个定理可以用数学公式表示为:c² = a² + b²,其中a和b为直角边的长度,c为斜边的长度。
勾股定理的应用非常广泛。
在几何学中,我们可以利用勾股定理计算三角形的边长、角度以及面积。
在物理学中,勾股定理可以帮助我们计算物体的位移、速度、加速度等相关参数。
因此,掌握勾股定理对于解决实际问题具有重要意义。
二、勾股定理的推导过程勾股定理的推导可以通过几何图形或代数方法来完成。
在这里,我们将以几何图形的方式来推导勾股定理。
考虑一个直角三角形ABC,其中∠C为直角。
我们可以构造两个辅助线,分别是BD和CE,使得∠DBC = ∠ECA = 90°。
根据相似三角形的性质,我们可以得到以下等式:AC/AB = AE/AC (1)BC/AB = BD/BC (2)由于AC = AE + EC,BC = BD + DC,代入等式(1)和(2),我们可以得到以下关系:AC²/AB² = (AE/AC)²(3)BC²/AB² = (BD/BC)²(4)将AE/AC表示为x,BD/BC表示为y,代入等式(3)和(4),我们可以得到:AC²/AB² = x²(5)BC²/AB² = y²(6)由于AC² + BC² = AB²,代入等式(5)和(6),我们得到:x² + y² = 1根据三角函数的定义,我们知道在直角三角形中,sin²θ + cos²θ = 1。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
聚智堂学科教师辅导讲义年级:课时数:学科教师:学员姓名:辅导科目:数学辅导时间:课题勾股定理教学目的1、勾股定理:直角三角形两直角边a、b的平方和等于斜边c的平方。
(即:a2+b2=c2)2、勾股定理的逆定理:如果三角形的三边长:a、b、c有关系a2+b2=c2,那么这个三角形是直角三角形。
3、满足222cba=+的三个正整数,称为勾股数。
教学内容一、日校回顾二、知识回顾1. 勾股定理如图所示,在正方形网络里有一个直角三角形和三个分别以它的三条边为边的正方形,通过观察、探索、发现正方形面积之间存在这样的关系:即C的面积=B的面积+A的面积,现将面积问题转化为直角三角形边的问题,于是得到直角三角形三边之间的重要关系,即勾股定理。
勾股定理:如果直角三角形两直角边分别为a,b,斜边为c,那么222cba=+即直角三角形两直角边的平方和等于斜边的平方。
说明:(1)勾股定理只有在直角三角形中才适用,如果不是直角三角形,那么三条边之间就没有这种关系了。
(2)我国古代把直角三角形中较短的直角边称为勾,较长的直角边称为股,斜边称为弦。
在没有特殊说明的情况下,直角三角形中,a ,b 是直角边,c 是斜边,但有时也要考虑特殊情况。
(3)除了利用a ,b ,c 表示三边的关系外,还应会利用AB ,BC ,CA 表示三边的关系,在△ABC 中,∠B =90°,利用勾股定理有222AC BC AB =+。
2. 利用勾股定理的变式进行计算由222c b a =+,可推出如下变形公式: (1)222b c a -=; (2)222a cb -= (3)22bc a -= (4)22a c b -=(5)22b a c +=(平方根将在下一章学到)说明:上述几个公式用哪一个,取决于已知条件给了哪些边,求哪条边,要判断准确。
三、知识梳理1、勾股定理的应用勾股定理反映了直角三角形三边之间的关系,是直角三角形的重要性质之一,其主要应用有: (1)已知直角三角形的两边求第三边(2)已知直角三角形的一边与另两边的关系。
求直角三角形的另两边 (3)利用勾股定理可以证明线段平方关系的问题 2、如何判定一个三角形是直角三角形(1) 先确定最大边(如c )(2) 验证2c 与22b a +是否具有相等关系(3) 若2c =22b a +,则△ABC 是以∠C 为直角的直角三角形;若2c ≠22b a + 则△ABC 不是直角三角形。
3、勾股数 满足22b a =2c 的三个正整数,称为勾股数如(1)3,4,5; (2)5,12,13; (3)6,8,10;(4)8,15,17 (5)7,24,25 (6)9, 40, 41四、例题讲解 (一)基本知识 勾股定理求边长例1、如图所示,已知Rt △ABC 中,∠ACB =90°, CD ⊥AB ,若AC =4,BC =3,求CD 的长。
例2、 如图所示,一棵36米高的树被风刮断了,树顶落在离树根24米处,求折断处的高度AB 。
例3 、如图所示,在高为3米,斜坡长为5米的楼梯表面铺地毯,则地毯的长度至少需要多少米?若楼梯宽2米,每平、方米地毯需50元,那么这块地毯需花多少元?例4、如图,在△ABC 中,∠ACB=90º, CD ⊥AB ,D 为垂足,AC=6cm,BC=8cm.在图中,由此可知( )A. ∠A 符合要求B. ∠BDC 符合要求C. ∠A 和 ∠ BDC 都符合要求D. ∠A 和∠BDC 都不符合要求例4、如图己知13,12,4,3,====⊥AD CD BC AB BC AB 求四边形ABCD 的面积 练习1.下列各组线段中,能构成直角三角形的是( )A .2,3,4B .3,4,6C .5,12,13D .4,6,7 2. 三角形的三边为a 、b 、c ,由下列条件不能判断它是直角三角形的是( )A .a:b:c=8∶16∶17B . a 2-b 2=c 2C .a 2=(b+c)(b-c) D . a:b:c =13∶5∶12 3. 三角形的三边长为ab c b a 2)(22+=+,则这个三角形是( )A. 等边三角形B. 钝角三角形C. 直角三角形D. 锐角三角形.4、已知:如图,四边形ABCD 中,AB=20,BC=15,CD=7,AD=24,∠B=90°,求证:∠A+∠C=180°。
简单应用例1、一根旗杆在离地面4.5米的地方折断,旗杆顶端落在离旗杆底部6米处,则旗杆折断前高( )ABCDCABEDA. 10.5米B. 7.5米C. 12米D. 8米例2、如图,一架25分米的梯子,斜立在一竖直的墙上,这时梯子距墙底端7分米,如果梯子的顶端沿墙下滑4分米,那么梯子将平滑( )A. 9分米B. 15分米C. 5分米D. 8分米例3.、一根旗杆在离地9米处断裂,旗杆顶部落在离旗杆底部12米处,旗杆折断之前有多高为_________。
(一)类型题目题型1、求最短距离。
(折叠与展开)例1、如图,一只蚂蚁从点A 沿圆柱表面爬到点B ,如果圆 B柱的高为8cm ,圆柱的底面半径为π6cm ,那么最短 的路线长是( )A. 6cmB. 8 cmC. 10 cmD. 10πcm A例2、如图,已知长方体的三条棱AB 、BC 、BD 分别为4,5,2,蚂蚁从A 点出发沿长方体的表面爬行到M 的最短路程的平方..是 。
练习1、一只蚂蚁从棱长为1的正方体纸箱的B ’点沿纸箱爬到D 点,那么它所行的最短路线的长是_____________。
2、如图,有一个直角三角形纸片,两直角边AC=6,BC=8,现将直角边AC 沿直线AD 折叠,使其落在斜边AB 上,且与AE 重合,则CD 的长为 。
MADC B第19题B ’C ’B ′A ′C ′D3、如图,在矩形ABCD 中,,6=AB 将矩形ABCD 折叠,使点B 与点D 重合,C 落在C '处,若21::=BE AE ,则折痕AD 的长为 。
4、如图,CD 是RtABC 的斜边AB 上的高,若AB =17,AC =15,求CD 的长( )A 、B 、C 、17D 、7(二)主要数学思想。
1、方程思想例3、如图,已知长方形ABCD 中AB=8 cm,BC=10 cm,在边CD 上取一点E ,将△ADE 折叠使点D 恰好落在BC 边上的点F ,求CE 的长.例4、已知:如图,在△ABC 中,AB =15,BC =14,AC =13.求△ABC 的面积.题2图练习1、如图,把矩形ABCD 纸片折叠,使点B 落在点D 处,点C 落在C ’处,折痕EF与BD 交于点O ,已知AB=16,AD=12,求折痕EF 的长。
2、已知:如图,△ABC 中,∠C =90º,AD 是角平分线,CD =15,BD =25.求AC 的长.2、分类讨论思想(易错题)例题5、 在Rt △ABC 中,已知两边长为3、4,则第三边的长为例题6、已知在△ABC 中,AB=17,AC=10,BC 边上的高等于8,则△ABC 的周长为 .C 'FEO DCBA六、家庭作业一. 选择题1. 已知一个Rt △的两边长分别为3和4,则第三边长的平方是( ) A. 25B. 14C. 7D. 7或252. 若线段a ,b ,c 组成Rt △,则它们的比为( ) A. 2∶3∶4B3∶4∶6C. 5∶12∶13D. 4∶6∶73. Rt △一直角边的长为11,另两边为自然数,则Rt △的周长为( ) A. 121B. 120C. 132D. 不能确定4. 如果Rt △的两直角边长分别为n 2-1,2n (n>1),那么它的斜边长是( ) A. 2nB. n+1C. n 2-1D. n 2+15. 已知Rt △ABC 中,∠C =90°,若a+b =14cm ,c =10cm ,则Rt △ABC 的面积是( ) A. 24cm 2B. 36cm 2C. 48cm 2D. 60cm 26. 三角形的三边长为(a+b )2=c 2+2ab ,则这个三角形是( )A. 等边三角形B. 钝角三角形C. 直角三角形D. 锐角三角形7. 已知,如图长方形ABCD 中,AB =3cm ,AD =9cm ,将此长方形折叠,使点B 与点D 重合,折痕为EF ,则△ABE 的面积为( )A. 6cm 2B. 8cm 2C. 10cm 2D. 12cm 28. 已知,如图,一轮船以16海里/时的速度从港口A 出发向东北方向航行,另一轮船以12海里/时的速度同时从港口A 出发向东南方向航行,离开港口2小时后,则两船相距( ) A. 25海里B. 30海里C. 35海里D. 40海里应用:主要用于计算直角三角形的判别方法::若三角形的三边满足222c b a =+ 则它是一个直角三角形.勾股定理二. 填空题1. 在Rt△ABC中,∠C=90°,①若a=5,b=12,则c=___________;②若a=15,c=25,则b=___________;③若c=61,b=60,则a=__________;④若a∶b=3∶4,c=10,则S Rt△ABC=________。
2. 直角三角形两直角边长分别为5和12,则它斜边上的高为__________。
3. 在平静的湖面上,有一支红莲,高出水面1米,一阵风吹来,红莲被吹到一边,花朵齐及水面,已知红莲移动的水平距离为2米,问这里水深是________m。
4. 在一棵树的10米高B处有两只猴子,一只猴子爬下树走到离树20米处的池塘的A处。
另一只爬到树顶D后直接跃到A处,距离以直线计算,如果两只猴子所经过的距离相等,则这棵树高_________________________米。
三. 解答题1. 如图,铁路上A,B两点相距25km,C,D为两村庄,DA⊥AB于A,CB⊥AB于B,已知DA=15km,CB=10km,现在要在铁路AB上建一个土特产品收购站E,使得C,D两村到E站的距离相等,则E站应建在离A站多少km处?2. 小明想知道学校旗杆的高,他发现旗杆顶端的绳子垂到地面还多1米,当他把绳子的下端拉开5米后,发现下端刚好接触地面,求旗杆的高度。
3. 如图,在边长为c的正方形中,有四个斜边为c的全等直角三角形,已知其直角边长为a,b。
利用这个图试说明勾股定理?。