2017年解放军军考数学真题及参考答案

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2017年士兵高中军考数学真题

解放军军考数学真题,解放军士兵考军校资料,解放军2017数学,德方军考,解放军军考真题,解放军军考资料

德方军

考寄语 首先预祝你2018年军考取得好成绩!军考真题的参考意义巨大,希望你好好利用这份军考真题。

如果你有些军考真题不会做,可以下载军考通APP ,上面有真题讲解的视频课。此外,还有军考考点精讲、教材习题精讲和专项突破视频课程,相信对你的军考备考会很有帮助,现在军考通APP 视频课免费公开了20%。

一、单项选择(每小题4分,共36分).

1. 设集合A={y|y=2x ,x ∈R},B={x|x 2﹣1<0},则A ∪B=( ) A .(﹣1,1) B .(0,1) C .(﹣1,+∞) D .(0,+∞)

2. 已知函数f (x )=a x +log a x (a >0且a≠1)在[1,2]上的最大值与最小值之和为(log a 2)+6,则a 的值为( ) A . B .

C . 2

D .4

3. 设a b 、

是向量,则||=||a b 是|+|=|-|a b a b 的( ) A.充分不必要条件

B.必要不充分条件

C.充要条件

D.既不充分也不必要条件

4.已知4213

5

3

=2,4,25a b c ==,则( )

A .b

B .a

C .b

D . c

5. 设F 为抛物线C :y 2=3x 的焦点,过F 且倾斜角为30°的直线交C 于A ,B 两点,O 为坐标原点,则△OAB 的面积为( ) A .

B .

C .

D .

6. 设数列{a n }是首项为a 1、公差为-1的等差数列,S n 为其前n 项和,若S 1,S 2,S 4成等比数列,则a 1=( ) A .2 B . C .﹣2

D .﹣

7. 袋中共有15个除了颜色外完全相同的球,其中有10个白球,5个红球.从袋中任取2个球,所取的2个球中恰有1个白球,1个红球的概率为( ) A .

B .

C .

D .1

8. 已知A ,B ,C 点在球O 的球面上,∠BAC=90°,AB=AC=2.球心O 到平面ABC 的距离为1,则球O 的表面积为( ) A .12π B .16π C .36π D .20π

9. 已知2017ln f x x x =+()(),0'2018f x =(

),则0

x =( ) A. 2e

B.1

C. ln 2

D. e

二、填空题(每小题4分,共32分)

10. 设向量,,且,则m=.

11.设tanα,tanβ是方程x2﹣3x+2=0的两个根,则tan(α+β)的值为.

12. 已知A、B为双曲线E的左右顶点,点M在E上,△ABM为等腰三角形,且顶角为120°,则E的离心率为.

13. 已知函数f(x)=,则f(f())= .

14. 在的展开式中x7的项的系数是.

15. 我国第一艘航母“辽宁舰”在某次舰载机起降飞行训练中,有5架“歼﹣15”飞机准备着舰,如果甲、乙两机必须相邻着舰,而丙、丁两机不能相邻着舰,那么不同的着舰方法数是_______。

16. 在极坐标系中,直线ρcosθ﹣ρsinθ﹣1=0与圆ρ=2cosθ交于A,B两点,则|AB|=_______.

17. 已知n为正偶数,用数学归纳法证明时,若已假设n=k(k≥2,

k为偶数)时命题为真,则还需要用归纳假设再证n=时等式成立.

三、解答题(共7小题,共82分,解答题应写出文字说明、演算步骤或证明过程)

18.(本小题8分)对任意实数x,不等式﹣9<

2

2

36

1

x px

x x

+-

-+

<6恒成立,求实数p的取值范围。

19.(本小题12分)

20、(12分)已知数列{a n}中,a1=1,二次函数f(x)=a n•x2+(2﹣n﹣a n+1)•x的对称轴为x=.

(1)试证明{2n a n}是等差数列,并求{a n}通项公式;

(2)设{a n}的前n项和为S n,试求使得S n<3成立的n值,并说明理由.

21、(10分)已知5只动物中有1只患有某种疾病,需要通过化验血液来确定患病的动物.血液化验结果呈阳性的即为患病动物,呈阴性即没患病.下面是两种化验方法:

方案甲:逐个化验,直到能确定患病动物为止.

方案乙:先任取3只,将它们的血液混在一起化验.若结果呈阳性则表明患病动物为这3只中的1只,然后再逐个化验,直到能确定患病动物为止;若结果呈阴性则在另外2只中任取1只化验.

(Ⅰ)求依方案甲所需化验次数不少于依方案乙所需化验次数的概率;

(Ⅱ)ξ表示依方案乙所需化验次数,求ξ的期望.

22、(12分)已知函数f(x)=ax+bsinx,当时,f(x)取得极小值.

(1)求a,b的值;

(2)设直线l:y=g(x),曲线S:y=f(x).若直线l与曲线S同时满足下列两个条件:

①直线l与曲线S相切且至少有两个切点;

②对任意x∈R都有g(x)≥f(x).则称直线l为曲线S的“上夹线”.试证明:直线l:y=x+2为曲线S:y=ax+bsinx“上夹线”.

23、(14分)已知圆M:x2+(y﹣4)2=4,点P是直线l:x﹣2y=0上的一动点,过点P作圆M的切线PA,PB,切点为A,B.

(1)当切线PA的长度为时,求点P的坐标;

(2)若△PAM的外接圆为圆N,试问:当P在直线l上运动时,圆N是否过定点?若存在,求出所有的定点的坐标;若不存在,说明理由.

(3)求线段AB长度的最小值.

相关文档
最新文档