二次函数练习顶点式练习题.doc
顶点式专题训练(含答案解析)
顶点式专题训练(含答案解析)一、填空题(本大题共3小题,共9.0分)x2−x+3用配方法化成y=a(x−ℎ)2+k的形式是______ ;该二次函数图象的顶点坐标是1.把二次函数y=−14______ .2.将二次函数y=x2−2x化为顶点式的形式为:______ .3.把二次函数y=x2−2x−1配方成顶点式为______ .二、解答题(本大题共12小题,共96.0分)4.已知二次函数y=−2x2+8x−6,完成下列各题:(1)将函数关系式用配方法化为y=a(x+ℎ)2+k的形式,并写出它的顶点坐标、对称轴;(2)它的图象与x轴交于A,B两点,顶点为C,求S△ABC.5.已知二次函数y=−2x2+8x−4,完成下列各题:(1)将函数关系式用配方法化为y=a(x+ℎ)2+k形式,并写出它的顶点坐标、对称轴.(2)若它的图象与x轴交于A、B两点,顶点为C,求△ABC的面积.6.已知二次函数y=x2−6x+8.(1)将解析式化成顶点式;(2)写出它的开口方向、对称轴和顶点坐标;(3)x取什么值时,y随x的增大而增大;x取什么值时,y随x增大而减小.7.已知二次函数y=x2+2x−3.(1)将y=x2+2x−3用配方法化成y=a(x−ℎ)2+k的形式;(2)求该二次函数的图象的顶点坐标.8.用配方法将二次函数化成y=a(x−ℎ)2+k的形式,并写出顶点坐标和对称轴①y=2x2+6x−12②y=−0.5x2−3x+3.9.已知二次函数y=x2−6x+5.(1)将y=x2−6x+5化成y=a(x−ℎ)2+k的形式;(2)求该二次函数的图象的对称轴和顶点坐标;(3)当y>0时,求x的范围.10.已知二次函数y=2x2−8x+6.(1)把它化成y=a(x−ℎ)2+k的形式为:______ .(2)直接写出抛物线的顶点坐标:______ ;对称轴:______ .(3)求该抛物线于坐标轴的交点坐标.11.(1)解方程:12x(x−1)−(x−1)=0.(2)已知抛物线y=−2x2+8x−6,请用配方法把它化成y=a(x−ℎ)2+k的形式,并指出此抛物线的顶点坐标和对称轴.12.已知二次函数y=−12x2+x+32.(1)用配方法将此二次函数化为顶点式;(2)求出它的顶点坐标和对称轴方程.13.用配方法把二次函数y=x2−3x−4化成y=a(x−ℎ)2+k的形式,并写出该函数图象的开口方向、对称轴和顶点坐标.14.用配方法把函数y=−3x2−6x+10化成y=a(x−ℎ)2+k的形式,然后指出它的图象开口方向,对称轴,顶点坐标和最值.15.已知二次函数y=x2−4x+3.(1)将函数化成y=(x−ℎ)2+k的形式;(2)写出该函数图象的顶点坐标和对称轴.答案和解析【答案】(x+2)2+4;(−2,4)1. y=−142. y=(x−1)2−13. y=(x−1)2−24. 解:(1)y=−2x2+8x−6=−2(x2−4x+3)=−2(x2−4x+4−4+3.=−2(x−2)2+2,∴顶点坐标为(2,2),对称轴为直线x=2.(2)令−2(x−2)2+2=0解得:x1=3,x2=1.∴A(3,0),B(1,0)∴AB=3−1=2.∴C(2,2),×2×2=2.∴S△ABC=125. 解:(1)y=−2x2+8x−4=−2(x2−4x)−4=−2(x2−4x+4−4)−4=−2(x−2)2+4.所以,抛物线的顶点坐标为(2,4),对称轴为直线x=2.(2)令y=0得−2(x−2)2+4=0,(x−2)2=2,所以x−2=±√2,所以x1=2+√2,x2=2−√2.所以与x轴的交点坐标为A(2+√2,0),B(2−√2,0).×[(2+√2)−(2−√2)]×4=4√2.∴S△ABC=126. 解:(1)y=x2−6x+8=x2−6x+9−1=(x−3)2−1;(2)开口向上,对称轴是x=3,顶点坐标是(3,−1);(3)x>3时,y随x的增大而增大;x<3时,y随x增大而减小.7. 解:(1)y=x2+2x−3=x2+2x+1−1−3 =(x+1)2−4.(2)∵y=(x+1)2−4,∴该二次函数图象的顶点坐标是(−1,−4).8. 解:①y=2x2+6x−12=2(x+32)2−332,则该抛物线的顶点坐标是(−32,−332),对称轴是x=−32;②y=−0.5x2−3x+3=−12(x+3)2+152,则该抛物线的顶点坐标是(−3,152),对称轴是x=−3.9. 解:(1)y=x2−6x+5=x2−6x+9−4=(x−3)2−4;(2)∵y=(x−3)2−4,∴该二次函数图象的对称轴是直线x=3,顶点坐标是(3,−4);(3)x2−6x+5=0,x1=1,x2=5,当x<1或x>5时,y>0.10. y=2(x−2)2−2;(2,−2);x=211. 解:(1)12x(x−1)−(x−1)=0,分解因式得:(x−1)(12x−1)=0,可化为:x−1=0或12x−1=0,解得:x1=1,x2=2;(2)∵y=−2x2+8x−6=−2(x2−4x+4)+8−6=−2(x−2)2+2,∴此抛物线的顶点坐标是(2,2),对称轴为直线x=2.12. 解:(1)二次函数y=−12x2+x+32=−12(x−1)2+2;(2)∵二次函数y=−12(x−1)2+2,∴二次函数的顶点坐标为(1,2),抛物线的对称轴为x=1.13. 解:y=x2−3x−4=(x−32)2−254,则函数图象的开口方向向上,对称轴是x=32,顶点坐标(32,−254).14. 解:∵y=−3x2−6x+10=−3(x+1)2+13,∴开口向下,对称轴x=−1,顶点坐标(−1,13),最大值13.15. 解:(1)y=x2−4x+4−4+3=(x−2)2−1;(2)图象的顶点坐标是(2,−1),对称轴是:x=2.【解析】1. 解:y=−14x2−x+3=−14(x2+4x)+3=−14(x+2)2+4,∴顶点(−2,4).(x+2)2+4,(−2,4).故答案为:y=−14利用配方法先提出二次项系数,再加上一次项系数的一半的平方来凑成完全平方式,可把一般式转化为顶点式,从而得出顶点坐标.此题考查了二次函数表达式的一般式与顶点式的转换,并要求熟练掌握顶点公式.2. 解:y=x2−2x=x2−2x+1−1=(x−1)2−1,故答案为y=(x−1)2−1.利用配方法把二次函数的一般形式配成二次函数的顶点式.本题考查的是二次函数的三种形式,题目中给出的是一般形式,利用配方法可以化成顶点式.3. 解:y=x2−2x−1=(x2−2x+1)−1−1=(x−1)2−2,故选答案为y=(x−1)2−2.由于二次项系数为1,所以直接加上一次项系数的一半的平方来凑完全平方式,把一般式转化为顶点式.本题考查了二次函数的解析式有三种形式:(1)一般式:y=ax2+bx+c(a≠0,a、b、c为常数);(2)顶点式:y=a(x−ℎ)2+k;(3)交点式(与x轴):y=a(x−x1)(x−x2).4. (1)利用配方法整理成顶点式,然后写出顶点坐标和对称轴即可;(2)令y=0解关于x的一元二次方程,即可得到与x轴的交点坐标,然后利用三角形的面积公式计算即可;本题考查了二次函数的三种形式,二次函数的性质,二次函数图象与x轴的交点问题,熟练掌握配方法的操作整理成顶点式形式求出顶点坐标和对称轴更加简便.5. (1)利用配方法即可解决问题;(2)求出A、B、C三点坐标即可解决问题;本题考查抛物线与x轴的交点,二次函数的性质,三角形的面积等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.6. (1)利用配方法将解析式化成顶点式;(2)根据二次函数的性质解答;(3)根据抛物线的开口方向、对称轴以及二次函数的性质解答.本题考查的是二次函数的三种形式、配方法的应用以及二次函数的性质,灵活运用配方法把一般式化为顶点式是解题的关键.7. 本题考查了二次函数的性质以及二次函数的三种形式.二次函数的解析式有三种形式:①一般式:y=ax2+bx+c(a≠0,a、b、c为常数);②顶点式:y=a(x−ℎ)2+k;③交点式(与x轴):y=a(x−x1)(x−x2).(1)利用配方法先加上一次项系数的一半的平方来凑完全平方式,再把一般式转化为顶点式即可;(2)根据顶点坐标的求法,得出顶点坐标即可;8. ①②利用配方法先提出二次项系数,再加上一次项系数的一半的平方来凑成完全平方式,可把一般式转化为顶点式,从而得出顶点坐标和对称轴.此题考查了二次函数表达式的一般式与顶点式的转换,并要求熟练掌握顶点公式和对称轴公式.9. (1)利用配方法把一般式化为顶点式;(2)根据二次函数的性质解答;(3)求出x2−6x+5=0的解,解答即可.本题考查的是二次函数的三种形式、二次函数的性质,灵活运用配方法把一般式化为顶点式是解题的关键.10. 解:(1)y=2x2−8x+6=2(x2−4x+4)−8+6=2(x−2)2−2;(3)∵y=2x2−8x+6,∴当y=0时,2x2−8x+6=0,解得x1=1,x2=3,∴抛物线与x轴的交点坐标为(1,0),(3,0);当x=0时,y=6,∴抛物线与y轴的交点坐标为(0,6).故答案为y=2(x−2)2−2;(2,−2),x=2.(1)利用配方法先提出二次项系数,再加上一次项系数的一半的平方来凑完全平方式,把一般式转化为顶点式;(2)根据二次函数的性质,利用二次函数的顶点式即可求出抛物线的顶点坐标与对称轴;(3)把y=0代入y=2x2−8x+6,解方程求出x的值,从而得到抛物线与x轴的交点坐标;把x=0代入y=2x2−8x+6,求出y的值,从而得到抛物线与y轴的交点坐标.本题考查了二次函数的解析式有三种形式:(1)一般式:y=ax2+bx+c(a≠0,a、b、c为常数);(2)顶点式:y=a(x−ℎ)2+k;(3)交点式(与x轴):y=a(x−x1)(x−x2).同时考查了二次函数的性质以及抛物线与坐标轴交点坐标的求法.11. (1)先将把方程左边化为两个一次因式积的形式,然后根据两数相乘积为0,两因式至少有一个为0转化为两个一元一次方程,求出方程的解即可得到原方程的解;(2)先利用配方法提出二次项系数,加上一次项系数的一半的平方来凑完全平方式,把一般式转化为顶点式,再根据二次函数的性质即可写出抛物线的对称轴和顶点坐标.本题考查了二次函数解析式的三种形式,二次函数的性质及解一元二次方程−因式分解法,难度适中.12. (1)利用配方法将二次函数的一般式变形为顶点式,此题得解;(2)根据二次函数的顶点式,结合二次函数的性质即可得出顶点坐标以及对称轴.本题考查了二次函数的三种形式以及二次函数的性质,利用配方法将二次函数的一般式变形为顶点式是解题的关键.13. 运用配方法把二次函数的一般式化为顶点式,根据二次函数的性质解答即可.本题考查的是二次函数的三种形式,正确运用配方法把二次函数的一般式化为顶点式是解题的关键,14. (1)这个函数的二次项系数是−3,配方法变形成y=(x+ℎ)2+k的形式,配方的方法是把二次项,一次项先分为一组,提出二次项系数−3,加上一次项系数的一半,就可以变形成顶点式的形式.(2)二次函数的一般形式中的顶点式是:y=a(x−ℎ)2+k(a≠0,且a,h,k是常数),它的对称轴是x=ℎ,顶点坐标是(ℎ,k).本题主要是对抛物线一般形式中对称轴,顶点坐标的考查,是中考中经常出现的问题.15. (1)把一般式利用配方法化为顶点式即可;(2)利用顶点式求得顶点坐标和对称轴即可.此题考查二次函数的解析式的三种形式:(1)一般式:y=ax2+bx+c(a≠0,a、b、c为常数);(2)顶点式:y=a(x−ℎ)2+k;(3)交点式(与x轴):y=a(x−x1)(x−x2).。
22.1.4练习1二次函数化顶点式
【点评】此题主要考查了二次函数的三种形式,正确配方是解题关键.
3.(2010•安徽)若二次函数 y=x2+bx+5 配方后为 y=(x﹣2)2+k,则 b、k 的值分别为
()
A.0,5
B.0,1
C.﹣4,5
D.﹣4,1
【分析】可将 y=(x﹣2)2+k 的右边运用完全平方公式展开,再与 y=x2+bx+5 比较,即
A.y=(x﹣4)2+7 B.y=(x﹣4)2﹣25 C.y=(x+4)2+7 D.y=(x+4)2﹣25
Байду номын сангаас
3.(2010•安徽)若二次函数 y=x2+bx+5 配方后为 y=(x﹣2)2+k,则 b、k 的值分别为
( )A.0,5 B.0,1 C.﹣4,5 D.﹣4,1
4.(2010•泰安)将 y=2x2﹣12x﹣12 变为 y=a(x﹣m)2+n 的形式,则 m•n=
A.y=﹣ (x﹣2)2+2
B.y= (x﹣2)2+4
C.y=﹣ (x+2)2+4
D.y=
2+3
【分析】利用配方法先提出二次项系数,在加上一次项系数的一半的平方来凑完全平方 式,把一般式转化为顶点式. 【解答】解:y=﹣ x2﹣x+3=﹣ (x2+4x+4)+1+3=﹣ (x+2)2+4
故选:C. 10.(2014•成都校级自主招生)将 y=(2x﹣1)•(x+2)+1 化成 y=a(x+m)2+n 的形式
(x﹣3)2﹣10 .
(完整word版)二次函数精选练习题及答案
二次函数练习题及答案一、选择题1. 将抛物线23y x =先向左平移2个单位,再向下平移1个单位后得到新的抛物线,则新抛物线的解析式是 ( )A 23(2)1y x =++B 。
23(2)1y x =+-C 。
23(2)1y x =-+ D.23(2)1y x =-- 2.将抛物线22+=x y 向右平移1个单位后所得抛物线的解析式是………………( ) A.32+=x y ; B.12+=x y ;C.2)1(2++=x y ; D.2)1(2+-=x y .3.将抛物线y= (x —1)2+3向左平移1个单位,再向下平移3个单位后所得抛物线的解析式为( )A .y=(x —2)2B .y=(x —2)2+6C .y=x 2+6D .y=x 24.由二次函数1)3(22+-=x y ,可知( )A .其图象的开口向下B .其图象的对称轴为直线3x =-C .其最小值为1D .当x<3时,y 随x 的增大而增大5.如图,抛物线的顶点P 的坐标是(1,﹣3),则此抛物线对应的二次函数有( )A .最大值1B .最小值﹣3C .最大值﹣3D .最小值16.把函数()y f x ==246x x -+的图象向左平移1个单位,再向上平移1个单位,所得图象对应的函数的解析式是( )A .2(3)3y x =-+B .2(3)1y x =-+C .2(1)3y x =-+D .2(1)1y x =-+7.抛物线c bx x y ++=2图像向右平移2个单位再向下平移3个单位,所得图像的解析式为322--=x x y ,则b 、c 的值为A . b=2, c=2 B. b=2,c=0 C 。
b= -2,c=-1 D 。
b= -3, c=2二、填空题8.二次函数y=-2(x -5)2+3的顶点坐标是 .9.已知二次函数2y x bx c =-++中函数y 与自变量x 之间的部分对应值如下表所示,点11(,)A x y 、22(,)B x y 在函数图象上,当1201,23x x <<<<时,则1y 2y (填“>”或“<”).x 0 1 2 3 y1- 2 3 210.在平面直角坐标系中,将抛物线223y x x =++绕着它与y 轴的交点旋转180°,所得抛物线的解析式为 .11.求二次函数2245y x x =--的顶点坐标(___)对称轴____。
二次函数练习顶点式练习题
得到的抛物线是。
5、把抛物线y= -(X -1)2-1向平移个单位,再向平移
2
个单位得到抛物线y= —(X十2)-3.
12
6、 抛物线y (x4)-7的顶点坐标是,对称轴是直
2
线,它的开口向,在对称轴的左侧,即当x<时,
y随x的增大而;在对称轴的右侧,即当x>时,y随x的增
大而;当x=时,y的值最,最值
15、二次函数y= —
A.(—1,3)
16、
17、
B. y=x2—3
C. y=(x+3)2
2
(x—1)+3图像的顶点坐标是(
B.(1,3)
二次函数y=x2+x—6的图象与
A.2和一3B.—2和3
二次函数y=ax2的图像开口向
,图像有最-
是
—时,y随x的增大而减小。
1
x
3
18、关于y=
A.顶点相同
点,x
D. y=(x—3)2
)
C.(—1,—3)
D.(1, —3)
x轴交点的横坐标是(
C.2和3
,对称轴是.
D.
)
—2和一3
,顶点坐标
时,y随x的增大而增大,x
2 2 2
,y = x,y=3x的图像,下列说法中不正确的是()
B.对称轴相同C.图像形状相同D.最低点相同
7、将抛物线y=3x2向左平移6个单位,再向下平移7个单位所得新抛物线的 解析式为。
,它有最
值,即当x=
达式为
一时,y=
12、边长为12cm的正方形铁片,中间剪去一个边长为x的小正方形铁片,
剩下的四方框铁片的面积y(cm2)与x(cm)之间的函数表达式为
二次函数顶点式一般式复习题
初中数学二次函数复习一、学习目标:1、能够熟练利用配方法、公式法求出二次函数的顶点坐标和对称轴。
2、会画二次函数的大致图像3、进一步体会数形结合思想在解题中的应用二、例题分析例1、(2011江苏宿迁)已知二次函数y =ax 2+bx +c (a ≠0)的图象如图,则下列结论中正确的是( )A .a >0B .当x >1时,y 随x 的增大而增大C .c <0D .3是方程ax 2+bx +c =0的一个根例2、某商店经营一种水产品,成本为每千克40元,据市场分析,若按每千克50元销售,一个月能售出500千克;销售价每涨1元,月销售量就减少10千克,针对这种水产品的销售情况,请回答下列问题:(1)当销售单价为每千克55元时,计算销售量和月利润.(2)设销售单价为每千克x 元,月销售利润为y 元,求y 与x 的函数关系式.(3)销售单价定为多少元时,获得的利润最多?三、巩固训练1、抛物线y=2x 2-6x-1的顶点坐标为_______,对称轴为________.2、如果y=(m-2)x 2m m -是关于x 的二次函数,则m=( ) A .-1 B .2 C .-1或2 D .m 不存在 3.y=14x 2-7x-5与y 轴的交点坐标为( ) A .-5 B .(0,-5) C .(-5,0) D .(0,-20)4、下列关于抛物线y=x 2+2x+1的说法中,正确的是( ) 图1A .开口向下B .对称轴是直线x=1C .与x 轴有两个交点D .顶点坐标是(-1,0)5、二次函数y=a x 2-bx+c 的图象如图1所示,则a ,b ,c•与零的大小关系为a___0,b___0,c___0.6、若抛物线y=(m-1)x 2+2mx+2m-1的图象的最低点的纵坐标为零,则m=_____.7.已知二次函数y=ax 2-4x-13a 有最小值-17,则a=______.8、二次函数y=x 2+2的图象开口_______,对称轴是______,顶点坐标是___.9、如图2,用长60•米的篱笆,靠墙围成一个长方形场地,在表示场地面积时, 图2可以设_______为x 米,也可以选择______为x 米,相应地面积S 的解析式为_____或______.10、使函数y=x 2-3x+2的值为零的x 的值为_______.11.函数y=2-3x 2的图象,开口方向是____,•对称轴是_____,•顶点坐标是_______.12.无论m 为任何实数,总在抛物线y=x 2+2mx+m 上的点是_____ 13、抛物线的图象如图3所示,根据图象可知,抛物线的解析式可能..是( )A 、y=x 2-x-2B 、y=121212++-xC 、y=121212+--x xD 、y=22++-x xx图3图4 14、已知二次函数y =ax 2+bx +c(a ≠0)的图象如图4所示,给出以下结论:①0<abc ②当1x =时,函数有最大值。
用顶点式求二次函数解析式
一、 用顶点式求二次函数解析式。
例题:已知抛物线的顶点为(1,3)经过点(3,0) 解:设抛物线的解析式为k h x a y +-=2)(把顶点(1,3)代入得:3)1(2+-=x a y把点(3,0)代入得:03)13(2=+-a 解得:43-=a ∴抛物线解析式为:3)1(432+--=x y练习1:已知抛物线的顶点为(-1,4)经过点(2,-5)2.已知抛物线y =ax 2经过点A (1,1).(1)求这个函数的解析式;3.已知二次函数的图象顶点坐标为(-2,3),且过点(1,0),求此二次函数的解析式.4.抛物线y =ax 2+bx +c 的顶点坐标为(2,4),且过原点,求抛物线的解析式.5.已知二次函数为x =4时有最小值 -3且它的图象与x 轴交点的横坐标为1,求此二次函数解析式.6.抛物线y =ax 2+bx +c 经过(0,0),(12,0)两点,其顶点的纵坐标是3,求这个抛物线的解析式.7.把抛物线y =(x -1)2沿y 轴向上或向下平移后所得抛物线经过点Q (3,0),求平移后的抛物线的解析式.8.已知二次函数m x x y +-=62的最小值为1,求m 的值.9.已知抛物线经过A (0,3),B (4,6)两点,对称轴为x=53 ,求这条抛物线的解析式; 10. 若一抛物线与x 轴两个交点间的距离为8,且顶点坐标为(1, 5),则它们的解析式为 。
二、 用三个点求二次函数解析式 例题:二次函数的图象经过(-1,10),(1,4),(2,7) 解:设二次函数的解析式为:c bx ax y ++=2 把点(-1,10),(1,4),(2,7)代入得: ⎪⎩⎪⎨⎧=++=++=+-724410c b a c b a c b a 解得:⎪⎩⎪⎨⎧=-==532c b a ∴抛物线解析式为:5322+-=x x y 练习11:二次函数的图象经过(0,0),(-1,-1),(1,9) 12.已知二次函数y=ax 2+bx +c ,当 x=0时,y=0;x=1时,y=2;x=-1时,y=1.求a 、b 、c ,并写出函数解析式。
顶点式专题训练(含答案解析)
顶点式专题训练(含答案解析)一、填空题(本大题共3小题,共9.0分)x2−x+3用配方法化成y=a(x−ℎ)2+k的形式是______ ;该二次函数图象的顶点坐标是1.把二次函数y=−14______ .2.将二次函数y=x2−2x化为顶点式的形式为:______ .3.把二次函数y=x2−2x−1配方成顶点式为______ .二、解答题(本大题共12小题,共96.0分)4.已知二次函数y=−2x2+8x−6,完成下列各题:(1)将函数关系式用配方法化为y=a(x+ℎ)2+k的形式,并写出它的顶点坐标、对称轴;(2)它的图象与x轴交于A,B两点,顶点为C,求S△ABC.5.已知二次函数y=−2x2+8x−4,完成下列各题:(1)将函数关系式用配方法化为y=a(x+ℎ)2+k形式,并写出它的顶点坐标、对称轴.(2)若它的图象与x轴交于A、B两点,顶点为C,求△ABC的面积.6.已知二次函数y=x2−6x+8.(1)将解析式化成顶点式;(2)写出它的开口方向、对称轴和顶点坐标;(3)x取什么值时,y随x的增大而增大;x取什么值时,y随x增大而减小.7.已知二次函数y=x2+2x−3.(1)将y=x2+2x−3用配方法化成y=a(x−ℎ)2+k的形式;(2)求该二次函数的图象的顶点坐标.8.用配方法将二次函数化成y=a(x−ℎ)2+k的形式,并写出顶点坐标和对称轴①y=2x2+6x−12②y=−0.5x2−3x+3.9.已知二次函数y=x2−6x+5.(1)将y=x2−6x+5化成y=a(x−ℎ)2+k的形式;(2)求该二次函数的图象的对称轴和顶点坐标;(3)当y>0时,求x的范围.10.已知二次函数y=2x2−8x+6.(1)把它化成y=a(x−ℎ)2+k的形式为:______ .(2)直接写出抛物线的顶点坐标:______ ;对称轴:______ .(3)求该抛物线于坐标轴的交点坐标.11.(1)解方程:12x(x−1)−(x−1)=0.(2)已知抛物线y=−2x2+8x−6,请用配方法把它化成y=a(x−ℎ)2+k的形式,并指出此抛物线的顶点坐标和对称轴.12.已知二次函数y=−12x2+x+32.(1)用配方法将此二次函数化为顶点式;(2)求出它的顶点坐标和对称轴方程.13.用配方法把二次函数y=x2−3x−4化成y=a(x−ℎ)2+k的形式,并写出该函数图象的开口方向、对称轴和顶点坐标.14.用配方法把函数y=−3x2−6x+10化成y=a(x−ℎ)2+k的形式,然后指出它的图象开口方向,对称轴,顶点坐标和最值.15.已知二次函数y=x2−4x+3.(1)将函数化成y=(x−ℎ)2+k的形式;(2)写出该函数图象的顶点坐标和对称轴.答案和解析【答案】(x+2)2+4;(−2,4)1. y=−142. y=(x−1)2−13. y=(x−1)2−24. 解:(1)y=−2x2+8x−6=−2(x2−4x+3)=−2(x2−4x+4−4+3.=−2(x−2)2+2,∴顶点坐标为(2,2),对称轴为直线x=2.(2)令−2(x−2)2+2=0解得:x1=3,x2=1.∴A(3,0),B(1,0)∴AB=3−1=2.∴C(2,2),×2×2=2.∴S△ABC=125. 解:(1)y=−2x2+8x−4=−2(x2−4x)−4=−2(x2−4x+4−4)−4=−2(x−2)2+4.所以,抛物线的顶点坐标为(2,4),对称轴为直线x=2.(2)令y=0得−2(x−2)2+4=0,(x−2)2=2,所以x−2=±√2,所以x1=2+√2,x2=2−√2.所以与x轴的交点坐标为A(2+√2,0),B(2−√2,0).×[(2+√2)−(2−√2)]×4=4√2.∴S△ABC=126. 解:(1)y=x2−6x+8=x2−6x+9−1=(x−3)2−1;(2)开口向上,对称轴是x=3,顶点坐标是(3,−1);(3)x>3时,y随x的增大而增大;x<3时,y随x增大而减小.7. 解:(1)y=x2+2x−3=x2+2x+1−1−3 =(x+1)2−4.(2)∵y=(x+1)2−4,∴该二次函数图象的顶点坐标是(−1,−4).8. 解:①y=2x2+6x−12=2(x+32)2−332,则该抛物线的顶点坐标是(−32,−332),对称轴是x=−32;②y=−0.5x2−3x+3=−12(x+3)2+152,则该抛物线的顶点坐标是(−3,152),对称轴是x=−3.9. 解:(1)y=x2−6x+5=x2−6x+9−4=(x−3)2−4;(2)∵y=(x−3)2−4,∴该二次函数图象的对称轴是直线x=3,顶点坐标是(3,−4);(3)x2−6x+5=0,x1=1,x2=5,当x<1或x>5时,y>0.10. y=2(x−2)2−2;(2,−2);x=211. 解:(1)12x(x−1)−(x−1)=0,分解因式得:(x−1)(12x−1)=0,可化为:x−1=0或12x−1=0,解得:x1=1,x2=2;(2)∵y=−2x2+8x−6=−2(x2−4x+4)+8−6=−2(x−2)2+2,∴此抛物线的顶点坐标是(2,2),对称轴为直线x=2.12. 解:(1)二次函数y=−12x2+x+32=−12(x−1)2+2;(2)∵二次函数y=−12(x−1)2+2,∴二次函数的顶点坐标为(1,2),抛物线的对称轴为x=1.13. 解:y=x2−3x−4=(x−32)2−254,则函数图象的开口方向向上,对称轴是x=32,顶点坐标(32,−254).14. 解:∵y=−3x2−6x+10=−3(x+1)2+13,∴开口向下,对称轴x=−1,顶点坐标(−1,13),最大值13.15. 解:(1)y=x2−4x+4−4+3=(x−2)2−1;(2)图象的顶点坐标是(2,−1),对称轴是:x=2.【解析】1. 解:y=−14x2−x+3=−14(x2+4x)+3=−14(x+2)2+4,∴顶点(−2,4).(x+2)2+4,(−2,4).故答案为:y=−14利用配方法先提出二次项系数,再加上一次项系数的一半的平方来凑成完全平方式,可把一般式转化为顶点式,从而得出顶点坐标.此题考查了二次函数表达式的一般式与顶点式的转换,并要求熟练掌握顶点公式.2. 解:y=x2−2x=x2−2x+1−1=(x−1)2−1,故答案为y=(x−1)2−1.利用配方法把二次函数的一般形式配成二次函数的顶点式.本题考查的是二次函数的三种形式,题目中给出的是一般形式,利用配方法可以化成顶点式.3. 解:y=x2−2x−1=(x2−2x+1)−1−1=(x−1)2−2,故选答案为y=(x−1)2−2.由于二次项系数为1,所以直接加上一次项系数的一半的平方来凑完全平方式,把一般式转化为顶点式.本题考查了二次函数的解析式有三种形式:(1)一般式:y=ax2+bx+c(a≠0,a、b、c为常数);(2)顶点式:y=a(x−ℎ)2+k;(3)交点式(与x轴):y=a(x−x1)(x−x2).4. (1)利用配方法整理成顶点式,然后写出顶点坐标和对称轴即可;(2)令y=0解关于x的一元二次方程,即可得到与x轴的交点坐标,然后利用三角形的面积公式计算即可;本题考查了二次函数的三种形式,二次函数的性质,二次函数图象与x轴的交点问题,熟练掌握配方法的操作整理成顶点式形式求出顶点坐标和对称轴更加简便.5. (1)利用配方法即可解决问题;(2)求出A、B、C三点坐标即可解决问题;本题考查抛物线与x轴的交点,二次函数的性质,三角形的面积等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.6. (1)利用配方法将解析式化成顶点式;(2)根据二次函数的性质解答;(3)根据抛物线的开口方向、对称轴以及二次函数的性质解答.本题考查的是二次函数的三种形式、配方法的应用以及二次函数的性质,灵活运用配方法把一般式化为顶点式是解题的关键.7. 本题考查了二次函数的性质以及二次函数的三种形式.二次函数的解析式有三种形式:①一般式:y=ax2+bx+c(a≠0,a、b、c为常数);②顶点式:y=a(x−ℎ)2+k;③交点式(与x轴):y=a(x−x1)(x−x2).(1)利用配方法先加上一次项系数的一半的平方来凑完全平方式,再把一般式转化为顶点式即可;(2)根据顶点坐标的求法,得出顶点坐标即可;8. ①②利用配方法先提出二次项系数,再加上一次项系数的一半的平方来凑成完全平方式,可把一般式转化为顶点式,从而得出顶点坐标和对称轴.此题考查了二次函数表达式的一般式与顶点式的转换,并要求熟练掌握顶点公式和对称轴公式.9. (1)利用配方法把一般式化为顶点式;(2)根据二次函数的性质解答;(3)求出x2−6x+5=0的解,解答即可.本题考查的是二次函数的三种形式、二次函数的性质,灵活运用配方法把一般式化为顶点式是解题的关键.10. 解:(1)y=2x2−8x+6=2(x2−4x+4)−8+6=2(x−2)2−2;(3)∵y=2x2−8x+6,∴当y=0时,2x2−8x+6=0,解得x1=1,x2=3,∴抛物线与x轴的交点坐标为(1,0),(3,0);当x=0时,y=6,∴抛物线与y轴的交点坐标为(0,6).故答案为y=2(x−2)2−2;(2,−2),x=2.(1)利用配方法先提出二次项系数,再加上一次项系数的一半的平方来凑完全平方式,把一般式转化为顶点式;(2)根据二次函数的性质,利用二次函数的顶点式即可求出抛物线的顶点坐标与对称轴;(3)把y=0代入y=2x2−8x+6,解方程求出x的值,从而得到抛物线与x轴的交点坐标;把x=0代入y=2x2−8x+6,求出y的值,从而得到抛物线与y轴的交点坐标.本题考查了二次函数的解析式有三种形式:(1)一般式:y=ax2+bx+c(a≠0,a、b、c为常数);(2)顶点式:y=a(x−ℎ)2+k;(3)交点式(与x轴):y=a(x−x1)(x−x2).同时考查了二次函数的性质以及抛物线与坐标轴交点坐标的求法.11. (1)先将把方程左边化为两个一次因式积的形式,然后根据两数相乘积为0,两因式至少有一个为0转化为两个一元一次方程,求出方程的解即可得到原方程的解;(2)先利用配方法提出二次项系数,加上一次项系数的一半的平方来凑完全平方式,把一般式转化为顶点式,再根据二次函数的性质即可写出抛物线的对称轴和顶点坐标.本题考查了二次函数解析式的三种形式,二次函数的性质及解一元二次方程−因式分解法,难度适中.12. (1)利用配方法将二次函数的一般式变形为顶点式,此题得解;(2)根据二次函数的顶点式,结合二次函数的性质即可得出顶点坐标以及对称轴.本题考查了二次函数的三种形式以及二次函数的性质,利用配方法将二次函数的一般式变形为顶点式是解题的关键.13. 运用配方法把二次函数的一般式化为顶点式,根据二次函数的性质解答即可.本题考查的是二次函数的三种形式,正确运用配方法把二次函数的一般式化为顶点式是解题的关键,14. (1)这个函数的二次项系数是−3,配方法变形成y=(x+ℎ)2+k的形式,配方的方法是把二次项,一次项先分为一组,提出二次项系数−3,加上一次项系数的一半,就可以变形成顶点式的形式.(2)二次函数的一般形式中的顶点式是:y=a(x−ℎ)2+k(a≠0,且a,h,k是常数),它的对称轴是x=ℎ,顶点坐标是(ℎ,k).本题主要是对抛物线一般形式中对称轴,顶点坐标的考查,是中考中经常出现的问题.15. (1)把一般式利用配方法化为顶点式即可;(2)利用顶点式求得顶点坐标和对称轴即可.此题考查二次函数的解析式的三种形式:(1)一般式:y=ax2+bx+c(a≠0,a、b、c为常数);(2)顶点式:y=a(x−ℎ)2+k;(3)交点式(与x轴):y=a(x−x1)(x−x2).。
二次函数顶点式
一.知识梳理(一).二次函数c bx ax y ++=2用配方法可化成:()k h x a y +-=2的形式,其中ab ac k a b h 4422-=-=,例题1:抛物线c bx x y ++=2的顶点坐标为(1,3),则b =,c =.1.将抛物线c bx ax y ++=2向上平移1个单位,再向右平移1个单位,得到1422--=x x y ,则a =,b =,c =.(二).二次函数的对称轴、顶点、最值,与坐标轴交点(技法:如果解析式为顶点式()k h x a y +-=2,则对称轴x=h,顶点(h,k ),最值:当x=h 函数有最值为k ;如果解析式为一般式c bx ax y ++=2则对称轴为)2b x a =-,顶点坐标为2424b ac b a a ⎛⎫-- ⎪⎝⎭,.当2bx a =-时,y 有最值244ac b a -. 例题2:抛物线1822-+-=x x y 的顶点坐标为.对称轴. 2.抛物线22()y x m n =++(m n ,是常数)的顶点坐标是. 3.抛物线(1)(3)(0)y a x x a =+-≠的对称轴是直线.4.已知二次函数3222++-=a ax x y ,当a 时,该函数y 的最小值为05.已知二次函数m x x y +-=62的最小值为1,那么m =6.抛物线y=x 2一3x+2与y 轴交点的坐标是.与x 轴交点的坐标.(三).函数的图象特征与a 、b 、c 的关系技法:对于c bx ax y ++=2的图象特征与a 、b 、c 的关系为:①抛物线开口由a 定,上正下负;②对称轴位置a 、b 定,左同右异,b 为0时是y 轴;③与y 轴的交点由c 定,上正下负,c 为0时过原点。
例题3:二次函数c bx ax y ++=2的图象如图所示,则a ,b,c 的符号是.7.如图所示是二次函数2y ax bx c =++图象的一部分,图象过A (3,0),二次函数图象对称轴为1x =,给出四个结论:①24b ac >;②0bc <;③20a b +=;④0a b c ++=,其中正确结论是.O yx第7题图(四).求二次函数解析式(1)通过平移变换 例题4:抛物线223x y -=向左平移3个单位,再向下平移4个单位,所得到的抛物线的关系式为。
广东省广州市 人教版 九年级上 数学 二次函数一般式化顶点式题目方法及练习题
二次函数一般式2y ax bx c =++化成()2y a x h k =-+的形式一.基础知识:1.(1)完全平方公式:222a ab b ±+=()2a ±——(2)()226_____x x x ++=+ (3)()223______x x x -+=-(4)()222____x x x ++=+ (5)()224____x x x -+=-二、基础知识练习1.类型一:1,a b ==偶数例1.用配方法将抛物线261y x x =-+-化成顶点式,并写出开口方向、顶点坐标、对称轴。
举一反三:用配方法将抛物线281y x x =-+化成()2y a x h k =-+的形式,并写出开口方向、顶点坐标、对称轴。
类型二:1,a b ==奇数例2.求抛物线21y x x =++的顶点坐标。
举一反三:求抛物线232y x x =-+的顶点坐标。
类型三:1a ≠例3.求二次函数221210y x x =-+-的最大值举一反三:求二次函数23123y x x =--的最小值。
例4.求抛物线21232y x x =--+的顶点坐标。
举一反三:求抛物线23+12y x x =-+的顶点坐标。
三、过关练习:1.求抛物线243y x x =--的顶点坐标2.将抛物线22y x x =-化成()2y a x h k =-+的形式为( )A.()211y x =-+ B. ()211y x =-- C. ()214y x =++ D.()214y x =--3.已知抛物线228y x x =+。
(1)化成顶点式为_________ (2)顶点坐标为_________ (3)当x ________时,y 的最_______值__________;(4)当x________时,y 随x 的增大而增大。
4.二次函数2112y x x =---的图像可由抛物线212y x =-怎样平移得到?5.抛物线222y x x =-++。
求二次函数解析式的基本方法及练习题
求二次函数解析式的基本方法及练习题二次函数是初中数学的重要内容,也是高中数学的基础。
熟练求出二次函数的解析式是解决二次函数问题的重要保证。
二次函数的解析式有三种基本形式:一般式、顶点式和交点式。
其中,一般式为y=ax2+bx+c (a≠0),顶点式为y=a(x-h)2+k(a≠0),其中点(h,k)为顶点,对称轴为x=h,交点式为y=a(x-x1)(x-x2) (a≠0),其中x1,x2是抛物线与x轴的交点的横坐标。
求二次函数的解析式一般用待定系数法,但要根据不同条件,设出恰当的解析式。
例如,若给出抛物线上任意三点,通常可设一般式;若给出抛物线的顶点坐标或对称轴或最值,通常可设顶点式;若给出抛物线与x轴的交点或对称轴或与x轴的交点距离,通常可设交点式。
下面以几个例子来说明如何求二次函数的解析式。
例1,已知二次函数的图象经过点(-1,-5),(-4,4)和(1,1),求这个二次函数的解析式。
由于题目给出的是抛物线上任意三点,可设一般式y=ax2+bx+c (a≠0)。
设这个二次函数的解析式为y=ax2+bx+c (a≠0),根据题意列方程解得a=2,b=3,c=-4,因此这个二次函数的解析式为y=2x2+3x-4.例2,已知抛物线y=ax2+bx+c的顶点坐标为(4,-1),与y轴交于点(0,3),求这条抛物线的解析式。
由于给出的是抛物线的顶点坐标和交点,最好抛开题目给出的y=ax2+bx+c,重新设顶点式y=a(x-h)2+k (a≠0),其中点(h,k)为顶点。
设这个二次函数的解析式为y=a(x-4)2-1 (a≠0),又抛物线与y轴交于点(0,3),解方程得a=1,因此这个二次函数的解析式为y=(x-4)2-1,即y=x2-2x+3.例3,如图,已知两点A(-8,0),B(2,0),以AB为直径的半圆与y轴正半轴交于点C,求经过A、B、C三点的抛物线的解析式。
由于A、B两点实际上是抛物线与x轴的交点,所以可设交点式y=a(x-x1)(x-x2) (a≠0),其中x1,x2是抛物线与x轴的交点的横坐标。
初中数学 二次函数一般式和顶点式 练习题(含答案)
数学试卷一、填空题(共50小题;共250分)1. 请写出一个开口向下,并且过坐标原点的抛物线的表达式,y=.2. 写出一个开口向下,顶点在第一象限的二次函数的表达式 .3. 若抛物线y=ax2+bx+c的顶点是A(2,1),且经过点B(1,0),则抛物线的函数关系式为.4. 抛物线的顶点在原点,且过点(3,−27),则这条抛物线的解析式为.5. 二次函数y=−x2−2x+1化成y=a(x−ℎ)2+k的形式是.x2+3形状相同,开口方向相反,顶点坐标是(−5,0).根据以上6. 已知一抛物线与抛物线y=−13特点,试写出该抛物线的表达式为.7. 如图,已知二次函数y=x2+bx+c的图象经过点(−1,0),(1,−2),当y随x的增大而增大时,x的取值范围是.8. 若把函数y=x2+6x+5化为y=(x−m)2+k的形式,其中m,k为常数,则k−m=.9. 已知抛物线与x轴交点的横坐标分别为3,1;与y轴交点的纵坐标为6,则二次函数的关系式是.10. 请写出一个开口向上,对称轴为直线x=2,且与y轴的交点坐标为(0,3)的抛物线对应的函数表达式:.11. 若二次函数的图象开口向下,且经过(2,−3)点.符合条件的一个二次函数的解析式为.12. 若把二次函数y=x2+6x+2化为y=(x−ℎ)2+k的形式,其中ℎ,k为常数,则ℎ+k=.13. 将二次函数y=x2−2x−5化为y=a(x−ℎ)2+k的形式为y=.14. 抛物线的顶点坐标为(1,−2),且过点(2,3),则函数的关系式:.15. 如果二次函数y=x2+bx+c配方后为y=(x−2)2+1,那么c的值为.16. 若抛物线y=ax2经过点(−3,4),则这函数的解析式是.17. 如图,在平面直角坐标系xOy中,点O是边长为2的正方形ABCD的中心.写出一个函数y=x2+c,使它的图象与正方形ABCD有公共点,这个函数的表达式为.18. 有一个二次函数的图象,三位同学分别说出了它的一些特点:甲:对称轴为直线x=2;乙:与x轴两个交点的横坐标都是整数;丙:与y轴交点的纵坐标也是整数,且以这三个点为顶点的三角形面积为3.请你写出满足上述全部特点的一个二次函数解析式.19. 已知二次函数的图象开口向下,且其图象顶点位于第一象限内,请写出一个满足上述条件的二次函数解析式为(表示为y=a(x+m)2+k的形式).20. 把二次函数y=x2−12x化为形如y=a(x−ℎ)2+k的形式:.21. 二次函数y=x2+bx+c的图象经过点(2,11)和点(−1,−7),则它的解析式为.22. 将二次函数y=x2−2x化为顶点式的形式为:.x2+3的图象形状相同,但开口方向不同,顶点坐标是(4,5)的抛物线的解析23. 形状与y=−12式.24. 用配方法将二次函数y=4x2−24x+26写y=a(x−ℎ)2+k的形式是.25. 将二次函数y=x2−4x+5化成y=(x−ℎ)2+k的形式,则y=.x2−2x+1写成y=a(x−ℎ)2+k的形式,结果为.26. 用配方法将y=1327. 若把函数y=x2−2x−3化为y=(x−m)2+k的形式,其中m,k为常数,则m+k=.28. 将y=2x2−12x−12变为y=a(x−m)2+n的形式,则m⋅n=.29. 若抛物线y=ax2+bx+c与x轴的一个交点为A(3,0),与y轴的交点为B(0,3),对称轴为直线x=1,则该抛物线对应的函数表达式为.30. 将函数y=x2−2x+3写成y=a(x−ℎ)2+k的形式为.31. 请写出一个图象的对称轴是直线x=1,且经过(0,1)点的二次函数的表达式:.32. 将抛物线y=x2−6x+5化为y=a(x−ℎ)2+k的形式为.33. 将函数y=x2−2x+4化为y=a(x−ℎ)2+k的形式为.34. 已知二次函数y=x2+bx+c的图象经过点A(−1,0),B(1,−2),该图象与x轴的另一交点为C,则AC的长为.35. 把二次函数的表达式y=x2−4x+6化为y=a(x−ℎ)2+k的形式,那么ℎ+k=.36. 抛物线y=−x2+bx+c的图象如图所示,则此抛物线的解析式为.37. 已知二次函数y=x2+bx+c,当x=2时,y=0;当x=−1时,y=3,则这个二次函数的解析式为.x2+3x+3化成y=a(x+m)2+k的形式为.38. 把二次函数y=−1439. 二次函数的图象的顶点坐标是(−2,3),它与y轴的交点坐标是(0,−3).40. 将y=(2x−1)(x+2)+1化成y=a(x−ℎ)2+k的形式为.41. 二次函数y=x2−2x+6化为y=(x−m)2+k的形式,则m+k=.42. 将二次函数y=x2−4x+9化成y=a(x−ℎ)2+k的形式.时,y=0,则这个二次函43. 一个二次函数,当自变量x=0时,函数值y=−1,当x=−2与12数的解析式是.44. 将二次函数y=x2−4x+5化为y=(x−ℎ)2+k的形式,那么ℎ+k=.45. 已知二次函数y=−x2+2x−3,用配方法化为y=a(x−ℎ)2+k的形式为.46. 若将二次函数y=x2−2x+3配方为y=a(x−ℎ)2+k的形式,则y=.47. 若把二次函数y=x2−2x+3化为y=(x−m)2+k的形式,其中m,k为常数,则m+k=.48. 抛物线y=ax2+bx+c(a≠0)经过点(1,2)和(−1,−6)两点,则a+c=.x2+6x−17配方成y=a(x+ℎ)2+k的形式是.49. 把y=−1250. 设抛物线y=ax2+bx+c(a≠0)过A(0,2),B(4,3),C三点,其中点C在直线x=2上,且点C到抛物线对称轴的距离等于1,则抛物线对应的函数表达式为.答案第一部分1. −x 2+2x (答案不唯一 )2. y =−3(x −2)2+3 (不唯一)3. y =−x 2+4x −3【解析】设抛物线的解析式为 y =a (x −2)2+1,将 B (1,0) 代入 y =a (x −2)2+1 得,a =−1,函数解析式为 y =−(x −2)2+1,展开得 y =−x 2+4x −3.4. y =−3x 25. y =−(x +1)2+26. y =13(x +5)27. x ≥12【解析】解析:依题意,有{0=(−1)2−b +c,−2=1+b +c,解得 {b =−1,c =−2,∴y =x 2−x −2,对称轴为 x =12,∴ 当 x ≥12 时,y 随 x 的增大而增大.8. −19. y =2x 2−8x +610. y =x 2−4x +3(答案不唯一)11. y =−x 2−2x +5(答案不唯一)【解析】由题意得,二次函数的图象开口向下,且经过 (2,−3) 点, y =−x 2−2x +5 符合要求.但答案不唯一.12. −1013. (x −1)2−614. y =5(x −1)2−215. 516. y =49x 217. 答案不惟一,如 y =x 2.(说明:写成 y =x 2+c 的形式时,c 的取值范围是 −2≤c ≤1)18. y =(x −1)(x −3),y =−(x −1)(x −3),y =15(x +1)(x −5),y =−15(x +1)(x −5) 写出其中一个即可19. y =−(x −1)2+1(答案不唯一)20. y =(x −6)2−3621. y =x 2+5x −322. y =(x −1)2−123. y =12(x −4)2+524. y =4(x −3)2−1025. (x −2)2+126. y =13(x −3)2−2 27. −328. −90【解析】y=2x 2−12x −12=2(x 2−6x +9)−30=2(x −3)2−30.所以 m =3,n =−30.29. y =−x 2+2x +330. y =(x −1)2+231. y =x 2−2x +1(答案不唯一)32. y =(x −3)2−433. y =(x −1)2+334. 3【解析】提示:解析式为 y =x 2−x −2 .35. 436. y =−x 2+2x +337. y =x 2−2x38. y =−14(x −6)2+1239. y =−32(x +2)2+340. y =2(x +34)2−17841. 642. y =(x −2)2+543. y =x 2+32x −1 44. 345. y =−(x −1)2−246. (x −1)2+247. 3【解析】y =x 2−2x +3=(x −1)2+2,∴m =1,k =2.∴m +k =3.48. −249. y =−12(x −6)2+150. y =18x 2−14x +2 或 y =−18x 2+34x +2【解析】∵A (0,2),B (4,3),C 三点在抛物线上,∴c =2,16a +4b +2=3,又 ∵ 点 C 在直线 x =2 上,且点 C 到抛物线对称轴的距离等于 1, ∴ 对称轴为直线 x =1 或 x =3,当对称轴为直线 x =1 时,{−b 2a =1,16a +4b +2=3. 解得 {a =18,b =−14. ∴y =18x 2−14x +2, 当对称轴为直线 x =3 时,{−b 2a =3,16a +4b +2=3. 解得 {a =−18,b =34. ∴y =−18x 2+34x +2.。
二次函数定义、顶点式
二次函数定义、顶点式1.下列函数中,是二次函数的有______________ ①y=1-2x 2;②y=21x ;③y=x(1-x);④y=(1-2x)(1+2x). 2.关于函数y=3x 2的性质表述正确的一项是( ) A.无论x 为任何实数,y 的值总为正 B.当x 值增大时,y 的值也增大 C.它的图象关于y 轴对称 D.它的图象在第一、三象限内3.已知点(-1,y 1),(2,y 2),(-3,y 3)都在函数y=x 2的图象上,则( ) A.y 1<y 2<y 3 B.y 1<y 3<y 2C.y 3<y 2<y 1D.y 2<y 1<y 34.设A(-2,y 1),B(1,y 2),C(2,y 3)是抛物线y=-(x+1)2+a 上的三点,则y 1,y 2,y 3的大小关系为( ) A.y 1>y 2>y 3 B.y 1>y 3>y 2 C.y 3>y 2>y 1D.y 3>y 1>y 25.分别求出符合下列条件的抛物线y=ax 2的解析式: (1)经过点(-3,2);_______________________(2)与y=31x 2开口大小相同,方向相反.___________________6.求符合下列条件的抛物线y=ax 2-1的函数关系式: (1)通过点(-3,2)_______________ (2)与y=12x 2的开口大小相同,方向相反_______________(3)当x 的值由0增加到2时,函数值减少4_________________7.已知a ≠0,在同一直角坐标系中,函数y=ax 与y=ax 2的图象有可能是( )8.下列四个二次函数:①y=x 2,②y=-2x 2,③y=21x 2,④y=3x 2,其中抛物线开口从大到小的排列顺序是_______________9.如图,四个二次函数的图象中,分别对应的是:①y=ax 2;②y=bx 2;③y=cx 2;④y=dx 2,则a 、b 、c 、d 的大小关系为( ) A.a >b >c >d B.a >b >d >c C.b >a >c >d D.b >a >d >c9题11题10.若二次函数y=m m mx -2的图象开口向下,则m=____11.已知二次函数y=2x 2的图象如图所示,将x 轴沿y 轴向上平移2个单位长度后与抛物线交于A,B 两点,则△AOB 的面积为________. 12.抛物线y=4x 2-1与y 轴的交点坐标是_________,与x 轴的交点坐标是_____.13.抛物线y=21(x+3)2的顶点坐标是______,对称轴是_________14.抛物线y=-41x 2+1,y=-41(x+1)2与抛物线y=-41(x 2+1)的_____相同,_____不同.15.已知抛物线y=-2(x+1)2-3,如果y 随x 的增大而减小,那么x 的取值范围是______. 16.抛物线2)1(-=x y 沿y 轴方向向上或向下平移后,经过点(3,0),则所得抛物线的解析式为 .17.若将抛物线y=x 2向右平移2个单位,再向上平移3个单位,则所得抛物线的解析式为___________________,顶点坐标是______. 18.如图,在平面直角坐标系中,抛物线所表示的函数解析式为y=-2(x-h)2+k ,则下列结论正确的是( )18题19题A.h>0,k>0B.h<0,k>0C.h<0,k<0D.h>0,k<019.如图,把抛物线y=x 2沿直线y=x 平移2个单位后,其顶点在直线上的A 处,则平移后抛物线的解析式是____________ 20.说出下列抛物线的开口方向、对称轴及顶点:21.已知抛物线),,0()(2是常数n m a n m x a y ≠++=开口向下,顶点在第二象限,则a 0,m 0,n 0(填“>”“=”、“<”). 22.若直线3y x m =+经过第一、三、四象限,则抛物线2()1y x m =-+的顶点必在_________象限23.在图中抛物线2)(m x a y +=与直线m ax y +=可能是( )24.抛物线n m x y ++=2)(向上平移2个单位,再向左平移4个单位,得到抛物线2x y =,则m =______,n =______25.已知抛物线y=mx 2+n 向下平移2个单位后得到的函数图像是y=3x 2-1,则m=______n=_______.26.若点A(2,m)在函数y=x 2-1的图象上,则点A 关于x 轴的对称点的坐标是_____.27.二次函数y=ax 2与直线y=2x-1的图象交于点P(1,m).(1)写出二次函数的表达式,并指出x 取何值时,该表达式的y 随x 的增大而增大?(2)指出抛物线的顶点坐标和对称轴.28.已知二次函数y=ax 2(a ≠0)与一次函数y=kx-2的图象相交于A 、B 两点,如图所示,其中A(-1,-1),求△OAB 的面积.29.把二次函数y=a(x-h)2+k 的图象先向左平移2个单位,再向上平移4个单位,得到二次函数y=21(x+1)2-1的图象. (1)试确定a ,h ,k 的值;(2)指出二次函数y=a(x-h)2+k 的开口方向,对称轴和顶点坐标.30.在直角坐标平面内,二次函数图象的顶点为A(1,-4),且过点B(3,0)(1)求该二次函数的解析式; (2)将该二次函数图象向右平移几个单位,可使平移后所得的图象经过坐标原点?并直接写出平移后所得图象与x 轴的另一个交点的坐标.31.已知抛物线y=-(x-m)2+1与x 轴的交点为A ,B(B 在A 的右边),与y 轴的交点为C.(1)写出m=1时与抛物线有关的三个正确结论; (2)当点B 在原点的右边,点C 在原点下方时,是否存在△BOC 为等腰三角形的情形?若存在,求出m 的值;若不存在,请说明理由.32、已知二次函数()212--=x y ,(1)当32≤≤x 时,求函数的最值.(2)当30≤≤x 时,求函数的最值.33.已知一条抛物线的开口方向和大小与抛物线2x y =都相同,对称轴与抛物线2)2(+=x y 相同,且顶点的纵坐标为-1.(1)求这条抛物线的解析式;(2)求这条抛物线与1+=x y 的两交点坐标及这两点的距离.34.如图12,一位篮球运动员跳起投篮,球沿抛物线213.55y x =-+运行,然后准确落入篮框内.已知篮框的中心离地面的距离为3.05米.(1)球在空中运行的最大高度为多少米?(2)如果该运动员跳投时,球出手离地面的高度为2.25米,请问他距离篮框中心的水平距离是多少?35.如图所示,抛物线2)(m x y --=的顶点为A ,直线l :m x y 33-=与y 轴的交点为B ,其中0>m .(1)写出抛物线对称轴及顶点A 的坐标(用含m 的代数式表示); (2)证明点A 在直线l 上,并求出OAB ∠的度数; (3)动点Q 在抛物线对称轴上,问抛物线上是否存在点P ,使以P 、Q 、A 为顶点的三角形与OAB ∆全等?若存在,求出m 的值,并写出所有符合上述条件的P 点坐标;若不存在,说明理由.。
人教版九年级上册《二次函数顶点式和一般式》同步练习
二次函数顶点式和一般式课前检测:在同一坐标系内,函数y =kx 2和y =kx -2(k ≠0)的图象大致如图( )函数y=a (x -h )2+k (顶点式)的图像和性质1. 抛物线y=(x+1)2+2的顶点坐标是_________,对称轴是________2. 将抛物线y= -(x -2)2向右平移2个单位,再向下平移1个单位,得到的解析式是________3.抛物线()3-1212+-=x y ,开口向 ,对称轴 ,顶点坐标是 ,当x _____时,y 随x 的增大而增大;当x _____时,y 随x 的增大而减小;当x _____时,函数y 有_____值,这个值是_______。
4.已知A(−1,y1),B(2,y2)是抛物线y=−(x+2)2+1上的两点,则y1,y2的大小关系( )A. y1>y2B. y1≥y2C. y1<y2D. y1≤y25.对于抛物线()31212++-=x y ,下列结论:①抛物线的开口向下 ②对称轴为直线x =1 ③顶点坐标为(—1,3) ④x >1时,y 随x 的增大而减小,其中正确的个数为( ) A 、 1个 B 、2个 C 、 3个 D 、 4个根据顶点、对称轴求抛物线解析式1.把抛物线y=-2(x -1)2向上平移k 个单位使所得的抛物线经过点(-2,-10).求k 的值.2.抛物线的顶点为(1,2),且形状与y=x2相同,开口向上,求抛物线的解析式。
3.抛物线的顶点为(2,-3),且经过(1,-1),求抛物线的解析式。
4.已知二次函数y=x2+bx+c的图象向左平移2个单位,再向上平移3个单位,得到二次函数y=(x-1)2+2.(1)求b,c的值;(2)当1≤x≤4时,求二次函数y=x2+bx+c的最大值和最小值.5.已知二次函数y=(x+m)2+k的顶点为(1,−4)(1)求二次函数的解析式及图象与x轴交于A. B两点的坐标。
(2)将二次函数的图象沿x轴翻折,得到一个新的抛物线,求新抛物线的解析式。
二次函数练习题(解析式)
二次函数练习题——求解析式一般式:y=ax2+bx+c(a≠0)顶点式:y=a(x-h)2+k(a≠0),其中(h,k)是抛物线的顶点坐标两根式:y=a(x-x1)(x-x2)(a≠0),其中x1、x2是抛物一线与x轴的两个交点的横坐标1.抛物线过(-1,10)、(1,4)、(2,7)三点,求抛物线的解析式。
2.二次函数y=ax2+bx+c有最小值为-8,且a:b:c=1:2:(-3),求此函数的解析式。
3.抛物线的对称轴是x=2,且过(4,-4)、(-1,2),求此抛物线的解析式。
4.二次函数y=ax2+bx+c,x=-2时y=-6,x=2时y=10,x=3时y=24,求此函数的解析式。
5.抛物线的顶点为(2,-3),且过(-1,2),求此抛物线的解析式。
6.二次函数y=ax2+bx+c的对称轴为x=3,最小值为-2,,且过(0,1),求此函数的解析式。
7.二次函数y=ax2+bx+c,x=6时y=0,x=4时y有最大值为8,求此函数的解析式。
8.二次函数y=ax2+bx+c,当x<6时y随x的增大而减小,x>6时y随x的增大而增大,其最小值为-12,其图象与x轴的交点的横坐标是8,求此函数的解析式。
9.抛物线过点(1,0)、(5,0)、(3,-2),求此抛物线的解析式。
10.二次函数y=ax2+bx+c右边的二次三项式的两根分别为-3和1,且x=-4时y=10,求此函数的解析式。
11.抛物线与x轴的两个交点的横坐标是-3和1,且过点(0,3/2),求此抛物线的解析式。
12.二次函数x=-2时y有最小值为-3,且它的图象与x轴的两个交点的横坐标的积为3,求此函数的解析式。
13.抛物线的顶点为(-1,-8),它与x轴的两个交点间的距离为4,求此抛物线的解析式。
14.求抛物线y=x2-2x-1,关于x轴对称图形的解析式。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二次函数图像和性质练习
1、二次函数y=2x1 2-4的顶点坐标为,对称轴为。
2、二次函数y = -2(x + 3尸—1 由y = -2(x-1)2+1 向平移
个单位,再向平移个单位得到。
3、抛物线y = 3(x + 2)2—3可由抛物线y = 3(x + 2)2 +2向平移
个单位得到.
4、将抛物线y = -(x-3)2+2向右平移3个单位,再向上平移2个单位,
6
得到的抛物线是
5、把抛物线y = —3 — 1)2 —1向平移个单位,再向平移
个单位得到抛物线y = -(x + 2)2-3.
6、抛物线y = l(x + 4)2-7的顶点坐标是_________________ ,对称轴是直
2
线,它的开口向,在对称轴的左侧,即当XV 时,
y随x的增大而;在对称轴的右侧,即当x>时,y随x的增大而; 当x=时,y 的值最, 最值
是。
7、将抛物线y=3x2向左平移6个单位,再向下平移7个单位所得新抛物线的解析式为。
8、若一抛物线形状与y=-5x2+2相同,顶点坐标是(4, 一2),则其解析式是.
9、两个数的和为8,则这两个数的积最大可以为,若设其中一个数为x,积
为y,则y与x的函数表达式为.
10、一根长为100m的铁丝围成一个矩形的框子,要想使铁丝框的面积
最大, 边长分别为 .
11、若两个数的差为3,若其中较大的数为x,则它们的积y与x的函数表
达式为,它有最值,即当x= 时,y=_
12、边长为12cm的正方形铁片,中间剪去一个边长为x的小正方形铁片,
剩下的四方框铁片的面积y (cm2)与x (cm)之间的函数表达式为
13、等边三角形的边长2x与面积y之间的函数表达式为
14、二次函数y=x2的图象向右平移3个单位,得到新的图象的函数表达式是()
A. y = x2+3B<y=x2-3C・y= (x+3) 2 D.y= 3—3) 2
15、二次函数)= 一(X-1) 2+3图像的顶点坐标是()
A. ( — 1, 3)
B. (1, 3)
C. ( — 1, —3)
D. (1, —3)
16、二次函数尸= 二、2+x—6的图
象与
X轴交点的横坐标是()
A. 2 和一3
B. 一2 和3
C.2 和3
D. 一2 和一3
17、二次函数)= 以2的图像开口
向_
____ ,对称轴是________ ,顶点坐标
是_______ ,图像有最______ 点,x_____ 时,y随x的增大而增大,x ___
—时,y随x的增大而减小。
18、关于y = -x2f y = x2t y = 3x2的图像,下列说法中不正确的是(
)
3
A.顶点相同
B.对称轴相同
C.图像形状相同
D.最低点相
同19、两条抛物线y = x2与y = -J在同一坐标系内,下列说法中不正确的是()
A.顶点相同
B.对称轴相同
C.开口方向相反
D.都有最小值
20、在抛物线y = -x2±f当y V0时,x的取值范围应为()
A. x>0
B. x<0
C. x尹0
D. xNO
21、对于抛物线y = F与 > =-尸下列命题中错误的是()
A.两条抛物线关于尤轴对称
B.两条抛物线关于原点对称
C.两条抛物线各自关于y轴对称
D.两条抛物线没有公共点
22、抛物线y=-bx2 +3的对称轴是,顶点是。
23、抛物线y=--(x + 2)2-4的开口向_______ ,顶点坐标______ ,对称轴
2
, x 时,y随x的增大而增大,x 时,y随x的增大而减小。
24、抛物线y = 2(x+l)2-3的顶点坐标是()
A. (1, 3)
B. (-1, 3)
C. (1, -3)
28
、在平面直角坐标系中,将二次函数》
=2亍的图象向上平移2个单位,
A. y = 2x 2 -2 B ・ y = 2x 2 +2 C. y = 2(x — 2)2
D. y = 2(x + 2)2
25、二次函数),=农2的图像向左平移2个单位,向下平移3个单位,所得
新函数表达式为(
)
A. y=a(x-2)2 +3
B. y=a(x —2)2 —3
C. y=a(x + 2)2 +3
D. y=a(^ + 2)2 —3 26、对抛物线y=2(x-2)2 一3与y=— 2(x-2)2
+4的说法不正确的是 ( )
A.抛物线的形状相同
B.抛物线的顶点相同
C.抛物线对称轴相同
D.抛物线的开口方向相反
27>函数y=ax 2 +c 与y=ax+c(a/O)在同一坐标系内的图像是图中的
所得图象的解析式为( )
29、抛物线y = 2(x + m)2
+n ( m,"是常数)的顶点坐标是(
)
A.(秫,n)
B. (-m, n)
C. (m, — n)
D. (-m 9-ri)
30、图6 (1)是一个横断面为抛物线形状的拱桥,当水面在/时,拱顶(拱 桥洞的最高点)离水面2m,水面宽4m.如图6 (2)建立平面直角坐标系, 则抛物线
的
关
系
式
是
(
)
A. y = -2x
2 B. y = 2x2
1 2
C- y =——JT
, 2
D. y = —x2
2
后抛物线的解析式为(
A. y = -(x-l)2 -3
)
y = _(x + l)2_3
^=-(X-1)2+3 y = -(x + l)2 +3
C. x = 2
D. x = —2
37、若y = (m2 + 是二次函数,m=
33、抛物线y = 3(x—l)2 + 2的对称轴是( )
A- x = 1 B. x = -1
34、抛物线y =4(X +2)2 +4关于x轴对称的抛物线的解析式为35、如图所
示,在同一坐标系中,作出①y = 3必②),=:尤2③y =必的图象,则图象从
里到外的三条抛物线对应的函数依次是(填序号)
36、若抛物线y=x2-bx+9的顶点在y轴上, 则b的值为
图6 (1)图 6 (2)
31、已知。
(),在同一直角坐标系中,函数y = ax与),= 的图象有可能
X。