02简谐振动的运动学精品PPT课件
合集下载
大学物理(简谐振动篇)ppt课件
通过图表展示实验结果,如位移-时间 图、速度-时间图等,以便更直观地分 析振动特性。
波动方程验证性实验设计思路分享
实验目的通过观察Βιβλιοθήκη 测量波动现象,验证波动方程的正确性。
实验原理
利用波动方程描述波的传播规律,通过实验数据验证理论预测。
波动方程验证性实验设计思路分享
实验设计思路
选择合适的波动源和测量仪器,如振动台、激光 干涉仪等。
01
实验步骤
02
搭建实验装置,包括弹簧、振子、测量仪器等。
调整实验参数,如弹簧劲度系数、振子质量等,以获得不同条
03
件下的振动数据。
弹簧振子实验设计思路分享
使用测量仪器记录振动的位移、速度 、加速度等数据。
对实验数据进行处理和分析,提取简 谐振动的基本特征。
单摆实验数据处理技巧指导
实验目的
通过观察和测量单摆的运动,研究简谐振动的基本规律。
波动传播速度
波动在介质中传播的速度称为波动传播速度。对于简谐振动 形成的机械波而言,波动传播速度与介质的性质有关,如弹 性模量、密度等。同时,波动传播速度还与振动的频率有关 ,频率越高则波动传播速度越快。
02
简谐振动的动力学特征
回复力与加速度关系
回复力定义
指向平衡位置的力,大小与位移成正比,方 向始终指向平衡位置。
1 研究非线性振动现象
通过设计和实施非线性振动实验,探索非线性振动的基 本规律和特性,如混沌现象、分岔行为等。
2 探究复杂系统中的振动传播
研究复杂网络中振动传播的动力学行为,揭示网络结构 对振动传播的影响机制。
3 开发新型振动传感器件
结合微纳加工技术和振动理论,设计并制作具有高灵敏 度、高分辨率的振动传感器件,应用于精密测量和工程 领域。
波动方程验证性实验设计思路分享
实验目的通过观察Βιβλιοθήκη 测量波动现象,验证波动方程的正确性。
实验原理
利用波动方程描述波的传播规律,通过实验数据验证理论预测。
波动方程验证性实验设计思路分享
实验设计思路
选择合适的波动源和测量仪器,如振动台、激光 干涉仪等。
01
实验步骤
02
搭建实验装置,包括弹簧、振子、测量仪器等。
调整实验参数,如弹簧劲度系数、振子质量等,以获得不同条
03
件下的振动数据。
弹簧振子实验设计思路分享
使用测量仪器记录振动的位移、速度 、加速度等数据。
对实验数据进行处理和分析,提取简 谐振动的基本特征。
单摆实验数据处理技巧指导
实验目的
通过观察和测量单摆的运动,研究简谐振动的基本规律。
波动传播速度
波动在介质中传播的速度称为波动传播速度。对于简谐振动 形成的机械波而言,波动传播速度与介质的性质有关,如弹 性模量、密度等。同时,波动传播速度还与振动的频率有关 ,频率越高则波动传播速度越快。
02
简谐振动的动力学特征
回复力与加速度关系
回复力定义
指向平衡位置的力,大小与位移成正比,方 向始终指向平衡位置。
1 研究非线性振动现象
通过设计和实施非线性振动实验,探索非线性振动的基 本规律和特性,如混沌现象、分岔行为等。
2 探究复杂系统中的振动传播
研究复杂网络中振动传播的动力学行为,揭示网络结构 对振动传播的影响机制。
3 开发新型振动传感器件
结合微纳加工技术和振动理论,设计并制作具有高灵敏 度、高分辨率的振动传感器件,应用于精密测量和工程 领域。
《简谐振动》课件
3
谐振共振现象
在一些特殊情况下,简谐振动会出现共振现象,引起丰富的物理现象和效应。
课堂练习与小结
实验:简谐振动的观测
通过实验,我们可以直观地观测 和验证简谐振动的各种特性和规 律。
练习题:简谐振动的计算
通过练习题,我们可以更加熟练 地掌握和运用简谐振动的计算方 法。
小结:简谐振动的本质及 其应用
简谐振动的本质是物体在恢复力 作用下的周期性振动,具有广泛 的应用价值和理论意义。
《简谐振动》PPT课件
什么是简谐振动?
定义
简谐振动是指物体在一个固 定轨迹上以恒定速度来回振 动的运动。
周期、频率与角频率的 关系
周期与频率是简谐振动的关 键参数,它们之间遵循特定 的数学关系。
物ห้องสมุดไป่ตู้实例
弹簧振子和单摆振动是常见 的简谐振动实例,它们展示 了简谐振动的特征。
简谐振动的数学描述
1 振动方程的一般形式
简谐振动可以用振动方程的一般形式来描述,这是简谐振动理论的核心。
2 欧拉公式及其应用
欧拉公式是描述简谐振动的数学工具,对于求解振动问题具有重要意义。
3 谐振曲线与相位差
谐振曲线和相位差是简谐振动中常见的图像表示形式,能帮助我们更好地理解振动的性 质。
简谐振动的能量
动能与势能的变化
简谐振动中的动能和势能随时 间的变化呈周期性规律,相互 转化。
振动量的计算方法
我们可以通过计算振动量来了 解简谐振动的强度和特性。
能量守恒定律
简谐振动遵循能量守恒定律, 能量在振动过程中始终保持不 变。
简谐振动的阻尼与受迫振动
1
阻尼振动的特征
阻尼振动是简谐振动受到阻碍或阻尼力的情况,具有一些特殊的行为与性质。
《简谐运动的图象》课件
利用弹簧的伸缩产生简谐运动, 可以用于测量时间、频率等物理
量。
振动机械
在机械制造中,可以利用简谐运动 的原理设计振动机械,如振动筛、 振动磨等。
声波产生
声音是由物体的振动产生的,而物 体的振动可以看作是简谐运动,因 此声波的产生也可以用简谐运动来 描述。
02
简谐运动的图象
简谐运动的振动图象
振动图象的概念
实例二
一个复杂的振动信号可以通过傅里叶级数分解为若干个简谐运动的合成,通过 调整各次谐波的幅度和相位,可以实现对复杂振动信号的控制和调制。
THANKS
感谢观看
简谐运动的波形图象
波形图象的概念
波形图象是描述简谐运动中所有质点在同一时刻的位移分布情况 ,即振动过程中某一时刻的波的形状。
波形图象的特点
波形图象是一条正弦曲线,其形状取决于波长和振幅。
波形图象的物理意义
通过波形图象可以直观地了解波的传播方向、波长、振幅和频率等 参数,进而分析波的叠加、干涉和衍射等现象。
《简谐运动的图象》ppt课件
contents
目录
• 简谐运动简介 • 简谐运动的图象 • 简谐运动的周期性 • 简谐运动的能量 • 简谐运动的合成与分解
01
简谐运动简介
简谐运动的定义
简谐运动:物体在跟偏离平衡位置的 位移大小成正比,并且总指向平衡位 置的回复力的作用下的振动,其轨迹 是正弦或余弦函数图象的运动。
振动图象与波形图象的比较
相同点
振动图象和波形图象都是正弦或余弦曲线,其形状取决于振动的周期、振幅和初 相位。
不同点
振动图象是描述质点在不同时刻的位移,而波形图象是描述所有质点在同一时刻 的位移分布情况。此外,振动图象可以分析质点的速度和加速度变化情况,而波 形图象则可以分析波的传播方向、波长、振幅和频率等参数。
量。
振动机械
在机械制造中,可以利用简谐运动 的原理设计振动机械,如振动筛、 振动磨等。
声波产生
声音是由物体的振动产生的,而物 体的振动可以看作是简谐运动,因 此声波的产生也可以用简谐运动来 描述。
02
简谐运动的图象
简谐运动的振动图象
振动图象的概念
实例二
一个复杂的振动信号可以通过傅里叶级数分解为若干个简谐运动的合成,通过 调整各次谐波的幅度和相位,可以实现对复杂振动信号的控制和调制。
THANKS
感谢观看
简谐运动的波形图象
波形图象的概念
波形图象是描述简谐运动中所有质点在同一时刻的位移分布情况 ,即振动过程中某一时刻的波的形状。
波形图象的特点
波形图象是一条正弦曲线,其形状取决于波长和振幅。
波形图象的物理意义
通过波形图象可以直观地了解波的传播方向、波长、振幅和频率等 参数,进而分析波的叠加、干涉和衍射等现象。
《简谐运动的图象》ppt课件
contents
目录
• 简谐运动简介 • 简谐运动的图象 • 简谐运动的周期性 • 简谐运动的能量 • 简谐运动的合成与分解
01
简谐运动简介
简谐运动的定义
简谐运动:物体在跟偏离平衡位置的 位移大小成正比,并且总指向平衡位 置的回复力的作用下的振动,其轨迹 是正弦或余弦函数图象的运动。
振动图象与波形图象的比较
相同点
振动图象和波形图象都是正弦或余弦曲线,其形状取决于振动的周期、振幅和初 相位。
不同点
振动图象是描述质点在不同时刻的位移,而波形图象是描述所有质点在同一时刻 的位移分布情况。此外,振动图象可以分析质点的速度和加速度变化情况,而波 形图象则可以分析波的传播方向、波长、振幅和频率等参数。
高中物理简谐振动精品PPT课件
简谐振动
(一)什么是振动?举例说明与生活有关的振动? (二)什么叫弹簧振子?什么是平衡位置? (三)什么是弹簧振子的位移?位移与时间图像? (四)什么是简谐运动?什么是简谐运动的图像?
(一)什么是振动?举例说明与生活有关的振动?
荡秋千
摆钟
弹簧振子
再比如:
水上浮标的浮动, 担物行走时扁担的颤动, 在微风中树梢的摇摆, 振动的音叉、锣、鼓、琴弦等
2、弹簧振子的位移——时间图象
(2)描图记录法
体验:
一同学匀速拉动一张白纸,另 一同学沿与纸运动方向相垂直方向 用笔往复画线段,观察得到的图象
2、弹簧振子的位移——时间图象
上图中画出的小球运动的x—t图象很像正弦 曲线,是不是这样呢?用什么方法来证明?
(四)什么是简谐运动?什么是简谐运动的图像?
2、弹簧振子理性化模型:不计阻力、弹簧的 质量与小球相比可以忽略。
3、简谐运动:质点的位移与时间的关系遵从 正弦函数的规律,即它的振动图象(x—t图 象)是一条正弦曲线 。
讨论
1、质点离开平衡位
x/m
置的最大位移? 3 2、1S、4S的时候质
点位置在哪里?
3、1S、4S的时候质 O
8
点朝哪个方向运动?
x/cm
10
5
0
1 2 3 4 5 6 t/s
-5
-10
课堂训练
2、某弹簧振子的振动图象如图所示,根据图象判断。
下列说法正确的是( D )
A、第1s内振子相对于平衡位置的位移与速度方向相反 B、第2s末振子相对于平衡位置的位移为-20cm C、第2s末和第3s末振子相对于平衡位置的位移均相同, 但瞬时速度方向相反 D、第1s内和第2s内振子相对于平衡位置的位移方向相 同,瞬时速度方向相反。
(一)什么是振动?举例说明与生活有关的振动? (二)什么叫弹簧振子?什么是平衡位置? (三)什么是弹簧振子的位移?位移与时间图像? (四)什么是简谐运动?什么是简谐运动的图像?
(一)什么是振动?举例说明与生活有关的振动?
荡秋千
摆钟
弹簧振子
再比如:
水上浮标的浮动, 担物行走时扁担的颤动, 在微风中树梢的摇摆, 振动的音叉、锣、鼓、琴弦等
2、弹簧振子的位移——时间图象
(2)描图记录法
体验:
一同学匀速拉动一张白纸,另 一同学沿与纸运动方向相垂直方向 用笔往复画线段,观察得到的图象
2、弹簧振子的位移——时间图象
上图中画出的小球运动的x—t图象很像正弦 曲线,是不是这样呢?用什么方法来证明?
(四)什么是简谐运动?什么是简谐运动的图像?
2、弹簧振子理性化模型:不计阻力、弹簧的 质量与小球相比可以忽略。
3、简谐运动:质点的位移与时间的关系遵从 正弦函数的规律,即它的振动图象(x—t图 象)是一条正弦曲线 。
讨论
1、质点离开平衡位
x/m
置的最大位移? 3 2、1S、4S的时候质
点位置在哪里?
3、1S、4S的时候质 O
8
点朝哪个方向运动?
x/cm
10
5
0
1 2 3 4 5 6 t/s
-5
-10
课堂训练
2、某弹簧振子的振动图象如图所示,根据图象判断。
下列说法正确的是( D )
A、第1s内振子相对于平衡位置的位移与速度方向相反 B、第2s末振子相对于平衡位置的位移为-20cm C、第2s末和第3s末振子相对于平衡位置的位移均相同, 但瞬时速度方向相反 D、第1s内和第2s内振子相对于平衡位置的位移方向相 同,瞬时速度方向相反。
简谐运动详解ppt课件
(3)在平衡位置上方时,弹簧处于压缩状态(也可能拉伸),
则位移向上为负,小球合力为正,大小为:
F k(x x0 ) mg kx 或:F mg k(x0 x) kx 所以回复力与位移的关系为 F kx
总结:小球在运动过程中所受弹力和重力的合力大小 与小球偏离平衡位置的位移成正比,方向总和位移的
例3、如图5所示,一水平弹簧振子在A、B 间做简谐运动,平衡位置为O,已知振子 的质量为M.
(1) 简 谐 运 动 的 能 量 取 决 于 _振__幅__ , 物 体 振 动 时 动 能 和 __弹___性__势_能相互转化,总机械能__守__恒_.
(2)振子在振动过程中,下列说法中正确的是( ABD) A.振子在平衡位置,动能最大,势能最小 B.振子在最大位移处,势能最大,动能最小 C.振子在向平衡位置运动时,由于振子振幅减小,故
A.弹簧振子运动过程中受重力、支持力和弹簧弹力的 作用
B.弹簧振子运动过程中受重力、支持力、弹簧弹力和 回复力作用
C.振子由A向O运动过程中,回复力逐渐增大 D.振子由O向B运动过程中,回复力的方向指向平衡
位置
2.弹簧振子在AOB之间做简谐运动,O为平衡 位置,测得A、B之间的距离为8 cm,完成30
E
Ek
Ep
1 2
mvm2
E pm
又因为最大势能取决于振幅,所以:
简谐运动的能量与振幅有关,振幅越大,振动能量越 大;振幅越小,振动能量越小。
若阻力不能忽略不计,则振动能量减小,振幅减小,这不是简 谐运动,而是第4节将学习的阻尼振动。
A A--O O 0—A’ A’ A’--O O
位移的方向
正
正
—
通过分析右图体会一次完整的全振动, 特别要注意的是:一个周期时物体肯定回 到了出发位置,但物体回到出发位置的时 间不一定是一个周期。
则位移向上为负,小球合力为正,大小为:
F k(x x0 ) mg kx 或:F mg k(x0 x) kx 所以回复力与位移的关系为 F kx
总结:小球在运动过程中所受弹力和重力的合力大小 与小球偏离平衡位置的位移成正比,方向总和位移的
例3、如图5所示,一水平弹簧振子在A、B 间做简谐运动,平衡位置为O,已知振子 的质量为M.
(1) 简 谐 运 动 的 能 量 取 决 于 _振__幅__ , 物 体 振 动 时 动 能 和 __弹___性__势_能相互转化,总机械能__守__恒_.
(2)振子在振动过程中,下列说法中正确的是( ABD) A.振子在平衡位置,动能最大,势能最小 B.振子在最大位移处,势能最大,动能最小 C.振子在向平衡位置运动时,由于振子振幅减小,故
A.弹簧振子运动过程中受重力、支持力和弹簧弹力的 作用
B.弹簧振子运动过程中受重力、支持力、弹簧弹力和 回复力作用
C.振子由A向O运动过程中,回复力逐渐增大 D.振子由O向B运动过程中,回复力的方向指向平衡
位置
2.弹簧振子在AOB之间做简谐运动,O为平衡 位置,测得A、B之间的距离为8 cm,完成30
E
Ek
Ep
1 2
mvm2
E pm
又因为最大势能取决于振幅,所以:
简谐运动的能量与振幅有关,振幅越大,振动能量越 大;振幅越小,振动能量越小。
若阻力不能忽略不计,则振动能量减小,振幅减小,这不是简 谐运动,而是第4节将学习的阻尼振动。
A A--O O 0—A’ A’ A’--O O
位移的方向
正
正
—
通过分析右图体会一次完整的全振动, 特别要注意的是:一个周期时物体肯定回 到了出发位置,但物体回到出发位置的时 间不一定是一个周期。
大学物理(简谐振动篇)PPT课件
cost 0≤1
x ≤A ——振动的强弱
3. T ——周期
振动状态重复一次所需要的时间,描述振动的快慢.
A c o s [( t T ) 0 ] A c o s (t 0 )
T 2π
T 2π
1 ——振动的频率
T 物体在单位时间内发生完全振动的次数
第11章 机械振动
10
2π ——角频率(圆频率).
大学物理下册
目录:
第四篇 振动和波动:(12)
第十一章 机械振动(5)
第十二章 机械波(7)
第五篇 光学:(18)
第十三章 几何光学 第十四章 波动光学(6\8\4)
第二篇 热学:(14)
第四章 气体动理论(6) 第五章 热力学(8)
第六篇 近代物理基础:(2)
第十五章 狭义相对论基础
第十六章 从经典物理到量子物理
精选PPT课件 4
第十一章 机械振动
什么是振动?
一个物理量(如位置、电量、电流、电压、温度……) 在某一确定值附近随时间作周期性的变化,则该物理量的 运动形式称为振动。
机械振动 :位移x 随时间t 的往复变化 电磁振动:电场、磁场等电磁量随t的往复变化
微观振动:如晶格点阵上原子的振动
振动分类
振动
受迫振动 自由振动
当t=0时, x0 1cm, 0 0 , 试写出振动方程。
解 取平衡位置为坐标原点
简谐振动的表达式: xAcos(t0)
由初始条件: x0 1cm, 0 0
x0
Acos0
,cos0
x0 A
1 2
0
3
0Asin00
sin0
0, 0
- 3
振动方程: x 2cos( k t )
简谐振动的运动学讲解PPT课件
点旋以转o矢为量原A
的端点在 x轴
上的投影点的
运动为简谐运 动.
第17页/共32页
x Acos(t )
t 0
o
A
x0 x
x0 Acos
点旋以转o矢为量原A
的端点在 x轴
上的投影点的
运动为简谐运 动.
第18页/共32页
t t
o
A
t
x
x Acos(t )
点旋以转o矢为量原A
的端点在 x轴
x1
A1
cos(t
1
)
x A cos(t )
2
2
2
(t 2 ) (t 1)
2
1
第25页/共32页
2 1
0同步 x
超前
π 反相 为其它 落后
x
x
o
to
o
t
t
第26页/共32页
例 一质量为0.01 kg的物体作简谐运动,其振幅 为0.08 m,周期为4 s,起始时刻物体在x=0.04 m 处,向ox轴负方向运动(如图).试求 (1)t=1.0 s时,物体所处的位置和所受的力;
2
0.04 π)
3
m
t 1.0 s 代入上式得
x 0.069 m
F kx m 2 x 1.70103 N
A π 3
0.08 0.04 o 0.04 0.08
x/m
第28页/共32页
(2)由起始位置运动到x = -0.04 m处所需要的最短时间.
法一 设由起始位置运动到x= -0.04 m处所需要的最短 时间为t
A cos(t π)
2
o
A
a A 2 cos(t )
简谐运动-简谐运动-PPT(精)共29页文档
6、最大的骄傲于最大的自卑都表示心灵的最软弱无力。——斯宾诺莎 7、自知之明是最难得的知识。——西班牙 8、勇气通往天堂,怯懦通往地狱。——塞内加 9、有时候读书是一种巧妙地避开思考的方法。——赫尔普斯 10、阅读一切好书如同和过去律是自由的第一条件。——黑格 尔 7、纪律是集体的面貌,集体的声音, 集体的 动作, 集体的 表情, 集体的 信念。 ——马 卡连柯
8、我们现在必须完全保持党的纪律, 否则一 切都会 陷入污 泥中。 ——马 克思 9、学校没有纪律便如磨坊没有水。— —夸美 纽斯
10、一个人应该:活泼而守纪律,天 真而不 幼稚, 勇敢而 鲁莽, 倔强而 有原则 ,热情 而不冲 动,乐 观而不 盲目。 ——马 克思
Thank you
简谐振动PPT幻灯片课件
a
2
A cos (t
2
)
以上结果表明:
(1)v,a与x的ω相同
(2) vmax A, amax 2 A
(3)a与x方向相反,且成正比
x、v、a相位依次差π/2。
振幅
10
二、初始条件确定振幅和初相位
初始条件: t 0, x0 , v0
x0 Acos
写为:
v0 Asin
3
利用旋转矢量法求解很直观,
根据初始条件就可画出如图所 示的振幅矢量的初始位置,从 而得到:
O
x0 v0
x
21
(2) v Asin(t ) 0.12 sin(t )
3
a 2 Acos(t ) 0.12 2 cos(t )
3
半径R——振幅A
角速度——角频率ω
初始矢径与x轴的交角—初相位 o
t时刻A矢量在x轴上的投影
x Acos(t 0 )
2.旋转矢量
表示出三个特征量
A
t
t 0 0
x
A
用旋转矢量法处理问题更直观、 动画
O
x
更方便,必须掌握。
17
18
19
[例题3]一质点沿x轴作简谐振动,振幅 A=0.12m,周期T=2s, 当 t=0 时,质点对平衡位置的位移 x0=0.06m,此时向x轴正 向运动。 求:(1)此振动的表达式
由牛顿第二定律,有: kx m d2 x
令:
k 2,
dt2
m
则有:
d2 dt
x
2
简谐运动PPT精品课件
第五层
• 第五层为油脂类。 每日应摄取25克, 过量食用有潜在的 危险,油炸食物要 少吃。
三、居民膳食指南
• (一)食物多样、谷类为主 人类的食物是多种多样的,各种食物所含的营养成分
不完全相同。除母乳外,任何一种天然食物都不能提供人 体所需的全部营养素。平衡膳食必须由多种食物组成,才能 满足人体各种营养需要,达到合理营养、促进健康的目的, 因而要提倡人们广泛食用多种食物。
能是某一个力,也可能是几个力的合力, 还可能是某一个力的分力.
(注意回复力是振动物体在振动方 向上的合外力,不一定等于合外力).
回复力分析实例
三、简谐运动
⒈简谐运动是最简单、最基本的机 械振动,是理想化的振动.
⒉定义:物体在跟位移大小成正比,并 且总是指向平衡位置的力作用下的振动
叫做简谐运动。F = - kx
居民膳食指南
• (二)多吃蔬菜、水果和薯类 蔬菜与水果含有丰富的维生素、矿物质和膳食纤维,深色的蔬菜
中维生素含量超过浅色蔬菜和一般水果。红黄色水果是维生素C和胡 萝卜素的丰富来源。薯类含有丰富膳食纤维、多种维生素和矿物质。 含丰富蔬菜、水果和薯类的膳食,对保持心血管健康、增强抗病能力、 减少儿童发生干眼病的危险及预防某些癌症等方面,起着十分重要的 作用。
x、F、a、Ep均增大;
(2)凡向平衡位置移动时,
v、Ek均增大,
x、F、a、Ep均减小.
(3)平衡位置两侧的对称点上,
x、F、a、v、Ek、Ep的大小均相同.
练习1
(1)简谐运动的物体,每经过同一位置
时,相同的物理量有( )
(2)简谐运动的物体,在返回平衡位置
过程中,变小的物理有( )
A、回复力
机械振动
• 第五层为油脂类。 每日应摄取25克, 过量食用有潜在的 危险,油炸食物要 少吃。
三、居民膳食指南
• (一)食物多样、谷类为主 人类的食物是多种多样的,各种食物所含的营养成分
不完全相同。除母乳外,任何一种天然食物都不能提供人 体所需的全部营养素。平衡膳食必须由多种食物组成,才能 满足人体各种营养需要,达到合理营养、促进健康的目的, 因而要提倡人们广泛食用多种食物。
能是某一个力,也可能是几个力的合力, 还可能是某一个力的分力.
(注意回复力是振动物体在振动方 向上的合外力,不一定等于合外力).
回复力分析实例
三、简谐运动
⒈简谐运动是最简单、最基本的机 械振动,是理想化的振动.
⒉定义:物体在跟位移大小成正比,并 且总是指向平衡位置的力作用下的振动
叫做简谐运动。F = - kx
居民膳食指南
• (二)多吃蔬菜、水果和薯类 蔬菜与水果含有丰富的维生素、矿物质和膳食纤维,深色的蔬菜
中维生素含量超过浅色蔬菜和一般水果。红黄色水果是维生素C和胡 萝卜素的丰富来源。薯类含有丰富膳食纤维、多种维生素和矿物质。 含丰富蔬菜、水果和薯类的膳食,对保持心血管健康、增强抗病能力、 减少儿童发生干眼病的危险及预防某些癌症等方面,起着十分重要的 作用。
x、F、a、Ep均增大;
(2)凡向平衡位置移动时,
v、Ek均增大,
x、F、a、Ep均减小.
(3)平衡位置两侧的对称点上,
x、F、a、v、Ek、Ep的大小均相同.
练习1
(1)简谐运动的物体,每经过同一位置
时,相同的物理量有( )
(2)简谐运动的物体,在返回平衡位置
过程中,变小的物理有( )
A、回复力
机械振动
简谐运动ppt课件
解:方法1
31.4
15.7
设振动方程为
0
x Acos(t 0 ) 15.7
31.4
1
t(s)
v0 A sin0 15.7cms 1 a0 2 Acos0 0
A vm 31.4cms 1
sin 0
v0
A
15.7 31.4
1 2
0
6
或
5 6
a0
0,则cos0
0
0
6
t 1 v 15.7cms 1 sin( 1 ) v v 1
两振动步调相反,称反相
0
2 超前于1 或 1滞后于 2
相位差反映了两个振动不同程度的参差错落
谐振动的位移、速度、加速度之间的位相关系
x Acos( t 0 )
v
A
sin(
t
0
)
vm
cos(
t
0
2
)
a A 2 cos( t 0 ) am cos( t 0 )
x.v.a. x
衡位置的运动。
• 平衡位置:质点在某位置所受的力(或沿 运动方向受的力)等于0,则此位置称为平 衡位置。
•线性回复力:若作用于质点的力总与质点相对于平 衡位置的位移(线位移或角位移)成正比,且指向 平衡位置,则称此作用力为线性回复力。
若以平衡位置为原点,以X表示质点相对于平衡
位置的位移,则
f kx
3
a 0.12 2 cos( 0.5 ) 0.103
3
(3) 当x = -0.06m时,该时刻设为t1,得 cos(t ) 1
13
2
t 2 , 4
133 3
因该时刻速度为负,应舍去
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
19
t t
o
A
t
x
x Acos(t )
点旋以转o矢为量原A
的端点在 x 轴
上的投影点的
运动为简谐运
动.
第4章 机械振动
4–2 简谐振动的运动学
20
y
vm t π
2
t an
A
0
a
v
x
x Acos(t )
vm A v A sin(t )
an A 2
a A 2 cos(t )
雌性蚊子 雄性蚊子 苍蝇 黄蜂
355~415 455~600 330 220
第4章 机械振动
4–2 简谐振动的运动学
例 如图所示系统(细线的质 量和伸长可忽略不计),细线 静止地处于铅直位置,重物位 于O 点时为平衡位置.
若把重物从平衡位置O 略 微移开后放手, 重物就在平衡 位置附近往复的运动.这一振 动系统叫做单摆. 求单摆小角 度振动时的周期.
12
x 简谐运动中, x和 v
间不存在一一对应的关系. A
x A cos(t 0 ) o
v A sin(t 0 ) A
v v
T 2
xt 图
v T t
3、位相和初位相 t 0
1) t 0 (x, v) 存在一一对应的关系;
2)相位在 0 ~ 2π 内变化,质点无相同的运动状态;
相差 2nπ (n为整数 )质点运动状态全同.(周期性)
4–2 简谐振动的运动学
1
一 简谐振动的运动学方程
d2x 2x 0
dt 2
x Acos(t 0 )
cos(t
0
)
sin(t
0
2
)
令
'
0
2
x Asin(t ' )
简谐振动的运动规律也可用正弦函数表示.
第4章 机械振动
4–2 简谐振动的运动学
2
由 x A cos(t 0 )
简谐运动方程
A 2 cos(t 0 π)
A 2
o
A 2
t
T
第4章 机械振动
4–2 简谐振动的运动学
4
二 描述简谐振动的三个重要参量
1、振幅A A xmax
x A cos(t 0 ) v A sin(t 0 )
初始条件 t 0 x x0 v v0
x0 A cos0 v0 Asin 0
3)初相位 0 (t 0) 描述质点初始时刻的运动状态.
( 0 取 [ π π] 或 [0 2 π] )
第4章 机械振动
4–2 简谐振动的运动学
13
例题分析
.一个质量为m 的物体系于一倔强系数为 k 的轻弹簧下,挂在固定的支架上,由于物体的 重量使弹簧伸长了l =9.810-2m. 如图所示,如 果给物体一个向下的瞬时冲击力,使它具有向 下的速度v =1ms-1,它就上下振动起来,试写 出振动方程.
得
v
dx dt
A sin(t
0 )
a
d2x dt 2
A 2
cos(t
0 )
第4章 机械振动
4–2 简谐振动的运动学
3
x Acos(t 0 )
v A sin(t 0 )
Aቤተ መጻሕፍቲ ባይዱ
cos(t
0
π) 2
x x t图
A
o
t
T
A
A v v t 图
o
T
t
a A 2 cos(t 0 )
A
a a t图
k
kl
mg
g
9.8 10s1
m ml ml l 0.098
第4章 机械振动
4–2 简谐振动的运动学
15
以物体处于平衡位置且向下运动时为计
时起点vy,00 则 AyA0c=o0ss,inv00=11ms-1,结于合是2此,有3式2
3
2
A
y02
v02
2
1 102
0.1m
于是可该物体的振动方程为
弹簧振子周期
单摆
复摆
周期和频率仅与振动系统本身的物理性质有关
第4章 机械振动
4–2 简谐振动的运动学
8
例如,心脏的跳动80次/分 周期为
频率为
动物的心跳(次/分)
大象 猪 松鼠
25~30 马 60~80 兔 380 鲸
40~50 100
8
第4章 机械振动
4–2 简谐振动的运动学
9
昆虫翅膀振动的频率(Hz)
y
0.1cos
10t
3
2
m
第4章 机械振动
4–2 简谐振动的运动学
三 简谐振动的旋转矢量表示法
16
自Ox轴的原点 O作一矢量 A,使 它 振的 幅模A ,等并于使振矢动量的A
在 Oxy平面内绕点 O作逆时针方向的 匀角速转动,其角
速度 与振动频率
相等,这个矢量就 叫做旋转矢量.
第4章 机械振动
4–2 简谐振动的运动学
x Acos(t )
17
点旋以转o矢为量原A
的端点在 x 轴
上的投影点的 运动为简谐运 动.
第4章 机械振动
4–2 简谐振动的运动学
18
t 0
o
A
x0 x
x0 Acos
点旋以转o矢为量原A
的端点在 x 轴
上的投影点的
运动为简谐运
动.
第4章 机械振动
4–2 简谐振动的运动学
第4章 机械振动
10
A
l
m
o
5
4–2 简谐振动的运动学
解 5 时 ,sin
M mgl sin mgl
mgl
J
d 2
dt 2
d 2
dt 2
g
l
令2 g
l
d 2
dt 2
2
m cos(t )
T 2π l g
第4章 机械振动
11
转动
A
正向
l
FT m
o
P
J ml 2
4–2 简谐振动的运动学
第4章 机械振动
4旋–2转简矢谐量振动Ar的与运谐动振学 动的对应关系
21
旋转矢量
r A
简谐振动 符号或表达式
模 角速度 r t=0时,A 与ox夹角 旋转周期r tr时刻,A与ox夹角
A
o
A
x
2
v
x
o
Tt
T 2
第4章 机械振动
4–2 简谐振动的运动学
6
2、周期、频率、圆频率
x xt图
x Acos(t 0 )
A
o
Acos[(t T ) 0 ] A
Tt
T
2
周期 T 2π
圆频率 2π 2π
T
第4章 机械振动
频率 1
T 2π
4–2 简谐振动的运动学
7
注意
A
x02
v02
2
tan 0
v0
x0
对给定振动系统,周期由系统本身性质决定, 振幅和初相由初始条件决定.
第4章 机械振动
4–2 简谐振动的运动学
5
讨论 已知 t 0, x 0, v 0 求 0
0 Acos0
0
π 2
v0 A sin0 0
sin 0 0 取
0
π 2
x Acos(t π )
解 取挂上物体,物体处于平衡时的位置为 坐标原点o,向下为y 轴的正向,如图所示当物 体偏离平衡位置时它所受的合力为-ky ,因此 动力学方程为
第4章 机械振动
4–2 简谐振动的运动学
14
m
d2y dt 2
ky
令 2 k
m
则上式变为
d2y dt 2
2
y
0
k o
m
y
y
物体在作简谐振动,只要求出三要素, 即可写出振动方程.