量子力学第一章习题答案

合集下载

钱伯初量子力学答案(修正版)

钱伯初量子力学答案(修正版)

0≤ x≤a x < a, x > a
⎧ h2 ψ ′′ = Eψ ⎪− 或: ⎨ 2m ⎪ψ = 0 ⎩
0< x<a x ≤ 0, x ≥ a
⎧ ⎪ψ ( x) = A cos kx + B sin kx ⎨ ⎪ψ = 0 x ≤ 0, x ≥ a ⎩
由边界条件得:
0< x<a
k=
2mE h
ψ (0) = 0, ψ ( a ) = 0,
2 a
i ⎧ 2 nπ − h E n t sin xe , ⎪ 得: ψ n ( x, t ) = ⎨ a a ⎪ 0, ⎩
0≤x≤a x < a, x > a
2-6
质量为m 的粒子只能沿圆环(半径R)运动,能力算符为 H = −
)
h2 d 2 ,ϕ 为 2mR 2 dϕ 2
旋转角。求能级 (En)和归一化波函数(ψn) 。讨论各能级的简并度。 解:写出 Schrodinger 方程:
(2)
Ⅲ: x > a

(3)
(1)、(3)方程中,由于 U ( x ) = ∞ ,要等式成立,必须
ψ 1 ( x) = 0
ψ 3 ( x) = 0
即粒子不能运动到势阱以外的地方去。 方程(2)可变为
d 2ψ 2 ( x) 2mE + 2 ψ 2 ( x) = 0 dx 2 h
令k2 =
2mE ,得 h2
(1)
(−
(2)
ψ n × (2) − ψ m × (1) 得
( E m − E n )ψ nψ m = − h2 h2 d ′′ − ψ mψ n ′′ ) = − ′ − ψ mψ n ′) (ψ nψ m (ψ nψ m 2m 2m dx

量子力学第一章习题答案

量子力学第一章习题答案

量⼦⼒学第⼀章习题答案第⼀章1.1 由⿊体辐射公式导出维恩位移定律:能量密度极⼤值所对应的波长λm 与温度T 成反⽐,即λm T = b (常量);并近似计算b 的数值,准确到两位有效数字。

解:⿊体辐射的普朗克公式为:)1(833-=kT h e c h νννπρ∵ v=c/λ∴ dv/dλ= -c/λ2⼜∵ρv dv= -ρλdλ∴ρλ=-ρv dv/dλ=8πhc/[λ5(ehc/λkT-1)] 令x=hc/λkT ,则ρλ=8πhc(kT/hc)5x 5/(e x -1)求ρλ极⼤值,即令dρλ(x)/dx=0,得:5(e x -1)=xe x可得: x≈4.965∴ b=λm T=hc/kx≈6.626 *10-34*3*108/(4.965*1.381*10-23)≈2.9*10-3(m K )1.2√. 在0 K 附近,钠的价电⼦能量约为3电⼦伏,求其德布罗意波长。

解: h = 6.626×10-34 J ·s , m e = 9.1×10-31 Kg,, 1 eV = 1.6×10-19 J故其德布罗意波长为:07.0727A λ=== 或λ= h/2mE = 6.626×10-34/(2×9.1×10-31×3×1.6×10-19)1/2 ≈ 7.08 ?1.3 √.氦原⼦的动能是E=32KT (K B 为波尔兹曼常数),求T=1 K 时,氦原⼦的德布罗意波长。

解:h = 6.626×10-34 J ·s , 氦原⼦的质量约为=-26-2711.993104=6.641012kg , 波尔兹曼常数K B =1.381×10-23 J/K故其德布罗意波长为:λ= 6.626×10-34/ (2×-276.6410?×1.5×1.381×10-23×1)1/2≈01.2706A或λ= ⽽KT E 23=601.270610A λ-==?1.4利⽤玻尔-索末菲量⼦化条件,求:a )⼀维谐振⼦的能量:b )在均匀磁场作圆周运动的电⼦轨道的可能半径。

一二三习题答案

一二三习题答案
(A)1(B)2(C)4(D)5
B18.原子轨道指的是下列的哪一种说法?
(A)原子的运动轨迹(B)原子的单电子波函数(C)原子的振动态(D)原子状态
C19.钠原子光谱D线是双重线,其原因是下列的哪一个:
(A)电子的轨道角动量(B)外磁场;(C)自旋轨道耦合(D)3p能级高
C20.对于原子中电子的总能量,下列的哪一个说法是正确的?
D15.如果氢原子的电离能是13.6 eV,则Li2+的电离能是下列的哪一个?
(A)13.6eV,(B)27.2 eV;(C)54.4 eV;(D)122.4 eV
A16.在氢原子中,对于电子的能量,下列的哪一种说法正确?
(A)只与n有关;(B)只与l有关;(C)只与m有关;(D)与n和l有关
B17.测量3d态氢原子的轨道角动量的z轴分量,可得到几个数值?
(C)动量一定有确定值;(D)几个力学量可同时有确定值;
7.试将指数函数e±ix表示成三角函数的形式cosex±isinex
8.微观粒子的任何一个状态都可以用波函数来描述;ψψ*表示粒子出现的概率密度。
D9.Planck常数h的值为下列的哪一个?D
(A)1.38×10-30J/s(B)1.38×10-16J/s(C)6.02×10-27J·s(D)6.62×10-34J·s
(A)CA=0.90,CB=0.10;(B)CA=0.95,CB=0.32;
(C)CA=CB;(D)CA=0.10,CB=0.90;
B7.下列分子的基态中哪个是三重态?
(A)F2(B)O2(C)N2(D)H2+
B8.对分子的三重态,下列哪种说法正确?
(A)分子有一个未成对的电子(B)分子有两个自旋平行的电子
(A)Zeeman(B)Gouy(C)Stark(D)Stern-Gerlach

量子力学课后习题答案

量子力学课后习题答案

量子力学习题及解答第一章 量子理论基础1.1 由黑体辐射公式导出维恩位移定律:能量密度极大值所对应的波长m λ与温度T 成反比,即m λ T=b (常量);并近似计算b 的数值,准确到二位有效数字。

解 根据普朗克的黑体辐射公式dv e chv d kThv v v 11833-⋅=πρ, (1)以及 c v =λ, (2)λρρd dv v v -=, (3)有,118)()(5-⋅=⋅=⎪⎭⎫ ⎝⎛-=-=kThc v v ehc cd c d d dv λλλπλλρλλλρλρρ这里的λρ的物理意义是黑体内波长介于λ与λ+d λ之间的辐射能量密度。

本题关注的是λ取何值时,λρ取得极大值,因此,就得要求λρ 对λ的一阶导数为零,由此可求得相应的λ的值,记作m λ。

但要注意的是,还需要验证λρ对λ的二阶导数在m λ处的取值是否小于零,如果小于零,那么前面求得的m λ就是要求的,具体如下:01151186'=⎪⎪⎪⎭⎫⎝⎛-⋅+--⋅=-kT hc kThce kT hc ehcλλλλλπρ⇒ 0115=-⋅+--kThc ekThcλλ⇒ kThcekThc λλ=--)1(5 如果令x=kThcλ ,则上述方程为 x e x =--)1(5这是一个超越方程。

首先,易知此方程有解:x=0,但经过验证,此解是平庸的;另外的一个解可以通过逐步近似法或者数值计算法获得:x=4.97,经过验证,此解正是所要求的,这样则有xkhc T m =λ 把x 以及三个物理常量代入到上式便知K m T m ⋅⨯=-3109.2λ这便是维恩位移定律。

据此,我们知识物体温度升高的话,辐射的能量分布的峰值向较短波长方面移动,这样便会根据热物体(如遥远星体)的发光颜色来判定温度的高低。

1.2 在0K 附近,钠的价电子能量约为3eV ,求其德布罗意波长。

解 根据德布罗意波粒二象性的关系,可知E=hv ,λh P =如果所考虑的粒子是非相对论性的电子(2c E e μ<<动),那么ep E μ22= 如果我们考察的是相对性的光子,那么E=pc注意到本题所考虑的钠的价电子的动能仅为3eV ,远远小于电子的质量与光速平方的乘积,即eV 61051.0⨯,因此利用非相对论性的电子的能量——动量关系式,这样,便有ph=λnmm m E c hc E h e e 71.01071.031051.021024.1229662=⨯=⨯⨯⨯⨯===--μμ在这里,利用了m eV hc ⋅⨯=-61024.1以及eV c e 621051.0⨯=μ最后,对Ec hc e 22μλ=作一点讨论,从上式可以看出,当粒子的质量越大时,这个粒子的波长就越短,因而这个粒子的波动性较弱,而粒子性较强;同样的,当粒子的动能越大时,这个粒子的波长就越短,因而这个粒子的波动性较弱,而粒子性较强,由于宏观世界的物体质量普遍很大,因而波动性极弱,显现出来的都是粒子性,这种波粒二象性,从某种子意义来说,只有在微观世界才能显现。

量子力学课后习题答案

量子力学课后习题答案

量子力学习题及解答第一章 量子理论基础1.1 由黑体辐射公式导出维恩位移定律:能量密度极大值所对应的波长m λ与温度T 成反比,即m λ T=b (常量);并近似计算b 的数值,准确到二位有效数字。

解 根据普朗克的黑体辐射公式dv e chv d kThv v v 11833-⋅=πρ, (1)以及 c v =λ, (2)λρρd dv v v -=, (3)有,118)()(5-⋅=⋅=⎪⎭⎫ ⎝⎛-=-=kThc v v ehc cd c d d dv λλλπλλρλλλρλρρ这里的λρ的物理意义是黑体内波长介于λ与λ+d λ之间的辐射能量密度。

本题关注的是λ取何值时,λρ取得极大值,因此,就得要求λρ 对λ的一阶导数为零,由此可求得相应的λ的值,记作m λ。

但要注意的是,还需要验证λρ对λ的二阶导数在m λ处的取值是否小于零,如果小于零,那么前面求得的m λ就是要求的,具体如下:01151186'=⎪⎪⎪⎭⎫⎝⎛-⋅+--⋅=-kT hc kThce kT hc ehcλλλλλπρ⇒ 0115=-⋅+--kThc ekThcλλ⇒ kThcekThcλλ=--)1(5 如果令x=kThcλ ,则上述方程为 x e x =--)1(5这是一个超越方程。

首先,易知此方程有解:x=0,但经过验证,此解是平庸的;另外的一个解可以通过逐步近似法或者数值计算法获得:x=4.97,经过验证,此解正是所要求的,这样则有xkhc T m =λ把x 以及三个物理常量代入到上式便知K m T m ⋅⨯=-3109.2λ这便是维恩位移定律。

据此,我们知识物体温度升高的话,辐射的能量分布的峰值向较短波长方面移动,这样便会根据热物体(如遥远星体)的发光颜色来判定温度的高低。

1.2 在0K 附近,钠的价电子能量约为3eV ,求其德布罗意波长。

解 根据德布罗意波粒二象性的关系,可知E=hv ,λh P =如果所考虑的粒子是非相对论性的电子(2c E e μ<<动),那么ep E μ22= 如果我们考察的是相对性的光子,那么E=pc注意到本题所考虑的钠的价电子的动能仅为3eV ,远远小于电子的质量与光速平方的乘积,即eV 61051.0⨯,因此利用非相对论性的电子的能量——动量关系式,这样,便有ph=λnmm m E c hc E h e e 71.01071.031051.021024.1229662=⨯=⨯⨯⨯⨯===--μμ在这里,利用了m eV hc ⋅⨯=-61024.1以及eV c e 621051.0⨯=μ最后,对Ec hc e 22μλ=作一点讨论,从上式可以看出,当粒子的质量越大时,这个粒子的波长就越短,因而这个粒子的波动性较弱,而粒子性较强;同样的,当粒子的动能越大时,这个粒子的波长就越短,因而这个粒子的波动性较弱,而粒子性较强,由于宏观世界的物体质量普遍很大,因而波动性极弱,显现出来的都是粒子性,这种波粒二象性,从某种子意义来说,只有在微观世界才能显现。

量子力学答案(第二版)苏汝铿第一章课后答案1.3-1#02

量子力学答案(第二版)苏汝铿第一章课后答案1.3-1#02

h2 d 2 ( x) 1 m 2 x 2 ( x) E ( x) 8 2 m dx 2 2
批注 [JL1]: 不合题意!
1 h 2 2
(2) 设均匀磁场的大小为 B,电子的运动半径为 a,质量为 m,电量为 q,电子运动速率 为 v, v a 则a
d 。 dt
mv , 取电子角位移 为广义坐标,相应的的广义动量 p mav 。 qB
根据推广的玻尔量子化条件,有
pdq nh ,则 (mav)d nh
nh , 2
该广义动量大小在同一轨道中不变,故 mav =
再结合 a
nh mv ,得 a 2 qB qB
Hale Waihona Puke 1.3求下列各粒子的德布罗意波的波长: (1)能量为100eV的自由电子 (2)能量为0.1eV的自由中子 (3)能量为0.1eV,质量为1g的质点 3 (4)温度为1K时,具有动能 kT的氦原子 2
h h -9 解 (1)= = =1.2310 m p 2mE
h h -11 (2)= = =9.0710 m p 2mE
h h -22 (3)= = =1.1710 m p 2mE
h h h -9 (4)= = = =1.2610 m p 2mE 3mkT
1.4 利用玻尔量子化条件求: (1)一维谐振子的能量; (2)在均匀磁场中作圆周运动的电子的可能轨道半径。 解: (1) 一维谐振子的能量可以表示为 E p 2 / 2m kx 2 / 2 其对应的薛定谔方程为 计算结果为 En (n )

量子力学教程(第三版)周世勋课后答案详解高等教育出版社.pdf

量子力学教程(第三版)周世勋课后答案详解高等教育出版社.pdf

1量子力学课后习题详解第一章量子理论基础1.1由黑体辐射公式导出维恩位移定律:能量密度极大值所对应的波长m λ与温度T 成反比,即m λT=b (常量);并近似计算b 的数值,准确到二位有效数字。

解根据普朗克的黑体辐射公式dv ec hvd kThv vv 11833−⋅=πρ,(1)以及c v =λ,(2)λρρd dv v v −=,(3)有,118)()(5−⋅=⋅=⎟⎠⎞⎜⎝⎛−=−=kT hcv v e hc cd c d d dv λλλπλλρλλλρλρρ这里的λρ的物理意义是黑体内波长介于λ与λ+d λ之间的辐射能量密度。

本题关注的是λ取何值时,λρ取得极大值,因此,就得要求λρ对λ的一阶导数为零,由此可求得相应的λ的值,记作m λ。

但要注意的是,还需要验证λρ对λ的二阶导数在m λ处的取值是否小于零,如果小于零,那么前面求得的m λ就是要求的,具体如下:201151186'=⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛−⋅+−−⋅=−kThc kThce kT hc ehc λλλλλπρ⇒115=−⋅+−−kThc ekThc λλ⇒kThc ekThc λλ=−−)1(5如果令x=kThcλ,则上述方程为xe x =−−)1(5这是一个超越方程。

首先,易知此方程有解:x=0,但经过验证,此解是平庸的;另外的一个解可以通过逐步近似法或者数值计算法获得:x=4.97,经过验证,此解正是所要求的,这样则有xkhc T m =λ把x 以及三个物理常量代入到上式便知Km T m ⋅×=−3109.2λ这便是维恩位移定律。

据此,我们知识物体温度升高的话,辐射的能量分布的峰值向较短波长方面移动,这样便会根据热物体(如遥远星体)的发光颜色来判定温度的高低。

1.2在0K 附近,钠的价电子能量约为3eV ,求其德布罗意波长。

解根据德布罗意波粒二象性的关系,可知E=hv ,λh P =如果所考虑的粒子是非相对论性的电子(2c E e µ<<动),那么ep E µ22=如果我们考察的是相对性的光子,那么E=pc注意到本题所考虑的钠的价电子的动能仅为3eV ,远远小于电子的质量与光速平方的乘积,即eV 61051.0×,因此利用非相对论性的电子的能量——动量关系式,这样,便有ph=λ3nmm mE c hc E h e e 71.01071.031051.021024.1229662=×=××××===−−µµ在这里,利用了meV hc ⋅×=−61024.1以及eVc e 621051.0×=µ最后,对Ec hc e 22µλ=作一点讨论,从上式可以看出,当粒子的质量越大时,这个粒子的波长就越短,因而这个粒子的波动性较弱,而粒子性较强;同样的,当粒子的动能越大时,这个粒子的波长就越短,因而这个粒子的波动性较弱,而粒子性较强,由于宏观世界的物体质量普遍很大,因而波动性极弱,显现出来的都是粒子性,这种波粒二象性,从某种子意义来说,只有在微观世界才能显现。

[理学]《量子力学导论》习题答案曾谨言版_北京大学1

[理学]《量子力学导论》习题答案曾谨言版_北京大学1

第一章 量子力学的诞生1.1设质量为m 的粒子在一维无限深势阱中运动, ⎩⎨⎧<<><∞=ax ax x x V 0,0,0,)(试用de Broglie 的驻波条件,求粒子能量的可能取值。

解:据驻波条件,有 ),3,2,1(2=⋅=n n a λn a /2=∴λ (1)又据de Broglie 关系 λ/h p = (2) 而能量(),3,2,12422/2/2222222222==⋅===n ma n a m n h m m p E πλ (3)1.2设粒子限制在长、宽、高分别为c b a ,,的箱内运动,试用量子化条件求粒子能量的可能取值。

解:除了与箱壁碰撞外,粒子在箱内作自由运动。

假设粒子与箱壁碰撞不引起内部激发,则碰撞为弹性碰撞。

动量大小不改变,仅方向反向。

选箱的长、宽、高三个方向为z y x ,,轴方向,把粒子沿z y x ,,轴三个方向的运动分开处理。

利用量子化条件,对于x 方向,有()⎰==⋅ ,3,2,1,x x xn h n dx p即 h n a p x x =⋅2 (a 2:一来一回为一个周期)a h n p x x 2/=∴,同理可得, b h n p y y 2/=, c h n p z z 2/=,,3,2,1,,=z y x n n n粒子能量 ⎪⎪⎭⎫ ⎝⎛++=++=222222222222)(21c n b n a n mp p p m E z y x z y x n n n zy x π ,3,2,1,,=z y x n n n1.3设质量为m 的粒子在谐振子势2221)(x m x V ω=中运动,用量子化条件求粒子能量E 的可能取值。

提示:利用 )]([2,,2,1,x V E m p n nh x d p -===⋅⎰)(x V解:能量为E 的粒子在谐振子势中的活动范围为 a x ≤ (1) 其中a 由下式决定:221()2x a E V x m a ω===。

《量子力学教程》_课后答案

《量子力学教程》_课后答案
其解为
2 ( x) A sin kx B coskx

13
根据波函数的标准条件确定系数 A,B,由连续性条件,得
2 (0) 1 (0)
2 ( a ) 3 ( a)
⑤ ⑥ ⑥

B0 A sin ka 0
A0 s i n 0 ka ka n
《量子力学教程》 习题解答
1
《量子力学教程》
习题解答说明
• 为了满足量子力学教学和学生自学的需要,完 善精品课程建设,我们编写了周世勋先生编写 的《量子力学教程》的课后习题解答。本解答 共分七章,其中第六章为选学内容。 • 第一章 第二章 第三章 第四章 第五章 第六章 第七章
2
目录
• • • • • • • 第一章 绪论 第二章 波函数和薛定谔方程 第三章 力学量的算符表示 第四章 态和力学量的表象 第五章 微扰理论 第六章 弹性散射 第七章 自旋和全同粒子
(1)
J1与r 同向。表示向外传播的球面波。
i * * J1 ( 1 1 1 1 ) 2m i 1 ikr 1 ikr 1 ikr 1 ikr [ e ( e ) e ( e )]r0 2m r r r r r r i 1 1 1 1 1 1 [ ( 2 ik ) ( 2 ik )]r0 2m r r r r r r k k 2 r0 3 r mr mr
0
2
n , n 1,2, 。 eB
1 2 1 eBR 1 2 2 n e B n B B 电子的动能为 E v 2 2 2 eB
动能间隔为 E B B 9 10 J 热运动能量(因是平面运动,两个自由度)为 E kT ,所以当 T 4K 时, E 4.52 10 J ;当

量子力学教程习题答案周世勋

量子力学教程习题答案周世勋
2xe 2
2
1(x) 1(x) 2
4 2 2
x 2e 2x2
2 3 x e2 2x2
d1 (x) 2 3 [2x 2 2 x3 ]e 2x2
dx
令 d1(x) 0 ,得 dx
x 0
x1
x
由1(x) 的表达式可知, x 0,x 时,1(x) 0 。显然不是最大几率的位置。
2m
i
[
( r )
*
(
r
)
*
( r )
(r)]
2m
可见 J与t 无关。
9
2.2 由下列定态波函数计算几率流密度:
(1) 1
1 ei k r r
(2) 2
1 e i k r r
从所得结果说明 1 表示向外传播的球面波, 2 表示向内(即向原点) 传播的球面波。
解: J1和J 2只有r分量
而 d 21 (x) 2 3 [(2 6 2 x 2 ) 2 2 x(2x 2 2 x3 )]e2x2
dx 2
4 3 [(1 5 2 x 2 2 4 x 4 )]e 2x2
d 21(x) dx2
x 1
4 3 2
1 0, e
可见 x 1
是所求几率最大的位置。
2
#
17
2.6 在一维势场中运动的粒子,势能对原点对称:U (x) U (x) ,证明粒子的定态波函数具有确定的
在球坐标中
r0
r
e
1 r
e
1 r s i n
(1)
J1
i 2m
(
1
* 1
1* 1 )
i [1 2m r
eikr
r
(1 r

Sakurai. Modern Quantumn Mechanics 习题答案(chapter 1 )

Sakurai. Modern Quantumn Mechanics 习题答案(chapter 1 )

3

< x 2 >=
−∞
2 ∫ dx' < α | x' > x' < x'| α >
y = x '−< x > ∞
=
−∞
∫ dy < α | y + < x >> ( y + < x >)
2
< y + < x >| α >
= d 2 + < x >2 < (∆x) 2 >= d 2 Also : h2 < (∆p) >= 4d 2
^
^
h ⎛ cos γ ⎜ 2⎜ ⎝ sin γ
sin γ ⎞ ⎟ − cos γ ⎟ ⎠

⎛ c1 ⎞
h ⎛ cos γ ⎜ 2⎜ ⎝ sirγ
(1) 、求: S x = 解答: S x =
γ⎞ ⎛ ⎜ cos ⎟ sirγ ⎞⎛ c1 ⎞ h ⎛ c1 ⎞ 2⎟ ⎟⎜ ⎜c ⎟ ⎟ ⇒ψ = ⎜ ⎜c ⎟ ⎟ = 2⎜ γ − cpsγ ⎟ ⎜ ⎠⎝ 2 ⎠ ⎝ 2⎠ ⎜ sin ⎟ ⎟ 2⎠ ⎝
⎛ ⎜ ⎜ ⎜ 当 A‘=-a 时,对应 B’=b,要求α=0,γ=iβ,取归一化得 − a, b = ⎜ ⎜ ⎜i ⎜ ⎝ ⎞ ⎟ 0 ⎟ 1 ⎟ ⎟ 2 ⎟ 1 ⎟ ⎟ 2⎠
5
⎛ ⎞ ⎜ ⎟ ⎜ 0 ⎟ ⎜ 1 ⎟ 当 A‘=-a 时,对应 B‘=-b,要求α=0,γ=—iβ,取归一化得 − a,−b = ⎜ ⎟ ⎜ 2 ⎟ ⎜− i 1 ⎟ ⎜ ⎟ 2⎠ ⎝
4
⎛α ⎞ ⎜ ⎟ (3) 、解答:因为 A,B 对易,所以有共同本征态,设其共同本征态为 ⎜ β ⎟ ,本征值为 A`, ⎜γ ⎟ ⎝ ⎠

量子力学答案

量子力学答案

第一章 绪论1.1 由黑体辐射公式导出维思位移定律,能量密度极大值所对应的波长m λ与温度T 成反比,即 b T m =λ (常数),并近似计算b 的数值,准确到二位有效值。

[解]:由黑体辐射公式,频率在ν与ννd +之间的辐射能量密度为ννπνρννd ec hd kTh 11833-=由此可以求出波长在λ与λλd +之间的能量密度λλρd )( 由于 λν/c =,λλνd cd 2+=因而有: λλπλλρλd ehcd kT hc 118)(5-=令λkT hc x =所以有:11)(5-=xe Ax λρ (44558c h T k A π=常数) 由 0)(=λλρd d 有0)1(115)(254=⎥⎦⎤⎢⎣⎡---=λλλρd dxe e x e x A d d x x x于是,得: 1)51(=-x e x该方程的根为 965.4=x 因此,可以给出,k hcxk hc T m 2014.0==λ即 b T m =λ (常数)其中 k hcb 2014.0=2383410380546.110997925.21062559.62014.0--⨯⨯⨯⨯⨯=k m ⋅⨯=-310898.2[注]根据11833-=kTh ec h νννπρ 可求能量密度最大值的频率:令kT h x ν=113-=xe Ax νρ (23338h c T k A π=) 0]11[3=-=ννρνd dxe Ax dx d d d x因而可得 131=⎪⎭⎫ ⎝⎛-x e x此方程的解 821.2=xh kTh kTx 821.2max ==νb T Tb '=⇒'=-1max max νν其中34231062559.610380546.1821.2821.2--⨯⨯=='h k b 1910878.5-⋅︒⨯=s k这里求得m ax ν与前面求得的m ax λ换算成的m ν的表示不一致。

量子力学教程(二版)习题答案

量子力学教程(二版)习题答案

第一章 绪论1.1.由黑体辐射公式导出维恩位移定律:C m b bTm3109.2 ,×´==-l 。

证明:由普朗克黑体辐射公式:由普朗克黑体辐射公式:n n p nr n nd ec hd kTh 11833-=, 及ln c=、l ln d c d 2-=得1185-=kThcehc l l l p r ,令kT hc x l =,再由0=l r l d d ,得l .所满足的超越方程为所满足的超越方程为15-=x x e xe用图解法求得97.4=x ,即得97.4=kT hc m l ,将数据代入求得C m 109.2 ,03×´==-b b T ml 1.2.在0K 附近,钠的价电子能量约为3eV ,求de Broglie 波长. 解:010A 7.09m 1009.72=´»==-mEh p h l # 1.3. 氦原子的动能为kT E 23=,求K T 1=时氦原子的de Broglie 波长。

波长。

解:010A 63.12m 1063.1232=´»===-mkT h mE h p h l其中kg 1066.1003.427-´´=m ,123K J 1038.1--×´=k # 1.4利用玻尔—索末菲量子化条件,求:利用玻尔—索末菲量子化条件,求: (1)一维谐振子的能量。

)一维谐振子的能量。

(2)在均匀磁场中作圆周运动的电子的轨道半径。

)在均匀磁场中作圆周运动的电子的轨道半径。

已知外磁场T 10=B ,玻尔磁子123T J 10923.0--×´=B m ,求动能的量子化间隔E D ,并与K 4=T 及K 100=T 的热运动能量相比较。

的热运动能量相比较。

解:(1)方法1:谐振子的能量222212q p E mw m +=可以化为()12222222=÷÷øöççèæ+mw m E q Ep的平面运动,轨道为椭圆,两半轴分别为22,2mw m Eb E a ==,相空间面积为,相空间面积为,2,1,0,2=====òn nh EE ab pdq nw pp 所以,能量 ,2,1,0,==n nh E n方法2:一维谐振子的运动方程为02=+¢¢q q w ,其解为,其解为()j w +=t A q sin速度为速度为 ()j w w +=¢t A q c o s ,动量为()j w mw m +=¢=t A q p cos ,则相积分为,则相积分为 ()()nh T A dt t A dt t A pdq T T ==++=+=òòò2)cos 1(2cos 220220222mw j w mw j w mw , ,2,1,0=n nmw nh T nh A E ===222, ,2,1,0=n (2)设磁场垂直于电子运动方向,受洛仑兹力作用作匀速圆周运动。

量子力学-第一章-答案

量子力学-第一章-答案
两边积分:


0
2 r 2 g ( sin )d mr d
2 2 0

2 2 r 2 g ( mr 2
2
2 2 2 2 r g 2 2 V (r ) ( cos 1) r 2
2rg 2 V ( ) ( cos 1) 2
g g t 2l1l2 sin t l 2 , l2 l2 g g t 2 gl1 cos t l2 l2
l2 2l1 1 t2 ( tan ) , 此时z l 2 (l 2 2l1 ) l 2 g l2
(3)所以总时间为
2l1 l2 2l1 1 t t1 t 2 ( tan ) g g l2
A r1 sin x y y r cos C 1 A B r2 sin x y y r cos C 2 B
mA m B 2 2 C k L (mA m B ) xC y l k lmB0 k mA mB 1 1 2 2 2 2 A y A ) mB ( x B B T mA ( x y ) 2 2 1 1 mAmB 2 2 1 2 C T (mA mB ) y l mB 2 0 2 2 mA m B 2
1.1 质量为m的质点,约束在半径为r的光滑半球形碗的内壁运 动。试应用牛顿第二定律分别用直角坐标,柱坐标和球坐标写 出质点运动的微分方程。
解:
(1)直角坐标系
( x, y, z )
sin cos z r y x2 y2 x x2 y2 x2 y2 r


Fx FN sin cos Fy FN sin sin Fz mg FN cos

《量子力学导论》习题答案(曾谨言版-北京大学)1

《量子力学导论》习题答案(曾谨言版-北京大学)1

第一章 量子力学的诞生1.1设质量为m 的粒子在一维无限深势阱中运动, ⎩⎨⎧<<><∞=ax ax x x V 0,0,0,)(试用de Broglie 的驻波条件,求粒子能量的可能取值。

解:据驻波条件,有 ),3,2,1(2=⋅=n n a λn a /2=∴λ (1)又据de Broglie 关系 λ/h p = (2) 而能量(),3,2,12422/2/2222222222==⋅===n ma n a m n h m m p E πλ (3)1.2设粒子限制在长、宽、高分别为c b a ,,的箱内运动,试用量子化条件求粒子能量的可能取值。

解:除了与箱壁碰撞外,粒子在箱内作自由运动。

假设粒子与箱壁碰撞不引起内部激发,则碰撞为弹性碰撞。

动量大小不改变,仅方向反向。

选箱的长、宽、高三个方向为z y x ,,轴方向,把粒子沿z y x ,,轴三个方向的运动分开处理。

利用量子化条件,对于x 方向,有()⎰==⋅ ,3,2,1,x x xn h n dx p即 h n a p x x =⋅2 (a 2:一来一回为一个周期)a h n p x x 2/=∴,同理可得, b h n p y y 2/=, c h n p z z 2/=,,3,2,1,,=z y x n n n粒子能量 ⎪⎪⎭⎫ ⎝⎛++=++=222222222222)(21c n b n a n mp p p m E z y x z y x n n n zy x π ,3,2,1,,=z y x n n n1.3设质量为m 的粒子在谐振子势2221)(x m x V ω=中运动,用量子化条件求粒子能量E 的可能取值。

提示:利用 )]([2,,2,1,x V E m p n nh x d p -===⋅⎰)(x V解:能量为E 的粒子在谐振子势中的活动范围为 a x ≤ (1) 其中a 由下式决定:221()2x a E V x m a ω===。

第1章 量子力学基础-习题与答案

第1章 量子力学基础-习题与答案

一、是非题1. “波函数平方有物理意义, 但波函数本身是没有物理意义的”。

对否 解:不对2. 有人认为,中子是相距为10-13 cm 的质子和电子依靠库仑力结合而成的。

试用测不准关系判断该模型是否合理。

解:库仑吸引势能大大地小于电子的动能, 这意味着仅靠库仑力是无法将电子与质子结合成为中子的,这个模型是不正确的。

二、选择题1. 一组正交、归一的波函数123,,,ψψψ。

正交性的数学表达式为 a ,归一性的表达式为 b 。

()0,()1i i i i a d i jb ψψτψψ**=≠=⎰⎰2. 列哪些算符是线性算符------------------------------------------------------ (A, B, C, E )(A) dxd(B) ∇2 (C) 用常数乘 (D) (E) 积分3. 下列算符哪些可以对易-------------------------------------------- (A, B, D )(A) xˆ 和 y ˆ (B) x∂∂和y ∂∂ (C) ˆx p和x ˆ (D) ˆx p 和y ˆ 4. 下列函数中 (A) cos kx (B) e -bx(C) e -ikx(D) 2e kx -(1) 哪些是dxd的本征函数;-------------------------------- (B, C ) (2) 哪些是的22dx d 本征函数;-------------------------------------- (A, B, C )(3) 哪些是22dx d 和dxd的共同本征函数。

------------------------------ (B, C )5. 关于光电效应,下列叙述正确的是:(可多选) ------------------(C,D )(A)光电流大小与入射光子能量成正比 (B)光电流大小与入射光子频率成正比 (C)光电流大小与入射光强度成正比 (D)入射光子能量越大,则光电子的动能越大6. 提出实物粒子也有波粒二象性的科学家是:------------------------------( A )(A) de Bröglie (B) A.Einstein (C) W. Heisenberg (D) E. Schrödinger7. 首先提出微观粒子的运动满足测不准原理的科学家是:--------------( C )(A) 薛定谔 (B) 狄拉克 (C) 海森堡 (D) 波恩 8. 下列哪几点是属于量子力学的基本假设(多重选择):---------------( AB)(A)电子自旋(保里原理) (B)微观粒子运动的可测量的物理量可用线性厄米算符表征 (C)描写微观粒子运动的波函数必须是正交归一化的 (D)微观体系的力学量总是测不准的,所以满足测不准原理9. 描述微观粒子体系运动的薛定谔方程是:------------------------------( D ) (A) 由经典的驻波方程推得 (B) 由光的电磁波方程推得(C) 由经典的弦振动方程导出 (D) 量子力学的一个基本假设三、填空题:1. 1927年戴维逊和革未的电子衍射实验证明了实物粒子也具有波动性。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一章
1.1 由黑体辐射公式导出维恩位移定律: 能量密度极大值所对应的波长λm 与温度T 成反
比,即λm T = b (常量);并近似计算b 的数值,准确到两位有效数字。

解:黑体辐射的普朗克公式为:)
1(833
-=kT h e c h ν
νν
πρ ∵ v=c/λ
∴ dv/dλ= -c/λ²
又 ∵ ρv dv= -ρλdλ
∴ ρλ=-ρv dv/dλ=8πhc/[λ5(e
hc/λkT
-1)] 令x=hc/λkT ,则 ρλ=8πhc(kT/hc)5x 5/(e x -1)
求ρλ极大值,即令dρλ(x)/dx=0,得:
5(e x -1)=xe x
可得: x≈4.965
∴ b=λm T=hc/kx
≈6.626 *10-34*3*108/(4.965*1.381*10-23)
≈2.9*10-3(m K )
1.2√. 在0 K 附近,钠的价电子能量约为3电子伏,求其德布罗意波长。

解: h = 6.626×10-34 J ·s , m e = 9.1×10-31 Kg,, 1 eV = 1.6×10-19 J
故其德布罗意波长为:
07.0727A λ=== 或λ= h/2m E = 6.626×10-34/(2×9.1×10-31×3×1.6×10-19)1/2 ≈ 7.08 Å
1.3 √.氦原子的动能是E=
32
KT (K B 为波尔兹曼常数),求T=1 K 时,氦原子的德布罗意波长。

解:h = 6.626×10-34 J ·s , 氦原子的质量约为=-26-2711.993104=6.641012
kg ⨯⨯⨯⨯ , 波尔兹曼常数K B =1.381×10-23 J/K
故其德布罗意波长为:
λ
×10-34/ (2×-276.6410⨯×1.5×1.381×10-23×1)1/2
≈0
1.2706A
或λ= 而KT E 23
=601.270610A λ-==⨯
1.4利用玻尔-索末菲量子化条件,求:
a ) 一维谐振子的能量:
b ) 在均匀磁场作圆周运动的电子轨道的可能半径。

解: a )解法一:设一维谐振子的质量为m ,广义坐标为 q=Acos(ωt+φ)
根据玻尔—索末菲量子化条件 ∮pdq = nh
得:∮m(dq/dt)dq = m ωA 2∮sin 2θd θ=m ωA 2π=nh ∴ A 2 =nh/(πm ω)=2nh/m ω (其中h=h/2π)
又 ∵ 一维谐振子的周期 T =2π(m/k)0.5
∴ 一维谐振子的角频率 ω=2π/T =(k/m) 0.5
∴ k = m ω2
∴ 一维谐振子的能量为E=kA 2
/2=nh ω n=1,2,3,…
解法二:一维谐振子的能量为 E = mv 2/2 + m ω2q 2/2 =p 2/(2m)+ m ω2q 2/2
即 p 2/(2mE) + q 2/(2E/m ω2) = 1
可以知道椭圆的两半轴分别为(2mE )0.5和(2E/m ω2)0.5
根据玻尔—索末菲量子化条件 ∮pdq = nh
则 ∮pdq=π(2mE )0.5(2E/m ω2)0.5=2πE/ω=E/ν=nh
∴ 一维谐振子的能量为E=nh ν=nh ω n=1,2,3,…
(其中h=h/2π)
b) ∵ 电子在均匀磁场中作圆周运动
∴ f=evB=mv 2/r
∴ mv=reB
又 ∵ p=mv, dp=rd θ 且 ∮pdq=nh (玻尔-索末菲量子化条件) ∴ ∮eBr 2d θ=nh
∴ eBr 22π=nh
∴ r 2=nh/(2πeB)=nh/eB
∴ r=(nh/eB)0.5
(其中h=h/2π)
√.补充作业题:投球手以40米每秒投出一个质量为0.15 千克的棒球,请计算棒球的deBroglie 波长. h
p λ=,h h p mV
λ== (答案:1.1 x 10 -34 m)。

相关文档
最新文档