第一章第2-3节 几种常用的函数与反函数
微积分知识点总结(期末考研笔记)
![微积分知识点总结(期末考研笔记)](https://img.taocdn.com/s3/m/85afd37a3a3567ec102de2bd960590c69fc3d85a.png)
微积分知识点总结(期末考研笔记)一、第一章:极限与连续第一节:函数1.什么是函数?未知变量x通过某种固定的对应关系确定唯一变量y,称y是x的函数2.什么是复合函数?内层变量导出中间函数的值域,中间函数的值域满足外层函数的定义域,则外层变量是内层变量的复合函数。
3.什么是反函数?能“反”的函数,正函数能由x确定唯一的y与之对应,反函数则要求由y能确定唯一的x与之对应!4.什么是基本初等函数?幂函数,指数函数,对数函数,三角函数,反三角函数通过四则运算把基本初等函数组合构成初等函数5.特殊函数特殊定义的函数:高斯函数,符号函数,狄利克雷函数第二节:极限1.极限定义是什么?●数列极限定义(ε--N),函数极限定义(ε--δ)、(ε--X)\large \epsilon:任意小的正数,可以是是函数值与极限值之差;也可以是数列项与极限值之差。
\large δ:是邻域半径。
2.极限的性质是什么?●唯一性极限存在必唯一。
从左从右逼近相同值。
●保号性极限两侧正负相同●有界性数列极限收敛,必有界,反之不成立;连续函数闭区间有界。
●列与子列同极限数列有极限,子列也存在相同极限;反之不成立。
●极限运算性质1、满足四则运算。
2、满足复合函数嵌套极限。
3、极限存在则左右极限相等。
●极限存在性质迫(夹)敛(逼)定理。
●两个重要极限x\to0 时,\frac{sinx}{x}=1;(1+x)^{1/x} 的1/x次方极限为e●几个特殊关系式●[0,\frac {\pi}{2} ] 时,sinx <x <tanx●x>0 时,\frac{x}{(x+1)} <ln(1+x) <x3.无穷小●什么是无穷小1、定义:自变量趋向某个边界时,f(x)\to 02、无穷小是函数变化极限值,而非确定具体值,即要多小,有多小,但不是0! 3、高阶、同阶、等价无穷小●常用的等价无穷小第三节:连续与间隔1.连续的定义1、该点有定义,且该点极限值等于函数值,则该处连续2、闭区间连续,左边界函数值等于右极限,区间内各点连续,右边界函数值等于左极限2.间断定义第一类间断点:可去间断点,跳跃间断点。
高数 第一章
![高数 第一章](https://img.taocdn.com/s3/m/6d0aa3fbf90f76c661371ae2.png)
⑤奇,偶函数的运算性质 i) 有限个奇函数或偶函的和仍为奇(偶)(差不 一定)
ii) “同性”相乘为偶,“异性”相乘为奇 iii) 任意一个对称区间的函数可表达 为一个奇函数和一个偶函数之和:
xaa
ln xyln xln y(x>0, y>0), O
x ln ln xln y(x>0, y>0)。 -1 y
5 .三角函数 ysin x与ycos x的定义域均为(, ),均以 2p为周期。ysin x为奇函数,ycos x为偶函数。 它们都是有界函数。
1
y=cosx y y=sinx
1
-2
-1
0
1
2
x
4 .对数函数y=logax 对数函数是指数函数y=ax的反函数, 定义域为 (0,),图形通过(1, 0)点。当 a>1 时, 函数单调增 加;当 0<a<1时, 函数单调减少。
常用公式: x ln eln x(x>0), ln x(x>0),
2 1
1 2 3 y y=log2x y=log10x 4 x y=log0.1x y=log0.5x
第一章
第一节函数
本节重点:
1、函数定义域与表达式求法
2、函数特性(4个)判别
3、区间与邻域的概念
一、 预备知识
1.绝对值:
①运算性质: ②绝对值不等式 :
2、区间与邻域
① 区间: 是指介于某两个实数之间的全体实数. 这两个实数叫做区间的端点.
开 (a, b) x | a x b 有限区间 闭 a, b x | a x b 区间 半开半闭 a, b x a x b 半无限 a, , (, b) 无限区间 全无限 (-, +)
专升本高等数学课件 第一章
![专升本高等数学课件 第一章](https://img.taocdn.com/s3/m/3a8c4d4df8c75fbfc67db236.png)
称为由①, ②确定的复合函数, u 称为中间变量.
[说明] 通常 f 称为外层函数,g 称为内层函数.
注意:1.不是任何两个函数都可以复合成一个复 合函数的;
例如 y arcsin u, u 2 x2; y arcsin(2 x2 )
2.复合函数可以由两个以上的函数经过复 合构成.
例如 y cot x , y u, u cot v, v x .
例如,
2x 1,
f
(
x)
x2
1,
x0 x0
y x2 1
y 2x 1
• 隐函数:函数 y 与自变量 x 的对应法则用一个方程 F(x, y) 0
表示的函数,如x2 y2 1 0 .
二、函数的性质
1.函数的单调性
设函数 f ( x)的定义域为D, 区间I D, 如果对于区间 I 上任意两点 x1及 x2 , 当x1 x2时, (1) 若恒有 f ( x1 ) f ( x2 ),
o
例如,x2 y2 a2.
(x, y)
x
x
D
定义: 点集C {( x, y) y f ( x), x D} 称为
函数y f ( x)的图形.
3、函数的表示法
解析法:用解析表达式表示函数关系
表格法:用列表的方法来表示函数关系
图示法:用平面直角坐标系上的曲线来 表示函数关系
几个特殊的函数举例
反余弦函数 y arccos x
y arccos x
反正切函数 y arctan x
y arctan x
反余切函数 y arccot x
y arccot x
幂函数,指数函数,对数函数,三角函数和反 三角函数统称为基本初等函数.
1.3反函数、复合函数、初等函数
![1.3反函数、复合函数、初等函数](https://img.taocdn.com/s3/m/51bcb7728e9951e79b8927d6.png)
2e
当0 < x ≤1 时, y = ln x ∈( −∞, 0] , 则 x = ey , y ∈( − ∞, 0] 当 1< x ≤ 2 时, y = 2ex−1∈( 2, 2e] , y 则 x =1+ ln 2 , y ∈( 2, 2e] 反函数 y =
2
1 −1 o 1 2x
定义域为 ( −∞ , 1]∪( 2, 2e]
解
(1) 当 ϕ ( x ) < 1时, 或 x < 0, ϕ ( x ) = x + 2 < 1
或 x ≥ 0, ϕ ( x ) = x 2 − 1 < 1
x < −1,
0 ≤ x ≤ 2;
解 (1) 当 ϕ ( x ) < 1时, 或 x < 0, ϕ ( x ) = x + 2 < 1 或 x ≥ 0, ϕ ( x ) = x 2 − 1 < 1
由 消去 f (1), 得 x
a f ( 1 ) +b f (x) = cx x
为奇函数 .
x2 , −1≤ x < 0 2. 求 y = ln x , 0 < x ≤1 的反函数及其定义域. x−1 2e , 1< x ≤ 2 y
解: 当 −1≤ x < 0 时, y = x ∈(0, 1] , 则 x = − y , y ∈(0, 1]
u = y + y +1, (∵u > 0)
2
即 ex = y + y2 +1, 故得
x = ln( y + y2 +1),
所以,双曲正弦的反函数为
y = ln( x + x2 +1).
高数第一章初等函数
![高数第一章初等函数](https://img.taocdn.com/s3/m/28676f3eb4daa58da0114a50.png)
2)反余弦函数 余弦函数
反余弦函数
y cos x
y
1
0
2
x [0, ]
y arccos x x [1,1]
y
y [1,1]
y [0, ]
x
1
1
0
x 1
余弦函数 y cos x 在 [0, ] 上的反函数,称为
反余弦函数,记为 y arccos x x [1,1] y [0, ]
10
例2 判断函数 f ( x) ln ( x 2 1 x) 的奇偶性. 解
f x f x
ln [ x 2 1 x] [ x 2 1 x]
ln1 0
则此函数为奇函数
11
(4)三角函数 1)正弦函数的性质
y sin x
x ,
解:
x e ln x , x 0
ln x 1 0 e 1 f ln x ln x ln x e e 1
ye
y
x
1 f x x e
0 e 1
x
e 1
x
0,1
x
1 x 0 f x x e 0 x
22
反余弦函数的性质
y arccos x
x [1,1]
y
y [0, ]
(1)在[ -1, 1 ]是有界函数;
0 arccos x
(2)是非奇非偶函数;
1
0
x 1
(3)在 [1, 1] 上是单调减函数。
23
3)反正切函数 正切函数 y tan x 在 (
第一节函数
![第一节函数](https://img.taocdn.com/s3/m/d48f6e38876fb84ae45c3b3567ec102de3bddf7b.png)
则称 f 为定义在D上的函数f : D R, x y, x D
其中称D为函数的定义域,记作D(f),D中的每一个 根据映射 f 对应于一个y ,记作y =f(x),称为函数 f 在 x的函数值,全体函数值的集合称为函数的值域
单调增加 (或单调减少).
如果对于区间I上任意两点 x1, x2,当 x1 x2均 有 f ( x1 ) f ( x2 ) (或 f ( x1 ) f ( x2 )), 则称函数y=f(x) 在区间I上严格单调增加(或严格单调减少).
单调函数图形特征: 严格单调增加的函数的图形是沿x 轴正向上升的; 严格单调减少的函数的图形是沿x 轴正向下降的;
x r cos t
y
r
s
in
t
, (0 t )
三、函数的特性 1.函数的有界性 定义 设函数y=f (x)的定义域为D, 数集 X D , 如果存在正数M, 使得对于任意的 x X , 都有不等式 | f ( x ) | M 成立, 则称 f (x)在X上有界, 如果这样的M不 存在, 就称函数 f (x)在X上无界. 注: 如果M为 f (x)的一个界, 易知比 M大的任何一 个正数都是 f (x)的界. 如果f(x)在X上无界, 那么对于任 意给定的正数M, X中总有相应的点 x, 使 | f ( x ) | M
第一章 函 数
第一节 函数的概念 第二节 反函数与复合函数 第三节 初等函数 第四节 函数模型
第一节 函数的概念 一、函数的概念 二、具有特性的几类函数
第一节 函数的概念
一、函数的概念 常量:如果一个量在某过程中保持不变, 总取同
一值, 则称这种量为常量. 常量通常用a, b, c, 表示.
考研数学一、二、三大纲详解(教材分析)
![考研数学一、二、三大纲详解(教材分析)](https://img.taocdn.com/s3/m/2279c760453610661ed9f4af.png)
高等数学考研指定教材:同济大学数学系主编《高等数学》(上下册)(第六版)第一章函数与极限(7天)(考小题)学习内容复习知识点与对应习题大纲要求第一节:映射与函数(一般章节)函数的概念,常见的函数(有界函数、奇函数与偶函数、单调函数、周期函数)、复合函数、反函数、初等函数具体概念和形式.(集合、映射不用看;双曲正弦,双曲余弦,双曲正切不用看)习题1-1:4,5,6,7,8,9,13,15,16(重点)1.理解函数的概念,掌握函数的表示法,并会建立应用问题中的函数关系.2.了解函数的有界性、单调性、周期性和奇偶性.3.理解复合函数及分段函数的概念,了解反函数及隐函数的概念.4.掌握基本初等函数的性质及其图形,了解初等函数的概念.第二节:数列的极限(一般章节)数列定义,数列极限的性质(唯一性、有界性、保号性)(本节用极限定义证明极限的题目考纲不作要求,可不看,如P26例1,例2,例3,定理1,2,3的证明都不作要求,但要理解;定理4不用看)习题1-2:1第三节:函数的极限(一般章节)函数极限的基本性质(不等式性质、极限的保号性、极限的唯一性、函数极限的函数局部有界性,函数极限与数列极限的关系等)P33(例4,例5)(例7不用做,定理2,3的证明不用看,定理4不用看)习题1-3:1,2,3,45.理解极限的概念,理解函数左极限与右极限的概念,以及函数极限存在与左、右极限之间的关系.6.掌握极限的性质及四则运算法则.7.掌握极限存在的两个准则,并会利用它们求极限,掌握利用两个重要极限求极限的方法.8.理解无穷小量、无穷大量的概念,掌握无穷小量的比较方法,会用等价无穷小量求极限.第四节:无穷大与无穷小(重要)无穷小与无穷大的定义,它们之间的关系,以及与极限的关系(无穷小重要,无穷大了解)(例2不用看,定理2不用证明)习题1-4:1,6第五节:极限的运算法则(掌握)极限的运算法则(6个定理以及一些推论)(注意运算法则的前提条件是否各自极限存在)(定理1,2的证明理解,推论1,2,3,定理6的证明不用看)P46(例3,例4),P47(例6)习题1-5:1,2,3,4,5(重点)第六节:极限存在准则(理解)两个重要极限(重要)两个重要极限(要牢记在心,要注意极限成立的条件,不要混淆,应熟悉等价表达式,要会证明两个重要极限),函数极限的存在问题(夹逼定理、单调有界数列必有极限),利用函数极限求数列极限,利用夹逼法则求极限,求递归数列的极限(准则1的证明理解,第一个重要极限的证明一定要会,另一个重要极限的证明不用看,柯西存在准则不用看)P51(例1)习题1-6:1,2,4第七节:无穷小阶的概念(同阶无穷小、等价无穷小、高无穷小的比较(重要)阶无穷小、k阶无穷小),重要的等价无穷小(尤其重要,一定要烂熟于心)以及它们的重要性质和确定方法(定理1,2的证明理解)P57(例1)P58(例5)习题1-7:全做9.理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型.10.了解连续函数的性质和初等函数的连续性,理解闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理),并会应用这些性质.第八节:函数的连续性与间断点(重要,基本必考小题)函数的连续性,间断点的定义与分类(第一类间断点与第二类间断点),判断函数的连续性(连续性的四则运算法则,复合函数的连续性,反函数的连续性)和间断点的类型。
高中数学各章节知识点汇总
![高中数学各章节知识点汇总](https://img.taocdn.com/s3/m/1c6fb92277c66137ee06eff9aef8941ea76e4b98.png)
高中数学各章节知识点汇总高中数学各章节知识点汇总名目第一章集合与命题 (1)一、集合 (1)二、四种命题的形式 (2)三、充分条件与必要条件 (2)第二章别等式 (1)第三章函数的基本性质 (2)第四章幂函数、指数函数和对数函数(上) (3)一、幂函数 (3)二、指数函数 (3)三、对数 (3)四、反函数 (4)五、对数函数 (4)六、指数方程和对数方程 (4)第五章三角比 (5)一、任意角的三角比 (5)二、三角恒等式 (5)三、解歪三角形 (7)第六章三角函数的图像与性质 (8)一、周期性 (8)第七章数列与数学归纳法 (9)一、数列 (9)二、数学归纳法 (10)第八章平面向量的坐标表示 (12)第九章矩阵和行列式初步 (14)一、矩阵 (14)二、行列式 (14)第十章算法初步 (16)第十一章坐标平面上的直线 (17)第十二章圆锥曲线 (19)第十三章复数 (21)第一章集合与命题一、集合1.1 集合及其表示办法集合的概念1、把可以确切指定的一些对象组成的整体叫做集合简称集2、集合中的各个对象叫做那个集合的元素3、假如a是集合A的元素,就记做a∈A,读作“a属于A”4、假如a别是集合A的元素,就记做a ? A,读作“a别属于A”5、数的集合简称数集:全体自然数组成的集合,即自然数集,记作N别包括零的自然数组成的集合,记作N*全体整数组成的集合,即整数集,记作Z全体有理数组成的集合,即有理数集,记作Q全体实数组成的集合,即实数集,记作R我们把正整数集、负整数集、正有理数、负有理数、正实数集、负实数集表示为Z+、Z-、Q+、Q-、R+、R-6、把含有有限个数的集合叫做有限集、含有无限个数的集合叫做无限极7、空集是指别用含有任何元素的集合,记作?集合的表示办法1、在大括号内先写出那个集合的元素的普通形式,再画一条竖线,在竖线之后写上集合中元素所共同具有的特性,这种集合的表示办法叫做描述法1.2 集合之间的关系子集1、关于两个集合A和B,假如集合A中任何一具元素都属于集合B,这么集合A叫做集合B 的子集,记做A?B或B?A,读作“A包含于B”或“B包含A”2、空集包含于任何一具集合,空集是任何集合的子集3、用平面区域来表示集合之间关系的办法叫做集合的图示法,所用图叫做文氏图相等的集合1、关于两个集合A和B,假如A?B,且B?A,这么叫做集合A与集合B相等,记作“A=B”,读作“集合A等于集合B”,假如两个集合所含元素彻底相同,这么这两个集合相等1.3 集合的运算交集1、由交集A和交集B的所有公共元素的集合叫做A与B的交集,记作A∩B,读作A交B并集1、由所有属于集合A或者属于集合B的元素组成的集合叫做集合A、B 的并集,记作A∪B,读作A并B补集1、在研究集合与集合之间的关系时,这些集合往往是某个给定集合的子集,那个确定的集合叫做全集2、U是全集,A是U的子集。
最新高中数学知识点总结(最全版)
![最新高中数学知识点总结(最全版)](https://img.taocdn.com/s3/m/35133fb1998fcc22bcd10d89.png)
高中数学 必修1知识点1 第一章 函数概念2 (1)函数的概念3 ①设A 、B 是两个非空的数集,如果按照某种对应法则f ,对于集合A 中任何一个数x ,在4 集合B 中都有唯一确定的数()f x 和它对应,那么这样的对应(包括集合A ,B 以及A 到B 的对5 应法则f )叫做集合A 到B 的一个函数,记作:f A B →.6 ②函数的三要素:定义域、值域和对应法则.7 ③只有定义域相同,且对应法则也相同的两个函数才是同一函数. 8 (2)区间的概念及表示法9 ①设,a b 是两个实数,且a b <,满足a x b ≤≤的实数x 的集合叫做闭区间,记做[,]a b ;满足10 a x b <<的实数x 的集合叫做开区间,记做(,)a b ;满足a x b ≤<,或a x b <≤的实数x 的集合11 叫做半开半闭区间,分别记做[,)a b ,(,]a b ;满足,,,x a x a x b x b ≥>≤<的实数x 的集合分别记12 做[,),(,),(,],(,)a a b b +∞+∞-∞-∞.13注意:对于集合{|}x a x b <<与区间(,)a b ,前者a 可以大于或等于b ,而后者必须14 a b <,(前者可以不成立,为空集;而后者必须成立). 15 (3)求函数的定义域时,一般遵循以下原则:16 ①()f x 是整式时,定义域是全体实数.17②()f x 是分式函数时,定义域是使分母不为零的一切实数.18 ③()f x 是偶次根式时,定义域是使被开方式为非负值时的实数的集合.19 ④对数函数的真数大于零,当对数或指数函数的底数中含变量时,底数须大于零且不等于1. 20 ⑤tan y x =中,()π⑥零(负)指数幂的底数不能为零.22 ⑦若()f x 是由有限个基本初等函数的四则运算而合成的函数时,则其定义域一般是各基本初23 等函数的定义域的交集.24 ⑧对于求复合函数定义域问题,一般步骤是:若已知()f x 的定义域为[,]a b ,其复合函数25 [()]f g x 的定义域应由不等式()a g x b ≤≤解出.26 ⑨对于含字母参数的函数,求其定义域,根据问题具体情况需对字母参数进行分类讨论. 27 ⑩由实际问题确定的函数,其定义域除使函数有意义外,还要符合问题的实际意义. 28 (4)求函数的值域或最值29 求函数最值的常用方法和求函数值域的方法基本上是相同的.事实上,如果在函数的值域中30 存在一个最小(大)数,这个数就是函数的最小(大)值.因此求函数的最值与值域,其实质31 是相同的,只是提问的角度不同.求函数值域与最值的常用方法:32 ①观察法:对于比较简单的函数,我们可以通过观察直接得到值域或最值.33 ②配方法:将函数解析式化成含有自变量的平方式与常数的和,然后根据变量的取值范围34 确定函数的值域或最值.35 ③判别式法:若函数()y f x =可以化成一个系数含有y 的关于x 的二次方程36 2()()()0a y x b y x c y ++=37则在()0a y ≠时,由于,x y 为实数,故必须有2()4()()0b y a y c y ∆=-⋅≥,从而确定函数的值38 域或最值.39 ④不等式法:利用基本不等式确定函数的值域或最值.40 ⑤换元法:通过变量代换达到化繁为简、化难为易的目的,三角代换可将代数函数的最值问41 题转化为三角函数的最值问题.42 ⑥反函数法:利用函数和它的反函数的定义域与值域的互逆关系确定函数的值域或最值. 43 ⑦数形结合法:利用函数图象或几何方法确定函数的值域或最值. 44 ⑧函数的单调性法.45(5)函数的表示方法4647表示函数的方法,常用的有解析法、列表法、图象法三种.48解析法:就是用数学表达式表示两个变量之间的对应关系.列表法:就是列出表格来表示两49个变量之间的对应关系.图象法:就是用图象表示两个变量之间的对应关系.50(6)映射的概念51①设A、B是两个集合,如果按照某种对应法则f,对于集合A中任何一个元素,在集合B52中都有唯一的元素和它对应,那么这样的对应(包括集合A,B以及A到B的对应法则f)叫53做集合A到B的映射,记作:f A B→.54②给定一个集合A到集合B的映射,且,∈∈.如果元素a和元素b对应,那么我们把a Ab B55元素b叫做元素a的象,元素a叫做元素b的原象.56(6)函数的单调性57①定义及判定方法②在公共定义域内,两个增函数的和是增函数,两个减函数的和是减函数,增函数减去一58 个减函数为增函数,减函数减去一个增函数为减函数.59 ③对于复合函数[()]y f g x =,令()u g x =,若()y f u =为增,()u g x =为增,则[()]y f g x =60 为增;若()y f u =为减,()u g x =为减,则[()]y f g x =为增;若()y f u =为增,()u g x =为减,61则[()]y f g x =为减;若()y f u =为减,()u g x =为增,则[()]y f g x =为减.62 (7)打“√”函数()(0)af xx a x=+>的图象与性质63()f x 分别在(,]a -∞-、[,)a +∞上为增函数,64 分别在[,0)a -、(0,]a 上为减函数. 65 (8)最大(小)值定义66 ①一般地,设函数()y f x =的定义域为I ,如果存67在实数M 满足:(1)对于任意的x I ∈,都有()f x M ≤;68 (2)存在0x I ∈,使得0()f x M =.那么,我们称M 是函数()f x 的最大值,记作max ()f x M =.69②一般地,设函数()y f x =的定义域为I ,如果存在实数m 满足:(1)对于任意的x I ∈,都70 有()f x m ≥;(2)存在0x I ∈,使得0()f x m =.那么,我们称m 是函数()f x 的最小值,记作71 max ()f x m =.72 (9)函数的奇偶性73 ①定义及判定方法74函数的性 质定义图象判定方法函数的奇偶性如果对于函数f(x)定义域内任意一个x ,都有f(..-.x)=...-.f(x)....,那么函数f(x)叫做奇.函数...(1)利用定义(要先判断定义域是否关于原点对称)(2)利用图象(图象关于原点对称)如果对于函数f(x)定义域内任意一个x ,都有f(..-.x)=f(x).......,那么函数f(x)叫做偶函..数.. (1)利用定义(要先判断定义域是否关于原点对称)(2)利用图象(图象关于y 轴对称)②若函数()f x 为奇函数,且在0x =处有定义,则(0)0f =.75 ③奇函数在y 轴两侧相对称的区间增减性相同,偶函数在y 轴两侧相对称的区间增减性相76 反.77 ④在公共定义域内,两个偶函数(或奇函数)的和(或差)仍是偶函数(或奇函数),两个78 偶函数(或奇函数)的积(或商)是偶函数,一个偶函数与一个奇函数的积(或商)是奇函数. 79 第二章 基本初等函数(Ⅰ) 80 〖2.1〗指数函数81 【2.1.1】指数与指数幂的运算 82 (1)根式的概念83 ①如果,,,1n x a a R x R n =∈∈>,且n N +∈,那么x 叫做a 的n 次方根.当n 是奇数时,a 的n 次84 n a n 是偶数时,正数a 的正的n n a 负的n 次方根用符85号0的n 次方根是0;负数a 没有n 次方根.86 n 叫做根指数,a 叫做被开方数.当n 为奇数时,a 为任意实数;87 当n 为偶数时,0a ≥.88 ③根式的性质:n a =;当n 为奇数时,a =;当n 为偶数时,89 (0)|| (0) a a a a a ≥⎧==⎨-<⎩. 90(2)分数指数幂的概念91 ①正数的正分数指数幂的意义是:0,,,m na a m n N +=>∈且1)n >.0的正分数指数幂等于92 0.93②正数的负分数指数幂的意义是: 1()0,,,mm n n aa m n N a -+==>∈且1)n >.0的负分数94 指数幂没有意义. 注意口诀:底数取倒数,指数取相反数. 95 (3)分数指数幂的运算性质96 ①(0,,)r s r s a a a a r s R +⋅=>∈ ②()(0,,)r s rs a a a r s R =>∈ 97③()(0,0,)r r r ab a b a b r R =>>∈ 98 【2.1.2】指数函数及其性质 99 (4)指数函数100101 〖2.2〗对数函数102 【2.2.1】对数与对数运算 103 (1)对数的定义104 ①若(0,1)x a N a a =>≠且,则x 叫做以a 为底N 的对数,记作log a x N =,其中a 叫做底数,N105叫做真数. 106 ②负数和零没有对数.107 ③对数式与指数式的互化:log (0,1,0)x a x N a N a a N =⇔=>≠>. 108 (2)几个重要的对数恒等式109 log 10a =,log 1a a =,log b a a b =.110 (3)常用对数与自然对数111 常用对数:lg N ,即10log N ;自然对数:ln N ,即log e N (其中 2.71828e =…). 112(4)对数的运算性质 如果0,1,0,0a a M N >≠>>,那么113①加法:log log log ()a a a M N MN += ②减法:log log log a a a MM N N-= 114③数乘:log log ()n a a n M M n R =∈ ④log a N a N =115⑤log log (0,)b n a a nM M b n R b =≠∈ ⑥换底公式:log log (0,1)log b a bN N b b a =>≠且 116【2.2.2】对数函数及其性质 117 (5)对数函数118(6)反函数的概念119 设函数()y f x =的定义域为A ,值域为C ,从式子()y f x =中解出x ,得式子()x y ϕ=.如果120 对于y 在C 中的任何一个值,通过式子()x y ϕ=,x 在A 中都有唯一确定的值和它对应,那么式121 子()x y ϕ=表示x 是y 的函数,函数()x y ϕ=叫做函数()y f x =的反函数,记作1()x f y -=,习惯122 上改写成1()y f x -=. 123 (7)反函数的求法124 ①确定反函数的定义域,即原函数的值域;②从原函数式()y f x =中反解出1()x f y -=; 125③将1()x f y -=改写成1()y f x -=,并注明反函数的定义域. 126 (8)反函数的性质127 ①原函数()y f x =与反函数1()y f x -=的图象关于直线y x =对称.128②函数()y f x =的定义域、值域分别是其反函数1()y f x -=的值域、定义域. 129③若(,)P a b 在原函数()y f x =的图象上,则'(,)P b a 在反函数1()y f x -=的图象上. 130 ④一般地,函数()y f x =要有反函数则它必须为单调函数. 131 〖2.3〗幂函数 132 (1)幂函数的定义133一般地,函数y xα134=叫做幂函数,其中x为自变量,α是常数.135136137138139140141142143144145146147148149150151152153154155156(3)幂函数的性质①图象分布:幂函数图象分布在第一、二、三象限,第四象限无图象.幂函数是偶函数时,图象157 分布在第一、二象限(图象关于y 轴对称);是奇函数时,图象分布在第一、三象限(图象关于原点158 对称);是非奇非偶函数时,图象只分布在第一象限.159 ②过定点:所有的幂函数在(0,)+∞都有定义,并且图象都通过点(1,1).160③单调性:如果0α>,则幂函数的图象过原点,并且在[0,)+∞上为增函数.如果0α<,则幂函161 数的图象在(0,)+∞上为减函数,在第一象限内,图象无限接近x 轴与y 轴.162④奇偶性:当α为奇数时,幂函数为奇函数,当α为偶数时,幂函数为偶函数.当qpα=(其中163 ,p q 互质,p 和q Z ∈),若p 为奇数q 为奇数时,则q py x =是奇函数,若p 为奇数q 为偶数时,则164 qpy x =是偶函数,若p 为偶数q 为奇数时,则q py x =是非奇非偶函数.165 ⑤图象特征:幂函数,(0,)y x x α=∈+∞,当1α>时,若01x <<,其图象在直线y x =下方,若1x >,166 其图象在直线y x =上方,当1α<时,若01x <<,其图象在直线y x =上方,若1x >,其图象在直167 线y x =下方.168 〖补充知识〗二次函数 169 (1)二次函数解析式的三种形式170 ①一般式:2()(0)f x ax bx c a =++≠②顶点式:2()()(0)f x a x h k a =-+≠③两根式:171 12()()()(0)f x a x x x x a =--≠(2)求二次函数解析式的方法172 ①已知三个点坐标时,宜用一般式.173 ②已知抛物线的顶点坐标或与对称轴有关或与最大(小)值有关时,常使用顶点式. 174 ③若已知抛物线与x 轴有两个交点,且横线坐标已知时,选用两根式求()f x 更方便. 175 (3)二次函数图象的性质176①二次函数2()(0)f x ax bx c a =++≠的图象是一条抛物线,对称轴方程为,2bx a=-顶点坐标是177 24(,)24b ac b a a--. 178②当0a >时,抛物线开口向上,函数在(,]2b a -∞-上递减,在[,)2b a -+∞上递增,当2bx a=-时,179 2min 4()4ac b f x a -=;当0a <时,抛物线开口向下,函数在(,]2b a -∞-上递增,在[,)2ba -+∞上递减,180当2bx a=-时,2max 4()4ac b f x a -=.181③二次函数2()(0)f x ax bx c a =++≠当240b ac ∆=->时,图象与x 轴有两个交点182 ********(,0),(,0),||||||M x M x M M x x a =-=. 183(4)一元二次方程20(0)ax bx c a ++=≠根的分布184 一元二次方程根的分布是二次函数中的重要内容,这部分知识在初中代数中虽有所涉及,但185 尚不够系统和完整,且解决的方法偏重于二次方程根的判别式和根与系数关系定理(韦达定理)186 的运用,下面结合二次函数图象的性质,系统地来分析一元二次方程实根的分布.187 设一元二次方程20(0)ax bx c a ++=≠的两实根为12,x x ,且12x x ≤.令2()f x ax bx c =++,从188以下四个方面来分析此类问题:①开口方向:a ②对称轴位置:2bx a=- ③判别式:∆ ④端点函189 数值符号. 190 ①k <x 1≤x 2 ⇔191192 ②x 1≤x 2<k ⇔193194 ③x 1<k <x 2 ⇔ af (k )<0195196 ④k 1<x 1≤x 2<k 2 ⇔ 197198199 ⑤有且仅有一个根x 1(或x 2)满足k 1<x 1(或x 2)<k 2 ⇔f (k 1)f (k 2)<0,并同时考虑200 f (k 1)=0或f (k 2)=0这两种情况是否也符合201202203⑥k 1<x 1<k 2≤p 1<x 2<p 2 ⇔ 204 此结论可直接由⑤推出.205 (5)二次函数2()(0)f x ax bx c a =++≠在闭区间[,]p q 上的最值206 设()f x 在区间[,]p q 上的最大值为M ,最小值为m ,令01()2x p q =+.207 (Ⅰ)当0a >时(开口向上) 208 ①若2b p a -<,则()m f p = ②若2b p q a ≤-≤,则()2b m f a=- ③若2b q a ->,则()m f q = 209210 211 212 213 214 215 216 217 ①若02b x a -≤,则()M f q =b ()f p 218 219 220 221 2222230x 0x225226 (Ⅱ)当0a <时(开口向下) 227 ①若2b p a -<,则()M f p = ②若2b p q a ≤-≤,则()2b M f a=- ③若2bq a ->,则()M f q = 228229 230 231 232 233 234235 236 237 ①若02b x a -≤,则()m f q = ②02b xa->,则()m f p =.238 239 240 241 242 243244ff fx246 第三章 函数的应用247 一、方程的根与函数的零点248 1、函数零点的概念:对于函数))((D x x f y ∈=,把使0)(=x f 成立的实数x 叫做函数249 ))((D x x f y ∈=的零点。
高等数学教材求反函数
![高等数学教材求反函数](https://img.taocdn.com/s3/m/a0b4225d11a6f524ccbff121dd36a32d7375c7f5.png)
高等数学教材求反函数在高等数学中,求反函数是一个重要而常见的问题。
反函数是指当一个函数与其逆函数互为输入输出关系时,它们互为反函数。
求反函数通常涉及到函数的定义域、值域、映射关系和性质等方面的内容。
1. 定义和性质反函数是指,对于给定的函数f(x),若存在一个函数g(x),满足f(g(x)) = x,且g(f(x)) = x,则g(x)就是f(x)的反函数。
反函数可以看作是正向函数的逆操作。
反函数的存在性有一定的限制。
一般情况下,函数f(x)的定义域、值域以及函数值的单调性是求反函数存在的基本条件。
例如,对于一个定义域为实数集的单调递增函数,它的反函数是存在的。
反之,如果函数在定义域内不是单调的,那么它的反函数可能不存在。
反函数和原函数之间有一些重要的性质。
首先,反函数和原函数的定义域和值域是相互交换的。
其次,反函数的图像与原函数的图像关于y=x对称。
此外,反函数和原函数的复合函数为自身。
2. 求解步骤和方法为了求解一个函数的反函数,我们有以下一般的步骤和方法:(1)确定函数的定义域和值域,确保函数的反函数存在。
(2)将原函数表示为y=f(x)的形式。
(3)将f(x)中的x和y互换位置,得到x=f(y)。
(4)解方程x=f(y),得到y=g(x),即反函数的表达式。
(5)确定反函数的定义域和值域,以及其它性质。
需要注意的是,在求解反函数的过程中,有时可能需要借助代数运算、函数性质、图像变换等方法来简化计算,并确保计算的准确性和合理性。
3. 反函数的应用反函数在数学中有广泛的应用。
它可以用于解决一些实际问题,如函数拟合、方程求解、概率统计等。
在函数拟合中,通过求解原函数的反函数,我们可以得到逆向的输入输出关系。
这对于一些经验模型的分析和验证非常有用。
在方程求解中,反函数可以用于解决一些难以直接求解的方程。
通过对原函数进行变形,将方程转化为求解反函数的问题,从而简化解题步骤。
在概率统计中,反函数可以用于求解累积分布函数的反函数,从而得到概率密度函数。
反函数常用知识点总结
![反函数常用知识点总结](https://img.taocdn.com/s3/m/c3448aa2bb4cf7ec4afed0d8.png)
反函数常用知识点总结-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN反函数定义一般地,设函数y=f(x)(x∈A)的值域是C,若找得到一个函数g(y)在每一处g(y)都等于x,这样的函数x= g(y)(y∈C)叫做函数y=f(x)(x∈A)的反函数,记作y=f -1 (x) 。
反函数y=f -1 (x)的定义域、值域分别是函数y=f(x)的值域、定义域。
(不求过深理解)引申一般地,如果x与y关于某种对应关系f(x)相对应,y=f(x),则y=f (x)的反函数为y=f -1(x)。
存在反函数(默认为单值函数)的条件是原函数必须是一一对应的(不一定是整个数域内的)。
注意:上标"−1"指的并不是幂。
在微积分里,f (n)(x)是用来指f的n次微分的。
若一函数有反函数,此函数便称为可逆的(invertible)。
性质(1)函数f(x)与它的反函数f-1(x)图象关于直线y=x对称;图1 函数及其反函数的图形关于直线y=x对称(2)函数存在反函数的充要条件是,函数的定义域与值域是一一映射;(3)一个函数与它的反函数在相应区间上单调性一致;(4)大部分偶函数不存在反函数(当函数y=f(x),定义域是{0} 且 f(x)=C (其中C是常数),则函数f(x)是偶函数且有反函数,其反函数的定义域是{C}, 值域为{0} )。
奇函数不一定存在反函数,被与y轴垂直的直线截时能过2个及以上点即没有反函数。
若一个奇函数存在反函数,则它的反函数也是奇函数。
(5)严格增(减)的函数一定有严格增(减)的反函数;(6)反函数是相互的且具有唯一性;(7)定义域、值域相反,对应法则互逆(三反);(8)原函数一旦确定,反函数即确定(三定)(在有反函数的情况下,即满足(2));(9)反函数的导数关系:如果x=f(y)在区间I上单调,可导,且f'(y)≠0,那么它的反函数y=f'(x)在区间S={x|x=f(y),y属于I }内也可导,且[f'(x)]'=1\[f'(x)]'。
反函数知识点总结
![反函数知识点总结](https://img.taocdn.com/s3/m/e88d9e870129bd64783e0912a216147917117ed4.png)
反函数知识点总结
反函数知识点总结
函数y=f(x)的定义域和值域,分别是反函数y=f-1(x)的值域和定义域,
例如:f(x)的定义域是[-1,+∞],值域是[0,+∞),它的反函数定义域为[0,+∞),值域是[-1,+∞)。
2.反函数存在的条件
按照函数定义,y=f(x)定义域中的每一个元素x,都唯一地对应着值域中的元素y,如果值域中的每一个元素y也有定义域中的唯一的一个元素x和它相对应,即定义域中的元素x和值域中的元素y,通过对应法则y=f(x)存在着一一对应关系,那么函数y=f(x)存在反函数,否则不存在反函数.例如:函数y=x2,x∈R,定义域中的元素±1,都对应着值域中的同一个元素1,所以,没有反函数.而y=x2, x≥1表示定义域到值域的一一对应,因而存在反函数.
3.函数与反函数图象间的关系
函数y=f(x)和它的反函数y=f-1(x)的图象关于y=x对称.若点(a,b)在y=f(x)的图象上,那么点(b,a)在它的反函数y=f-1(x)的图象上.4.反函数的几个简单命题
(1)一个奇函数y=f(x)如果存在反函数,那么它的反函数y=f-1(x)一定是奇函数.
(2)一个函数在某一区间是(减)函数,并且存在反函数,那么它的反函数在相应区间也是增(减)函数.
高中数学反函数知识点总结(二)。
微积分(函数)
![微积分(函数)](https://img.taocdn.com/s3/m/0070820076a20029bc642dc6.png)
定义: 点集C {( x, y) y f ( x), x D} 称为
函数y f ( x)的图形.
3.几个特殊的函数举例
(1) 符号函数
1 y sgn x 0
1
当x 0 当x 0 当x 0
x sgn x x
y
1
o•
x
1
(2) 取整函数 y=[x]
[x]表示不超过x 的最大整数
f ( x) g( x) h( x) . 分析 如果这样的 g( x) 和 h( x) 存在,于是有
全体实数.这两个实数叫做区间的端点.
a, b R,且a b. { x a x b} 称为开区间, 记作 (a, b)
oa
b
x
{ x a x b} 称为闭区间, 记作[a, b]
oa
b
x
{ x a x b} 称为半闭半开区间, 记作[a, b) { x a x b} 称为半开半闭区间, 记作 (a, b] [a,) { x a x} (, b) { x x b}有限区间
例3 求函数 y e x 1 的反函数 .
解 Qex y2 1 x ln( y2 1)
y e x 1 1,即原函数的值域为 (1 , )
反函数为 y ln( x2 1)
D 1 (1 , ) f
例4. 求 y
x 2, 1 x 0ln xBiblioteka , 0 x 1 的反函数及其定义域.
1
1 t
1 1 , 0 t 1
f
(
1 t
)
t
2, t1
t 0时
函数无定义
t
第三节 复合函数与反函数
一、复合函数 二、反函数 三、函数的运算
一、复合函数(compound function)
高等数学反函数
![高等数学反函数](https://img.taocdn.com/s3/m/d56fddb9690203d8ce2f0066f5335a8102d266e9.png)
高等数学反函数高等数学反函数是一个重要的概念,主要用于解决一些复杂的数学问题。
在本篇文章中,我们将分步骤阐述高等数学反函数的相关知识,以便读者更好地了解和掌握它。
1. 什么是反函数首先,我们需要理解什么是反函数。
简单来说,如果一个函数将一个数映射到另一个数,那么它的反函数将这个过程反过来,将后者映射回前者。
例如,如果有一个函数f(x) = 2x,那么它的反函数g(x) = x/2。
2. 如何求反函数的方法接下来,我们需要了解如何求反函数。
通常的方法是通过交换函数中自变量和因变量的位置,并将结果解出自变量。
例如,如果有一个函数f(x) = x²,我们可以令y = x²,然后解出x的值,即x =±√y,因此它的反函数为g(x) = ±√x。
3. 反函数的定义域和值域在学习反函数时,还需要了解反函数的定义域和值域。
一般来说,反函数的定义域和原函数的值域相同,而反函数的值域和原函数的定义域相同。
例如,如果有一个函数f(x) = 2x,那么它的反函数g(x)的定义域和值域分别为R,而g(x)的值域和f(x)的定义域也分别为R。
4. 反函数的图像最后,在学习反函数时,我们需要了解反函数的图像。
一般来说,反函数的图像是原函数图像关于y = x直线对称得到的。
例如,如果有一个函数f(x) = x²,那么它的反函数g(x)的图像是f(x)的图像关于y = x直线对称后得到的。
总之,高等数学反函数是一个非常重要的概念,在数学的许多领域都有应用。
通过本文的介绍,读者可以更好地了解和掌握反函数的相关知识,希望本文对大家有所帮助。
《高中数学《反函数》课件
![《高中数学《反函数》课件](https://img.taocdn.com/s3/m/cf88403e8f9951e79b89680203d8ce2f01666512.png)
奇函数的图像关于原点对称, 偶函数的图像关于y轴对称。
奇偶性的变化规律可以通过观 察图像来理解。
04 反函数在解题中的应用
利用反函数解决方程问题
总结词
通过反函数,可以将复杂的方程问题转化为求函数的值域或定义域问题,简化解 题过程。
详细描述
在解决方程问题时,我们可以利用反函数的概念,将原方程转化为求反函数的值 域或定义域的问题。通过确定反函数的值域或定义域,可以找到原方程的解。这 种方法在处理一些复杂的方程问题时非常有效。
总结词
理解反函数的实际应用 和复杂函数的反函数求
法
题目1
已知函数$f(x) = sqrt{x}$,求$f^{-
1}(x)$。
题目2
已知函数$f(x) = log_2(x)$,求$f^{-
1}(x)$。
题目3
已知函数$f(x) = x^4 3x^2 + 2$,求$f^{-
1}(x)$。
综合练习题
总结词
利用反函数解决不等式问题
总结词
反函数可以帮助我们将不等式问题转化为求解函数的值域或定义域问题,从而简化解题过程。
详细描述
在解决不等式问题时,我们可以利用反函数的概念,将原不等式转化为求反函数的值域或定义域的问题。通过确 定反函数的值域或定义域,可以找到满足不等式的解。这种方法在处理一些复杂的不等式问题时非常实用。
综合运用反函数的知识解决复杂问题
题目2
已知函数$f(x) = x^2 - 2x$和$g(x) = frac{1}{x}$,求$(f circ g)^{-1}(x)$。
题目1
已知函数$f(x) = sqrt{x}$和$g(x) = log_2(x)$,求$(f circ g)^{-1}(x)$。
反函数常用知识点总结
![反函数常用知识点总结](https://img.taocdn.com/s3/m/6b65c8b4951ea76e58fafab069dc5022aaea46b9.png)
反函数常用知识点总结一、函数的定义及性质回顾1. 函数的定义:设A、B是非空集合,如果按照某种确定的对应关系f,对于集合A的每一个元素x,都有唯一确定的元素y与之对应,则称f是从A到B的一个函数,记作f:A→B。
2. 反函数的定义:设f:A→B是一个函数,如果对于每个y∈B,都存在唯一的x∈A,使得f(x)=y,那么就称f的反函数。
二、反函数的求解方法1. 基本方法:设f(x) = y,则反函数为x = f^(-1)(y)。
2. 对称法则:交换x和y,即将f(x) = y改写为f^(-1)(y) = x。
三、反函数的性质1. 定理1:若f是从A到B的一对一函数,则它的反函数存在且也是从B到A的一对一函数。
证明:由f是一对一函数,对于每个y∈B,恰有一个x∈A使得f(x)=y。
令x=f^(-1)(y),则有f(x)=y,由此可知f^(-1)(y)=x。
因此,f^(-1)(y)是从B到A的一对一函数。
2. 定理2:若f是从A到B的一个函数,并且f^(-1)是从B到A的一对一函数,则f是一个一对一函数。
证明:设f(x₁)=f(x₂),则有f^(-1)(f(x₁))=f^(-1)(f(x₂)),即x₁=x₂。
因此,f是一个一对一函数。
3. 定理3:若f是从A到B的一个函数,并且f^(-1)是从B到A的一个一对一函数,则f^(-1)是从B到A的满射。
证明:设y∈B,由f^(-1)是一对一函数可知,存在一个唯一的x∈A使得f^(-1)(y)=x。
因此,f^(-1)是从B到A的满射。
四、反函数的图像及定义域、值域的关系1. 反函数的图像:反函数f^(-1)的图像是由函数f的图像关于直线y=x作镜像而成的。
2. 定义域和值域的关系:设f:A→B是一个函数,则f的定义域是A,值域是f(A)。
而f的反函数f^(-1)的定义域是B,值域是f^(-1)(B)。
五、反函数与反比例函数的关系1. 反比例函数的性质:反比例函数y=k/x的反函数是y=k/x。
第一章第2-3节 几种常用的函数与反函数
![第一章第2-3节 几种常用的函数与反函数](https://img.taocdn.com/s3/m/d1cd7a6d1711cc7931b716ea.png)
2 )= 2 4
2 3 练习:arcsin0= ,arcsin = ,arcsin = ,arcsin1= 2 2 3 1 ( ) arcsin = ,arcsin(- )= ,arcsin(-1)= 2 2
五、反三角函数 (二)反余弦函数
1、定义:函数 y=cosx,x
2、反函数的图像
y
原函数y f ( x)
Q ( b, a ) P (a , b)
反函数y f 1 ( x)
o
x
3、几点说明: ①原函数 y=f(x)与反函数 y=f 1 (x)是相互的; ②只有单值对应才有反函数; ③原函数 y=f(x)的定义域是反函数 y=f 1 (x)的值域, 原函数 y=f(x)的值域是反函数 y=f 1 (x)的定义域; 求原函数的值域可以通过求其反函数的定义域得到 ④原函数 y=f(x)与反函数 y=f 1 (x)的图像关于直线 y=x 对称; ⑤原函数 y=f(x)与反函数 y=f 1 (x)具有相同的单调性;
1 x
解:由 y 1 x 得, x
1 x
y 1 y 1
把 x、y 对调, 得函数 y 反函数的定义域为 x x R且x 1
1 x x 1 , x R且x 1 的反函数为: y 1 x x 1
一、幂函数
1 、 定义: 称函数y x (常数 0, R)为幂函数
1 例题:求①arccos , 2
1 cos = 2 ,且 3 3
②arccos (
0,
2 ) 2 1 arccos 2 = 3
3 cos = 4
2 3 ,且 0, 2 4
2 3 )= 2 4
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2
,
2
)上的反函数
称为反正切函数,记作 y=arctanx。
2、反正切函数的图像
3、性质
①y=arctanx 的定义域 D= R,值域 M=( , ) ; 2 2
②y=arctanx 在 R 上是单调增函数; ③y=arctanx 是奇函数,即 arctan(-x)=-arctanx, x R,其图像 关于原点对称。 ;
0, 上的反函
数称为反余弦函数,记作 y=arccosx。
2、反余弦函数的图像
3、性质
①y=arccosx 的定义域 D=[-1,1],值域 M=
0, ;
②y=arccosx 在区间[-1,1]上是单调减函数,最大值为 ,最小值 为 0; ③y=arccosx 既不是奇函数也不是偶函数; ④y=arccosx 是有界的,即 arccos x ; ⑤arccos(-x)= -arccosx。
④y=arctanx 是有界的,即 arctan x ; 2
五、反三角函数 (三)反余切函数
1、定义:函数 y=cotx,x (0, )上的反函数称为 反余切函数,记作 y=arccotx。
2、反余切函数的图像
3、性质
①y=arccotx 的定义域 D= R,值域 M=(0, ) ; ②y=arccotx 在 R 上是单调减函数; ③y=arccotx 既不是奇函数也不是偶函数; ④y=arccotx 是无界的。
,arccot 3 =
, ,
,arccot(- 3 )=
练习答案 arctan0= 0 ,arctan
3 = 3 6
,arctan 3 =
3
2、余弦函数的图像
y cos x
3、性质
(1)y=cosx 的定义域为 R,值域为[-1,1]; (2)y=cosx 在 R 内有界,即 cosx 1 ; (3)y=cosx 是偶函数,即 cos(-x)=cosx,其图像关于 y 轴对称; (4)y=cosx 是周期函数,最小正周期 T=2 , 即 cos(x+2k )=cosx,k Z; (5)当 k Z 时,y=cosx 在区间[ 2k , 2k ]上是单调递减的, 在区间[ 2k , 2 2k ]上是单调递增的; 当 x= 2k , k Z 时,y 取得最大值,y max = 1, 当 x= 2k , k Z 时,y 取得最小值,y min =- 1,
1 解: y 2 x 3 解出x得 x ( y 3). 2
函数y=2x–3的反函数为
1 y ( x 3) 2
y
y 2x 3
y x
1 y ( x 3) 2
0
x
练习: 求函数 y 1 x , x R且x 1 的反函数, 并求反函数的定义域。
1 2
y=x 的定义域为 x x 0
1 2
(2)当 >0 时,y=x 在(0, )是单调增加的。 当 <0 时,y=x 在(0, )是单调减少的。 (3)幂函数的奇偶性是由 的值确定的,是无界的, 没有周期性。
二、指数函数
1 、 定义: 函数y a x (a 0, a 1)叫做指数函数
1 x
解:由 y 1 x 得, x
1 x
y 1 y 1
把 x、y 对调, 得函数 y 反函数的定义域为 x x R且x 1
1 x x 1 , x R且x 1 的反函数为: y 1 x x 1
一、幂函数
1 、 定义: 称函数y x (常数 0, R)为幂函数
2、图像:
y a x (0 a 1)
y ax
(a 1)
3、性质:
(1)指数函数的定义域是( , ) , 值域为(0, ) (2)指数函数的图像都经过点(0,1) (3)当 >1 时, y a 在( , )是单调增加的。
x
当 0< <1 时, y a 在( , )是单调减少的。
(三)正切函数
1、定义: y tan x 2、正切函数的图像
y tan x
3、性质
(1)y=tanx 的定义域为 x x R且x (2)y=tanx 是无界的; (3)y=tanx 是奇函数,即 tan(-x)=-tanx,其图像关于原点对称; (4)y=tanx 是周期函数,最小正周期 T= , 即 tan(x+k )=tanx,k Z; (5)当 k Z 时,y=tanx 在区间( 增的。
2
2
2 k ,
2
2k ]上是单调递
3 2k ]上是单调递减的; 2
当 x=
2
2k , k Z 时,y 取得最大值,y max = 1,
当 x=- 2k , k Z 时,y 取得最小值,y min =- 1,
2
(二)余弦函数
1、定义: y cos x
第 2 -3节 几种常用的函数及其图像
反函数
反函数
1、定义:设函数 y=f(x)是定义域为 D,值域为 M,若对 于任意 y∈M ,如果有唯一确定的满足 y=f(x)的 x∈D 与 之对应,则得到一个定义在 M 上以 y 为自变量的函数, 我们称它为函数 y =f (x)的反函数,记作 x=f 1 (y)。 习惯上,常用 x 来表示自变量,y 表示因变量,所以我 们可以将反函数改写成 y=f 1 (x)。
2、反函数的图像
y
原函数y f ( x)
Q ( b, a ) P (a , b)
反函数y f 1 ( x)
o
x
ห้องสมุดไป่ตู้
3、几点说明: ①原函数 y=f(x)与反函数 y=f 1 (x)是相互的; ②只有单值对应才有反函数; ③原函数 y=f(x)的定义域是反函数 y=f 1 (x)的值域, 原函数 y=f(x)的值域是反函数 y=f 1 (x)的定义域; 求原函数的值域可以通过求其反函数的定义域得到 ④原函数 y=f(x)与反函数 y=f 1 (x)的图像关于直线 y=x 对称; ⑤原函数 y=f(x)与反函数 y=f 1 (x)具有相同的单调性;
y x
(1,1)
2、图像:
y
y x2
1
y
x
o
1 y x
1
x
3、性质:
(1)幂函数 y=x 图像都过点(1,1) ,不论 取何值, y=x 在(0, )内总有定义,其定义域是由 的值确定的。 如,y=x 2 的定义域为 R, y=x 1 的定义域为 x x 0, y=x 的定义域为 x x 0,
arcsin (
2 )= 2 4
2 3 练习:arcsin0= ,arcsin = ,arcsin = ,arcsin1= 2 2 3 1 ( ) arcsin = ,arcsin(- )= ,arcsin(-1)= 2 2
五、反三角函数 (二)反余弦函数
1、定义:函数 y=cosx,x
2、反正弦函数图像
3、性质
①y=arcsinx 的定义域 D=[-1,1],值域 M= , ; 2 2
②y=arcsinx 在区间[-1,1]上是单调增函数,最大值为 ,最小值 2 为 - ; 2
③y=arcsinx 是奇函数,即 arcsin(-x)=-arcsinx, x [-1,1],其图 像关于原点对称。
x
(4)指数函数不是奇函数也不是偶函数,是无界的, 没有周期性。
三、对数函数
1、定义:称函数 y loga x (a>0 且 a 1)为对数函数。
2、图像:
y log a x
(1,0)
(a 1)
y log a x(0 a 1)
3、性质:
(1)对数函数的定义域是(0, ) , 值域为( , ) (2)对数函数的图像都经过点(1,0) (3)当 >1 时, y loga x 在(0, )是单调增加的, 当 0< <1 时, y loga x 在(0, )是单调减少的; (4)对数函数不是奇函数也不是偶函数,是无界的, 没有周期性。
☆除了上述正弦、余弦、正切、余切 4 个函数外,三角函数还包括 正割函数和余割函数,
1 正割函数 y=secx= cos x
1 余割函数 y=cscx= sin x
五、反三角函数 (一)反正弦函数
1、定义:函数 y=sinx,x , 上的反函数称为反正弦函数, 2 2 记作 y=arcsinx,其定义域 D=[-1,1],值域 M= , 。 2 2
④y=arcsinx 是有界的,即 arcsin x ; 2
⑤sin(arcsinx)=x。
1 例题:求①arcsin , 2
②arcsin (
1 sin = 2 ,且 2 , 2 6 6
2 ) 2 1 arcsin 2 = 6
2 sin( )= ,且 , 2 4 4 2 2
1 例题:求①arccos , 2
1 cos = 2 ,且 3 3
②arccos (
0,
2 ) 2 1 arccos 2 = 3
3 cos = 4
2 3 ,且 0, 2 4
2 3 )= 2 4
arccos (
2 另 cos = ,且 4 2 4
四、三角函数 (一)正弦函数