2011中考数学真题解析64 两点之间距离,点到直线距离,两平行线的距离(含答案)
中考数学专题复习:与“点”有关的距离问题
平面直角坐标系中,点C在y轴上,且到原点的距离 变式三:
为2,则点C的坐标是多少?
一、两点之间的距离
问题2:如图,在平面直角坐标系中,点C(0,2),D(3,5). (1)求点D到x轴的距离. (2)求点D到原点的距离. (3)求线段CD的长.
在平面直角坐标系xOy中,点A(2,0),B(3,0), C(0,4),D(2,4). (1)直接写出点A、C之间的距离; (2)求直线BC的解析式;
(3)求原点O到直线BC的距离;
(4)求点D到直线BC的距离; (5)若经过点D的抛物线 y=ax2 上有一点P,连接 PC,请分析PC的最小值.
两点之间的距离
问题3:如图,在平面直角坐标系中,点C(0,2),B(3,0), 以C为圆心,半径为1作⊙C,⊙C上有一动点P,连 接BP. 求线段BP的最小值. 最大值呢?
P C P O B y
P
x
四、点到曲线(圆)上任意一点的距离
变式: 如图,在平面直角坐标系中,点C(0,2),B(3,0), 连接BC,若点E为BO中点,点F为直线BC上一动点, 把ΔEFB沿直线EF翻折得到ΔEFB',连接B'C. 求线段B'C的最小值.
问题1: 如图,数轴上的点A、B分别对应着数1、3,则线段 B A AB的长为多少? 1 2 3 -1 0 若数轴上的点A、B分别对应着数a、b,则线段AB的 变式一: 长为多少?(用含a、b的式子表示) AB a b 若数轴上的点A对应着数1,线段AB的长为2,则点B 变式二: 对应的数为多少? 平面直角坐标系中,点C在y轴上,且到原点的距离 变式三: 为3,则点C的坐标是多少?
【史上最全】2011中考数学真题解析102_网格专题(含答案)
2011全国中考真题解析120考点汇编网格专题一、选择题1. (2011•台湾20,4分)如图为一张方格纸,纸上有一灰色三角形,其顶点均位于某两网格线的交点上,若灰色三角形面积为421平方公分,则此方格纸的面积为多少平方公分( )A 、11B 、12C 、13D 、14考点:一元二次方程的应用。
专题:网格型。
分析:可设方格纸的边长是x ,灰色三角形的面积等于方格纸的面积减去周围三个直角三角形的面积,列出方程可求解. 解答:解:方格纸的边长是x ,21 x 2﹣21•x•21x ﹣21•21x•43x ﹣21•x•41x=421 x 2=12.所以方格纸的面积是12, 故选B .点评:本题考查识图能力,关键看到灰色三角形的面积等于正方形方格纸的面积减去周围三个三角形的面积得解.2. (2011湖北潜江,7,3分)如图,在6×6的方格纸中,每个小方格都是边长为1的正方形,其中A 、B 、C 为格点.作△ABC 的外接圆⊙O ,则弧AC 的长等于( )A .π43 B .π45 C .π23 D .π25 考点:弧长的计算;勾股定理;勾股定理的逆定理;圆周角定理。
专题:网格型。
分析:求弧AC 的长,关键是求弧所对的圆心角,弧所在圆的半径,连接OC ,由图形可知OA ⊥OC ,即∠AOC =90°,由勾股定理求OA ,利用弧长公式求解. 解答:解:连接OC ,由图形可知OA ⊥OC , 即∠AOC =90°,由勾股定理,得OA =2212+=5,∴弧AC 的长=180590⨯⨯π=25π.故选D .点评:本题考查了弧长公式的运用.关键是熟悉公式:扇形的弧长=180rn ∙∙π. 3. (2011•西宁)如图,△DEF 经过怎样的平移得到△ABC ( )A 、把△DEF 向左平移4个单位,再向下平移2个单位B 、把△DEF 向右平移4个单位,再向下平移2个单位C 、把△DEF 向右平移4个单位,再向上平移2个单位D 、把△DEF 向左平移4个单位,再向上平移2个单位考点:平移的性质。
2011年山东省青岛市中考数学试题解析版
2011年山东省青岛市中考数学试题解析版一、选择题(本大题共8小题,每小题3分,满分24分)1、﹣的倒数是()A、﹣B、C、﹣2D、2考点:倒数。
专题:探究型。
分析:根据倒数的定义进行解答即可.解答:解:∵(﹣2)×(﹣)=1,∴﹣的倒数是﹣2.故选C.点评:本题考查的是倒数的定义,即乘积是1的两数互为倒数.2、如图,空心圆柱的主视图是()A、B、 C、D、考点:简单组合体的三视图。
分析:找到从正面,看所得到的图形即可,注意所有的棱都应表现在主视图中.解答:解:如图所示,空心圆柱体的主视图是圆环.故选A.点评:本题考查实物体的三视图.在画图时一定要将物体的边缘、棱、顶点都体现出来,看得见的轮廓线都画成实线,看不见的画成虚线,不能漏掉.3、已知⊙O1与⊙O2的直径分别是4cm和6cm,O1O2=5cm,则两圆的位置关系是()A、外离B、外切C、相交D、内切考点:圆与圆的位置关系。
分析:由⊙O1与⊙O2的直径分别是4cm和6cm,,即可求得⊙O1与⊙O2的半径,又由O1O2=5cm,根据两圆位置关系与圆心距d,两圆半径R,r的数量关系间的联系即可得出两圆位置关系.解答:解:∵⊙O1与⊙O2的直径分别是4cm和6cm,∴⊙O1与⊙O2的半径分别是2cm和3cm,∵O1O2=5cm,2+3=5,∴两圆的位置关系是外切.故选B.点评:此题考查了圆与圆的位置关系.解题的关键是掌握两圆位置关系与圆心距d,两圆半径R,r的数量关系间的联系.4、下列汽车标志中既是轴对称又是中心对称图形的是()A、B、C、D、考点:轴对称图形;中心对称图形。
分析:根据轴对称图形与中心对称图形的概念求解.解答:解:A、是轴对称图形,不是中心对称图形;B、是轴对称图形,不是中心对称图形;C、不是轴对称图形,也不是中心对称图形;D、是中心对称图形,也是轴对称图形.故选D.点评:此题将汽车标志与对称相结合,掌握好中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,图形旋转180°后与原图重合.5、某种鲸的体重约为1.36×105kg.关于这个近似数,下列说法正确的是()A、精确到百分位,有3个有效数字B、精确到个位,有6个有效数字C、精确到千位,有6个有效数字D、精确到千位,有3个有效数字考点:近似数和有效数字。
2011年安徽省中考数学试题及详细解析
2011年安徽省中考数学试题及详细解析一、选择题(共10小题,每小题4分,满分40分)1、在﹣1,0,1,2这四个数中,既不是正数也不是负数的是()A、﹣1B、0C、1D、2考点:有理数。
分析:正数是大于0的数,负数是小于0的数,既不是正数也不是负数的是0.解答:解:A、﹣1<0,是负数,故A错误;B、既不是正数也不是负数的是0,正确;C、1>0,是正数,故C错误;D、2>0,是正数,故D错误.故选B.点评:理解正数和负数的概念是解答此题的关键.2、计算(2x)3÷x的结果正确的是()A、8x2B、6x2C、8x3D、6x3考点:整式的除法;幂的乘方与积的乘方;同底数幂的除法。
分析:根据积的乘方等于各因式乘方的积和单项式的除法法则解答.解答:解:(2x)3÷x=8x3÷x=8x2.故选A.点评:本题主要考查积的乘方的性质,单项式的除法,熟练掌握运算性质是解题的关键.3、如图,直线l1∥l2,∠1=55°,∠2=65°,则∠3为()A、50°B、55°C、60°D、65°考点:平行线的性质;对顶角、邻补角;三角形内角和定理。
专题:计算题。
分析:先根据平行线的性质及对顶角相等求出∠3所在三角形其余两角的度数,再根据三角形内角和定理即可求出∠3的度数.解答:解:如图所示:∵l1∥l2,∠2=65°,∴∠6=65°,∵∠1=55°,∴∠1=∠4=55°,在△ABC中,∠6=65°,∠4=55°,∴∠3=180°﹣65°﹣55°=60°.故选C.点评:本题重点考查了平行线的性质、对顶角相等及三角形内角和定理,是一道较为简单的题目.4、2010年一季度,全国城镇新增就业人数为289万人,用科学记数法表示289万正确的是()A、2.89×107B、2.89×106C、2.89×105D、2.89×104考点:科学记数法—表示较大的数。
2011全国中考数学真题解析120考点汇编 投影
(2012年1月最新最细)2011全国中考真题解析120考点汇编☆投影
一、选择题
1.(2011某某荆州,4,3分)如图.位似图形由三角尺与其灯光照射下的中心投影组成,相似比为2:5,且三角尺的一边长为8cm,则投彩三角形的对应边长为()
A、8cm
B、20cm
C、
D、10cm
考点:位似变换;中心投影.
专题:几何图形问题.
分析:根据位似图形的性质得出相似比为2:5,对应变得比为2:5,即可得出投彩三角形的对应边长.
解答:解:∵位似图形由三角尺与其灯光照射下的中心投影组成,相似比为2:5,三角尺的一边长为8cm,
∴投彩三角形的对应边长为:8÷ 25=20cm.
故选:B.
点评:此题主要考查了位似图形的性质以及中心投影的应用,根据对应变得比为2:5,再得出投彩三角形的对应边长是解决问题的关键.
2.(2011某某崇左,17,3分)一位小朋友拿一个等边三角形木框在阳光下玩,等边三角
形木框在地面上的影子不可能是( )
考点:平行投影.
专题:应用题.
分析:根据看等边三角形木框的方向即可得出答案.
解答:解:竖直向下看可得到线段,沿与平面平行的方向看可得到C,延与平面不平行的方向看可得到D,不论如何看都得不到一点.
故选B.
点评:本题主要考查对平行投影的理解和掌握,能熟练地观察图形得出正确结论是解此题的关键.。
中考数学专项练习点到直线的距离(含解析)
中考数学专项练习点到直线的距离(含解析)【一】单项选择题1.如下图,点P到直线l的距离是〔〕A.线段PA的长度B.线段P B的长度C.线段PC的长度 D.线段PD的长度2.在同一平面内,线段AB的长为10厘米,点A,B到直线l的距离分别为6厘米和4厘米,那么符合条件的直线l的条数为〔〕A.2条B.3条C.4条D.无数条3.如图,能表示点到直线〔线段〕的距离的线段有〔〕A.3条B.4条C.5条D.6条4.如图,PO⊥OR,OQ⊥PR,能表示点到直线〔或线段〕的距离的线段有〔〕A.五条B.二条C.三条D.四条5.如图,PO⊥OR,OQ⊥PR,那么点O到PR所在直线的距离是线段〔〕的长.A.POB.ROC.OQD.PQ6.定义:直线l1与l2相交于点O,对于平面内任意一点M,点M到直线l1、l2的距离分别为p、q,那么称有序实数对〔p,q〕是点M的〝距离坐标〞,根据上述定义,〝距离坐标〞是〔1,2〕的点的个数是〔〕A.2B.3C.4D.57.同一平面内,三条不同直线的交点个数可能是〔〕个.A.1或3B.0、1或3C.0、1或2D.0、1、2或38.如图,点A在直线l1上,点B,C分别在直线l2上,AB⊥l2于点B,AC⊥l1于点A,AB=4,AC=5,那么以下说法正确的选项是〔〕A.点B到直线l1的距离等于4B.点A到直线l2的距离等于5C.点B到直线l1的距离等于5D.点C到直线l1的距离等于59.如图,PO⊥OR,OQ⊥PR,那么点O到PR所在直线的距离是线段的长.〔〕A.POB.ROC.OQD.PQ10.如下图,AB⊥AC,AD⊥BC,垂足分别为A,D,以下说法不正确的选项是〔〕A.点A到BC的垂线段为ADB.点C到AD的垂线段为CDC.点B到AC的垂线段为ABD.点D到AB的垂线段为BD11.在以下语句中,正确的选项是〔〕A.在平面上,一条直线只有一条垂线B.过直线上一点的直线只有一条C.在同一平面内,过直线上一点且垂直于这条直线的直线有且只有一条D.垂线段就是点到直线的距离【二】填空题12.如下图,假设∠ACB=90°,BC=8cm,AC=6cm,那么B点到AC 边的距离为________cm.13.如图,BC⊥AC,CB=8cm,AC=6cm,AB=10cm,那么点B到AC 的距离是________cm,点A到BC的距离是________cm,C到AB的距离是________cm.14.如图,过A点画与直线BC垂直的线段,A点到BC的距离是线段_ _______的长,过B点画直线AC的垂线段,B点到AC的距离是线段____ ____的长.15.如图,想在河堤两岸搭建一座桥,搭建方式最短的是________,理由________;【三】解答题16.如图,有两堵围墙,有人想测量地面上两堵围墙内所形成的∠AOB 的度数,但人又不能进入围墙,只能站在墙外,请问该如何测量?【四】综合题17.如下图,在正方形ABCD的对角线AC上有一只蚂蚁P从点A出发,沿AC匀速行走,蚂蚁从A点到C点行进过程中:〔1〕所经过的点P到AD,BC边的距离是怎么变化的?〔2〕所经过点P到CD,BC边距离有何数量关系?为什么呢?18.阅读理解:点P〔x0 ,y0〕和直线y=kx+b,那么点P到直线y= kx+b的距离,可用公式d= 计算.例如:求点P〔﹣1,2〕到直线y=3x+7的距离.解:因为直线y=3x+7,其中k=3,b=7.所以点P〔﹣1,2〕到直线y=3x+7的距离为:d= = == .根据以上材料,解答以下问题:〔1〕求点P〔1,﹣1〕到直线y=x﹣1的距离;〔2〕⊙Q的圆心Q坐标为〔0,5〕,半径r为2,判断⊙Q与直线y= x+9的位置关系并说明理由;〔3〕直线y=﹣2x+4与y=﹣2x﹣6平行,求这两条直线之间的距离.【一】单项选择题【考点】点到直线的距离【考点】点到直线的距离【解析】【解答】解:①如图1,在线段AB的两旁可分别画一条满足条件的直线;②作线段AB的垂线,将线段AB分成6cm,4cm两部分.应选:B、【分析】根据从直线外一点到这条直线的垂线段的长度,叫做点到直线的距离.画出图形进行判断.【考点】点到直线的距离【解析】【解答】解:根据点到直线的距离定义,可判断:BC表示点B到直线AC的距离;AC表示点A到直线BC的距离;CD表示点C到直线AB的距离;BD表示点B到直线CD的距离;AD表示点A到直线CD的距离,共5条.应选C、【分析】根据点到直线的距离的概念:直线外一点到这条直线的垂线段的长度,即为点到直线的距离进行分析即可.【考点】点到直线的距离【解析】【解答】解:根据点到直线的距离定义,可判断:PO表示点P到直线OR的距离;PQ表示点P到直线OQ的距离;OQ表示点O到直线PR的距离;RQ表示点R到直线OQ的距离;RO表示点R到直线PO的距离.共5条.应选:A、【分析】首先熟悉点到直线的距离的概念:直线外一点到这条直线的垂线段的长度,即为点到直线的距离.【考点】点到直线的距离【解析】【解答】解:∵OQ⊥PR,∴点O到PR所在直线的距离是线段OQ的长.应选C、【分析】根据点到直线的距离的定义:从直线外一点到这条直线的垂线段长度,叫点到直线的距离,结合图形判断即可.【考点】点到直线的距离【解析】【分析】如图,∵到直线l1的距离是1的点在与直线l1平行且与l1的距离是1的两条平行线a1、a2上,到直线l2的距离是2的点在与直线l2平行且与l2的距离是2的两条平行线b1、b2上,∴〝距离坐标〞是〔1,2〕的点是M1、M2、M3、M4 ,一共4个。
2011河北中考数学试卷及答案解析
点评:本题考查了画位似图形.画位似图形的一般步骤为:确定位似中心,分别连接并延长位似中心和能代 表原图的关键点;根据相似比,确定能代表所作的为似图形的关键点;顺次连接上述各点,得到放大或缩小的图形.同
《电力拖动控制线路与技能训练》试卷()
、(河北)甲、乙、丙三个旅行团的游客人数都相等,且毎团游客的平均年龄都是岁,这三个团
游客年龄的方差分别是甲,乙,丙,导游小王最喜欢带游客年龄相近的团队,若
在三个团中选择一个,则他应选( )
《电力拖动控制线路与技能训练》试卷()
、甲团 、乙团 、丙团 、甲或乙团 考点:方差。
专题:应用题。
分析:由甲,乙,丙,得到丙的方差最小,根据方差的意义得到丙旅行团的游 客年龄的波动最小.
设(,),(,), 则﹣,,
《电力拖动控制线路与技能训练》试卷()
的面积是 (﹣) ,正确; 、>时,随的增大而减小,错误; 、﹣,,正确; 、因为也行,正确; 正确的有, 故选.
点评:本题主要考查对反比例函数的性质,反比例函数图象上点的坐标特征,三角形的面积等知识点的理解和掌 握,能根据这些性质进行说理是解此题的关键. 二、填空题(共小题,每小题分,满分分)
《电力拖动控制线路与技能训练》试卷()
、第三象限 、第四象限 考点:一次函数的性质。 专题:存在型;数形结合。
分析:先判断出一次函数中的符号,再根据一次函数的性质进行解答即可. 解答:解:一次函数中>,>, 此函数经过一、二、三象限, 故选. 点评:本题考查的是一次函数的性质,即一次函数()中,当>时,函数图象经过一、 三象限,当>时,函数图象与轴正半轴相交. 、(河北)将图围成图的正方体,则图中的红心 标志所在的正方形是正方体中的( )
2011全国中考数学真题解析120考点汇编 线段和角
(2012年1月最新最细)2011全国中考真题解析120考点汇编☆线段和角一、选择题1.(2011某某崇左,5,2分)在修建崇钦高速公路时,有时需要将弯曲的道路改直,依据是.考点:线段的性质:两点之间线段最短.分析:根据线段的性质:两点之间线段最短解答.解答:解:在修建崇钦高速公路时,有时需要将弯曲的道路改直,依据是:两点之间线段最短.故答案为:两点之间线段最短.点评:本题考查了两点之间线段最短的性质,是基础题,比较简单.2.(2011某某,6,3分)已知∠α=35°,则∠α的余角是()A.35°B.55°C.65°D.145°考点:余角和补角.专题:计算题.分析:根据互为余角的两个角的和为90度作答.解答:解:根据定义∠α的余角度数是90°﹣35°=55°.故选.点评:本题考查角互余的概念:和为90度的两个角互为余角.属于基础题,较简单.3.(2011•某某)已知∠α=20°,则∠α的余角等于70°.考点:余角和补角。
分析:若两个角的和为90°,则这两个角互余;根据已知条件可直接求出角α的余角.解答:解:∵∠α=20°,∴∠α的余角=90°﹣20°=70°.故答案为:70°.点评:本题考查了余角的定义,解题时牢记定义是关键.4.(2011•某某)如图,在所标识的角中,互为对顶角的两个角是()A、∠2和∠3B、∠1和∠3C、∠1和∠4D、∠1和∠2考点:对顶角、邻补角。
专题:推理填空题。
分析:两条直线相交后,所得的只有一个公共顶点,且两个角的两边互为反向延长线,这样的两个角叫做互为对顶角.解答:解:根据同位角、同旁内角、邻补角、对顶角的定义进行判断,A 、∠2和∠3是对顶角,正确;B 、∠1和∠3是同旁内角,错误;C 、∠1和∠4是同位角,错误;D 、∠1和∠2的邻补角是内错角,错误.故选A .点评:解答此类题确定三线八角是关键,可直接从截线入手.对平几何中概念的理解,一定要紧扣概念中的关键词语,要做到对它们正确理解,对不同的几何语言的表达要注意理解它们所包含的意义.5. (2011某某某某8,3分)已知线段AB =10cm ,点C 是线段AB 的黄金分割点(AC >BC ),则AC 的长为( )A cm )1055(-B cm )5515(-C cm )555(-D cm )5210(- 考点:黄金分割。
2011年湖北省孝感市中考数学试题与答案(word版)
O TB A E C湖北省孝感市2011年初中毕业生学业考试数 学温馨提示:1.答题前,考生务必将自己所在县(市、区)、学校、姓名、考号填写在试卷上指定的位置.2.选择题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;非选择题的答案必须写在答题卡的指定位置,在本卷上答题无效.3.本试卷满分120分,考试时间120分钟.12小题,每小题3分,共36分.涂的代号超过一个,一律得0分)1. 2-的倒数是( )A.2B.2-C.12D.12- 2.某种细胞的直径是4510-⨯毫米,这个数是( )A.0.05毫米B. 0.005毫米C. 0.0005毫米 D. 0.00005毫米3.如图,直线AB 、CD 交于点,O OT AB ⊥于O ,CE ∥AB 交CD于点C ,若ECO ∠=30°,则DOT ∠等于( ) A.30° B.45° C.60° D.120° 4.下列计算正确的是( )-5.下列命题中,假命题是 ( )A.三角形任意两边之和大于第三边B.方O S S t O S O S O G F O E D CB A 差是描述一组数据波动大小的量C.两相似三角形面积的比等于周长的比的平方D.不等式的解集是1x --<6.化简)x y x y y x x --÷(的结果是( )A.1y B.x y y + C.x y y- D.y 7.一艘轮船在长江航线上往返于甲、乙两地.若轮船在静水中的速度不变,轮船先从甲地顺水航行到乙地,停留一段时间后,又从乙地逆水航行返回到甲地.设轮船从甲地出发后所用时间为t (小时),航行的路程为S (千米),则S 与t 的函数图象大致是 ( )A B C D8.如图,在△ABC 中,BD 、CE 是△ABC 的中线,BD 与CE 相交于点O ,点F 、G 分别是BO 、CO 的中点,连结AO .若AO =6cm ,BC =8cm ,则四边形DEFG 的周长是 ( )A.14cmB.18cmC.24cmD.28cm9.学生甲与学生乙玩一种转盘游戏.如图是两个完43211234QP A O全相同的转盘,每个转盘被分成面积相等的四个区域,分别用数字“1”“2”“3”“4”表示.固定指针,同时转动两 个转盘,任其自由停止,若两指针所指数字的积为奇数,则甲获胜;若两指针所指数字的积为偶数,则乙获胜;若指针指向扇形的分界线,则都重转一次.在该游戏中乙获胜的概率是 ( )A.14 B.12 C.34 D.5610.如图,某航天飞机在地球表面点P 的正上方A 处,从A 处观测到地球上的最远点Q ,若∠QAP =α,地球半径为R ,则航天飞机距地球表面的最近距离AP ,以及P 、Q 两点间的地面距离分别是( ) A.,sin 180R R παα B.(90),sin 180R R R απα-- C.(90),sin 180R R R απα+- D.(90),cos 180R R R απα-- 11.如图,菱形OABC 的一边OA 在x 轴上,将菱形OABC 绕原点O 顺时针旋转75°至OA B C '''的位置,若OB=,∠C=120°,则点B '的坐标为 ()A.B.(3,xy B A C D OC.D.12.如图,二次函数2y ax bx c =++的图像与y 轴正半轴相交,其顶点坐标为(1,12②0a b +=; ③244ac b a -=;④0a b c ++<.其中正确结论的个数是( )A.1B.2 二、细心填一填(本大题共6小题,每小题3分,满分18分)13.函数y =的自变量x 的取值范围是____________.14.一个几何体是由一些大小相同的小正方体摆成的,其主视图与左视图如图所示,则组成这个几何体的小正方体最少有________个.主视图 左视图15.如图,点A 在双曲线1y x =上,点B 在双曲线3y y=上,且 AB ∥x 轴,C 、D 在x 轴上,若四边形ABCD 为矩形,则它的面积为___________.16.已知正方形ABCD ,以CD 为边作等边△CDE ,则D E C F B AN M 282420161284普高职高其他学生数(名)选项∠AED 的度数是__________.17.对实数a 、b ,定义运算☆如下:a ☆b =(,0(,0b ba a a a ab a -⎧≠⎪⎨≤≠⎪⎩>b )), 例如2☆3=3128-=.计算[2☆(4-)]⨯[(4-)☆(2-)]=___________. 18.如图,直径分别为CD 、CE 的两个半圆相切于点C ,大半圆M 的弦与小半圆N 相切于点F ,且AB ∥CD ,AB=4,设CD 、CE 的长分别为x 、y ,线段ED 的长为z ,则()z x y +的值为____________.三、用心做一做,显显自己的能力(本大题共7小题,满分66分)19.(满分6分)解关于的方程:2131x x x =++- 20.(满分8分)如图所示,网格中每个小正方形的边长为1,请你认真观察图(1)中的三个网格中阴影部分构成的图案,解答下列问题:图(1) 图(2)(1)这三个图案都具有以下共同特征:都是______对称图形,都不是____对称图形.(4分)(2)请在图(2)中设计出一个面积为4,且具备上述特征的图案,要求所画图案不能与图(1)中所给出的图案相同.(4分)21.(满分8分)近几年孝感市加大中职教育投入力度,取得了良好M P CB A O 的社会效果.某校随机调查了九年级m 名学生的升学意向,并根据调查结果绘制出如下两幅不完整的统计图.请你根据图中的信息解答下列问题:(1)m =________;(2分)(2)扇形统计图中“职高”对应的扇形的圆心角α=_________;(2分)(3)请补全条形统计图;(2分)(4)若该校九年级有学生900人,估计该校共有多少名毕业生的升学意向是职高?(2分)22.(满分10分)已知关于x 的方程222(1)0x k x k --+=有两个实数根12,x x .(1)求k 的取值范围;(4分)(2)若12121x x x x +=-,求k 的值;(6分) 23.(满分10分)如图,等边△ABC 内接于⊙O ,P 是AB上任一点(点P 不与点A 、B 重合),连AP 、BP ,过点C作CM ∥BP 交的延长线于点M.(1)填空:∠APC=______度,∠BPC=_______度;(2分)(2)求证:△ACM ≅△BCP ;(4分)(3)若PA=1,PB=2,求梯形PBCM 的面积.(4分)24.(满分10分)健身运动已成为时尚,某公司计EF DC B A O y x M xy O A BC D E 划组装A 、B 两种型号的健身器材共40套,捐给社区健身中心.组装一套A 型健身器材需甲种部件7个和乙种部件4个,组装一套B 型健身器材需甲种部件3个和乙种部件6个.公司现有甲种部件240个,乙种部件196个.(1)公司在组装A 、B 两种型号的健身器材时,共有多少种组装方案?(2)组装一套A 型健身器材需费用20元,组装一套B 型健身器材需费用18元,求总组装费用最少的组装方案,最少总组装费用是多少?(5分)25.(满分14分)如图(1),矩形ABCD 的一边BC 在直接坐标系中x 轴上,折叠边AD ,使点D 落在x 轴上点F 处,折痕为AE ,已知AB=8,AD=10,并设点B 坐标为(,0m ),其中0m >.(1)求点E 、F 的坐标(用含的式子表示);(5分)(2)连接OA ,若△OAF 是等腰三角形,求m 的值;(4分)(3)如图(2),设抛物线2(6)y a x m h =--+经过A 、E两点,其顶点为M ,连接AM ,若∠OAM=90°,求a 、h 、m 的值.(5分) 图(1)图(2)。
孝感市2011年中考数学试题及答案解析(word版)
湖北省孝感市2011年中考数学试卷一、精心选一选,相信自己的判断!(本大题共12小题,每小题3分,共36分.)1、(2011•孝感)﹣2的倒数是()A、2B、﹣2C、D、考点:倒数。
分析:根据倒数的定义,若两个数的乘积是1,我们就称这两个数互为倒数.解答:解:∵﹣2×()=1,∴﹣2的倒数是﹣.故选D.点评:主要考查倒数的概念及性质.倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数,属于基础题.2、(2011•孝感)某种细胞的直径是5×10﹣4毫米,这个数是()A、0.05毫米B、0.005毫米C、0.0005毫米D、0.00005毫米考点:科学记数法—原数。
分析:科学记数法a×10n,n=﹣4,所以小数点向前移动4位.解答:解:5×10﹣4=0.0005,故选:C.点评:此题主要考查了把科学记数法还原原数,还原原数时,关键是看n,n<0时,|n|是几,小数点就向前移几位.3、(2011•孝感)如图,直线AB、CD交于点O,OT⊥AB于O,CE∥AB交CD于点C,若∠ECO=30°,则∠DOT等于()A、30°B、45°C、60°D、120°考点:平行线的性质。
分析:由CE∥AB,根据两直线平行,同位角相等,即可求得∠BOD的度数,又由OT⊥AB,求得∠BOT的度数,然后由∠DOT=∠BOT﹣∠DOB,即可求得答案.解答:解:∵CE∥AB,∴∠DOB=∠ECO=30°,∵OT⊥AB,∴∠BOT=90°,∴∠DOT=∠BOT﹣∠DOB=90°﹣30°=60°.故选C.点评:此题考查了平行线的性质,垂直的定义.解题的关键是注意数形结合思想的应用,注意两直线平行,同位角相等.4、(2011•孝感)下列计算正确的是()A、B、 C、D、考点:二次根式的混合运算。
2011年湖南省娄底市中考数学试题(WORD解析版)
2011湖南省娄底市中考数学试题答案及解析一、精心选一选,旗开得胜(本大题共10道小题,每小题3分,满分30分)1、(2011•娄底)﹣2011的相反数是()A、2011B、﹣2011C、错误!未找到引用源。
D、﹣错误!未找到引用源。
考点:相反数。
专题:计算题。
分析:根据相反数的意义,只有符号不同的数互为相反数.解答:解:﹣2011的相反数是2011,故选A.点评:本题考查了相反数的概念.只有符号不同的数互为相反数,0的相反数为0.2、(2011•娄底)2011年4月28日,国家统计局发布2010年第六次全国人口普查主要数据公报,数据显示,大陆31个省、自治区、直辖市和现役军人的人口共1339724852人,大陆总人口这个数据用科学记数法表示(保留3个有效数字)为()A、1.33×109人B、1.34×109人C、13.4×108人D、1.34×1010人考点:科学记数法与有效数字。
分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.有效数字的计算方法是:从左边第一个不是0的数字起,后面所有的数字都是有效数字.用科学记数法表示的数的有效数字只与前面的a有关,与10的多少次方无关.解答:解:1339724852=1.339724852≈1.34×109.故选B.点评:此题考查科学记数法的表示方法,以及用科学记数法表示的数的有效数字的确定方法.3、(2011•娄底)若|x﹣3|=x﹣3,则下列不等式成立的是()A、x﹣3>0B、x﹣3<0C、x﹣3≥0D、x﹣3≤0考点:绝对值。
专题:常规题型。
分析:根据绝对值的意义,任何数的绝对值都是非负数,从结果入手直接得出答案.解答:解:∵|x﹣3|=x﹣3,∴x﹣3≥0.故选:C.点评:此题主要考查了绝对值的意义,从去绝对值后的结果入手分析是解决问题的关键.4、(2011•娄底)已知点A(x1,y1),B(x2,y2)是反比例函数y=错误!未找到引用源。
【史上最全】2011中考数学真题解析64_两点之间距离_点到直线距离_两平行线的距离(含答案)
2011全国中考真题解析120考点汇编两点之间距离,点到直线距离,两平行线的距离一、选择题1.(2011湖北荆州,14,3分)如图,长方体的底面边长分别为2cm和4cm,高为5cm.若一只蚂蚁从P点开始经过4个侧面爬行一圈到达Q点,则蚂奴爬行的最短路径长为13cm.考点:平面展开-最短路径问题.专题:几何图形问题.分析:要求长方体中两点之间的最短路径,最直接的作法,就是将长方体展开,然后利用两点之间线段最短解答.解答:解:∵PA=2×(4+2)=12,QA=5∴PQ=13.故答案为:13.点评:本题主要考查两点之间线段最短,以及如何把立体图形转化成平面图形.2.(2011,台湾省,11,5分)如图为某大楼一、二楼水平地面间的楼梯台阶位置图,共20阶水平台阶,每台阶的高度均为a公尺,宽度均为b公尺(a≠b).求图中一楼地面与二楼地面的距离为多少公尺?()A、20aB、20bC、×20D、×20考点:平行线之间的距离。
专题:计算题。
分析:根据两并行线间的距离即为两并行线间的垂直线段长,即全部台阶的高度总和;解答:解:∵一楼地面与二楼地面的距离=全部台阶的高度总和,∴一楼地面与二楼地面的距离为:a×20=20a(公尺);故选A.点评:本题考查的是两平行线之间的距离的定义,即两直线平行,则夹在两条平行线间的垂线段的长叫两平行线间的距离,注意防止无用条件的干扰.4.(2011浙江衢州,6,3分)如图,OP平分∠MON,PA⊥ON于点A,点Q是射线OM上的一个动点,若PA=2,则P Q的最小值为()A、1B、2C、3D、4考点:角平分线的性质;垂线段最短。
分析:根据题意点Q是射线OM上的一个动点,要求P Q的最小值,需要找出满足题意的点Q,根据直线外一点与直线上各点连接的所有线段中,垂线段最短,所以我们过点P作P Q垂直OM,此时的P Q最短,然后根据角平分线上的点到角两边的距离相等可得P A=P Q,利用已知的P A的值即可求出P Q的最小值.解答:解:过点P作P Q⊥OM,垂足为Q,则P Q为最短距离,∵OP平分∠MON,PA⊥ON,P Q⊥OM,∴PA=P Q=2,故选B.点评:此题主要考查了角平分线的性质,本题的关键是要根据直线外一点与直线上各点连接的所有线段中,垂线段最短,找出满足题意的点Q的位置.5. (2011广东省茂名,5,3分)如图,两条笔直的公路l1、l2相交于点O,村庄C的村民在公路的旁边建三个加工厂A、B、D,已知AB=BC=CD=DA=5公里,村庄C到公路l1的距离为4公里,则村庄C到公路l2的距离是()A、3公里B、4公里C、5公里D、6公里考点:角平分线的性质;菱形的性质。
2011年上海市中考数学真题及答案
2011年上海市中考数学真题及答案(满分150分,考试时间100分钟)一、选择题(本大题共6题,每题4分,满分24分)【下列各题的四个结论中,有且只有一个选项是正确的。
选择正确项的代号并填涂在答题纸的相应位置上.】1.下列各实数中,属有理数的是A .πB .2C .9D .cos 45°2.解方程3)1(2122=-+-x x x x 时,设y x x =-12,则原方程化为y 的整式方程为 A .01622=+-y y B .0232=+-y y C .01322=+-y y D .0322=-+y y 3.α∠在正方形网格中的位置如图一所示,那么αsin 应用哪些 点联结成的线段的比值表示 A .AC AE B .BC BE C .AC AD D .BCBD4.如图二,当圆形桥孔中的水面宽度AB 为8米时,弧ACB 恰 为半圆。
当水面上涨1米时,桥孔中的水面宽度A ’B ’为 A .15米 B .152米 C .172米 D .不能计算 5.下列命题中正确的是A .对角线互相垂直且相等的四边形是正方形B .如果一条直线上有两点到另一条直线上的距离相等,那么这两条直线互相平行C .如果半径分别为3和1的两圆相切,那么两圆的圆心距一定是4D .有一个内角是︒95的两个等腰三角形相似6.如图三,已知AC 平分∠PAQ ,点B 、D 分别在边AP 、AQ 上. 如果添加一个条件后可推出AB =AD ,那么该条件不可以是 A .BD ⊥AC B .BC =DC C .∠ACB =∠ACD D .∠ABC =∠ADC 二、填空题(本大题共12题,每题4分,满分48分) 【请将结果直接填入答题纸的相应位置上.】 7.求值:38-= .AB CD E(图一)ABC A ’ B ’ ·(图二)·APQC (图三)8.计算:333226y x y x ÷= . 9.分解因式:22y y x x --+= . 10.函数11-=x y 的定义域是 .11.如图四,原点O 是矩形ABCD 的对称中心,顶点A 、C 在反比例函数图像上,AB 平行x 轴.若矩形ABCD 的面积为8,那么 反比例函数的解析式是 . 12.方程 xx x x -+-22323=1中,如设x x y -=23,原方程可化 为整式方程 . 13.方程13-=++x x 的根是 .14.直角三角形斜边长为6,那么三角形的重心到斜边中点的距离为 .15.如图五△ABC 中,AB=AC ,BC =6,S △ABC =3,那么sin B = . 16.汽车沿坡度为1:7的斜坡向上行驶了100米,升高了 米. 17.如图六,AB 左边是计算器上的数字“5”,若以直线AB 为对称轴,那么它的轴对称图形是数字 .18.如图七,在△ABC 中,∠C =90º,∠A=30º,BC =1,将△ABC 绕点B 顺时针方向旋转,使点C 落到AB 的延长线上,那么点A 所经过的线路长为 .三、解答题(本大题共7题,满分78分)19.(本题满分10分)计算:︒︒-︒+︒60tan 30tan 260tan 30tan 22.20.(本题满分10分)解不等式组:⎪⎪⎩⎪⎪⎨⎧->+-≥-62334323429x x x x ,并把它的解集表示在数轴上.(图五)AB (图六)ABC(图七)21.(本题满分10分,第(1)小题满分3分,第(2)小题满分4分,第(3)小题满分3分)某产品每千克的成本价为20元,其销售价不低于成本价,当每千克售价为50元时,它的日销售数量为100千克,如果每千克售价每降低(或增加)一元,日销售数量就增加(或减少)10千克,设该产品每千克售价为x (元),日销售量为y (千克),日销售利润为w (元).(1) 求y 关于x 的函数解析式,并写出函数的定义域; (2) 写出w 关于x 的函数解析式及函数的定义域;(3)若日销售量为300千克,请直接写出日销售利润的大小.22.(本题满分10分,每小题满分各5分)已知:如图八,在ABC ∆中,BC AD ⊥,D 点为垂足,BE AC ⊥,E 点为垂足,M 点位AB 边的中点,联结ME 、MD 、ED .(1)求证:MED ∆与BMD ∆都是等腰三角形; (2)求证:DAC EMD ∠=∠2.23.(本题满分12分,第(1)小题满分5分,第(2)小题满分3分,第(3)小题满分4分)如图九,在线段AE 的同侧作正方形ABCD 和正方形BEFG (BE AB <),连结EG 并延长交DC 于点M ,作MN AB ⊥,垂足为N ,MN 交BD 于点P .设正方形ABCD 的边长为1.(1)证明:△CMG ≌△NBP ;ABCDME(图八)-2 -1 0 1 2 3 4A NB EFGCM DP(图九)(2)设BE x =,四边形MGBN 的面积为y ,求y 关于x 的函数解析式,并写出定义域; (3)如果按照题设方法作出的四边形BGMP 是菱形,求BE 的长.24.(本题满分12分,每小题满分各6分)如图十,C 在射线BM 上,在平行四边形ABCD 中,10==BD AC ,43tan =∠CAD ,对角线AC 与BD 相交于O 点.在射线BM 上截取一点E ,使CE OC =,联结OE ,与边CD 相交于点F .(1)求CF 的长;(2)在没有“CE OC =”的条件下,联结DE 、AE ,AE 与对角线BD 相交于P 点,若ADE ∆为等腰三角形,请求出DP 的长.25.(本题满分14分,第(1)、(2)小题满分各5分,第(3)小题满分4分)已知∠MON = 60°,射线OT 是∠MON 的平分线,点P 是射线OT 上的一个动点,射线PB 交射线ON 于点B .(备用图)A BC DOM(1)如图十一,若射线PB 绕点P 顺时针旋转120°后与射线OM 交于A ,求证:PA = PB ; (2)在(1)的条件下,若点C 是AB 与OP 的交点,且满足PC =23PB ,求:△POB 与△PBC 的面积之比;(3)当OB = 2时,射线PB 绕点P 顺时针旋转120°后与直线OM 交于点A (点A 不与点O 重合),直线PA 交射线ON 于点D ,且满足ABO PBD ∠=∠.请求出OP 的长.参考答案:一、选择题(本大题共6题,每题4分,满分24分)1.C 2.B 3.A 4.B 5.D 6.B 二、选择题(本大题共12题,每题4分,满分48分)7.-2; 8.133-x x或; 9.)1)((++-y x y x ; 10.1>x ;11.xy 2=; 12.022=+-y y ; 13.)2(2不得分写--=x ; 14.1; 15.1010; 16.102; 17.2; 18.π34.三、解答题(本大题共7题,满分78分)19.解:原式=2)60tan 30(tan ︒-︒……………………………………………………(4分)=2)333(-……………………………………………………………(7分) =333-=332…………………………………………………………(10分) MO NTPA BC OMNTOMNT(备用图一)(备用图二)(图十一)20.解:由(1)得:x x 432329+-≥- 3≤x …………………………………………………………(3分) 由(2)得:236134->+x x 1->x …………………………………………………………(6分)∴不等式组的解集为:.........31≤<-x ………………………………………………(8分) 在数轴上表示解集正确(图略)………………………………………………(10分)21.解:(1))50(10100x y -+=………………………………………………………(1分)x y 10600-=……………………………………………………………………(2分)定义域为20≤x ≤60……………………………………………………………(3分) (2))20)(10600(--=x x w ………………………………………………………(5分)12000800102-+-=x x w ,定义域为20≤x ≤60…………………………(7分)(3)3000………………………………………………………………………………(9分)答:……………………………………………………………………………………(10分) 22.证明:(1)∵M 为AB 边的中点,AD ⊥BC , BE ⊥AC , ∴12ME AB =,12MD AB =………………………………………………………(2分) ∴ME =MD ………………………………………………………………………………(3分) ∴△MED 为等腰三角形………………………………………………………………(5分) (2)∵12ME AB MA == ∴∠MAE =∠MEA …………………………………………………………………… (6分) ∴∠BME =2∠MAE ……………………………………………………………………(7分) 同理可得:12MD AB MA == ∴∠MAD =∠MDA …………………………………………………………………… (8分) ∴∠BMD =2∠MAD ……………………………………………………………………(9分) ∵∠EMD =∠BME -∠BMD=2∠MAE -2∠MAD =2∠DAC ……………………………………………(10分)23.证明:(1)∵正方形ABCD∴︒=∠=∠90CBA C ,︒=∠45ABD 同理︒=∠45BEG ∵CD //BE∴︒=∠=∠45BEG CMG ………………………………………………………………(2分) ∵AB MN ⊥,垂足为N ∴︒=∠90MNB∴四边形BCMN 是矩形………………………………………………………………(3分) ∴NB CM =又∵︒=∠=∠90PNB C ,︒=∠=∠45NBP CMG∴△CMG ≌△NBP ……………………………………………………………………(5分) (2)∵ 正方形BEFG ∴x BE BG == ∴x CG -=1从而 x CM -=1………………………………………………………………………(6分) ∴21111()(1)(1)2222y BG MN BN x x x =+=+-=-(10<<x )…………(8分) (3)由已知易得 MN //BC ,MG //BP∴四边形BGMP 是平行四边形………………………………………………………(9分) 要使四边形BGMP 是菱形则BG =MG ,∴)1(2x x -=………………………………………………………(10分) 解得22-=x ………………………………………………………………………(11分) ∴22-=BE 时四边形BGMP 是菱形……………………………………………(12分) 24.解:(1)∵ABCD 为平行四边形且AC=BD∴ABCD 为矩形…………………………………………………………………………(1分) ∴∠ACD =90°在RT △CAD 中,tan ∠CAD=43=ADCD 设CD =3k ,AD =4k∴(3k )²+(4k )²=10² 解得k =2∴CD =3k =6 ……………………………………………………………………………(2分) (Ⅰ)当E 点在BC 的延长线上时,过O 作OG ⊥BC 于G …………………………………………………………………(3分)∴21==BD BO CD OG ∴OG =3 同理可得:11==OD BO GC BG ,即BG =GC =4 又∵521===AC CE OC∴EG CE OG CF = ∴4553+=CF 解得35=CF ……………………………………………………………………………(4分)(Ⅱ)当E 点在边BC 上时,易证F 在CD 的延长线上,与题意不符,舍去……(6分) (注:若有考生求出该情况下CF 的长,但没有舍去此解,扣.1.分.) (2)若ADE ∆为等腰三角形,(Ⅰ)8==ED AD (交于BC 的延长线上) 由勾股定理可得:726-8DC -DE 2222===CE ………………………(7分)∵AD ∥BE ∴a PD BP AD BE −→−+=+==令4748728 ∴BP +PD =BD =10=a a a 474++解得57)78(10-=a∴5774032057)78(404-=-==a PD …………………………………………(8分)(Ⅱ)8==ED AD (交于边BC ) 同理可得:a AD BE PD BP −→−-=-==令4748728 ∴a a a BD PD BP 47410+-===+解得57)78(10+=a∴5774032057)78(404+=+==a PD …………………………………………(9分)(Ⅲ)ED AE = 易证:DEC AEB ∆≅∆∴421===BC EC BE ∴同理可得:31=BD BP ,则3110=BP ∴310=BP ,PD =320………………………………………………………………(10分)(Ⅳ)8==AD AE ∴726822=-=BE ∴同理可得:a PDBP AD BE −→−==令47 9)74(101074-==+a a a∴97401604-==a PD …………………………………………………………(11分)∴综上所述,若ADE ∆为等腰三角形,3205774032057740320或或+-=PD 或9740160-…………………………………………………………………………(12分)(注:若考生只详细写出一种情况,其余几种均用了同理,只要答案正确,也给满分....)25.解:(1)证明:作PF ⊥OM 于F ,作PG ⊥ON 于G ………………………………(1分)∵OP 平分∠MON∴PF =PG ………………………………………………………………………………(2分) ∵∠MON = 60°∴∠FPG = 360°– 60°– 90°– 90°= 120°………………………(3分) 又∵∠APB =120° ∴∠APF = ∠BPG∴△PAF ≌△PBG ………………………………………………………………………(4分) ∴PA = PB ………………………………………………………………………………(5分) (2)由(1)得:PA = PB ,∠APB =120°∴∠PAB = ∠PBA = 30°………………………………………………………………(6分) ∵∠MON = 60°,OP 平分∠MON∴∠TON = 30°…………………………………………………………………………(7分) ∴∠POB = ∠PBC ………………………………………………………………………(8分) 又∠BPO = ∠OPB∴△POB ∽△PBC ………………………………………………………………………(9分) ∴34)23()(22===∆∆PB PB PC PB S S PBC POB ∴△POB 与△PBC 的面积之比为4∶3………………………………………………(10分) (3)① 当点A 在射线OM 上时(如图乙1),易求得:∠BPD = ∠BOA = 60°∵ABO PBD ∠=∠,而∠PBA = 30°,∴∠OBA = ∠PBD = 75° 作BE ⊥OT 于E∵∠NOT = 30°,OB = 2∴BE =1,OE = 3,∠OBE = 60°∴∠EBP = ∠EPB = 45°∴PE = BE =1∴OP = OE + PE =3+ 1……………………………………………………………(12分) ② 当点A 在射线OM 的反向延长线上时(如图乙2)此时∠AOB = ∠DPB = 120°∵ABO PBD ∠=∠,而∠PBA = 30°,∴∠OBA = ∠PBD = 15°作BE ⊥OT 于E∵∠NOT = 30°,OB = 2,∴BE =1,OE = 3,∠OBE = 60°∴∠EBP = ∠EPB = 45°∴PE = BE =1∴OP =3-1…………………………………………………………………………(14分) ∴综上所述,当2=OB 时,1313-+=或OP(注:若考生直接写出结果......,只给一半的分数.......)O MN T图乙1 PBEO M N T 图乙2 P A B E D。
山东省潍坊市2011年中考数学试卷-解析版
2011年山东省潍坊市中考数学试卷-解析版一、选择题(共12小题,每小题3分,满分36分)1、(2011•潍坊)下面计算正确的是()A、B、C、D、考点:二次根式的混合运算。
专题:计算题。
分析:根据二次根式的混合运算方法,分别进行运算即可.解答:解:A.3+不是同类项无法进行运算,故此选项错误;B.===3,故此选项正确;C.=,×==,故此选项错误;D.=﹣2,∵==2,故此选项错误;故选:B.点评:此题主要考查了二次根式的混合运算,熟练化简二次根式后,在加减的过程中,有同类二次根式的要合并;相乘的时候,被开方数简单的直接让被开方数相乘,再化简;较大的也可先化简,再相乘,灵活对待.2、(2011•潍坊)我国以2010年11月1日零时为标准时点进行了笫六次全国人口普查,普查得到全国总人口为1370536875人,该数用科学记数法表示为()(保留3个有效数字)A、13.7亿B、13.7×108C、1.37×109D、1.4×109考点:科学记数法与有效数字。
分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于1370536875有10位,所以可以确定n=10﹣1=9.有效数字的计算方法是:从左边第一个不是0的数字起,后面所有的数字都是有效数字.用科学记数法表示的数的有效数字只与前面的a有关,与10的多少次方无关.解答:解:1370536875=1.370536875×109≈1.37×109.故选:C.点评:此题主要考查了科学记数法的表示方法,以及用科学记数法表示的数的有效数字的确定方法.3、(2011•潍坊)如图,△ABC中,BC=2,DE是它的中位线,下面三个结论:(1)DE=1;(2)△ADE∽△ABC;(3)△ADE的面积与△ABC的面积之比为1:4.其中正确的有()A、0个B、1个C、2个D、3个考点:相似三角形的判定与性质;三角形中位线定理。
2011中考数学真题解析101 与圆有关的综合题(含答案)
(2012年1月最新最细)2011全国中考真题解析120考点汇编与圆有关的综合题一、选择题1. (2011山东日照,11,4分)已知AC ⊥BC 于C ,BC=a ,CA=b ,AB=c ,下列选项中⊙O 的半径为ba ab+的是( ) A . B . C . D .考点:三角形的内切圆与内心;解一元一次方程;正方形的判定与性质;切线的性质;相似三角形的判定与性质。
专题:计算题。
分析:连接OE 、OD ,根据AC 、BC 分别切圆O 于E 、D ,得到∠OEC=∠ODC=∠C=90°,证出正方形OECD ,设圆O 的半径是r ,证△ODB ∽△AEO ,得出ODAEBD OE =,代入即可求出r=ba ab+;设圆的半径是x ,圆切AC 于E ,切BC 于D ,且AB 于F ,同样得到正方形OECD ,根据a ﹣x+b ﹣x=c ,求出x 即可;设圆切AB 于F ,圆的半径是y ,连接OF ,则△BCA ∽△OFA 得出ABAOBC OF =,代入求出y 即可.解答:解:C 、连接OE 、OD , ∵AC 、BC 分别切圆O 于E 、D , ∴∠OEC=∠ODC=∠C=90°, ∵OE=OD ,∴四边形OECD 是正方形, ∴OE=EC=CD=OD , 设圆O 的半径是r ,∵OE ∥BC ,∴∠AOE=∠B ,∵∠AEO=∠ODB , ∴△ODB ∽△AEO ,∴OD AEBD OE =, rrb r a r -=-, 解得:r=ba ab+,故本选项正确;A 、设圆的半径是x ,圆切AC 于E ,切BC 于D ,且AB 于F ,如图(1)同样得到正方形OECD ,AE=AF ,BD=BF ,则a ﹣x+b ﹣x=c ,求出x=2cb a -+,故本选项错误; B 、设圆切AB 于F ,圆的半径是y ,连接OF ,如图(2),则△BCA ∽△OFA ,∴ ABAOBC OF =,∴cy b a y -=,解得:y=b a ab+,故本选项错误; D 、求不出圆的半径等于ba ab+,故本选项错误;故选C .点评:本题主要考查对正方形的性质和判定,切线的性质,全等三角形的性质和判定,三角形的内切圆与内心,解一元一次方程等知识点的理解和掌握,能根据这些性质求出圆的半径是解此题的关键.2. (2011•台湾24,4分)如图,△ABC 的外接圆上,AB ,BC ,CA 三弧的度数比为12:13:11.自BC 上取一点D ,过D 分别作直线AC ,直线AB 的并行线,且交于E ,F 两点,则∠EDF 的度数为( )A 、55°B 、60°C 、65°D 、70°考点:圆心角、弧、弦的关系;平行线的性质。
【史上最全】2011中考数学真题解析82_中位线(含答案)
2011全国中考真题解析120考点汇编中位线一、选择题1.(2011•湘西州)如图,在△ABC中,E、F分别是AB、AC的中点,若中位线EF=2cm,则BC边的长是()A、1cmB、2cmC、3cmD、4cm考点:三角形中位线定理。
专题:计算题。
分析:由E、F分别是AB、AC的中点,可得EF是△ABC的中位线,直接利用三角形中位线定理即可求BC.解答:解:∵△ABC中,E、F分别是AB、AC的中点,EF=2cm,∴EF是△ABC的中位线∴BC=2EF=2×2=4cm.故选D.点评:本题考查了三角形中位线的性质,三角形的中位线是指连接三角形两边中点的线段,中位线的特征是平行于第三边且等于第三边的一半.2.(2011江苏苏州,9,3分)如图,在四边形ABCD中,E、F分別是AB、AD的中点,若EF=2,BC=5,CD=3,则tanC等于()A.34B.43C.35D.45考点:锐角三角函数的定义;勾股定理的逆定理;三角形中位线定理.专题:几何图形问题.分析:根据三角形的中位线定理即可求得BD的长,然后根据勾股定理的逆定理即可证得△BCD是直角三角形,然后根据正切函数的定义即可求解.解答:解:连接BD.∵E、F分別是AB、AD的中点.∴BD=2EF=4∵BC=5,CD=3∴△BCD是直角三角形.∴tanC= 43故选B.点评:本题主要考查了三角形的中位线定义,勾股定理的逆定理,和三角函数的定义,正确证明△BCD是直角三角形是解题关键.3.(2011•贺州)如图,在梯形ABCD中,AB∥CD,AB=3CD,对角线AC、BD交于点O,中位线EF与AC、BD分别交于M、N两点,则图中阴影部分的面积是梯形ABCD面积的()A、B、C、D、考点:梯形中位线定理;三角形中位线定理。
分析:首先根据梯形的中位线定理,得到EF∥CD∥AB,再根据平行线等分线段定理,得到M,N分别是AD,BC的中点;然后根据三角形的中位线定理得到CD=2EM=2NF,最后根据梯形面积求法以及三角形面积公式求出,即可求得阴影部分的面积与梯形ABCD面积的面积比.解答:解:过点D作DQ⊥AB,交EF于一点W,∵EF是梯形的中位线,∴EF∥CD∥AB,DW=WQ,∴AM=CM,BN=DN.∴EM=CD,NF=CD.∴EM=NF,∵AB=3CD,设CD=x,∴AB=3x,EF=2x,∴MN=EF﹣(EM+FN)=x,∴S△AME+S△BFN=×EM×WQ+×FN×WQ=(EM+FN)QW=x•QW,S梯形ABFE=(EF+AB)×WQ=QW,S△DOC+S△OMN=CD×DW=xQW,S梯形FECD=(EF+CD)×DW=xQW,∴梯形ABCD面积=xQW+xQW=4xQW,图中阴影部分的面积=x•QW+xQW=xQW,∴图中阴影部分的面积是梯形ABCD面积的:=.故选:C.点评:此题考查了三角形中位线定理、平行线等分线段定理和梯形的中位线定理和梯形面积与三角形面积求法,解答时要将三个定理联合使用,以及得出各部分对应关系是解决问题的关键.4.(2011•泰州,8,3分)如图,直角三角形纸片ABC的∠C为90°,将三角形纸片沿着图示的中位线DE剪开,然后把剪开的两部分重新拼接成不重叠的图形,下列选项中不能拼出的图形是()A、平行四边形B、矩形C、等腰梯形D、直角梯形考点:三角形中位线定理。
2011河北中考数学试题及答案
2011河北中考数学试题及答案考试是评价学生学习成绩的一种常见方式,而数学试题作为其中的一部分,对于学生的数学水平有着重要的检验作用。
本文将为大家介绍2011年河北中考数学试题及答案,帮助学生们更好地了解考试内容和解题思路。
2011年河北中考数学试题题目一:已知正方形ABCD的边长为4cm,点E是BC延长线上的一点,且BE=2cm,连接AE交对角线BD于F。
求EF的长度。
解析:首先,根据正方形ABCD的性质,可以得知BD是对角线,在点E处交对角线BD得到弦EF。
我们可通过相似三角形的知识来求解。
在△ABF和△DEC中,由于正方形ABCD为等腰直角三角形,故△ABF和△DEC为相似三角形,且由比例关系可得BF/DE=AB/DC=1。
根据已知条件,我们可以得到BE=2cm,BF=BC-FC=4-FC,DE=2cm,代入比例关系可得(4-FC)/2=1,解得FC=2cm。
由△ABF与△CFE的相似关系可知,AB/CF=AF/CE=BF/EF,代入已知数据可得4/(2+EF)=2/EF,解得EF=1cm。
综上所述,EF的长度为1cm。
题目二:甲乙两人进行长跑比赛,已知甲第一圈跑完全程的1/4,第二圈跑完全程的1/2,第三圈跑完全程的1/3,如此往复。
乙第一圈跑完全程的1/5,第二圈跑完全程的1/4,第三圈跑完全程的1/3,如此往复。
如果两人同时开始比赛,两人相遇时甲刚好跑完第n圈,求n 的值。
解析:通过观察题目中给出的比例关系可以得知,甲和乙两人分别每一圈的跑步长度从第一圈开始逐渐递增。
我们可以列出甲乙两人每一圈的跑步长度的等差数列,并找到二者的公共项。
甲的每一圈跑步长度为1/4,1/2,1/3...,是一个等差数列,而乙的每一圈跑步长度为1/5,1/4,1/3...,也是一个等差数列。
根据等差数列的性质,公式为an=a1+(n-1)d,其中an代表第n项,a1代表首项,d代表公差。
设甲第n圈时刚好跑完全程,乙第m圈时刚好跑完全程,则有:1/4+1/2+1/3+...+1/n=11/5+1/4+1/3+...+1/m=1通过计算等差数列的和,我们可以得到甲乙两人各自跑的圈数:n=4m=5综上所述,两人相遇时甲刚好跑完第4圈,即n的值为4。
初中中考 数学学业水平考试类题剖析 (图形的性质)
考题呈现:对顶角余角补角
【考点及思路分析】 角互余和互补的定义和性质是本 部分的重点,其中能找出角的余 角或者补角是难点和易错点。应 用余角、补角的性质进行几何证 明或计算。中考题常与全等、相 似相结合,作为“等角”的隐含 条件 【错因剖析】 1.互为余角的角找不全;2.找不 到角、线段的等量关系;3.看不 到三角形的全等、相似关系。 【教学策略】 能从隐含条件(垂直、直角三角 形、矩形、正方形)和常见图形 中找到互余、互补或等量关系;
【错因剖析】 1.忽视了三角形“三边”这一条 件;2.利用三角形外角解决问题 很生疏。
【教学策略】 1.加强三角形三边关系题目的巩 固性训练,防“雷区”;
2.重视三角形内角和定理推论。
考题呈现:三角形全等的性质和判定
【考点及思路分析】 1.三角形内角和定理及推论,三 角形三边关系,不会进行知识点
的独立考查,常常与其它知识结 合;
考题呈现:中点及等分点
【类题点评】 考查与中点、等分点等有关的
计算、证明。由中点,等分点 得到的等量关系,结合三角形、 四边形和圆,分析图中的全等、 相似等关系,进行几何证明或 计算。 在题目中易忽视图形中的隐含
条件(中位线、平行、互余 等),以及三等分点中两种情 况。 掌握中点、等分点的几何意义,
正确作图,并加强“点到直线的 距离”的理解。
考题呈现:平行线性质与判定
考题呈现:平行线性质与判定
E
注意辅助线运用
l
考题呈现:平行线性质与判定
考题呈现:平行线性质与判定
考题呈现:平行线性质与判定
【考点及思路分析】 1.常与三角形、四边形、圆进行 综合考查,涉及平行线的性质和 判定;
2.先作辅助线,利用性质和判定 求解是难点。
【VIP专享】【史上最全】2011中考数学真题解析64_两点之间距离_点到直线距离_两平行线的距离(含答案)
2011全国中考真题解析120考点汇编两点之间距离,点到直线距离,两平行线的距离一、选择题1.(2011湖北荆州,14,3分)如图,长方体的底面边长分别为2cm和4cm,高为5cm.若一只蚂蚁从P点开始经过4个侧面爬行一圈到达Q点,则蚂奴爬行的最短路径长为13cm.考点:平面展开-最短路径问题.专题:几何图形问题.分析:要求长方体中两点之间的最短路径,最直接的作法,就是将长方体展开,然后利用两点之间线段最短解答.解答:解:∵PA=2×(4+2)=12,QA=5∴PQ=13.故答案为:13.点评:本题主要考查两点之间线段最短,以及如何把立体图形转化成平面图形.2.(2011,台湾省,11,5分)如图为某大楼一、二楼水平地面间的楼梯台阶位置图,共20阶水平台阶,每台阶的高度均为a公尺,宽度均为b公尺(a≠b).求图中一楼地面与二楼地面的距离为多少公尺?( )A、20aB、20bC、×20D、×20考点:平行线之间的距离。
专题:计算题。
分析:根据两并行线间的距离即为两并行线间的垂直线段长,即全部台阶的高度总和;解答:解:∵一楼地面与二楼地面的距离=全部台阶的高度总和,∴一楼地面与二楼地面的距离为:a×20=20a(公尺);故选A.点评:本题考查的是两平行线之间的距离的定义,即两直线平行,则夹在两条平行线间的垂线段的长叫两平行线间的距离,注意防止无用条件的干扰.4.(2011浙江衢州,6,3分)如图,OP平分∠MON,PA⊥ON于点A,点Q是射线OM 上的一个动点,若PA=2,则P Q的最小值为( )A、1B、2C、3D、4考点:角平分线的性质;垂线段最短。
分析:根据题意点Q是射线OM上的一个动点,要求P Q的最小值,需要找出满足题意的点Q,根据直线外一点与直线上各点连接的所有线段中,垂线段最短,所以我们过点P作P Q垂直OM,此时的P Q最短,然后根据角平分线上的点到角两边的距离相等可得PA=P Q,利用已知的PA的值即可求出P Q的最小值.解答:解:过点P作P Q⊥OM,垂足为Q,则P Q为最短距离,∵OP平分∠MON,PA⊥ON,P Q⊥OM,∴PA=P Q=2,故选B.点评:此题主要考查了角平分线的性质,本题的关键是要根据直线外一点与直线上各点连接的所有线段中,垂线段最短,找出满足题意的点Q的位置.5. (2011广东省茂名,5,3分)如图,两条笔直的公路l1、l2相交于点O,村庄C的村民在公路的旁边建三个加工厂A、B、D,已知AB=BC=CD=DA=5公里,村庄C到公路l1的距离为4公里,则村庄C到公路l2的距离是( )A、3公里B、4公里C、5公里D、6公里考点:角平分线的性质;菱形的性质。
北京市2011年中考数学试题解析
北京市2011年中考数学试题解析一、选择题(共8小题,每小题4分,满分32分)1、(2011•北京)﹣的绝对值是()A、﹣B、C、﹣D、考点:绝对值。
专题:计算题。
分析:数轴上某个数与原点的距离叫做这个数的绝对值.解答:解:数轴上某个数与原点的距离叫做这个数的绝对值,在数轴上,点﹣到原点的距离是,所以﹣的绝对值是﹣.故选D.点评:本题考查绝对值的基本概念:数轴上某个数与原点的距离叫做这个数的绝对值.2、(2011•北京)我国第六次全国人口普查数据显示,居住在城镇的人口总数达到665 575 306人.将665 575 306用科学记数法表示(保留三个有效数字)约为()A、66.6×107B、0.666×108C、6.66×108D、6.66×107考点:科学记数法与有效数字。
分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于1 048 576有7位,所以可以确定n=7﹣1=6.有效数字的计算方法是:从左边第一个不是0的数字起,后面所有的数字都是有效数字.用科学记数法表示的数的有效数字只与前面的a有关,与10的多少次方无关.解答:解:665 575 306≈6.66×108.故选C.点评:此题考查科学记数法的表示方法,以及用科学记数法表示的数的有效数字的确定方法.3、(2011•北京)下列图形中,即是中心对称又是轴对称图形的是()A、等边三角形B、平行四边形C、梯形D、矩形考点:中心对称图形;轴对称图形。
分析:根据轴对称图形与中心对称图形的概念求解,四个选项中,只有D选项既为中心对称图形又是轴对称图形解答:解:A、是轴对称图形,不是中心对称图形.故本选项错误;B、是不是轴对称图形,是中心对称图形.故本选项错误;C、是轴对称图形,不是中心对称图形.故本选项错误;D、既是轴对称图形,又是中心对称图形.故本选项正确.故选D.点评:本题主要考察中心对称图形与轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形的关键是要寻找对称中心,旋转180度后与原图重合.4、(2011•北京)如图,在梯形ABCD中,AD∥BC,对角线AC,BD相交于点O,若1AD=,3BC=,则AOCO的值为( )A、B、C、D、考点:相似三角形的判定与性质;梯形。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(2012年1月最新最细)2011全国中考真题解析120考点汇编两点之间距离,点到直线距离,两平行线的距离
一、选择题
1.(2011湖北荆州,14,3分)如图,长方体的底面边长分别为2cm和4cm,高为5cm.若一只蚂蚁从P点开始经过4个侧面爬行一圈到达Q点,则蚂奴爬行的最短路径长为13cm.
考点:平面展开-最短路径问题.
专题:几何图形问题.
分析:要求长方体中两点之间的最短路径,最直接的作法,就是将长方体展开,然后利用两点之间线段最短解答.
解答:解:
∵PA=2×(4+2)=12,QA=5
∴PQ=13.
故答案为:13.
点评:本题主要考查两点之间线段最短,以及如何把立体图形转化成平面图形.
2.(2011,台湾省,11,5分)如图为某大楼一、二楼水平地面间的楼梯台阶位置图,共20阶水平台阶,每台阶的高度均为a公尺,宽度均为b公尺(a≠b).求图中一楼地面与二楼地面的距离为多少公尺?()
A、20a
B、20b
C、×20
D、×20
考点:平行线之间的距离。
专题:计算题。
分析:根据两并行线间的距离即为两并行线间的垂直线段长,即全部台阶的高度总和;
解答:解:∵一楼地面与二楼地面的距离=全部台阶的高度总和,
∴一楼地面与二楼地面的距离为:a×20=20a(公尺);
故选A.
点评:本题考查的是两平行线之间的距离的定义,即两直线平行,则夹在两条平行线间的垂线段的长叫两平行线间的距离,注意防止无用条件的干扰.
4.(2011浙江衢州,6,3分)如图,OP平分∠MON,P A⊥ON于点A,点Q是射线OM 上的一个动点,若P A=2,则P Q的最小值为()
A、1
B、2
C、3
D、4
考点:角平分线的性质;垂线段最短。
分析:根据题意点Q是射线OM上的一个动点,要求P Q的最小值,需要找出满足题意的点Q,根据直线外一点与直线上各点连接的所有线段中,垂线段最短,所以我们过点P作P Q垂直OM,此时的P Q最短,然后根据角平分线上的点到角两边的距离相等可得P A=P Q,利用已知的P A的值即可求出P Q的最小值.
解答:解:过点P作P Q⊥OM,垂足为Q,则P Q为最短距离,
∵OP平分∠MON,P A⊥ON,P Q⊥OM,
∴P A=P Q=2,
故选B.
点评:此题主要考查了角平分线的性质,本题的关键是要根据直线外一点与直线上各点连接的所有线段中,垂线段最短,找出满足题意的点Q的位置.
5. (2011广东省茂名,5,3分)如图,两条笔直的公路l1、l2相交于点O,村庄C的村民在公路的旁边建三个加工厂A、B、D,已知AB=BC=CD=DA=5公里,村庄C到公路l1的距离为4公里,则村庄C到公路l2的距离是()
A、3公里
B、4公里
C、5公里
D、6公里
考点:角平分线的性质;菱形的性质。
专题:证明题。
分析:根据菱形的对角线平分对角,作出辅助线,即可证明.
解答:解:如图,连接AC ,作CF ⊥l 1,CE ⊥l 2;
∵AB=BC=CD=DA =5公里,
∴四边形ABCD 是菱形,
∴∠CAE =∠CAF ,
∴CE=CF =4公里.
故选B .
点评:本题主要考查角平分线的性质,由已知能够注意到四边形ABCD 是菱形:菱形的对角线平分对角,是解题的关键.
案.
二、填空题
1. (2011重庆綦江,14,4分)如图,菱形ABCD 的对角线AC 、BD 相交于点O ,且AC =8,BD =6,过点O 作OH 丄AB ,垂足为H ,则点O 到边AB 的距离
考点:菱形的性质;点到直线的距离;勾股定理。
专题:计算题。
分析:因为菱形的对角线互相垂直平分,菱形的四边相等,根据面积相等,可求出OH 的长. 解答:解:∵AC =8,BD =6,
∴BO =3,AO =4,
∴AB =5.
21AO •BO =2
1AB •OH , OH =512.. 故答案为:5
12.
点评:本题考查菱形的基本性质,菱形的对角线互相垂直平分,菱形的四边相等,根据面积相等,可求出AB 边上的高OH .
2. (2011湖北咸宁,15,3分)如图,在直角梯形ABCD 中,AD ∥BC ,BC AB ⊥,2=AD ,
4=BC ,点E 在AB 边上,且CE 平分BCD ∠,DE 平分
ADC ∠,则点E 到CD 的距离为 .
考点:相似三角形的判定与性质;角平分线的性质;直角梯形。
分析:首先由过点E 作EF ⊥CD 于F ,过点D 作DH ⊥BC 于H ,在直角梯形ABCD 中,AD ∥BC ,AB ⊥BC ,即可得四边形ABHD 是矩形,又由CE 平分∠BCD ,DE 平分∠ADC ,即可得AD =FD ,BC =FC ,即可求得CD 的长,继而在Rt △DHC 中求得DH 的长,则可得点E 到CD 的距离.
解答:解:过点E 作EF ⊥CD 于F ,过点D 作DH ⊥BC 于H ,
∵AD ∥BC ,AB ⊥BC ,
∴∠A =∠B =90°
∵CE 平分∠BCD ,DE 平分∠ADC ,
∴AE=EF ,BE=EF ,
∴EF=AE=BE =AB ,
∴△ADE ≌△FDE ,△CEF ≌△CEB ,
∴DF=AD =2,CF=CB =4,
∴CD =6,
∵AB ⊥BC ,DH ⊥BC ,AD ∥BC ,
∴∠A =∠B =∠BHD =90°,
∴四边形ABHD 是矩形,
∴DH=AB ,BH =AD =2,
∴CH =BC ﹣BH =2,
在Rt △DHC 中,DH ==-22CH CD 42,
∴EF =22.
∴点E 到CD 的距离为22.
故答案为:22.
点评:此题考查了梯形的性质,全等三角形的判定与性质,角平分线的性质以及直角三角形的性质等知识.此题综合性很强,难度适中,解题的关键是注意数形结合思想的应用,注意辅助线的作法.
3.(2011辽宁沈阳,11,4分)在平面直角坐标系中,若点M (1,3)与点N (X ,3)之间的距离是5,则X 的值是 .
考点:坐标与图形性质。
专题:计算题。
分析:点M 、N 的纵坐标相等,则直线MN 在平行于X 轴的直线上,根据两点间的距离,可列出等式|X ﹣1|=5,从而解得X 的值.
解答:解:∵点M (1,3)与点N (x ,3)之间的距离是5,
∴|x ﹣1|=5,
解得x =﹣4或6.
故答案为:﹣4或6.
点评:本题是基础题,考查了坐标与图形的性质,当两点的纵坐标相等时,则这两点在平行于x 轴的直线上.
4. (2011台湾,17,4分)如图,坐标平面上有两直线L .M ,其方程式分别为y =9.y =-6.若L 上有一点P ,M 上有一点Q ,PQ 与y 轴平行,且PQ 上有一点R ,PR :PQ =1:2,则R 点与x 轴的距离为何( )
A.1 B.4 C.5 D.10
考点:坐标与图形性质。
专题:函数思想。
分析:由已知直线L上所有点的纵坐标为9,M上所由点的坐标为-6,由PQ与y轴平行即于x轴垂直,可得出PN=9,QN=6,PQ=PN+QN=9+6=15,根据已知PR:RQ=1:2可求出PR,从而求出R点与x轴的距离.
解答:解:已知直线L和M的方程式是y=9.y=-6,
所以得到直线L.M都平行于x轴,
即得点P.Q到x轴的距离分别是9和6,
又PQ平行于y轴,所以PQ垂直于x轴,
所以,PN=9,QN=6,PQ=PN+QN=9+6=15,
又PR:RQ=1:2,
所以得:PR=5,RQ=10,
则,RN=PN-PR=9-5=4,
所以R点与x轴的距离为4.
故选:B.
点评:此题考查的知识点是坐标与图形性质,解题的关键是由已知直线L,M,及PQ与y 轴平行先求出PQ,再由PR:RQ=1:2求出R点与x轴的距离.
5.(2011广西崇左,5,2分)在修建崇钦高速公路时,有时需要将弯曲的道路改直,依据
是.
考点:线段的性质:两点之间线段最短.
分析:根据线段的性质:两点之间线段最短解答.
解答:解:在修建崇钦高速公路时,有时需要将弯曲的道路改直,依据是:两点之间线段最短.
故答案为:两点之间线段最短.
点评:本题考查了两点之间线段最短的性质,是基础题,比较简单.
点评:本题考查了勾股定理的运用,通过添加辅助线,可将问题转化到直角三角形中,利用勾股定理解答;考查了学生的空间想象能力.
三、解答题
点评:此题主要考查相似三角形的判定与性质,勾股定理,菱形的判定与性质,轴对称的性质,中心对称,平行线分线段成比例等知识点,综合性强,有一定的拔高难度,属于难题.。