函数解析式求法总结及练习题

合集下载

(完整版)函数解析式的练习题兼答案

(完整版)函数解析式的练习题兼答案

函数解析式的求法(1)待定系数法:若已知函数的类型(如一次函数、二次函数),可用待定系数法;1.已知f(x)是一次函数,且f[f(x)]=x+2,则f(x)=()A.x+1 B.2x﹣1 C.﹣x+1 D.x+1或﹣x﹣1【解答】解:f(x)是一次函数,设f(x)=kx+b,f[f(x)]=x+2,可得:k(kx+b)+b=x+2.即k2x+kb+b=x+2,k2=1,kb+b=2.解得k=1,b=1.则f(x)=x+1.故选:A.(2)换元法:已知复合函数f(g(x))的解析式,可用换元法,此时要注意新元的取值范围;9.若函数f(x)满足f(3x+2)=9x+8,则f(x)是()A.f(x)=9x+8 B.f(x)=3x+2C.f(x)=﹣3﹣4 D.f(x)=3x+2或f(x)=﹣3x﹣4【解答】解:令t=3x+2,则x=,所以f(t)=9×+8=3t+2.所以f(x)=3x+2.故选B.(3)配凑法:由已知条件f(g(x))=F(x),可将F(x)改写成关于g(x)的表达式,然后以x替代g(x),便得f(x)的解析式;18.已知f()=,则()A.f(x)=x2+1(x≠0)B.f(x)=x2+1(x≠1)C.f(x)=x2﹣1(x≠1)D.f(x)=x2﹣1(x≠0)【解答】解:由,得f(x)=x2﹣1,又∵≠1,∴f(x)=x2﹣1的x≠1.故选:C.19.已知f(2x+1)=x2﹣2x﹣5,则f(x)的解析式为()A.f(x)=4x2﹣6 B.f(x)=C.f(x)=D.f(x)=x2﹣2x﹣5【解答】解:方法一:用“凑配法”求解析式,过程如下:;∴.方法二:用“换元法”求解析式,过程如下:令t=2x+1,所以,x=(t﹣1),∴f(t)=(t﹣1)2﹣2×(t﹣1)﹣5=t2﹣t﹣,∴f(x)=x2﹣x﹣,故选:B.(4)消去法:已知f(x)与f 或f(-x)之间的关系式,可根据已知条件再构造出另外一个等式组成方程组,通过解方程组求出f(x).21.若f(x)对任意实数x恒有f(x)﹣2f(﹣x)=2x+1,则f(2)=()A.﹣ B.2 C.D.3【解答】解:∵f(x)对任意实数x恒有f(x)﹣2f(﹣x)=2x+1,∴用﹣x代替式中的x可得f(﹣x)﹣2f(x)=﹣2x+1,联立可解得f(x)=x﹣1,∴f(2)=×2﹣1=故选:C函数解析式的求解及常用方法练习题一.选择题(共25小题)2.若幂函数f(x)的图象过点(2,8),则f(3)的值为()A.6 B.9 C.16 D.273.已知指数函数图象过点,则f(﹣2)的值为()A.B.4 C.D.24.已知f(x)是一次函数,且一次项系数为正数,若f[f(x)]=4x+8,则f(x)=()A. B.﹣2x﹣8 C.2x﹣8 D.或﹣2x﹣85.已知函数f(x)=a x(a>0且a≠1),若f(1)=2,则函数f(x)的解析式为()A.f(x)=4x B.f(x)=2x C. D.6.已知函数,则f(0)等于()A.﹣3 B.C.D.37.设函数f(x)=,若存在唯一的x,满足f(f(x))=8a2+2a,则正实数a的最小值是()A.B.C.D.28.已知f(x﹣1)=x2,则f(x)的表达式为()A.f(x)=x2+2x+1 B.f(x)=x2﹣2x+1C.f(x)=x2+2x﹣1 D.f(x)=x2﹣2x﹣110.已知f(x)是奇函数,当x>0时,当x<0时f(x)=()A.B.C.D.11.已知f(x)=lg(x﹣1),则f(x+3)=()A.lg(x+1)B.lg(x+2)C.lg(x+3)D.lg(x+4)12.已知函数f(x)满足f(2x)=x,则f(3)=()A.0 B.1 C.log23 D.313.已知函数f(x+1)=3x+2,则f(x)的解析式是()A.3x﹣1 B.3x+1 C.3x+2 D.3x+414.如果,则当x≠0且x≠1时,f(x)=()A.B.C.D.15.已知,则函数f(x)=()A.x2﹣2(x≠0)B.x2﹣2(x≥2)C.x2﹣2(|x|≥2)D.x2﹣216.已知f(x﹣1)=x2+6x,则f(x)的表达式是()A.x2+4x﹣5 B.x2+8x+7 C.x2+2x﹣3 D.x2+6x﹣1017.若函数f(x)满足+1,则函数f(x)的表达式是()A.x2B.x2+1 C.x2﹣2 D.x2﹣120.若f(x)=2x+3,g(x+2)=f(x﹣1),则g(x)的表达式为()A.g(x)=2x+1 B.g(x)=2x﹣1 C.g(x)=2x﹣3 D.g(x)=2x+7 22.已知f(x)+3f(﹣x)=2x+1,则f(x)的解析式是()A.f(x)=x+ B.f(x)=﹣2x+C.f(x)=﹣x+D.f(x)=﹣x+ 23.已知f(x),g(x)分别是定义在R上的偶函数和奇函数,且f(x)﹣g(x)=x3+x2+1,则f(1)+g(1)=()A.﹣3 B.﹣1 C.1 D.324.若函数f(x)满足:f(x)﹣4f()=x,则|f(x)|的最小值为()A.B.C.D.25.若f(x)满足关系式f(x)+2f()=3x,则f(2)的值为()A.1 B.﹣1 C.﹣D.二.解答题(共5小题)26.函数f(x)=m+log a x(a>0且a≠1)的图象过点(8,2)和(1,﹣1).(Ⅰ)求函数f(x)的解析式;(Ⅱ)令g(x)=2f(x)﹣f(x﹣1),求g(x)的最小值及取得最小值时x的值.27.已知f(x)=2x,g(x)是一次函数,并且点(2,2)在函数f[g(x)]的图象上,点(2,5)在函数g[f(x)]的图象上,求g(x)的解析式.28.已知f(x)=,f[g(x)]=4﹣x,(1)求g(x)的解析式;(2)求g(5)的值.29.已知函数f(x)=x2+mx+n(m,n∈R),f(0)=f(1),且方程x=f(x)有两个相等的实数根.(Ⅰ)求函数f(x)的解析式;(Ⅱ)当x∈[0,3]时,求函数f(x)的值域.30.已知定义在R上的函数g(x)=f(x)﹣x3,且g(x)为奇函数(1)判断函数f(x)的奇偶性;(2)若x>0时,f(x)=2x,求当x<0时,函数g(x)的解析式.函数解析式的求解及常用方法练习题参考答案与试题解析一.选择题(共25小题)2.【解答】解:幂函数f(x)的图象过点(2,8),可得8=2a,解得a=3,幂函数的解析式为:f(x)=x3,可得f(3)=27.故选:D.3.【解答】解:指数函数设为y=a x,图象过点,可得:=a,函数的解析式为:y=2﹣x,则f(﹣2)=22=4.故选:B.4.【解答】解:设f(x)=ax+b,a>0∴f(f(x))=a(ax+b)+b=a2x+ab+b=4x+8,∴,∴,∴f(x)=2x+.故选:A.5.【解答】解:∵f(x)=a x(a>0,a≠1),f(1)=2,∴f(1)=a1=2,即a=2,∴函数f(x)的解析式是f(x)=2x,故选:B.6.【解答】解:令g(x)=1﹣2x=0则x=则f(0)===3 故选D7.【解答】解:由f(f(x))=8a2+2a可化为2x=8a2+2a或log2x=8a2+2a;则由0<2x<1;log2x∈R知,8a2+2a≤0或8a2+2a≥1;又∵a>0;故解8a2+2a≥1得,a≥;故正实数a的最小值是;故选B.8.【解答】解:∵函数f(x﹣1)=x2∴f(x)=f[(x+1)﹣1]=(x+1)2=x2+2x+1 故选A.10.【解答】解:当x<0时,﹣x>0,则f(﹣x)=﹣(1﹣x),又f(x)是奇函数,所以f(x)=﹣f(﹣x)=(1﹣x).故选D.11.【解答】解:f(x)=lg(x﹣1),则f(x+3)=lg(x+2),故选:B.12.【解答】解:函数f(x)满足f(2x)=x,则f(3)=f()=log23.故选:C.13.【解答】∵f(x+1)=3x+2=3(x+1)﹣1 ∴f(x)=3x﹣1故答案是:A 14.【解答】解:令,则x=∵∴f(t)=,化简得:f(t)=即f(x)=故选B15.【解答】解:=,∴f(x)=x2﹣2(|x|≥2).故选:C.16.【解答】解:∵f(x﹣1)=x2+6x,设x﹣1=t,则x=t+1,∴f(t)=(t+1)2+6(t+1)=t2+8t+7,把t与x互换可得:f(x)=x2+8x+7.故选:B.17.【解答】解:函数f(x)满足+1=.函数f(x)的表达式是:f(x)=x2﹣1.(x≥2).故选:D.20.【解答】解:用x﹣1代换函数f(x)=2x+3中的x,则有f(x﹣1)=2x+1,∴g(x+2)=2x+1=2(x+2)﹣3,∴g(x)=2x﹣3,故选:C.22.【解答】解:∵f(x)+3f(﹣x)=2x+1…①,用﹣x代替x,得:f(﹣x)+3f(x)=﹣2x+1…②;①﹣3×②得:﹣8f(x)=8x﹣2,∴f(x)=﹣x+,故选:C.23.【解答】解:由f(x)﹣g(x)=x3+x2+1,将所有x替换成﹣x,得f(﹣x)﹣g(﹣x)=﹣x3+x2+1,根据f(x)=f(﹣x),g(﹣x)=﹣g(x),得f(x)+g(x)=﹣x3+x2+1,再令x=1,计算得,f(1)+g(1)=1.故选:C.24.【解答】解:∵f(x)﹣4f()=x,①∴f()﹣4f(x)=,②联立①②解得:f(x)=﹣(),∴|f(x)|=(),当且仅当|x|=2时取等号,故选B.25.【解答】解:∵f(x)满足关系式f(x)+2f()=3x,∴,①﹣②×2得﹣3f(2)=3,∴f(2)=﹣1,故选:B.二.解答题(共5小题)26.【解答】解:(Ⅰ)由得,解得m=﹣1,a=2,故函数解析式为f(x)=﹣1+log2x,(Ⅱ)g(x)=2f(x)﹣f(x﹣1)=2(﹣1+log2x)﹣[﹣1+log2(x﹣1)]=,其中x>1,因为当且仅当即x=2时,“=”成立,而函数y=log2x﹣1在(0,+∞)上单调递增,则,故当x=2时,函数g(x)取得最小值1.27.【解答】解:设g(x)=ax+b,a≠0;则:f[g(x)]=2ax+b,g[f(x)]=a•2x+b;∴根据已知条件有:;∴解得a=2,b=﹣3;∴g(x)=2x﹣3.28.【解答】解:(1)∵已知f(x)=,f[g(x)]=4﹣x,∴,且g(x)≠﹣3.解得g(x)=(x≠﹣1).(2)由(1)可知:=.29.【解答】解:(Ⅰ)∵f(x)=x2+mx+n,且f(0)=f(1),∴n=1+m+n.…(1分)∴m=﹣1.…(2分)∴f(x)=x2﹣x+n.…(3分)∵方程x=f(x)有两个相等的实数根,∴方程x=x2﹣x+n有两个相等的实数根.即方程x2﹣2x+n=0有两个相等的实数根.…(4分)∴(﹣2)2﹣4n=0.…(5分)∴n=1.…(6分)∴f(x)=x2﹣x+1.…(7分)(Ⅱ)由(Ⅰ),知f(x)=x2﹣x+1.此函数的图象是开口向上,对称轴为的抛物线.…(8分)∴当时,f(x)有最小值.…(9分)而,f(0)=1,f(3)=32﹣3+1=7.…(11分)∴当x∈[0,3]时,函数f(x)的值域是.…(12分)30.【解答】解:(1)∵定义在R上的函数g(x)=f(x)﹣x3,且g(x)为奇函数,∴f(x)=g(x)+x3,故f(﹣x)=g(﹣x)+(﹣x)3=﹣g(x)﹣x3=﹣f(x),∴函数f(x)为奇函数;(2)∵x>0时,f(x)=2x,∴g(x)=2x﹣x3,当x<0时,﹣x>0,故g(﹣x)=2﹣x﹣(﹣x)3,由奇函数可得g(x)=﹣g(﹣x)=﹣2﹣x﹣x3.。

求正弦函数解析式的基本方法及练习题

求正弦函数解析式的基本方法及练习题

求正弦函数解析式的基本方法及练习题
引言
正弦函数(sine function)是一种常见的三角函数,用于描述一条光滑的周期曲线。

本文将介绍求解正弦函数解析式的基本方法,并提供一些练题供读者练。

求解正弦函数解析式的基本方法
1. 确定基本参数:首先,确定正弦函数的振幅(amplitude)、周期(period)、相位(phase)和纵向平移量(vertical shift)。

这些参数将影响最终的解析式。

2. 构建通用解析式:基于已知参数,构建正弦函数的通用解析式。

通用解析式的形式为:A * sin(Bx + C) + D,其中 A 是振幅,B 是周期的倒数,C 是相位,D 是纵向平移量。

3. 根据具体问题进行修正:根据具体问题的要求,对通用解析式进行修正。

例如,若要求解析式经过某个特定点,可以通过代入该点的值来确定修正项。

4. 检验解析式:最后,通过验证解析式是否满足正弦函数的性质,如周期性、对称性等,来确认解析式的正确性。

练题
1. 已知正弦函数的振幅为 2,周期为π,相位为π/2,纵向平移量为 3,求解对应的解析式。

2. 若正弦函数的解析式为 3 * sin(2x + π) + 4,求解该函数经过的一个满足条件的点。

3. 给定一个未知正弦函数 f(x),已知 f(0) = 1,f(π/2) = 0,求解该正弦函数的解析式。

请根据上述方法思考并解答练题,以加深对正弦函数解析式的理解。

---
注:本文提供的方法和练习题仅为基础参考,实际问题中可能存在更复杂的情况,需具体问题具体分析。

在使用本文提供的技巧时,请始终独立做出决策,并确保所引用的内容可以确认。

函数解析式的几种基本方法及例题

函数解析式的几种基本方法及例题

求函数解析式的几种基本方法及例题:1、凑配法:已知复合函数[()]f g x 的表达式,求()f x 的解析式。

(注意定义域)例1、(1)已知f(x+1)=x 2+2x,求f(x)及f(x-2).(2) 已知221)1(x x x x f +=+ )0(>x ,求 ()f x 的解析式 解:(1)f(x+1)=(x+1)2-1,∴f (x )=(x-2)=(x-2)2-1=x 2-4x+3.(2) 2)1()1(2-+=+x x x x f Θ, 21≥+x x2)(2-=∴x x f )2(≥x 2、换元法:已知复合函数[()]f g x 的表达式时,还可以用换元法求()f x 的解析式。

(注意所换元的定义域的变化)例2 (1) 已知x x x f 2)1(+=+,求)1(+x f(2)如果).(,,)(x f x x x x f 时,求则当1011≠-= 解:(1)令1+=x t ,则1≥t ,2)1(-=t x Q x x x f 2)1(+=+∴,1)1(2)1()(22-=-+-=t t t t f 1)(2-=∴x x f )1(≥xx x x x f 21)1()1(22+=-+=+∴ )0(≥x(2)设.)(,,,111111111-=∴-=-===x x f t tt f t x t x t )(代入已知得则 3、待定系数法:当已知函数的模式求解析式时适合此法。

应用此法解题时往往需要解恒等式。

例3、已知f(x)是二次函数,且满足f(x+1)+f(x-1)=2x 2-4x,求f(x). 解:设f(x)=ax 2+bx+c(a ≠0),∴f(x+1)+f(x-1)=a(x+1)2+b(x+1)+c +a(x-1)2+b(x-1)+c=2ax 2+2bx+2a+2c=2x 2-4x,则应有.)(1212102242222--=∴⎪⎩⎪⎨⎧-=-==∴⎪⎩⎪⎨⎧=+-==x x x f c b a c a b a四、构造方程组法:已知的函数关系较为抽象简约,则可以对变量进行置换,设法构造方程组,通过解方程组求得函数解析式。

高一数学函数解析式求法_练习题

高一数学函数解析式求法_练习题

求函数的解析式之老阳三干创作一、解析式的表达形式——解析式的表达形式有一般式、分段式、复合式等.1、一般式是大部分函数的表达形式,例一次函数:b kx y +=)0(≠k ;二次函数:c bx ax y ++=2)0(≠a 正比例函数:xk y =)0(≠k ;正比例函数:kx y =)0(≠k 2、分段式:函数在定义域的不合子集上对应法例不合,可用n 个式子来暗示函数,这种形式的函数叫做分段函数.例1、设函数(]()⎩⎨⎧+∞∈∞-∈=-,1,log 1,,2)(81x x x x f x ,则满足41)(=x f 的x 的值为.3、复合式:若y 是u 的函数,u 又是x 的函数,即),(),(),(b a x x g u u f y ∈==,那么y 关于x 的函数[]()b a x x g f y ,,)(∈=叫做f 和g 的复合函数.例2、已知3)(,12)(2+=+=x x g x x f ,则[]=)(x g f ,[]=)(x f g .二、解析式的求法—按照已知条件求函数的解析式,经常使用待定系数法、换元法、配凑法、赋值(式)法、方程法等.1待定系数法——若已知函数为某种基本函数,可设出解析式的表达形式的一般式,再利用已知条件求出系数.例3、已知二次函数)(x f y =满足),2()2(--=-x f x f 且图象在y 轴上的截距为1,被x 轴截得的线段长为22,求函数)(x f y =的解析式.阐发:二次函数的解析式有三种形式:① 一般式:)0()(2≠++=a c bx ax x f② 顶点式:()为函数的顶点点其中k h a k h x a x f ,,0)()(2≠++=③ 双根式:的两根是方程与其中0)(,0))(()(2121=≠--=x f x x a x x x x a x f2、换元法——例4、已知:11)11(2-=+x x f ,求)(x f . 注意:使用换元法要注意t 的规模限制,这是一个极易忽略的地方.3、配凑法——例5、已知:221)1(x x x x f +=+,求)(x f .注意:1、使用配凑法也要注意自变量的规模限制;2、换元法和配凑法在解题时可以通用,若一题能用换元法求解析式,则也能用配凑法求解析式.4、赋值(式)法:例6、已知函数)(x f 对于一切实数y x ,都有x y x y f y x f )12()()(++=-+成立,且0)1(=f .(1)求)0(f 的值;(2)求)(x f 的解析式.5、方程法——例7、已知:)0(,31)(2≠=⎪⎭⎫ ⎝⎛+x x x f x f ,求)(x f . 三、练习(一)换元法1.已知f(3x+1)=4x+3, 求f(x)的解析式.2.若x x x f -=1)1(,求)(x f .(二).配凑法3.已知221)1(x x x x f +=-, 求)(x f 的解析式.4.若x x x f 2)1(+=+,求)(x f .(三).待定系数法5.设)(x f 是一元二次函数,)(2)(x f x g x ⋅=,且212)()1(x x g x g x ⋅=-++,求)(x f 与)(x g .6.设二次函数)(x f 满足)2()2(--=-x f x f ,且图象在y 轴上截距为1,在x 轴上截得的线段长为22,求)(x f 的表达式.(四).解方程组法7.设函数)(x f 是定义(-∞,0)∪(0,+ ∞)在上的函数,且满足关系式x xf x f 4)1(2)(3=+,求)(x f 的解析式.8.(1)若x x x f x f +=-+1)1()(,求)(x f . (2)若f(x)+f(1-x)=1+x,求f(x).(五).特殊值代入法9.若)()()(y f x f y x f ⋅=+,且2)1(=f ,求值)2004()2005()3()4()2()3()1()2(f f f f f f f f ++++ . 10.已知:1)0(=f ,对于任意实数x 、y,等式)12()()(+--=-y x y x f y x f 恒成立,求)(x f(六).利用给定的特性求解析式.11.设)(x f 是偶函数,当x >0时,x e x e x f +⋅=2)(,求当x <0时,)(x f 的表达式.12.对x∈R,)(x f 满足)1()(+-=x f x f ,且当x∈[-1,0]时,x x x f 2)(2+=求当x∈[9,10]时)(x f 的表达式.。

求函数解析式的方法和例题

求函数解析式的方法和例题

求函数解析式的方法和例题一、常见的函数解析式的求法。

1. 一次函数,一次函数的一般形式为y=ax+b,其中a和b为常数,通过两点法、斜率法、解方程法等可以求得一次函数的解析式。

2. 二次函数,二次函数的一般形式为y=ax^2+bx+c,其中a、b、c为常数且a≠0。

通过配方法、求顶点法、根的性质等方法可以求得二次函数的解析式。

3. 指数函数,指数函数的一般形式为y=a^x,其中a为常数且a>0且a≠1。

通过观察法、对数法、取对数法等方法可以求得指数函数的解析式。

4. 对数函数,对数函数的一般形式为y=loga(x),其中a为常数且a>0且a≠1。

通过观察法、指数法、换底公式等方法可以求得对数函数的解析式。

5. 三角函数,三角函数包括正弦函数、余弦函数、正切函数等,它们的解析式可以通过周期性、对称性、变换公式等方法求得。

二、函数解析式的例题。

1. 求一次函数y=2x+3的解析式。

解,由于一次函数的一般形式为y=ax+b,所以y=2x+3的解析式为y=2x+3。

2. 求二次函数y=x^2+3x-2的解析式。

解,通过配方法或求顶点法可以求得y=x^2+3x-2的解析式为y=(x+2)(x-1)。

3. 求指数函数y=2^x的解析式。

解,观察法可得y=2^x的解析式为y=2^x。

4. 求对数函数y=log2(x)的解析式。

解,换底公式可得y=log2(x)的解析式为y=log(x)/log(2)。

5. 求正弦函数y=sin(x)的解析式。

解,通过周期性和对称性可得y=sin(x)的解析式为y=sin(x)。

以上就是关于求函数解析式的方法和例题的介绍,希望对大家有所帮助。

在学习过程中,要灵活运用各种方法,多加练习,提高解析式求解的能力。

函数解析式的求法例题

函数解析式的求法例题

函数解析式的求法练习一、换元法1.已知f(3x+1)=4x+3, 求f(x)的解析式.2.若x xx f -=1)1(,求)(x f .3.若x x x f 2)1(+=+,求)(x f .4.若x-23(,求)2(f.)2=f-xx5.知f(x-1)= 2x-4x,解方程f(x+1)=06.已知f(x+1 )= 2x+1 ,求f(x)解析式。

二、待定系数法7.已知)(x f 是一次函数,且64)]([+=x x f f ,求)(x f .8.已知函数f(x)是一次函数,且满足关系式3f(x+1)-2f(x-1)=2x+17, 求f(x)的解析式。

9.设二次函数)(x f 满足)2()2(--=-x f x f ,且图象在y 轴上截距为1,在x 轴上截得的线段长为22,求)(x f 的表达式.三、配凑法10.若221)1(x x x x f +=-,求()f x .11.若x x x f 2)1(+=+,求)(x f .四、解方程组法12.已知()3()26,f x f x x --=+求()f x .13. 若,)(2)1(x x f xf =+求)(x f .14.设函数)(x f 是定义(-∞,0)∪(0,+ ∞)在上的函数,且满足关系式x xf x f 4)1(2)(3=+,求)(x f 的解析式.五.特殊值代入法15.对于一切实数y x ,有x y x x f y x f )12()()(+--=-都成立,且.1)0(=f求).(x f16.设函数F(x)=f(x)+g(x) 其中f(x)是x 的正比例函数,g(x)是2x 的反比例函数,又F(2)= F(3)=19,求F(x) 的解析式。

17.设)(x f 是定义在*N 上的函数,若1)1(=f ,且对任意的x,y 都有:xy y x f y f x f -+=+)()()(, 求)(x f . ()1(21)(2+=x x f )18.设)(x f 是定义在*N 上的函数,且2)1(=f ,21)()1(+=+x f x f ,求)(x f 的解析式.。

求三角函数解析式的基本方法及练习题

求三角函数解析式的基本方法及练习题

求三角函数解析式的基本方法及练习题介绍三角函数解析式是数学中常见的概念之一,它能帮助我们描述和计算三角函数的值。

本文将介绍三角函数解析式的基本方法,并提供一些练题供读者练。

基本方法正弦函数(sin)正弦函数的解析式为:sin(θ) = 对边长度 / 斜边长度其中θ为角度,对边是指与角度θ相对的边长,斜边是指与角度θ相对的边的斜边长度。

余弦函数(cos)余弦函数的解析式为:cos(θ) = 邻边长度 / 斜边长度其中θ为角度,邻边是指与角度θ相邻的边长,斜边是指与角度θ相对的边的斜边长度。

正切函数(tan)正切函数的解析式为:tan(θ) = 对边长度 / 邻边长度其中θ为角度,对边是指与角度θ相对的边长,邻边是指与角度θ相邻的边长。

余切函数(cot)余切函数的解析式为:cot(θ) = 邻边长度 / 对边长度其中θ为角度,邻边是指与角度θ相邻的边长,对边是指与角度θ相对的边长。

正割函数(sec)正割函数的解析式为:sec(θ) = 斜边长度 / 邻边长度其中θ为角度,斜边是指与角度θ相对的边的斜边长度,邻边是指与角度θ相邻的边长。

余割函数(csc)余割函数的解析式为:csc(θ) = 斜边长度 / 对边长度其中θ为角度,斜边是指与角度θ相对的边的斜边长度,对边是指与角度θ相对的边长。

练题1. 求角度为30°时的sin值。

2. 求角度为60°时的cos值。

3. 求角度为45°时的tan值。

4. 求角度为60°时的cot值。

5. 求角度为30°时的sec值。

6. 求角度为45°时的csc值。

答案1. sin(30°) = 1/22. cos(60°) = 1/23. tan(45°) = 14. cot(60°) = 1/√35. sec(30°) = 26. csc(45°) = √2以上为三角函数解析式的基本方法及练习题。

高中数学求函数解析式解题方法大全与配套练习

高中数学求函数解析式解题方法大全与配套练习

高中数学求函数解析式解题方法大全及配套练习一、定义法:根据函数的定义求解析式用定义法。

【例1】【例2】【例3】【例4】二、待定系数法:(主要用于二次函数)已知函数解析式的类型,可设其解析式的形式,根据已知条件建立关于待定系数的方程,从而求出函数解析式。

它适用于已知所求函数类型(如一次函数,二次函数,正、反例函数等)及函数的某些特征求其解析式的题目。

其方法:已知所求函数类型,可预先设出所求函数的解析式,再根据题意列出方程组求出系数。

【例1】【解析】【例2】已知二次函数f(x)满足f(0)=0,f(x+1)= f(x)+2x+8,求f(x)的解析式.解:设二次函数f(x)= ax2+bx+c,则f(0)= c= 0 ①f(x+1)(x+1)= ax2+(2a+b)x+a+b②由f(x+1)= f(x)+2x+8 与①、②得解得故f(x)= x2+7x.【例3】三、换元(或代换)法:道所求函数的类型,且函数的变量易于用另一个变量表示的问题。

使用换元法时要注意新元定义域的变化,最后结果要注明所求函数的定义域。

如:已知复合函数f [g(x)]的解析式,求原函数f(x)的解析式,把g(x)看成一个整体t,进行换元,从而求出f(x)的方法。

实施换元后,应注意新变量的取值围,即为函数的定义域.【例1】【解析】【例2】【例3】【例4】(1)在(1(2)1(3)【例5】(1(2)由【例6】四、代入法:求已知函数关于某点或者某条直线的对称函数时,一般用代入法.【例1】解则解得,上,(五)配凑法【例1】:2x当然,上例也可直接使用换元法即由此可知,求函数解析式时,可以用配凑法来解决的,有些也可直接用换元法来求解。

【例2】:分析:此题直接用换元法比较繁锁,而且不易求出来,但用配凑法比较方便。

实质上,配凑法也缊含换元的思想,只是不是首先换元,而是先把函数表达式配凑成用此复合函数的函数来表示出来,在通过整体换元。

和换元法一样,最后结果要注明定义域。

高一数学求函数解析式方法总结

高一数学求函数解析式方法总结

y fx 3 (x 3 ) 2 1 x 2 6 x 1 0
PPT课件
8
方法二:令tx1,则 xt1
f tf x1x22x2 t122t12t21,
f xx21. f 3 10. y fx 3 ( x 3 ) 2 1 x 2 6 x 1 0
换元法
注意点:注意换元的等价性,即要求出 t 的取值范围.
解得: f x 11 x
22
PPT课件
17
解方程组法
例3 已知 f(x)+f( x-1 )=1+x (x≠0, 1), 求 f(x).
x
解: 记题中式子为①式,

x-1 x
代替①中的
x,
整理得:
f(
x-1 x
)+f(
1 1-x
)=
2x-1 x
②,
再用
1 代替①中的 x, 1-x
整理得:
f(
1 1-x
求函数的解析式
PPT课件
1
一.配凑法
把形如f(g(x))内的g(x)当做整体,在解析 式的右端整理成只含有g(x)的形式,再 把g(x)用x代替。 一般的利用完全平方公 式。
已知f(g(x))的解析式,求f(h(x))的解 析式,
PPT课件
2
已知 f(x1)x22x2,求
f(3)及 fx,fx3
PPT课件
11
例2 已知f(x)是二次函数,且
f(x 1 )f(x 1 ) 2 x 2 4 x 4 求 f (x).
解:设 f(x)a2xb xc(a 0)
f( x 1 ) f( x 1 ) 2 a 2 x 2 b 2 x a 2 c 2x24x4
a1,b2,c1

函数解析式的求解及常用方法(同步讲解)

函数解析式的求解及常用方法(同步讲解)
且f (0) 1, 求 f (x).
解: 令x y得
f (0) f (x) 2x2 x2 x
f (x) x2 x 1
【小结】:一般的,已知一个关于x,y的抽象函数,利用特殊值去掉一个未知 数y,得出关于x的解析式。
变式:已知函数 f (x)对于一切实数 x都, y有
f (x y) f (y) (x 2y 1)x 成立,且
即 2 y 4x 1
4x

y x2 1 x4
故 g(x) x 2 1 (x 4)
x4
练习
1若f x 2 x2 x 1求f x 2若f ( x) x求f x
3已知 f x 1 x 求f x
4已知 f f x 27x 26 求一次函数f x
课堂小结
请问同学们通过本节课的学习你获得哪些知识?
变式训练2
1、若 3 f (x) f (x) 2 x ,求f (x) 2、若 f (x) 2 f (1) x ,求f (x)
x
三、待定系数法
例3、已知 f (x) 是一次函数,且 f [ f (x) ] = 4x -1, 求 f (x) 的解析式。
解:设 f (x) = kx + b
则 f [ f (x) ] = f ( kx + b ) = k ( kx + b ) + b
解:方法一:f ( x 1) x 2 2x 2 x2 2x 11 ( x 1)2 1
f x
配凑法
f (x) x2 1
方法二:令 t x 1,则x t 1
f t f x 1 x2 2x 2
换元法
t 12 2t 1 2 t2 1,
f x x2 1.
【小结】:已知f[g(x)],求f(x)的解析式,一般可用换元法,具体为:令 t=g(x),再求出f(t)可得f(x)的解析式。换元后要确定新元t的取值范围。

求正弦函数解析式的基本方法及练习题

求正弦函数解析式的基本方法及练习题

求正弦函数解析式的基本方法及练习题
一、正弦函数的解析式基本方法
正弦函数是一种基本的三角函数,其解析式可以通过以下方法
得到:
1. 角度法:根据角度的定义,正弦函数可以表示为一个变量角
度与一个定值的关系,即sin(x)。

其中,x是角度,sin是正弦函数。

2. 周期性:正弦函数具有周期性,周期为2π。

根据周期性,
我们可以通过一个周期内的数值变化来推导整个函数的解析式。

3. 泰勒级数展开:正弦函数可以通过泰勒级数展开得到其解析式。

泰勒级数是一种用多项式逼近一个函数的方法,通过迭代计算
可以逼近出正弦函数的解析式。

二、正弦函数解析式的练题
1. 求解析式:根据给定的角度,求出相应的正弦函数解析式。

例如,求sin(30°)的解析式。

2. 求角度:根据给定的正弦函数值,求出相应的角度。

例如,
求sin(x) = 0.5的角度。

3. 综合练:结合以上两种题型,综合考察正弦函数的解析式及
角度求解能力。

以上是求解正弦函数解析式的基本方法及练题。

通过熟练掌握
这些方法,并进行反复练,可以提高对正弦函数的理解和运用能力。

希望能对您有所帮助!。

求一次函数解析式的常见题型(练习)

求一次函数解析式的常见题型(练习)

求一次函数解析式的常见题型一次函数及其图像是初中代数的重要内容,也是高中解析几何的基石,更是中考的重点考查内容。

其中求一次函数解析式就是一类常见题型。

一. 定义型例1. 已知函数y m xm =-+-()3328是一次函数,求其解析式。

练习:当m 时,函数y=(m-2)32-m x +5是一次函数,此时函数解析式为 。

二. 点斜型例2. 已知一次函数y kx =-3的图像过点(2,-1),求这个函数的解析式。

练习:直线y=kx +2与x 轴交于点(-1,0),则k= 。

三. 两点型已知某个一次函数的图像与x 轴、y 轴的交点坐标分别是(-2,0)、(0,4),则这个函数的解析式为_____________。

练习:已知直线经过点A (2,3),B (-1,-3),则直线解析式为________________四. 图像型例4. 已知某个一次函数的图像如图所示,则该函数的解析式为__________。

y2O 1五. 斜截型例5. 已知直线y kx b =+与直线y x =-2平行,且在y 轴上的交点为(0,2),则直线的解析式为___________。

六. 平移型例6. 直线y x =+21(1) 向下平移2个单位得到的图像解析式为________________;(2) 向上平移4个单位得到的图象解析式为________________.七. 实际应用型例7. 某油箱中存油20升,油从管道中匀速流出,流速为0.2升/分钟,则油箱中剩油量Q (升)与流出时间t (分钟)的函数关系式为___________。

练习:某人用充值50元的IC 卡从A 地向B 地打长途电话,按通话时间收费,3分钟内收费2.4元,以后每超过1分钟加收1元,若此人第一次通话t 分钟(3≤t≤45),则IC 卡上所余的费用y (元)与t (分)之间的关系式是 .八. 面积型例8. 已知直线y kx =-4与两坐标轴所围成的三角形面积等于4,则直线解析式为____________________ 。

函数解析式求法例题及练习

函数解析式求法例题及练习

函数解析式求法例题及练习函数解析式的求法一、待定系数法:在已知函数解析式的构造时,可用待定系数法。

例如,设f(x)是一次函数,且f[f(x)] = 4x + 3,求f(x)。

解:设f(x) = ax + b(a ≠ 0),则f[f(x)] = af(x) + b = a(ax + b) + b= a^2x + ab + b。

根据题意,有a^2 = 4,即a = 2或a = -2.当a= 2时,b = 1;当a = -2时,b = 3.因此,f(x) = 2x + 1或f(x) = -2x + 3.二、配凑法:已知复合函数f[g(x)]的表达式,求f(x)的解析式,常用配凑法。

但要注意所求函数f(x)的定义域不是原复合函数的定义域,而是g(x)的值域。

例如,已知f(x + 1) = x^2 + 2(x ≥ -1),求f(x)的解析式。

解:由题意可得f(x + 1) = (x + 1)^2 - 2,即f(x) = x^2 - 2(x ≥ -2)。

三、换元法:已知复合函数f[g(x)]的表达式时,还可以用换元法求f(x)的解析式。

与配凑法一样,要注意所换元的定义域的变化。

例如,已知f(x + 1) = x + 2x,求f(x + 1)。

解:令t= x + 1,则t ≥ 1,x = (t - 1)^2.由题意可得f(x + 1) = x + 2x,即f(t) = (t - 1)^2 + 2(t - 1) = t^2 - 1,因此f(x) = x^2 - 1(x ≥ 1)。

四、函数性质法:已知函数奇偶性及部分解析式,求f(x)解析式。

本类问题的解题思路是“一变”、“二写”、“三转化”。

例如,已知定义在R上的偶函数f(x),当x ≥ 2时,f(x) = x -2x^2,求f(x)解析式。

解:当x。

0,依题有f(-x) = (-x) + 2x^2 = x + 2x^2.又因为f(x)是定义在R上的偶函数,故f(-x) = f(x)。

三角函数解析式的基本方法及练习题

三角函数解析式的基本方法及练习题

三角函数解析式的基本方法及练习题概述三角函数是数学中常见的函数类型,用于研究角度和周期性现象。

本文将介绍三角函数的解析式及其基本方法,并提供一些练题供读者练运用。

正弦函数的解析式及性质正弦函数是三角函数中最常见的一种。

它的解析式表示为:$$\sin(x) = \frac{{\text{对边}}}{{\text{斜边}}}$$其中,$x$ 表示角度,$\sin(x)$ 表示正弦函数的值。

正弦函数的性质包括:- 定义域:$(-\infty, \infty)$- 值域:$[-1, 1]$- 周期:$2\pi$余弦函数的解析式及性质余弦函数也是常见的三角函数之一,它的解析式表示为:$$\cos(x) = \frac{{\text{邻边}}}{{\text{斜边}}}$$其中,$x$ 表示角度,$\cos(x)$ 表示余弦函数的值。

余弦函数的性质包括:- 定义域:$(-\infty, \infty)$- 值域:$[-1, 1]$- 周期:$2\pi$切线函数的解析式及性质切线函数也是常见的三角函数之一,它的解析式表示为:$$\tan(x) = \frac{{\text{对边}}}{{\text{邻边}}}$$其中,$x$ 表示角度,$\tan(x)$ 表示切线函数的值。

切线函数的性质包括:- 定义域:$x \neq \frac{{2n+1}}{2}\pi$,其中 $n$ 为整数- 值域:$(-\infty, \infty)$- 周期:$\pi$练题1. 求解正弦函数 $\sin(\frac{\pi}{4})$ 的值。

2. 若 $\cos(2x) = \frac{1}{2}$,求解 $x$ 的值。

3. 若 $\tan(\frac{x}{2}) = 1$,求解 $x$ 的值。

---以上就是三角函数解析式的基本方法及练习题的介绍。

希望这些内容能帮助你理解三角函数的概念和运用。

如果有任何问题,请随时与我联系。

函数解析式的8种求法

函数解析式的8种求法

函 数 解 析 式 的 八 种 求 法一.待定系数法:(已知函数类型如:一次、二次函数、反比例函数等)若已知)(x f 的结构时,可设出含参数的表达式,再根据已知条件,列方程或方程组,从而求出待定的参数,求得)(x f 的表达式。

【例1】已知函数f(x)是一次函数,且满足关系式3f(x+1)-2f(x -1)=2x +17,求f(x )的解析式。

分析:所求的函数类型已定,是一次函数。

设f(x)=ax+b(a≠0)则f(x+1)=?,f(x-1)=?解:设f(x)=ax+b(a≠0),由条件得:3[a(x+1)+b]-2[a(x-1)+b]=ax+5a+b=2x+17,∴f(x)=2x+7 【例2】求一个一次函数f(x),使得f{f[f(x)]}=8x+7分析:所求的函数类型已定,是一次函数。

设f(x)=ax+b(a≠0)则f{f[f(x)]}=f{f[ax+b]}=f[a(ax+b)+b]=? 解:设f(x)=ax+b (a≠0),依题意有a[a(ax+b)+b]+b=8x+7 ∴x a 3+b(2a +a+1)=8x+7,∴f(x)=2x+1例 设)(x f 是一次函数,且34)]([+=x x f f ,求)(x f 解:设bax x f +=)( )0(≠a ,则bab x a b b ax a b x af x f f ++=++=+=2)()()]([∴⎩⎨⎧=+=342b ab a ∴⎩⎨⎧⎩⎨⎧=-===3212b a b a 或 32)(12)(+-=+=∴x x f x x f 或 例、已知二次函数)(x f y =满足),2()2(--=-x f x f 且图象在y 轴上的截距为1,被x 轴截得的线段长为22,求函数)(x f y =的解析式。

分析:二次函数的解析式有三种形式: ① 一般式:)0()(2≠++=a c bx ax x f② 顶点式:()为函数的顶点点其中k h a kh x a x f ,,0)()(2≠++=③ 双根式:的两根是方程与其中0)(,0))(()(2121=≠--=x f x x a x x x x a x f解法1:设)0()(2≠++=a cbx ax x f ,则由y 轴上的截距为1知:1)0(=f ,即c=1 ① ∴ 1)(2++=bx ax x f由)2()2(--=-x f x f 知:1)2()2(1)2()2(22+--+--=+-+-x b x a x b x a 整理得:0)4(=-x b a , 即: 04=-b a ②由被x 轴截得的线段长为22知,22||21=-x x , 即84)()(21221221=-+=-x x x x x x . 得:814)(2=--aab .整理得: 2284a a b =- ③ 由②③得: 2,21==b a , ∴ 1221)(2++=x x x f .解法2:由)2()2(--=-x f x f 知:二次函数对称轴为2-=x ,所以设)0()2()(2≠++=a kx a x f ;以下从略。

(完整版)求函数解析式的六种常用方法

(完整版)求函数解析式的六种常用方法

求函数解析式的九种常用方法一、换元法已知复合函数 f [g (x )]的解析式,求原函数f (x )的解析式,把g (x )看成一个整体t ,进行换元,从而求出f (x )的方法。

例1已知f (x x 1)= xxx 1122,求f (x )的解析式.解:设xx 1= t ,则x=11t (t ≠1),∴f (t )= 111)11(1)11(22t t t = 1+2)1(t +(t -1)= t 2-t+1故f (x )=x 2-x+1 (x ≠1).评注: 实施换元后,应注意新变量的取值范围,即为函数的定义域.二、配凑法例2 已知f (x +1)= x+2x ,求f (x )的解析式.解:f (x +1)= 2)(x +2x +1-1=2)1(x-1,∴f (x +1)= 2)1(x-1 (x +1≥1),将x +1视为自变量x ,则有f (x )= x 2-1 (x ≥1).评注: 使用配凑法时,一定要注意函数的定义域的变化,否则容易出错.三、待定系数法已知函数解析式的类型,可设其解析式的形式,根据已知条件建立关于待定系数的方程,从而求出函数解析式的方法。

例3已知二次函数f (x )满足f (0)=0,f (x+1)= f (x )+2x+8,求f (x )的解析式. 解:设二次函数f (x )= ax 2+bx+c ,则f (0)= c= 0①f (x+1)= a 2)1(x+b (x+1)= ax 2+(2a+b )x+a+b②由f (x+1)= f (x )+2x+8 与①、②得822ba b b a 解得.7,1ba 故f (x )= x 2+7x.评注: 已知函数类型,常用待定系数法求函数解析式.四、消去法(方程组法)例4设函数f (x )满足f (x )+2 f (x1)= x (x ≠0),求f (x )函数解析式.分析:欲求f (x ),必须消去已知中的f (x1),若用x1去代替已知中x ,便可得到另一个方程,联立方程组求解即可. 解:∵f (x )+2 f (x1)= x (x ≠0)①由x1代入得2f (x )+f (x1)=x1(x ≠0)②解①②构成的方程组,得f (x )=x32-3x (x ≠0).评注:方程组法求解析式的关键是根据已知方程中式子的特点,构造另一个方程练习:已知定义在R 上的函数满足,求的解析式。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2[()]()()f f x af x b a ax b b a x ab b =+=++=++函 数 解 析 式 的 七 种 求 法一、 待定系数法:在已知函数解析式的构造时,可用待定系数法.它适用于已知所求函数类型(如一次函数,二次函数,正、反例函数等)及函数的某些特征求其解析式的题目。

其方法:已知所求函数类型,可预先设出所求函数的解析式,再根据题意列出方程组求出系数。

例1 设)(x f 是一次函数,且34)]([+=x x f f ,求)(x f .解:设b ax x f +=)()0(≠a ,则∴⎩⎨⎧=+=342b ab a , ∴⎩⎨⎧⎩⎨⎧=-===3212b a b a 或 . 32)(12)(+-=+=∴x x f x x f 或 .二、配凑法:已知复合函数[()]f g x 的表达式,求()f x 的解析式,[()]f g x 的表达式容易配成()g x 的运算形式时,常用配凑法.但要注意所求函数()f x 的定义域不是原复合函数的定义域,而是()g x 的值域. 例2 已知221)1(xx xx f +=+ )0(>x ,求 ()f x 的解析式. 解:2)1()1(2-+=+x x xx f , 21≥+xx , 2)(2-=∴x x f )2(≥x .三、换元法:已知复合函数[()]f g x 的表达式时,还可以用换元法求()f x 的解析式.用来处理不知道所求函数的类型,且函数的变量易于用另一个变量表示的问题。

它主要适用于已知复合函数的解析式,但使用换元法时要注意新元定义域的变化,最后结果要注明所求函数的定义域。

例3 已知x x x f 2)1(+=+,求)1(+x f .解:令1+=x t ,则1≥t ,2)1(-=t x .x x x f 2)1(+=+, ∴,1)1(2)1()(22-=-+-=t t t t f1)(2-=∴x x f )1(≥x , x x x x f 21)1()1(22+=-+=+∴ )0(≥x .四、代入法:求已知函数关于某点或者某条直线的对称函数时,一般用代入法.例4已知:函数)(2x g y x x y =+=与的图象关于点)3,2(-对称,求)(x g 的解析式. 解:设),(y x M 为)(x g y =上任一点,且),(y x M '''为),(y x M 关于点)3,2(-的对称点.则 ⎪⎩⎪⎨⎧=+'-=+'3222y y xx ,解得:⎩⎨⎧-='--='y y x x 64, 点),(y x M '''在)(x g y =上 ,x x y '+'='∴2.把⎩⎨⎧-='--='yy x x 64代入得:)4()4(62--+--=-x x y .整理得672---=x x y , ∴67)(2---=x x x g .五、构造方程组法:若已知的函数关系较为抽象简约,则可以对变量进行置换,设法构造方程组,通过解方程组求得函数解析式.例5 设,)1(2)()(x xf x f x f =-满足求)(x f .解 x xf x f =-)1(2)( ① 显然,0≠x 将x 换成x1,得:xx f xf 1)(2)1(=- ②解① ②联立的方程组,得:xx x f 323)(--=. 例6 设)(x f 为偶函数,)(x g 为奇函数,又,11)()(-=+x x g x f 试求)()(x g x f 和的解析式 解 )()(),()(x g x g x f x f -=-=-∴,又11)()(-=+x x g x f ① ,用x -替换x 得:11)()(+-=-+-x x g x f ,即11)()(+-=-x x g x f ② ,解① ②联立的方程组,得11)(2-=x x f ,xx x g -=21)(小结:消元法适用于自变量的对称规律。

互为倒数,如f(x)、1()f x;互为相反数,如f(x)、f(-x),通过对称代换构造一个对称方程组,解方程组即得f(x)的解析式。

六、赋值法:当题中所给变量较多,且含有“任意”等条件时,往往可以对具有“任意性”的变量进行赋值,使问题具体化、简单化,从而求得解析式.例7 已知:1)0(=f ,对于任意实数x 、y ,等式)12()()(+--=-y x y x f y x f 恒成立,求)(x f .解对于任意实数x 、y ,等式)12()()(+--=-y x y x f y x f 恒成立,不妨令0x =,则有1)1(1)1()0()(2+-=-+=+--=-y y y y y y f y f .再令 x y =- 得函数解析式为:1)(2++=x x x f . 例5:已知(0)1,()()(21),f f a b f a b a b =-=--+求()f x 。

解析:令0,a =则2()(0)(1)1f b f b b b b -=--=-+ 令b x -= 则2()1f x x x =++小结:①所给函数方程含有2个变量时,可对这2个变量交替用特殊值代入,或使这2个变量相等代入,再用已知条件,可求出未知的函数,至于取什么特殊值,根据题目特征而定。

②通过取某些特殊值代入题设中等式,可使问题具体化、简单化,从而顺利地找出规律,求出函数的解析式。

七、递推法:若题中所给条件含有某种递进关系,则可以递推得出系列关系式,然后通过迭加、迭乘或者迭代等运算求得函数解析式.例8 设)(x f 是定义在+N 上的函数,满足1)1(=f ,对任意的N b a , 都有ab b a f b f a f -+=+)()()(,求)(x f解 +∈-+=+N b a ab b a f b f a f ,)()()(,,∴不妨令1,==b x a ,得:x x f f x f -+=+)1()1()(,又1)()1(,1)1(+=-+=x x f x f f 故 ①令①式中的x =1,2,…,n -1得:(2)(1)2(3)(2)3()(1)f f f f f n f n n -=-=--=,,,将上述各式相加得:n f n f ++=-32)1()(,2)1(321)(+=+++=∴n n n n f , +∈+=∴N x x x x f ,2121)(2三、练习(一)换元法1.已知f(3x+1)=4x+3, 求f(x)的解析式. 2.若xxx f -=1)1(,求)(x f . (二).配变量法3.已知221)1(xx x x f +=-, 求)(x f 的解析式. 4.若x x x f 2)1(+=+,求)(x f .(三).待定系数法5.设)(x f 是一元二次函数, )(2)(x f x g x ⋅=,且212)()1(x x g x g x ⋅=-++,求)(x f 与)(x g .6.设二次函数)(x f 满足)2()2(--=-x f x f ,且图象在y 轴上截距为1,在x 轴上截得的线段长为22,求)(x f 的表达式.(四).解方程组法 7.设函数)(x f 是定义(-∞,0)∪(0,+ ∞)在上的函数,且满足关系式x xf x f 4)1(2)(3=+,求)(x f 的解析式.8.(1)若x xx f x f +=-+1)1()(,求)(x f . (2)若f(x)+f(1-x)=1+x,求f(x).(五).特殊值代入法9.若)()()(y f x f y x f ⋅=+,且2)1(=f ,求值)2004()2005()3()4()2()3()1()2(f f f f f f f f ++++ .10.已知:1)0(=f ,对于任意实数x 、y ,等式)12()()(+--=-y x y x f y x f 恒成立,求)(x f(六).利用给定的特性求解析式.11.设)(x f 是偶函数,当x >0时, x e x e x f +⋅=2)(,求当x <0时,)(x f 的表达式.12.对x ∈R, )(x f 满足)1()(+-=x f x f ,且当x ∈[-1,0]时, x x x f 2)(2+=求当x ∈[9,10]时)(x f 的表达式.例6、已知函数)(x f 对于一切实数y x ,都有x y x y f y x f )12()()(++=-+成立,且0)1(=f 。

(1)求)0(f 的值;(2)求)(x f 的解析式。

练习求函数的解析式例1.已知f (x)= 22x x-,求f (1x-)的解析式.(代入法/ 拼凑法)变式1.已知f (x)= 21x-,求f (2x)的解析式.变式2.已知f (x+1)=223x x++,求f (x)的解析式.例2.若f [ f (x)]=4x+3,求一次函数f (x)的解析式.(待定系数法)变式1.已知f (x)是二次函数,且()()211244f x f x x x++-=-+,求f (x).例3.已知f (x)-2 f (-x)=x,求函数f (x)的解析式.(消去法/方程组法)变式1.已知2 f (x)- f (-x)=x+1 ,求函数f (x)的解析式.变式2.已知2 f (x)-f1x⎛⎫⎪⎝⎭=3x,求函数f (x)的解析式.例4.设对任意数x,y均有()()222233f x y f y x xy y x y+=++-++,求f(x)的解析式.(赋值法 / 特殊值法)变式1.已知对一切x,y∈R,()()()21f x y f x x y y-=--+都成立,且f (0)=1,求f(x)的解析式.。

相关文档
最新文档