四川省德阳市2020年中考数学试卷 解析版
2020年四川省德阳市中考数学试卷-解析版
2020年四川省德阳市中考数学试卷一、选择题(本大题共12小题,共48.0分)1.13的相反数是()A. 3B. −3C. 13D. −132.下列运算正确的是()A. a2⋅a3=a6B. (3a)3 =9a3C. 3a−2a=1D. (−2a2)3=−8a63.如图所示,直线EF//GH,射线AC分别交直线EF、GH于点B和点C,AD⊥EF于点D,如果∠A=20°,则∠ACG=()A. 160°B. 110°C. 100°D. 70°4.下列说法错误的是()A. 方差可以衡量一组数据的波动大小B. 抽样调查抽取的样本是否具有代表性,直接关系对总体估计的准确程度C. 一组数据的众数有且只有一个D. 抛掷一枚图钉针尖朝上的概率,不能用列举法求得5.多边形的内角和不可能为()A. 180°B. 540°C. 1080°D. 1200°6.某商场销售A,B,C,D四种商品,它们的单价依次是50元,30元,20元,10元.某天这四种商品销售数量的百分比如图所示,则这天销售的四种商品的平均单价是()A. 19.5元B. 21.5元C. 22.5元D. 27.5元7.半径为R的圆内接正三角形、正方形、正六边形的边心距分别为a,b,c,则a,b,c的大小关系是()A. a<b<cB. b<a<cC. a<c<bD. c<b<a8.已知函数y={−x+1(x<2)−2x(x≥2),当函数值为3时,自变量x的值为()A. −2B. −23C. −2或−23D. −2或−329.如图是一个几何体的三视图,根据图中所示数据计算这个几何体的表面积是()A. 20πB. 18πC. 16πD. 14π10.如图,Rt△ABC中,∠A=30°,∠ABC=90°.将Rt△ABC绕点B逆时针方向旋转得到△A′BC′.此时恰好点C在A′C′上,A′B交AC于点E,则△ABE与△ABC的面积之比为()A. 13B. 12C. 23D. 3411.已知:等腰直角三角形ABC的腰长为4,点M在斜边AB上,点P为该平面内一动点,且满足PC=2,则PM的最小值为()A. 2B. 2√2−2C. 2√2+2D. 2√212.已知不等式ax+b>0的解集为x<2,则下列结论正确的个数是()(1)2a+b=0;(2)当c>a时,函数y=ax2+bx+c的图象与x轴没有公共点;(3)当c>0时,抛物线y=ax2+bx+c的顶点在直线y=ax+b的上方;(4)如果b<3且2a−mb−m=0,则m的取值范围是−34<m<0.A. 1B. 2C. 3D. 4二、填空题(本大题共6小题,共24.0分)13.小明在体考时选择了投掷实心球,如图是体育老师记录的小明在训练时投掷实心球的6次成绩的折线统计图.这6次成绩的中位数是______.14. 把多项式ax 2−4a 分解因式的结果是______.15. 如图,在平行四边形ABCD 中,BE 平分∠ABC ,CF ⊥BE ,连接AE ,G 是AB 的中点,连接GF ,若AE =4,则GF =______.16. 将正偶数按照如下规律进行分组排列,依次为(2),(4,6),(8,10,12),(14,16,18,20)…,我们称“4”是第2组第1个数字,“16”是第4组第2个数字,若2020是第m 组第n 个数字,则m +n =______.17. 若实数x ,y 满足x +y 2=3,设s =x 2+8y 2,则s 的取值范围是______. 18. 如图,海中有一小岛A ,它周围10.5海里内有暗礁,渔船跟踪鱼群由西向东航行.在B 点测得小岛A 在北偏东60°方向上,航行12海里到达D 点,这时测得小岛A 在北偏东30°方向上.如果渔船不改变航线继续向东航行,那么渔船还需航行______海里就开始有触礁的危险.三、解答题(本大题共7小题,共78.0分)19. 计算:(−2)−2−|√3−2|+(−√32)0−√83−2cos30°.20.如图,四边形ABCD为矩形,G是对角线BD的中点.连接GC并延长至F,使CF=GC,以DC,CF为邻边作菱形DCFE,连接CE.(1)判断四边形CEDG的形状,并证明你的结论.(2)连接DF,若BC=√3,求DF的长.21.为了加强学生的垃圾分类意识,某校对学生进行了一次系统全面的垃圾分类宣传.为了解这次宣传的效果,从全校学生中随机抽取部分学生进行了一次测试,测试结果共分为四个等级:A.优秀;B.良好;C.及格:D.不及格.根据调查统计结果,绘制了如图所示的不完整的统计表.垃圾分类知识测试成绩统计表测试等级百分比人数A.优秀5%20B.良好60C.及格45%mD.不及格n请结合统计表,回答下列问题:(1)求本次参与调查的学生人数及m,n的值;(2)如果测试结果为“良好”及以上即为对垃圾分类知识比较了解,已知该校学生总数为5600人,请根据本次抽样调查的数据估计全校比较了解垃圾分类知识的学生人数;(3)为了进一步在学生中普及垃圾分类知识,学校准备再开展一次关于垃圾分类的知识竞赛,要求每班派一人参加.某班要从在这次测试成绩为优秀的小明和小亮中选一人参加.班长设计了如下游戏来确定人选,具体规则是:把四个完全相同的乒乓球分别标上数字1,2,3,4.然后放到一个不透明的袋中充分摇匀,两人同时从袋中各摸出一个球.若摸出的两个球上的数字和为奇数,则小明参加,否则小亮参加.请用树状图或列表法说明这个游戏规则是否公平.22.如图,一次函数y1=ax+b与反比例函数y2=4的图x象交于A、B两点.点A的横坐标为2,点B的纵坐标为1.(1)求a,b的值.(2)在反比例y2=4第三象限的图象上找一点P,使点xP到直线AB的距离最短,求点P的坐标.23.推进农村土地集约式管理,提高土地的使用效率是新农村建设的一项重要举措.某村在小城镇建设中集约了2400亩土地,计划对其进行平整.经投标,由甲乙两个工程队来完成平整任务.甲工程队每天可平整土地45亩,乙工程队每天可平整土地30亩.已知乙工程队每天的工程费比甲工程队少500元,当甲工程队所需工程费为12000元,乙工程队所需工程费为9000元时,两工程队工作天数刚好相同.(1)甲乙两个工程队每天各需工程费多少元?(2)现由甲乙两个工程队共同参与土地平整,已知两个工程队工作天数均为正整数,且所有土地刚好平整完,总费用不超过110000元.①甲乙两工程队分别工作的天数共有多少种可能?②写出其中费用最少的一种方案,并求出最低费用.24.如图,在⊙O中,弦AB与直径CD垂直,垂足为M,CD的延长线上有一点P,满足∠PBD=∠DAB.过点P作PN⊥CD,交OA的延长线于点N,连接DN 交AP于点H.(1)求证:BP是⊙O的切线;(2)如果OA=5,AM=4,求PN的值;(3)如果PD=PH,求证:AH⋅OP=HP⋅AP.25.如图1,抛物线y=ax2−2ax−3a(a≠0)与x轴交于点A,B.与y轴交于点C.连接AC,BC.已知△ABC的面积为2.(1)求抛物线的解析式;(2)平行于x轴的直线与抛物线从左到右依次交于P,Q两点.过P,Q向x轴作垂线,垂足分别为G,H.若四边形PGHQ为正方形,求正方形的边长;(3)如图2,平行于y轴的直线交抛物线于点M,交x轴于点N(2,0).点D是抛物线上A,M之间的一动点,且点D不与A,M重合,连接DB交MN于点E.连接AD 并延长交MN于点F.在点D运动过程中,3NE+NF是否为定值?若是,求出这个定值;若不是,请说明理由.答案和解析1.【答案】D【解析】解:13的相反数为−13. 故选:D .在一个数前面放上“−”,就是该数的相反数.本题考查了相反数的概念,求一个数的相反数只要改变这个数的符号即可.2.【答案】D【解析】解:A 、a 2⋅a 3=a 5,故原题计算错误; B 、(3a)3 =27a 3,故原题计算错误; C 、3a −2a =a ,故原题计算错误; D 、(−2a 2)3=−8a 6,故原题计算正确; 故选:D .利用同底数幂的乘法法则、积的乘方运算法则、合并同类项法则分别进行计算即可. 此题主要考查了同底数幂的乘法、积的乘方运算、合并同类项,关键是掌握各计算法则.3.【答案】B【解析】解:∵AD ⊥EF ,∠A =20°,∴∠ABD =180°−∠A −∠ABD =180°−20°−90°=70°, ∵EF//GH ,∴∠ACH =∠ABD =70°,∴∠ACG =180°−∠ACH =180°−70°=110°, 故选:B .利用三角形的内角和定理,由AD ⊥EF ,∠A =20°可得∠ABD =70°,由平行线的性质定理可得∠ACH ,易得∠ACG .本题主要考查了三角形的内角和定理和平行线的性质定理,熟记定理是解答此题的关键.4.【答案】C【解析】解:方差可以衡量一组数据的波动大小,故选项A 正确;抽样调查抽取的样本是否具有代表性,直接关系对总体估计的准确程度,故选项B 正确;一组数据的众数有一个或者几个,故选项C错误;抛掷一枚图钉针尖朝上的概率,不能用列举法求得,故选项D正确;故选:C.根据各个选项中的说法,可以判断是否正确,从而可以解答本题.本题考查抽样调查、用样本估计总体、众数和方差,解答本题的关键是明确题意,可以判断各个选项中的说法是否正确5.【答案】D【解析】解:因为在这四个选项中不是180°的倍数的只有1200°.故选:D.多边形的内角和可以表示成(n−2)⋅180°(n≥3且n是整数),则多边形的内角和是180度的倍数,由此即可求出答案.本题主要考查多边形的内角和定理,牢记定理是解答本题的关键,难度不大.6.【答案】C【解析】解:这天销售的四种商品的平均单价是:50×10%+30×15%+20×55%+10×20%=22.5(元),故选:C.根据加权平均数定义即可求出这天销售的四种商品的平均单价.本题考查了加权平均数、扇形统计图,解决本题的关键是掌握加权平均数的定义.7.【答案】D【解析】解:设圆的半径为R,则正三角形的边心距为a=R×cos60°=12R.四边形的边心距为b=R×cos45°=√22R,正六边形的边心距为c=R×cos30°=√32R.∵12R<√22R<√32R,∴c<b<a,故选:D.根据三角函数即可求解.此题主要考查了正多边形和圆的性质,解决本题的关键是构造直角三角形,得到用半径表示的边心距;注意:正多边形的计算一般要转化为解直角三角形的问题来解决.8.【答案】A【解析】解:若x<2,当y=3时,−x+1=3,解得:x=−2;=3,若x≥2,当y=3时,−2x,不合题意舍去;解得:x=−23∴x=−2,故选:A.根据分段函数的解析式分别计算,即可得出结论.本题考查反比例函数的性质、一次函数的图象上点的坐标特征;根据分段函数进行分段求解是解题的关键.9.【答案】B【解析】解:这个几何体的表面积=π⋅22+π⋅3⋅2+2π⋅2⋅2=18π,故选:B.由几何体的三视图可得出原几何体为圆锥和圆柱组合体,根据图中给定数据求出表面积即可.本题考查了由三视图判断几何体、圆锥和圆柱的计算以及勾股定理,由几何体的三视图可得出原几何体为圆锥和圆柱组合体是解题的关键.10.【答案】D【解析】解:∵∠A=30°,∠ABC=90°,∴∠ACB=60°,∵将Rt△ABC绕点B逆时针方向旋转得到△A′BC′,∴BC=BC′,∠ACB=∠A′C′B=60°,∴△BCC′是等边三角形,∴∠CBC′=60°,∴∠ABA′=60°,∴∠BEA=90°,设CE=a,则BE=√3a,AE=3a,∴CEAE =13,∴AEAC =34,∴△ABE与△ABC的面积之比为34.故选:D.由旋转的性质得出BC=BC′,∠ACB=∠A′C′B=60°,则△BCC′是等边三角形,∠CBC′=60°,得出∠BEA=90°,设CE=a,则BE=√3a,AE=3a,求出AEAC =34,可求出答案.本题考查了旋转的性质,直角三角形的性质,等边三角形的判定与性质;熟练掌握旋转的性质是解题的关键.11.【答案】B【解析】解:∵等腰直角三角形ABC的腰长为4,∴斜边AB=4√2,∵点P为该平面内一动点,且满足PC=2,∴点P在以C为圆心,PC为半径的圆上,当点P在斜边AB的中线上时,PM的值最小,∵△ABC是等腰直角三角形,∴CM=12AB=2√2,∵PC=2,∴PM=CM−CP=2√2−2,故选:B.根据等腰直角三角形的性质得到斜边AB=4√2,由已知条件得到点P在以C为圆心,PC为半径的圆上,当点P在斜边AB的中线上时,PM的值最小,于是得到结论.本题考查了等腰直角三角形,最短路线问题,正确的作出图形是解题的关键.12.【答案】C【解析】解:(1)∵不等式ax+b>0的解集为x<2,∴a<0,−ba=2,即b=−2a,∴2a+b=0,故结论正确;(2)函数y=ax2+bx+c中,令y=0,则ax2+bx+c=0,∵即b=−2a,∴△=b2−4ac=(−2a)2−4ac=4a(a−c),∵a<0,c>a,∴△=4a(a−c)>0,∴当c>a时,函数y=ax2+bx+c的图象与x轴有两个公共点,故结论错误;(3)∵b=−2a,∴−b2a =1,4ac−b24a=4ac−4a24a=c−a,∴抛物线y=ax2+bx+c的顶点为(1,c−a),当x=1时,直线y=ax+b=a+b=a−2a=−a>0当c>0时,c−a>−a>0,∴抛物线y=ax2+bx+c的顶点在直线y=ax+b的上方,故结论正确;(4)∵b=−2a,∴由2a−mb−m=0,得到−b−mb−m=0,∴b=−mm+1,如果b<3,则0<−mm+1<3,∴−34<m<0,故结论正确;故选:C.由不等式的解集得出a<0,−ba=2,即b=−2a,从而得出2a+b=0,即可判断(1);根据△=4a(a−c)>0即可判断(2);求得抛物线的顶点为(1,a−c)即可判断(3);求得0<−mm+1<3,得出不等式组的解集为−34<m<0即可判断(4).本题考查了抛物线与x轴的交点,一次函数的性质,二次函数的性质,一次函数图象上点的坐标特征,二次函数图象上点的坐标特征,有一定难度.13.【答案】9.75【解析】解:由6次成绩的折线统计图可知:这6次成绩从小到大排列为:9.5,9.6,9.7,9.8,10,10.2,所以这6次成绩的中位数是:9.7+9.82=9.75.故答案为:9.75.根据中位数定义:将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数中间两个数据的平均数就是这组数据的中位数.即可得解.本题考查了折线统计图、中位数,解决本题的关键是掌握中位数.14.【答案】a(x+2)(x−2)【解析】解:ax2−4a=a(x2−4)=a(x+2)(x−2).故答案为:a(x+2)(x−2).先提出公因式a,再利用平方差公式因式分解.本题考查了提公因式法和公式法进行因式分解,解决本题的关键是熟记提公因式法和公式法.15.【答案】2【解析】解:在平行四边形ABCD中,AB//CD,∴∠ABE=∠BEC.∵BE平分∠ABC,∴∠ABE=∠CBE,∴∠CBE=∠BEC,∴CB=CE.∵CF⊥BE,∴BF=EF.∵G是AB的中点,∴GF是△ABE的中位线,BE,∴GF=12∵BE=4,∴GF=2.故答案为2.根据平行四边形的性质结合角平分线的定义可求解∠CBE=∠BEC,即可得CB=CE,利用等腰三角形的性质可怎么BF=EF,进而可得GF是△ABE的中位线,根据三角形的中位线的性质可求解.本题主要考查平行四边形的性质,等腰三角形的性质与判定,三角形中位线的性质,证明GF是△ABE的中位线是解题的关键.16.【答案】65【解析】解:∵将正偶数按照如下规律进行分组排列,依次为(2),(4,6),(8,10,12),(14,16,18,20)…,∴第m组有m个连续的偶数,∵2020=2×1010,∴2020是第1010个偶数,∵1+2+3+⋯+44=44×(44+1)2=990,1+2+3+⋯+45=45×(45+1)2=1035,∴2020是第45组第1010−990=20个数,∴m=45,n=20,∴m+n=65,故答案为:65.根据题目中数字的特点,可知每组的个数依次增大,每组中的数字都是连续的偶数,然后即可求出2020是多少组第多少个数,从而可以得到m、n的值,然后即可得到m+n 的值.本题考查数字的变化类,解答本题的关键是明确题意,发现数字的变化特点,求出m、n的值.17.【答案】s≥9【解析】解:由x+y2=3,得:y2=−x+3≥0,∴x≤3,代入得:s=x2+8y2=x2+8(−x+3)=x2−8x+24=(x−4)2+8,当x=3时,s=(3−4)2+8=9,∴s≥9;故答案为:s≥9.由已知等式表示出y2,代入s中利用二次函数最值即可确定出s范围.此题考查了非负数的性质,用一个未知数表示另一个未知数,二次函数的最值,熟练掌握二次函数的性质是关键.18.【答案】4.5【解析】解:只要求出A到BD的最短距离是否在以A为圆心,以10.5海里的圆内或圆上即可,如图,过A作AC⊥BD于点C,则AC的长是A到BD的最短距离,∵∠CAD=30°,∠CAB=60°,∴∠BAD=60°−30°=30°,∠ABD=90°−60°=30°,∴∠ABD=∠BAD,∴BD=AD=12海里,∵∠CAD=30°,∠ACD=90°,∴CD=12AD=6海里,由勾股定理得:AC=√122−62=6√3(海里),如图,设渔船还需航行x海里就开始有触礁的危险,即到达点D′时有触礁的危险,在直角△AD′C中,由勾股定理得:(6−x)2+(6√3)2=10.52.解得x=4.5.渔船还需航行4.5海里就开始有触礁的危险.故答案是:4.5.过A作AC⊥BD于点C,求出∠CAD、∠CAB的度数,求出∠BAD和∠ABD,根据等角对等边得出AD=BD=12,根据含30度角的直角三角形性质求出CD,根据勾股定理求出AC即可.考查了勾股定理的应用和解直角三角形,此题是一道方向角问题,结合航海中的实际问题,将解直角三角形的相关知识有机结合,体现了数学应用于实际生活的思想.19.【答案】解:(−2)−2−|√3−2|+(−√32)0−√83−2cos30°=14−2+√3+1−2−2×√32=−234.【解析】首先计算乘方、开方,然后计算乘法,最后从左向右依次计算,求出算式的值是多少即可.此题主要考查了实数的运算,要熟练掌握,解答此题的关键是要明确:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.另外,有理数的运算律在实数范围内仍然适用.正确化简各数是解题关键.20.【答案】解:(1)四边形CEDG是菱形,理由如下:∵四边形ABCD为矩形,G是对角线BD的中点,∵CF=GC,∴GB=GC=GD=CF,∵四边形DCFE是菱形,∴CD=CF=DE,DE//CG,∴DE=GC,∴四边形CEDG是平行四边形,∵GD=GC,∴四边形CEDG是菱形;(2)过点G作GH⊥BC于H,设DF交CE于点N,如图所示:∵CD=CF,GB=GD=GC=CF,∴CH=BH=12BC=√32,△CDG是等边三角形,∴∠GCD=60°,∴∠DCF=180°−∠GCD=180°−60°=120°,∵四边形ABCD为矩形,∴∠BCD=90°,∴∠GCH=90°−60°=30°,∴CG=CHcos30∘=√32√32=1,∴CD=1,∵四边形DCFE是菱形,∴DN=FN,CN⊥DF,∠DCE=∠FCE=12∠DCF=12×120°=60°,在Rt△CND中,DN=CD⋅sin∠DCE=1×sin60°=1×√32=√32,∴DF=2DN=2×√32=√3.【解析】(1)证出GB=GC=GD=CF,由菱形的性质的CD=CF=DE,DE//CG,则DE=GC,证出四边形CEDG是平行四边形,进而得出结论;(2)过点G作GH⊥BC于H,设DF交CE于点N,由等腰三角形的性质得CH=BH=1 2BC=√32,证出△CDG是等边三角形,得∠GCD=60°,由三角函数定义求出CG=1,则CD=1,由菱形的性质得DN=FN,CN⊥DF,∠DCE=∠FCE=60°,由三角函数定义求出DN=√32,则DF=2DN=√3.判定与性质、等腰三角形的性质以及三角函数等知识;熟练掌握矩形的性质和菱形的性质是解题的关键.21.【答案】解:(1)本次参与调查的学生人数为:20÷5%=400(人),m=400×45%= 180,∵400−20−60−180=140,∴n=140÷400×100%=35%;(2)5600×20+60400=1120(人),即估计全校比较了解垃圾分类知识的学生人数为1120人;(3)画树状图为:共有12种等可能的结果,其中和为奇数的结果有8种,∴P(小明参加)=812=23,P(小亮参加)=1−23=13,∵23≠13,∴这个游戏规则不公平.【解析】(1)由优秀的人数除以所占比例得出本次参与调查的学生人数;进而求出m和n的值;(2)由总人数乘以良好和优秀所占比例即可;(3)先画树状图展示所有12种等可能的结果,找出和为奇数的结果有8种,再计算出小明参加和小亮参加的概率,比较两概率的大小可判断这个游戏规则是否公平.本题考查了列表法与树状图法、游戏的公平性、统计表、样本估计总体以及概率公式等知识;画出树状图是解题的关键.22.【答案】解:(1)∵一次函数y1=ax+b与反比例函数y2=4x的图象交于A、B两点.点A的横坐标为2,点B的纵坐标为1,∴A(2,2),B(4,1),则有{2a +b =24a +b =1, 解得{a =−12b =3. (2)过点P 作直线PM//AB ,当直线PM 与反比例函数只有一个交点时,点P 到直线AB 的距离最短,设直线PM 的解析式为y =−12x +n ,由{y =4x y =−12x +n,消去y 得到,x 2−2nx +8=0, 由题意,△=0,∴4n 2−32=0,∴n =−2√2或2√2(舍弃),解得{x =−2√2y =−√2, ∴P(−2√2,−√2).【解析】(1)首先确定A ,B 两点坐标,再利用待定系数法求解即可.(2)过点P 作直线PM//AB ,当直线PM 与反比例函数只有一个交点时,点P 到直线AB 的距离最短,构建方程组把问题转化为一元二次方程,利用判别式=0,构建方程求解即可.本题考查反比例函数与一次函数的交点问题,二元一次方程的根的判别式等知识,解题的关键是理解题意,灵活运用所学知识解决问题. 23.【答案】解:(1)设甲每天需工程费x 元、乙工程队每天需工程费(x −500)元, 由题意,12000x =9000x−500, 解得x =2000,经检验,x =2000是分式方程的解.答:甲每天需工程费2000元、乙工程队每天需工程费1500元.(2)①设甲平整x 天,则乙平整y 天.由题意,45x +30y =2400 ①,且2000x +1500y ≤110000 ②,把③代入②得到,2000x+1500(80−1.5x)≤110000,解得,x≥40,∵y>0,∴80−1.5x>0,x<53.3,∴40≤x<53.3,∵x,y是正整数,∴x=40,y=20或x=42,y=17或x=44,y=14或x=46,y=11或x=48,y=8,或x=50,y=5或x=52,y=2.∴甲乙两工程队分别工作的天数共有7种可能.②总费用w=2000x+1500(80−1.5x)=−250x+120000,∵−250<0,∴w随x的增大而减小,∴x=52时,w的最小值=107000(元).答:最低费用为107000元.【解析】(1)设甲每天需工程费x元、乙工程队每天需工程费(x−500)元,构建方程求解即可.(2)①设甲平整x天,则乙平整y天.由题意,45x+30y=2400①,且2000x+ 1500y≤110000②把问题转化为不等式解决即可.②总费用w=2000x+1500(80−1.5x)=−250x+120000,利用函数的性质解答即可.本题考查一次函数的应用,二元一次方程的应用,分式方程的应用等知识,解题的关键是理解题意,学会利用参数构建方程解决问题,属于中考常考题型.24.【答案】(1)证明:如图,连接BC,OB.∵CD是直径,∴∠CBD=90°,∵OC=OB,∴∠C=∠CBO,∵∠C=∠BAD,∠PBD=∠DAB,∴∠OBP=∠CBD=90°,∴PB⊥OB,∴PB是⊙O的切线.(2)解:∵CD⊥AB,∴PA=PB,∵OA=OB,OP=OP,∴△PAO≌△PBO(SSS),∴∠OAP=∠OBP=90°,∵∠AMO=90°,∴OM=√OA2−AM2=√52−42=3,∵∠AOM=∠AOP,∠OAP=∠AMO,∴△AOM∽△POA,∴OAOP =OMOA,∴5OP =35,∴OP=253,∵PN⊥PC,∴∠NPC=∠AMO=90°,∴AMPN =OMOP,∴4PN =3253,∴PN=1009.(3)证明:∵PD=PH,∴∠PDH=∠PHD,∵∠PDH=∠POA+∠OND,∠PHD=∠APN+∠PND,∴∠POA+∠APO=90°,∠APN+∠APO=90°,∴∠POA=∠ANP,∴∠ANH=∠PND,∵∠PDN=∠PHD=∠AHN,∴AHPD =NANP,∵∠APN=∠POA,∠PAN=∠PAO=90°,∴△PAN∽△OAP,∴PNOP =ANAP,∴NANP =APOP,∴AHPD =AHPH=APOP,∴AH⋅OP=HP⋅AP.【解析】(1)连接BC,OB,证明OB⊥PB即可.(2)解直角三角形求出OM,利用相似三角形的性质求出OP,再利用平行线分线段成比例定理求出PN即可.(3)证明△NAH∽△NPD,推出AHPD =NANP,证明△PAN∽△OAP,推出PNOP=ANAP,推出NANP=APOP可得结论.本题属于圆综合题,考查了垂径定理,圆周角定理,全等三角形的判定和性质,相似三角形的判定和性质等知识,解题的关键是正确寻找全等三角形或相似三角形解决问题,属于中考压轴题.25.【答案】解:(1)如图1,y=ax2−2ax−3a=a(x2−2x−3)=a(x−3)(x+1),∴A(−1,0),B(3,0),∴AB=4,∵△ABC的面积为2,即12AB⋅OC=2,∴12×4×OC=2,∴OC=1,∴C(0,1),第21页,共22页 ∴a =−13, ∴该二次函数的解析式为y =−13x 2+23x +1;(2)如图2,设点P 的纵坐标为m ,当y =m 时,−13x 2+23x +1=m ,解得:x 1=1+√4−3m ,x 2=1−√4−3m ,∴点P 的坐标为(1−√4−3m,m),点Q 的坐标为(1+√4−3m,m),∴点G 的坐标为(1−√4−3m,0),点H 的坐标为(1+√4−3m,0),∵矩形PGHQ 为正方形,∴1+√4−3m −(1−√4−3m)=m ,解得:m 1=−6−2√13,m 2=−6+2√13,∴当四边形PGHQ 为正方形时,边长为6+2√13或2√13−6;(3)如图3,设点D(n,−13n 2+23n +1),延长BD 交y 轴于K ,∵A(−1,0),设AD 的解析式为:y =kx +b ,则{−k +b =0nk +b =−13n 2+23n +1,解得:{k =−13n +1b =−13n +1, ∴AD 的解析式为:y =(−13n +1)x −13n +1,当x =2时,y =−23n +2−13n +1=−n +3,∴F(2,3−n),∴FN=3−n,同理得直线BD的解析式为:y=(−13n−13)x+n+1,∴K(0,n+1),∴OK=n+1,∵N(2,0),B(3,0),∴BNOB =13,∵EN//OK,∴ENOK =BNOB=13,∴OK=3EN,∴3EN+FN=OK+FN=n+1+3−n=4,∴在点D运动过程中,3NE+NF为定值4.【解析】(1)先将抛物线解析式变形,可得A和B的坐标,从而得AB=1+3=4,根据三角形ABC的面积为2可得OC的长,确定点C的坐标,根据点C的坐标,利用待定系数法即可求出二次函数的解析式;(2)设点P的纵坐标为m,当y=m时,−13x2+23x+1=m,解方程可得P和Q两点的坐标,从而得G和H的坐标,再利用正方形的性质可得出关于m的方程,解之即可得出结论;(3)设点D(n,−13n2+23n+1),利用待定系数法求直线AD和BD的解析式,表示FN和OK的长,直接代入计算可得结论.本题考查了待定系数法求二次函数解析式、二次函数图象上点的坐标特征、正方形的性质、待定系数法求一次函数解析式以及平行线分线段成比例定理等知识,解题的关键是:(1)根据点的坐标,利用待定系数法求出二次函数解析式;(2)利用正方形的性质,找出关于m的方程;(3)利用AD和BD的解析式确定FN和OK的长,可解决问题.第22页,共22页。
2020年四川省德阳市中考数学试卷
2020年四川省德阳市中考数学试卷一、选择题(本大题共12个小题,每小题4分,共48分)在每小题给出的四个选项中,有且仅有一项是符合题目要求的.1. 13的相反数是( ) A.3 B.−3 C.13 D.−13 【答案】D【考点】相反数【解析】在一个数前面放上“-”,就是该数的相反数.【解答】解:13的相反数为−13. 故选D .2. 下列运算正确的是( )A.a 2⋅a 3=a 6B.(3a)3 =9a 3C.3a −2a =1D.(−2a 2)3=−8a 6【答案】D【考点】同底数幂的乘法合并同类项幂的乘方与积的乘方【解析】利用同底数幂的乘法法则、积的乘方运算法则、合并同类项法则分别进行计算即可.【解答】A 、a 2⋅a 3=a 5,故原题计算错误;B 、(3a)3 =27a 3,故原题计算错误;C 、3a −2a =a ,故原题计算错误;D 、(−2a 2)3=−8a 6,故原题计算正确;3. 如图所示,直线EF // GH ,射线AC 分别交直线EF 、GH 于点B 和点C ,AD ⊥EF 于点D ,如果∠A =20∘,则∠ACG =( )A.160∘B.110∘C.100∘D.70∘【答案】B【考点】平行线的性质垂线【解析】利用三角形的内角和定理,由AD⊥EF,∠A=20∘可得∠ABD=70∘,由平行线的性质定理可得∠ACH,易得∠ACG.【解答】∵AD⊥EF,∠A=20∘,∴∠ABD=180∘−∠A−∠ABD=180∘−20∘−90∘=70∘,∵EF // GH,∴∠ACH=∠ABD=70∘,∴∠ACG=180∘−∠ACH=180∘−70∘=110∘,4. 下列说法错误的是()A.方差可以衡量一组数据的波动大小B.抽样调查抽取的样本是否具有代表性,直接关系对总体估计的准确程度C.一组数据的众数有且只有一个D.抛掷一枚图钉针尖朝上的概率,不能用列举法求得【答案】C【考点】用样本估计总体列表法与树状图法方差众数抽样调查的可靠性【解析】根据各个选项中的说法,可以判断是否正确,从而可以解答本题.【解答】抽样调查抽取的样本是否具有代表性,直接关系对总体估计的准确程度,故选项B正确(1)一组数据的众数有一个或者几个,故选项C错误(2)抛掷一枚图钉针尖朝上的概率,不能用列举法求得,故选项D正确(3)故选:C.5. 多边形的内角和不可能为()A.180∘B.540∘C.1080∘D.1200∘【答案】D【考点】多边形内角与外角【解析】多边形的内角和可以表示成(n−2)⋅180∘(n≥3且n是整数),则多边形的内角和是180度的倍数,由此即可求出答案.【解答】因为在这四个选项中不是180∘的倍数的只有1200∘.6. 某商场销售A,B,C,D四种商品,它们的单价依次是50元,30元,20元,10元.某天这四种商品销售数量的百分比如图所示,则这天销售的四种商品的平均单价是()A.19.5元B.21.5元C.22.5元D.27.5元【答案】C【考点】加权平均数扇形统计图【解析】根据加权平均数定义即可求出这天销售的四种商品的平均单价.【解答】这天销售的四种商品的平均单价是:50×10%+30×15%+20×55%+10×20%=22.5(元),7. 半径为R的圆内接正三角形、正方形、正六边形的边心距分别为a,b,c,则a,b,c的大小关系是()A.a<b<cB.b<a<cC.a<c<bD.c<b<a【答案】D【考点】等边三角形的性质三角形的外接圆与外心正方形的性质正多边形和圆【解析】根据三角函数即可求解.【解答】设圆的半径为R,则正三角形的边心距为a=R×cos60∘=12R.四边形的边心距为b=R×cos45∘=√22R,正六边形的边心距为c=R×cos30∘=√32R.∵12R<√22R<√32R,∴c<b<a,8. 已知函数y={−x+1(x<2)−2x(x≥2),当函数值为3时,自变量x的值为()A.−2B.−23C.−2或−23D.−2或−32【答案】A【考点】一次函数图象上点的坐标特点反比例函数的性质一次函数的性质【解析】根据分段函数的解析式分别计算,即可得出结论.【解答】若x<2,当y=3时,−x+1=3,解得:x=−2;若x≥2,当y=3时,−2x=3,解得:x=−23,不合题意舍去;∴x=−2,9. 如图是一个几何体的三视图,根据图中所示数据计算这个几何体的表面积是()A.20πB.18πC.16πD.14π【答案】B【考点】由三视图判断几何体几何体的表面积【解析】由几何体的三视图可得出原几何体为圆锥和圆柱组合体,根据图中给定数据求出表面积即可.【解答】这个几何体的表面积=π⋅22+π⋅3⋅2+2π⋅2⋅2=18π,10. 如图,Rt△ABC中,∠A=30∘,∠ABC=90∘.将Rt△ABC绕点B逆时针方向旋转得到△A′BC′.此时恰好点C在A′C′上,A′B交AC于点E,则△ABE与△ABC的面积之比为()A.1 3B.12C.23D.34【答案】D【考点】旋转的性质三角形的面积含30度角的直角三角形【解析】由旋转的性质得出BC=BC′,∠ACB=∠A′C′B=60∘,则△BCC′是等边三角形,∠CBC′=60∘,得出∠BEA=90∘,设CE=a,则BE=√3a,AE=3a,求出AEAC =34,可求出答案.【解答】∵∠A=30∘,∠ABC=90∘,∴∠ACB=60∘,∵将Rt△ABC绕点B逆时针方向旋转得到△A′BC′,∴BC=BC′,∠ACB=∠A′C′B=60∘,∴△BCC′是等边三角形,∴∠CBC′=60∘,∴∠ABA′=60∘,∴∠BEA=90∘,设CE=a,则BE=√3a,AE=3a,∴CEAE =13,∴AEAC =34,∴△ABE与△ABC的面积之比为34.11. 已知:等腰直角三角形ABC的腰长为4,点M在斜边AB上,点P为该平面内一动点,且满足PC=2,则PM的最小值为()A.2B.2√2−2C.2√2+2D.2√2【答案】B【考点】等腰直角三角形【解析】根据等腰直角三角形的性质得到斜边AB=4√2,由已知条件得到点P在以C为圆心,PC 为半径的圆上,当点P在斜边AB的中线上时,PM的值最小,于是得到结论.【解答】∵等腰直角三角形ABC的腰长为4,∴斜边AB=4√2,∵点P为该平面内一动点,且满足PC=2,∴点P在以C为圆心,PC为半径的圆上,当点P在斜边AB的中线上时,PM的值最小,∵△ABC是等腰直角三角形,∴CM=12AB=2√2,∵PC=2,∴PM=CM−CP=2√2−2,12. 已知不等式ax+b>0的解集为x<2,则下列结论正确的个数是()(1)2a+b=0;(2)当c>a时,函数y=ax2+bx+c的图象与x轴没有公共点;(3)当c>0时,抛物线y=ax2+bx+c的顶点在直线y=ax+b的上方;(4)如果b<3且2a−mb−m=0,则m的取值范围是−34<m<0.A.1B.2C.3D.4【答案】C【考点】一次函数的性质二次函数的性质二次函数图象上点的坐标特征一次函数图象上点的坐标特点抛物线与x轴的交点【解析】由不等式的解集得出a<0,−ba=2,即b=−2a,从而得出2a+b=0,即可判断(1);根据△=4a(a−c)>0即可判断(2);求得抛物线的顶点为(1, a−c)即可判断(3);求得0<−mm+1<3,得出不等式组的解集为−34<m<0即可判断(4).【解答】(2)函数y=ax2+bx+c中,令y=0,则ax2+bx+c=0,∵即b=−2a,∴△=b2−4ac=(−2a)2−4ac=4a(a−c),∵a<0,c>a,∴△=4a(a−c)>0,∴当c>a时,函数y=ax2+bx+c的图象与x轴有两个公共点,故结论错误(1)(3)∵b=−2a,∴−b2a =1,4ac−b24a=4ac−4a24a=c−a,∴抛物线y=ax2+bx+c的顶点为(1, c−a),当x=1时,直线y=ax+b=a+b=a−2a=−a>0当c>0时,c−a>−a>0,∴抛物线y=ax2+bx+c的顶点在直线y=ax+b的上方,故结论正确(2)(4)∵b=−2a,∴由2a−mb−m=0,得到−b−mb−m=0,∴b=−mm+1,如果b<3,则0<−mm+1<3,∴−34<m<0,故结论正确(3)故选:C.二、填空题(本大题共6个小题,每小题4分,共24分,将答案填在答题卡对应的题号后的横线上)小明在体考时选择了投掷实心球,如图是体育老师记录的小明在训练时投掷实心球的6次成绩的折线统计图.这6次成绩的中位数是________.【答案】9.75【考点】中位数折线统计图【解析】根据中位数定义:将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.即可得解.【解答】由6次成绩的折线统计图可知:这6次成绩从小到大排列为:9.5,9.6,9.7,9.8,10,10.2,=9.75.所以这6次成绩的中位数是:9.7+9.82把ax2−4a分解因式的结果是________.【答案】a(x+2)(x−2)【考点】提公因式法与公式法的综合运用因式分解-提公因式法平方差公式【解析】先提出公因式a,再利用平方差公式因式分解.【解答】ax2−4a=a(x2−4)=a(x+2)(x−2).如图,在平行四边形ABCD中,BE平分∠ABC,CF⊥BE,连接AE,G是AB的中点,连接GF,若AE=4,则GF=________.【答案】2【考点】平行四边形的性质等腰三角形的判定与性质三角形中位线定理【解析】根据平行四边形的性质结合角平分线的定义可求解∠CBE=∠BEC,即可得CB=CE,利用等腰三角形的性质可怎么BF=EF,进而可得GF是△ABE的中位线,根据三角形的中位线的性质可求解.【解答】在平行四边形ABCD中,AB // CD,∴∠ABE=∠BEC.∵BE平分∠ABC,∴∠ABE=∠CBE,∴∠CBE=∠BEC,∴CB=CE.∵CF⊥BE,∴BF=EF.∵G是AB的中点,∴GF是△ABE的中位线,∴GF=1BE,2∵BE=4,∴GF=2.将正偶数按照如下规律进行分组排列,依次为(2),(4, 6),(8, 10, 12),(14, 16, 18, 20)…,我们称“4”是第2组第1个数字,“16”是第4组第2个数字,若2020是第m组第n个数字,则m+n=________.【答案】65【考点】规律型:数字的变化类规律型:图形的变化类规律型:点的坐标【解析】根据题目中数字的特点,可知每组的个数依次增大,每组中的数字都是连续的偶数,然后即可求出2020是多少组第多少个数,从而可以得到m、n的值,然后即可得到m+ n的值.【解答】∵将正偶数按照如下规律进行分组排列,依次为(2),(4, 6),(8, 10, 12),(14, 16, 18, 20)…,∴第m组有m个连续的偶数,∵2020=2×1010,∴2020是第1010个偶数,∵1+2+3+...+44=44×(44+1)2=990,1+2+3+...+45=45×(45+1)2=1035,∴2020是第45组第1010−990=20个数,∴m=45,n=20,∴m+n=65,若实数x,y满足x+y2=3,设s=x2+8y2,则s的取值范围是________.【答案】s≥9【考点】二次函数的最值【解析】由已知等式表示出y2,代入s中利用二次函数最值即可确定出s范围.【解答】由x+y2=3,得:y2=−x+3≥0,∴x≤3,代入得:s=x2+8y2=x2+8(−x+3)=x2−8x+24=(x−4)2+8,当x=3时,s=(3−4)2+8=9,∴s≥9;如图,海中有一小岛A,它周围10.5海里内有暗礁,渔船跟踪鱼群由西向东航行.在B 点测得小岛A在北偏东60∘方向上,航行12海里到达D点,这时测得小岛A在北偏东30∘方向上.如果渔船不改变航线继续向东航行,那么渔船还需航行________海里就开始有触礁的危险.【答案】4.5【考点】解直角三角形的应用-方向角问题【解析】过A作AC⊥BD于点C,求出∠CAD、∠CAB的度数,求出∠BAD和∠ABD,根据等角对等边得出AD=BD=12,根据含30度角的直角三角形性质求出CD,根据勾股定理求出AC 即可.【解答】只要求出A到BD的最短距离是否在以A为圆心,以10.5海里的圆内或圆上即可,如图,过A作AC⊥BD于点C,则AC的长是A到BD的最短距离,∵∠CAD=30∘,∠CAB=60∘,∴∠BAD=60∘−30∘=30∘,∠ABD=90∘−60∘=30∘,∴∠ABD=∠BAD,∴BD=AD=12海里,∵∠CAD=30∘,∠ACD=90∘,∴ CD =12AD =6海里, 由勾股定理得:AC =√122−62=6√3(海里),如图,设渔船还需航行x 海里就开始有触礁的危险,即到达点D′时有触礁的危险, 在直角△AD′C 中,由勾股定理得:(6−x)2+(6√3)2=10.52.解得x =4.5.渔船还需航行 4.5海里就开始有触礁的危险.三、解答题(本大题共7小题,共78分.答应写出文字说明、证明过程或推演步骤)计算:(−2)−2−|√3−2|+(−√32)0−√83−2cos 30∘. 【答案】(−2)−2−|√3−2|+(−√32)0−√83−2cos 30∘ =14−2+√3+1−2−2×√32=−234.【考点】负整数指数幂特殊角的三角函数值零指数幂实数的运算【解析】首先计算乘方、开方,然后计算乘法,最后从左向右依次计算,求出算式的值是多少即可.【解答】(−2)−2−|√3−2|+(−√32)0−√83−2cos 30∘ =14−2+√3+1−2−2×√32=−234.如图,四边形ABCD 为矩形,G 是对角线BD 的中点.连接GC 并延长至F ,使CF =GC ,以DC ,CF 为邻边作菱形DCFE ,连接CE .(1)判断四边形CEDG 的形状,并证明你的结论.(2)连接DF,若BC=√3,求DF的长.【答案】四边形CEDG是菱形,理由如下:∵四边形ABCD为矩形,G是对角线BD的中点,∴GB=GC=GD,∵CF=GC,∴GB=GC=GD=CF,∵四边形DCFE是菱形,∴CD=CF=DE,DE // CG,∴DE=GC,∴四边形CEDG是平行四边形,∵GD=GC,∴四边形CEDG是菱形;过点G作GH⊥BC于H,设DF交CE于点N,【考点】矩形的性质菱形的判定与性质【解析】(1)证出GB=GC=GD=CF,由菱形的性质的CD=CF=DE,DE // CG,则DE=GC,证出四边形CEDG是平行四边形,进而得出结论;(2)过点G作GH⊥BC于H,设DF交CE于点N,由等腰三角形的性质得CH=BH=1 2BC=√32,证出△CDG是等边三角形,得∠GCD=60∘,由三角函数定义求出CG=1,则CD=1,由菱形的性质得DN=FN,CN⊥DF,∠DCE=∠FCE=60∘,由三角函数定义求出DN=√32,则DF=2DN=√3.【解答】四边形CEDG是菱形,理由如下:∵四边形ABCD为矩形,G是对角线BD的中点,∴GB=GC=GD,∵CF=GC,∴GB=GC=GD=CF,∵四边形DCFE是菱形,∴CD=CF=DE,DE // CG,∴DE=GC,∴四边形CEDG是平行四边形,∵GD=GC,∴四边形CEDG是菱形;过点G作GH⊥BC于H,设DF交CE于点N,为了加强学生的垃圾分类意识,某校对学生进行了一次系统全面的垃圾分类宣传.为了解这次宣传的效果,从全校学生中随机抽取部分学生进行了一次测试,测试结果共分为四个等级:A.优秀;B.良好;C.及格:D.不及格.根据调查统计结果,绘制了如图所示的不完整的统计表.垃圾分类知识测试成绩统计表请结合统计表,回答下列问题:(1)求本次参与调查的学生人数及m,n的值;(2)如果测试结果为“良好”及以上即为对垃圾分类知识比较了解,已知该校学生总数为5600人,请根据本次抽样调查的数据估计全校比较了解垃圾分类知识的学生人数;(3)为了进一步在学生中普及垃圾分类知识,学校准备再开展一次关于垃圾分类的知识竞赛,要求每班派一人参加.某班要从在这次测试成绩为优秀的小明和小亮中选一人参加.班长设计了如下游戏来确定人选,具体规则是:把四个完全相同的乒乓球分别标上数字1,2,3,4.然后放到一个不透明的袋中充分摇匀,两人同时从袋中各摸出一个球.若摸出的两个球上的数字和为奇数,则小明参加,否则小亮参加.请用树状图或列表法说明这个游戏规则是否公平.【答案】本次参与调查的学生人数为:20÷5%=400(人),m=400×45%=180,∵400−20−60−180=140,∴n=140÷400×100%=35%;5600×20+60400=1120(人),即估计全校比较了解垃圾分类知识的学生人数为1120人;画树状图为:共有12种等可能的结果,其中和为奇数的结果有8种,∴P(小明参加)=812=23,P(小亮参加)=1−23=13,∵23≠13,∴这个游戏规则不公平.【考点】游戏公平性用样本估计总体统计表列表法与树状图法全面调查与抽样调查【解析】(1)由优秀的人数除以所占比例得出本次参与调查的学生人数;进而求出m和n的值;(2)由总人数乘以良好和优秀所占比例即可;(3)先画树状图展示所有12种等可能的结果,找出和为奇数的结果有8种,再计算出小明参加和小亮参加的概率,比较两概率的大小可判断这个游戏规则是否公平.【解答】本次参与调查的学生人数为:20÷5%=400(人),m=400×45%=180,∵400−20−60−180=140,∴n=140÷400×100%=35%;5600×20+60400=1120(人),即估计全校比较了解垃圾分类知识的学生人数为1120人;画树状图为:共有12种等可能的结果,其中和为奇数的结果有8种,∴P(小明参加)=812=23,P(小亮参加)=1−23=13,∵23≠13,∴这个游戏规则不公平.如图,一次函数y1=ax+b与反比例函数y2=4x的图象交于A、B两点.点A的横坐标为2,点B的纵坐标为1.(1)求a ,b 的值.(2)在反比例y 2=4x 第三象限的图象上找一点P ,使点P 到直线AB 的距离最短,求点P 的坐标.【答案】∵ 一次函数y 1=ax +b 与反比例函数y 2=4x 的图象交于A 、B 两点.点A 的横坐标为2,点B 的纵坐标为1,∴ A(2, 2),B(4, 1),则有{2a +b =24a +b =1, 解得{a =−12b =3.过点P 作直线PM // AB ,当直线PM 与反比例函数只有一个交点时,点P 到直线AB 的距离最短,设直线PM 的解析式为y =−12x +n , 由{y =4x y =−12x +n,消去y 得到,x 2−2nx +8=0, 由题意,△=0,∴ 4n 2−32=0,∴ n =−2√2或2√2(舍弃),解得{x =−2√2y =−√2 , ∴ P(−2√2, −√2).【考点】反比例函数与一次函数的综合【解析】(1)首先确定A ,B 两点坐标,再利用待定系数法求解即可.(2)过点P 作直线PM // AB ,当直线PM 与反比例函数只有一个交点时,点P 到直线AB 的距离最短,构建方程组把问题转化为一元二次方程,利用判别式=0,构建方程求解即可.【解答】∵ 一次函数y 1=ax +b 与反比例函数y 2=4x 的图象交于A 、B 两点.点A 的横坐标为2,点B 的纵坐标为1,∴ A(2, 2),B(4, 1),则有{2a +b =24a +b =1, 解得{a =−12b =3. 过点P 作直线PM // AB ,当直线PM 与反比例函数只有一个交点时,点P 到直线AB 的距离最短,设直线PM 的解析式为y =−12x +n , 由{y =4x y =−12x +n ,消去y 得到,x 2−2nx +8=0, 由题意,△=0,∴ 4n 2−32=0,∴ n =−2√2或2√2(舍弃),解得{x =−2√2y =−√2, ∴ P(−2√2, −√2).推进农村土地集约式管理,提高土地的使用效率是新农村建设的一项重要举措.某村在小城镇建设中集约了2400亩土地,计划对其进行平整.经投标,由甲乙两个工程队来完成平整任务.甲工程队每天可平整土地45亩,乙工程队每天可平整土地30亩.已知乙工程队每天的工程费比甲工程队少500元,当甲工程队所需工程费为12000元,乙工程队所需工程费为9000元时,两工程队工作天数刚好相同.(1)甲乙两个工程队每天各需工程费多少元?(2)现由甲乙两个工程队共同参与土地平整,已知两个工程队工作天数均为正整数,且所有土地刚好平整完,总费用不超过110000元.①甲乙两工程队分别工作的天数共有多少种可能?②写出其中费用最少的一种方案,并求出最低费用.【答案】甲每天需工程费2000元、乙工程队每天需工程费1500元最低费用为107000元【考点】二元一次方程的应用分式方程的应用一次函数的应用【解析】(1)设甲每天需工程费x元、乙工程队每天需工程费(x−500)元,构建方程求解即可.(2)①设甲平整x天,则乙平整y天.由题意,45x+30y=2400①,且2000x+ 1500y≤110000②把问题转化为不等式解决即可.②总费用w=2000x+1500(80−1.5x)=−250x+120000,利用函数的性质解答即可.【解答】设甲每天需工程费x元、乙工程队每天需工程费(x−500)元,由题意,12000x =9000x−500,解得x=2000,经检验,x=2000是分式方程的解.答:甲每天需工程费2000元、乙工程队每天需工程费1500元.①设甲平整x天,则乙平整y天.由题意,45x+30y=2400①,且2000x+1500y≤110000②,由①得到y=80−1.5x③,把③代入②得到,2000x+1500(80−1.5x)≤110000,解得,x≥40,∵y>0,∴80−1.5x>0,x<53.3,∴40≤x<53.3,∵x,y是正整数,∴x=40,y=20或x=42,y=17或x=44,y=14或x=46,y=11或x=48,y=8,或x=50,y=5或x=52,y=2.∴甲乙两工程队分别工作的天数共有7种可能.②总费用w=2000x+1500(80−1.5x)=−250x+120000,∵−250<0,∴w随x的增大而减小,∴x=52时,w的最小值=107000(元).答:最低费用为107000元.如图,在⊙O中,弦AB与直径CD垂直,垂足为M,CD的延长线上有一点P,满足∠PBD=∠DAB.过点P作PN⊥CD,交OA的延长线于点N,连接DN交AP于点H.(1)求证:BP是⊙O的切线;(2)如果OA=5,AM=4,求PN的值;(3)如果PD=PH,求证:AH⋅OP=HP⋅AP.【答案】证明:如图,连接BC,OB.∵CD是直径,∴∠CBD=90∘,∵OC=OB,∴∠C=∠CBO,∵∠C=∠BAD,∠PBD=∠DAB,∴∠CBO=∠PBD,∴∠OBP=∠CBD=90∘,∴PB⊥OB,∴PB是⊙O的切线.∵CD⊥AB,∴PA=PB,∵OA=OB,OP=OP,∴△PAO≅△PBO(SSS),∴∠OAP=∠OBP=90∘,∵∠AMO=90∘,∴OM=√OA2−AM2=√52−42=3,∵∠AOM=∠AOP,∠OAP=∠AMO,∴△AOM∽△POA,∴OAOP =OMOA,∴5OP =35,∴OP=253,∵PN⊥PC,∴∠NPC=∠AMO=90∘,∴AMPN =OMOP,∴4PN =3253,∴PN=1009.证明:∵PD=PH,∴∠PDH=∠PHD,∵∠PDH=∠POA+∠OND,∠PHD=∠APN+∠PND,∴∠POA+∠APO=90∘,∠APN+∠APO=90∘,∴∠POA=∠ANP,∴∠ANH=∠PND,∵∠PDN=∠PHD=∠AHN,∴△NAH∽△NPD,∴AHPD =NANP,∵∠APN=∠POA,∠PAN=∠PAO=90∘,∴△PAN∽△OAP,∴PNOP =ANAP,∴NANP =APOP,∴AHPD =AHPH=APOP,∴AH⋅OP=HP⋅AP.【考点】圆的综合题【解析】(1)连接BC,OB,证明OB⊥PB即可.(2)解直角三角形求出OM,利用相似三角形的性质求出OP,再利用平行线分线段成比例定理求出PN即可.(3)证明△NAH∽△NPD,推出AHPD =NANP,证明△PAN∽△OAP,推出PNOP=ANAP,推出NA NP =APOP可得结论.【解答】证明:如图,连接BC,OB.∵CD是直径,∴∠CBD=90∘,∵OC=OB,∴∠C=∠CBO,∵∠C=∠BAD,∠PBD=∠DAB,∴∠CBO=∠PBD,∴∠OBP=∠CBD=90∘,∴PB⊥OB,∴PB是⊙O的切线.∵CD⊥AB,∴PA=PB,∵OA=OB,OP=OP,∴△PAO≅△PBO(SSS),∴∠OAP=∠OBP=90∘,∵∠AMO=90∘,∴OM=√OA2−AM2=√52−42=3,∵∠AOM=∠AOP,∠OAP=∠AMO,∴△AOM∽△POA,∴OAOP =OMOA,∴5OP =35,∴OP=253,∵PN⊥PC,∴∠NPC=∠AMO=90∘,∴AMPN =OMOP,∴4PN =3253,∴PN=1009.证明:∵PD=PH,∴∠PDH=∠PHD,∵∠PDH=∠POA+∠OND,∠PHD=∠APN+∠PND,∴∠POA+∠APO=90∘,∠APN+∠APO=90∘,∴∠POA=∠ANP,∴∠ANH=∠PND,∵∠PDN=∠PHD=∠AHN,∴△NAH∽△NPD,∴AHPD =NANP,∵∠APN=∠POA,∠PAN=∠PAO=90∘,∴△PAN∽△OAP,∴PNOP =ANAP,∴NANP =APOP,∴AHPD =AHPH=APOP,∴AH⋅OP=HP⋅AP.试卷第21页,总25页如图1,抛物线y =ax 2−2ax −3a(a ≠0)与x 轴交于点A ,B .与y 轴交于点C .连接AC ,BC .已知△ABC 的面积为2.(1)求抛物线的解析式;(2)平行于x 轴的直线与抛物线从左到右依次交于P ,Q 两点.过P ,Q 向x 轴作垂线,垂足分别为G ,H .若四边形PGHQ 为正方形,求正方形的边长;(3)如图2,平行于y 轴的直线交抛物线于点M ,交x 轴于点N (2, 0).点D 是抛物线上A ,M 之间的一动点,且点D 不与A ,M 重合,连接DB 交MN 于点E .连接AD 并延长交MN 于点F .在点D 运动过程中,3NE +NF 是否为定值?若是,求出这个定值;若不是,请说明理由.【答案】如图1,y =ax 2−2ax −3a =a(x 2−2x −3)=a(x −3)(x +1),∴ A(−1, 0),B(3, 0),∴ AB =4,∵ △ABC 的面积为2,即12AB ⋅OC =2,∴12×4×OC=2,∴OC=1,∴C(0, 1),将C(0, 1)代入y=ax2−2ax−3a,得:−3a=1,∴a=−13,∴该二次函数的解析式为y=−13x2+23x+1;如图2,设点P的纵坐标为m,当y=m时,−13x2+23x+1=m,解得:x1=1+√4−3m,x2=1−√4−3m,∴点P的坐标为(1−√4−3m, m),点Q的坐标为(1+√4−3m, m),∴点G的坐标为(1−√4−3m, 0),点H的坐标为(1+√4−3m, 0),∵矩形PGHQ为正方形,∴1+√4−3m−(1−√4−3m)=m,解得:m1=−6−2√13,m2=−6+2√13,∴当四边形PGHQ为正方形时,边长为6+2√13或2√13−6;如图3,设点D(n, −13n2+23n+1),延长BD交y轴于K,∵A(−1, 0),设AD的解析式为:y=kx+b,则{−k+b=0nk+b=−13n2+23n+1,解得:{k=−13n+1b=−13n+1,∴AD的解析式为:y=(−13n+1)x−13n+1,试卷第22页,总25页试卷第23页,总25页 当x =2时,y =−23n +2−13n +1=−n +3, ∴ F(2, 3−n),∴ FN =3−n ,同理得直线BD 的解析式为:y =(−13n −13)x +n +1, ∴ K(0, n +1),∴ OK =n +1,∵ N(2, 0),B(3, 0),∴ BN OB =13, ∵ EN // OK ,∴ EN OK =BN OB =13,∴ OK =3EN ,∴ 3EN +FN =OK +FN =n +1+3−n =4,∴ 在点D 运动过程中,3NE +NF 为定值4.【考点】二次函数综合题【解析】(1)先将抛物线解析式变形,可得A 和B 的坐标,从而得AB =1+3=4,根据三角形ABC 的面积为2可得OC 的长,确定点C 的坐标,根据点C 的坐标,利用待定系数法即可求出二次函数的解析式;(2)设点P 的纵坐标为m ,当y =m 时,−13x 2+23x +1=m ,解方程可得P 和Q 两点的坐标,从而得G 和H 的坐标,再利用正方形的性质可得出关于m 的方程,解之即可得出结论;(3)设点D(n, −13n 2+23n +1),利用待定系数法求直线AD 和BD 的解析式,表示FN 和OK 的长,直接代入计算可得结论.【解答】如图1,y =ax 2−2ax −3a =a(x 2−2x −3)=a(x −3)(x +1),∴ A(−1, 0),B(3, 0),∴ AB =4,∵ △ABC 的面积为2,即12AB ⋅OC =2,∴ 12×4×OC =2,∴OC=1,∴C(0, 1),将C(0, 1)代入y=ax2−2ax−3a,得:−3a=1,∴a=−13,∴该二次函数的解析式为y=−13x2+23x+1;如图2,设点P的纵坐标为m,当y=m时,−13x2+23x+1=m,解得:x1=1+√4−3m,x2=1−√4−3m,∴点P的坐标为(1−√4−3m, m),点Q的坐标为(1+√4−3m, m),∴点G的坐标为(1−√4−3m, 0),点H的坐标为(1+√4−3m, 0),∵矩形PGHQ为正方形,∴1+√4−3m−(1−√4−3m)=m,解得:m1=−6−2√13,m2=−6+2√13,∴当四边形PGHQ为正方形时,边长为6+2√13或2√13−6;如图3,设点D(n, −13n2+23n+1),延长BD交y轴于K,∵A(−1, 0),设AD的解析式为:y=kx+b,则{−k+b=0nk+b=−13n2+23n+1,解得:{k=−13n+1b=−13n+1,∴AD的解析式为:y=(−13n+1)x−13n+1,当x=2时,y=−23n+2−13n+1=−n+3,试卷第24页,总25页∴F(2, 3−n),∴FN=3−n,同理得直线BD的解析式为:y=(−13n−13)x+n+1,∴K(0, n+1),∴OK=n+1,∵N(2, 0),B(3, 0),∴BNOB =13,∵EN // OK,∴ENOK =BNOB=13,∴OK=3EN,∴3EN+FN=OK+FN=n+1+3−n=4,∴在点D运动过程中,3NE+NF为定值4.试卷第25页,总25页。
2020年四川省德阳市中考数学试卷
2020年四川省德阳市中考数学试卷一、选择题(本大题共12个小题,每小题4分,共48分)在每小题给出的四个选项中,有且仅有一项是符合题目要求的.1.(4分)的相反数是()A.3B.﹣3C.D.2.(4分)下列运算正确的是()A.a2•a3=a6B.(3a)3 =9a3C.3a﹣2a=1D.(﹣2a2)3=﹣8a63.(4分)如图所示,直线EF∥GH,射线AC分别交直线EF、GH于点B和点C,AD⊥EF于点D,如果∠A=20°,则∠ACG=()A.160°B.110°C.100°D.70°4.(4分)下列说法错误的是()A.方差可以衡量一组数据的波动大小B.抽样调查抽取的样本是否具有代表性,直接关系对总体估计的准确程度C.一组数据的众数有且只有一个D.抛掷一枚图钉针尖朝上的概率,不能用列举法求得5.(4分)多边形的内角和不可能为()A.180°B.540°C.1080°D.1200°6.(4分)某商场销售A,B,C,D四种商品,它们的单价依次是50元,30元,20元,10元.某天这四种商品销售数量的百分比如图所示,则这天销售的四种商品的平均单价是()A.19.5元B.21.5元C.22.5元D.27.5元7.(4分)半径为R的圆内接正三角形、正方形、正六边形的边心距分别为a,b,c,则a,b,c的大小关系是()A.a<b<c B.b<a<c C.a<c<b D.c<b<a8.(4分)已知函数y=,当函数值为3时,自变量x的值为()A.﹣2B.﹣C.﹣2或﹣D.﹣2或﹣9.(4分)如图是一个几何体的三视图,根据图中所示数据计算这个几何体的表面积是()A.20πB.18πC.16πD.14π10.(4分)如图,Rt△ABC中,∠A=30°,∠ABC=90°.将Rt△ABC绕点B逆时针方向旋转得到△A'BC'.此时恰好点C在A'C'上,A'B交AC于点E,则△ABE与△ABC的面积之比为()A.B.C.D.11.(4分)已知:等腰直角三角形ABC的腰长为4,点M在斜边AB上,点P为该平面内一动点,且满足PC=2,则PM的最小值为()A.2B.2﹣2C.2+2D.212.(4分)已知不等式ax+b>0的解集为x<2,则下列结论正确的个数是()(1)2a+b=0;(2)当c>a时,函数y=ax2+bx+c的图象与x轴没有公共点;(3)当c>0时,抛物线y=ax2+bx+c的顶点在直线y=ax+b的上方;(4)如果b<3且2a﹣mb﹣m=0,则m的取值范围是﹣<m<0.A.1B.2C.3D.4二、填空题(本大题共6个小题,每小题4分,共24分,将答案填在答题卡对应的题号后的横线上)13.(4分)小明在体考时选择了投掷实心球,如图是体育老师记录的小明在训练时投掷实心球的6次成绩的折线统计图.这6次成绩的中位数是.14.(4分)把ax2﹣4a分解因式的结果是.15.(4分)如图,在平行四边形ABCD中,BE平分∠ABC,CF⊥BE,连接AE,G是AB的中点,连接GF,若AE=4,则GF=.16.(4分)将正偶数按照如下规律进行分组排列,依次为(2),(4,6),(8,10,12),(14,16,18,20)…,我们称“4”是第2组第1个数字,“16”是第4组第2个数字,若2020是第m组第n个数字,则m+n =.17.(4分)若实数x,y满足x+y2=3,设s=x2+8y2,则s的取值范围是.18.(4分)如图,海中有一小岛A,它周围10.5海里内有暗礁,渔船跟踪鱼群由西向东航行.在B点测得小岛A在北偏东60°方向上,航行12海里到达D点,这时测得小岛A在北偏东30°方向上.如果渔船不改变航线继续向东航行,那么渔船还需航行海里就开始有触礁的危险.三、解答题(本大题共7小题,共78分.答应写出文字说明、证明过程或推演步骤)19.(7分)计算:(﹣2)﹣2﹣|﹣2|+(﹣)0﹣﹣2cos30°.20.(8分)如图,四边形ABCD为矩形,G是对角线BD的中点.连接GC并延长至F,使CF=GC,以DC,CF为邻边作菱形DCFE,连接CE.(1)判断四边形CEDG的形状,并证明你的结论.(2)连接DF,若BC=,求DF的长.21.(13分)为了加强学生的垃圾分类意识,某校对学生进行了一次系统全面的垃圾分类宣传.为了解这次宣传的效果,从全校学生中随机抽取部分学生进行了一次测试,测试结果共分为四个等级:A.优秀;B.良好;C.及格;D.不及格.根据调查统计结果,绘制了如图所示的不完整的统计表.垃圾分类知识测试成绩统计表测试等级百分比人数A.优秀5%20B.良好60C.及格45%mD.不及格n请结合统计表,回答下列问题:(1)求本次参与调查的学生人数及m,n的值;(2)如果测试结果为“良好”及以上即为对垃圾分类知识比较了解,已知该校学生总数为5600人,请根据本次抽样调查的数据估计全校比较了解垃圾分类知识的学生人数;(3)为了进一步在学生中普及垃圾分类知识,学校准备再开展一次关于垃圾分类的知识竞赛,要求每班派一人参加.某班要从在这次测试成绩为优秀的小明和小亮中选一人参加.班长设计了如下游戏来确定人选,具体规则是:把四个完全相同的乒乓球分别标上数字1,2,3,4.然后放到一个不透明的袋中充分摇匀,两人同时从袋中各摸出一个球.若摸出的两个球上的数字和为奇数,则小明参加,否则小亮参加.请用树状图或列表法说明这个游戏规则是否公平.22.(11分)如图,一次函数y1=ax+b与反比例函数y2=的图象交于A、B两点.点A的横坐标为2,点B的纵坐标为1.(1)求a,b的值.(2)在反比例y2=第三象限的图象上找一点P,使点P到直线AB的距离最短,求点P的坐标.23.(12分)推进农村土地集约式管理,提高土地的使用效率是新农村建设的一项重要举措.某村在小城镇建设中集约了2400亩土地,计划对其进行平整.经投标,由甲乙两个工程队来完成平整任务.甲工程队每天可平整土地45亩,乙工程队每天可平整土地30亩.已知乙工程队每天的工程费比甲工程队少500元,当甲工程队所需工程费为12000元,乙工程队所需工程费为9000元时,两工程队工作天数刚好相同.(1)甲乙两个工程队每天各需工程费多少元?(2)现由甲乙两个工程队共同参与土地平整,已知两个工程队工作天数均为正整数,且所有土地刚好平整完,总费用不超过110000元.①甲乙两工程队分别工作的天数共有多少种可能?②写出其中费用最少的一种方案,并求出最低费用.24.(13分)如图,在⊙O中,弦AB与直径CD垂直,垂足为M,CD的延长线上有一点P,满足∠PBD=∠DAB.过点P作PN⊥CD,交OA的延长线于点N,连接DN交AP于点H.(1)求证:BP是⊙O的切线;(2)如果OA=5,AM=4,求PN的值;(3)如果PD=PH,求证:AH•OP=HP•AP.25.(14分)如图1,抛物线y=ax2﹣2ax﹣3a(a≠0)与x轴交于点A,B.与y轴交于点C.连接AC,BC.已知△ABC的面积为2.(1)求抛物线的解析式;(2)平行于x轴的直线与抛物线从左到右依次交于P,Q两点.过P,Q向x轴作垂线,垂足分别为G,H.若四边形PGHQ为正方形,求正方形的边长;(3)如图2,平行于y轴的直线交抛物线于点M,交x轴于点N(2,0).点D是抛物线上A,M之间的一动点,且点D不与A,M重合,连接DB交MN于点E.连接AD并延长交MN于点F.在点D运动过程中,3NE+NF是否为定值?若是,求出这个定值;若不是,请说明理由.。
2020年四川省德阳市中考数学试卷
2020年四川省德阳市中考数学试卷一、选择题(本大题共12个小题,每小题4分,共48分)在每小题给出的四个选项中,有且仅有一项是符合题目要求的.1.(4分)13的相反数是( ) A .3B .﹣3C .13D .−13 【解答】解:13的相反数为−13.故选:D .2.(4分)下列运算正确的是( )A .a 2•a 3=a 6B .(3a )3 =9a 3C .3a ﹣2a =1D .(﹣2a 2)3=﹣8a 6【解答】解:A 、a 2•a 3=a 5,故原题计算错误;B 、(3a )3 =27a 3,故原题计算错误;C 、3a ﹣2a =a ,故原题计算错误;D 、(﹣2a 2)3=﹣8a 6,故原题计算正确;故选:D .3.(4分)如图所示,直线EF ∥GH ,射线AC 分别交直线EF 、GH 于点B 和点C ,AD ⊥EF 于点D ,如果∠A =20°,则∠ACG =( )A .160°B .110°C .100°D .70°【解答】解:∵AD ⊥EF ,∠A =20°,∴∠ABD =180°﹣∠A ﹣∠ABD =180°﹣20°﹣90°=70°,∵EF ∥GH ,∴∠ACH =∠ABD =70°,∴∠ACG =180°﹣∠ACH =180°﹣70°=110°,故选:B .4.(4分)下列说法错误的是()A.方差可以衡量一组数据的波动大小B.抽样调查抽取的样本是否具有代表性,直接关系对总体估计的准确程度C.一组数据的众数有且只有一个D.抛掷一枚图钉针尖朝上的概率,不能用列举法求得【解答】解:方差可以衡量一组数据的波动大小,故选项A正确;抽样调查抽取的样本是否具有代表性,直接关系对总体估计的准确程度,故选项B正确;一组数据的众数有一个或者几个或者没有,故选项C错误;抛掷一枚图钉针尖朝上的概率,不能用列举法求得,故选项D正确;故选:C.5.(4分)多边形的内角和不可能为()A.180°B.540°C.1080°D.1200°【解答】解:多边形的内角和可以表示成(n﹣2)•180°(n≥3且n是整数),n应为整数,所以n﹣2也是整数,所以多边形的内角能被180整除,因为在这四个选项中不是180°的倍数的只有1200°.故选:D.6.(4分)某商场销售A,B,C,D四种商品,它们的单价依次是50元,30元,20元,10元.某天这四种商品销售数量的百分比如图所示,则这天销售的四种商品的平均单价是()A.19.5元B.21.5元C.22.5元D.27.5元【解答】解:这天销售的四种商品的平均单价是:50×10%+30×15%+20×55%+10×20%=22.5(元),故选:C.7.(4分)半径为R的圆内接正三角形、正方形、正六边形的边心距分别为a,b,c,则a,b ,c 的大小关系是( )A .a <b <cB .b <a <cC .a <c <bD .c <b <a【解答】解:设圆的半径为R ,则正三角形的边心距为a =R ×cos60°=12R .四边形的边心距为b =R ×cos45°=√22R ,正六边形的边心距为c =R ×cos30°=√32R .∵12R <√22R <√32R ,∴a <b <c ,故选:A .8.(4分)已知函数y ={−x +1(x <2)−2x(x ≥2),当函数值为3时,自变量x 的值为( )A .﹣2B .−23C .﹣2或−23D .﹣2或−32【解答】解:若x <2,当y =3时,﹣x +1=3,解得:x =﹣2;若x ≥2,当y =3时,−2x =3,解得:x =−23,不合题意舍去;∴x =﹣2,故选:A .9.(4分)如图是一个几何体的三视图,根据图中所示数据计算这个几何体的表面积是()A .20πB .18πC .16πD .14π【解答】解:这个几何体的表面积=π•22+π•3•2+2π•2•2=18π,故选:B .10.(4分)如图,Rt △ABC 中,∠A =30°,∠ABC =90°.将Rt △ABC 绕点B 逆时针方向旋转得到△A 'BC '.此时恰好点C 在A 'C '上,A 'B 交AC 于点E ,则△ABE 与△ABC 的面积之比为( )A .13B .12C .23D .34 【解答】解:∵∠A =30°,∠ABC =90°,∴∠ACB =60°,∵将Rt △ABC 绕点B 逆时针方向旋转得到△A 'BC ',∴BC =BC ',∠ACB =∠A 'C 'B =60°,∴△BCC '是等边三角形,∴∠CBC '=60°,∴∠ABA '=60°,∴∠BEA =90°,设CE =a ,则BE =√3a ,AE =3a ,∴CE AE =13, ∴AE AC =34,∴△ABE 与△ABC 的面积之比为34.故选:D .11.(4分)已知:等腰直角三角形ABC 的腰长为4,点M 在斜边AB 上,点P 为该平面内一动点,且满足PC =2,则PM 的最小值为( )A .2B .2√2−2C .2√2+2D .2√2【解答】解:∵等腰直角三角形ABC 的腰长为4,∴斜边AB =4√2,∵点P 为该平面内一动点,且满足PC =2,∴点P 在以C 为圆心,PC 为半径的圆上,当点P 在斜边AB 的中线上时,PM 的值最小,∵△ABC 是等腰直角三角形,∴CM =12AB =2√2,∵PC =2,∴PM =CM ﹣CP =2√2−2,故选:B .12.(4分)已知不等式ax +b >0的解集为x <2,则下列结论正确的个数是()(1)2a +b =0;(2)当c >a 时,函数y =ax 2+bx +c 的图象与x 轴没有公共点;(3)当c >0时,抛物线y =ax 2+bx +c 的顶点在直线y =ax +b 的上方;(4)如果b <3且2a ﹣mb ﹣m =0,则m 的取值范围是−34<m <0.A .1B .2C .3D .4【解答】解:(1)∵不等式ax+b>0的解集为x<2,∴a<0,−ba=2,即b=﹣2a,∴2a+b=0,故结论正确;(2)函数y=ax2+bx+c中,令y=0,则ax2+bx+c=0,∵即b=﹣2a,∴△=b2﹣4ac=(﹣2a)2﹣4ac=4a(a﹣c),∵a<0,c>a,∴△=4a(a﹣c)>0,∴当c>a时,函数y=ax2+bx+c的图象与x轴有两个公共点,故结论错误;(3)∵b=﹣2a,∴−b2a=1,4ac−b24a=4ac−4a24a=c﹣a,∴抛物线y=ax2+bx+c的顶点为(1,c﹣a),当x=1时,直线y=ax+b=a+b=a﹣2a=﹣a>0当c>0时,c﹣a>﹣a>0,∴抛物线y=ax2+bx+c的顶点在直线y=ax+b的上方,故结论正确;(4)∵b=﹣2a,∴由2a﹣mb﹣m=0,得到﹣b﹣mb﹣m=0,∴b=−mm+1,如果b<3,则0<−mm+1<3,∴−34<m<0,故结论正确;故选:C.二、填空题(本大题共6个小题,每小题4分,共24分,将答案填在答题卡对应的题号后的横线上)13.(4分)小明在体考时选择了投掷实心球,如图是体育老师记录的小明在训练时投掷实心球的6次成绩的折线统计图.这6次成绩的中位数是9.75.【解答】解:由6次成绩的折线统计图可知:这6次成绩从小到大排列为:9.5,9.6,9.7,9.8,10,10.2,所以这6次成绩的中位数是:9.7+9.82=9.75.故答案为:9.75.14.(4分)把ax 2﹣4a 分解因式的结果是 a (x +2)(x ﹣2) .【解答】解:ax 2﹣4a =a (x 2﹣4)=a (x +2)(x ﹣2).故答案为:a (x +2)(x ﹣2).15.(4分)如图,在平行四边形ABCD 中,BE 平分∠ABC ,CF ⊥BE ,连接AE ,G 是AB的中点,连接GF ,若AE =4,则GF = 2 .【解答】解:在平行四边形ABCD 中,AB ∥CD ,∴∠ABE =∠BEC .∵BE 平分∠ABC ,∴∠ABE =∠CBE ,∴∠CBE =∠BEC ,∴CB =CE .∵CF ⊥BE ,∴BF =EF .∵G 是AB 的中点,∴GF是△ABE的中位线,∴GF=12AE,∵AE=4,∴GF=2.故答案为2.16.(4分)将正偶数按照如下规律进行分组排列,依次为(2),(4,6),(8,10,12),(14,16,18,20)…,我们称“4”是第2组第1个数字,“16”是第4组第2个数字,若2020是第m组第n个数字,则m+n=65.【解答】解:∵将正偶数按照如下规律进行分组排列,依次为(2),(4,6),(8,10,12),(14,16,18,20)…,∴第m组有m个连续的偶数,∵2020=2×1010,∴2020是第1010个偶数,∵1+2+3+…+44=44×(44+1)2=990,1+2+3+…+45=45×(45+1)2=1035,∴2020是第45组第1010﹣990=20个数,∴m=45,n=20,∴m+n=65,故答案为:65.17.(4分)若实数x,y满足x+y2=3,设s=x2+8y2,则s的取值范围是s≥9.【解答】解:由x+y2=3,得:y2=﹣x+3≥0,∴x≤3,代入s=x2+8y2得:s=x2+8y2=x2+8(﹣x+3)=x2﹣8x+24=(x﹣4)2+8,当x=3时,s=(3﹣4)2+8=9,∴s≥9;故答案为:s≥9.18.(4分)如图,海中有一小岛A,它周围10.5海里内有暗礁,渔船跟踪鱼群由西向东航行.在B点测得小岛A在北偏东60°方向上,航行12海里到达D点,这时测得小岛A 在北偏东30°方向上.如果渔船不改变航线继续向东航行,那么渔船还需航行 4.5海里就开始有触礁的危险.【解答】解:只要求出A 到BD 的最短距离是否在以A 为圆心,以10.5海里的圆内或圆上即可,如图,过A 作AC ⊥BD 于点C ,则AC 的长是A 到BD 的最短距离,∵∠CAD =30°,∠CAB =60°,∴∠BAD =60°﹣30°=30°,∠ABD =90°﹣60°=30°,∴∠ABD =∠BAD ,∴BD =AD =12海里,∵∠CAD =30°,∠ACD =90°,∴CD =12AD =6海里,由勾股定理得:AC =√122−62=6√3(海里),如图,设渔船还需航行x 海里就开始有触礁的危险,即到达点D ′时有触礁的危险, 在直角△AD ′C 中,由勾股定理得:(6﹣x )2+(6√3)2=10.52.解得x =4.5.渔船还需航行4.5海里就开始有触礁的危险.故答案是:4.5.三、解答题(本大题共7小题,共78分.答应写出文字说明、证明过程或推演步骤)19.(7分)计算:(﹣2)﹣2﹣|√3−2|+(−√32)0−√83−2cos30°. 【解答】解:(﹣2)﹣2﹣|√3−2|+(−√32)0−√83−2cos30° =14−2+√3+1﹣2﹣2×√32=﹣234.20.(8分)如图,四边形ABCD为矩形,G是对角线BD的中点.连接GC并延长至F,使CF=GC,以DC,CF为邻边作菱形DCFE,连接CE.(1)判断四边形CEDG的形状,并证明你的结论.(2)连接DF,若BC=√3,求DF的长.【解答】解:(1)四边形CEDG是菱形,理由如下:∵四边形ABCD为矩形,G是对角线BD的中点,∴GB=GC=GD,∵CF=GC,∴GB=GC=GD=CF,∵四边形DCFE是菱形,∴CD=CF=DE,DE∥CG,∴DE=GC,∴四边形CEDG是平行四边形,∵GD=GC,∴四边形CEDG是菱形;(2)方法1:过点G作GH⊥BC于H,设DF交CE于点N,如图所示:∵CD=CF,GB=GD=GC=CF,∴CH=BH=12BC=√32,△CDG是等边三角形,∴∠GCD=60°,∴∠DCF=180°﹣∠GCD=180°﹣60°=120°,∵四边形ABCD为矩形,∴∠BCD=90°,∴∠GCH=90°﹣60°=30°,∴CG=CHcos30°=√32√32=1,∴CD=1,∵四边形DCFE是菱形,∴DN=FN,CN⊥DF,∠DCE=∠FCE=12∠DCF=12×120°=60°,在Rt△CND中,DN=CD•sin∠DCE=1×sin60°=1×√32=√32,∴DF=2DN=2×√32=√3.方法2:设DF交CE于点N,如图所示;∵CD=CF,GB=GD=GC=CF,∴CH=BH=12BC=√32,△CDG是等边三角形,∴∠GDC=60°,GD=CD,在Rt△BCD中,∵BC=√3,∠GDC=60°,∴CD=√33BC=1,∴GD=1,∵GD=GC=CF,∴CD=12GF,∴△GDF是直角三角形,∴DF=GD×tan∠DGC=1×√3=√3.21.(13分)为了加强学生的垃圾分类意识,某校对学生进行了一次系统全面的垃圾分类宣传.为了解这次宣传的效果,从全校学生中随机抽取部分学生进行了一次测试,测试结果共分为四个等级:A.优秀;B.良好;C.及格;D.不及格.根据调查统计结果,绘制了如图所示的不完整的统计表.垃圾分类知识测试成绩统计表测试等级百分比人数A.优秀5%20B.良好60C.及格45%mD.不及格n请结合统计表,回答下列问题:(1)求本次参与调查的学生人数及m,n的值;(2)如果测试结果为“良好”及以上即为对垃圾分类知识比较了解,已知该校学生总数为5600人,请根据本次抽样调查的数据估计全校比较了解垃圾分类知识的学生人数;(3)为了进一步在学生中普及垃圾分类知识,学校准备再开展一次关于垃圾分类的知识竞赛,要求每班派一人参加.某班要从在这次测试成绩为优秀的小明和小亮中选一人参加.班长设计了如下游戏来确定人选,具体规则是:把四个完全相同的乒乓球分别标上数字1,2,3,4.然后放到一个不透明的袋中充分摇匀,两人同时从袋中各摸出一个球.若摸出的两个球上的数字和为奇数,则小明参加,否则小亮参加.请用树状图或列表法说明这个游戏规则是否公平.【解答】解:(1)本次参与调查的学生人数为:20÷5%=400(人),m=400×45%=180,∵400﹣20﹣60﹣180=140,∴n=140÷400×100%=35%;(2)5600×20+60400=1120(人),即估计全校比较了解垃圾分类知识的学生人数为1120人;(3)画树状图为:共有12种等可能的结果,其中和为奇数的结果有8种,∴P(小明参加)=812=23,P (小亮参加)=1−23=13, ∵23≠13,∴这个游戏规则不公平.22.(11分)如图,一次函数y 1=ax +b 与反比例函数y 2=4x 的图象交于A 、B 两点.点A 的横坐标为2,点B 的纵坐标为1. (1)求a ,b 的值.(2)在反比例y 2=4x 第三象限的图象上找一点P ,使点P 到直线AB 的距离最短,求点P 的坐标.【解答】解:(1)∵一次函数y 1=ax +b 与反比例函数y 2=4x的图象交于A 、B 两点.点A 的横坐标为2,点B 的纵坐标为1, ∴A (2,2),B (4,1), 则有{2a +b =24a +b =1,解得{a =−12b =3.(2)过点P 作直线PM ∥AB ,当直线PM 与反比例函数只有一个交点时,点P 到直线AB 的距离最短, 设直线PM 的解析式为y =−12x +n ,由{y =4x y =−12x +n ,消去y 得到,x 2﹣2nx +8=0,由题意得,△=0, ∴4n 2﹣32=0,∴n =﹣2√2或2√2(舍弃), 解得{x =−2√2y =−√2,∴P (﹣2√2,−√2).23.(12分)推进农村土地集约式管理,提高土地的使用效率是新农村建设的一项重要举措.某村在小城镇建设中集约了2400亩土地,计划对其进行平整.经投标,由甲乙两个工程队来完成平整任务.甲工程队每天可平整土地45亩,乙工程队每天可平整土地30亩.已知乙工程队每天的工程费比甲工程队少500元,当甲工程队所需工程费为12000元,乙工程队所需工程费为9000元时,两工程队工作天数刚好相同. (1)甲乙两个工程队每天各需工程费多少元?(2)现由甲乙两个工程队共同参与土地平整,已知两个工程队工作天数均为正整数,且所有土地刚好平整完,总费用不超过110000元. ①甲乙两工程队分别工作的天数共有多少种可能? ②写出其中费用最少的一种方案,并求出最低费用.【解答】解:(1)设甲每天需工程费x 元、乙工程队每天需工程费(x ﹣500)元, 由题意,12000x=9000x−500,解得x =2000,经检验,x =2000是分式方程的解.答:甲每天需工程费2000元、乙工程队每天需工程费1500元.(2)①设甲平整x 天,则乙平整y 天.由题意,45x +30y =2400①,且2000x +1500y ≤110000②, 由①得到y =80﹣1.5x ③,把③代入②得到,2000x +1500(80﹣1.5x )≤110000,解得,x≥40,∵y>0,∴80﹣1.5x>0,x<53.3,∴40≤x<53.3,∵x,y是正整数,∴x=40,y=20或x=42,y=17或x=44,y=14或x=46,y=11或x=48,y=8或x =50,y=5或x=52,y=2.∴甲乙两工程队分别工作的天数共有7种可能.②总费用w=2000x+1500(80﹣1.5x)=﹣250x+120000,∵﹣250<0,∴w随x的增大而减小,∴x=52时,w的最小值=107000(元).答:最低费用为107000元.24.(13分)如图,在⊙O中,弦AB与直径CD垂直,垂足为M,CD的延长线上有一点P,满足∠PBD=∠DAB.过点P作PN⊥CD,交OA的延长线于点N,连接DN交AP于点H.(1)求证:BP是⊙O的切线;(2)如果OA=5,AM=4,求PN的值;(3)如果PD=PH,求证:AH•OP=HP•AP.【解答】(1)证明:如图,连接BC,OB.∵CD是直径,∴∠CBD=90°,∵OC=OB,∴∠C =∠CBO ,∵∠C =∠BAD ,∠PBD =∠DAB , ∴∠CBO =∠PBD , ∴∠OBP =∠CBD =90°, ∴PB ⊥OB , ∴PB 是⊙O 的切线.(2)解:∵CD ⊥AB , ∴P A =PB ,∵OA =OB ,OP =OP , ∴△P AO ≌△PBO (SSS ), ∴∠OAP =∠OBP =90°, ∵∠AMO =90°,∴OM =√OA 2−AM 2=√52−42=3, ∵∠AOM =∠AOP ,∠OAP =∠AMO , ∴△AOM ∽△POA , ∴OA OP =OM OA ,∴5OP=35,∴OP =253, ∵PN ⊥PC ,∴∠NPC =∠AMO =90°, ∴AM PN =OM OP ,∴4PN=3253, ∴PN =1009.(3)证明:∵PD =PH , ∴∠PDH =∠PHD ,∵∠PDH =∠POA +∠OND ,∠PHD =∠APN +∠PND ,∵∠POA +∠APO =90°, ∵PN ⊥OP , ∴∠OPN =90°, ∴∠APN +∠APO =90°, ∴∠POA =∠APN , ∴∠ANH =∠PND ,∵∠PDN =∠PHD =∠AHN , ∴△NAH ∽△NPD , ∴AH PD=NA NP,∵∠APN =∠POA ,∠P AN =∠P AO =90°, ∴△P AN ∽△OAP , ∴PN OP =AN AP ,∴NA NP =AP OP, ∴AH PD=AH PH=AP OP,∴AH •OP =HP •AP .25.(14分)如图1,抛物线y =ax 2﹣2ax ﹣3a (a ≠0)与x 轴交于点A ,B .与y 轴交于点C .连接AC ,BC .已知△ABC 的面积为2. (1)求抛物线的解析式;(2)平行于x 轴的直线与抛物线从左到右依次交于P ,Q 两点.过P ,Q 向x 轴作垂线,垂足分别为G ,H .若四边形PGHQ 为正方形,求正方形的边长;(3)如图2,平行于y 轴的直线交抛物线于点M ,交x 轴于点N (2,0).点D 是抛物线上A ,M 之间的一动点,且点D 不与A ,M 重合,连接DB 交MN 于点E .连接AD 并延长交MN 于点F .在点D 运动过程中,3NE +NF 是否为定值?若是,求出这个定值;若不是,请说明理由.【解答】解:(1)如图1,y =ax 2﹣2ax ﹣3a =a (x 2﹣2x ﹣3)=a (x ﹣3)(x +1),∴A (﹣1,0),B (3,0), ∴AB =4,∵△ABC 的面积为2,即12AB ⋅OC =2,∴12×4×OC =2,∴OC =1, ∴C (0,1),将C (0,1)代入y =ax 2﹣2ax ﹣3a ,得:﹣3a =1, ∴a =−13,∴该二次函数的解析式为y =−13x 2+23x +1;(2)如图2,设点P 的纵坐标为m ,当y =m 时,−13x 2+23x +1=m ,解得:x1=1+√4−3m,x2=1−√4−3m,∴点P的坐标为(1−√4−3m,m),点Q的坐标为(1+√4−3m,m),∴点G的坐标为(1−√4−3m,0),点H的坐标为(1+√4−3m,0),∵矩形PGHQ为正方形,∴1+√4−3m−(1−√4−3m)=m,解得:m1=﹣6﹣2√13,m2=﹣6+2√13,∴当四边形PGHQ为正方形时,边长为6+2√13或2√13−6;(3)如图3,设点D(n,−13n2+23n+1),延长BD交y轴于K,∵A(﹣1,0),设AD的解析式为:y=kx+b,则{−k+b=0nk+b=−13n2+23n+1,解得:{k=−13n+1b=−13n+1,∴AD的解析式为:y=(−13n+1)x−13n+1,当x=2时,y=−23n+2−13n+1=﹣n+3,∴F (2,3﹣n ), ∴FN =3﹣n ,同理得直线BD 的解析式为:y =(−13n −13)x +n +1, ∴K (0,n +1), ∴OK =n +1,∵N (2,0),B (3,0), ∴BN OB=13,∵EN ∥OK , ∴EN OK=BN OB=13,∴OK =3EN ,∴3EN +FN =OK +FN =n +1+3﹣n =4, ∴在点D 运动过程中,3NE +NF 为定值4.。
2020 德阳市中考数学试题(含答案、解析)-2018试卷数学必考常考
【答案】徳阳市2020年初中毕业生学业考试与高中阶段学校招生考试第【卷(选择题,共36分)一、选择题(本大题共12个小题,何小题3分,共36分)1.如果把收入100元记作+100元,那么支出80元记作A.+20 元8.+100 元 C.+80 元 D. -80 元解析:考察实数的概念,易选。
2.卜'列计算或运算中,正确的是A.苛十〃=妒B. (-2疽)3=_財C. (〃-3)(3+0)=湛_9D.(fl-6)1=a2-b2解析:考査幕运算与整式乘法,易选C选项 4: a6 a2 = a4选项 8:考査了立方:(-2疽)=(-1)'x(2),X."'= (-l)x8x/=-8苛选项C:考査了平方差公式:(0-6)何+6)勺2_状.所以s_3)(3 + 0)n(a-3)(o+3)y-9 选项。
考査了完全平方差公式:(°-6)2=°2林2.2况,3.如图,直线a\\b, c, d是截线日.交于点4 若21=60。
, 22 = 100。
,则乙4 =4 40° 3.50° C. 60° D. 70°解析:考査三线八角,利用平行转移角,易选』\ /Zl=Z3=60° , Z2=Z4=100°, g\ 2V Z4+Z5=180° , \...匕5=80°b ^351一.・.匕4=180°-Z3-Z5=40°VA(第3题图)4. 卜.列计算或运算中,正确的是解析:考査二次根式的加减乘除与化简,易选5选项B 应-』§ = 3』5-2旧顼 选项C: 6应+ 2心=尊=3由2>/3 选项。
:-3j£ =-妩1=-妨5. 把实数6.12X10-3用小数表示为A. 0. 0612B. 6120C. 0. 00612D. 612000解析:考査科学计数法,易选C6. 下列说法正确的是4 “明天降雨的概率为50%”,意味着明天一定有半天都在降FhjB. 了解全国快递包裹产生的包装垃圾数蛍适合釆用全面调查(普査)方式C. 掷一枚质地均匀的骰子,骰子停止转动后,6点朝上是必然事件D.一组数据的方差越大,则这组数据的波动也越大解析:考査方差、事件、概率统计,易选。
(中考精品卷)四川省德阳市中考数学真题(解析版)
数学试卷第Ⅰ卷(选择题,共48分)一、选择题(本大题共12个小题,每小题4分,共48分,在每小题给出的四个选项中,有且仅有一项是符合题目要求的.)1. -2的绝对值是()A. 2B. -2C. ±2D.1 2【答案】A【解析】【分析】在数的前面添上或者去掉负号既可以求出绝对值.【详解】解:﹣2的绝对值是2;故选:A.【点睛】本题考查绝对值的定义,数轴上一个点到原点的距离即为这个数的绝对值.2. 下列图形中,既是中心对称图形又是轴对称图形的是()A. B. C. D.【答案】A【解析】【分析】根据轴对称和中心对称的定义逐项判断即可.轴对称图形是把一个图形沿一条直线折叠,直线两旁的部分能够互相重合;中心对称图形是把一个图形绕某一点旋转180°,旋转后的图形能够与原来的图形重合.【详解】A、既是中心对称图形,又是轴对称图形,符合题意;B、是轴对称图形,但不是中心对称图形,不符合题意;C、是轴对称图形,但不是中心对称图形,不符合题意;D、是中心对称图形,但不是轴对称图形,不符合题意;故选:A.【点睛】此题考查中心对称图形和轴对称图形,解决本题的关键是熟练地掌握中心对称图形和轴对称图形的判断方法.3. 下列计算正确的是( )A. ()222a b a b -=-1=C. 1a a a a÷⋅= D. 32361126ab a b ⎛⎫-=- ⎪⎝⎭【答案】B【解析】 【分析】根据完全平方公式、二次根式的化简、同底数幂的乘除法则、积的乘法法则逐项判断即可.【详解】A.222()2a b a ab b -=-+,故本选项错误;1==,故本选项符合题意;C.1111a a a a a ÷⋅=⋅=,故本选项错误;D.23332336111228()()ab a b a b ⨯-=-=-,故本选项错误; 故选:B .【点睛】本题考查了完全平方公式、二次根式化简、同底数幂的乘除法则、积的乘法法则,熟练掌握同底数幂的乘除法则、积的乘法法则是解答本题的关键.4. 如图,直线m n ∥,1100∠=,230∠=︒,则3∠=( )A. 70︒B. 110︒C. 130︒D. 150︒【答案】C【解析】 【分析】设∠1的同位角为为∠4,∠2的对顶角为∠5,根据平行的性质得到∠1=∠4=100°,再根据三角形的外角和定理 即可求解.【详解】设∠1的同位角为为∠4,∠2的对顶角为∠5,如图,的∥,∠1=100°,∵m n∴∠1=∠4=100°,∵∠2=30°,∠2与∠5互为对顶角,∴∠5=∠2=30°,∴∠3=∠4+∠5=100°+30°=130°,故选:C.【点睛】本题考查了平行线的性质、三角形的外角和定理等知识,掌握平行线的性质是解答本题的关键.5. 下列事件中,属于必然事件的是()A. 抛掷硬币时,正面朝上B. 明天太阳从东方升起C. 经过红绿灯路口,遇到红灯D. 玩“石头、剪刀、布”游戏时,对方出“剪刀”【答案】B【解析】【分析】根据随机事件、必然事件的概念即可作答.【详解】A.抛硬币时,正面有可能朝上也有可能朝下,故正面朝上是随机事件;B.太阳从东方升起是固定的自然规律,是不变的,故此事件是必然事件;C.经过路口,有可能出现红灯,也有可能出现绿灯、黄灯,故遇到红灯是随机事件;D.对方有可能出“剪刀”,也有可能出“石头”、“布”,出现对方出“剪刀”随机事假.故选:B.【点睛】本题考查了随机事件、必然事件的概念,充分理解随机事件的概念是解答本题的关键.6. 在学校开展的劳动实践活动中,生物兴趣小组7个同学采摘到西红柿的质量(单位:kg)分别是:5,9,5,6,4,5,7,则这组数据的众数和中位数分别是()A. 6,6B. 4,6C. 5,6D. 5,5 【答案】D【解析】【分析】将这7个数从小到大排列,第4个数就是这组数的中位数.出现次数最多的数即是众数.【详解】将这7个数从小到大排列:4、5、5、5、6、7、9,第4个数5,则这组数的中位数为:5,出现次数最多的数是5,故这组数的众数是5,故选:D .【点睛】本题考查了中位数、众数的定义,充分理解中位数、众数的定义是解答本题的基础.7. 八一中学校九年级2班学生杨冲家和李锐家到学校的直线距离分别是5km 和3km .那么杨冲,李锐两家的直线距离不可能是( )A. 1kmB. 2kmC. 3kmD. 8km【答案】A【解析】【分析】利用构成三角形的条件即可进行解答.【详解】以杨冲家、李锐家以及学校这三点来构造三角形,设杨冲家与李锐家的直线距离为a ,则根据题意有:5-353a +<<,即28a <<,当杨冲家、李锐家以及学校这三点共线时,538a =+=或者532a =-=,综上a 的取值范围为:28a ≤≤,据此可知杨冲家、李锐家的距离不可能是1km ,故选:A .【点睛】本题考查了构成三角形的条件的知识,构成三角的条件:三角形中任意的两边之和大于第三边,任意的两边之差小于第三边.8. 一个圆锥的底面直径是8,母线长是9,则圆锥侧面展开图的面积是( )A. 16πB. 52πC. 36πD. 72π 【答案】C【解析】【分析】首先求得圆锥的底面周长,即侧面的扇形弧长,然后根据扇形的面积公式即可求解.【详解】解:根据题意得:圆锥侧面展开图的弧长为8π, 为∴圆锥侧面展开图的面积是189362ππ⨯⨯=. 故选:C【点睛】本题主要考查了圆锥的计算,正确理解圆锥的侧面展开图是扇形是解决本题的关键,理解圆锥的母线长是扇形的半径,圆锥的底面圆周长是扇形的弧长.9. 一次函数1y ax =+与反比例函数a y x=-在同一坐标系中的大致图象是( )A. B. C. D.【答案】B【解析】【分析】A 选项可以根据一次函数与y 轴交点判断,其他选项根据图象判断a 的符号,看一次函数和反比例函数判断出a 的符号是否一致;【详解】一次函数与y 轴交点为(0,1),A 选项中一次函数与y 轴交于负半轴,故错误; B 选项中,根据一次函数y 随x 增大而减小可判断a <0,反比例函数过一、三象限,则-a >0,即a <0,两者一致,故B 选项正确;C 选项中,根据一次函数y 随x 增大而增大可判断a >0,反比例函数过一、三象限,则-a >0,即a <0,两者矛盾,故C 选项错误;D 选项中,根据一次函数y 随x 增大而减小可判断a <0,反比例函数过二、四象限,则-a <0,即a >0,两者矛盾,故D 选项错误;故选:B .【点睛】本题考查了一次函数、反比例函数图象共存问题,解决此类题目要熟练掌握一次函数、反比例函数图象与系数的关系.10. 如图,在四边形ABCD 中,点E ,F ,G ,H 分别是AB ,BC ,CD ,DA 边上的中点,则下列结论一定正确的是( )A. 四边形EFGH 是矩形B. 四边形EFGH 的内角和小于四边形ABCD 的内角和C. 四边形EFGH 的周长等于四边形ABCD 的对角线长度之和D. 四边形EFGH 的面积等于四边形ABCD 面积的14 【答案】C【解析】【分析】连接,AC BD ,根据三角形中位线的性质12EH FG BD ==,12EF HG AC ==,,EF AC HG EH BD FG ∥∥∥∥,继而逐项分析判断即可求解. 【详解】解:连接,AC BD ,设交于点O ,点E ,F ,G ,H 分别是AB ,BC ,CD ,DA 边上的中点, ∴12EH FG BD ==,12EF HG AC ==,,EF AC HG EH BD FG ∥∥∥∥A. 四边形EFGH 是平行四边形,故该选项不正确,不符合题意;B. 四边形EFGH 的内角和等于于四边形ABCD 的内角和,都为360°,故该选项不正确,不符合题意;C. 四边形EFGH 的周长等于四边形ABCD 的对角线长度之和,故该选项正确,符合题意;D. 四边形EFGH 的面积等于四边形ABCD 面积的12,故该选项不正确,不符合题意; 故选C【点睛】本题考查了中点四边形的性质,三角形中位线的性质,掌握三角形中位线的性质是解题的关键.11. 关于x 的方程211x a x +=-的解是正数,则a 的取值范围是( ) A. a >-1B. a >-1且a ≠0C. a <-1D. a <-1且a ≠-2【答案】D【解析】 【分析】将分式方程变为整式方程求出解,再根据解为正数且不能为增根,得出答案.【详解】方程左右两端同乘以最小公分母x-1,得2x+a=x-1.解得:x=-a-1且x 为正数.所以-a-1>0,解得a <-1,且a≠-2.(因为当a=-2时,方程不成立.)【点睛】本题难度中等,易错点:容易漏掉了a≠-2这个信息.12. 如图,点E 是ABC 的内心,AE 的延长线和ABC 的外接圆相交于点D ,与BC 相交于点G ,则下列结论:①BAD CAD ∠=∠;②若60BAC ∠=︒,则120∠=︒BEC ;③若点G 为BC 的中点,则90BGD ∠=︒;④BD DE =.其中一定正确的个数是( )A. 1B. 2C. 3D. 4【答案】C【解析】 【分析】根据点E 是ABC 的内心,可得BAD CAD ∠=∠,故①正确;连接BE ,CE ,可得∠ABC +∠ACB =2(∠CBE +∠BCE ),从而得到∠CBE +∠BCE =60°,进而得到∠BEC =120°,故②正确;若点G 为BC 的中点,无法证明△ABG ≌△ACG ,则90BGD ∠=︒不一定成立,故③错误;根据点E 是ABC 的内心和三角形的外角的性质,可得()12BED BAC ABC ∠=∠+∠,再由圆周角定理可得()12DBE BAC ABC ∠=∠+∠,从而得到∠DBE =∠BED ,故④正确;即可求解. 【详解】解:∵点E 是ABC 的内心,∴BAD CAD ∠=∠,故①正确;如图,连接BE ,CE ,∵点E 是ABC 的内心,∴∠ABC =2∠CBE ,∠ACB =2∠BCE ,∴∠ABC +∠ACB =2(∠CBE +∠BCE ),∵∠BAC =60°,∴∠ABC +∠ACB =120°,∴∠CBE +∠BCE =60°,∴∠BEC =120°,故②正确;∵点E 是ABC 的内心,∴BAD CAD ∠=∠,∵点G 为BC 的中点,∴BG =CG ,∵AG =AG ,无法证明△ABG ≌△ACG ,∴∠AGB 不一定等于∠AGC ,即90BGD ∠=︒不一定成立,故③错误;∵点E 是ABC 的内心, ∴11,22BAD CAD BAC ABE CBE ABC ∠=∠=∠∠=∠=∠, ∵∠BED =∠BAD +∠ABE , ∴()12BED BAC ABC ∠=∠+∠, ∵∠CBD =∠CAD ,∴∠DBE =∠CBE +∠CBD =∠CBE +∠CAD , ∴()12DBE BAC ABC ∠=∠+∠, ∴∠DBE =∠BED ,∴BD DE =,故④正确;∴正确的有3个.故选:C【点睛】本题主要考查了三角形内心问题,圆周角定理,三角形的内角和等知识,熟练的掌握三角形的内心问题,圆周角定理,三角形的内角和等知识是解题的关键.第Ⅱ卷(非选择题,共102分)二、填空题(本大题共6个小题,每小题4分,共24分,将答案填在答题卡对应的题号后的横线上)13. 分解因式:2ax a -=______.【答案】a (x +1)(x -1)【解析】【分析】先提公因式a ,再运用平方差公式分解即可.【详解】解:ax 2-a=a (x 2-1)=a (x +1)(x -1)故答案为:a (x +1)(x -1).【点睛】本题考查提公因式法与公式法综合运用,熟练掌握分解因式的提公因式法与公式法两种方法是解题的关键.14. 学校举行物理科技创新比赛,各项成绩均按百分制计,然后按照理论知识占20%,创新设计占50%,现场展示占30%计算选手的综合成绩(百分制),某同学本次比赛的各项成绩分别是:理论知识85分,创新设计88分,现场展示90分,那么该同学的综合成绩是______分.【答案】88【解析】【分析】利用加权平均数的求解方法即可求解.【详解】综合成绩为:85×20%+88×50%+90×30%=88(分),故答案为:88.【点睛】此题主要考查了加权平均数的求法,解题的关键是理解各项成绩所占百分比的含义.15. 已知(x+y )2=25,(x ﹣y )2=9,则xy=___.【答案】4【解析】【分析】根据完全平方公式的运算即可.【详解】∵()225x y +=,()29x y -=∵()2x y ++()2x y -=4xy =16,∴xy =4.【点睛】此题主要考查完全平方公式的灵活运用,解题的关键是熟知完全平方公式的应用. 16. 如图,直角三角形ABC 纸片中,90ACB ∠=︒,点D 是AB 边上的中点,连接CD ,将ACD △沿CD 折叠,点A 落在点E 处,此时恰好有CE AB ⊥.若1CB =,那么CE =______.【解析】【分析】根据D 为AB 中点,得到AD =CD =BD ,即有∠A =∠DCA ,根据翻折的性质有∠DCA =∠DCE ,CE =AC ,再根据CE ⊥AB ,求得∠A =∠BCE ,即有∠BCE =∠ECD =∠DCA =30°,则有∠A =30°,在Rt △ACB 中,即可求出AC ,则问题得解.【详解】∵∠ACB =90°,∴∠A +∠B =90°,∵D 为AB 中点,∴在直角三角形中有AD =CD =BD ,∴∠A =∠DCA ,根据翻折的性质有∠DCA =∠DCE ,CE =AC ,∵CE ⊥AB ,∴∠B +∠BCE =90°,∵∠A +∠B =90°,∴∠A =∠BCE ,∴∠BCE =∠ECD =∠DCA ,∵∠BCE +∠ECD +∠DCA=∠ACB =90°,∴∠BCE =∠ECD =∠DCA =30°∴∠A =30°,∴在Rt △ACB 中,BC =1,则有1tan tan 30BC AC A ===∠o∴CE AC ==【点睛】本题考查了翻折的性质、直角三角形斜边中线的性质、等边对等角以及解直角三角形的知识,求出∠BCE =∠ECD =∠DCA =30°是解答本题的关键.17. 古希腊的毕达哥拉斯学派对整数进行了深入的研究,尤其注意形与数的关系,“多边形数”也称为“形数”,就是形与数的结合物.用点排成的图形如下:其中:图①的点数叫做三角形数,从上至下第一个三角形数是1,第二个三角形数是123+=,第三个三角形数是1236++=,……图②的点数叫做正方形数,从上至下第一个正方形数是1,第二个正方形数是134+=,第三个正方形数是1359++=,……由此类推,图④中第五个正六边形数是______.【答案】45 【解析】【分析】根据题意找到图形规律,即可求解. 【详解】根据图形,规律如下表:12(1)n +++-L 12(1)n +++-L 12(1)n +++-L 12(1)n +++-L 12(1)n +++-L 12(1)n +++-L 12(1)(3)12(1)n m n +++-⎫⎪-⎬⎪+++-⎭由上表可知第n 个M 边形数为:12)[12(1)]()(3S n n m +++++++-=-L L , 整理得:1)(1)(3)2(2n n n n m S --+=+, 则有第5个正六边形中,n=5,m=6,代入可得:((1)(1)(3)15)55(51)(63)452222n n n S n m +--+--+=+==, 故答案为:45.【点睛】本题考查了整式--图形类规律探索,理解题意是解答本题的关键.18. 如图,已知点()2,3A -,()2,1B ,直线y kx k =+经过点()1,0P -.试探究:直线与线段AB 有交点时k 的变化情况,猜想k 的取值范围是______.【答案】13k ≥或3k ≤-##3k ≤-或13k ≥ 【解析】分析】根据题意,画出图象,可得当x =2时,y ≥1,当x =-2时,y ≥3,即可求解. 【详解】解:如图,观察图象得:当x =2时,y ≥1, 即21k k +≥,解得:13k ≥, 【当x =-2时,y ≥3,即23k k -+≥,解得:3k ≤-, ∴k 的取值范围是13k ≥或3k ≤-. 故答案为:13k ≥或3k ≤- 【点睛】本题主要考查了一次函数的图象和性质,利用数形结合思想解答是解题的关键.三、解答题(本大题共7小题,共78分.解答应写出文字说明、证明过程或推演步骤)19. ())023.143tan 6012π---︒+--. 【答案】14【解析】【分析】根据二次根式的化简,零指数幂的定义,特殊角的三角函数值,绝对值的性质以及负整数指数幂的运算法则分别化简后再进行实数的加减法运算. 【详解】解:023.143tan 601())2π-+--︒+-- 1114=+-+14=. 【点睛】此题考查实数的运算法则,正确掌握二次根式的化简,零指数幂的定义,特殊角的三角函数值,绝对值的性质以及负整数指数幂的运算法则是解题的关键.20. 据《德阳县志》记载,德阳钟鼓楼始建于明朝成化年间,明末因兵灾焚毁,清乾隆五十二年重建.在没有高层建筑的时代,德阳钟鼓楼一直流传着“半截还在云里头”的故事.1971年,因破四旧再次遭废.现在的钟鼓楼是老钟鼓楼的仿制品,于2005年12月27日破土动工,2007年元旦落成,坐落东山之巅,百尺高楼金碧辉煌,流光溢彩;万丈青壁之间,银光闪烁,蔚为壮观,已经成为人们休闲的打卡胜地.学校数学兴趣小组在开展“数学与传承”探究活动中,进行了“钟鼓楼知识知多少”专题调查活动,将调查问题设置为“非常了解”、“比较了解”、“基本了解”、“不太了解”四类.他们随机抽取部分市民进行问卷调查,并将结果绘制成了如下两幅统计图:(1)设本次问卷调查共抽取了m名市民,图2中“不太了解”所对应扇形的圆心角是n 度,分别写出m,n的值.(2)根据以上调查结果,在12000名市民中,估计“非常了解”的人数有多少?(3)为进一步跟踪调查市民对钟鼓楼知识掌握的具体情况,兴趣组准备从附近的3名男士和2名女士中随机抽取2人进行调查,请用列举法(树状图或列表)求恰好抽到一男一女的概率.【答案】(1)200,7.2(2)3360 (3)3 5【解析】【分析】(1)先用“基本了解”的人数除以其所对应的百分比,可得调查的总人数,再求出“非常了解”的人数,进而得到“不太了解”的人数,最后用“不太了解”的人数所占的百分比乘以360°,即可求解;(2)用12000乘以“非常了解”的人数所占的百分比,即可求解;(3)根据题意,列出表格,可得一共有20种等可能结果,其中恰好抽到一男一女的有12种,再根据概率公式,即可求解.【小问1详解】解:根据题意得:4020%200m=÷=人,∴“非常了解”的人数为20028%56⨯=人,∴“不太了解”的人数为20056100404---=人,∴“不太了解”所对应扇形的圆心角43607.2200⨯︒=︒,即7.2n=;【小问2详解】解:“非常了解”的人数有1200028%3360⨯=人;【小问3详解】解:根据题意,列出表格,如下:男1 男2 男3 女1 女2 男1男2、男1 男3、男1 女1、男1 女2、男1 男2 男1、男2男3、男2 女1、男2 女2、男2 男3 男1、男3 男2、男3女1、男3 女2、男3 女1 男1、女1 男2、女1 男3、女1女2、女1 女2男1、女2男2、女2男3、女2女1、女2一共有20种等可能结果,其中恰好抽到一男一女的有12种, ∴恰好抽到一男一女的概率为123205=. 【点睛】本题主要考查了扇形统计图和条形统计图,用样本估计总体,利用树状图和列表法求概率,明确题意,准确从统计图中获取信息是解题的关键. 21. 如图,一次函数312y x =-+与反比例函数ky x=的图象在第二象限交于点A ,且点A 的横坐标为-2.(1)求反比例函数的解析式;(2)点B 的坐标是()3,0-,若点P 在y 轴上,且AOP 的面积与AOB 的面积相等,求点P 的坐标. 【答案】(1)8y x=-(2)()0,6或()06-,【解析】【分析】(1)将点A 的横坐标代入一次函数解析式,求得点A 的纵坐标,进而将A 的坐标代入反比例函数解析式即可求解.(2)根据三角形面积公式列出方程即可求解. 【小问1详解】一次函数312yx =-+与反比例函数ky x=的图象在第二象限交于点A ,且点A 的横坐标为-2, 当2x =-时,()32142y =-⨯-+=,则()2,4A -, 将()2,4A -代入ky x=,可得8k =-, ∴反比例函数的解析式为8y x=-, 【小问2详解】点B 的坐标是()3,0-,()2,4A -,3BO ∴=,1134622AOB A S BO y ∴=⨯=⨯⨯= , AOP 的面积与AOB 的面积相等,设()0,P p ,112622AOP A S OP x p ∴=⨯=⨯ ,解得6p =或6p =-,()0,6P ∴或()0,6P -.【点睛】本题考查了一次函数与反比例数综合,坐标与图形,求点点A 的坐标是解题的关键.22. 如图,在菱形ABCD 中,60ABC ∠=︒,AB =,过点D 作BC 的垂线,交BC 的延长线于点H .点F 从点B 出发沿BD 方向以2cm/s 向点D 匀速运动,同时,点E从点H 出发沿HD 方向以1cm/s 向点D 匀速运动.设点E ,F 的运动时间为t (单位:s ),且03t <<,过F 作FG BC ⊥于点G ,连结EF .(1)求证:四边形EFGH 是矩形.(2)连结FC ,EC ,点F ,E 在运动过程中,BFC △与DCE 是否能够全等?若能,求出此时t 的值;若不能,请说明理由. 【答案】(1)见解析 (2)BFC △与DCE 能够全等,此时1t =【解析】【分析】(1)根据题意可得2,BF t EH t ==,再根据菱形的性质和直角三角形的性质可得12FG BF t ==,从而得到FG =EH ,再由FG ∥EH ,可得四边形EFGH 是平行四边形,即可求证;(2)根据菱形的性质和直角三角形的性质可得∠CBF =∠CDE ,cos 3DH CD CDE =⋅∠=,然后分两种情况讨论,即可求解.【小问1详解】证明:根据题意得:2,BF t EH t ==, 在菱形ABCD 中,AB =BC ,AC ⊥BD ,OB =OD ,∵∠ABC =60°,AB =,∴AC BC AB ===,∠CBO =30°, ∴12FG BF t ==, ∴FG =EH ,∵FG BC ⊥,DH ⊥BH , ∴FG ∥EH ,∴四边形EFGH 是平行四边形, ∵∠H =90°,∴四边形EFGH 是矩形. 【小问2详解】 解:能,∵AB ∥CD ,∠ABC =60°, ∴∠DCH =60°, ∵∠H =90°,∴∠CDE =30°,∴∠CBF =∠CDE ,cos 3DH CD CDE =⋅∠=, ∴3DE DH EH t =-=-, ∵BC =DC ,∴当∠BFC =∠CED 或∠BFC =∠DCE 时,BFC △与DCE 能够全等, 当∠BFC =∠CED 时,D BFC EC ≅ △,此时BF =DE , ∴23t t =-,解得:t =1;当∠BFC =∠DCE 时,BC 与DE 是对应边, 而3DE DH ≤=,∴BC ≠DE ,则此时不成立;综上所述,BFC △与DCE 能够全等,此时1t =.【点睛】本题主要考查了菱形的性质,矩形的判定,直角三角形的性质,解直角三角形,熟练掌握相关知识点是解题的关键.23. 习近平总书记对实施乡村振兴战略作出重要指示强调:实施乡村振兴战略,是党的十九大作出的重大决策部署,是新时代做好“三农”工作的总抓手.为了发展特色产业,红旗村花费4000元集中采购了A 种树苗500株,B 种树苗400株,已知B 种树苗单价是A 种树苗单价的1.25倍.(1)求A 、B 两种树苗的单价分别是多少元?(2)红旗村决定再购买同样的树苗100株用于补充栽种,其中A 种树苗不多于25株,在单价不变,总费用不超过480元的情况下,共有几种购买方案?哪种方案费用最低?最低费用是多少元?【答案】(1)A 种树苗的单价是4元,则B 种树苗的单价是5元(2)有6种购买方案,购买A 种树苗,25棵,购买B 种树苗75棵费用最低,最低费用是475元. 【解析】【分析】(1)设A 种树苗的单价是x 元,则B 种树苗的单价是1.25x 元,根据“花费4000元集中采购了A 种树苗500株,B 种树苗400株,”列出方程,即可求解;(2)设购买A 种树苗a 棵,则购买B 种树苗(100-a )棵,其中a 为正整数,根据题意,列出不等式组,可得2025a ≤≤,从而得到有6种购买方案,然后设总费用为w 元,根据题意列出函数关系式,即可求解. 【小问1详解】解:设A 种树苗的单价是x 元,则B 种树苗的单价是1.25x 元,根据题意得:500400 1.254000x x +⨯=,解得:4x =,∴1.25x =5,答:A 种树苗的单价是4元,则B 种树苗的单价是5元; 【小问2详解】解:设购买A 种树苗a 棵,则购买B 种树苗(100-a )棵,其中a 为正整数,根据题意得:()02545100480a a a ≤≤⎧⎨+-≤⎩, 解得:2025a ≤≤, ∵a 为正整数,∴a 取20,21,22,23,24,25, ∴有6种购买方案, 设总费用为w 元,∴()45100500w a a a =+-=-+, ∵-1<0,∴w 随a 的增大而减小,∴当a =25时,w 最小,最小值为475, 此时100-a =75,答:有6种购买方案,购买A 种树苗,25棵,购买B 种树苗75棵费用最低,最低费用是475元.【点睛】本题主要考查了一元一次方程的应用,一元一次不等式组的应用,一次函数的应用,明确题意,准确得到数量关系是解题的关键.24. 如图,AB 是O 的直径,CD 是O 的弦,AB CD ⊥,垂足是点H ,过点C 作直线分别与AB ,AD 的延长线交于点E ,F ,且2ECD BAD ∠=∠.(1)求证:CF 是O 的切线; (2)如果10AB =,6CD =, ①求AE 的长; ②求AEF 的面积.【答案】(1)证明过程见详解(2)①454②2258【解析】【分析】(1)连接OC 、BC ,根据垂径定理得到AB 平分弦CD ,AB 平分 CD,即有∠BAD =∠BAC =∠DCB ,再根据∠ECD =2∠BAD ,证得∠BCE =∠BCD ,即有∠BCE =∠BAC ,则有∠ECB =∠OCA ,即可得∠ECB +∠OCB =90°,即有CO ⊥FC ,则问题得证;(2)①利用勾股定理求出OH 、BC 、AC ,在Rt △ECH 中,2223(1)EC BE =++,在Rt △ECO 中,222(5)5EC BE =+-,即可得到5BE 4=,则问题得解; ②过F 点作FP ⊥AB ,交AE 的延长线于点P ,先证△PAF ∽△HAC ,再证明△PEF ∽△HEC ,即可求出PF ,则△PEF 的面积可求. 【小问1详解】 连接OC 、BC ,如图,∵AB 是⊙O 的直径, ∴∠ACB =90°,AO =OB , ∵AB ⊥CD ,∴AB 平分弦CD ,AB 平分 CD, ∴CH =HD , BCBD =,∠CHA =90°=∠CHE , ∴∠BAD =∠BAC =∠DCB , ∵∠ECD =2∠BAD , ∴∠ECD =2∠BAD =2∠BCD , ∵∠ECD=∠ECB +∠BCD , ∴∠BCE =∠BCD , ∴∠BCE =∠BAC , ∵OC =OA , ∴∠BAC =∠OCA ,∵∠ACB =90°=∠OCA +∠OCB ,∴∠ECB +∠OCB =90°,∴CO ⊥FC ,∴CF 是⊙O 的切线;【小问2详解】①∵AB =10,CD =6,∴在(1)的结论中有AO =OB =5,CH =HD =3,∴在Rt △OCH 中,4OH ===,同理利用勾股定理,可求得BC =AC =,∴BH =OB -OH =5-4=1,HA =OA +OH =4+5=9,即HE =BH +BE ,在Rt △ECH 中,222223(1)EC HC HE BE =+=++,∵CF 是⊙O 的切线,∴∠OCB =90°,∴在Rt △ECO 中,2222222()5(5)5EC OE OC OB BE BE =-=+-=+-,∴2222(5)53(1)BE BE =+-++, 解得:5BE 4=, ∴5451044AE AB BE =+=+= ②过F 点作FP ⊥AB ,交AE 的延长线于点P ,如图,∵∠BAD =∠CAB ,∠CHA =90°=∠P ,∴△PAF ∽△HAC , ∴PF AP HC HA =,即39PF AP =, ∴3PF AP =,∵∠PEF =∠CEH ,∠CHB =90°=∠P ,∴PE PF HE HC=,即3PA AE PF HB BE -=+, ∵HB =1,5BE 4=,454AE =,3PF AP =, ∴45345314PF PF -=+, 解得:5PF =, ∴114522552248AEF S AE PF =⨯⨯=⨯⨯=△, 故△AEF 的面积为2258. 【点睛】本题主要考查了垂径定理、切线的判定与性质、相似三角形的判定与性质、勾股定理等知识,掌握垂径定理是解答本题的关键.利用相似三角形的性质是解题的难点. 25. 抛物线的解析式是24y x x a =-++.直线2y x =-+与x 轴交于点M ,与y 轴交于点E ,点F 与直线上的点()5,3G -关于x 轴对称.(1)如图①,求射线MF 的解析式;(2)在(1)的条件下,当抛物线与折线EMF 有两个交点时,设两个交点的横坐标是x 1,x 2(12x x <),求12x x +的值;(3)如图②,当抛物线经过点()0,5C 时,分别与x 轴交于A ,B 两点,且点A 在点B 的左侧.在x 轴上方的抛物线上有一动点P ,设射线AP 与直线2y x =-+交于点N .求PN AN的最大值. 【答案】(1)2y x =-,2x ≥(2)4(3)3712【解析】 【分析】(1)先求出直线2y x =-+与坐标轴的交点M 、E 的坐标,根据G (5,-3)、F 关于x 轴对称求出F 点坐标,再利用待定系数法即可求解;(2)求出抛物线的对称轴x =2,可确定M 点在抛物线对称轴上,可确定抛物线24y x x a =-++与折线EMF 的两个交点,必然是一个点落在射线ME 上,一个点落在射线MF ,即可得到211122224242x x a x x x a x ⎧-++=-+⎨-++=-⎩①②,①-②,得到1212(1)[4()]0x x x x ---+=,则问题得解;(3)先求出抛物线的解析式,再求出抛物线与x 轴的交点A 、B 坐标,设P 点坐标为2(,45)a a a -++,根据A 、P 的坐标求出直线AP 的解析式,即可求出AP 与ME 的交点N 的坐标,即可用含a 的代数式表示出2AN 和2PN ,即可得到22375()423533a PN A a a N --=-+=+,则问题得解. 【小问1详解】∵直线2y x =-+与坐标轴交于点M 、E ,∴令x =0时,y =2;令y =0时,x =2,∴M 点坐标为(2,0),E 点坐标为(0,2),∵G (5,-3),且点G 、F 关于x 轴对称,∴F (5,3),设射线MF 的解析式为y kx b =+,2x ≥,∵M 点坐标为(2,0),F (5,3),∴ 2053k b k b +=⎧⎨+=⎩,解得:12k b =⎧⎨=-⎩, ∴射线MF 的解析式为2y x =-,2x ≥,【小问2详解】根据题意可知射线ME 的解析式为:2y x =-+,2x ≤,在(1)中已求得射线MF 的解析式为2y x =-,2x ≥,∵24y x x a =-++的对称轴为x =2,又∵M 点(2,0),∴M 点刚好在24y x x a =-++的对称轴为x =2上,∴抛物线24y x x a =-++与折线EMF 的两个交点,必然是一个点落在射线ME 上,一个点落在射线MF ,∵12x x <,∴此时交点的坐标为11(,2)x x -+、22(,2)x x -,且12x ≤、22x ≥,∵11(,2)x x -+、22(,2)x x -在抛物线24y x x a =-++上, ∴211122224242x x a x x x a x ⎧-++=-+⎨-++=-⎩①②, 由①-②,得:221212124()4x x x x x x -++-=--,整理得:1212(1)[4()]0x x x x ---+=∵12x ≤、22x ≥,∴121x x +<,∴1210x x --<,∴124()0x x -+=,∴124x x +=;【小问3详解】 ∵抛物线24y x x a =-++过点C (0,5),∴代入C 点坐标可得a =5,∴抛物线解析式245y x x =-+,令y =0,得2450x x -++=,解得:1-1x =,25x =,∴A 点坐标(-1,0)、B 点坐标为(5,0),∵P 点在抛物线245y x x =-++上,∴设P 点坐标为2(,45)a a a -++,显然A 、P 不重合,即a ≠-1,∵P 点在x 轴上方,∴15a -<<,设直线AP 的解析式为y kx b =+,∴即有2045k b ka b a a -+=⎧⎨+=-++⎩,解得55k a b a =-⎧⎨=-⎩, 即直线AP 的解析式为:(5)(5)y a x a =-+-,为联立(5)(5)2y a x a y x =-+-⎧⎨=-+⎩,解得361536a x a a y a -⎧=⎪⎪-⎨-⎪=⎪-⎩, ∴N 点坐标为315(6)3,6a a a a----, ∵P 点坐标为2(,45)a a a -++,A 点坐标(-1,0), ∴2222231539[(5)1]166()((6)a a a a a a AN ---+=+--+=-, ∴2222222223153(53)(5)14566(6[]()()a a a a P a a N a a a a a ---++-+-++---=-=-+, ∴22222222222(53)(5)1(53)(6)9[(5)1](6)[]9a a a a a a a a PN AN -++-+-++=+=---, ∴222222(5375[()]3)4299a PN AN a a --==-++, ∵15a -<<,且通过图像可知,只有当P 点在直线ME 上方时,PN AN的值才有可能取得最大值,∴2452x x x -++-+>,即2530x x -++>,∴即有2530a a -++>, ∴22375()423533a PN A a a N --=-+=+, ∴当52a =时,PN AN 取的最大值,且最大值为:23755()37422312PN AN --==, 即PN AN 的最大值为3712. 【点睛】本题考查了用待定系数法求解析式、抛物线与一元二次方程的根的知识、勾股定理、二次函数求最值等知识,本题的计算量较大,仔细化简所表示出2AN 和2PN 的代数式是解答本题的关键。
2020年四川省德阳市中考数学试卷
2020年四川省德阳市中考数学试卷题号一二三总分得分一、选择题(本大题共12小题,共48.0分)1.的相反数是()A. 3B. -3C.D.2.下列运算正确的是()A. a2•a3=a6B. (3a)3 =9a3C. 3a-2a=1D. (-2a2)3=-8a63.如图所示,直线EF∥GH,射线AC分别交直线EF、GH于点B和点C,AD⊥EF于点D,如果∠A=20°,则∠ACG=()A. 160°B. 110°C. 100°D. 70°4.下列说法错误的是()A. 方差可以衡量一组数据的波动大小B. 抽样调查抽取的样本是否具有代表性,直接关系对总体估计的准确程度C. 一组数据的众数有且只有一个D. 抛掷一枚图钉针尖朝上的概率,不能用列举法求得5.多边形的内角和不可能为()A. 180°B. 540°C. 1080°D. 1200°6.某商场销售A,B,C,D四种商品,它们的单价依次是50元,30元,20元,10元.某天这四种商品销售数量的百分比如图所示,则这天销售的四种商品的平均单价是()A. 19.5元B. 21.5元C. 22.5元D. 27.5元7.半径为R的圆内接正三角形、正方形、正六边形的边心距分别为a,b,c,则a,b,c的大小关系是()A. a<b<cB. b<a<cC. a<c<bD. c<b<a8.已知函数y=,当函数值为3时,自变量x的值为()A. -2B. -C. -2或-D. -2或-9.如图是一个几何体的三视图,根据图中所示数据计算这个几何体的表面积是()A. 20πB. 18πC. 16πD. 14π10.如图,Rt△ABC中,∠A=30°,∠ABC=90°.将Rt△ABC绕点B逆时针方向旋转得到△A'BC'.此时恰好点C在A'C'上,A'B交AC于点E,则△ABE与△ABC的面积之比为()A. B. C. D.11.已知:等腰直角三角形ABC的腰长为4,点M在斜边AB上,点P为该平面内一动点,且满足PC=2,则PM的最小值为()A. 2B. 2-2C. 2+2D. 212.已知不等式ax+b>0的解集为x<2,则下列结论正确的个数是()(1)2a+b=0;(2)当c>a时,函数y=ax2+bx+c的图象与x轴没有公共点;(3)当c>0时,抛物线y=ax2+bx+c的顶点在直线y=ax+b的上方;(4)如果b<3且2a-mb-m=0,则m的取值范围是-<m<0.A. 1B. 2C. 3D. 4二、填空题(本大题共6小题,共24.0分)13.小明在体考时选择了投掷实心球,如图是体育老师记录的小明在训练时投掷实心球的6次成绩的折线统计图.这6次成绩的中位数是______.14.把多项式ax2-4a分解因式的结果是______.15.如图,在平行四边形ABCD中,BE平分∠ABC,CF⊥BE,连接AE,G是AB的中点,连接GF,若AE=4,则GF=______.16.将正偶数按照如下规律进行分组排列,依次为(2),(4,6),(8,10,12),(14,16,18,20)…,我们称“4”是第2组第1个数字,“16”是第4组第2个数字,若2020是第m组第n个数字,则m+n=______.17.若实数x,y满足x+y2=3,设s=x2+8y2,则s的取值范围是______.18.如图,海中有一小岛A,它周围10.5海里内有暗礁,渔船跟踪鱼群由西向东航行.在B点测得小岛A在北偏东60°方向上,航行12海里到达D点,这时测得小岛A在北偏东30°方向上.如果渔船不改变航线继续向东航行,那么渔船还需航行______海里就开始有触礁的危险.三、解答题(本大题共7小题,共78.0分)19.计算:(-2)-2-|-2|+(-)0--2cos30°.20.如图,四边形ABCD为矩形,G是对角线BD的中点.连接GC并延长至F,使CF=GC,以DC,CF为邻边作菱形DCFE,连接CE.(1)判断四边形CEDG的形状,并证明你的结论.(2)连接DF,若BC=,求DF的长.21.为了加强学生的垃圾分类意识,某校对学生进行了一次系统全面的垃圾分类宣传.为了解这次宣传的效果,从全校学生中随机抽取部分学生进行了一次测试,测试结果共分为四个等级:A.优秀;B.良好;C.及格:D.不及格.根据调查统计结果,绘制了如图所示的不完整的统计表.垃圾分类知识测试成绩统计表测试等级百分比人数A.优秀5%20B.良好60C.及格45%mD.不及格n请结合统计表,回答下列问题:(1)求本次参与调查的学生人数及m,n的值;(2)如果测试结果为“良好”及以上即为对垃圾分类知识比较了解,已知该校学生总数为5600人,请根据本次抽样调查的数据估计全校比较了解垃圾分类知识的学生人数;(3)为了进一步在学生中普及垃圾分类知识,学校准备再开展一次关于垃圾分类的知识竞赛,要求每班派一人参加.某班要从在这次测试成绩为优秀的小明和小亮中选一人参加.班长设计了如下游戏来确定人选,具体规则是:把四个完全相同的乒乓球分别标上数字1,2,3,4.然后放到一个不透明的袋中充分摇匀,两人同时从袋中各摸出一个球.若摸出的两个球上的数字和为奇数,则小明参加,否则小亮参加.请用树状图或列表法说明这个游戏规则是否公平.22.如图,一次函数y1=ax+b与反比例函数y2=的图象交于A、B两点.点A的横坐标为2,点B的纵坐标为1.(1)求a,b的值.(2)在反比例y2=第三象限的图象上找一点P,使点P到直线AB的距离最短,求点P的坐标.23.推进农村土地集约式管理,提高土地的使用效率是新农村建设的一项重要举措.某村在小城镇建设中集约了2400亩土地,计划对其进行平整.经投标,由甲乙两个工程队来完成平整任务.甲工程队每天可平整土地45亩,乙工程队每天可平整土地30亩.已知乙工程队每天的工程费比甲工程队少500元,当甲工程队所需工程费为12000元,乙工程队所需工程费为9000元时,两工程队工作天数刚好相同.(1)甲乙两个工程队每天各需工程费多少元?(2)现由甲乙两个工程队共同参与土地平整,已知两个工程队工作天数均为正整数,且所有土地刚好平整完,总费用不超过110000元.①甲乙两工程队分别工作的天数共有多少种可能?②写出其中费用最少的一种方案,并求出最低费用.24.如图,在⊙O中,弦AB与直径CD垂直,垂足为M,CD的延长线上有一点P,满足∠PBD=∠DAB.过点P作PN⊥CD,交OA的延长线于点N,连接DN 交AP于点H.(1)求证:BP是⊙O的切线;(2)如果OA=5,AM=4,求PN的值;(3)如果PD=PH,求证:AH•OP=HP•AP.25.如图1,抛物线y=ax2-2ax-3a(a≠0)与x轴交于点A,B.与y轴交于点C.连接AC,BC.已知△ABC的面积为2.(1)求抛物线的解析式;(2)平行于x轴的直线与抛物线从左到右依次交于P,Q两点.过P,Q向x轴作垂线,垂足分别为G,H.若四边形PGHQ为正方形,求正方形的边长;(3)如图2,平行于y轴的直线交抛物线于点M,交x轴于点N(2,0).点D 是抛物线上A,M之间的一动点,且点D不与A,M重合,连接DB交MN于点E.连接AD并延长交MN于点F.在点D运动过程中,3NE+NF是否为定值?若是,求出这个定值;若不是,请说明理由.答案和解析1.【答案】D【解析】解:的相反数为-.故选:D.在一个数前面放上“-”,就是该数的相反数.本题考查了相反数的概念,求一个数的相反数只要改变这个数的符号即可.2.【答案】D【解析】解:A、a2•a3=a5,故原题计算错误;B、(3a)3 =27a3,故原题计算错误;C、3a-2a=a,故原题计算错误;D、(-2a2)3=-8a6,故原题计算正确;故选:D.利用同底数幂的乘法法则、积的乘方运算法则、合并同类项法则分别进行计算即可.此题主要考查了同底数幂的乘法、积的乘方运算、合并同类项,关键是掌握各计算法则.3.【答案】B【解析】解:∵AD⊥EF,∠A=20°,∴∠ABD=180°-∠A-∠ABD=180°-20°-90°=70°,∵EF∥GH,∴∠ACH=∠ABD=70°,∴∠ACG=180°-∠ACH=180°-70°=110°,故选:B.利用三角形的内角和定理,由AD⊥EF,∠A=20°可得∠ABD=70°,由平行线的性质定理可得∠ACH,易得∠ACG.本题主要考查了三角形的内角和定理和平行线的性质定理,熟记定理是解答此题的关键.4.【答案】C【解析】解:方差可以衡量一组数据的波动大小,故选项A正确;抽样调查抽取的样本是否具有代表性,直接关系对总体估计的准确程度,故选项B正确;一组数据的众数有一个或者几个,故选项C错误;抛掷一枚图钉针尖朝上的概率,不能用列举法求得,故选项D正确;故选:C.根据各个选项中的说法,可以判断是否正确,从而可以解答本题.本题考查抽样调查、用样本估计总体、众数和方差,解答本题的关键是明确题意,可以判断各个选项中的说法是否正确5.【答案】D【解析】解:因为在这四个选项中不是180°的倍数的只有1200°.故选:D.多边形的内角和可以表示成(n-2)•180°(n≥3且n是整数),则多边形的内角和是180度的倍数,由此即可求出答案.本题主要考查多边形的内角和定理,牢记定理是解答本题的关键,难度不大.6.【答案】C【解析】解:这天销售的四种商品的平均单价是:50×10%+30×15%+20×55%+10×20%=22.5(元),故选:C.根据加权平均数定义即可求出这天销售的四种商品的平均单价.本题考查了加权平均数、扇形统计图,解决本题的关键是掌握加权平均数的定义.7.【答案】D【解析】解:设圆的半径为R,则正三角形的边心距为a=R×cos60°=R.四边形的边心距为b=R×cos45°=R,正六边形的边心距为c=R×cos30°=R.∵R R R,∴c<b<a,故选:D.根据三角函数即可求解.此题主要考查了正多边形和圆的性质,解决本题的关键是构造直角三角形,得到用半径表示的边心距;注意:正多边形的计算一般要转化为解直角三角形的问题来解决.8.【答案】A【解析】解:若x<2,当y=3时,-x+1=3,解得:x=-2;若x≥2,当y=3时,-=3,解得:x=-,不合题意舍去;∴x=-2,故选:A.根据分段函数的解析式分别计算,即可得出结论.本题考查反比例函数的性质、一次函数的图象上点的坐标特征;根据分段函数进行分段求解是解题的关键.9.【答案】B【解析】解:这个几何体的表面积=π•22+π•3•2+2π•2•2=18π,故选:B.由几何体的三视图可得出原几何体为圆锥和圆柱组合体,根据图中给定数据求出表面积即可.本题考查了由三视图判断几何体、圆锥和圆柱的计算以及勾股定理,由几何体的三视图可得出原几何体为圆锥和圆柱组合体是解题的关键.10.【答案】D【解析】解:∵∠A=30°,∠ABC=90°,∴∠ACB=60°,∵将Rt△ABC绕点B逆时针方向旋转得到△A'BC',∴BC=BC',∠ACB=∠A'C'B=60°,∴△BCC'是等边三角形,∴∠CBC'=60°,∴∠ABA'=60°,∴∠BEA=90°,设CE=a,则BE=a,AE=3a,∴,∴,∴△ABE与△ABC的面积之比为.故选:D.由旋转的性质得出BC=BC',∠ACB=∠A'C'B=60°,则△BCC'是等边三角形,∠CBC'=60°,得出∠BEA=90°,设CE=a,则BE=a,AE=3a,求出,可求出答案.本题考查了旋转的性质,直角三角形的性质,等边三角形的判定与性质;熟练掌握旋转的性质是解题的关键.11.【答案】B【解析】解:∵等腰直角三角形ABC的腰长为4,∴斜边AB=4,∵点P为该平面内一动点,且满足PC=2,∴点P在以C为圆心,PC为半径的圆上,当点P在斜边AB的中线上时,PM的值最小,∵△ABC是等腰直角三角形,∴CM=AB=2,∵PC=2,∴PM=CM-CP=2-2,故选:B.根据等腰直角三角形的性质得到斜边AB=4,由已知条件得到点P在以C为圆心,PC 为半径的圆上,当点P在斜边AB的中线上时,PM的值最小,于是得到结论.本题考查了等腰直角三角形,最短路线问题,正确的作出图形是解题的关键.12.【答案】C【解析】解:(1)∵不等式ax+b>0的解集为x<2,∴a<0,-=2,即b=-2a,∴2a+b=0,故结论正确;(2)函数y=ax2+bx+c中,令y=0,则ax2+bx+c=0,∵即b=-2a,∴△=b2-4ac=(-2a)2-4ac=4a(a-c),∵a<0,c>a,∴△=4a(a-c)>0,∴当c>a时,函数y=ax2+bx+c的图象与x轴有两个公共点,故结论错误;(3)∵b=-2a,∴-=1,==c-a,∴抛物线y=ax2+bx+c的顶点为(1,c-a),当x=1时,直线y=ax+b=a+b=a-2a=-a>0当c>0时,c-a>-a>0,∴抛物线y=ax2+bx+c的顶点在直线y=ax+b的上方,故结论正确;(4)∵b=-2a,∴由2a-mb-m=0,得到-b-mb-m=0,∴b=-,如果b<3,则0<-<3,∴-<m<0,故结论正确;故选:C.由不等式的解集得出a<0,-=2,即b=-2a,从而得出2a+b=0,即可判断(1);根据△=4a(a-c)>0即可判断(2);求得抛物线的顶点为(1,a-c)即可判断(3);求得0<-<3,得出不等式组的解集为-<m<0即可判断(4).本题考查了抛物线与x轴的交点,一次函数的性质,二次函数的性质,一次函数图象上点的坐标特征,二次函数图象上点的坐标特征,有一定难度.13.【答案】9.75【解析】解:由6次成绩的折线统计图可知:这6次成绩从小到大排列为:9.5,9.6,9.7,9.8,10,10.2,所以这6次成绩的中位数是:=9.75.故答案为:9.75.根据中位数定义:将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.即可得解.本题考查了折线统计图、中位数,解决本题的关键是掌握中位数.14.【答案】a(x+2)(x-2)【解析】解:ax2-4a=a(x2-4)=a(x+2)(x-2).故答案为:a(x+2)(x-2).先提出公因式a,再利用平方差公式因式分解.本题考查了提公因式法和公式法进行因式分解,解决本题的关键是熟记提公因式法和公式法.15.【答案】2【解析】解:在平行四边形ABCD中,AB∥CD,∴∠ABE=∠BEC.∵BE平分∠ABC,∴∠ABE=∠CBE,∴∠CBE=∠BEC,∴CB=CE.∵CF⊥BE,∴BF=EF.∵G是AB的中点,∴GF是△ABE的中位线,∴GF=BE,∵BE=4,∴GF=2.故答案为2.根据平行四边形的性质结合角平分线的定义可求解∠CBE=∠BEC,即可得CB=CE,利用等腰三角形的性质可怎么BF=EF,进而可得GF是△ABE的中位线,根据三角形的中位线的性质可求解.本题主要考查平行四边形的性质,等腰三角形的性质与判定,三角形中位线的性质,证明GF是△ABE的中位线是解题的关键.16.【答案】65【解析】解:∵将正偶数按照如下规律进行分组排列,依次为(2),(4,6),(8,10,12),(14,16,18,20)…,∴第m组有m个连续的偶数,∵2020=2×1010,∴2020是第1010个偶数,∵1+2+3+…+44==990,1+2+3+…+45==1035,∴2020是第45组第1010-990=20个数,∴m=45,n=20,∴m+n=65,故答案为:65.根据题目中数字的特点,可知每组的个数依次增大,每组中的数字都是连续的偶数,然后即可求出2020是多少组第多少个数,从而可以得到m、n的值,然后即可得到m+n 的值.本题考查数字的变化类,解答本题的关键是明确题意,发现数字的变化特点,求出m、n的值.17.【答案】s≥9【解析】解:由x+y2=3,得:y2=-x+3≥0,∴x≤3,代入得:s=x2+8y2=x2+8(-x+3)=x2-8x+24=(x-4)2+8,当x=3时,s=(3-4)2+8=9,∴s≥9;故答案为:s≥9.由已知等式表示出y2,代入s中利用二次函数最值即可确定出s范围.此题考查了非负数的性质,用一个未知数表示另一个未知数,二次函数的最值,熟练掌握二次函数的性质是关键.18.【答案】4.5【解析】解:只要求出A到BD的最短距离是否在以A为圆心,以10.5海里的圆内或圆上即可,如图,过A作AC⊥BD于点C,则AC的长是A到BD的最短距离,∵∠CAD=30°,∠CAB=60°,∴∠BAD=60°-30°=30°,∠ABD=90°-60°=30°,∴∠ABD=∠BAD,∴BD=AD=12海里,∵∠CAD=30°,∠ACD=90°,∴CD=AD=6海里,由勾股定理得:AC==6(海里),如图,设渔船还需航行x海里就开始有触礁的危险,即到达点D′时有触礁的危险,在直角△AD′C中,由勾股定理得:(6-x)2+(6)2=10.52.解得x=4.5.渔船还需航行4.5海里就开始有触礁的危险.故答案是:4.5.过A作AC⊥BD于点C,求出∠CAD、∠CAB的度数,求出∠BAD和∠ABD,根据等角对等边得出AD=BD=12,根据含30度角的直角三角形性质求出CD,根据勾股定理求出AC即可.考查了勾股定理的应用和解直角三角形,此题是一道方向角问题,结合航海中的实际问题,将解直角三角形的相关知识有机结合,体现了数学应用于实际生活的思想.19.【答案】解:(-2)-2-|-2|+(-)0--2cos30°=-2++1-2-2×=-2.【解析】首先计算乘方、开方,然后计算乘法,最后从左向右依次计算,求出算式的值是多少即可.此题主要考查了实数的运算,要熟练掌握,解答此题的关键是要明确:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.另外,有理数的运算律在实数范围内仍然适用.正确化简各数是解题关键.20.【答案】解:(1)四边形CEDG是菱形,理由如下:∵四边形ABCD为矩形,G是对角线BD的中点,∴GB=GC=GD,∵CF=GC,∴GB=GC=GD=CF,∵四边形DCFE是菱形,∴CD=CF=DE,DE∥CG,∴DE=GC,∴四边形CEDG是平行四边形,∵GD=GC,∴四边形CEDG是菱形;(2)过点G作GH⊥BC于H,设DF交CE于点N,如图所示:∵CD=CF,GB=GD=GC=CF,∴CH=BH=BC=,△CDG是等边三角形,∴∠GCD=60°,∴∠DCF=180°-∠GCD=180°-60°=120°,∵四边形ABCD为矩形,∴∠BCD=90°,∴∠GCH=90°-60°=30°,∴CG===1,∴CD=1,∵四边形DCFE是菱形,∴DN=FN,CN⊥DF,∠DCE=∠FCE=∠DCF=×120°=60°,在Rt△CND中,DN=CD•sin∠DCE=1×sin60°=1×=,∴DF=2DN=2×=.【解析】(1)证出GB=GC=GD=CF,由菱形的性质的CD=CF=DE,DE∥CG,则DE=GC,证出四边形CEDG是平行四边形,进而得出结论;(2)过点G作GH⊥BC于H,设DF交CE于点N,由等腰三角形的性质得CH=BH=BC=,证出△CDG是等边三角形,得∠GCD=60°,由三角函数定义求出CG=1,则CD=1,由菱形的性质得DN=FN,CN⊥DF,∠DCE=∠FCE=60°,由三角函数定义求出DN=,则DF=2DN=.本题考查了矩形的性质、菱形的判定与性质、平行四边形的判定与性质、等边三角形的判定与性质、等腰三角形的性质以及三角函数等知识;熟练掌握矩形的性质和菱形的性质是解题的关键.21.【答案】解:(1)本次参与调查的学生人数为:20÷5%=400(人),m=400×45%=180,∵400-20-60-180=140,∴n=140÷400×100%=35%;(2)5600×=1120(人),即估计全校比较了解垃圾分类知识的学生人数为1120人;(3)画树状图为:共有12种等可能的结果,其中和为奇数的结果有8种,∴P(小明参加)==,P(小亮参加)=1-=,∵≠,∴这个游戏规则不公平.【解析】(1)由优秀的人数除以所占比例得出本次参与调查的学生人数;进而求出m 和n的值;(2)由总人数乘以良好和优秀所占比例即可;(3)先画树状图展示所有12种等可能的结果,找出和为奇数的结果有8种,再计算出小明参加和小亮参加的概率,比较两概率的大小可判断这个游戏规则是否公平.本题考查了列表法与树状图法、游戏的公平性、统计表、样本估计总体以及概率公式等知识;画出树状图是解题的关键.22.【答案】解:(1)∵一次函数y1=ax+b与反比例函数y2=的图象交于A、B两点.点A的横坐标为2,点B的纵坐标为1,∴A(2,2),B(4,1),则有,解得.(2)过点P作直线PM∥AB,当直线PM与反比例函数只有一个交点时,点P到直线AB的距离最短,设直线PM的解析式为y=-x+n,由,消去y得到,x2-2nx+8=0,由题意,△=0,∴4n2-32=0,∴n=-2或2(舍弃),解得,∴P(-2,-).【解析】(1)首先确定A,B两点坐标,再利用待定系数法求解即可.(2)过点P作直线PM∥AB,当直线PM与反比例函数只有一个交点时,点P到直线AB的距离最短,构建方程组把问题转化为一元二次方程,利用判别式=0,构建方程求解即可.本题考查反比例函数与一次函数的交点问题,二元一次方程的根的判别式等知识,解题的关键是理解题意,灵活运用所学知识解决问题.23.【答案】解:(1)设甲每天需工程费x元、乙工程队每天需工程费(x-500)元,由题意,=,解得x=2000,经检验,x=2000是分式方程的解.答:甲每天需工程费2000元、乙工程队每天需工程费1500元.(2)①设甲平整x天,则乙平整y天.由题意,45x+30y=2400 ①,且2000x+1500y≤110000②,由①得到y=80-1.5x③,把③代入②得到,2000x+1500(80-1.5x)≤110000,解得,x≥40,∵y>0,∴80-1.5x>0,x<53.3,∴40≤x<53.3,∵x,y是正整数,∴x=40,y=20或x=42,y=17或x=44,y=14或x=46,y=11或x=48,y=8,或x=50,y=5或x=52,y=2.∴甲乙两工程队分别工作的天数共有7种可能.②总费用w=2000x+1500(80-1.5x)=-250x+120000,∵-250<0,∴w随x的增大而减小,∴x=52时,w的最小值=107000(元).答:最低费用为107000元.【解析】(1)设甲每天需工程费x元、乙工程队每天需工程费(x-500)元,构建方程求解即可.(2)①设甲平整x天,则乙平整y天.由题意,45x+30y=2400 ①,且2000x+1500y≤110000②把问题转化为不等式解决即可.②总费用w=2000x+1500(80-1.5x)=-250x+120000,利用函数的性质解答即可.本题考查一次函数的应用,二元一次方程的应用,分式方程的应用等知识,解题的关键是理解题意,学会利用参数构建方程解决问题,属于中考常考题型.24.【答案】(1)证明:如图,连接BC,OB.∵CD是直径,∴∠CBD=90°,∵OC=OB,∵∠C=∠BAD,∠PBD=∠DAB,∴∠CBO=∠PBD,∴∠OBP=∠CBD=90°,∴PB⊥OB,∴PB是⊙O的切线.(2)解:∵CD⊥AB,∴PA=PB,∵OA=OB,OP=OP,∴△PAO≌△PBO(SSS),∴∠OAP=∠OBP=90°,∵∠AMO=90°,∴OM===3,∵∠AOM=∠AOP,∠OAP=∠AMO,∴△AOM∽△POA,∴=,∴=,∴OP=,∵PN⊥PC,∴∠NPC=∠AMO=90°,∴=,∴=,∴PN=.(3)证明:∵PD=PH,∴∠PDH=∠PHD,∵∠PDH=∠POA+∠OND,∠PHD=∠APN+∠PND,∴∠POA+∠APO=90°,∠APN+∠APO=90°,∴∠POA=∠ANP,∵∠PDN=∠PHD=∠AHN,∴△NAH∽△NPD,∴=,∵∠APN=∠POA,∠PAN=∠PAO=90°,∴△PAN∽△OAP,∴=,∴=,∴==,∴AH•OP=HP•AP.【解析】(1)连接BC,OB,证明OB⊥PB即可.(2)解直角三角形求出OM,利用相似三角形的性质求出OP,再利用平行线分线段成比例定理求出PN即可.(3)证明△NAH∽△NPD,推出=,证明△PAN∽△OAP,推出=,推出=可得结论.本题属于圆综合题,考查了垂径定理,圆周角定理,全等三角形的判定和性质,相似三角形的判定和性质等知识,解题的关键是正确寻找全等三角形或相似三角形解决问题,属于中考压轴题.25.【答案】解:(1)如图1,y=ax2-2ax-3a=a(x2-2x-3)=a(x-3)(x+1),∴A(-1,0),B(3,0),∴AB=4,∵△ABC的面积为2,即,∴,∴OC=1,∴C(0,1),将C(0,1)代入y=ax2-2ax-3a,得:-3a=1,∴a=-,∴该二次函数的解析式为y=-x2+x+1;(2)如图2,设点P的纵坐标为m,当y=m时,-x2+x+1=m,解得:x1=1+,x2=1-,∴点P的坐标为(1-,m),点Q的坐标为(1+,m),∴点G的坐标为(1-,0),点H的坐标为(1+,0),∵矩形PGHQ为正方形,∴1+-(1-)=m,解得:m1=-6-2,m2=-6+2,∴当四边形PGHQ为正方形时,边长为6+2或2-6;(3)如图3,设点D(n,-n2+n+1),延长BD交y轴于K,∵A(-1,0),设AD的解析式为:y=kx+b,则,解得:,∴AD的解析式为:y=(-)x-,当x=2时,y=-n+2-n+1=-n+3,∴F(2,3-n),∴FN=3-n,同理得直线BD的解析式为:y=(-)x+n+1,∴K(0,n+1),∴OK=n+1,∵N(2,0),B(3,0),∴,∵EN∥OK,∴,∴OK=3EN,∴3EN+FN=OK+FN=n+1+3-n=4,∴在点D运动过程中,3NE+NF为定值4.【解析】(1)先将抛物线解析式变形,可得A和B的坐标,从而得AB=1+3=4,根据三角形ABC的面积为2可得OC的长,确定点C的坐标,根据点C的坐标,利用待定系数法即可求出二次函数的解析式;(2)设点P的纵坐标为m,当y=m时,-x2+x+1=m,解方程可得P和Q两点的坐标,从而得G和H的坐标,再利用正方形的性质可得出关于m的方程,解之即可得出结论;(3)设点D(n,-n2+n+1),利用待定系数法求直线AD和BD的解析式,表示FN 和OK的长,直接代入计算可得结论.本题考查了待定系数法求二次函数解析式、二次函数图象上点的坐标特征、正方形的性质、待定系数法求一次函数解析式以及平行线分线段成比例定理等知识,解题的关键是:(1)根据点的坐标,利用待定系数法求出二次函数解析式;(2)利用正方形的性质,找出关于m的方程;(3)利用AD和BD的解析式确定FN和OK的长,可解决问题.。
四川省德阳市中考数学试卷及答案解析
2020年四川省德阳市中考数学试卷一、选择题(本大题共12个小题,每小题4分,共48分)在每小题给出的四个选项中,有且仅有一项是符合题目要求的.1.13的相反数是( ) A .3 B .﹣3 C .13 D .−13 2.下列运算正确的是( )A .a 2•a 3=a 6B .(3a )3 =9a 3C .3a ﹣2a =1D .(﹣2a 2)3=﹣8a 63.如图所示,直线EF ∥GH ,射线AC 分别交直线EF 、GH 于点B 和点C ,AD ⊥EF 于点D ,如果∠A =20°,则∠ACG =( )A .160°B .110°C .100°D .70°4.下列说法错误的是( )A .方差可以衡量一组数据的波动大小B .抽样调查抽取的样本是否具有代表性,直接关系对总体估计的准确程度C .一组数据的众数有且只有一个D .抛掷一枚图钉针尖朝上的概率,不能用列举法求得5.多边形的内角和不可能为( )A .180°B .540°C .1080°D .1200°6.某商场销售A ,B ,C ,D 四种商品,它们的单价依次是50元,30元,20元,10元.某天这四种商品销售数量的百分比如图所示,则这天销售的四种商品的平均单价是( )A .19.5元B .21.5元C .22.5元D .27.5元7.半径为R 的圆内接正三角形、正方形、正六边形的边心距分别为a ,b ,c ,则a ,b ,c的大小关系是( )A .a <b <cB .b <a <cC .a <c <bD .c <b <a8.已知函数y ={−x +1(x <2)−2x(x ≥2),当函数值为3时,自变量x 的值为( ) A .﹣2 B .−23 C .﹣2或−23 D .﹣2或−329.如图是一个几何体的三视图,根据图中所示数据计算这个几何体的表面积是( )A .20πB .18πC .16πD .14π10.如图,Rt △ABC 中,∠A =30°,∠ABC =90°.将Rt △ABC 绕点B 逆时针方向旋转得到△A 'BC '.此时恰好点C 在A 'C '上,A 'B 交AC 于点E ,则△ABE 与△ABC 的面积之比为( )A .13B .12C .23D .34 11.已知:等腰直角三角形ABC 的腰长为4,点M 在斜边AB 上,点P 为该平面内一动点,且满足PC =2,则PM 的最小值为( )A .2B .2√2−2C .2√2+2D .2√212.已知不等式ax +b >0的解集为x <2,则下列结论正确的个数是( )(1)2a +b =0;(2)当c >a 时,函数y =ax 2+bx +c 的图象与x 轴没有公共点;(3)当c >0时,抛物线y =ax 2+bx +c 的顶点在直线y =ax +b 的上方;(4)如果b <3且2a ﹣mb ﹣m =0,则m 的取值范围是−34<m <0.A .1B .2C .3D .4 二、填空题(本大题共6个小题,每小题4分,共24分,将答案填在答题卡对应的题号后的横线上)13.小明在体考时选择了投掷实心球,如图是体育老师记录的小明在训练时投掷实心球的6次成绩的折线统计图.这6次成绩的中位数是 .14.把ax 2﹣4a 分解因式的结果是 .15.如图,在平行四边形ABCD 中,BE 平分∠ABC ,CF ⊥BE ,连接AE ,G 是AB 的中点,连接GF ,若AE =4,则GF = .16.将正偶数按照如下规律进行分组排列,依次为(2),(4,6),(8,10,12),(14,16,18,20)…,我们称“4”是第2组第1个数字,“16”是第4组第2个数字,若2020是第m组第n个数字,则m+n=.17.若实数x,y满足x+y2=3,设s=x2+8y2,则s的取值范围是.18.如图,海中有一小岛A,它周围10.5海里内有暗礁,渔船跟踪鱼群由西向东航行.在B 点测得小岛A在北偏东60°方向上,航行12海里到达D点,这时测得小岛A在北偏东30°方向上.如果渔船不改变航线继续向东航行,那么渔船还需航行海里就开始有触礁的危险.三、解答题(本大题共7小题,共78分.答应写出文字说明、证明过程或推演步骤)19.(7分)计算:(﹣2)﹣2﹣|√3−2|+(−√32)0−√83−2cos30°.20.(8分)如图,四边形ABCD为矩形,G是对角线BD的中点.连接GC并延长至F,使CF=GC,以DC,CF为邻边作菱形DCFE,连接CE.(1)判断四边形CEDG的形状,并证明你的结论.(2)连接DF,若BC=√3,求DF的长.21.(13分)为了加强学生的垃圾分类意识,某校对学生进行了一次系统全面的垃圾分类宣传.为了解这次宣传的效果,从全校学生中随机抽取部分学生进行了一次测试,测试结果共分为四个等级:A.优秀;B.良好;C.及格;D.不及格.根据调查统计结果,绘制了如图所示的不完整的统计表.垃圾分类知识测试成绩统计表测试等级百分比人数A.优秀5%20B.良好60C.及格45%mD.不及格n请结合统计表,回答下列问题:(1)求本次参与调查的学生人数及m,n的值;(2)如果测试结果为“良好”及以上即为对垃圾分类知识比较了解,已知该校学生总数为5600人,请根据本次抽样调查的数据估计全校比较了解垃圾分类知识的学生人数;(3)为了进一步在学生中普及垃圾分类知识,学校准备再开展一次关于垃圾分类的知识竞赛,要求每班派一人参加.某班要从在这次测试成绩为优秀的小明和小亮中选一人参加.班长设计了如下游戏来确定人选,具体规则是:把四个完全相同的乒乓球分别标上数字1,2,3,4.然后放到一个不透明的袋中充分摇匀,两人同时从袋中各摸出一个球.若摸出的两个球上的数字和为奇数,则小明参加,否则小亮参加.请用树状图或列表法说明这个游戏规则是否公平.22.(11分)如图,一次函数y1=ax+b与反比例函数y2=4x的图象交于A、B两点.点A的横坐标为2,点B的纵坐标为1.(1)求a,b的值.(2)在反比例y2=4x第三象限的图象上找一点P,使点P到直线AB的距离最短,求点P的坐标.23.(12分)推进农村土地集约式管理,提高土地的使用效率是新农村建设的一项重要举措.某村在小城镇建设中集约了2400亩土地,计划对其进行平整.经投标,由甲乙两个工程队来完成平整任务.甲工程队每天可平整土地45亩,乙工程队每天可平整土地30亩.已知乙工程队每天的工程费比甲工程队少500元,当甲工程队所需工程费为12000元,乙工程队所需工程费为9000元时,两工程队工作天数刚好相同.(1)甲乙两个工程队每天各需工程费多少元?(2)现由甲乙两个工程队共同参与土地平整,已知两个工程队工作天数均为正整数,且所有土地刚好平整完,总费用不超过110000元.①甲乙两工程队分别工作的天数共有多少种可能?②写出其中费用最少的一种方案,并求出最低费用.24.(13分)如图,在⊙O中,弦AB与直径CD垂直,垂足为M,CD的延长线上有一点P,满足∠PBD=∠DAB.过点P作PN⊥CD,交OA的延长线于点N,连接DN交AP于点H.(1)求证:BP是⊙O的切线;(2)如果OA=5,AM=4,求PN的值;(3)如果PD=PH,求证:AH•OP=HP•AP.25.(14分)如图1,抛物线y=ax2﹣2ax﹣3a(a≠0)与x轴交于点A,B.与y轴交于点C.连接AC,BC.已知△ABC的面积为2.(1)求抛物线的解析式;(2)平行于x轴的直线与抛物线从左到右依次交于P,Q两点.过P,Q向x轴作垂线,垂足分别为G,H.若四边形PGHQ为正方形,求正方形的边长;(3)如图2,平行于y轴的直线交抛物线于点M,交x轴于点N(2,0).点D是抛物线上A,M之间的一动点,且点D不与A,M重合,连接DB交MN于点E.连接AD并延长交MN于点F.在点D运动过程中,3NE+NF是否为定值?若是,求出这个定值;若不是,请说明理由.。
2024年四川省德阳市中考数学试题+答案详解
2024年四川省德阳市中考数学试题+答案详解(试题部分)说明:1.本试卷分第Ⅰ卷和第Ⅱ卷.第Ⅰ卷为选择题,第Ⅱ卷为非选择题.全卷共6页. 考生作答时,须将答案答在答题卡上,在本试卷、草稿纸上答题无效,考试结束后,将试卷及答题卡交回.2.本试卷满分150分,答题时间为120分钟.第Ⅰ卷(选择题,共36分)一、选择题(本大题共12个小题,每小题3分,共36分,在每小题给出的四个选项中,有且仅有一项是符合题目要求的.)1. 下列四个数中,比-2小的数是( ) A. 0B.-1C. 12−D. -32. 下列计算正确的是( ) A. 236a a a ⋅= B. ()a b a b −−=−+ C. ()211a a a +=+D. 222()a b a b +=+3. 如图是某机械加工厂加工的一种零件的示意图,其中AB CD ,,70DE BC ABC ⊥∠=︒,则EDC∠等于( )A. 10︒B. 20︒C. 30︒D. 40︒4. 正比例函数()0y kx k =≠的图象如图所示,则k 的值可能是( )A. 12B.12− C. 1− D. 13−5. 分式方程153x x=+的解是()A. 3B. 2C. 32D.346. 为了推进“阳光体育”,学校积极开展球类运动,在一次定点投篮测试中,每人投篮5次,七年级某班统计全班50名学生投中的次数,并记录如下:表格中有两处数据不小心被墨汁遮盖了,下列关于投中次数的统计量中可以确定的是()A. 平均数B. 中位数C. 众数D. 方差7. 走马灯,又称仙音烛,据史料记载,走马灯的历史起源于隋唐时期,盛行于宋代,是中国特色工艺品,常见于除夕、元宵、中秋等节日,在一次综合实践活动中,一同学用如图所示的纸片,沿折痕折合成一个棱锥形的“走马灯”,正方形做底,侧面有一个三角形面上写了“祥”字,当灯旋转时,正好看到“吉祥如意”的字样.则在A、B、C处依次写上的字可以是()A. 吉如意B. 意吉如C. 吉意如D. 意如吉8. 已知,正六边形ABCDEF的面积为)A. 1B.C. 2D. 49. ,2,n,按以下方式进行排列:则第八行左起第1个数是()A. B. C. D.10. 某校学生开展综合实践活动,测量一建筑物CD的高度,在建筑物旁边有一高度为10米的小楼房AB,小李同学在小楼房楼底B 处测得C 处的仰角为60︒,在小楼房楼顶A 处测得C 处的仰角为30︒.(AB CD 、在同一平面内,B D 、在同一水平面上),则建筑物CD 的高为( )米A. 20B. 15C. 12D. 10+11. 的矩形叫黄金矩形,黄金矩形给我们以协调的美感,世界各国许多著名建筑为取得最佳的视觉效果,都采用了黄金矩形的设计.已知四边形ABCD 是黄金矩形.()AB BC <,点P 是边AD 上一点,则满足PB PC ⊥的点P 的个数为( )A. 3B. 2C. 1D. 012. 一次折纸实践活动中,小王同学准备了一张边长为4(单位:dm )的正方形纸片ABCD ,他在边AB 和AD 上分别取点E 和点M ,使,1AE BE AM ==,又在线段MD 上任取一点N (点N 可与端点重合),再将EAN 沿NE 所在直线折叠得到1EA N △,随后连接1DA .小王同学通过多次实践得到以下结论: ①当点N 在线段MD 上运动时,点1A 在以E 为圆心的圆弧上运动; ②当1DA 达到最大值时,1A 到直线AD 的距离达到最大;③1DA 的最小值为2;④1DA 达到最小值时,5MN =. 你认为小王同学得到的结论正确的个数是( )A. 1B. 2C. 3D. 4第Ⅱ卷(非选择题,共114分)二、填空题(本大题共6个小题,每小题4分,共24分,将答案填在答题卡对应的题号后的横线上)13. __________.14. 若一个多项式加上234y xy +−,结果是2325xy y +−,则这个多项式为______.15. 某校拟招聘一名优秀的数学教师,设置了笔试、面试、试讲三项水平测试,综合成绩按照笔试占30%,面试占30%,试讲占40%进行计算,小徐的三项测试成绩如图所示,则她的综合成绩为______分.16. 如图,四边形ABCD 是矩形,ADG △是正三角形,点F 是GD 的中点,点P 是矩形ABCD 内一点,且PBC 是以BC 为底的等腰三角形,则PCD 的面积与FCD 的面积的比值是______.17. 数学活动课上,甲组同学给乙组同学出示了一个探究问题:把数字1至8分别填入如图的八个圆圈内,使得任意两个有线段相连的圆圈内的数字之差的绝对值不等于1.经过探究后,乙组的小高同学填出了图中两个中心圆圈的数字a 、b ,你认为a 可以是______(填上一个数字即可).18. 如图,抛物线2y ax bx c =++的顶点A 的坐标为1,3n ⎛⎫− ⎪⎝⎭,与x 轴的一个交点位于0和1之间,则以下结论:①0abc >;②520b c +<;③若抛物线经过点()()126,,5,y y −,则12y y >;④若关于x 的一元二次方程24ax bx c ++=无实数根,则4n <.其中正确结论是______(请填写序号).三、解答题(本大题共7小题,共90分.解答应写出文字说明、证明过程或推演步骤)19. (1212cos602−⎛⎫−︒ ⎪⎝⎭;(2)解不等式组:2351124xx x−+≤−⎧⎪⎨−<+⎪⎩①②20. 2024年中国龙舟公开赛(四川·德阳站),在德阳旌湖沱江桥水域举行,预计来自全国各地1000余名选手将参赛.旌湖两岸高颜值的绿色生态景观绿化带“德阳之窗”将迎接德阳市民以及来自全国各地的朋友近距离的观看比赛.比赛设置男子组、女子组、本地组三个组别,其中男子组将进行A:100米直道竞速赛,B:200米直道竟速赛,C:500米直道竞速赛,D:3000米绕标赛.为了了解德阳市民对于这四个比赛项目的关注程度,随机对部分市民进行了问卷调查(参与问卷调查的每位市民只能选择其中一个项目),将调查得到的数据绘制成数据统计表和扇形统计图(表、图都未完全制作完成):市民最关注的比赛项目人数统计表(1)直接写出a、b的值和D所在扇形圆心角的度数;(2)若当天观看比赛的市民有10000人,试估计当天观看比赛的市民中关注哪个比赛项目的人数最多?大约有多少人?(3)为了缓解比赛当天城市交通压力,维护交通秩序,德阳交警旌阳支队派出4名交警(2男2女)对该路段进行值守,若在4名交警中任意抽取2名交警安排在同一路口执勤,请用列举法(画树状图或列表)求出恰好抽到的两名交警性别相同的概率. 21. 如图,一次函数22y x =−+与反比例函数(0)ky x x=<的图象交于点()1,A m −.(1)求m 的值和反比例函数ky x=的解析式; (2)将直线22y x =−+向下平移h 个单位长度(0)h >后得直线y ax b =+,若直线y ax b =+与反比例函数(0)ky x x =<的图象的交点为(),2B n ,求h 的值,并结合图象求不等式k ax b x<+的解集. 22. 如图,在菱形ABCD 中,60ABC ∠=︒,对角线AC 与BD 相交于点O ,点F 为BC 的中点,连接AF 与BD 相交于点E ,连接CE 并延长交AB 于点G .(1)证明:BEF BCO ∽; (2)证明:BEG AEG △≌△.23. 罗江糯米咸鹅蛋是德阳市非物质文化遗产之一,至今有200多年历史,采用罗江当地林下养殖的鹅产的散养鹅蛋,经过传统秘方加以糯米、青豆等食材以16道工序手工制作而成.为了迎接端午节,进一步提升糯米咸鹅蛋的销量,德阳某超市将购进的糯米咸鹅蛋和肉粽进行组合销售,有A 、B 两种组合方式,其中A 组合有4枚糯米咸鹅蛋和6个肉粽,B 组合有6枚糯米咸鹅蛋和10个肉粽.A 、B 两种组合的进价和售价如下表:(1)求每枚糯米咸鹅蛋和每个肉粽的进价分别为多少?(2)根据市场需求,超市准备的B 种组合数量是A 种组合数量的3倍少5件,且两种组合的总件数不超过95件,假设准备的两种组合全部售出,为使利润最大,该超市应准备多少件A 种组合?最大利润为多少?24. 如图,抛物线2y x x c =−+与x 轴交于点()1,0A −和点B ,与y 轴交于点C .(1)求抛物线的解析式;(2)当02x <≤时,求2y x x c =−+的函数值的取值范围; (3)将拋物线的顶点向下平移34个单位长度得到点M ,点P 为抛物线的对称轴上一动点,求5PA PM +的最小值. 25. 已知O 的半径为5,B C 、是O 上两定点,点A 是O 上一动点,且60,BAC BAC ∠=︒∠的平分线交O 于点D .(1)证明:点D 为BC 上一定点;(2)过点D 作BC 的平行线交AB 的延长线于点F . ①判断DF 与O 的位置关系,并说明理由;②若ABC 为锐角三角形,求DF 的取值范围.2024年四川省德阳市中考数学试题+答案详解(答案详解)说明:1.本试卷分第Ⅰ卷和第Ⅱ卷.第Ⅰ卷为选择题,第Ⅱ卷为非选择题.全卷共6页. 考生作答时,须将答案答在答题卡上,在本试卷、草稿纸上答题无效,考试结束后,将试卷及答题卡交回.2.本试卷满分150分,答题时间为120分钟.第Ⅰ卷(选择题,共36分)一、选择题(本大题共12个小题,每小题3分,共36分,在每小题给出的四个选项中,有且仅有一项是符合题目要求的.)1. 下列四个数中,比-2小的数是( ) A. 0 B.-1C. 12−D. -3【答案】D 【解析】【分析】本题考查了有理数的大小比较,掌握有理数大小比较的法则是关键.根据有理数的大小比较法则:正数>0>负数;然后根据两个负数比较大小,绝对值大的反而小,即可得到答案. 【详解】解:∵ 正数>0>负数,11232−<−<−<−, ∴ 132102−<−<−<−< ∴32−<−,∴比2−小的是3−. 故选:D .2. 下列计算正确的是( ) A. 236a a a ⋅= B. ()a b a b −−=−+ C. ()211a a a +=+D. 222()a b a b +=+【答案】B 【解析】【分析】本题考查整式的运算,根据同底数幂的乘法,去括号,单项式乘以多项式,完全平方公式,逐一进行判断即可.【详解】解:A 、235a a a ⋅=,原选项计算错误; B 、()a b a b −−=−+,原选项计算正确; C 、()21a a a a +=+,原选项计算错误;D 、()2222a b a ab b +=++,原选项计算错误; 故选B .3. 如图是某机械加工厂加工的一种零件的示意图,其中AB CD ,,70DE BC ABC ⊥∠=︒,则EDC∠等于( )A. 10︒B. 20︒C. 30︒D. 40︒【答案】B 【解析】【分析】本题考查了平行线的性质,三角形内角和定理,解答此题的关键是准确识图,熟练掌握平行线的性质.首先根据平行线的性质得出70BCD ABC ∠=∠=︒,再根据垂直与三角形的内角和即可求出EDC ∠.【详解】解:∵ABCD ,70ABC ∠=︒,∴70BCD ABC ∠=∠=︒, ∵DE BC ⊥, ∴90CED ∠=︒,∴907020EDC ∠=−=︒︒︒ 故选:B .4. 正比例函数()0y kx k =≠的图象如图所示,则k 的值可能是( )A.12B. 12−C. 1−D. 13−【答案】A 【解析】【分析】本题考查了正比例函数的性质:当0k >,图象经过第一、第三象限,在每一象限内y 随x 的增大而增大;当0k <,图象经过第二、第四象限,在每一象限内y 随x 的增大而减小.利用正比例函数的性质得到0k >,然后在此范围内进行判断即可. 【详解】解:∵正比例函数图象经过第一、第三象限, ∴0k >,∴选项A 符合题意. 故选:A . 5. 分式方程153x x =+的解是( ) A. 3 B. 2C.32D.34【答案】D 【解析】【分析】本题考查分式方程的解法,掌握分式方程的解法与步骤是解题关键.本题考查分式方程的解法,掌握分式方程的解法与步骤是解题关键. 【详解】解:153x x =+, 去分母,得35x x +=, 解得34x =, 当34x =时,()30x x +≠, ∴34x =是原方程的解.故选D6. 为了推进“阳光体育”,学校积极开展球类运动,在一次定点投篮测试中,每人投篮5次,七年级某班统计全班50名学生投中的次数,并记录如下:表格中有两处数据不小心被墨汁遮盖了,下列关于投中次数的统计量中可以确定的是()A. 平均数B. 中位数C. 众数D. 方差【答案】C【解析】【分析】本题主要考查中位数、众数、方差、平均数的意义和计算方法,解题的关键是理解各个统计量的实际意义,以及每个统计量所反应数据的特征.先求被遮住投篮成绩的人数,然后根据众数的定义求出众数,而中位数,平均数和方差与所有的数据有关,据此可得答案.【详解】解:∵一共有50名同学,−−−−=名,∴被遮住投篮成绩的人数为5011017616∵众数是一组数据中出现次数最多的数据,∴这50名学生的投篮成绩的众数为3,出现17次,大于16,与被遮盖的数据无关,∵中位数是一组数据中处在最中间的那个数据或处在最中间的两个数据的平均数,∴把这50名学生的成绩从小到大排列,第25名和第26名的投篮成绩不能确定,与被遮盖的数据有关,而平均数和方差都与被遮住的数据有关,故选C.7. 走马灯,又称仙音烛,据史料记载,走马灯的历史起源于隋唐时期,盛行于宋代,是中国特色工艺品,常见于除夕、元宵、中秋等节日,在一次综合实践活动中,一同学用如图所示的纸片,沿折痕折合成一个棱锥形的“走马灯”,正方形做底,侧面有一个三角形面上写了“祥”字,当灯旋转时,正好看到“吉祥如意”的字样.则在A、B、C处依次写上的字可以是()A. 吉如意B. 意吉如C. 吉意如D. 意如吉【答案】A【解析】【分析】本题考查的是简单几何体的展开图,利用四棱锥的展开图的特点可得答案.【详解】解:由题意可得:展开图是四棱锥,∴A 、B 、C 处依次写上的字可以是吉,如,意;或如,吉,意;故选A8. 已知,正六边形ABCDEF 的面积为 )A. 1B.C. 2D. 4【答案】C【解析】【分析】本题考查正六边形的性质,正三角形的性质,设出边长去表示正三角形面积和正六边形面积即可.【详解】解:如图:根据多边形的内角和定理可求出正六边形的一个内角为120︒,故正六边形是由6个正三角形构成的,过O 点作OM AB ⊥垂足是M ,设正六边形的边长为a ,即OA AB a ==在正三角形OAB 中,∵OM AB ⊥, ∴2a AM BM ==,在Rt AMO △中,OM ===一个正三角形的面积为:1122AB OM a ⋅⋅=⨯=正六边形的面积为:22642⨯=,∴22=, 解得:2a =,故选:C .9. ,2,n ,按以下方式进行排列:则第八行左起第1个数是( )A. B. C. D. 【答案】C【解析】【分析】本题考查了数字类规律探索,正确归纳类推出一般规律是解题关键.求出第七行共有28个数,从而可得第八行左起第1个数是第29个数,据此求解即可得.【详解】解:由图可知,第一行共有1个数,第二行共有2个数,第三行共有3个数,归纳类推得:第七行共有123456728++++++=个数,则第八行左起第1=故选:C .10. 某校学生开展综合实践活动,测量一建筑物CD 的高度,在建筑物旁边有一高度为10米的小楼房AB ,小李同学在小楼房楼底B 处测得C 处的仰角为60︒,在小楼房楼顶A 处测得C 处的仰角为30︒.(AB CD 、在同一平面内,B D 、在同一水平面上),则建筑物CD 的高为( )米A. 20B. 15C. 12D. 10+【答案】B【解析】 【分析】本题考查的是解直角三角形的实际应用,如图,过A 作AE CD ⊥于E ,则四边形ABDE 为矩形,设CE x =,而30CAE ∠=︒,可得tan 30CE AE BD ===︒,10CD x =+,结合tan 60CD BD ︒=== 【详解】解:如图,过A 作AE CD ⊥于E ,依题意,AB BD CD BD ⊥⊥,∴四边形ABDE 为矩形,∴10==AB DE ,AE BD =,设CE x =,而30CAE ∠=︒,∴tan 30CE AE BD ===︒, ∵10CD x =+,∴tan 60CD BD ︒=== 解得:5x =,经检验5x =是原方程的解,且符合题意;∴()1015m CD x =+=,故选B11. 的矩形叫黄金矩形,黄金矩形给我们以协调的美感,世界各国许多著名建筑为取得最佳的视觉效果,都采用了黄金矩形的设计.已知四边形ABCD 是黄金矩形.()AB BC <,点P 是边AD 上一点,则满足PB PC ⊥的点P 的个数为( )A. 3B. 2C. 1D. 0【答案】D【解析】【分析】本题考查了矩形的性质,勾股定理,一元二次方程的解,熟练掌握勾股定理,利用判别式判断一元二次方程解的情况是解题的关键.设AB a =,BC b =,假设存在点P ,且AP x =,则PD b x =−,利用勾股定理得到22222BP AB AP a x =+=+,22222()PC PD CD b x a =+=−+,222BC BP PC =+,可得到方程220x bx a +=−,结合12AB a BC b −==,然后根据判别式的符号即可确定有几个解,由此得解.【详解】解:如图所示,四边形ABCD 是黄金矩形,AB BC <,AB BC =,设AB a =,BC b =,假设存在点P ,且AP x =,则PD b x =−,在Rt ABC △中,22222BP AB AP a x =+=+,在Rt PDC 中,22222()PC PD CD b x a =+=−+,PB PC ⊥,∴ 222BC BP PC =+,即22222()b a x b x a =++−+,整理得220x bx a +=−,22244b ac b a ∆=−=−,又AB a BC b ==a =,∴ 2222224445)b ac b a b b ∆=−=−=−=,50−<,20b >,∴ 22245)0b a b ∆=−=<,∴ 方程无解,即点P 不存在.故选:D .12. 一次折纸实践活动中,小王同学准备了一张边长为4(单位:dm )的正方形纸片ABCD ,他在边AB 和AD 上分别取点E 和点M ,使,1AE BE AM ==,又在线段MD 上任取一点N (点N 可与端点重合),再将EAN 沿NE 所在直线折叠得到1EA N △,随后连接1DA .小王同学通过多次实践得到以下结论:①当点N 在线段MD 上运动时,点1A 在以E 为圆心的圆弧上运动;②当1DA 达到最大值时,1A到直线AD 的距离达到最大;③1DA 的最小值为2;④1DA 达到最小值时,5MN =.你认为小王同学得到的结论正确的个数是( )A. 1B. 2C. 3D. 4【答案】C【解析】 【分析】由折叠可得12A E AE BE ===,可得点1A 到点E 的距离恒为2,即可判断①;连接DE ,由勾股定理得到在Rt ADE △中,DE ==,由11DA A E DE +≥,即可判断③;1DA 达到最小值时,点1A 在线段DE 上,证得1ADN ADE ∽,得到1A D DN AD DE =,从而求得5DN =,通过MN AD DN AM =−−即可判断④.在1A DE △中,1A D 随着1DEA ∠的增大而增大,而当NEA∠最大时,1DEA ∠有最大值,1AG 有最大值,此时点N 与点D 重合.过点1A 作1AG AD ⊥于点G ,作1A P AB ⊥于点P ,可得四边形1AGA P 是矩形,因此1AG AP AE EP ==+,当1A D 取得最大值时,1A EP ∠有最小值,在1Rt A EP 中,11cos EP A E A EP =⋅∠有最大值,1AG AP AE EP ==+有最大值,即可判断②.【详解】解:∵正方形纸片ABCD 的边长为4dm ,AE BE = ∴122AE BE AB ===, 由折叠的性质可知,12A E AE ==,∴当点N 在线段MD 上运动时,点1A 在以E 为圆心的圆弧上运动.故①正确.连接DE ,∵在正方形ABCD 中,90A ∠=︒,4=AD ,2AE =,∴在Rt ADE △中,DE ===∵11DA A E DE +≥,∴112DA DE A E ≥−=,∴1DA 的最小值为2.故③正确;如图,1DA 达到最小值时,点1A 在线段DE 上,由折叠可得190NA E A ∠=∠=︒,∴190DA N ∠=︒,∴1DA N A ∠=∠,∵1A DN ADE ∠=∠,∴1A DN ADE ∽, ∴1A D DN AD DE=,∴24=∴5DN =,∴(4512MN AD DN AM =−−=−−=.故④错误.在1A DE △中,DE =,12A E AE ==,∴1A D 随着1DEA ∠的增大而增大,∵()112DEA NEA NED NEA NED NEA AED NEA NEA AED ∠=∠−∠=∠−∠=∠−∠−∠=∠−∠, ∴当NEA ∠最大时,1DEA ∠有最大值,1AG 有最大值,此时,点N 与点D 重合, 过点1A 作1AG AD ⊥于点G ,作1A P AB ⊥于点P , ∵90A ∠=︒,∴四边形1AGA P 是矩形,∴1AG AP AE EP ==+, 当1A D 取得最大值时,1AEN A EN ∠=∠也是最大值,∵111801802A EP AEN A EN AEN ∠=︒−∠−∠=︒−∠,∴1A EP ∠有最小值,∴在1Rt A EP 中,11cos EP A E A EP =⋅∠有最大值,即1AG AP AE EP ==+有最大值, ∴点1A 到AD 的距离最大.故②正确.综上所述,正确的共有3个.故选:C【点睛】本题考查轴对称图形的性质,勾股定理,相似三角形的判定及性质,锐角三角形函数的性质,综合运用相关知识是解题的关键.第Ⅱ卷(非选择题,共114分)二、填空题(本大题共6个小题,每小题4分,共24分,将答案填在答题卡对应的题号后的横线上)13. __________.【解析】【分析】根据二次根式的性质a =”进行计算即可得.33=−=, 故答案为:3.【点睛】本题考查了化简二次根式,解题的关键是掌握二次根式的性质.14. 若一个多项式加上234y xy +−,结果是2325xy y +−,则这个多项式为______.【答案】21−y【解析】【分析】本题考查整式的加减运算,根据题意“一个多项式加上234y xy +−,结果是2325xy y +−”,进行列出式子:()()2232534xy y y xy +−−+−,再去括号合并同类项即可.【详解】解:依题意这个多项式为 ()()2232534xy y y xy +−−+− 2232534xy y y xy =+−−−+21y =−.故答案为:21−y15. 某校拟招聘一名优秀的数学教师,设置了笔试、面试、试讲三项水平测试,综合成绩按照笔试占30%,面试占30%,试讲占40%进行计算,小徐的三项测试成绩如图所示,则她的综合成绩为______分.【答案】85.8【解析】【分析】本题考查了加权平均数,解题关键是熟记加权平均数公式,准确进行计算.利用加权平均数公式【详解】解:她的综合成绩为8630%8030%9040%85.8⨯+⨯+⨯=(分);故答案为:85.8.16. 如图,四边形ABCD 是矩形,ADG △是正三角形,点F 是GD 的中点,点P 是矩形ABCD 内一点,且PBC 是以BC 为底的等腰三角形,则PCD 的面积与FCD 的面积的比值是______.【答案】2【解析】【分析】本题考查矩形的性质,正三角形的性质,等腰三角形的性质等知识点,正确设出边长表示出两个面积是解题的关键.作辅助线如图,设BC a =,CD b =,根据性质和图形表示出面积即可得到答案.【详解】解:如图,找BC ,AD 中点为M ,N ,连接MN ,GN ,连接PD ,FC , 过F 作FR CD ⊥交CD 的延长线于R 点,延长RF ,与GN 交于Q 点.设BC a =,CD b =,∵PBC 是以BC 为底的等腰三角形,∴P 在MN 上,∴P 到CD 的距离即为12a , ∴111224PCD Sb a ab =⨯⨯=,在GQF 和DRF 中90GF DF GFQ DFR FQG FRD =⎧⎪∠=∠⎨⎪∠=∠=︒⎩, ∴()AAS GQF DRF ≌, ∴111224QF RF a a ==⨯=, ∴11112248FCDSCD FR b a ab =⋅⋅=⨯⨯=, ∴14218PCD FCDab S Sab ==, 故答案为:2.17. 数学活动课上,甲组同学给乙组同学出示了一个探究问题:把数字1至8分别填入如图的八个圆圈内,使得任意两个有线段相连的圆圈内的数字之差的绝对值不等于1.经过探究后,乙组的小高同学填出了图中两个中心圆圈的数字a 、b ,你认为a 可以是______(填上一个数字即可).【答案】1##8 【解析】【分析】本题考查了数字规律,理解题意是解题的关键.由于两个中心圆圈有6根连线,数字1至8,共有8个数字,若2,3,4,5,6,7,其中任何一个数字填在中心位置,那么与其相邻的2个数字均不能出现在与中心圆圈相连的6个圆圈中,否则不满足任意两个有线段相连的圆圈内的数字之差的绝对值不等于1,故只剩下5个数字可选,不满足6个空的圆圈需要填入,故中心圆圈只能是1或者8.【详解】解: 两个中心圆圈分别有6根连线,数字1至8,共有8个数字,若2,3,4,5,6,7,其中任何一个数字填在中心位置,那么与其相邻的2个数字均不能出现在与中心圆圈相连的6个圆圈中,故只剩下5个数字可选,不满足6个空的圆圈需要填入.∴ 位于两个中心圆圈的数字a 、b ,只可能是1或者8.故答案为:1(或8).18. 如图,抛物线2y ax bx c =++的顶点A 的坐标为1,3n ⎛⎫− ⎪⎝⎭,与x 轴的一个交点位于0和1之间,则以下结论:①0abc >;②520b c +<;③若抛物线经过点()()126,,5,y y −,则12y y >;④若关于x 的一元二次方程24ax bx c ++=无实数根,则4n <.其中正确结论是______(请填写序号).【答案】①②④ 【解析】【分析】本题考查了二次函数的图象与系数的关系,根的判别式,二次函数图象上点的坐标特征,解题的关键是掌握二次函数的图象与性质.①利用抛物线的顶点坐标和开口方向即可判断;②利用抛物线的对称轴求出32a b =,根据图象可得当1x =时,0y a b c =++<,即可判断;③利用抛物线的对称轴,设()()126,,5,y y −两点横坐标与对称轴的距离为12d d ,,求出距离,根据图象可得,距离对称轴越近的点的函数值越大,即可判断;④根据图象即可判断.【详解】解:①∵抛物线2y ax bx c =++的顶点A 的坐标为1,3n ⎛⎫− ⎪⎝⎭,∴312b a −=−, ∴1023b a =>,即0ab >, 由图可知,抛物线开口方向向下,即0a <, ∴0b <,当0x =时,0y c =>,∴0abc >,故①正确,符合题意; ②∵直线13x =-是抛物线的对称轴,∴312b a −=−, ∴1023b a =>, ∴32a b =由图象可得:当1x =时,0y a b c =++<,∴502b c +<,即520b c +<,故②正确,符合题意; ③∵直线13x =-是抛物线的对称轴, 设()()126,,5,y y −两点横坐标与对称轴的距离为12d d ,, 则1117633d ⎛⎫=−−−= ⎪⎝⎭,2116533d ⎛⎫=−−= ⎪⎝⎭, ∴21d d <,根据图象可得,距离对称轴越近的点的函数值越大, ∴12y y <,故③错误,不符合题意; ④如图,∵关于x 的一元二次方程24ax bx c ++=无实数根, ∴4n <,故④正确,符合题意. 故答案为:①②④三、解答题(本大题共7小题,共90分.解答应写出文字说明、证明过程或推演步骤)19. (1212cos602−⎛⎫−︒ ⎪⎝⎭;(2)解不等式组:2351124x x x−+≤−⎧⎪⎨−<+⎪⎩①② 【答案】(1)1,(2)46x ≤< 【解析】【分析】(1)先计算立方根、负整数指数幂、锐角三角函数,再进行实数的加减混合运算即可.(2)分别求出不等式的解集,再根据“同大取大,同小取小,大小小大中间找,大大小小找不到”的确定不等式组的解集即可.【详解】(1212cos602−⎛⎫+−︒ ⎪⎝⎭()2112222−−=−+−⨯2221=−+−34=−+1=.(2)解:2351124x x x−+≤−⎧⎪⎨−<+⎪⎩①② 由①235x −+≤−,得4x ≥, 由②1124x x−<+,得6x <, ∴不等式组的解集为46x ≤<.【点睛】本题考查实数的混合运算、立方根、负整数指数幂、特殊角的锐角三角函数、解一元一次不等式组,熟练掌握立方根、负整数指数幂、特殊角的锐角三角函数和解一元一次不等式组的方法是解题的关键. 20. 2024年中国龙舟公开赛(四川·德阳站),在德阳旌湖沱江桥水域举行,预计来自全国各地1000余名选手将参赛.旌湖两岸高颜值的绿色生态景观绿化带“德阳之窗”将迎接德阳市民以及来自全国各地的朋友近距离的观看比赛.比赛设置男子组、女子组、本地组三个组别,其中男子组将进行A :100米直道竞速赛,B :200米直道竟速赛,C :500米直道竞速赛,D :3000米绕标赛.为了了解德阳市民对于这四个比赛项目的关注程度,随机对部分市民进行了问卷调查(参与问卷调查的每位市民只能选择其中一个项目),将调查得到的数据绘制成数据统计表和扇形统计图(表、图都未完全制作完成):市民最关注的比赛项目人数统计表(1)直接写出a 、b 的值和D 所在扇形圆心角的度数;(2)若当天观看比赛的市民有10000人,试估计当天观看比赛的市民中关注哪个比赛项目的人数最多?大约有多少人?(3)为了缓解比赛当天城市交通压力,维护交通秩序,德阳交警旌阳支队派出4名交警(2男2女)对该路段进行值守,若在4名交警中任意抽取2名交警安排在同一路口执勤,请用列举法(画树状图或列表)求出恰好抽到的两名交警性别相同的概率. 【答案】(1)18a =,60b =,144︒ (2)D ,4000 (3)13【解析】【分析】本题考查统计表和扇形统计图,用样本估计总体,树状图求概率等知识,正确识图是解题的关键.根据两个图标识图求解即可. 【小问1详解】解:根据两图中A 的数据可得总人数为:4228%=150÷(人), 15012%18a =⨯=(人), 150********b =−−−=(人), D 所在扇形圆心角的度数为:60100%360144150⨯⨯︒=︒ 【小问2详解】D :3000米绕标赛的关注人数最多,为60100%100004000150⨯⨯=(人) 答:估计当天观看比赛的市民中关注D :3000米绕标赛比赛项目的人数最多,大约有4000人. 【小问3详解】解:根据题意,画出树状图如下图:根据树状图可得,共有12种等可能得结果,其中恰好抽到的两名交警性别相同的概率为:41123=. 21. 如图,一次函数22y x =−+与反比例函数(0)ky x x=<的图象交于点()1,A m −.(1)求m 的值和反比例函数ky x=的解析式; (2)将直线22y x =−+向下平移h 个单位长度(0)h >后得直线y ax b =+,若直线y ax b =+与反比例函数(0)ky x x =<的图象的交点为(),2B n ,求h 的值,并结合图象求不等式k ax b x<+的解集. 【答案】(1)4m =;反比例函数的解析式为4y x=−(2)4h =;不等式kax b x<+的解集为<2x − 【解析】【分析】本题主要考查反比例函数与一次函数的交点问题:(1)把()1,A m −代入22y x =−+求出4m =,得()1,4A −,从而可求出k 的值;(2)由平移得直线y ax b =+与直线22y x =−+平行,得2y x b =−+,把点(),2B n 代入4y x=−得2n =−,得()2,2B −,代入2y x b =−+,求出2b =−,得出()224h =−−=;由图象得当<2x −时,ky x=。
2020年四川省德阳市中考数学试题(教师版含解析)
2020年四川省德阳市中考数学试卷参考答案与试题解析一、选择题(本大题共12个小题,每小题4分,共48分)在每小题给出的四个选项中,有且仅有一项是符合题目要求的.1.(4分)的相反数是()A.3B.﹣3C.D.【分析】在一个数前面放上“﹣”,就是该数的相反数.【解答】解:的相反数为﹣.故选:D.2.(4分)下列运算正确的是()A.a2•a3=a6B.(3a)3 =9a3C.3a﹣2a=1D.(﹣2a2)3=﹣8a6【分析】利用同底数幂的乘法法则、积的乘方运算法则、合并同类项法则分别进行计算即可.【解答】解:A、a2•a3=a5,故原题计算错误;B、(3a)3 =27a3,故原题计算错误;C、3a﹣2a=a,故原题计算错误;D、(﹣2a2)3=﹣8a6,故原题计算正确;故选:D.3.(4分)如图所示,直线EF∥GH,射线AC分别交直线EF、GH于点B和点C,AD⊥EF 于点D,如果∠A=20°,则∠ACG=()A.160°B.110°C.100°D.70°【分析】利用三角形的内角和定理,由AD⊥EF,∠A=20°可得∠ABD=70°,由平行线的性质定理可得∠ACH,易得∠ACG.【解答】解:∵AD⊥EF,∠A=20°,∴∠ABD=180°﹣∠A﹣∠ABD=180°﹣20°﹣90°=70°,∵EF∥GH,∴∠ACH=∠ABD=70°,∴∠ACG=180°﹣∠ACH=180°﹣70°=110°,故选:B.4.(4分)下列说法错误的是()A.方差可以衡量一组数据的波动大小B.抽样调查抽取的样本是否具有代表性,直接关系对总体估计的准确程度C.一组数据的众数有且只有一个D.抛掷一枚图钉针尖朝上的概率,不能用列举法求得【分析】根据各个选项中的说法,可以判断是否正确,从而可以解答本题.【解答】解:方差可以衡量一组数据的波动大小,故选项A正确;抽样调查抽取的样本是否具有代表性,直接关系对总体估计的准确程度,故选项B正确;一组数据的众数有一个或者几个,故选项C错误;抛掷一枚图钉针尖朝上的概率,不能用列举法求得,故选项D正确;故选:C.5.(4分)多边形的内角和不可能为()A.180°B.540°C.1080°D.1200°【分析】多边形的内角和可以表示成(n﹣2)•180°(n≥3且n是整数),则多边形的内角和是180度的倍数,由此即可求出答案.【解答】解:因为在这四个选项中不是180°的倍数的只有1200°.故选:D.6.(4分)某商场销售A,B,C,D四种商品,它们的单价依次是50元,30元,20元,10元.某天这四种商品销售数量的百分比如图所示,则这天销售的四种商品的平均单价是()A.19.5元B.21.5元C.22.5元D.27.5元【分析】根据加权平均数定义即可求出这天销售的四种商品的平均单价.【解答】解:这天销售的四种商品的平均单价是:50×10%+30×15%+20×55%+10×20%=22.5(元),故选:C.7.(4分)半径为R的圆内接正三角形、正方形、正六边形的边心距分别为a,b,c,则a,b,c的大小关系是()A.a<b<c B.b<a<c C.a<c<b D.c<b<a【分析】根据三角函数即可求解.【解答】解:设圆的半径为R,则正三角形的边心距为a=R×cos60°=R.四边形的边心距为b=R×cos45°=R,正六边形的边心距为c=R×cos30°=R.∵R R R,∴c<b<a,故选:D.8.(4分)已知函数y=,当函数值为3时,自变量x的值为() A.﹣2B.﹣C.﹣2或﹣D.﹣2或﹣【分析】根据分段函数的解析式分别计算,即可得出结论.【解答】解:若x<2,当y=3时,﹣x+1=3,解得:x=﹣2;若x≥2,当y=3时,﹣=3,解得:x=﹣,不合题意舍去;∴x=﹣2,故选:A.9.(4分)如图是一个几何体的三视图,根据图中所示数据计算这个几何体的表面积是()A.20πB.18πC.16πD.14π【分析】由几何体的三视图可得出原几何体为圆锥和圆柱组合体,根据图中给定数据求出表面积即可.【解答】解:这个几何体的表面积=π•22+π•3•2+2π•2•2=18π,故选:B.10.(4分)如图,Rt△ABC中,∠A=30°,∠ABC=90°.将Rt△ABC绕点B逆时针方向旋转得到△A'BC'.此时恰好点C在A'C'上,A'B交AC于点E,则△ABE与△ABC的面积之比为()A.B.C.D.【分析】由旋转的性质得出BC=BC',∠ACB=∠A'C'B=60°,则△BCC'是等边三角形,∠CBC'=60°,得出∠BEA=90°,设CE=a,则BE=a,AE=3a,求出,可求出答案.【解答】解:∵∠A=30°,∠ABC=90°,∴∠ACB=60°,∵将Rt△ABC绕点B逆时针方向旋转得到△A'BC',∴BC=BC',∠ACB=∠A'C'B=60°,∴△BCC'是等边三角形,∴∠CBC'=60°,∴∠ABA'=60°,∴∠BEA=90°,设CE=a,则BE=a,AE=3a,∴,∴,∴△ABE与△ABC的面积之比为.故选:D.11.(4分)已知:等腰直角三角形ABC的腰长为4,点M在斜边AB上,点P为该平面内一动点,且满足PC=2,则PM的最小值为()A.2B.2﹣2C.2+2D.2【分析】根据等腰直角三角形的性质得到斜边AB=4,由已知条件得到点P在以C为圆心,PC为半径的圆上,当点P在斜边AB的中线上时,PM的值最小,于是得到结论.【解答】解:∵等腰直角三角形ABC的腰长为4,∴斜边AB=4,∵点P为该平面内一动点,且满足PC=2,∴点P在以C为圆心,PC为半径的圆上,当点P在斜边AB的中线上时,PM的值最小,∵△ABC是等腰直角三角形,∴CM=AB=2,∵PC=2,∴PM=CM﹣CP=2﹣2,故选:B.12.(4分)已知不等式ax+b>0的解集为x<2,则下列结论正确的个数是()(1)2a+b=0;(2)当c>a时,函数y=ax2+bx+c的图象与x轴没有公共点;(3)当c>0时,抛物线y=ax2+bx+c的顶点在直线y=ax+b的上方;(4)如果b<3且2a﹣mb﹣m=0,则m的取值范围是﹣<m<0.A.1B.2C.3D.4【分析】由不等式的解集得出a<0,﹣=2,即b=﹣2a,从而得出2a+b=0,即可判断(1);根据△=4a(a﹣c)>0即可判断(2);求得抛物线的顶点为(1,a﹣c)即可判断(3);求得0<﹣<3,得出不等式组的解集为﹣<m<0即可判断(4).【解答】解:(1)∵不等式ax+b>0的解集为x<2,∴a<0,﹣=2,即b=﹣2a,∴2a+b=0,故结论正确;(2)函数y=ax2+bx+c中,令y=0,则ax2+bx+c=0,∵即b=﹣2a,∴△=b2﹣4ac=(﹣2a)2﹣4ac=4a(a﹣c),∵a<0,c>a,∴△=4a(a﹣c)>0,∴当c>a时,函数y=ax2+bx+c的图象与x轴有两个公共点,故结论错误;(3)∵b=﹣2a,∴﹣=1,==c﹣a,∴抛物线y=ax2+bx+c的顶点为(1,c﹣a),当x=1时,直线y=ax+b=a+b=a﹣2a=﹣a>0当c>0时,c﹣a>﹣a>0,∴抛物线y=ax2+bx+c的顶点在直线y=ax+b的上方,故结论正确;(4)∵b=﹣2a,∴由2a﹣mb﹣m=0,得到﹣b﹣mb﹣m=0,∴b=﹣,如果b<3,则0<﹣<3,∴﹣<m<0,故结论正确;故选:C.二、填空题(本大题共6个小题,每小题4分,共24分,将答案填在答题卡对应的题号后的横线上)13.(4分)小明在体考时选择了投掷实心球,如图是体育老师记录的小明在训练时投掷实心球的6次成绩的折线统计图.这6次成绩的中位数是9.75.【分析】根据中位数定义:将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.即可得解.【解答】解:由6次成绩的折线统计图可知:这6次成绩从小到大排列为:9.5,9.6,9.7,9.8,10,10.2,所以这6次成绩的中位数是:=9.75.故答案为:9.75.14.(4分)把ax2﹣4a分解因式的结果是a(x+2)(x﹣2).【分析】先提出公因式a,再利用平方差公式因式分解.【解答】解:ax2﹣4a=a(x2﹣4)=a(x+2)(x﹣2).故答案为:a(x+2)(x﹣2).15.(4分)如图,在平行四边形ABCD中,BE平分∠ABC,CF⊥BE,连接AE,G是AB的中点,连接GF,若AE=4,则GF=2.【分析】根据平行四边形的性质结合角平分线的定义可求解∠CBE=∠BEC,即可得CB =CE,利用等腰三角形的性质可怎么BF=EF,进而可得GF是△ABE的中位线,根据三角形的中位线的性质可求解.【解答】解:在平行四边形ABCD中,AB∥CD,∴∠ABE=∠BEC.∵BE平分∠ABC,∴∠ABE=∠CBE,∴∠CBE=∠BEC,∴CB=CE.∵CF⊥BE,∴BF=EF.∵G是AB的中点,∴GF是△ABE的中位线,∴GF=BE,∵BE=4,∴GF=2.故答案为2.16.(4分)将正偶数按照如下规律进行分组排列,依次为(2),(4,6),(8,10,12),(14,16,18,20)…,我们称“4”是第2组第1个数字,“16”是第4组第2个数字,若2020是第m组第n个数字,则m+n=65.【分析】根据题目中数字的特点,可知每组的个数依次增大,每组中的数字都是连续的偶数,然后即可求出2020是多少组第多少个数,从而可以得到m、n的值,然后即可得到m+n的值.【解答】解:∵将正偶数按照如下规律进行分组排列,依次为(2),(4,6),(8,10,12),(14,16,18,20)…,∴第m组有m个连续的偶数,∵2020=2×1010,∴2020是第1010个偶数,∵1+2+3+…+44==990,1+2+3+…+45==1035,∴2020是第45组第1010﹣990=20个数,∴m=45,n=20,∴m+n=65,故答案为:65.17.(4分)若实数x,y满足x+y2=3,设s=x2+8y2,则s的取值范围是s≥9.【分析】由已知等式表示出y2,代入s中利用二次函数最值即可确定出s范围.【解答】解:由x+y2=3,得:y2=﹣x+3≥0,∴x≤3,代入得:s=x2+8y2=x2+8(﹣x+3)=x2﹣8x+24=(x﹣4)2+8,当x=3时,s=(3﹣4)2+8=9,∴s≥9;故答案为:s≥9.18.(4分)如图,海中有一小岛A,它周围10.5海里内有暗礁,渔船跟踪鱼群由西向东航行.在B点测得小岛A在北偏东60°方向上,航行12海里到达D点,这时测得小岛A在北偏东30°方向上.如果渔船不改变航线继续向东航行,那么渔船还需航行 4.5海里就开始有触礁的危险.【分析】过A作AC⊥BD于点C,求出∠CAD、∠CAB的度数,求出∠BAD和∠ABD,根据等角对等边得出AD=BD=12,根据含30度角的直角三角形性质求出CD,根据勾股定理求出AC即可.【解答】解:只要求出A到BD的最短距离是否在以A为圆心,以10.5海里的圆内或圆上即可,如图,过A作AC⊥BD于点C,则AC的长是A到BD的最短距离,∵∠CAD=30°,∠CAB=60°,∴∠BAD=60°﹣30°=30°,∠ABD=90°﹣60°=30°,∴∠ABD=∠BAD,∴BD=AD=12海里,∵∠CAD=30°,∠ACD=90°,∴CD=AD=6海里,由勾股定理得:AC==6(海里),如图,设渔船还需航行x海里就开始有触礁的危险,即到达点D′时有触礁的危险,在直角△AD′C中,由勾股定理得:(6﹣x)2+(6)2=10.52.解得x=4.5.渔船还需航行4.5海里就开始有触礁的危险.故答案是:4.5.三、解答题(本大题共7小题,共78分.答应写出文字说明、证明过程或推演步骤) 19.(7分)计算:(﹣2)﹣2﹣|﹣2|+(﹣)0﹣﹣2cos30°.【分析】首先计算乘方、开方,然后计算乘法,最后从左向右依次计算,求出算式的值是多少即可.【解答】解:(﹣2)﹣2﹣|﹣2|+(﹣)0﹣﹣2cos30°=﹣2++1﹣2﹣2×=﹣2.20.(8分)如图,四边形ABCD为矩形,G是对角线BD的中点.连接GC并延长至F,使CF=GC,以DC,CF为邻边作菱形DCFE,连接CE.(1)判断四边形CEDG的形状,并证明你的结论.(2)连接DF,若BC=,求DF的长.【分析】(1)证出GB=GC=GD=CF,由菱形的性质的CD=CF=DE,DE∥CG,则DE =GC,证出四边形CEDG是平行四边形,进而得出结论;(2)过点G作GH⊥BC于H,设DF交CE于点N,由等腰三角形的性质得CH=BH=BC=,证出△CDG是等边三角形,得∠GCD=60°,由三角函数定义求出CG=1,则CD=1,由菱形的性质得DN=FN,CN⊥DF,∠DCE=∠FCE=60°,由三角函数定义求出DN=,则DF=2DN=.【解答】解:(1)四边形CEDG是菱形,理由如下:∵四边形ABCD为矩形,G是对角线BD的中点,∴GB=GC=GD,∵CF=GC,∴GB=GC=GD=CF,∵四边形DCFE是菱形,∴CD=CF=DE,DE∥CG,∴DE=GC,∴四边形CEDG是平行四边形,∵GD=GC,∴四边形CEDG是菱形;(2)过点G作GH⊥BC于H,设DF交CE于点N,如图所示:∵CD=CF,GB=GD=GC=CF,∴CH=BH=BC=,△CDG是等边三角形,∴∠GCD=60°,∴∠DCF=180°﹣∠GCD=180°﹣60°=120°,∵四边形ABCD为矩形,∴∠BCD=90°,∴∠GCH=90°﹣60°=30°,∴CG===1,∴CD=1,∵四边形DCFE是菱形,∴DN=FN,CN⊥DF,∠DCE=∠FCE=∠DCF=×120°=60°,在Rt△CND中,DN=CD•sin∠DCE=1×sin60°=1×=,∴DF=2DN=2×=.21.(13分)为了加强学生的垃圾分类意识,某校对学生进行了一次系统全面的垃圾分类宣传.为了解这次宣传的效果,从全校学生中随机抽取部分学生进行了一次测试,测试结果共分为四个等级:A.优秀;B.良好;C.及格:D.不及格.根据调查统计结果,绘制了如图所示的不完整的统计表.垃圾分类知识测试成绩统计表测试等级百分比人数A.优秀5%20B.良好60C.及格45%mD.不及格n请结合统计表,回答下列问题:(1)求本次参与调查的学生人数及m,n的值;(2)如果测试结果为“良好”及以上即为对垃圾分类知识比较了解,已知该校学生总数为5600人,请根据本次抽样调查的数据估计全校比较了解垃圾分类知识的学生人数;(3)为了进一步在学生中普及垃圾分类知识,学校准备再开展一次关于垃圾分类的知识竞赛,要求每班派一人参加.某班要从在这次测试成绩为优秀的小明和小亮中选一人参加.班长设计了如下游戏来确定人选,具体规则是:把四个完全相同的乒乓球分别标上数字1,2,3,4.然后放到一个不透明的袋中充分摇匀,两人同时从袋中各摸出一个球.若摸出的两个球上的数字和为奇数,则小明参加,否则小亮参加.请用树状图或列表法说明这个游戏规则是否公平.【分析】(1)由优秀的人数除以所占比例得出本次参与调查的学生人数;进而求出m和n 的值;(2)由总人数乘以良好和优秀所占比例即可;(3)先画树状图展示所有12种等可能的结果,找出和为奇数的结果有8种,再计算出小明参加和小亮参加的概率,比较两概率的大小可判断这个游戏规则是否公平.【解答】解:(1)本次参与调查的学生人数为:20÷5%=400(人),m=400×45%=180,∵400﹣20﹣60﹣180=140,∴n=140÷400×100%=35%;(2)5600×=1120(人),即估计全校比较了解垃圾分类知识的学生人数为1120人;(3)画树状图为:共有12种等可能的结果,其中和为奇数的结果有8种,∴P(小明参加)==,P(小亮参加)=1﹣=,∵≠,∴这个游戏规则不公平.22.(11分)如图,一次函数y1=ax+b与反比例函数y2=的图象交于A、B两点.点A的横坐标为2,点B的纵坐标为1.(1)求a,b的值.(2)在反比例y2=第三象限的图象上找一点P,使点P到直线AB的距离最短,求点P的坐标.【分析】(1)首先确定A,B两点坐标,再利用待定系数法求解即可.(2)过点P作直线PM∥AB,当直线PM与反比例函数只有一个交点时,点P到直线AB的距离最短,构建方程组把问题转化为一元二次方程,利用判别式=0,构建方程求解即可.【解答】解:(1)∵一次函数y1=ax+b与反比例函数y2=的图象交于A、B两点.点A 的横坐标为2,点B的纵坐标为1,∴A(2,2),B(4,1),则有,解得.(2)过点P作直线PM∥AB,当直线PM与反比例函数只有一个交点时,点P到直线AB的距离最短,设直线PM的解析式为y=﹣x+n,由,消去y得到,x2﹣2nx+8=0,由题意,△=0,∴4n2﹣32=0,∴n=﹣2或2(舍弃),解得,∴P(﹣2,﹣).23.(12分)推进农村土地集约式管理,提高土地的使用效率是新农村建设的一项重要举措.某村在小城镇建设中集约了2400亩土地,计划对其进行平整.经投标,由甲乙两个工程队来完成平整任务.甲工程队每天可平整土地45亩,乙工程队每天可平整土地30亩.已知乙工程队每天的工程费比甲工程队少500元,当甲工程队所需工程费为12000元,乙工程队所需工程费为9000元时,两工程队工作天数刚好相同.(1)甲乙两个工程队每天各需工程费多少元?(2)现由甲乙两个工程队共同参与土地平整,已知两个工程队工作天数均为正整数,且所有土地刚好平整完,总费用不超过110000元.①甲乙两工程队分别工作的天数共有多少种可能?②写出其中费用最少的一种方案,并求出最低费用.【分析】(1)设甲每天需工程费x元、乙工程队每天需工程费(x﹣500)元,构建方程求解即可.(2)①设甲平整x天,则乙平整y天.由题意,45x+30y=2400 ①,且2000x+1500y≤110000 ②把问题转化为不等式解决即可.②总费用w=2000x+1500(80﹣1.5x)=﹣250x+120000,利用函数的性质解答即可.【解答】解:(1)设甲每天需工程费x元、乙工程队每天需工程费(x﹣500)元,由题意,=,解得x=2000,经检验,x=2000是分式方程的解.答:甲每天需工程费2000元、乙工程队每天需工程费1500元.(2)①设甲平整x天,则乙平整y天.由题意,45x+30y=2400 ①,且2000x+1500y≤110000 ②,由①得到y=80﹣1.5x③,把③代入②得到,2000x+1500(80﹣1.5x)≤110000,解得,x≥40,∵y>0,∴80﹣1.5x>0,x<53.3,∴40≤x<53.3,∵x,y是正整数,∴x=40,y=20或x=42,y=17或x=44,y=14或x=46,y=11或x=48,y=8,或x =50,y=5或x=52,y=2.∴甲乙两工程队分别工作的天数共有7种可能.②总费用w=2000x+1500(80﹣1.5x)=﹣250x+120000,∵﹣250<0,∴w随x的增大而减小,∴x=52时,w的最小值=107000(元).答:最低费用为107000元.24.(13分)如图,在⊙O中,弦AB与直径CD垂直,垂足为M,CD的延长线上有一点P,满足∠PBD=∠DAB.过点P作PN⊥CD,交OA的延长线于点N,连接DN交AP于点H.(1)求证:BP是⊙O的切线;(2)如果OA=5,AM=4,求PN的值;(3)如果PD=PH,求证:AH•OP=HP•AP.【分析】(1)连接BC,OB,证明OB⊥PB即可.(2)解直角三角形求出OM,利用相似三角形的性质求出OP,再利用平行线分线段成比例定理求出PN即可.(3)证明△NAH∽△NPD,推出=,证明△P AN∽△OAP,推出=,推出=可得结论.【解答】(1)证明:如图,连接BC,OB.∵CD是直径,∴∠CBD=90°,∵OC=OB,∴∠C=∠CBO,∵∠C=∠BAD,∠PBD=∠DAB,∴∠CBO=∠PBD,∴∠OBP=∠CBD=90°,∴PB⊥OB,∴PB是⊙O的切线.(2)解:∵CD⊥AB,∴P A=PB,∵OA=OB,OP=OP,∴△P AO≌△PBO(SSS),∴∠OAP=∠OBP=90°,∵∠AMO=90°,∴OM===3,∵∠AOM=∠AOP,∠OAP=∠AMO,∴△AOM∽△POA,∴=,∴=,∴OP=,∵PN⊥PC,∴∠NPC=∠AMO=90°,∴=,∴=,∴PN=.(3)证明:∵PD=PH,∴∠PDH=∠PHD,∵∠PDH=∠POA+∠OND,∠PHD=∠APN+∠PND,∴∠POA+∠APO=90°,∠APN+∠APO=90°,∴∠POA=∠ANP,∴∠ANH=∠PND,∵∠PDN=∠PHD=∠AHN,∴△NAH∽△NPD,∴=,∵∠APN=∠POA,∠P AN=∠P AO=90°,∴△P AN∽△OAP,∴=,∴=,∴==,∴AH•OP=HP•AP.25.(14分)如图1,抛物线y=ax2﹣2ax﹣3a(a≠0)与x轴交于点A,B.与y轴交于点C.连接AC,BC.已知△ABC的面积为2.(1)求抛物线的解析式;(2)平行于x轴的直线与抛物线从左到右依次交于P,Q两点.过P,Q向x轴作垂线,垂足分别为G,H.若四边形PGHQ为正方形,求正方形的边长;(3)如图2,平行于y轴的直线交抛物线于点M,交x轴于点N (2,0).点D是抛物线上A,M之间的一动点,且点D不与A,M重合,连接DB交MN于点E.连接AD并延长交MN于点F.在点D运动过程中,3NE+NF是否为定值?若是,求出这个定值;若不是,请说明理由.【分析】(1)先将抛物线解析式变形,可得A和B的坐标,从而得AB=1+3=4,根据三角形ABC的面积为2可得OC的长,确定点C的坐标,根据点C的坐标,利用待定系数法即可求出二次函数的解析式;(2)设点P的纵坐标为m,当y=m时,﹣x2+x+1=m,解方程可得P和Q两点的坐标,从而得G和H的坐标,再利用正方形的性质可得出关于m的方程,解之即可得出结论;(3)设点D(n,﹣n2+n+1),利用待定系数法求直线AD和BD的解析式,表示FN和OK的长,直接代入计算可得结论.【解答】解:(1)如图1,y=ax2﹣2ax﹣3a=a(x2﹣2x﹣3)=a(x﹣3)(x+1),∴A(﹣1,0),B(3,0),∴AB=4,∵△ABC的面积为2,即,∴,∴OC=1,∴C(0,1),将C(0,1)代入y=ax2﹣2ax﹣3a,得:﹣3a=1,∴a=﹣,∴该二次函数的解析式为y=﹣x2+x+1;(2)如图2,设点P的纵坐标为m,当y=m时,﹣x2+x+1=m,解得:x1=1+,x2=1﹣,∴点P的坐标为(1﹣,m),点Q的坐标为(1+,m),∴点G的坐标为(1﹣,0),点H的坐标为(1+,0),∵矩形PGHQ为正方形,∴1+﹣(1﹣)=m,解得:m1=﹣6﹣2,m2=﹣6+2,∴当四边形PGHQ为正方形时,边长为6+2或2﹣6;(3)如图3,设点D(n,﹣n2+n+1),延长BD交y轴于K,∵A(﹣1,0),设AD的解析式为:y=kx+b,则,解得:,∴AD的解析式为:y=(﹣)x﹣,当x=2时,y=﹣n+2﹣n+1=﹣n+3,∴F(2,3﹣n),∴FN=3﹣n,同理得直线BD的解析式为:y=(﹣)x+n+1,∴K(0,n+1),∴OK=n+1,∵N(2,0),B(3,0),∴,∵EN∥OK,∴,∴OK=3EN,∴3EN+FN=OK+FN=n+1+3﹣n=4,∴在点D运动过程中,3NE+NF为定值4.。
四川省德阳市中考数学试卷(附答案解析)
2020年四川省德阳市中考数学试卷一、选择题(本大题共12个小题,每小题4分,共48分)在每小题给出的四个选项中,有且仅有一项是符合题目要求的.1.13的相反数是( ) A .3 B .﹣3 C .13 D .−13 2.下列运算正确的是( )A .a 2•a 3=a 6B .(3a )3 =9a 3C .3a ﹣2a =1D .(﹣2a 2)3=﹣8a 63.如图所示,直线EF ∥GH ,射线AC 分别交直线EF 、GH 于点B 和点C ,AD ⊥EF 于点D ,如果∠A =20°,则∠ACG =( )A .160°B .110°C .100°D .70°4.下列说法错误的是( )A .方差可以衡量一组数据的波动大小B .抽样调查抽取的样本是否具有代表性,直接关系对总体估计的准确程度C .一组数据的众数有且只有一个D .抛掷一枚图钉针尖朝上的概率,不能用列举法求得5.多边形的内角和不可能为( )A .180°B .540°C .1080°D .1200°6.某商场销售A ,B ,C ,D 四种商品,它们的单价依次是50元,30元,20元,10元.某天这四种商品销售数量的百分比如图所示,则这天销售的四种商品的平均单价是( )A .19.5元B .21.5元C .22.5元D .27.5元7.半径为R 的圆内接正三角形、正方形、正六边形的边心距分别为a ,b ,c ,则a ,b ,c的大小关系是( )A .a <b <cB .b <a <cC .a <c <bD .c <b <a8.已知函数y ={−x +1(x <2)−2x(x ≥2),当函数值为3时,自变量x 的值为( ) A .﹣2 B .−23 C .﹣2或−23 D .﹣2或−329.如图是一个几何体的三视图,根据图中所示数据计算这个几何体的表面积是( )A .20πB .18πC .16πD .14π10.如图,Rt △ABC 中,∠A =30°,∠ABC =90°.将Rt △ABC 绕点B 逆时针方向旋转得到△A 'BC '.此时恰好点C 在A 'C '上,A 'B 交AC 于点E ,则△ABE 与△ABC 的面积之比为( )A .13B .12C .23D .34 11.已知:等腰直角三角形ABC 的腰长为4,点M 在斜边AB 上,点P 为该平面内一动点,且满足PC =2,则PM 的最小值为( )A .2B .2√2−2C .2√2+2D .2√212.已知不等式ax +b >0的解集为x <2,则下列结论正确的个数是( )(1)2a +b =0;(2)当c >a 时,函数y =ax 2+bx +c 的图象与x 轴没有公共点;(3)当c >0时,抛物线y =ax 2+bx +c 的顶点在直线y =ax +b 的上方;(4)如果b <3且2a ﹣mb ﹣m =0,则m 的取值范围是−34<m <0.A .1B .2C .3D .4 二、填空题(本大题共6个小题,每小题4分,共24分,将答案填在答题卡对应的题号后的横线上)13.小明在体考时选择了投掷实心球,如图是体育老师记录的小明在训练时投掷实心球的6次成绩的折线统计图.这6次成绩的中位数是 .14.把ax 2﹣4a 分解因式的结果是 .15.如图,在平行四边形ABCD 中,BE 平分∠ABC ,CF ⊥BE ,连接AE ,G 是AB 的中点,连接GF ,若AE =4,则GF = .16.将正偶数按照如下规律进行分组排列,依次为(2),(4,6),(8,10,12),(14,16,18,20)…,我们称“4”是第2组第1个数字,“16”是第4组第2个数字,若2020是第m组第n个数字,则m+n=.17.若实数x,y满足x+y2=3,设s=x2+8y2,则s的取值范围是.18.如图,海中有一小岛A,它周围10.5海里内有暗礁,渔船跟踪鱼群由西向东航行.在B 点测得小岛A在北偏东60°方向上,航行12海里到达D点,这时测得小岛A在北偏东30°方向上.如果渔船不改变航线继续向东航行,那么渔船还需航行海里就开始有触礁的危险.三、解答题(本大题共7小题,共78分.答应写出文字说明、证明过程或推演步骤)19.(7分)计算:(﹣2)﹣2﹣|√3−2|+(−√32)0−√83−2cos30°.20.(8分)如图,四边形ABCD为矩形,G是对角线BD的中点.连接GC并延长至F,使CF=GC,以DC,CF为邻边作菱形DCFE,连接CE.(1)判断四边形CEDG的形状,并证明你的结论.(2)连接DF,若BC=√3,求DF的长.21.(13分)为了加强学生的垃圾分类意识,某校对学生进行了一次系统全面的垃圾分类宣传.为了解这次宣传的效果,从全校学生中随机抽取部分学生进行了一次测试,测试结果共分为四个等级:A.优秀;B.良好;C.及格;D.不及格.根据调查统计结果,绘制了如图所示的不完整的统计表.垃圾分类知识测试成绩统计表测试等级百分比人数A.优秀5%20B.良好60C.及格45%mD.不及格n请结合统计表,回答下列问题:(1)求本次参与调查的学生人数及m,n的值;(2)如果测试结果为“良好”及以上即为对垃圾分类知识比较了解,已知该校学生总数为5600人,请根据本次抽样调查的数据估计全校比较了解垃圾分类知识的学生人数;(3)为了进一步在学生中普及垃圾分类知识,学校准备再开展一次关于垃圾分类的知识竞赛,要求每班派一人参加.某班要从在这次测试成绩为优秀的小明和小亮中选一人参加.班长设计了如下游戏来确定人选,具体规则是:把四个完全相同的乒乓球分别标上数字1,2,3,4.然后放到一个不透明的袋中充分摇匀,两人同时从袋中各摸出一个球.若摸出的两个球上的数字和为奇数,则小明参加,否则小亮参加.请用树状图或列表法说明这个游戏规则是否公平.22.(11分)如图,一次函数y1=ax+b与反比例函数y2=4x的图象交于A、B两点.点A的横坐标为2,点B的纵坐标为1.(1)求a,b的值.(2)在反比例y2=4x第三象限的图象上找一点P,使点P到直线AB的距离最短,求点P的坐标.23.(12分)推进农村土地集约式管理,提高土地的使用效率是新农村建设的一项重要举措.某村在小城镇建设中集约了2400亩土地,计划对其进行平整.经投标,由甲乙两个工程队来完成平整任务.甲工程队每天可平整土地45亩,乙工程队每天可平整土地30亩.已知乙工程队每天的工程费比甲工程队少500元,当甲工程队所需工程费为12000元,乙工程队所需工程费为9000元时,两工程队工作天数刚好相同.(1)甲乙两个工程队每天各需工程费多少元?(2)现由甲乙两个工程队共同参与土地平整,已知两个工程队工作天数均为正整数,且所有土地刚好平整完,总费用不超过110000元.①甲乙两工程队分别工作的天数共有多少种可能?②写出其中费用最少的一种方案,并求出最低费用.24.(13分)如图,在⊙O中,弦AB与直径CD垂直,垂足为M,CD的延长线上有一点P,满足∠PBD=∠DAB.过点P作PN⊥CD,交OA的延长线于点N,连接DN交AP于点H.(1)求证:BP是⊙O的切线;(2)如果OA=5,AM=4,求PN的值;(3)如果PD=PH,求证:AH•OP=HP•AP.25.(14分)如图1,抛物线y=ax2﹣2ax﹣3a(a≠0)与x轴交于点A,B.与y轴交于点C.连接AC,BC.已知△ABC的面积为2.(1)求抛物线的解析式;(2)平行于x轴的直线与抛物线从左到右依次交于P,Q两点.过P,Q向x轴作垂线,垂足分别为G,H.若四边形PGHQ为正方形,求正方形的边长;(3)如图2,平行于y轴的直线交抛物线于点M,交x轴于点N(2,0).点D是抛物线上A,M之间的一动点,且点D不与A,M重合,连接DB交MN于点E.连接AD并延长交MN于点F.在点D运动过程中,3NE+NF是否为定值?若是,求出这个定值;若不是,请说明理由.2020年四川省德阳市中考数学试卷参考答案与试题解析一、选择题(本大题共12个小题,每小题4分,共48分)在每小题给出的四个选项中,有且仅有一项是符合题目要求的.1.13的相反数是( ) A .3B .﹣3C .13D .−13 解:13的相反数为−13.故选:D .2.下列运算正确的是( )A .a 2•a 3=a 6B .(3a )3 =9a 3C .3a ﹣2a =1D .(﹣2a 2)3=﹣8a 6解:A 、a 2•a 3=a 5,故原题计算错误;B 、(3a )3 =27a 3,故原题计算错误;C 、3a ﹣2a =a ,故原题计算错误;D 、(﹣2a 2)3=﹣8a 6,故原题计算正确;故选:D .3.如图所示,直线EF ∥GH ,射线AC 分别交直线EF 、GH 于点B 和点C ,AD ⊥EF 于点D ,如果∠A =20°,则∠ACG =( )A .160°B .110°C .100°D .70°解:∵AD ⊥EF ,∠A =20°,∴∠ABD =180°﹣∠A ﹣∠ABD =180°﹣20°﹣90°=70°,∵EF ∥GH ,∴∠ACH =∠ABD =70°,∴∠ACG =180°﹣∠ACH =180°﹣70°=110°,故选:B.4.下列说法错误的是()A.方差可以衡量一组数据的波动大小B.抽样调查抽取的样本是否具有代表性,直接关系对总体估计的准确程度C.一组数据的众数有且只有一个D.抛掷一枚图钉针尖朝上的概率,不能用列举法求得解:方差可以衡量一组数据的波动大小,故选项A正确;抽样调查抽取的样本是否具有代表性,直接关系对总体估计的准确程度,故选项B正确;一组数据的众数有一个或者几个或者没有,故选项C错误;抛掷一枚图钉针尖朝上的概率,不能用列举法求得,故选项D正确;故选:C.5.多边形的内角和不可能为()A.180°B.540°C.1080°D.1200°解:多边形的内角和可以表示成(n﹣2)•180°(n≥3且n是整数),n应为整数,所以n ﹣2也是整数,所以多边形的内角能被180整除,因为在这四个选项中不是180°的倍数的只有1200°.故选:D.6.某商场销售A,B,C,D四种商品,它们的单价依次是50元,30元,20元,10元.某天这四种商品销售数量的百分比如图所示,则这天销售的四种商品的平均单价是()A.19.5元B.21.5元C.22.5元D.27.5元解:这天销售的四种商品的平均单价是:50×10%+30×15%+20×55%+10×20%=22.5(元),故选:C.7.半径为R的圆内接正三角形、正方形、正六边形的边心距分别为a,b,c,则a,b,c的大小关系是( )A .a <b <cB .b <a <cC .a <c <bD .c <b <a 解:设圆的半径为R ,则正三角形的边心距为a =R ×cos60°=12R .四边形的边心距为b =R ×cos45°=√22R ,正六边形的边心距为c =R ×cos30°=√32R .∵12R <√22R <√32R ,∴a <b <c ,故选:A .8.已知函数y ={−x +1(x <2)−2x(x ≥2),当函数值为3时,自变量x 的值为( )A .﹣2B .−23C .﹣2或−23D .﹣2或−32 解:若x <2,当y =3时,﹣x +1=3,解得:x =﹣2;若x ≥2,当y =3时,−2x =3,解得:x =−23,不合题意舍去;∴x =﹣2,故选:A .9.如图是一个几何体的三视图,根据图中所示数据计算这个几何体的表面积是()A .20πB .18πC .16πD .14π。
2020年四川省德阳市中考数学试题及参考答案(word解析版)
2020四川省德阳市中考数学试题及参考答案与解析(满分150分,考试时间120分钟)一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,有且仅有一项是符合题目要求的)1.的相反数是()A.3 B.﹣3 C.D.2.下列运算正确的是()A.a2•a3=a6B.(3a)3 =9a3C.3a﹣2a=1 D.(﹣2a2)3=﹣8a63.如图所示,直线EF∥GH,射线AC分别交直线EF、GH于点B和点C,AD⊥EF于点D,如果∠A=20°,则∠ACG=()A.160°B.110°C.100°D.70°4.下列说法错误的是()A.方差可以衡量一组数据的波动大小B.抽样调查抽取的样本是否具有代表性,直接关系对总体估计的准确程度C.一组数据的众数有且只有一个D.抛掷一枚图钉针尖朝上的概率,不能用列举法求得5.多边形的内角和不可能为()A.180°B.540°C.1080°D.1200°6.某商场销售A,B,C,D四种商品,它们的单价依次是50元,30元,20元,10元.某天这四种商品销售数量的百分比如图所示,则这天销售的四种商品的平均单价是()A.19.5元B.21.5元C.22.5元D.27.5元7.半径为R的圆内接正三角形、正方形、正六边形的边心距分别为a,b,c,则a,b,c的大小关系是()A.a<b<c B.b<a<c C.a<c<b D.c<b<a8.已知函数y=,当函数值为3时,自变量x的值为()A.﹣2 B.﹣C.﹣2或﹣D.﹣2或﹣9.如图是一个几何体的三视图,根据图中所示数据计算这个几何体的表面积是()A.20π B.18π C.16π D.14π10.如图,Rt△ABC中,∠A=30°,∠ABC=90°.将Rt△ABC绕点B逆时针方向旋转得到△A'BC'.此时恰好点C在A'C'上,A'B交AC于点E,则△ABE与△ABC的面积之比为()A.B.C.D.11.已知:等腰直角三角形ABC的腰长为4,点M在斜边AB上,点P为该平面内一动点,且满足PC=2,则PM的最小值为()A.2 B.2﹣2 C.2+2 D.212.已知不等式ax+b>0的解集为x<2,则下列结论正确的个数是()(1)2a+b=0;(2)当c>a时,函数y=ax2+bx+c的图象与x轴没有公共点;(3)当c>0时,抛物线y=ax2+bx+c的顶点在直线y=ax+b的上方;(4)如果b<3且2a﹣mb﹣m=0,则m的取值范围是﹣<m<0.A.1 B.2 C.3 D.4二、填空题(本大题共6个小题,每小题4分,共24分)13.小明在体考时选择了投掷实心球,如图是体育老师记录的小明在训练时投掷实心球的6次成绩的折线统计图.这6次成绩的中位数是.14.把ax2﹣4a分解因式的结果是.15.如图,在平行四边形ABCD中,BE平分∠ABC,CF⊥BE,连接AE,G是AB的中点,连接GF,若AE=4,则GF=.16.将正偶数按照如下规律进行分组排列,依次为(2),(4,6),(8,10,12),(14,16,18,20)…,我们称“4”是第2组第1个数字,“16”是第4组第2个数字,若2020是第m组第n个数字,则m+n=.17.若实数x,y满足x+y2=3,设s=x2+8y2,则s的取值范围是.18.如图,海中有一小岛A,它周围10.5海里内有暗礁,渔船跟踪鱼群由西向东航行.在B点测得小岛A在北偏东60°方向上,航行12海里到达D点,这时测得小岛A在北偏东30°方向上.如果渔船不改变航线继续向东航行,那么渔船还需航行海里就开始有触礁的危险.三、解答题(本大题共7小题,共78分.答应写出文字说明、证明过程或推演步骤)19.(7分)计算:(﹣2)﹣2﹣|﹣2|+(﹣)0﹣﹣2cos30°.20.(8分)如图,四边形ABCD为矩形,G是对角线BD的中点.连接GC并延长至F,使CF=GC,以DC,CF为邻边作菱形DCFE,连接CE.(1)判断四边形CEDG的形状,并证明你的结论.(2)连接DF,若BC=,求DF的长.21.(13分)为了加强学生的垃圾分类意识,某校对学生进行了一次系统全面的垃圾分类宣传.为了解这次宣传的效果,从全校学生中随机抽取部分学生进行了一次测试,测试结果共分为四个等级:A.优秀;B.良好;C.及格:D.不及格.根据调查统计结果,绘制了如图所示的不完整的统计表.垃圾分类知识测试成绩统计表测试等级百分比人数A.优秀5% 20B.良好60C.及格45% mD.不及格n请结合统计表,回答下列问题:(1)求本次参与调查的学生人数及m,n的值;(2)如果测试结果为“良好”及以上即为对垃圾分类知识比较了解,已知该校学生总数为5600人,请根据本次抽样调查的数据估计全校比较了解垃圾分类知识的学生人数;(3)为了进一步在学生中普及垃圾分类知识,学校准备再开展一次关于垃圾分类的知识竞赛,要求每班派一人参加.某班要从在这次测试成绩为优秀的小明和小亮中选一人参加.班长设计了如下游戏来确定人选,具体规则是:把四个完全相同的乒乓球分别标上数字1,2,3,4.然后放到一个不透明的袋中充分摇匀,两人同时从袋中各摸出一个球.若摸出的两个球上的数字和为奇数,则小明参加,否则小亮参加.请用树状图或列表法说明这个游戏规则是否公平.22.(11分)如图,一次函数y1=ax+b与反比例函数y2=的图象交于A、B两点.点A的横坐标为2,点B的纵坐标为1.(1)求a,b的值.(2)在反比例y2=第三象限的图象上找一点P,使点P到直线AB的距离最短,求点P的坐标.23.(12分)推进农村土地集约式管理,提高土地的使用效率是新农村建设的一项重要举措.某村在小城镇建设中集约了2400亩土地,计划对其进行平整.经投标,由甲乙两个工程队来完成平整任务.甲工程队每天可平整土地45亩,乙工程队每天可平整土地30亩.已知乙工程队每天的工程费比甲工程队少500元,当甲工程队所需工程费为12000元,乙工程队所需工程费为9000元时,两工程队工作天数刚好相同.(1)甲乙两个工程队每天各需工程费多少元?(2)现由甲乙两个工程队共同参与土地平整,已知两个工程队工作天数均为正整数,且所有土地刚好平整完,总费用不超过110000元.①甲乙两工程队分别工作的天数共有多少种可能?②写出其中费用最少的一种方案,并求出最低费用.24.(13分)如图,在⊙O中,弦AB与直径CD垂直,垂足为M,CD的延长线上有一点P,满足∠PBD =∠DAB.过点P作PN⊥CD,交OA的延长线于点N,连接DN交AP于点H.(1)求证:BP是⊙O的切线;(2)如果OA=5,AM=4,求PN的值;(3)如果PD=PH,求证:AH•OP=HP•AP.25.(14分)如图1,抛物线y=ax2﹣2ax﹣3a(a≠0)与x轴交于点A,B.与y轴交于点C.连接AC,BC.已知△ABC的面积为2.(1)求抛物线的解析式;(2)平行于x轴的直线与抛物线从左到右依次交于P,Q两点.过P,Q向x轴作垂线,垂足分别为G,H.若四边形PGHQ为正方形,求正方形的边长;(3)如图2,平行于y轴的直线交抛物线于点M,交x轴于点N (2,0).点D是抛物线上A,M之间的一动点,且点D不与A,M重合,连接DB交MN于点E.连接AD并延长交MN于点F.在点D运动过程中,3NE+NF是否为定值?若是,求出这个定值;若不是,请说明理由.答案与解析一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,有且仅有一项是符合题目要求的)1.的相反数是()A.3 B.﹣3 C.D.【知识考点】相反数.【思路分析】在一个数前面放上“﹣”,就是该数的相反数.【解题过程】解:的相反数为﹣.故选:D.【总结归纳】本题考查了相反数的概念,求一个数的相反数只要改变这个数的符号即可.2.下列运算正确的是()A.a2•a3=a6B.(3a)3 =9a3C.3a﹣2a=1 D.(﹣2a2)3=﹣8a6【知识考点】合并同类项;同底数幂的乘法;幂的乘方与积的乘方.【思路分析】利用同底数幂的乘法法则、积的乘方运算法则、合并同类项法则、幂的乘方运算法则分别进行计算即可.【解题过程】解:A、a2•a3=a5,故原题计算错误;B、(3a)3 =27a3,故原题计算错误;C、3a﹣2a=a,故原题计算错误;D、(﹣2a2)3=﹣8a6,故原题计算正确;故选:D.【总结归纳】此题主要考查了同底数幂的乘法、积的乘方运算、合并同类项、幂的乘方运算,关键是掌握各计算法则.3.如图所示,直线EF∥GH,射线AC分别交直线EF、GH于点B和点C,AD⊥EF于点D,如果∠A=20°,则∠ACG=()A.160°B.110°C.100°D.70°【知识考点】垂线;平行线的性质.【思路分析】利用三角形的内角和定理,由AD⊥EF,∠A=20°可得∠ABD=70°,由平行线的性质定理可得∠ACH,易得∠ACG.【解题过程】解:∵AD⊥EF,∠A=20°,∴∠ABD=180°﹣∠A﹣∠ABD=180°﹣20°﹣90°=70°,∵EF∥GH,∴∠ACH=∠ABD=70°,∴∠ACG=180°﹣∠ACH=180°﹣70°=110°,故选:B.【总结归纳】本题主要考查了三角形的内角和定理和平行线的性质定理,熟记定理是解答此题的关键.4.下列说法错误的是()A.方差可以衡量一组数据的波动大小B.抽样调查抽取的样本是否具有代表性,直接关系对总体估计的准确程度C.一组数据的众数有且只有一个D.抛掷一枚图钉针尖朝上的概率,不能用列举法求得【知识考点】抽样调查的可靠性;用样本估计总体;众数;方差;列表法与树状图法.【思路分析】根据各个选项中的说法,可以判断是否正确,从而可以解答本题.【解题过程】解:方差可以衡量一组数据的波动大小,故选项A正确;抽样调查抽取的样本是否具有代表性,直接关系对总体估计的准确程度,故选项B正确;一组数据的众数有一个或者几个或者没有,故选项C错误;抛掷一枚图钉针尖朝上的概率,不能用列举法求得,故选项D正确;故选:C.【总结归纳】本题考查抽样调查、用样本估计总体、众数和方差,解答本题的关键是明确题意,可以判断各个选项中的说法是否正确.5.多边形的内角和不可能为()A.180°B.540°C.1080°D.1200°【知识考点】多边形内角与外角.【思路分析】多边形的内角和可以表示成(n﹣2)•180°(n≥3且n是整数),所以多边形的内角能被180°整除,由此即可求出答案.【解题过程】解:多边形的内角和可以表示成(n﹣2)•180°(n≥3且n是整数),n应为整数,所以n﹣2也是整数,所以多边形的内角能被180整除,因为在这四个选项中不是180°的倍数的只有1200°.故选:D.【总结归纳】本题主要考查多边形的内角和定理,牢记定理是解答本题的关键,难度不大.6.某商场销售A,B,C,D四种商品,它们的单价依次是50元,30元,20元,10元.某天这四种商品销售数量的百分比如图所示,则这天销售的四种商品的平均单价是()A.19.5元B.21.5元C.22.5元D.27.5元【知识考点】扇形统计图;加权平均数.【思路分析】根据加权平均数定义即可求出这天销售的四种商品的平均单价.【解题过程】解:这天销售的四种商品的平均单价是:50×10%+30×15%+20×55%+10×20%=22.5(元),故选:C.【总结归纳】本题考查了加权平均数、扇形统计图,解决本题的关键是掌握加权平均数的定义.7.半径为R的圆内接正三角形、正方形、正六边形的边心距分别为a,b,c,则a,b,c的大小关系是()A.a<b<c B.b<a<c C.a<c<b D.c<b<a【知识考点】等边三角形的性质;正方形的性质;三角形的外接圆与外心;正多边形和圆.【思路分析】根据三角函数即可求解.【解题过程】解:设圆的半径为R,则正三角形的边心距为a=R×cos60°=R.四边形的边心距为b=R×cos45°=R,正六边形的边心距为c=R×cos30°=R.∵R R R,∴a<b<c,故选:D.【总结归纳】此题主要考查了正多边形和圆的性质,解决本题的关键是构造直角三角形,得到用半径表示的边心距;注意:正多边形的计算一般要转化为解直角三角形的问题来解决.8.已知函数y=,当函数值为3时,自变量x的值为()A.﹣2 B.﹣C.﹣2或﹣D.﹣2或﹣【知识考点】一次函数的性质;一次函数图象上点的坐标特征;反比例函数的性质.【思路分析】根据分段函数的解析式分别计算,即可得出结论.【解题过程】解:若x<2,当y=3时,﹣x+1=3,解得:x=﹣2;若x≥2,当y=3时,﹣=3,解得:x=﹣,不合题意舍去;∴x=﹣2,故选:A.【总结归纳】本题考查反比例函数的性质、一次函数的图象上点的坐标特征;根据分段函数进行分段求解是解题的关键.9.如图是一个几何体的三视图,根据图中所示数据计算这个几何体的表面积是()A.20π B.18π C.16π D.14π【知识考点】几何体的表面积;由三视图判断几何体.【思路分析】由几何体的三视图可得出原几何体为圆锥和圆柱组合体,根据图中给定数据求出表面积即可.【解题过程】解:这个几何体的表面积=π•22+π•3•2+2π•2•2=18π,故选:B.【总结归纳】本题考查了由三视图判断几何体、圆锥和圆柱的计算以及勾股定理,由几何体的三视图可得出原几何体为圆锥和圆柱组合体是解题的关键.10.如图,Rt△ABC中,∠A=30°,∠ABC=90°.将Rt△ABC绕点B逆时针方向旋转得到△A'BC'.此时恰好点C在A'C'上,A'B交AC于点E,则△ABE与△ABC的面积之比为()A.B.C.D.【知识考点】三角形的面积;含30度角的直角三角形;旋转的性质.【思路分析】由旋转的性质得出BC=BC',∠ACB=∠A'C'B=60°,则△BCC'是等边三角形,∠CBC'=60°,得出∠BEA=90°,设CE=a,则BE=a,AE=3a,求出,可求出答案.【解题过程】解:∵∠A=30°,∠ABC=90°,∴∠ACB=60°,∵将Rt△ABC绕点B逆时针方向旋转得到△A'BC',∴BC=BC',∠ACB=∠A'C'B=60°,∴△BCC'是等边三角形,∴∠CBC'=60°,∴∠ABA'=60°,∴∠BEA=90°,设CE=a,则BE=a,AE=3a,∴,∴,∴△ABE与△ABC的面积之比为.故选:D.【总结归纳】本题考查了旋转的性质,直角三角形的性质,等边三角形的判定与性质;熟练掌握旋转的性质是解题的关键.11.已知:等腰直角三角形ABC的腰长为4,点M在斜边AB上,点P为该平面内一动点,且满足PC=2,则PM的最小值为()A.2 B.2﹣2 C.2+2 D.2【知识考点】等腰直角三角形.【思路分析】根据等腰直角三角形的性质得到斜边AB=4,由已知条件得到点P在以C为圆心,PC为半径的圆上,当点P在斜边AB的中线上时,PM的值最小,于是得到结论.【解题过程】解:∵等腰直角三角形ABC的腰长为4,∴斜边AB=4,∵点P为该平面内一动点,且满足PC=2,∴点P在以C为圆心,PC为半径的圆上,当点P在斜边AB的中线上时,PM的值最小,∵△ABC是等腰直角三角形,∴CM=AB=2,∵PC=2,∴PM=CM﹣CP=2﹣2,故选:B.【总结归纳】本题考查了等腰直角三角形,最短路线问题,正确的作出图形是解题的关键.12.已知不等式ax+b>0的解集为x<2,则下列结论正确的个数是()(1)2a+b=0;(2)当c>a时,函数y=ax2+bx+c的图象与x轴没有公共点;(3)当c>0时,抛物线y=ax2+bx+c的顶点在直线y=ax+b的上方;(4)如果b<3且2a﹣mb﹣m=0,则m的取值范围是﹣<m<0.A.1 B.2 C.3 D.4【知识考点】一次函数的性质;一次函数图象上点的坐标特征;二次函数的性质;二次函数图象上点的坐标特征;抛物线与x轴的交点.【思路分析】由不等式的解集得出a<0,﹣=2,即b=﹣2a,从而得出2a+b=0,即可判断(1);根据△=4a(a﹣c)>0即可判断(2);求得抛物线的顶点为(1,a﹣c)即可判断(3);求得0<﹣<3,得出不等式组的解集为﹣<m<0即可判断(4).【解题过程】解:(1)∵不等式ax+b>0的解集为x<2,∴a<0,﹣=2,即b=﹣2a,∴2a+b=0,故结论正确;(2)函数y=ax2+bx+c中,令y=0,则ax2+bx+c=0,∵即b=﹣2a,∴△=b2﹣4ac=(﹣2a)2﹣4ac=4a(a﹣c),∵a<0,c>a,∴△=4a(a﹣c)>0,∴当c>a时,函数y=ax2+bx+c的图象与x轴有两个公共点,故结论错误;(3)∵b=﹣2a,∴﹣=1,==c﹣a,∴抛物线y=ax2+bx+c的顶点为(1,c﹣a),当x=1时,直线y=ax+b=a+b=a﹣2a=﹣a>0当c>0时,c﹣a>﹣a>0,∴抛物线y=ax2+bx+c的顶点在直线y=ax+b的上方,故结论正确;(4)∵b=﹣2a,∴由2a﹣mb﹣m=0,得到﹣b﹣mb﹣m=0,∴b=﹣,如果b<3,则0<﹣<3,∴﹣<m<0,故结论正确;故选:C.【总结归纳】本题考查了抛物线与x轴的交点,一次函数的性质,二次函数的性质,一次函数图象上点的坐标特征,二次函数图象上点的坐标特征,有一定难度.二、填空题(本大题共6个小题,每小题4分,共24分)13.小明在体考时选择了投掷实心球,如图是体育老师记录的小明在训练时投掷实心球的6次成绩的折线统计图.这6次成绩的中位数是.【知识考点】VD:折线统计图;W4:中位数.【思路分析】根据中位数定义:将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.即可得解.【解题过程】解:由6次成绩的折线统计图可知:这6次成绩从小到大排列为:9.5,9.6,9.7,9.8,10,10.2,所以这6次成绩的中位数是:=9.75.故答案为:9.75.【总结归纳】本题考查了折线统计图、中位数,解决本题的关键是掌握中位数的定义.14.把ax2﹣4a分解因式的结果是.【知识考点】提公因式法与公式法的综合运用.【思路分析】先提出公因式a,再利用平方差公式因式分解.【解题过程】解:ax2﹣4a=a(x2﹣4)=a(x+2)(x﹣2).故答案为:a(x+2)(x﹣2).【总结归纳】本题考查了提公因式法和公式法进行因式分解,解决本题的关键是熟记提公因式法和公式法.15.如图,在平行四边形ABCD中,BE平分∠ABC,CF⊥BE,连接AE,G是AB的中点,连接GF,若AE=4,则GF=.【知识考点】等腰三角形的判定与性质;三角形中位线定理;平行四边形的性质.【思路分析】根据平行四边形的性质结合角平分线的定义可求解∠CBE=∠BEC,即可得CB=CE,利用等腰三角形的性质可怎么BF=EF,进而可得GF是△ABE的中位线,根据三角形的中位线的性质可求解.【解题过程】解:在平行四边形ABCD中,AB∥CD,∴∠ABE=∠BEC.∵BE平分∠ABC,∴∠ABE=∠CBE,∴∠CBE=∠BEC,∴CB=CE.∵CF⊥BE,∴BF=EF.∵G是AB的中点,∴GF是△ABE的中位线,∴GF=BE,∵BE=4,∴GF=2.故答案为2.【总结归纳】本题主要考查平行四边形的性质,等腰三角形的性质与判定,三角形中位线的性质,证明GF是△ABE的中位线是解题的关键.16.将正偶数按照如下规律进行分组排列,依次为(2),(4,6),(8,10,12),(14,16,18,20)…,我们称“4”是第2组第1个数字,“16”是第4组第2个数字,若2020是第m组第n个数字,则m+n=.【知识考点】规律型:数字的变化类.【思路分析】根据题目中数字的特点,可知每组的个数依次增大,每组中的数字都是连续的偶数,然后即可求出2020是多少组第多少个数,从而可以得到m、n的值,然后即可得到m+n的值.【解题过程】解:∵将正偶数按照如下规律进行分组排列,依次为(2),(4,6),(8,10,12),(14,16,18,20)…,∴第m组有m个连续的偶数,∵2020=2×1010,∴2020是第1010个偶数,∵1+2+3+…+44==990,1+2+3+…+45==1035,∴2020是第45组第1010﹣990=20个数,∴m=45,n=20,∴m+n=65,故答案为:65.【总结归纳】本题考查数字的变化类,解答本题的关键是明确题意,发现数字的变化特点,求出m、n的值.17.若实数x,y满足x+y2=3,设s=x2+8y2,则s的取值范围是.【知识考点】二次函数的最值.【思路分析】由已知等式表示出y2,代入s中利用二次函数最值即可确定出s范围.【解题过程】解:由x+y2=3,得:y2=﹣x+3≥0,∴x≤3,代入得:s=x2+8y2=x2+8(﹣x+3)=x2﹣8x+24=(x﹣4)2+8,当x=3时,s=(3﹣4)2+8=9,∴s≥9;故答案为:s≥9.【总结归纳】此题考查了非负数的性质,用一个未知数表示另一个未知数,二次函数的最值,熟练掌握二次函数的性质是关键.18.如图,海中有一小岛A,它周围10.5海里内有暗礁,渔船跟踪鱼群由西向东航行.在B点测得小岛A在北偏东60°方向上,航行12海里到达D点,这时测得小岛A在北偏东30°方向上.如果渔船不改变航线继续向东航行,那么渔船还需航行海里就开始有触礁的危险.【知识考点】解直角三角形的应用﹣方向角问题.【思路分析】过A作AC⊥BD于点C,求出∠CAD、∠CAB的度数,求出∠BAD和∠ABD,根据等角对等边得出AD=BD=12,根据含30度角的直角三角形性质求出CD,根据勾股定理求出AC即可.【解题过程】解:只要求出A到BD的最短距离是否在以A为圆心,以10.5海里的圆内或圆上即可,如图,过A作AC⊥BD于点C,则AC的长是A到BD的最短距离,∵∠CAD=30°,∠CAB=60°,∴∠BAD=60°﹣30°=30°,∠ABD=90°﹣60°=30°,∴∠ABD=∠BAD,∴BD=AD=12海里,∵∠CAD=30°,∠ACD=90°,∴CD=AD=6海里,由勾股定理得:AC==6(海里),如图,设渔船还需航行x海里就开始有触礁的危险,即到达点D′时有触礁的危险,在直角△AD′C中,由勾股定理得:(6﹣x)2+(6)2=10.52.解得x=4.5.渔船还需航行4.5海里就开始有触礁的危险.故答案是:4.5.【总结归纳】考查了勾股定理的应用和解直角三角形,此题是一道方向角问题,结合航海中的实际问题,将解直角三角形的相关知识有机结合,体现了数学应用于实际生活的思想.三、解答题(本大题共7小题,共78分.答应写出文字说明、证明过程或推演步骤)19.(7分)计算:(﹣2)﹣2﹣|﹣2|+(﹣)0﹣﹣2cos30°.【知识考点】实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值.【思路分析】首先计算乘方、开方,然后计算乘法,最后从左向右依次计算,求出算式的值是多少即可.【解题过程】解:(﹣2)﹣2﹣|﹣2|+(﹣)0﹣﹣2cos30°=﹣2++1﹣2﹣2×=﹣2.【总结归纳】此题主要考查了实数的运算,要熟练掌握,解答此题的关键是要明确:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.另外,有理数的运算律在实数范围内仍然适用.正确化简各数是解题关键.20.(8分)如图,四边形ABCD为矩形,G是对角线BD的中点.连接GC并延长至F,使CF=GC,以DC,CF为邻边作菱形DCFE,连接CE.(1)判断四边形CEDG的形状,并证明你的结论.(2)连接DF,若BC=,求DF的长.【知识考点】菱形的判定与性质;矩形的性质.【思路分析】(1)证出GB=GC=GD=CF,由菱形的性质的CD=CF=DE,DE∥CG,则DE =GC,证出四边形CEDG是平行四边形,进而得出结论;(2)过点G作GH⊥BC于H,设DF交CE于点N,由等腰三角形的性质得CH=BH=BC=,证出△CDG是等边三角形,得∠GCD=60°,由三角函数定义求出CG=1,则CD=1,由菱形的性质得DN=FN,CN⊥DF,∠DCE=∠FCE=60°,由三角函数定义求出DN=,则DF=2DN=.【解题过程】解:(1)四边形CEDG是菱形,理由如下:∵四边形ABCD为矩形,G是对角线BD的中点,∴GB=GC=GD,∵CF=GC,∴GB=GC=GD=CF,∵四边形DCFE是菱形,∴CD=CF=DE,DE∥CG,∴DE=GC,∴四边形CEDG是平行四边形,∵GD=GC,∴四边形CEDG是菱形;(2)过点G作GH⊥BC于H,设DF交CE于点N,如图所示:∵CD=CF,GB=GD=GC=CF,∴CH=BH=BC=,△CDG是等边三角形,∴∠GCD=60°,∴∠DCF=180°﹣∠GCD=180°﹣60°=120°,∵四边形ABCD为矩形,∴∠BCD=90°,∴∠GCH=90°﹣60°=30°,∴CG===1,∴CD=1,∵四边形DCFE是菱形,∴DN=FN,CN⊥DF,∠DCE=∠FCE=∠DCF=×120°=60°,在Rt△CND中,DN=CD•sin∠DCE=1×sin60°=1×=,∴DF=2DN=2×=.【总结归纳】本题考查了矩形的性质、菱形的判定与性质、平行四边形的判定与性质、等边三角形的判定与性质、等腰三角形的性质以及三角函数等知识;熟练掌握矩形的性质和菱形的性质是解题的关键.21.(13分)为了加强学生的垃圾分类意识,某校对学生进行了一次系统全面的垃圾分类宣传.为了解这次宣传的效果,从全校学生中随机抽取部分学生进行了一次测试,测试结果共分为四个等级:A.优秀;B.良好;C.及格:D.不及格.根据调查统计结果,绘制了如图所示的不完整的统计表.垃圾分类知识测试成绩统计表测试等级百分比人数A.优秀5% 20B.良好60C.及格45% mD.不及格n请结合统计表,回答下列问题:(1)求本次参与调查的学生人数及m,n的值;(2)如果测试结果为“良好”及以上即为对垃圾分类知识比较了解,已知该校学生总数为5600人,请根据本次抽样调查的数据估计全校比较了解垃圾分类知识的学生人数;(3)为了进一步在学生中普及垃圾分类知识,学校准备再开展一次关于垃圾分类的知识竞赛,要求每班派一人参加.某班要从在这次测试成绩为优秀的小明和小亮中选一人参加.班长设计了如下游戏来确定人选,具体规则是:把四个完全相同的乒乓球分别标上数字1,2,3,4.然后放到一个不透明的袋中充分摇匀,两人同时从袋中各摸出一个球.若摸出的两个球上的数字和为奇数,则小明参加,否则小亮参加.请用树状图或列表法说明这个游戏规则是否公平.【知识考点】全面调查与抽样调查;用样本估计总体;统计表;列表法与树状图法;游戏公平性.【思路分析】(1)由优秀的人数除以所占比例得出本次参与调查的学生人数;进而求出m和n 的值;(2)由总人数乘以良好和优秀所占比例即可;(3)先画树状图展示所有12种等可能的结果,找出和为奇数的结果有8种,再计算出小明参加和小亮参加的概率,比较两概率的大小可判断这个游戏规则是否公平.【解题过程】解:(1)本次参与调查的学生人数为:20÷5%=400(人),m=400×45%=180,∵400﹣20﹣60﹣180=140,∴n=140÷400×100%=35%;(2)5600×=1120(人),即估计全校比较了解垃圾分类知识的学生人数为1120人;(3)画树状图为:共有12种等可能的结果,其中和为奇数的结果有8种,∴P(小明参加)==,P(小亮参加)=1﹣=,∵≠,∴这个游戏规则不公平.【总结归纳】本题考查了列表法与树状图法、游戏的公平性、统计表、样本估计总体以及概率公式等知识;画出树状图是解题的关键.22.(11分)如图,一次函数y1=ax+b与反比例函数y2=的图象交于A、B两点.点A的横坐标为2,点B的纵坐标为1.(1)求a,b的值.(2)在反比例y2=第三象限的图象上找一点P,使点P到直线AB的距离最短,求点P的坐标.【知识考点】反比例函数与一次函数的交点问题.【思路分析】(1)首先确定A,B两点坐标,再利用待定系数法求解即可.(2)过点P作直线PM∥AB,当直线PM与反比例函数只有一个交点时,点P到直线AB的距离最短,构建方程组把问题转化为一元二次方程,利用判别式=0,构建方程求解即可.【解题过程】解:(1)∵一次函数y1=ax+b与反比例函数y2=的图象交于A、B两点.点A 的横坐标为2,点B的纵坐标为1,∴A(2,2),B(4,1),则有,解得.(2)过点P作直线PM∥AB,当直线PM与反比例函数只有一个交点时,点P到直线AB的距离最短,设直线PM的解析式为y=﹣x+n,由,消去y得到,x2﹣2nx+8=0,由题意,△=0,∴4n2﹣32=0,∴n=﹣2或2(舍弃),解得,∴P(﹣2,﹣).【总结归纳】本题考查反比例函数与一次函数的交点问题,二元一次方程的根的判别式等知识,解题的关键是理解题意,灵活运用所学知识解决问题.23.(12分)推进农村土地集约式管理,提高土地的使用效率是新农村建设的一项重要举措.某村在小城镇建设中集约了2400亩土地,计划对其进行平整.经投标,由甲乙两个工程队来完成平整任务.甲工程队每天可平整土地45亩,乙工程队每天可平整土地30亩.已知乙工程队每天的工程费比甲工程队少500元,当甲工程队所需工程费为12000元,乙工程队所需工程费为9000元时,两工程队工作天数刚好相同.(1)甲乙两个工程队每天各需工程费多少元?(2)现由甲乙两个工程队共同参与土地平整,已知两个工程队工作天数均为正整数,且所有土地刚好平整完,总费用不超过110000元.①甲乙两工程队分别工作的天数共有多少种可能?②写出其中费用最少的一种方案,并求出最低费用.【知识考点】二元一次方程的应用;分式方程的应用;一次函数的应用.【思路分析】(1)设甲每天需工程费x元、乙工程队每天需工程费(x﹣500)元,构建方程求解即可.(2)①设甲平整x天,则乙平整y天.由题意,45x+30y=2400 ①,且2000x+1500y≤110000②把问题转化为不等式解决即可.②总费用w=2000x+1500(80﹣1.5x)=﹣250x+120000,利用函数的性质解答即可.【解题过程】解:(1)设甲每天需工程费x元、乙工程队每天需工程费(x﹣500)元,。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2020年四川省德阳市中考数学试卷一、选择题(本大题共12个小题,每小题4分,共48分)在每小题给出的四个选项中,有且仅有一项是符合题目要求的.1.(4分)的相反数是()A.3B.﹣3C.D.2.(4分)下列运算正确的是()A.a2•a3=a6B.(3a)3 =9a3C.3a﹣2a=1D.(﹣2a2)3=﹣8a63.(4分)如图所示,直线EF∥GH,射线AC分别交直线EF、GH于点B和点C,AD⊥EF于点D,如果∠A=20°,则∠ACG=()A.160°B.110°C.100°D.70°4.(4分)下列说法错误的是()A.方差可以衡量一组数据的波动大小B.抽样调查抽取的样本是否具有代表性,直接关系对总体估计的准确程度C.一组数据的众数有且只有一个D.抛掷一枚图钉针尖朝上的概率,不能用列举法求得5.(4分)多边形的内角和不可能为()A.180°B.540°C.1080°D.1200°6.(4分)某商场销售A,B,C,D四种商品,它们的单价依次是50元,30元,20元,10元.某天这四种商品销售数量的百分比如图所示,则这天销售的四种商品的平均单价是()A.19.5元B.21.5元C.22.5元D.27.5元7.(4分)半径为R的圆内接正三角形、正方形、正六边形的边心距分别为a,b,c,则a,b,c的大小关系是()A.a<b<c B.b<a<c C.a<c<b D.c<b<a8.(4分)已知函数y=,当函数值为3时,自变量x的值为()A.﹣2B.﹣C.﹣2或﹣D.﹣2或﹣9.(4分)如图是一个几何体的三视图,根据图中所示数据计算这个几何体的表面积是()A.20πB.18πC.16πD.14π10.(4分)如图,Rt△ABC中,∠A=30°,∠ABC=90°.将Rt△ABC绕点B逆时针方向旋转得到△A'BC'.此时恰好点C在A'C'上,A'B交AC于点E,则△ABE与△ABC的面积之比为()A.B.C.D.11.(4分)已知:等腰直角三角形ABC的腰长为4,点M在斜边AB上,点P为该平面内一动点,且满足PC=2,则PM的最小值为()A.2B.2﹣2C.2+2D.212.(4分)已知不等式ax+b>0的解集为x<2,则下列结论正确的个数是()(1)2a+b=0;(2)当c>a时,函数y=ax2+bx+c的图象与x轴没有公共点;(3)当c>0时,抛物线y=ax2+bx+c的顶点在直线y=ax+b的上方;(4)如果b<3且2a﹣mb﹣m=0,则m的取值范围是﹣<m<0.A.1B.2C.3D.4二、填空题(本大题共6个小题,每小题4分,共24分,将答案填在答题卡对应的题号后的横线上)13.(4分)小明在体考时选择了投掷实心球,如图是体育老师记录的小明在训练时投掷实心球的6次成绩的折线统计图.这6次成绩的中位数是.14.(4分)把ax2﹣4a分解因式的结果是.15.(4分)如图,在平行四边形ABCD中,BE平分∠ABC,CF⊥BE,连接AE,G是AB 的中点,连接GF,若AE=4,则GF=.16.(4分)将正偶数按照如下规律进行分组排列,依次为(2),(4,6),(8,10,12),(14,16,18,20)…,我们称“4”是第2组第1个数字,“16”是第4组第2个数字,若2020是第m组第n个数字,则m+n=.17.(4分)若实数x,y满足x+y2=3,设s=x2+8y2,则s的取值范围是.18.(4分)如图,海中有一小岛A,它周围10.5海里内有暗礁,渔船跟踪鱼群由西向东航行.在B点测得小岛A在北偏东60°方向上,航行12海里到达D点,这时测得小岛A 在北偏东30°方向上.如果渔船不改变航线继续向东航行,那么渔船还需航行海里就开始有触礁的危险.三、解答题(本大题共7小题,共78分.答应写出文字说明、证明过程或推演步骤)19.(7分)计算:(﹣2)﹣2﹣|﹣2|+(﹣)0﹣﹣2cos30°.20.(8分)如图,四边形ABCD为矩形,G是对角线BD的中点.连接GC并延长至F,使CF=GC,以DC,CF为邻边作菱形DCFE,连接CE.(1)判断四边形CEDG的形状,并证明你的结论.(2)连接DF,若BC=,求DF的长.21.(13分)为了加强学生的垃圾分类意识,某校对学生进行了一次系统全面的垃圾分类宣传.为了解这次宣传的效果,从全校学生中随机抽取部分学生进行了一次测试,测试结果共分为四个等级:A.优秀;B.良好;C.及格:D.不及格.根据调查统计结果,绘制了如图所示的不完整的统计表.垃圾分类知识测试成绩统计表测试等级百分比人数A.优秀5%20B.良好60C.及格45%mD.不及格n请结合统计表,回答下列问题:(1)求本次参与调查的学生人数及m,n的值;(2)如果测试结果为“良好”及以上即为对垃圾分类知识比较了解,已知该校学生总数为5600人,请根据本次抽样调查的数据估计全校比较了解垃圾分类知识的学生人数;(3)为了进一步在学生中普及垃圾分类知识,学校准备再开展一次关于垃圾分类的知识竞赛,要求每班派一人参加.某班要从在这次测试成绩为优秀的小明和小亮中选一人参加.班长设计了如下游戏来确定人选,具体规则是:把四个完全相同的乒乓球分别标上数字1,2,3,4.然后放到一个不透明的袋中充分摇匀,两人同时从袋中各摸出一个球.若摸出的两个球上的数字和为奇数,则小明参加,否则小亮参加.请用树状图或列表法说明这个游戏规则是否公平.22.(11分)如图,一次函数y1=ax+b与反比例函数y2=的图象交于A、B两点.点A的横坐标为2,点B的纵坐标为1.(1)求a,b的值.(2)在反比例y2=第三象限的图象上找一点P,使点P到直线AB的距离最短,求点P的坐标.23.(12分)推进农村土地集约式管理,提高土地的使用效率是新农村建设的一项重要举措.某村在小城镇建设中集约了2400亩土地,计划对其进行平整.经投标,由甲乙两个工程队来完成平整任务.甲工程队每天可平整土地45亩,乙工程队每天可平整土地30亩.已知乙工程队每天的工程费比甲工程队少500元,当甲工程队所需工程费为12000元,乙工程队所需工程费为9000元时,两工程队工作天数刚好相同.(1)甲乙两个工程队每天各需工程费多少元?(2)现由甲乙两个工程队共同参与土地平整,已知两个工程队工作天数均为正整数,且所有土地刚好平整完,总费用不超过110000元.①甲乙两工程队分别工作的天数共有多少种可能?②写出其中费用最少的一种方案,并求出最低费用.24.(13分)如图,在⊙O中,弦AB与直径CD垂直,垂足为M,CD的延长线上有一点P,满足∠PBD=∠DAB.过点P作PN⊥CD,交OA的延长线于点N,连接DN交AP于点H.(1)求证:BP是⊙O的切线;(2)如果OA=5,AM=4,求PN的值;(3)如果PD=PH,求证:AH•OP=HP•AP.25.(14分)如图1,抛物线y=ax2﹣2ax﹣3a(a≠0)与x轴交于点A,B.与y轴交于点C.连接AC,BC.已知△ABC的面积为2.(1)求抛物线的解析式;(2)平行于x轴的直线与抛物线从左到右依次交于P,Q两点.过P,Q向x轴作垂线,垂足分别为G,H.若四边形PGHQ为正方形,求正方形的边长;(3)如图2,平行于y轴的直线交抛物线于点M,交x轴于点N(2,0).点D是抛物线上A,M之间的一动点,且点D不与A,M重合,连接DB交MN于点E.连接AD并延长交MN于点F.在点D运动过程中,3NE+NF是否为定值?若是,求出这个定值;若不是,请说明理由.2020年四川省德阳市中考数学试卷参考答案与试题解析一、选择题(本大题共12个小题,每小题4分,共48分)在每小题给出的四个选项中,有且仅有一项是符合题目要求的.1.(4分)的相反数是()A.3B.﹣3C.D.【分析】在一个数前面放上“﹣”,就是该数的相反数.【解答】解:的相反数为﹣.故选:D.2.(4分)下列运算正确的是()A.a2•a3=a6B.(3a)3 =9a3C.3a﹣2a=1D.(﹣2a2)3=﹣8a6【分析】利用同底数幂的乘法法则、积的乘方运算法则、合并同类项法则分别进行计算即可.【解答】解:A、a2•a3=a5,故原题计算错误;B、(3a)3 =27a3,故原题计算错误;C、3a﹣2a=a,故原题计算错误;D、(﹣2a2)3=﹣8a6,故原题计算正确;故选:D.3.(4分)如图所示,直线EF∥GH,射线AC分别交直线EF、GH于点B和点C,AD⊥EF于点D,如果∠A=20°,则∠ACG=()A.160°B.110°C.100°D.70°【分析】利用三角形的内角和定理,由AD⊥EF,∠A=20°可得∠ABD=70°,由平行线的性质定理可得∠ACH,易得∠ACG.【解答】解:∵AD⊥EF,∠A=20°,∴∠ABD=180°﹣∠A﹣∠ABD=180°﹣20°﹣90°=70°,∵EF∥GH,∴∠ACH=∠ABD=70°,∴∠ACG=180°﹣∠ACH=180°﹣70°=110°,故选:B.4.(4分)下列说法错误的是()A.方差可以衡量一组数据的波动大小B.抽样调查抽取的样本是否具有代表性,直接关系对总体估计的准确程度C.一组数据的众数有且只有一个D.抛掷一枚图钉针尖朝上的概率,不能用列举法求得【分析】根据各个选项中的说法,可以判断是否正确,从而可以解答本题.【解答】解:方差可以衡量一组数据的波动大小,故选项A正确;抽样调查抽取的样本是否具有代表性,直接关系对总体估计的准确程度,故选项B正确;一组数据的众数有一个或者几个,故选项C错误;抛掷一枚图钉针尖朝上的概率,不能用列举法求得,故选项D正确;故选:C.5.(4分)多边形的内角和不可能为()A.180°B.540°C.1080°D.1200°【分析】多边形的内角和可以表示成(n﹣2)•180°(n≥3且n是整数),则多边形的内角和是180度的倍数,由此即可求出答案.【解答】解:因为在这四个选项中不是180°的倍数的只有1200°.故选:D.6.(4分)某商场销售A,B,C,D四种商品,它们的单价依次是50元,30元,20元,10元.某天这四种商品销售数量的百分比如图所示,则这天销售的四种商品的平均单价是()A.19.5元B.21.5元C.22.5元D.27.5元【分析】根据加权平均数定义即可求出这天销售的四种商品的平均单价.【解答】解:这天销售的四种商品的平均单价是:50×10%+30×15%+20×55%+10×20%=22.5(元),故选:C.7.(4分)半径为R的圆内接正三角形、正方形、正六边形的边心距分别为a,b,c,则a,b,c的大小关系是()A.a<b<c B.b<a<c C.a<c<b D.c<b<a【分析】根据三角函数即可求解.【解答】解:设圆的半径为R,则正三角形的边心距为a=R×cos60°=R.四边形的边心距为b=R×cos45°=R,正六边形的边心距为c=R×cos30°=R.∵R R R,∴c<b<a,故选:D.8.(4分)已知函数y=,当函数值为3时,自变量x的值为()A.﹣2B.﹣C.﹣2或﹣D.﹣2或﹣【分析】根据分段函数的解析式分别计算,即可得出结论.【解答】解:若x<2,当y=3时,﹣x+1=3,解得:x=﹣2;若x≥2,当y=3时,﹣=3,解得:x=﹣,不合题意舍去;∴x=﹣2,故选:A.9.(4分)如图是一个几何体的三视图,根据图中所示数据计算这个几何体的表面积是()A.20πB.18πC.16πD.14π【分析】由几何体的三视图可得出原几何体为圆锥和圆柱组合体,根据图中给定数据求出表面积即可.【解答】解:这个几何体的表面积=π•22+π•3•2+2π•2•2=18π,故选:B.10.(4分)如图,Rt△ABC中,∠A=30°,∠ABC=90°.将Rt△ABC绕点B逆时针方向旋转得到△A'BC'.此时恰好点C在A'C'上,A'B交AC于点E,则△ABE与△ABC的面积之比为()A.B.C.D.【分析】由旋转的性质得出BC=BC',∠ACB=∠A'C'B=60°,则△BCC'是等边三角形,∠CBC'=60°,得出∠BEA=90°,设CE=a,则BE=a,AE=3a,求出,可求出答案.【解答】解:∵∠A=30°,∠ABC=90°,∴∠ACB=60°,∵将Rt△ABC绕点B逆时针方向旋转得到△A'BC',∴BC=BC',∠ACB=∠A'C'B=60°,∴△BCC'是等边三角形,∴∠CBC'=60°,∴∠ABA'=60°,∴∠BEA=90°,设CE=a,则BE=a,AE=3a,∴,∴,∴△ABE与△ABC的面积之比为.故选:D.11.(4分)已知:等腰直角三角形ABC的腰长为4,点M在斜边AB上,点P为该平面内一动点,且满足PC=2,则PM的最小值为()A.2B.2﹣2C.2+2D.2【分析】根据等腰直角三角形的性质得到斜边AB=4,由已知条件得到点P在以C为圆心,PC为半径的圆上,当点P在斜边AB的中线上时,PM的值最小,于是得到结论.【解答】解:∵等腰直角三角形ABC的腰长为4,∴斜边AB=4,∵点P为该平面内一动点,且满足PC=2,∴点P在以C为圆心,PC为半径的圆上,当点P在斜边AB的中线上时,PM的值最小,∵△ABC是等腰直角三角形,∴CM=AB=2,∵PC=2,∴PM=CM﹣CP=2﹣2,故选:B.12.(4分)已知不等式ax+b>0的解集为x<2,则下列结论正确的个数是()(1)2a+b=0;(2)当c>a时,函数y=ax2+bx+c的图象与x轴没有公共点;(3)当c>0时,抛物线y=ax2+bx+c的顶点在直线y=ax+b的上方;(4)如果b<3且2a﹣mb﹣m=0,则m的取值范围是﹣<m<0.A.1B.2C.3D.4【分析】由不等式的解集得出a<0,﹣=2,即b=﹣2a,从而得出2a+b=0,即可判断(1);根据△=4a(a﹣c)>0即可判断(2);求得抛物线的顶点为(1,a﹣c)即可判断(3);求得0<﹣<3,得出不等式组的解集为﹣<m<0即可判断(4).【解答】解:(1)∵不等式ax+b>0的解集为x<2,∴a<0,﹣=2,即b=﹣2a,∴2a+b=0,故结论正确;(2)函数y=ax2+bx+c中,令y=0,则ax2+bx+c=0,∵即b=﹣2a,∴△=b2﹣4ac=(﹣2a)2﹣4ac=4a(a﹣c),∵a<0,c>a,∴△=4a(a﹣c)>0,∴当c>a时,函数y=ax2+bx+c的图象与x轴有两个公共点,故结论错误;(3)∵b=﹣2a,∴﹣=1,==c﹣a,∴抛物线y=ax2+bx+c的顶点为(1,c﹣a),当x=1时,直线y=ax+b=a+b=a﹣2a=﹣a>0当c>0时,c﹣a>﹣a>0,∴抛物线y=ax2+bx+c的顶点在直线y=ax+b的上方,故结论正确;(4)∵b=﹣2a,∴由2a﹣mb﹣m=0,得到﹣b﹣mb﹣m=0,∴b=﹣,如果b<3,则0<﹣<3,∴﹣<m<0,故结论正确;故选:C.二、填空题(本大题共6个小题,每小题4分,共24分,将答案填在答题卡对应的题号后的横线上)13.(4分)小明在体考时选择了投掷实心球,如图是体育老师记录的小明在训练时投掷实心球的6次成绩的折线统计图.这6次成绩的中位数是9.75.【分析】根据中位数定义:将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.即可得解.【解答】解:由6次成绩的折线统计图可知:这6次成绩从小到大排列为:9.5,9.6,9.7,9.8,10,10.2,所以这6次成绩的中位数是:=9.75.故答案为:9.75.14.(4分)把ax2﹣4a分解因式的结果是a(x+2)(x﹣2).【分析】先提出公因式a,再利用平方差公式因式分解.【解答】解:ax2﹣4a=a(x2﹣4)=a(x+2)(x﹣2).故答案为:a(x+2)(x﹣2).15.(4分)如图,在平行四边形ABCD中,BE平分∠ABC,CF⊥BE,连接AE,G是AB 的中点,连接GF,若AE=4,则GF=2.【分析】根据平行四边形的性质结合角平分线的定义可求解∠CBE=∠BEC,即可得CB =CE,利用等腰三角形的性质可怎么BF=EF,进而可得GF是△ABE的中位线,根据三角形的中位线的性质可求解.【解答】解:在平行四边形ABCD中,AB∥CD,∴∠ABE=∠BEC.∵BE平分∠ABC,∴∠ABE=∠CBE,∴∠CBE=∠BEC,∴CB=CE.∵CF⊥BE,∴BF=EF.∵G是AB的中点,∴GF是△ABE的中位线,∴GF=BE,∵BE=4,∴GF=2.故答案为2.16.(4分)将正偶数按照如下规律进行分组排列,依次为(2),(4,6),(8,10,12),(14,16,18,20)…,我们称“4”是第2组第1个数字,“16”是第4组第2个数字,若2020是第m组第n个数字,则m+n=65.【分析】根据题目中数字的特点,可知每组的个数依次增大,每组中的数字都是连续的偶数,然后即可求出2020是多少组第多少个数,从而可以得到m、n的值,然后即可得到m+n的值.【解答】解:∵将正偶数按照如下规律进行分组排列,依次为(2),(4,6),(8,10,12),(14,16,18,20)…,∴第m组有m个连续的偶数,∵2020=2×1010,∴2020是第1010个偶数,∵1+2+3+…+44==990,1+2+3+…+45==1035,∴2020是第45组第1010﹣990=20个数,∴m=45,n=20,∴m+n=65,故答案为:65.17.(4分)若实数x,y满足x+y2=3,设s=x2+8y2,则s的取值范围是s≥9.【分析】由已知等式表示出y2,代入s中利用二次函数最值即可确定出s范围.【解答】解:由x+y2=3,得:y2=﹣x+3≥0,∴x≤3,代入得:s=x2+8y2=x2+8(﹣x+3)=x2﹣8x+24=(x﹣4)2+8,当x=3时,s=(3﹣4)2+8=9,∴s≥9;故答案为:s≥9.18.(4分)如图,海中有一小岛A,它周围10.5海里内有暗礁,渔船跟踪鱼群由西向东航行.在B点测得小岛A在北偏东60°方向上,航行12海里到达D点,这时测得小岛A 在北偏东30°方向上.如果渔船不改变航线继续向东航行,那么渔船还需航行 4.5海里就开始有触礁的危险.【分析】过A作AC⊥BD于点C,求出∠CAD、∠CAB的度数,求出∠BAD和∠ABD,根据等角对等边得出AD=BD=12,根据含30度角的直角三角形性质求出CD,根据勾股定理求出AC即可.【解答】解:只要求出A到BD的最短距离是否在以A为圆心,以10.5海里的圆内或圆上即可,如图,过A作AC⊥BD于点C,则AC的长是A到BD的最短距离,∵∠CAD=30°,∠CAB=60°,∴∠BAD=60°﹣30°=30°,∠ABD=90°﹣60°=30°,∴∠ABD=∠BAD,∴BD=AD=12海里,∵∠CAD=30°,∠ACD=90°,∴CD=AD=6海里,由勾股定理得:AC==6(海里),如图,设渔船还需航行x海里就开始有触礁的危险,即到达点D′时有触礁的危险,在直角△AD′C中,由勾股定理得:(6﹣x)2+(6)2=10.52.解得x=4.5.渔船还需航行4.5海里就开始有触礁的危险.故答案是:4.5.三、解答题(本大题共7小题,共78分.答应写出文字说明、证明过程或推演步骤)19.(7分)计算:(﹣2)﹣2﹣|﹣2|+(﹣)0﹣﹣2cos30°.【分析】首先计算乘方、开方,然后计算乘法,最后从左向右依次计算,求出算式的值是多少即可.【解答】解:(﹣2)﹣2﹣|﹣2|+(﹣)0﹣﹣2cos30°=﹣2++1﹣2﹣2×=﹣2.20.(8分)如图,四边形ABCD为矩形,G是对角线BD的中点.连接GC并延长至F,使CF=GC,以DC,CF为邻边作菱形DCFE,连接CE.(1)判断四边形CEDG的形状,并证明你的结论.(2)连接DF,若BC=,求DF的长.【分析】(1)证出GB=GC=GD=CF,由菱形的性质的CD=CF=DE,DE∥CG,则DE=GC,证出四边形CEDG是平行四边形,进而得出结论;(2)过点G作GH⊥BC于H,设DF交CE于点N,由等腰三角形的性质得CH=BH=BC=,证出△CDG是等边三角形,得∠GCD=60°,由三角函数定义求出CG=1,则CD=1,由菱形的性质得DN=FN,CN⊥DF,∠DCE=∠FCE=60°,由三角函数定义求出DN=,则DF=2DN=.【解答】解:(1)四边形CEDG是菱形,理由如下:∵四边形ABCD为矩形,G是对角线BD的中点,∴GB=GC=GD,∵CF=GC,∴GB=GC=GD=CF,∵四边形DCFE是菱形,∴CD=CF=DE,DE∥CG,∴DE=GC,∴四边形CEDG是平行四边形,∵GD=GC,∴四边形CEDG是菱形;(2)过点G作GH⊥BC于H,设DF交CE于点N,如图所示:∵CD=CF,GB=GD=GC=CF,∴CH=BH=BC=,△CDG是等边三角形,∴∠GCD=60°,∴∠DCF=180°﹣∠GCD=180°﹣60°=120°,∵四边形ABCD为矩形,∴∠BCD=90°,∴∠GCH=90°﹣60°=30°,∴CG===1,∴CD=1,∵四边形DCFE是菱形,∴DN=FN,CN⊥DF,∠DCE=∠FCE=∠DCF=×120°=60°,在Rt△CND中,DN=CD•sin∠DCE=1×sin60°=1×=,∴DF=2DN=2×=.21.(13分)为了加强学生的垃圾分类意识,某校对学生进行了一次系统全面的垃圾分类宣传.为了解这次宣传的效果,从全校学生中随机抽取部分学生进行了一次测试,测试结果共分为四个等级:A.优秀;B.良好;C.及格:D.不及格.根据调查统计结果,绘制了如图所示的不完整的统计表.垃圾分类知识测试成绩统计表测试等级百分比人数A.优秀5%20B.良好60C.及格45%mD.不及格n请结合统计表,回答下列问题:(1)求本次参与调查的学生人数及m,n的值;(2)如果测试结果为“良好”及以上即为对垃圾分类知识比较了解,已知该校学生总数为5600人,请根据本次抽样调查的数据估计全校比较了解垃圾分类知识的学生人数;(3)为了进一步在学生中普及垃圾分类知识,学校准备再开展一次关于垃圾分类的知识竞赛,要求每班派一人参加.某班要从在这次测试成绩为优秀的小明和小亮中选一人参加.班长设计了如下游戏来确定人选,具体规则是:把四个完全相同的乒乓球分别标上数字1,2,3,4.然后放到一个不透明的袋中充分摇匀,两人同时从袋中各摸出一个球.若摸出的两个球上的数字和为奇数,则小明参加,否则小亮参加.请用树状图或列表法说明这个游戏规则是否公平.【分析】(1)由优秀的人数除以所占比例得出本次参与调查的学生人数;进而求出m和n的值;(2)由总人数乘以良好和优秀所占比例即可;(3)先画树状图展示所有12种等可能的结果,找出和为奇数的结果有8种,再计算出小明参加和小亮参加的概率,比较两概率的大小可判断这个游戏规则是否公平.【解答】解:(1)本次参与调查的学生人数为:20÷5%=400(人),m=400×45%=180,∵400﹣20﹣60﹣180=140,∴n=140÷400×100%=35%;(2)5600×=1120(人),即估计全校比较了解垃圾分类知识的学生人数为1120人;(3)画树状图为:共有12种等可能的结果,其中和为奇数的结果有8种,∴P(小明参加)==,P(小亮参加)=1﹣=,∵≠,∴这个游戏规则不公平.22.(11分)如图,一次函数y1=ax+b与反比例函数y2=的图象交于A、B两点.点A的横坐标为2,点B的纵坐标为1.(1)求a,b的值.(2)在反比例y2=第三象限的图象上找一点P,使点P到直线AB的距离最短,求点P的坐标.【分析】(1)首先确定A,B两点坐标,再利用待定系数法求解即可.(2)过点P作直线PM∥AB,当直线PM与反比例函数只有一个交点时,点P到直线AB的距离最短,构建方程组把问题转化为一元二次方程,利用判别式=0,构建方程求解即可.【解答】解:(1)∵一次函数y1=ax+b与反比例函数y2=的图象交于A、B两点.点A的横坐标为2,点B的纵坐标为1,∴A(2,2),B(4,1),则有,解得.(2)过点P作直线PM∥AB,当直线PM与反比例函数只有一个交点时,点P到直线AB的距离最短,设直线PM的解析式为y=﹣x+n,由,消去y得到,x2﹣2nx+8=0,由题意,△=0,∴4n2﹣32=0,∴n=﹣2或2(舍弃),解得,∴P(﹣2,﹣).23.(12分)推进农村土地集约式管理,提高土地的使用效率是新农村建设的一项重要举措.某村在小城镇建设中集约了2400亩土地,计划对其进行平整.经投标,由甲乙两个工程队来完成平整任务.甲工程队每天可平整土地45亩,乙工程队每天可平整土地30亩.已知乙工程队每天的工程费比甲工程队少500元,当甲工程队所需工程费为12000元,乙工程队所需工程费为9000元时,两工程队工作天数刚好相同.(1)甲乙两个工程队每天各需工程费多少元?(2)现由甲乙两个工程队共同参与土地平整,已知两个工程队工作天数均为正整数,且所有土地刚好平整完,总费用不超过110000元.①甲乙两工程队分别工作的天数共有多少种可能?②写出其中费用最少的一种方案,并求出最低费用.【分析】(1)设甲每天需工程费x元、乙工程队每天需工程费(x﹣500)元,构建方程求解即可.(2)①设甲平整x天,则乙平整y天.由题意,45x+30y=2400 ①,且2000x+1500y ≤110000 ②把问题转化为不等式解决即可.②总费用w=2000x+1500(80﹣1.5x)=﹣250x+120000,利用函数的性质解答即可.【解答】解:(1)设甲每天需工程费x元、乙工程队每天需工程费(x﹣500)元,由题意,=,解得x=2000,经检验,x=2000是分式方程的解.答:甲每天需工程费2000元、乙工程队每天需工程费1500元.(2)①设甲平整x天,则乙平整y天.由题意,45x+30y=2400 ①,且2000x+1500y≤110000 ②,由①得到y=80﹣1.5x③,把③代入②得到,2000x+1500(80﹣1.5x)≤110000,解得,x≥40,∵y>0,∴80﹣1.5x>0,x<53.3,∴40≤x<53.3,∵x,y是正整数,∴x=40,y=20或x=42,y=17或x=44,y=14或x=46,y=11或x=48,y=8,或x =50,y=5或x=52,y=2.∴甲乙两工程队分别工作的天数共有7种可能.②总费用w=2000x+1500(80﹣1.5x)=﹣250x+120000,∵﹣250<0,∴w随x的增大而减小,∴x=52时,w的最小值=107000(元).答:最低费用为107000元.24.(13分)如图,在⊙O中,弦AB与直径CD垂直,垂足为M,CD的延长线上有一点P,满足∠PBD=∠DAB.过点P作PN⊥CD,交OA的延长线于点N,连接DN交AP于点H.(1)求证:BP是⊙O的切线;(2)如果OA=5,AM=4,求PN的值;(3)如果PD=PH,求证:AH•OP=HP•AP.【分析】(1)连接BC,OB,证明OB⊥PB即可.(2)解直角三角形求出OM,利用相似三角形的性质求出OP,再利用平行线分线段成比例定理求出PN即可.(3)证明△NAH∽△NPD,推出=,证明△P AN∽△OAP,推出=,推出=可得结论.【解答】(1)证明:如图,连接BC,OB.∵CD是直径,∴∠CBD=90°,∵OC=OB,∴∠C=∠CBO,∵∠C=∠BAD,∠PBD=∠DAB,∴∠CBO=∠PBD,∴∠OBP=∠CBD=90°,∴PB⊥OB,∴PB是⊙O的切线.(2)解:∵CD⊥AB,∴P A=PB,∵OA=OB,OP=OP,∴△P AO≌△PBO(SSS),∴∠OAP=∠OBP=90°,∵∠AMO=90°,∴OM===3,∵∠AOM=∠AOP,∠OAP=∠AMO,∴△AOM∽△POA,∴=,∴=,∴OP=,∵PN⊥PC,∴∠NPC=∠AMO=90°,∴=,∴=,∴PN=.(3)证明:∵PD=PH,∴∠PDH=∠PHD,∵∠PDH=∠POA+∠OND,∠PHD=∠APN+∠PND,∴∠POA+∠APO=90°,∠APN+∠APO=90°,∴∠POA=∠ANP,∴∠ANH=∠PND,∵∠PDN=∠PHD=∠AHN,∴△NAH∽△NPD,∴=,∵∠APN=∠POA,∠P AN=∠P AO=90°,∴△P AN∽△OAP,∴=,∴=,∴==,∴AH•OP=HP•AP.25.(14分)如图1,抛物线y=ax2﹣2ax﹣3a(a≠0)与x轴交于点A,B.与y轴交于点C.连接AC,BC.已知△ABC的面积为2.(1)求抛物线的解析式;(2)平行于x轴的直线与抛物线从左到右依次交于P,Q两点.过P,Q向x轴作垂线,垂足分别为G,H.若四边形PGHQ为正方形,求正方形的边长;(3)如图2,平行于y轴的直线交抛物线于点M,交x轴于点N(2,0).点D是抛物线上A,M之间的一动点,且点D不与A,M重合,连接DB交MN于点E.连接AD并延长交MN于点F.在点D运动过程中,3NE+NF是否为定值?若是,求出这个定值;若不是,请说明理由.【分析】(1)先将抛物线解析式变形,可得A和B的坐标,从而得AB=1+3=4,根据三角形ABC的面积为2可得OC的长,确定点C的坐标,根据点C的坐标,利用待定系数法即可求出二次函数的解析式;(2)设点P的纵坐标为m,当y=m时,﹣x2+x+1=m,解方程可得P和Q两点的坐标,从而得G和H的坐标,再利用正方形的性质可得出关于m的方程,解之即可得出结论;(3)设点D(n,﹣n2+n+1),利用待定系数法求直线AD和BD的解析式,表示FN 和OK的长,直接代入计算可得结论.【解答】解:(1)如图1,y=ax2﹣2ax﹣3a=a(x2﹣2x﹣3)=a(x﹣3)(x+1),∴A(﹣1,0),B(3,0),∴AB=4,∵△ABC的面积为2,即,∴,∴OC=1,∴C(0,1),将C(0,1)代入y=ax2﹣2ax﹣3a,得:﹣3a=1,∴a=﹣,∴该二次函数的解析式为y=﹣x2+x+1;(2)如图2,设点P的纵坐标为m,当y=m时,﹣x2+x+1=m,解得:x1=1+,x2=1﹣,∴点P的坐标为(1﹣,m),点Q的坐标为(1+,m),∴点G的坐标为(1﹣,0),点H的坐标为(1+,0),∵矩形PGHQ为正方形,∴1+﹣(1﹣)=m,解得:m1=﹣6﹣2,m2=﹣6+2,∴当四边形PGHQ为正方形时,边长为6+2或2﹣6;(3)如图3,设点D(n,﹣n2+n+1),延长BD交y轴于K,∵A(﹣1,0),设AD的解析式为:y=kx+b,则,解得:,∴AD的解析式为:y=(﹣)x﹣,当x=2时,y=﹣n+2﹣n+1=﹣n+3,∴F(2,3﹣n),∴FN=3﹣n,同理得直线BD的解析式为:y=(﹣)x+n+1,∴K(0,n+1),∴OK=n+1,∵N(2,0),B(3,0),∴,∵EN∥OK,∴,∴OK=3EN,∴3EN+FN=OK+FN=n+1+3﹣n=4,∴在点D运动过程中,3NE+NF为定值4.。