2017年人教版七年级下册数学总复习讲义Word版

合集下载

人教版七年级下册数学总复习教学内容

人教版七年级下册数学总复习教学内容

<<<<<<精品资料》》》》》七年级下学期数学知识梳理第五章相交线与平行线一、知识结构图相交线相交线垂线同位角、内错角、同旁内角平行线平行线及其判定平行线的判定平行线的性质平行线的性质命题、定理平移二、知识定义邻补角:两条直线相交所构成的四个角中,有公共顶点且有一条公共边的两个角是邻补角。

对顶角:一个角的两边分别是另一个叫的两边的反向延长线,像这样的两个角互为对顶角。

垂线:两条直线相交成直角时,叫做互相垂直,其中一条叫做另一条的垂线。

平行线:在同一平面内,不相交的两条直线叫做平行线。

同位角、内错角、同旁内角:同位角:∠1与∠5像这样具有相同位置关系的一对角叫做同位角。

内错角:∠2与∠6像这样的一对角叫做内错角。

同旁内角:∠2与∠5像这样的一对角叫做同旁内角。

命题:判断一件事情的语句叫命题。

平移:在平面内,将一个图形沿某个方向移动一定的距离,图形的这种移动叫做平移平移变换,简称平移。

对应点:平移后得到的新图形中每一点,都是由原图形中的某一点移动后得到的,这样的两个点叫做对应点。

三、定理与性质对顶角的性质:对顶角相等。

垂线的性质:性质1:过一点有且只有一条直线与已知直线垂直。

性质2:连接直线外一点与直线上各点的所有线段中,垂线段最短。

平行公理:经过直线外一点有且只有一条直线与已知直线平行。

平行公理的推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行。

平行线的性质:性质1:两直线平行,同位角相等。

性质2:两直线平行,内错角相等。

性质3:两直线平行,同旁内角互补。

平行线的判定:<<<<<<精品资料》》》》》<<<<<<精品资料》》》》》ED CBA判定1:同位角相等,两直线平行。

判定2:内错角相等,两直线平行。

判定3:同旁内角相等,两直线平行。

四、经典例题例1 如图,直线AB,CD,EF 相交于点O ,∠AOE=54°,∠EOD=90°,求∠EOB ,∠COB 的度数。

人教版七年级下册数学《用坐标表示平移》说课教学复习课件

人教版七年级下册数学《用坐标表示平移》说课教学复习课件

B(3,1) 1
A(3,4) A(3,4)
向下平移5个单位
向下平移b个单位 b >0
C(3,-1) (3,4-b)
A(3,4)
B
2345
C
总结规律 2
图形平移与点的坐标变化间的关系
2、上、下平移:(b>0)
原图形上的点(x,y) , 向上平移b个单位 (x,y+b) 原图形上的点(x,y) , 向下平移b个单位 (x,y-b)
y
6
A1 (-1,4)5
C1 (-4,3)
4
3
2
B1 (-3,1) 1
- - -3 -2 -1 0 54
1
2
3
C (2,3)
A (5,4)
`
B (3,1)
1 2 3 4 5 6x
C2 (2,-2) A2 (5,-1)
B 2(3,-4)
总结规律
(1)左、右平移: 原图形上的点(x,y) , 原图形上的点(x,y) ,
课堂小结
(1)左、右平移: 原图形上的点(x,y) 原图形上的点(x,y) (2)上、下平移: 原图形上的点(x,y) 原图形上的点(x,y)
向右平移a个单位(a>0) (x+a,y) 向左平移a个单位(a>0) (x-a,y)
向上平移b个单位 b>0 向下平移b个单位 b>0
(x,y+b) (x,y-b)
【例3】(2015•钦州)在平面直角坐标系中,将点A(x,y)向 左平移5个单位长度,再向上平移3个单位长度后与点B(-3,2) 重合,则点A的坐标是( D ). A.(2,5) B.(-8,5) C.(-8,-1) D.(2,-1)

人教版七年级下册数学《平面直角坐标系》说课研讨教学复习课件

人教版七年级下册数学《平面直角坐标系》说课研讨教学复习课件
1-2 D B -3 4
建立了平面直角坐标系以后, 坐标平面就被两条坐标轴分成I, Ⅱ,Ⅲ,Ⅳ四个部分,每个部分 称为象限(quadrant),分别叫做 第一象限、第二象限、第三象限 和第四象限.
坐标轴上的点不属于任何象限.
例 在平面直角坐标系中描出下列各点: A(4,5), B(-2,3), C(-4,-1), D(2.5,-2), E(0,-4).
A
B
C
-6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7
思考:类似于利用数轴确定直线上点的位置,能不能找到一种办 法来确定平面内的点的位置呢(例如下图中A,B,C,D各点)?
A C
D B
如图,我们可以在平面内画两条互相垂直、原点重合的数轴,
组成平面直角坐标系(rectangular coordinate system).
课件
下图是一条数轴,数轴上的点与实数是一一对应的. 数轴上每个点都对应一个实数,这个实数叫做这个点 在数轴上的坐标.
A
B
C
-6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7
例如,点 A 在数轴上的坐标为 -4,点 B 在数轴上的坐标 为 2.反过来,知道数轴上一个点的坐标,这个点在数轴上的 位置也就确定了.例如,数轴上坐标为 5 的点是点 C.
D
C
(A) O
B x
请另建立一个平面直角坐标系,这时正方形的顶点A,B, C,D的坐标又分别是什么?与同学们交流一下.
练习 1.写出图中点A,B,C,D,E,F的坐标.
A点的坐标为(-2,-2), B点的坐标为(-5,4), C点的坐标为(5,-4), D点的坐标为(0,-3), E点的坐标为(2,5), F点的坐标为(-3,0)

2017年人教版七年级下册数学总复习讲义

2017年人教版七年级下册数学总复习讲义

第五章相交线与平行线1、两条直线相交所成的四个角中,相邻的两个角叫做邻补角,特点就是两个角共用一条边,另一条边互为反向延长线,性质就是邻补角互补;相对的两个角叫做对顶角,特点就是它们的两条边互为反向延长线。

性质就是对顶角相等。

2、三线八角:对顶角(相等),邻补角(互补),同位角,内错角,同旁内角。

3、两条直线被第三条直线所截:同位角F(在两条直线的同一旁,第三条直线的同一侧)内错角Z(在两条直线内部,位于第三条直线两侧)同旁内角U(在两条直线内部,位于第三条直线同侧)4、两条直线相交所成的四个角中,如果有一个角为90度,则称这两条直线互相垂直。

其中一条直线叫做另外一条直线的垂线,她们的交点称为垂足。

5、垂直三要素:垂直关系,垂直记号,垂足6、垂直公理:过一点有且只有一条直线与已知直线垂直。

7、垂线段最短。

8、点到直线的距离:直线外一点到这条直线的垂线段的长度。

9、平行公理:经过直线外一点,有且只有一条直线与这条直线平行。

推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行。

如果b//a,c//a,那么b//c10、平行线的判定:①同位角相等,两直线平行。

②内错角相等,两直线平行。

③同旁内角互补,两直线平行。

11、推论:在同一平面内,如果两条直线都垂直于同一条直线,那么这两条直线平行。

12、平行线的性质:①两直线平行,同位角相等;②两直线平行,内错角相等;③两直线平行,同旁内角互补。

13、平面上不相重合的两条直线之间的位置关系为_______或________14、平移:①平移前后的两个图形形状大小不变,位置改变。

②对应点的线段平行且相等。

平移:在平面内,将一个图形沿某个方向移动一定的距离,图形的这种移动叫做平移平移变换,简称平移。

对应点:平移后得到的新图形中每一点,都就是由原图形中的某一点移动后得到的,这样的两个点叫做对应点。

15、命题:判断一件事情的语句叫命题。

命题分为题设与结论两部分;题设就是如果后面的,结论就是那么后面的。

人教版七年级下册数学期末考复习专题05一元一次不等式及不等式组(知识点串讲)(解析版)

人教版七年级下册数学期末考复习专题05一元一次不等式及不等式组(知识点串讲)(解析版)

专题05 一元一次不等式及不等式组知识框架重难突破一、一元一次不等式1. 一元一次不等式定义:含有一个未知数,并且未知数的最高次数是1的不等式叫做一元一次不等式。

2.一元一次不等式的解及解集(1)使一元一次不等式成立的每一个未知数的值叫做一元一次不等式的解。

(2) 一元一次不等式的所有解组成的集合是一元一次不等式的解集。

(3)解集在数轴上表示3、一元一次不等式的解法:解一元一次不等式,要根据不等式的性质,将不等式逐步化为x a <(x a >或)x a x a ≥≤或或的形式,其一般步骤为:(1)去分母;(2)去括号;(3)移项;(4)合并同类项;(5)系数化为1。

备注:解一元一次不等式和解一元一次方程类似.不同的是:一元一次不等式两边同乘以(或除以)同一个负数时,不等号的方向必须改变,这是解不等式时最容易出错的地方.例如:131321≤---x x 解不等式: 解:去分母,得 6)13(2)13≤---x x ((不要漏乘!每一项都得乘) 去括号,得 62633≤+--x x (注意符号,不要漏乘!)移 项,得 23663-+≤-x x (移项,每一项要变号;但符号不改变)a a a a < > ≤ ≥合并同类项,得 73≤-x (计算要正确)系数化为1, 得 37-≥x (同除负,不等号方向要改变,分子分母别颠倒了) 例1.(2019·湖南广益实验中学初一期中)下列不等式中,是一元一次不等式的是( )A .1x >3B .x 2<1C .x +2y >0D .x <2x +1【答案】D【解析】解:A 、1x 是分式,因此1x>3不是一元一次不等式,故此选项不合题意; B 、x 2是2次,因此x 2<1不是一元一次不等式,故此选项不合题意;C 、x +2y >0含有2个未知数,因此不是一元一次不等式,故此选项不合题意;D 、x <2x +1是一元一次不等式,故此选项符合题意;故选:D .练习1.(2018·六安市裕安中学初一期中)下列不等式中,一元一次不等式有( )①2x 32x +> ②130x -> ③ x 32y -> ④x 15ππ-≥ ⑤ 3y 3>- A .1 个B .2 个C .3 个D .4 个 【答案】B【解析】详解:①不是,因为最高次数是2;②不是,因为是分式;③不是,因为有两个未知数;④是;⑤是.综上,只有2个是一元一次不等式.故选B .例2.(2019·洋县教育局初二期中)若437m x -+≤是关于x 的一元一次不等式,则m =__________.【答案】3【解析】解:∵437m x -+≤是关于x 的一元一次不等式,∴4-m =1,∴m=3,故答案为:3.练习1.(2019·山东省初二期中)已知12(m+4)x|m|﹣3+6>0是关于x的一元一次不等式,则m的值为()A.4 B.±4 C.3 D.±3【答案】A【解析】根据题意|m|﹣3=1且m+4≠0解得:|m|=4,m≠﹣4所以m=4.故选:A.例3.(2018·浙江省初二期中)一元一次不等式2(x﹣1)≥3x﹣3的解在数轴上表示为()A.B.C.D.【答案】B【解析】解: 2(x﹣1)≥3x﹣3去括号, 得2x-2≥3x-3,移项, 合并同类项, 得-x≥-1,得:x≤1故在数轴上表示为:故选B.练习1.(2020·万杰朝阳学校初一期中)如图,张小雨把不等式3x>2x-3的解集表示在数轴上,则阴影部分盖住的数字是____.【答案】-3【解析】由3x>2x-3,解得:x>-3,∴阴影部分盖住的数字是:-3.故答案是:-3.例4.(2020·监利县新沟新建中学初一期中)解不等式:14232-+->-x x . 【答案】x <−2【解析】解:去分母:2(x −1)−3(x +4)>−12,去括号:2x −2−3x −12>−12,合并同类项:−x >2,系数化1:x <−2. 练习1.(2018·福建省永春第二中学初一期中)解不等式3(21)x +<13(43)x --,并把解集在数轴上表示出来.【答案】x <2,数轴见解析【解析】去括号,得 6x +3<13-4+3x ,移项,得 6x -3x <13-4-3,即3x <6,两边同除以3,得x <2,在数轴上表示不等式的解集如下:例5.(2019·重庆市凤鸣山中学初一期中)关于x 的不等式22x a -+≥的解集如图所示,则a 的值是( )A .0B .2C .2-D .4- 【答案】A【解析】解:解不等式22x a -+≥,得22a x- ,∵由数轴得到解集为x ≤-1, ∴212a -=- ,解得:a =0. 故选:A .练习1.(2019·陕西省初二期中)不等式-4x -k ≤0的负整数解是-1,-2,那么k 的取值范围是( ) A .812k ≤<B .812k <≤C .23k ≤<D .23k <≤ 【答案】A【解析】解:∵-4x -k ≤0,∴x ≥-4k , ∵不等式的负整数解是-1,-2,∴-3<-4k ≤-2, 解得:8≤k <12,故选:A .二、一元一次不等式组1、一元一次不等式组定义: 含有同一个未知数的几个一元一次不等式所组成的不等式组,叫做一元一次不等式组。

人教版七年级下册数学《消元―解二元一次方程组》二元一次方程组说课教学课件复习(第2课时加减法)

人教版七年级下册数学《消元―解二元一次方程组》二元一次方程组说课教学课件复习(第2课时加减法)

加减消元法的实际应用
问题2 如何设未知数?列出怎样的方程组? 2(2x+5y)=3.6,
依题意得: 5(3x+2y)=8.
问题3 如何解这个方程组?
加减消元法的实际应用 2(2x+5y)=3.6, 5(3x+2y)=8.
解:化简得: 4x+10y=3.6,① 15x+10y=8.②
② - ①,消y得11x=4.4, 解得x=0.4,
消元—解二元一次方程组 加减法
课件
教学目标
会用加减消元法解简单的二元一次方程组.
理解解二元一次方程组的思路是“消元”, 经历由未知向 已知转化的过程,体会化归思想. 会用二元一次方程组表示简单实际问题中的数量关系,并 用加减消元法解决它.
能选择适当方法解二元一次方程组.
教学重点 用加减消元法解简单的二元一次方程组. 用二元一次方程组解简单的实际问题.
(4)2(3y-3)=6x+4.
复习巩固 2.用代入法解下列方程组:
y=x+3, (1)
7x+5y=9;
3s-t=5, (2)
5s+2t=15;
3x+4y=16, (3)
5x-6y=33;
4(x-y-1)=3(1-y)-2, (4)
复习巩固 3.用加减法解下列方程组:
3u+2t=7, (1)
6u-2t=11;
教学难点
用二元一次方程组解简单的实际问题.
思考 根据等式性质填空: (1)若a=b,那么a±c=___b_±_c___. 思考:若a=b,c=d,那么a+c=b+d吗? (2)若a=b,那么ac=__b_c__.
思考 x+y=10,①

人教版七年级下册数学《有序数对》平面直角坐标系说课研讨教学复习课件

人教版七年级下册数学《有序数对》平面直角坐标系说课研讨教学复习课件

3.北京某地位于东经116.4°,北纬39.9°,如果约定“经度在前,
纬度在后”,那么我们可以用有序数对 (116.4°,39.9°) 表
示北京该地的位置;仿照此表示方法,珠海某地(位于东经
113.6°,北纬22.3°)的位置可以表示 (113.6°,22.3°)

.
精典范例
4.【例1】如果电影票上的“4排3座”记作(4,3),那么6排8座可 记作 (6,8) ,(8,6)表示 8 排 6 座.
探究新知 知识点 1 有序数对的概念
问题1 同学们都有去影剧院看电影的经历,你怎么找到 自己的座位?
根据入场卷上的“排数”和“号数”便可以准 确地“对号入座”. 追问 在只有一层的电影院内,确定一个座位一般需要 几个数据?
答:两个数据:排数和号数.
探究新知
问题2 你若发现一本书某页有一处印刷错误,怎样告诉其他同 学这一处的位置?
位置为 (2,5) ,点C 的位置为 (4,4) ,点D和点E的位置
分别为(6,3)
, (2,3)
.
7.【例4】(人教7下P65改编)如图,点A表示3街与5大道的十字 路口,点B表示5街与3大道的十字路口,如果用 (3,5)→(4,5)→(5,5)→(5,4)→(5,3)表示由A到B的一条路径,那 么你能用同样的方法写出由A到B的其他几条路径吗?(写出 三条)
人教版 数学 七年级 下册
7.1 平面直角坐标系
7.1.1 有序数对
课件
导入新知
小华母女俩周末去电影院,买了两张票,座位号分别是 7排5号和5排7号.怎样才能既快又准地找到座位?
学习目标
3. 通过有序数对表示物体的位置,培养学生的符 号感和抽象思维能力,并增强数学应用意识. 2. 结合实例进一步体会有序数对的意义,并会 用有序数对表示物体的位置. 1. 了解有序数对的概念.

人教版七年级下册数学《实际问题与二元一次方程组》二元一次方程组教学说课复习课件

人教版七年级下册数学《实际问题与二元一次方程组》二元一次方程组教学说课复习课件

合作探究 类型一 行程问题
1. A 地至 B 地的航线长 9 750 km,一架飞机从 A 地顺风飞往 B 地需 12.5 h,它逆风飞行同样的航线需 13 h,求飞机无风时的平均速度与风速.
等量关系: 速度 × 时间 = 路程.
顺风速度 = 无风速度 + 风速. 逆风速度 = 无风速度 - 风速.
工作量 = 工作效率 × 工作时间, 各部分劳动量之和 = 总量.
典例精析
解:设甲每天做 x 个零件,乙每天做 y 个零件. 由题意,列方程组 4x+( 8 x y)=840, 4 y ( 9 x y)=840.
解这个方程组,得 x 50, y 30.
答:甲每天做 50 个零件,乙每天做 30 个零件.
解:设有 x m3 的木材生产桌面,y m3 的木材生产桌腿. 根据题意,得 x y 10, 50x : 300 y 1: 4.
解这个方程,得 x=6, y=4.
答:有 6 m3 的木材生产桌面,4 m3 的木材生产桌腿.
课堂总结
二元一次方 程组应用
和差倍分问题 盈亏问题 配套问题
实际问题与二元一次方程组
200 m
解这个方程组,得 x 120,
D
F
C
y 80.
答:过长方形土地的长边上离
100 m
100x
100y
一端120 m处,作这条边的垂线,
把这块土地分成两块长方形土地.
A
xm
较大一块土地种甲种作物,较小一块土地种乙种作物.
E ym B
典例精析
② 种植方案为:甲、乙两种作物的种植区域分别为长方形AFEB
E
把这块土地分成两块长方形土地.
A
200y

人教版七年级下册数学《平行线及其判定》期末复习讲义(含知识点和习题)

人教版七年级下册数学《平行线及其判定》期末复习讲义(含知识点和习题)

第五章《相交线与平行线》期末复习讲义5.2平行线及其判定【知识回顾】一.平行线1.定义:在同一平面内,__________的两条直线叫做平行线2.要点剖析(1):平行线的特征:在同一平面内;是直线;没有公共点。

(2)在同一平面内,不重合的两条直线的位置关系只有相交和平行两种,重合的直线视为一条直线。

(3)平行线是指的两条直线的位置关系,两条射线或线段平行,是指的它们所在的直线平行。

二.平行线的画法1.“一落”把三角尺的一边落在已知直线上2.“二靠”用直尺紧靠三角尺的另一边3.“三推”把三角尺沿着直尺推到三角尺的一边刚好过已知点的位置4.“四画”沿三角尺过已知点的边画直线三.平行公理及其推论1.平行公理:经过直线外一点,_________一条直线与这条直线平行2.平行公理的推论:如果两条直线都与_________直线平行,那么这两条直线也互相平行四.平行线的判定1.同位角相等,两直线_________2.内错角相等,两直线_________3.同旁内角互补,两直线___________4.在同一平面内,垂直于_______________的两条直线互相平行题型拓展题型1 平行公理及其推论的应用例1:1.如图,取一张长方形的硬纸板ABCD,将硬纸板ABCD对折使CD与AB重合,EF 为折痕.把长方形ABEF平放在桌面上,另一个面CDEF无论怎么改变位置,总有CD∥AB存在,你知道为什么吗?例2:2.如图,取一张长方形的硬纸片ABCD对折,MN是折痕,把ABNM平摊在桌面上,另一个面CDMN不论怎样改变位置,总有MN∥∥.因此∥.题型2 综合运用各种判定方法判定两条直线平行例1:3.如图,∠1=47°,∠2=133°,∠D=47°,那么BC与DE平行吗?AB与CD呢?为什么?例2:4.阅读下面的推理过程,在括号内填上推理的依据,如图:因为∠1+∠2=180°,∠2+∠4=180°(已知)所以∠1=∠4,()所以a∥c.()又因为∠2+∠3=180°(已知)∠3=∠6()所以∠2+∠6=180°,()所以a∥b.()所以b∥c.()题型3 平行线判定的开放探究题例1:5.如图,∠A=60°,∠1=60°,∠2=120°,猜想图中哪些直线平行,并证明.例2:6.如图,直线a,b被c所截,∠1=50°,若要a∥b,则需增加条件(填图中某角的度数);依据是.题型4 平行线的判定在实际生活中的应用例1:7.如图所示,给你两块同样的三角板和一根直尺(直尺比桌子长),请你设计一个方案,检验桌子的相对边缘线是否平行?例2:8.在铺设铁轨时,两条直轨必须是互相平行的,如图,已经知道∠2是直角,那么再度量图中已标出的哪个角,就可以判断两条直线是否平行?为什么?课后提高训练9.下列说法错误的是()A.平行于同一条直线的两直线平行B.两直线平行,同旁内角互补C.对顶角相等D.同位角相等10.如图,下面哪个条件不能判断AC∥EF的是()A.∠1=∠2B.∠4=∠C C.∠1+∠3=180°D.∠3+∠C=180°11.如图,平面内有五条直线l1、l2、l3、l4、l5,根据所标角度,下列说法正确的是()A.l1∥l2B.l2∥l3C.l1∥l3D.l4∥l512.如图,在下列条件中,能判断AB∥CD的是()A.∠1=∠4B.∠BAD=∠BCDC.∠BAD+∠ADC=180°D.∠2=∠313.如图所示,下列推理正确的是()A.∵∠1=∠4(已知)∴AB∥CD(内错角相等,两直线平行)B.∵∠2=∠3(已知)∴AE∥DF(内错角相等,两直线平行)C.∵∠1=∠3(已知)∴AB∥DF(内错角相等,两直线平行)D.∵∠2=∠2(已知)∴AE∥DC(内错角相等,两直线平行)14.下列说法中正确的个数为()①过一点有且只有一条直线与已知直线垂直②两条直线被第三条直线所截,同位角相等③经过两点有一条直线,并且只有一条直线④在同一平面内,不重合的两条直线不是平行就是相交A.1个B.2个C.3个D.4个15.如图,下列能判定AB∥CD的条件有(填序号)①∠B+∠BCD=180°;②∠2=∠3;③∠1=∠4;④∠B=∠5;⑤∠D=∠5.16.如图,要使BE∥DF,需补充一个条件,你认为这个条件应该是(填一个条件即可).17.一副三角板按如图所示叠放在一起,其中点C、D重合,若固三角板定ABC,改变三角板AED的位置(其中A点位置始终不变),当∠CAD=时,ED∥AC.18.如图,直线a、b被直线c所截,现给出的下列四个条件:①∠4=∠7;②∠2=∠5;③∠2+∠3=180°;④∠2=∠7.其中能判定a∥b的条件的序号是.19.已知:∠A=∠C=120°,∠AEF=∠CEF=60°,求证:AB∥CD.20.如图,若∠1=42°,∠2=53°,∠3=85°,则直线l1与l2平行吗?判断并说明理由.21.如图,已知CD⊥AD于点D,DA⊥AB于点A,∠1=∠2,试说明DF∥AE.解:因为CD⊥AD(已知),所以∠CDA=90°().同理∠DAB=90°.所以∠CDA=∠DAB=90°().即∠1+∠3=∠2+∠4=90°.因为∠1=∠2(已知),所以∠3=∠4().所以DF∥AE().22.完成下列证明过程,并在括号内填上依据.如图,点E在AB上,点F在CD上,∠1=∠2,∠B=∠C,求证AB∥CD.证明:∵∠1=∠2(已知),∠1=∠4(),∴∠2=∠4(等量代换),∴().∴∠3=∠C().又∵∠B=∠C(已知),∴∠3=∠B(等量代换),∴AB∥CD().参考答案与解析1.解:∵四边形FECD是矩形,∴CD∥EF;又∵四边形ABEF是矩形,∴AB∥EF,∴CD∥AB.2.解:∵长方形的硬纸片ABCD对折,MN是折痕,∴MN∥AB,MN∥CD,即MN∥AB∥CD,∴AB∥CD(平行于同一直线的两条直线互相平行).故各空依次填AB、CD、AB、CD.3.解:BC∥DE,AB∥CD.理由如下:∵∠1=47°,∠2=133°,而∠ABC=∠1=47°,∴∠ABC+∠2=180°,∴AB∥CD;∵∠2=133°,∴∠BCD=180°﹣133°=47°,而∠D=47°,∴∠BCD=∠D,∴BC∥DE.4.解:因为∠1+∠2=180°,∠2+∠4=180°(已知),所以∠1=∠4,(同角的补角相等)所以a∥c.(内错角相等,两直线平行)又因为∠2+∠3=180°(已知)∠3=∠6(对顶角相等)所以∠2+∠6=180°,(等量代换)所以a∥b.(同旁内角互补,两直线平行)所以b∥c.(平行于同一条直线的两条直线平行).故答案为:同角的补角相等;内错角相等,两直线平行;对顶角相等;等量代换;同旁内角互补,两直线平行;平行于同一条直线的两条直线平行.5.解:如图,∵∠A=60°,∠1=60°,∴∠A=∠1,∴DE∥AC.又∵∠A=60°,∠2=120°,∴∠A+∠2=180°,∴EF∥AB.6.解:∵∠3=50°,1=50°,∴∠1=∠3,∴a∥b(同位角相等,两直线平行).故答案为:∠3=50°;同位角相等;两直线平行.7.解:(1)将直尺放在桌面上,使其与桌面一组对边相交;(2)将三角板一边贴近直尺,斜边贴近桌面边缘;(3)使另一个三角形同样方法放置,如果相符合说明对边平行,原理如图所示,若∠1=∠2则a∥b,再检查另一组对边是否平行.8.解:①通过度量∠3的度数,若满足∠2+∠3=180°,根据同旁内角互补,两直线平行,就可以验证这个结论;②通过度量∠4的度数,若满足∠2=∠4,根据同位角相等,两直线平行,就可以验证这个结论;③通过度量∠5的度数,若满足∠2=∠5,根据内错角相等,两直线平行,就可以验证这个结论.9. D10.C11.D12.C13.B14.B15.解:选项①中∵∠B+∠BCD=180°,∴AB∥CD(同旁内角互补,两直线平行),所以正确;选项②中,∵∠2=∠3,∴AD∥BC(内错角相等,两直线平行),所以错误;选项③中,∵∠1=∠4,∴AB∥CD(内错角相等,两直线平行),所以正确;选项④中,∵∠B=∠5,∴AB∥CD(同位角相等,两直线平行),所以正确;选项⑤中,∠D=∠5,∴AD∥BC(内错角相等,两直线平行),所以错误;故答案为:①③④.16.解:添加条件为:∠D=∠COE.理由如下:∵∠D=∠COE,∴BE∥DE(同位角相等,两直线平行).故答案为:∠D=∠COE(答案不唯一).17.解:如图所示:当ED∥AC时,∠CAD=∠D=30°;如图所示,当ED∥AC时,∠E=∠EAC=60°,∴∠CAD=60°+90°=150°;故答案为:30°或150°.18.解:当∠4=∠7时,a∥b,故①正确;当∠2=∠5时,无法证明a∥b,故②错误;当∠2+∠3=180°时,无法证明a∥b,故③错误;当∠2=∠7时,a∥b,故④正确;故答案为:①④.19.证明:∵∠A=∠C=120°,∠AEF=∠CEF=60°,∴∠A+∠AEF=180°,∠C+∠CEF=180°,∴AB∥EF,CD∥EF,∴AB∥CD.20.解:直线l1与l2平行,理由:∵∠1=∠4,∠2=∠5,∠1=42°,∠2=53°,∴∠4=42°,∠5=53°,又∵∠3=85°,∴∠3+∠5=85°+53°=138°,∴∠3+∠5+∠4=138°+42°=180°,∴l1∥l2(同旁内角互补,两直线平行).21.解:因为CD⊥AD(已知),所以∠CDA=90°(垂直的定义),同理∠DAB=90°.所以∠CDA=∠DAB=90°(等量代换),即∠1+∠3=∠2+∠4=90°.因为∠1=∠2(已知),所以∠3=∠4(等式的性质1),所以DF∥AE(内错角相等,两直线平行).22.证明:∵∠1=∠2(已知),∠1=∠4(对顶角相等),∴∠2=∠4(等量代换),∴CE∥BF(同位角相等,两直线平行).∴∠3=∠C(两直线平行,同位角相等).又∵∠B=∠C(已知),∴∠3=∠B(等量代换),∴AB∥CD(内错角相等,两直线平行).故答案为:对顶角相等;CE∥BF;同位角相等,两直线平行;C;两直线平行,同位角相等;内错角相等,两直线平行.。

第七章 平面直角坐标系 七年级数学下册单元复习(人教版)

第七章 平面直角坐标系 七年级数学下册单元复习(人教版)
的方向上,距离是50 n mile)
7-20-7
【典例讲解】
例10. 将顶点坐标为(-4,-1),(1, 1),(-1,4)的三角形向右平移2个单 位长度,再向上平移3个单位长度,则平移 后的三角形三个顶点的坐标分别是( C ) A.(2,2),(3,4),(1,7) B.(-2,2),(4,3),(1,7) C.(-2,2),(3,4),(1,7) D.(2,-2),(3,3),(1,7)
①由两个数组成;
②两数有顺序性;(a,b)与(b,a)表示的是两个不同的位置(a≠b).
③成对出现.
(二)平面直角坐标系
1、平面直角坐标系的定义
平面直角坐标系:平面内两条互相垂直、原点重合的数轴,组成平面直
角坐标系。水平方向的数轴称为x轴或横轴,习惯取向右的方向为正方向;
知识点一 平面直角坐标系
竖直方向上的数轴称为y轴或纵轴,习惯取向上的方向为正方向; 两坐标轴的交点是平面直角坐标系的原点 .
辨识平面直角坐标系的“三要素”: 1. 两条数轴;2. 共原点;3. 互相垂直. 注意:一般取向上、向右为正方向.
知识点一 平面直角坐标系
2、点的坐标表示方法
平面内任意一点P,过P点分别向x、y轴作垂线,垂足在x轴、y轴上对应的数a、b 分别叫做点p的横坐标、纵坐标, 则有序数对(a,b)叫做点P的坐标,记为P(a,b) 注意:在写点的坐标时,必须先写横坐标,再写纵坐标, 中间用逗号隔开,最后用小括号把它们括起来; 点的坐标是有序实数对,(a,b) 和(b,a)(a ≠ b) 虽然数字相同,但由于顺 序不同,表示的位置就不同. 3. 平面直角坐标系内的点与有序实数对的一一对应关系: (1)坐标平面内的任意一点,都有唯一的一个有序实数对(点的坐标)与它对应. (2)任意一个有序实数对(点的坐标)在坐标平面内都有唯一的一个点和它对应.

人教版七年级下册数学期末总复习课件

人教版七年级下册数学期末总复习课件

1
1
变式:已知9 13和9 13的小数部分分别为a和b
6、设a和b互为相反数,c和d互为负倒数,x的绝对值为 5,
4 5 则代数式x (a b cd)x ( a b 3 cd) ___________
2
1 4. m-27 + n-8=0,则 m- n =______
14、 如图4,∠1= ∠2, ∠C= ∠D, 求证: ∠A= ∠F 15、 如图5,∠D= ∠E, ∠ABE= ∠D+ ∠E, BC是∠ABE的平分线, 求证:BC∥DE
16、如图,已知AB∥CD,请猜想各个图中∠AMC 与∠MAB、 ∠MCD的关系
第六章实数的复习
?
本章知识结 构图 开平方
复习回顾
把下列各数填在相应的大括号内: 5 1, , , 3.14, 0 , 3. 3 3 3, 3, 7
tan30 ,
.
……};
0
cos600 ,
3
64,
2.1010010001
整数集合:{
-1,0,3 64
5 分数集合:{ ……}; , 3.14, 3. 3 3 3 , cos60° 7 5 3.14,0,3. 3 3 3 ,cos60°, 3 64 有理数集合:{ -1,, …}; 7
当方程中出现立方时,一般都有一个解
选择题
1、代数式 a a 1 a 2的最小值是( B )
1 2
A.0 B. C.0 D.不存在
2
2、若
m
m,则实数m在数轴上的对应点一定在(
C)
A.原点左侧 B.原点右侧 C.原点或原点左侧 D.原点或原点右侧
3、若式子 ( 4-a) 是一个实数,则满足这个条件的a的值有(B )

人教版七年级数学下册期中考试复习提纲

人教版七年级数学下册期中考试复习提纲

人教版七年级数学下册复习大纲第五章相交线与平行线本章知识考点分析:1、平行线的性质及判定必考内容2、命题的真假性、将命题改写3、证明题(完型填空、自主证明)4、选择题、填空题中相关知识的考点(相交线、平行线的性质;垂线段最短、过直线外一点有且只有一条直线平行于已知直线)5.1.1相交线1、如果两条直线只有一个公共点,就说这两条直线相交,该公共点叫做两直线的交点。

2、如果两个角有一个公共边,并且它们的另一边互为反向延长线,那么这两个角互为邻补角。

性质:邻补角互补。

(两条直线相交有4对邻补角。

)3、如果两个角的顶点相同,并且两边互为反向延长线,那么这两个角互为对顶角。

性质:对顶角相等。

(若有n条直线相交于同一点,则有n(n-1)对对顶角)5.1.2垂线4、当两条直线相交,所成的四个角中有一个角是直角,那么这两条直线互相垂直。

其中一条直线叫做另一条直线的垂线,它们的交点叫做垂足。

5、由直线外一点向直线引垂线,这点与垂足间的线段叫做垂线段。

(要找垂线段,先把点来看。

过点画垂线,点足垂线段。

)6、垂线段是垂线上的一部分,它是线段,一端是一个点,另一端是垂足。

7、垂线画法:①放:放直尺,直尺的一边要与已知直线重合;②靠:靠三角板,把三角板的一直角边靠在直尺上;③移:移动三角板到已知点;④画线:沿着三角板的另一直角边画出垂线.8、垂线性质1:过一点有且只有一条直线与已知直线垂直。

9、过一点画已知线段(或射线)的垂线,就是画这条线段(或射线)所在直线的垂线.10、连接直线外一点与直线上各点的所有线段中,垂线段最短。

(垂线段最短.)11、直线外一点到这条直线的垂线段的长度,叫做点到直线的距离。

5.1.3同位角、同旁内角、内错角12、同位角:如果两个角都在被截的两条直线的同方向,并且都在截线的同侧,即它们的位置相同,这样的一对角叫做同位角。

形如字母“F”。

13、内错角:如果两个角分别在被截的两条直线之间(内),并且分别在截线的两侧(错),这样的一对角叫做内错角。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第五章 相交线与平行线1、两条直线相交所成的四个角中,相邻的两个角叫做邻补角,特点是两个角共用一条边,另一条边互为反向延长线,性质是邻补角互补;相对的两个角叫做对顶角,特点是它们的两条边互为反向延长线。

性质是对顶角相等。

2、三线八角:对顶角(相等),邻补角(互补),同位角,内错角,同旁内角。

3、两条直线被第三条直线所截:同位角F (在两条直线的同一旁,第三条直线的同一侧)内错角Z (在两条直线内部,位于第三条直线两侧)同旁内角U (在两条直线内部,位于第三条直线同侧)4、两条直线相交所成的四个角中,如果有一个角为90度,则称这两条直线互相垂直。

其中一条直线叫做另外一条直线的垂线,他们的交点称为垂足。

5、垂直三要素:垂直关系,垂直记号,垂足6、垂直公理:过一点有且只有一条直线与已知直线垂直。

7、垂线段最短。

8、点到直线的距离:直线外一点到这条直线的垂线段的长度。

9、平行公理:经过直线外一点,有且只有一条直线与这条直线平行。

推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行。

如果b//a,c//a,那么b//c10、平行线的判定:①同位角相等,两直线平行。

②内错角相等,两直线平行。

③同旁内角互补,两直线平行。

11、推论:在同一平面内,如果两条直线都垂直于同一条直线,那么这两条直线平行。

12、平行线的性质:①两直线平行,同位角相等;②两直线平行,内错角相等;③两直线平行,同旁内角互补。

13、平面上不相重合的两条直线之间的位置关系为_______或________14、平移:①平移前后的两个图形形状大小不变,位置改变。

②对应点的线段平行且相等。

平移:在平面内,将一个图形沿某个方向移动一定的距离,图形的这种移动叫做平移平移变换,简称平移。

对应点:平移后得到的新图形中每一点,都是由原图形中的某一点移动后得到的,这样的两个点叫做对应点。

15、命题:判断一件事情的语句叫命题。

命题分为题设和结论两部分;题设是如果后面的,结论是那么后面的。

命题分为真命题和假命题两种;定理是经过推理证实的真命题。

用尺规作线段和角1.关于尺规作图:尺规作图是指只用圆规和没有刻度的直尺来作图。

2.关于尺规的功能直尺的功能是:在两点间连接一条线段;将线段向两方向延长。

圆规的功能是:以任意一点为圆心,任意长度为半径作一个圆;以任意一点为圆心,任意长度为半径画一段弧。

第六章 实数一、实数的概念及分类1、实数的分类2、无理数(1)开方开不尽的数,如32,7等;(2)有特定意义的数,如圆周率π,或化简后含有π的数,如3π+8等;(3)有特定结构的数,如0.1010010001…等;二、实数的倒数、相反数和绝对值实数与数轴上点的关系:每一个无理数都可以用数轴上的一个点表示出来,数轴上的点有些表示有理数,有些表示无理数,实数与数轴上的点就是一一对应的,即每一个实数都可以用数轴上的一个点来表示;反过来,数轴上的每一个点都是表示一个实数。

三、平方根、算数平方根和立方根1、平方根(1)平方根的定义:如果一个数x 的平方等于a ,那么这个数x 就叫做a 的平方根.即:如果a x =2,那么x叫做a 的平方根.(2)开平方的定义:求一个数的平方根的运算,叫做开平方.开平方运算的被开方数必须是非负数才有意义。

(3)平方与开平方互为逆运算:±3的平方等于9,9的平方根是±3(4)一个正数有两个平方根,即正数进行开平方运算有两个结果;一个负数没有平方根,即负数不能进行开平方运算(5)符号:正数a 的正的平方根可用a 表示,a 也是a 的算术平方根;正数a 的负的平方根可用-a 表示.2、算术平方根(1)算术平方根的定义: 一般地,如果一个正数x 的平方等于a ,即a x =2,那么这个正数x 叫做a 的算术平方根.a 的算术平方根记为a ,读作“根号a”,a 叫做被开方数.规定:0的算术平方根是0.也就是,在等式a x =2 (x≥0)中,规定a x =。

(2)a 的结果有两种情况:当a 是完全平方数时,a 是一个有限数;当a 不是一个完全平方数时,a 是一个无限不循环小数。

(3)当被开方数扩大时,它的算术平方根也扩大;当被开方数缩小时与它的算术平方根也缩小。

(4)正数和零的算术平方根都只有一个,零的算术平方根是零。

a (a ≥0) 0≥a==a a 2 ;注意a 的双重非负性:-a (a <0) a ≥0(5)平方根和算术平方根两者既有区别又有联系:区别在于正数的平方根有两个,而它的算术平方根只有一个;联系在于正数的正平方根就是它的算术平方根,而正数的负平方根是它的算术平方根的相反数。

3、立方根(1)立方根的定义:如果一个数x 的立方等于a ,这个数叫做a 的立方根(也叫做三次方根),即如果3x a =,那么x 叫做a 的立方根(2)一个数a 的立方根,读作:“三次根号a ”,其中a 叫被开方数,3叫根指数,不能省略,若省略表示平方。

(3)一个正数有一个正的立方根;0有一个立方根,是它本身;一个负数有一个负的立方根;任何数都有唯一的立方根。

(4)利用开立方和立方互为逆运算关系,求一个数的立方根,就可以利用这种互逆关系,检验其正确性,求)0a=>。

(5)33aa-=-,这说明三次根号内的负号可以移到根号外面。

第七章平面直角坐标系1、对应关系:平面直角坐标系内的点与有序实数对一一对应。

2、平面内两条互相垂直、原点重合组成的数轴组成平面直角坐标系。

水平的数轴称为x轴或横轴,习惯上取向右为正方向;竖直的数轴为y轴或纵轴,取向上为正方向;两个坐标轴的交点为平面直角坐标系的原点。

坐标:对于平面内任一点P,过P分别向x轴,y轴作垂线,垂足分别在x轴,y轴上,对应的数a,b分别叫点P的横坐标和纵坐标。

象限:两条坐标轴把平面分成四个部分,右上部分叫第一象限,按逆时针方向一次叫第二象限、第三象限、第四象限。

坐标轴上的点不在任何一个象限3、三大规律(1)平移规律:点的平移规律左右平移→纵坐标不变,横坐标左减右加;上下平移→横坐标不变,纵坐标上加下减。

图形的平移规律找特殊点(2)对称规律关于x轴对称→横坐标不变,纵坐标互为相反数;关于y轴对称→横坐标互为相反数,纵坐标不变;关于原点对称→横纵坐标都互为相反数。

(3)位置规律各象限点的坐标符号:(注意:坐标轴上的点不属于任何一个象限)特征坐标:x轴上→纵坐标为0;y第一、三象限夹角平分线上→横纵坐标相等;3、二元一次方程组的解法:① 代入消元法:由二元一次方程组中一个方程,将一个未知数用含有另一个未知数的式子表示出来,再代入另一个方程,实现消元,进而求得这个二元一次方程组的解。

② 加减消元法:两个二元一次方程中同一未知数的系数相反或相等 时,将两个方程的两边分别相加或相减,就能消去这个未知数,得到一个一元一次方程,再求解。

③消常数法:当两个方程的常数项相同或相反时,把这两个方程相减或相加,消去常数,得出两个未知数间的关系,再代入其中一个方程求解。

4、实际应用:审题→设未知数→列方程组→解方程组→检验→作答。

关键:找等量关系常见的类型有:分配问题、追及问题、顺流逆流、药物配制、行程问题 顺流逆流公式:第九章 不等式与不等式组不等式的解:使不等式成立的未知数的值,叫做不等式的解。

不等式的解集:一个含有未知数的不等式的所有解,组成这个不等式的解集。

一元一次不等式:不等式的左、右两边都是整式,只有一个未知数,并且未知数的最高次数是1,像这样的不等式,叫做一元一次不等式。

一元一次不等式组:一般地,关于同一未知数的几个一元一次不等式合在一起,就组成了一个一元一次不等式组。

一元一次不等式组的解集:一元一次不等式组中各个不等式的解集的公共部分,叫做这个一元一次不等式组的解集。

1、不等式:含有“>”、“ <”、“ ≥”、“ ≤”、“ ≠”的式子2、一元一次不等式:一个未知数,未知数的次数是1的不等式3、 不等式的性质:① 不等式两边加(或减)同一个数(或式子),不等号的方向改变。

② 不等式两边乘(或除以)同一个正数,不等号的方向不变。

③ 不等式两边乘(或除以)同一负数,不等号的方向改变。

4、 不等式的解法:步骤:去分母,去括号,移项,合并同类项,系数化为一;注意:去分母与系数化为一要特别小心,因为要在不等式两端同时乘或除以某一个数,要考虑不等号的方向是否发生改变的问题。

5、 不等式组的解:“大大取大”,“小小取小”,“大小小大中间找”,“大大小小找不了”。

6、不等式组的解集的确定方法(a >b ):自己将表格补充完整:抽样调查:调查部分数据,根据部分来估计总体的调查方式称为抽样调查。

总体:要考察的全体对象称为总体。

个体:组成总体的每一个考察对象称为个体。

样本:被抽取的所有个体组成一个样本。

样本容量:样本中个体的数目称为样本容量。

频数:一般地,我们称落在不同小组中的数据个数为该组的频数。

频率:频数与数据总数的比为频率。

组数和组距:在统计数据时,把数据按照一定的范围分成若干各组,分成组的个数称为组数,每一组两个端点的差叫做组距。

1、数据处理一般包括收集数据、整理数据、描述数据和分析数据等过程。

(1)通过调查收集数据的一般步骤:①明确调查问题②确定调查对象③选择调查方法④展开调查⑤记录结果⑥得出结论(2)收集数据常用的方法:①民意调查:如投票选举②实地调查:如现场进行观察、收集、统计数据③媒体调查:报纸、电视、电话、网络等调查都是媒体调查。

2、数据的表示方法:(1)统计表:直观地反映数据的分布规律(2)折线图:反映数据的变化趋势(3)条形图:反映每个项目的具体数据(4)扇形图:反映各部分在总体中所占的百分比(5)频数分布直方图:直观形象地反映频数分布情况 6)频数分布折线图:在频数分布直方图的基础上,取每一个长方形上边的中点,和左右频数为零与直方图相距半个组距的两个点3、调查方式:(1)全面调查,优点是可靠,、真实;(2)抽样调查,优点是省时、省力,减少破坏性;随机抽样调查具有广泛性和代表性。

4、总体和样本:(1)总体:要考察的所有对象(2)个体:组成总体的每一个考察对象(3)样本:从总体中抽出的所有实际被调查的对象组成一个样本。

(4)样本容量:样本中给个体的数目5、组距:每个小组两个端点之间的距离6、画直方图的一般步骤:(1)计算最大值与最小值的差;(2)决定组距与组数,先根据数据个数确定组距,再计算组数,注意无论整除与否,组数总是比商的整数位数多1;(3)确定分点,并分组;(4)列频数分布表;(5)绘制频数分布直方图(注:可编辑下载,若有不当之处,请指正,谢谢!)。

相关文档
最新文档