数列通项公式的求法第2课时-累加法累乘法

合集下载

数列通项公式之累加法与累乘法

数列通项公式之累加法与累乘法

数列通项公式之累加法与累乘法数列是一种非常常见的数学对象,它由一系列按照一定规律排列的数所组成。

数列中每一个数被称为该数列的项,数列中相邻的两项之间的差或比被称为公差或公比。

数列通项公式即指的是能够表示数列中第n项与n的关系的公式。

在数列通项公式中,最常见的两种形式分别是累加法和累乘法。

1.累加法:累加法指的是通过将数列中每一项与前面所有项的和相加来求得数列的通项。

累加法适用于具备递推关系的数列,即每一项可以通过前面的项得到。

例如,我们考虑一个最简单的等差数列:1,2,3,4,5,...。

这个数列的通项可以通过累加法来求得。

观察数列的规律,我们可以发现第n 项为n。

因此,这个等差数列的通项公式就是An=n,其中n为项数。

再例如,我们考虑一个等差数列:4,7,10,13,16,...。

这个数列的通项也可以通过累加法来求得。

观察数列的规律,我们可以发现每一项与前一项的差都是3,即公差为3、因此,我们可以得到公式An=4+(n-1)*3,其中n为项数。

2.累乘法:累乘法指的是通过将数列中每一项与前面所有项的积相乘来求得数列的通项。

累乘法适用于具备递推关系的数列,即每一项可以通过前面的项得到。

例如,我们考虑一个最简单的等比数列:2,4,8,16,32,...。

这个数列的通项可以通过累乘法来求得。

观察数列的规律,我们可以发现第n项为2的幂次方,即An=2^n,其中n为项数。

再例如,我们考虑一个等比数列:1,-2,4,-8,16,...。

这个数列的通项也可以通过累乘法来求得。

观察数列的规律,我们可以发现每一项与前一项的比都是-2,即公比为-2、因此,我们可以得到公式An=(-2)^(n-1),其中n为项数。

总结来说,数列通项公式之累加法和累乘法都是通过观察数列的规律,并通过对前面的数进行累加或累乘来得到通项公式。

这些公式的求得可以帮助我们更好地理解数列的性质,进而解决与数列有关的问题。

数列通项公式的求法——累加累乘

数列通项公式的求法——累加累乘

数列通项公式的求法之累加累乘概述:一般地,数列的通项公式需要根据递推关系确定,将递推关系式变形转化为等差数列或等比数列,但有时数列的递推关系还需要进一步探索出来。

1、递推公式满足:a n d = an g n型或a n j f (n) ( n_2)型思路:利用累加法,将a n-a n」=g( n-1),a n」. - a n/=g( n-2),,a2-a!=g(1),各式相加,正负抵消,得a.,即a n - a i ' (a2 一印)(a3 - a2)…(a n - a n」);n n用求和符号可以表示为:an=a^v (a -@_1)= ai八f(i)(n—2)0i =2 i=2例1:在数列ta n冲,a1= 0且a n彳=a n■ 2n -1,求数列、a n匚的通项公式。

■ 1例2:在数列”Gn :中,a1 = 3,a n d= a n - ,求数列:aj的通项公式n(n +1)例3:已知数列①:满足a n^a n 2 3n1,a^3,求数列①?的通项公式。

补充练习:1、已知数列ta n}满足a1=1, a n Hr = a n+ n ( n亡N+),则数列ia n}的通项公式为 ____________ 02、已知数列◎ }满足內=1, a n+ = an+3n)(n ^N+),则数列l a j的通项公式为 _________ 03、已知数列£n }满足印=丄,a^=an+ —1 -------------------------- ( n EN+),则数列^a j的通2 n2+3n + 2项公式为an 二 ________________________________________________________ 。

4、已知数列「aj 满足a n ^a n 8(工卫 2 , a —8,贝擞列 玄沖勺通项公式(2n +1)2(2 n+3)29 为 a n = _______________________________________________________________ 。

求数列通项公式的十种方法 (2)

求数列通项公式的十种方法 (2)

总述:求数列通项的方法:累加法、累乘法、待定系数法、阶差法(逐差法)、迭代法、对数变换法、倒数变换法、一、累加法适用于:1()n n a a f n +=+转换成1()n n a a f n +-=,其中f(n)可以是关于n 的一次函数、二次函数、指数函数、分式函数,求通项na .①若f(n)是关于n 的一次函数,累加后可转化为等差数列求和; ②若③若④若例1解:由n a 例2解;由n a 3221((2333(1)3(1)3n a a a n n =++-=++⨯=++++-+=-+==练习1.已知数列{}n a的首项为1,且*12()n n a a n n N +=+∈写出数列{}n a的通项公式.答案:12+-n n练习2.已知数列}{n a 满足31=a ,)2()1(11≥-+=-n n n a a n n ,求此数列的通项公式.答案:裂项求和n a n 12-=二、累乘法1.适用于:1()n n a f n a +=----------这是广义的等比数列2.若1()n n a f n a +=,则31212(1)(2)()n na aaf f f n a a a +===,,, 两边分别相乘得,1111()nn k a a f k a +==⋅∏ 例4例4.已知数列{}n a 满足321=a ,n n a n na 11+=+,求n a 。

解:由条件知1=+n a n ,分别令)1(,,3,2,1-⋅⋅⋅⋅⋅⋅=n n ,代入上式得)1(-n 个等式三.。

例2n 满足S n 点评②数列{a 基本思路是转化为等差数列或等比数列,而数列的本质是一个函数,其定义域是自然数集的一个函数。

1.形如(,1≠+=+c d ca a n n ,其中a a =1)型(1)若c=1时,数列{n a }为等差数列; (2)若d=0时,数列{na }为等比数列;(3)若01≠≠且d c 时,数列{na }为线性递推数列,其通项可通过待定系数法构造辅助数列来求.待定系数法:设)(1λλ+=++n n a c a ,得λ)1(1-+=+c ca a n n ,与题设,1d ca a n n +=+比较系数得d c =-λ)1(,所以)0(,1≠-=c cd λ所以有:)1(11-+=-+-c d a c c d a n n {+a n dn +-1,式.a 例6解法一:2n n a a -=又{}112,1n a a +=∴+是首项为2,公比为2的等比数列12n n a ∴+=,即21n n a =-练习.已知数列}{n a 中,,2121,211+==+n n a a a 求通项n a 。

数列通项公式的求法时累加法累乘法

数列通项公式的求法时累加法累乘法

和a1求出{sn
nan}的通项公式,
然后利用由 sn求an , 最后用累乘法求得)
谢谢大家!
有问题随时欢迎大家提问
1、已知数列{an}满足a1
1.an
an-1
n -1 (n n 1
2)求其通项公式。
2、已知数列{an}满足a1
1, an1
2an an 2
, 求其通项公式。
3、已知数列{an}满足a1 1, an an-1 2(n n 2), 求其通项公式。
4、设数列{an}的前n项和为sn,a1 1{, sn nan}为常数列, 求其通项公式。
a3 2
an 1
a2
3
a1 n
a4 3
a3
4
an 1
...
1n
an n -1 注意:有n-1个式子
a n -1
n
1 an n
二、累乘法
3、注意事项:
适用题型:已知a1且
an an-1
f (n)(n
2)
或者会写成: an an-1 f (n)
将n=2,3,4...n代入给出得式子列出各式
数列通项公式的求法 第2课时
累加法,累乘法,倒数法
主讲人:张佩
本节课主要内容
一、了解什么题型使用累加法及累加法的具体使用步骤 二、了解什么题型使用累乘法及累乘法的具体使用步骤 三、了解什么题型使用倒数法及倒数法的具体使用步骤 四、总结并区分(灵丹妙药) 五、过关斩将
一、累加法
1、累加法适用题型:已知a1且an - an-1 f (n)(n 2) 2、例题: 已知数列{an}满足an - an-1 3n - ( 2 n 2), a1 1, 求其通项公式。
将各式相乘时要注意哪些项约掉了

(完整版)求数列通项公式常用的七种方法

(完整版)求数列通项公式常用的七种方法

求数列通项公式常用的七种方法一、公式法:已知或根据题目的条件能够推出数列{}n a 为等差或等比数列,根据通项公式()d n a a n 11-+=或11-=n n q a a 进行求解.例1:已知{}n a 是一个等差数列,且5,152-==a a ,求{}n a 的通项公式.分析:设数列{}n a 的公差为d ,则⎩⎨⎧-=+=+54111d a d a 解得⎩⎨⎧-==231d a∴ ()5211+-=-+=n d n a a n二、前n 项和法:已知数列{}n a 的前n 项和n s 的解析式,求n a . 例2:已知数列{}n a 的前n 项和12-=n n s ,求通项n a . 分析:当2≥n 时,1--=n n n s s a =()()32321----n n=12-n而111-==s a 不适合上式,()()⎩⎨⎧≥=-=∴-22111n n a n n三、n s 与n a 的关系式法:已知数列{}n a 的前n 项和n s 与通项n a 的关系式,求n a . 例3:已知数列{}n a 的前n 项和n s 满足n n s a 311=+,其中11=a ,求n a . 分析: 13+=n n a s ① ∴ n n a s 31=- ()2≥n ② ①-② 得 n n n a a a 331-=+ ∴ 134+=n n a a即 341=+n n a a ()2≥n 又1123131a s a ==不适合上式∴ 数列{}n a 从第2项起是以34为公比的等比数列 ∴ 222343134--⎪⎭⎫ ⎝⎛=⎪⎭⎫⎝⎛=n n n a a ()2≥n ∴()()⎪⎩⎪⎨⎧≥⎪⎭⎫ ⎝⎛==-23431112n n a n n注:解决这类问题的方法,用具俗话说就是“比着葫芦画瓢”,由n s 与n a 的关系式,类比出1-n a 与1-n s 的关系式,然后两式作差,最后别忘了检验1a 是否适合用上面的方法求出的通项.四、累加法:当数列{}n a 中有()n f a a n n =--1,即第n 项与第1-n 项的差是个有“规律”的数时,就可以用这种方法.例4:()12,011-+==+n a a a n n ,求通项n a分析: 121-=-+n a a n n ∴ 112=-a a 323=-a a 534=-a a┅ 321-=--n a a n n ()2≥n以上各式相加得()()211327531-=-+++++=-n n a a n ()2≥n又01=a ,所以()21-=n a n ()2≥n ,而01=a 也适合上式, ∴ ()21-=n a n ()*∈Nn五、累乘法:它与累加法类似 ,当数列{}n a 中有()1nn a f n a -=,即第n 项与第1-n 项的商是个有“规律”的数时,就可以用这种方法.例5:111,1n n na a a n -==- ()2,n n N *≥∈ 求通项n a分析:11n n n a a n -=- ∴11n n a n a n -=- ()2,n n N *≥∈故3241123123411231n n n a a a a na a n a a a a n -===- ()2,n n N *≥∈ 而11a =也适合上式,所以()n a n n N *=∈ 六、构造法:㈠、一次函数法:在数列{}n a 中有1n n a ka b -=+(,k b 均为常数且0k ≠),从表面形式上来看n a 是关于1n a -的“一次函数”的形式,这时用下面的方法:一般化方法:设()1n n a m k a m -+=+ 则()11n n a ka k m -=+- 而1n n a ka b -=+ ∴()1b k m =- 即1b m k =- 故111n n b b a k a k k -⎛⎫+=+ ⎪--⎝⎭∴数列11n b a k -⎧⎫+⎨⎬-⎩⎭是以k 为公比的等比数列,借助它去求n a例6:已知111,21n n a a a -==+ ()2,n n N *≥∈ 求通项n a分析:121n n a a -=+ ∴()1112221n n n a a a --+=+=+∴数列{}1n a +是以2为首项,2为公比的等比数列 ∴()111122n n n a a -+=+⋅= 故21n n a =- ㈡、取倒数法:这种方法适用于11n n n ka a ma p--=+()2,n n N *≥∈(,,k m p 均为常数0m ≠), 两边取倒数后得到一个新的特殊(等差或等比)数列或类似于1n n a ka b -=+的式子. 例7:已知11122,2n n n a a a a --==+ ()2,n n N *≥∈ 求通项n a1122n n n a a a --=+ ∴111211122n n n n a a a a ---+==+ 即11112n n a a --= ()2,n n N *≥∈ ∴ 数列1n a ⎧⎫⎨⎬⎩⎭是以12为首项,以12为公差的等差数列∴()1111222n n n a =+-⋅= ∴2n a n= ㈢、取对数法:一般情况下适用于1k l n n a a -=(,k l 为非零常数) 例8:已知()2113,2n n a a a n -==≥ 求通项n a分析:由()2113,2n n a a a n -==≥知0n a >∴在21n n a a -=的两边同取常用对数得 211lg lg 2lg n n n a aa --==即1lg 2lg nn a a -= ∴数列{}lg n a 是以lg 3为首项,以2为公比的等比数列故112lg 2lg3lg3n n n a --== ∴123n n a -=七、“m n n c ba a +=+1(c b ,为常数且不为0,*,N n m ∈)”型的数列求通项n a .例9:设数列{}n a 的前n 项和为n s ,已知*11,3,N n s a a a n n n ∈+==+,求通项n a . 解:n n n s a 31+=+ 113--+=∴n n n s a ()2≥n两式相减得 1132-+⋅+=-n n n n a a a 即 11322-+⋅+=n n n a a上式两边同除以13+n 得92332311+⋅=++n n n n a a (这一步是关键) 令nnn a c 3=得 92321+=+n n c c ⎪⎭⎫⎝⎛-=-∴+3232321n n c c ()2≥n (想想这步是怎么得来的) ∴数列⎭⎬⎫⎩⎨⎧-32n c 从第2项起,是以93322-=-a c 为首项,以32为公比的等比数列故 ()n n n n n a a c c 32332933232322222----=⎪⎭⎫⎝⎛-=⎪⎭⎫⎝⎛⎪⎭⎫ ⎝⎛-=-()323232+-=∴-n n n a c 又n n n a c 3=,所以()123223--⋅+⋅-=n n n a a a a =1 不适合上式 ()()()⎩⎨⎧≥⋅+⋅-==∴--23223112n a n a a n n n 注:求m n n c ba a +=+1(c b ,为常数且不为0,*,N n m ∈)”型的数列求通项公式的方法是等式的两边同除以1+n c ,得到一个“1n n a ka b -=+”型的数列,再用上面第六种方法里面的“一次函数法”便可求出n n ca 的通式,从而求出n a .另外本题还可以由n n n s a 31+=+得到nn n n s s s 31+=-+即 n n n s s 321+=+,按照上面求n a 的方法同理可求出n s ,再求n a .您不不妨试一试.除了以上七种方法外,还有嵌套法(迭代法)、归纳猜想法等,但这七种方法是经常用的,将其总结到一块,以便于学生记忆和掌握.。

求数列通项公式累乘和累加法

求数列通项公式累乘和累加法

求数列通项公式累乘和累加法数列是指一列按照一定规律排列的数。

数列通项公式是指数列中每一项与该项所在的位置之间的关系式。

数列通项公式有很多种求法,其中比较常用的有累乘法和累加法。

下面将以两种方法分别介绍数列通项公式的求解过程。

一、累乘法:累乘法是指通过乘法运算,逐步求出数列的每一项。

以下是求解数列通项公式的步骤:1.确定数列的通项公式为f(n)。

2.基于数列的前几项,找出数列中各项之间的乘法关系。

3.根据乘法关系推导数列的通项公式。

示例1:已知数列的前三项分别为1、2、4,求数列的通项公式。

解:根据数列的前三项,可以得到乘法关系:2=1*2,4=2*2、则可以推测数列的通项公式为f(n)=f(n-1)*2、再通过f(1)=1确定通项公式。

根据递推式可以列出数列的前n项:f(1)=1f(2)=f(1)*2=2f(3)=f(2)*2=4通过不断应用递推式,可以得到f(n)=2^(n-1)。

示例2:已知数列的前三项分别为2、6、24,求数列的通项公式。

解:根据数列的前三项,可以得到乘法关系:6=2*3,24=6*4、则可以推测数列的通项公式为f(n)=f(n-1)*n。

再通过f(1)=2确定通项公式。

根据递推式可以列出数列的前n项:f(1)=2f(2)=f(1)*2=4f(3)=f(2)*3=12通过不断应用递推式,可以得到f(n)=2*3*4*...*n。

二、累加法:累加法是指通过加法运算,逐步求出数列的每一项。

以下是求解数列通项公式的步骤:1.确定数列的通项公式为f(n)。

2.基于数列的前几项,找出数列中各项之间的加法关系。

3.根据加法关系推导数列的通项公式。

示例1:已知数列的前三项分别为1、3、6,求数列的通项公式。

解:根据数列的前三项,可以得到加法关系:3=1+2,6=3+3、则可以推测数列的通项公式为f(n)=f(n-1)+n-1、再通过f(1)=1确定通项公式。

根据递推式可以列出数列的前n项:f(1)=1f(2)=f(1)+1=2f(3)=f(2)+2=4通过不断应用递推式,可以得到f(n)=1+2+3+...+(n-1)=n(n-1)/2示例2:已知数列的前三项分别为2、5、9,求数列的通项公式。

累加法与累乘法

累加法与累乘法

求数列通项公式之累加法(1)累加法:如果递推公式形式为:()1n n a a f n +-=或)(1n f a a n n +=+,则可利用累加法求通项公式注意:①等号右边为关于n 的表达式,且能够进行求和②1,n n a a +的系数相同,且为作差的形式 ③、具体操作流程之一:若1()n n a a f n +-=,则21321(1)(2) ()n n a a f a a f a a f n +-=-=-=两边分别相加得111()nn k a a f n +=-=∑例1:数列{}n a 满足:11a =,且121n n n a a +-=+,求n a解:121n n n a a +-=+ 累加可得:()2112221n n a a n --=++++-【关键提示】:是否能利用累加法,首先要看能否将数列的递推公式整理成)(1n f a a n n =-+或例2:已知数列{}n a 满足11211n n a a n a +=++=,,求数列{}n a 的通项公式。

解:【变式训练】:变式1、已知数列{}n a 的首项为1,且n a a n n 21+=+写出数列{}n a 的通项公式.变式2、在数列{}n a 中,01=a 且121-+=+n a a n n ,求数列{}n a 的通项公式。

变式3、已知数列{}n a 满足1=a变式4、在数列{}n a 中,1=a变式5、已知数列{}n a 满足1321+⋅+=+n n n a a ,31=a ,求数列{}n a 的通项公式。

累 乘 法1、数列}{n a 中,12a =, 1(1)n n na n a +=+ , 求}{n a 通项公式 解:因为1(1)n nna n a +=+所以n n a a nn 11+=+ 则11-=-n na a n n (1) . (2) . . . .1212=a a (n-1)将上式中的(1)*(2)*………*(n-1)化简得,1n a a n=(n 》2) 所以na n 2= (n 》2)当n=1时满足上式,所以na n 2=总结:满足n1a a n 与+的比值为常数或者变量的时候都可以采用累乘法变式1:数列}{n a 中,12a =,32=a ,n n a n na )1(1-=+ , 求}{n a 通项公式 解:变式2:数列}{n a 中,12a =, n n a n na )2(1+=+ , 求}{n a 通项公式 解:变式3:已知数列{}n a 中,311=a ,前n 项和n S 与n a 的关系是 n n a n n S )12(-= ,试求通项公式n a 。

数列的通项公式求法 (2)

数列的通项公式求法 (2)

数列的通项公式求法一、累加法:一阶递推数列,系数相等1.(全国高考)已知数列{}n a 满足a 1=1,a n =a n-1+3n-1 (n ≥2) ; 求a n .2.已知数列{}n a 满足a 1=1, a n =a n-1+)2(,)1(1≥-n n n , 求a n3.已知数列{}n a 满足a 1=1, a n+1=a n +lg )11(n+求a n4.已知数列{}n a 满足a 1=1, nnn na a a +=+11, 求a n二.累乘法: 形如)(1n f a a n n=+ 1.数列{}n a 中,0)1(,0,121211=-⋅++>=++n n n n n na a a a n a a 且求数列的通项公式a n2.已知数列{}n a 中,a 1=1,n n n a nn a a 求,21+=+3.已知数列{}n a 满足n n n a a n S a 求,,2121⋅==三.构造等比数列:一阶递推数列,系数不相等1.已知数列{}n a 满足a 1=2,231+=+n n a a , 求a n2.已知数列{}n a 满足a 1=1, 1211+-=+n n a a ,求a n3,设二次方程36260112=+-=+-+βαβαβα满足,有两根x a x a n n 试用1+n n a a 表示 (2) 当{}的通项公式。

时,求n a a 671=四、公式法:⎩⎨⎧≥-==-)2(,)1(,11n S S n S a n n n1.已知数列{}n a 满足前n 项和S n =n 2+1,数列{}12+=n n a b ,且前n 项和为T n ,设n n n T T c -=+12.(1)求{}n a 和{}n b 的通顶公式; (2)判断{}n c 的单调性。

2.已知数列{},6921n S n a n n n -=⋅-项和的前则数列{}n a 的通项公式为______________3.(全国高考)已知数列{}n a 满足:n n S a a 31,111==+ (1)求a n ; (2) 求n a a a 242+++4.已知数列{}n a 满足 a n >0,其前n 项和为S n ,2111322,32++=+=n n n a S S a 且满足 (1)求数列{}n a 的通项公式; (2) .49111122242322<++++≥n a a a a n 时,求证:当5.设 数列{}n a 其前n 项和为S n , 且01,)1(,其中-≠-+=λλλn n a S (1)证明:数列{}n a 是等比数列;(2)设 数列{}n a 的公比为q=f(λ),数列 {}n b 满足)2,)((,2111≥∈==*-n N n b f b b n n , 求{}n b 的通项公式; (3)记{}.),11(1n n nn n T n C b a C 项和的前求数列,-==λ6.已知数列{}n a 满足,25212121221n a a a n n +=+++ 求{}n a 和前n 项和S n.7.(山东高考)数列{}n a 满足)(,333313221*-∈=++++N n na a a a n n (1)求a n ; (2)设{}n nn b a nb 求数列,=的前n 项和S n .五、.构造等差数列、等比数列 1. 数列{}n a 满足:a 1=1,221+=+n nn a a a , 求 a n_2数列 {}n a 中,)2(,2,111≥⋅==-n S S a a n n n , 求a n ;3、数列 {}n a 中,a 1=1,当)21(22-=≥n n n S a S n 时,有(1)求S n 的表达式; (2)设12+=n S b nn , 求数列{}n b 的前n 项和T n .4.已知)0(,3,2)(,≥x x f x 等差数列,又数列 {}n a 中a n >0,a 1=3,前n 项和S n 对的正整数都有1≥∀n )(S 1-=n n S f(1) 求数列{}n a 的通项公式; (2) 设{}n n n nn n T n b T a a b 项和,求的前为的等比中项,且是1,11+.5、 数列 {}n a 中,a n >0,前n 项和为,,21n nn n S a a S =+且 求a n6、正数数列{}n a 的前n 项和为S n ,且对任意正整数n 都有12+=n n a S (1)求数列{}n a 的通项公式; (2) 设11+⋅=n n n a a b ,求{}n b 的前n 项和T n .7、正数数列{}n a 中,前n 项和S n 满足2)2(81+=n n a S (1)求数列{}n a 的通项公式; (2) 若{}项和。

数列通项公式之累加法与累乘法

数列通项公式之累加法与累乘法

数列通项公式之累加法与累乘法数列是数学中常见的一种数的排列形式,其中通项公式是指能够表示该数列中任意一项的数学公式。

有时候,我们需要计算数列的累加和或累乘积,这时候累加法和累乘法是非常有用的工具。

一、累加法:累加法是指计算数列项的和的方法。

我们可以使用累加法来计算一个数列的累加和。

具体的步骤如下:1.确定数列的通项公式。

数列的通项公式用来表示数列中任意一项的公式。

例如,对于等差数列1,4,7,10,13,...,其通项公式为an = 1 + 3(n-1),其中n为项数。

2.确定累加的上限。

累加的上限是指要计算数列的前多少项的和。

通常我们用n来表示累加的上限值。

3.将通项公式中的n替换成累加的上限。

通过将通项公式中的n替换成累加的上限值,我们可以得到每一项的具体数值。

4.将每一项相加得到累加和。

将每一项的具体数值相加,即可得到数列的累加和。

举例说明:1. 确定通项公式:an = 1 + 3(n-1)2.确定累加的上限:n=103.将通项公式中的n替换成累加的上限:a10=1+3(10-1)=284.将每一项相加得到累加和:1+4+7+10+13+...+25+28=190因此,等差数列1,4,7,10,13,...的前10项的和为190。

二、累乘法:累乘法是指计算数列项的积的方法。

我们可以使用累乘法来计算一个数列的累乘积。

具体的步骤如下:1.确定数列的通项公式。

与累加法类似,数列的通项公式用来表示数列中任意一项的公式。

2.确定累乘的上限。

累乘的上限是指要计算数列的前多少项的积。

通常我们用n来表示累乘的上限值。

3.将通项公式中的n替换成累乘的上限。

通过将通项公式中的n替换成累乘的上限值,我们可以得到每一项的具体数值。

4.将每一项相乘得到累乘积。

将每一项的具体数值相乘,即可得到数列的累乘积。

举例说明:1. 确定通项公式:an = 2^n2.确定累乘的上限:n=53.将通项公式中的n替换成累乘的上限:a5=2^5=32总结:累加法和累乘法是计算数列累加和和累乘积的常用方法。

求数列通项公式的三种常用方法

求数列通项公式的三种常用方法

在数列问题中,求数列的通项公式问题比较常见,但有些求数列的通项公式的问题较为复杂,利用等差、等比数列公式很难直接求得结果,需要采用一些方法,如累加法、累乘法和构造法,才能使问题得解.下面我们来探讨一下累加法、累乘法和构造法在解题中的应用.一、累加法有些数列的递推式可以转化为a n +1=a n +f (n )或a n +1-a n =f ()n 的形式,我们就可以采用累加法来求解,将n =1,2,3,…,n 时f (n )的式子表示出来,然后将左边与左边的式子相加,右边与右边的式子相加,通过正负抵消求出a n ,便可得到数列的通项公式.累加法也称为逐差相加法,这种方法是比较简单、比较基础的,操作起来也比较容易.例1.设数列{}a n 满足a 1=1,且a n +1=a n +n +1(n ∈N *),则数列{}a n 的通项公式为_____.分析:题目中给出的递推式形如a n +1=a n +f (n ),可运用累加法来求解,逐一列出各项,并将其累加,便可求出数列的通项公式.解:由题意知a 2=a 1+2,a 3=a 2+3,a 4=a 3+4,…,a n =a n -1+n (n ≥2),将以上各式进行相加可得a n =a 1+2+3+…+n ,又a 1=1,所以a n =1+2+3+…+n =n 2+n 2(n ≥2),当n =1时也满足上式,所以数列{}a n 的通项公式为a n =n 2+n 2(n ∈N *).在运用累加法求和时,很多同学们经常忽略了n =1的情况,因此在求出了a n 之后,必须要检验a 1是否满足所求的通项公式.二、累乘法当遇到形如a n +1a n=f ()n 或a n +1=f ()n a n 的递推式,我们可以采用累乘法来求解.首先列出n =1,2,3,…,n 时f (n )的表达式,然后将每项的左边与左边,右边与右边相乘,通过约分就可以求出a n .需要注意的是,在使用这种方法求数列的通项公式时,不要把a n 与f ()n 、f ()n -1、f ()n +1的对应项弄混.例2.设数列{}a n 满足a 1=1,且a n =n -1n a n -1(n ≥2),则数列{}a n 的通项公式为_____.分析:题目中给出的递推公式为a n =n -1n an -1,即a n a n -1=n -1,形如a n +1a n =f ()n ,运用累乘法求解比较简便.解:∵a n =n -1n a n -1(n ≥2),∴a n -1=n -2n -1a n -2,a n -2=n -3n -2a n -3,…,a 2=2a 1.将上述n -1个式子相乘后可得a n =a 1⋅12⋅23⋅34⋅…⋅n -1n =a1n =1n,当n =1时,a 1=1,满足上式,∴a n =1n(n ∈N *).三、构造法对于一些形如a n +1=pa n +q (p ≠0、1,q ≠0)的递推式,我们一般采用构造法来求数列的通项公式.可首先设a n +c =k (a n -1+c ),然后利用待定系数法求出相关k ,c 的值,这样便构造出等比数列{}a n +c ,运用等比数列的通项公式求得{}a n +c 的通项公式,进而得到{}a n 的通项公式.例3.已知数列{}a n 满足a 1=1,且a n +1=3a n +2,则数列{}a n 的通项公式为_____.分析:题目中给出的递推式形如a n +1=pa n +q ,结合已知条件可构造出新的等比数列,然后利用等比数列的通项公式来求解.解:∵a n +1=3a n +2,∴a n +1+1=3a n +2+1,即a n +1+1=3a n +3=3(a n +1),∴a n +1+1a n +1=3,∴数列{}a n +1为q =3的等比数列,又a 1+1=2,∴a n +1+1=2∙3n -1,∴a n =2∙3n -1-1(n ∈N *).以上三种方法都是求数列通项公式的常用方法,同学们要扎实掌握.求数列的通项公式问题并没有同学们想象中的那么难,只要同学们能够熟练掌握常用的解题方法和技巧,学会举一反三,就能在掌握精髓的基础之上破解此类问题.(作者单位:安徽省宣城中学)方法集锦47Copyright©博看网 . All Rights Reserved.。

数列求通项公式常用方法与典型题目(附答案)

数列求通项公式常用方法与典型题目(附答案)

数列求通项公式常用方法与典型题目(附答案)(一)题型一累加法1.数列{}n a 中,11a =,()12,nn n a a n n n N --=≥∈,则na=___________.2.已知数列{}n a 满足112a =,121n n a a n n+=++,则n a =__________.3.如果数列{}n a 满足:()1111,22n n n a a a n --=-=≥,则n a =()A .121n +-B .1(1)21n n --⋅+C .21n -D .12n -4.在数列{}n a 中,10a =,11ln 1n n a a n +⎛⎫=++ ⎪⎝⎭,则{}n a 的通项公式为().A .ln n a n =B .()()1ln 1n a n n =-+C .ln n a n n=D .ln 2n a n n =+-5.设数列{}n a 中,112,1+==++n n a a a n ,则通项n a =___________.6.已知数列{}n a 满足10a =,12n n a a n +=+,则2018a =()A .20182019⨯B .20172018⨯C .20162017⨯D .20182018⨯(二)题型二累乘法1.已知数列{}n a 满足11a =,()12311111231n n a a a a a n n -=+++⋅⋅⋅+>-.数列{}n a 的通项公式是______.2.已知11a =,()()1n n n a n a a n N ++=-∈,则数列{}n a 的通项公式是()A .21n -B .11n n n -+⎛⎫ ⎪⎝⎭C .2n D .n3.已知12a =,12nn n a a +=,则数列{}n a 的通项公式n a 等于()A .2122n n -+B .2122n n ++C .2222n n -+D .2222n n --4.在数列{}n a 中,11a =,()32122223n n a a a a a n n*++++=∈N ,则n a =______.(三)题型三公式法1.数列{a n }的前n 项和为S n ,若()11,1,31n n a a S n +=≥=则n a =____________.2.数列{}n a 满足,123231111212222n n a a a a n ++++=+ ,写出数列{}n a 的通项公式__________.3.已知数列{a n }的前n 项和S n =n 2+n ,则a n =_____.4.若数列的前n 项和2133n n S a =+,则的通项公式是n a =________5.数列{}n a 的前n 项和23nn S =+,则其通项公式n a =________.6.数列{}n a 的前n 项和210n S n n =-,则该数列的通项公式为__________.7.若数列{a n }的前n 项和为S n =23a n +13,则数列{a n }的通项公式是a n =______.8.已知n S 为数列{}n a 的前n 项和,若111,23n n a a S +==+,则数列{}n a 的通项公式为___________.9.已知数列{}n a 满足23123222241nnn a a a a ++++=- ,则{}n a 的通项公式___________________.10.数列{a n }满足()21*1232222n n na a a a n N -+++⋯+=∈,则a 1a 2a 3…a 10=()A .551(2B .1011()2-C .911()2-D .601()211.如果数列{}n a 的前n 项和为332n n S a =-,则这个数列的通项公式是()A .()221n a n n =++B .23nn a =⋅C .32nn a =⋅D .31n a n =+(四)题型四构造法1.数列{}n a 中,若11a =,()1231n n a a n +=+≥,则该数列的通项n a =()A .123n +-B .23n -C .23n +D .123n --2.已知数列{}n a 中,112,21n n a a a +==+则n a =___________.3.已知数列{}n a 满足11a =132n n a a +=+,则{}n a 的通项公式为__________________.(五)题型五倒数法1.在数列{n a }中,已知12a =,1122n n n a a a --=+,(2)n ≥,则n a 等于()A .21n +B .2n C .3nD .31n +2.若数列{}n a 满足11n n n a a a +=+,且123a =,则10a =___________.3.设数列{}n a 的前n 项和n S 满足11n n n n S S S S ++=⋅-()n N *∈,且11a=,则n a =_____.4.已知数列{}n a 满足12,a =11n n n n a a a a ++-=,那么31a 等于()A .130-B .261-C .358-D .259-5.已知数列{}n a 满足递推关系111,12n n n a a a a +==+,则2017a =()A .12016B .12018C .12017D .120196.若数列{}n a 满足1121n n n a a a --=+(2n ≥,*n N ∈),且112a =,则n a =()A .12nB .2n C .1122n +-D .222n +7.已知数列{}n a 满足11a =,()*11nn n a a n N a +=∈+,则2020a =()A .12018B .12019C .12020D .12021(六)题型六周期数列1.在数列{}n a 中,112a =,111n n a a -=-(2n ≥,n ∈+N ),则2020a =()A .12B .1C .1-D .22.已知数列{}n a 中,13=4a ,111n n a a -=-(,2n N n +∈≥),那么2020a 等于()A .13-B .34C .2D .43.已知数列{}n a 中,12213,6,n n n a a a a a ++===-,则2016a =()A .6B .6-C .3D .3-参考解析(一)题型一累加法1.()12n n +【解析】()112,1,nn n a a n n n Na -=≥=-∈ ,()()()112211n n n n n a a a a a a a a ---∴=-+-++-+ ()()()()112122n n n n n n +=+-+-++=≥ ,验证1n =时成立.()12n n n a +∴=.故答案为:()12n n +2.31,1,2n n N n*-≥∈【解析】因为121n n a a n n +=++,所以121111n n a a n n n n +-==-++,则当2,n n N *≥∈时,213211121123...111n n a a a a a a n n -⎧-=-⎪⎪⎪-=-⎪⎨⎪⎪⎪-=-⎪-⎩,将1n -个式子相加可得11111111...12231n a a n n n -=-+-++-=--,因为112a =,则1131122n a n n=-+=-,当1n =时,1311212a =-=符合题意,所以31,1,2n a n n N n *=-≥∈.故答案为:31,1,2n n N n*-≥∈.3.C 【解析】由题意可得,112n n n a a ---=,212a a ∴-=,2322a a -=,…112n n n a a ---=,以上1n -个式子相加可得,21122 (2)n n a a --=+++()12122212n n --==--,21n n a ∴=-,故选B .4.A 【解析】由已知得()11ln ln 1ln n n n a a n n n ++⎛⎫-==+- ⎪⎝⎭,所以()1ln ln 1n n a a n n --=--()()12ln 1ln 2n n a a n n ---=---32ln 3ln 2a a -=-21ln 2ln1a a -=-将上述1n -个式子相加,整理的1ln ln1ln n a a n n -=-=又因为10a =,所以ln n a n =.故选A .5.()112++n n 【解析】∵112,1+==++n n a a a n ∴()111n n a a n -=+-+,()1221n n a a n --=+-+,()2331n n a a n --=+-+,⋯,3221a a =++,2111a a =++,1211a ==+将以上各式相加得:()()()123211n a n n n n ⎡⎤=-+-+-+++++⎣⎦ ()()()()11111111222n n n nn n n n ⎡⎤--+-+⎣⎦=++=++=+故应填()112++n n ;6.B 【解析】 数列{}n a 满足10a =,12n n a a n +=+,∴12n n a a n +-=,∴()121n n a a n --=-,()1222n n a a n ---=-,()2323n n a a n ---=-,……212a a -=,累加得:()()()112123 (1212)n n n a a n n n --=++++-=⋅=-⎡⎤⎣⎦,又 10a =,∴()1n a n n =-,∴201820182017a =⋅.故选B .(二)题型二累乘法1.1,1,22n n a n n =⎧⎪=⎨≥⎪⎩【解析】1231111(1)231n n a a a a a n n -=++++>- ,11a =当2n =时,211a a ==当2n >时,112311111231n n n a a a a a a n n+-∴=+++++- ,两式相减得:11n n n a a a n +-=,即11n n n a a n++=,∴11n n a n a n++=,11n n a n a n -=-,1212n n a n a n ---=-,⋯3232a a =,累乘得:22n a n a =,所以2n na =,()2n >1,1,22n n a n n =⎧⎪∴=⎨≥⎪⎩,故答案为:1,1,22n n a nn =⎧⎪=⎨≥⎪⎩2.D 【解析】由()()1n n n a n a a n N ++=-∈得:()()11n n n a na n N +++=∈,即()11n n a n n N a n+++=∈,则11n n a n a n -=-,1212n n a n a n ---=-,2323n n a n a n ---=-,……..,2121a a =,由累乘法可得1na n a =,又因为11a =,所以n a n =.故选:D .3.C 【解析】1122nn n n n n a a a a ++=∴= 当n ≥2时,2212122112122222nn n n n n n n n a a a a a a a a -+-----=⋅⋅⋅⋅=⋅⋅⋅⋅= ,经检验,1a 也符合上述通项公式.本题选择C 选项.4.21n n +【解析】由题意得:当2n ≥时,()31211222231n n a a a a a n --++++=- ,所以12n n n a a a n-=-,即()2211n n na n a --=,也即是11+1n n n n n a a n --=,所以121+1221211n n n n n a n n n a a a n ---===-=-= ,所以21n n a n =+,故答案为:21nn +.(三)题型三公式法1.21,134,2n n n a n -=⎧=⎨⋅≥⎩.【解析】()13,1n n a S n N n ++=∈∴= 时,23,2a n =≥时,13n n a S -=,可得13n n n a a a +-=,即14,n n a a +=∴数列{}n a 从第二项起为等比数列,2n ≥时,=n a 234n -⋅,故答案为21,134,2n n n a n -=⎧=⎨⋅≥⎩.2.16,12,2n n n a n +=⎧=⎨≥⎩【解析】因为123231111212222n n a a a a n ++++=+ ,所以()12312311111121122222n n n n a a a a a n +++++++=++ ,两式相减得11122n n a ++=,即12,2n n a n +=≥,又1132a =,所以16a =,因此16,12,2n n n a n +=⎧=⎨≥⎩3.2n 【解析】由题,当1n =时,21112a =+=,当2n ≥时,()()1112nn n a S S n n n n n -=-=+--=.当1n =时也满足.故2n a n =.故答案为:2n4.()12n --【解析】当n =1时,1112133a S a ==+,解得11a =,当n ≥2时,1n n n a S S -=-121213333n n a a -⎛⎫⎛⎫=+-+ ⎪ ⎪⎝⎭⎝⎭12233n n a a -=+,整理可得12313n n a a -=-,即12n n a a -=-,故数列{}n a 以1为首项,2-为公比的等比数列,所以()12n n a -=-,故答案为:()12n --.5.15,12,2n n n -=⎧⎨≥⎩【解析】当1n =时,11235a =S =+=;当2n ≥时,11123232n n n n n n a S S ---=-=+--=;故15,12,2n n n a n -=⎧=⎨≥⎩故答案为:15,12,2n n n -=⎧⎨≥⎩6.211n a n =-【解析】221110,11019,n S n n a S =-∴==-⨯=- 当2n ≥时()()221101101211,n n n a S S n n n n n -⎡⎤=-=-----=-⎣⎦当1n =时也适合,故211n a n =-.即答案为211n a n =-.7.1(2)n n a -=-;【解析】当n=1时,a 1=S 1=23a 1+13,解得a 1=1,当n≥2时,a n =S n -S n-1=(2133n a +)-(12133n a -+)=23n a -123n a -整理可得13a n =−23a n−1,即1n n a a -=-2,故数列{a n }是以1为首项,-2为公比的等比数列,故a n =1×(-2)n-1=(-2)n-1故答案为(-2)n-1.8.21,153,2n n n a n -=⎧=⎨⋅≥⎩【解析】n S Q 为数列{}n a 的前n 项和,111,23n n a a S +==+——①2n ≥时,123n n a S -=+——②①-②,得:12n n n a a a +=-,13n na a +∴=13n na a +∴=,21235a a =+= ,∴数列{}n a 的通项公式为21,153,2n n n a n -=⎧=⎨⋅≥⎩.故答案为:21,153,2n n n a n -=⎧=⎨⋅≥⎩.9.a n =3•2n ﹣2【解析】∵数列{a n }满足2a 1+22a 2+23a 3+…+2n a n =4n ﹣1,∴当n ≥2时,2n a n =(4n ﹣1)﹣(4n ﹣1﹣1),化为a n =3•2n ﹣2.当n =1时,2a 1=4﹣1,解得132a =,上式也成立.∴a n =3•2n ﹣2.故答案为a n =3•2n ﹣2.10.A 【解析】n =1时,a 1=12,∵211232222n n n a a a a -+++⋯+=,∴2n ≥时,22123112222n n n a a a a ---+++⋯+=,两式相减可得2n -1a n =12,∴12n n a =,n =1时,也满足∴12310a a a a = 55231012310111111222222++++⎛⎫⨯⨯⨯⨯== ⎪⎝⎭,故选A11.B 【解析】由332n n S a =-,当2n ≥时,1113333332222n n n n n n n a S S a a a a ---⎛⎫⎛⎫=-=---=- ⎪ ⎪⎝⎭⎝⎭,所以13nn a a -=,当1n =时,111332S a a ==-,此时16a =,所以,数列{}n a 是以6为首项,3为公比的等比数列,即16323n n n a -=⋅=⋅.故选:B .(四)题型四构造法1.A 【解析】因为()1231n n a a n +=+≥,所以132(3)n n a a ++=+,即数列{3}n a +是以4为首项,2为公比的等比数列,所以1342n n a -+=⋅,故1142323n n n a -+=⋅-=-,故选:A2.1321n -⋅-【解析】因为121n n a a +=+,所以()112221n n n a a a ++=+=+且1130a +=≠,所以1121n n a a ++=+,所以{}1n a +是以3为首项,2为公比的等比数列,所以1132n n a -+=⋅,所以1321n n a -=⋅-,故答案为:1321n -⋅-.3.1231n -⨯-【解析】因为132n n a a +=+,11a =,所以()113331n n n a a a ++=+=+,即1131n n a a ++=+所以{}1n a +以2为首项,3为公比的等比数列,所以1123n n a -+=⨯所以1231n n a -=⨯-故答案为:1231n -⨯-(五)题型五倒数法1.B 【解析】将等式1122n n n a a a --=+两边取倒数得到11112n n a a -=+,11111=,2n n n a a a -⎧⎫-⎨⎬⎩⎭是公差为12的等差数列,11a =12,根据等差数列的通项公式的求法得到()1111222n nn a =+-⨯=,故n a =2n.故答案为:B .2.219【解析】11n n n a a a +=+ 11111n n n n a a a a ++∴==+,即1111n na a +-=∴数列1n a ⎧⎫⎨⎬⎩⎭是以1132a =为首项,1为公差的等差数列()131211222n n n n a -∴=+-=-=221n a n ∴=-10219a ∴=故答案为:2193.1,11,2(1)n n a n n n =⎧⎪=⎨-≥⎪-⎩【解析】由11n n n n S S S S ++=⋅-,得1111n nS S +-=()n N *∈1n S ⎧⎫∴⎨⎬⎩⎭是以11111S a ==为首相,1为公差的等差数列,11(1)1nn n S ∴=+-⨯=,1n S n ∴=,当2n ≥时,11111(1)n n n a S S n n n n -=-=-=---,1,11,2(1)n n a n n n =⎧⎪=⎨-≥⎪-⎩故答案为:1,11,2(1)n n a n n n =⎧⎪=⎨-≥⎪-⎩4.D 【解析】11n n n n a a a a ++-= ,1111n n a a +∴-=,即1111n n a a +-=-,又12,a =所以数列1n a ⎧⎫⎨⎬⎩⎭是首项为12,公差为1-的等差数列,132n n a ∴=-+,3113593122a ∴=-+=-,故31259a =-,故选:D .5.B 【解析】由11n n n a a a +=+,所以11111n n n n a a a a ++==+则1111n n a a +-=,又112a =,所以112a =所以数列1n a ⎧⎫⎨⎬⎩⎭是以2为首项,1为公比的等差数列所以11n n a =+,则11n a n =+所以201712018a =故选:B6.A 【解析】当2n ≥且n *∈N ,在等式1121n n n a a a --=+两边取倒数得11121112n n n n a a a a ---+==+,1112n n a a -∴-=,且112a =,所以,数列1n a ⎧⎫⎨⎬⎩⎭为等差数列,且首项为2,公差为2,因此,()12212n n n a =+-=.12n a n∴=故选:A .7.C 【解析】11n n n a a a +=+ ,∴两边同时取倒数得11111n n n n a a a a ++==+,即1111n n a a +-=,即数列1n a ⎧⎫⎨⎬⎩⎭是公差1d =的等差数列,首项为111a =.则11(1)1n n n a =+-⨯=,得1n a n =,则202012020a =,故选:C (六)题型六周期数列1.A 【解析】2111121a a =-=-=-,3211112a a =-=+=,431111122a a =-=-=,可得数列{}n a 是以3为周期的周期数列,202036731112a a a ⨯+∴===.故选:A .2.B 【解析】因为13=4a ,111n n a a -=-,所以211113a a =-=-,32114a a =-=,431314a a =-=,…所以数列{}n a 是以3为周期的数列,所以202067331134a a a ⨯+===,故选:B 3.B 【解析】因为21n n n a a a ++=-,①则321n n n a a a +++=-,②①+②有:3n n a a +=-,即63n n a a ++=-,则6n n a a +=,即数列{}n a 的周期为6,又123,6a a ==,得3453,3,6a a a ==-=-,63a =-,则2016a =633663a a ⨯==-,故选:D .。

数列通项公式的求法第2课时-累加法累乘法ppt课件

数列通项公式的求法第2课时-累加法累乘法ppt课件

.
四、总结并区分(灵丹妙药)
1、累加法的适用条件:已 a 1 且 知 a n-a n -1f(n )( 2 n) 2、累乘法的适用条件:已知 a1且aann-1 f(n)(n2) 3、倒数法的适用条件:已a知 1且 anpanan-1-11(n2)
.
五、过关斩将
1、已{ 知 an}满 数 a1 足 列 1.anan-1n n -1 1(n2)求其通项公
.
三、倒数法
1、倒数法适用题型:已a知 1且 anpanan-1-11(n2) 分式的形式
2、例题: 已知{a 数 n}满 列 a足 n3aa n-n1-11(n2)a ,11,求其通项公
解:将原式两边同时取倒数得:
1 1 (n -1) 3 3n - 2
1 3an-113 1
an
an
an-1
2、已知 {an}数 满列 a足 11,an1a2nan2,求其通项公式。 3、已{ 知 an}满 数 a1 足 列 1,anan-12( n n2) ,求其通项
4、设{an数 }的列 n项 前和 sn,a1为 1{ , snnna}为常数列, 求其通项公式。
.
五、过关斩将答案
1、 ann22n(提示:本 法题 的在 时用 候累 , 算 乘 等 结式 果右 是边 保 前两项的分 项子 的与 分最 母后 )两
有问题随时欢迎大家提问
.
.
.
.
2、an
2(提示:倒数同法时,取两倒边数) n1
3、 an2n1-( 3 提示:累 右加 边法 是, 一等 个 前 n-1式 等 项比 的
4、 ann21n (提示:先 和 a1根 求{据 s出 nn常 na}的 数 通 列 项公 然后利 sn求 a用 n,最 由 后用累 . 乘法求得)

数列通项公式—常见9种求法

数列通项公式—常见9种求法

数列通项公式—常见9种求法一、公式法例1 已知数列满足,,求数列的通项公式。

解:两边除以,得,则,故数列是以为首项,以为公差的等差数列,由等差数列的通项公式,得,所以数列的通项公式为。

评注:本题解题的关键是把递推关系式转化为,说明数列是等差数列,再直接利用等差数列的通项公式求出,进而求出数列的通项公式。

二、累加法例2 已知数列满足,求数列的通项公式。

解:由得则所以数列的通项公式为。

评注:本题解题的关键是把递推关系式转化为,进而求出,即得数列的通项公式。

例3 已知数列满足,求数列的通项公式解:由得所以评注:本题解题的关键是把递推关系式转化为,进而求出,即得数列的通项公式。

例4已知数列满足,求数列的通项公式。

解:两边除以,得,则,故因此,则评注:本题解题的关键是把递推关系式转化为,进而求出,即得数列的通项公式,最后再求数列的通项公式。

三、累乘法例5 已知数列满足,求数列的通项公式。

解:因为,所以,则,故所以数列的通项公式为评注:本题解题的关键是把递推关系转化为,进而求出,即得数列的通项公式。

例6 已知数列满足,求的通项公式。

解:因为①所以②用②式-①式得则故所以③由,,则,又知,则,代入③得。

所以,的通项公式为评注:本题解题的关键是把递推关系式转化为,进而求出,从而可得当的表达式,最后再求出数列的通项公式。

四、待定系数法例7已知数列满足,求数列的通项公式。

解:设④将代入④式,得,等式两边消去,得,两边除以,得代入④式得⑤由及⑤式得,则,则数列是以为首项,以2为公比的等比数列,则,故。

评注:本题解题的关键是把递推关系式转化为,从而可知数列是等比数列,进而求出数列的通项公式,最后再求出数列的通项公式。

例8 已知数列满足,求数列的通项公式。

解:设⑥将代入⑥式,得整理得。

令,则,代入⑥式得⑦由及⑦式,得,则,故数列是以为首项,以3为公比的等比数列,因此,则。

评注:本题解题的关键是把递推关系式转化为,从而可知数列是等比数列,进而求出数列的通项公式,最后再求数列的通项公式。

求数列通项公式累乘和累加法

求数列通项公式累乘和累加法

求数列通项公式累乘和累加法数列通项公式是指能够描述数列中每一项与其位置之间的关系的公式。

本文将介绍数列通项公式的两种求解方法:累乘法和累加法。

一、累乘法累乘法是指通过逐项将数列中的各项相乘来得到通项公式的求解方法。

这种方法常用于数列中每一项与前一项之间存在乘法关系的情况。

例如,考虑以下数列:1,2,4,8,16,32,64......我们可以观察到,这个数列中的每一项都是前一项的两倍。

因此,我们可以使用累乘法来求取通项公式。

首先,我们设数列的第n项为aₙ,第n-1项为aₙ₋₁。

根据数列的定义,我们有aₙ=2*aₙ₋₁。

然后,我们观察到数列的第一项是1,即a₁=1利用递推关系aₙ=2*aₙ₋₁和初始条件a₁=1,我们可以开始求解通项公式。

根据递推关系,我们可以得到a₂=2*a₁=2,a₃=2*a₂=4,以此类推。

我们可以得到一个结论:第n项的值是2的n-1次方,即aₙ=2^(n-1)。

通过累乘法,我们成功地求解了数列的通项公式。

二、累加法累加法是指通过逐项将数列中的各项相加来得到通项公式的求解方法。

这种方法常用于数列中每一项与前一项之间存在加法关系的情况。

例如,考虑以下数列:1,3,6,10,15,21,28......我们可以观察到,这个数列中的每一项都是前一项加上一个特定的常数。

因此,我们可以使用累加法来求取通项公式。

首先,我们设数列的第n项为aₙ,第n-1项为aₙ₋₁。

根据数列的定义,我们有aₙ=aₙ₋₁+n。

然后,我们观察到数列的第一项是1,即a₁=1利用递推关系aₙ=aₙ₋₁+n和初始条件a₁=1,我们可以开始求解通项公式。

根据递推关系,我们可以得到a₂=a₁+2=1+2=3,a₃=a₂+3=3+3=6,以此类推。

我们可以得到一个结论:第n项的值可以通过前n个自然数的累加来得到,即aₙ=1+2+3+⋯+n=n*(n+1)/2通过累加法,我们成功地求解了数列的通项公式。

综上所述,通过累乘法和累加法,我们可以求解数列的通项公式。

求数列通项的方法总结

求数列通项的方法总结

求数列通项的方法总结求数列的通项公式是数列中一类常见的题型,这类题型如果单纯的看某一个具体的题目,它的求解方法灵活是灵活多变的,分享了求数列通项的方法,一起来看看吧!一、累加法:利用an=a1+(a2-a1)+…(an-an-1)求通项公式的方法称为累加法。

累加法是求型如an+1=an+f(n)的递推数列通项公式的基本方法(f (n)可求前n项和).例1.已知数列an满足an+1=an+2n+1,a1=1,求数列an的通项公式。

解:由an+1=an+2n+1得an+1-an=2n+1则an=(an-an-1)+(an-1-an-2)+…+(a3-a2)+ (a2-a1)+a1=[2(n-1)+1]+[2(n-2)+1]+…+(2×2+1)+(2×1+1)+1=2[(n-1)+(n-2)+…+2+1]+(n-1)+1=2+(n-1)+1=(n-1)(n+1)+1=n2所以数列an的通项公式为an=n2。

例2:在数列{an}中,已知an+1= ,求该数列的通项公式.备注:取倒数之后变成逐差法。

解:两边取倒数递推式化为:=+,即-=所以-=,-=,-=…-=.…,将以上n-1个式子相加,得:-=++…+即=+++…+==1-故an==二、累乘法:利用恒等式an=a1…(an≠0,n?叟n)求通项公式的方法称为累乘法,累乘法是求型如:an+1=g(n)an的递推数列通项公式的基本方法(数列g(n)可求前n项积).例3.已知数列{an}中a1=,an=an-1(n?叟2)求数列{an}的通项公式。

解:当n?叟2时,=,=,=,…=将这n-1个式子累乘,得到=,从而an=×=,当n=1时,==a1,所以an= 。

注:在运用累乘法时,还是要特别注意项数,计算时项数容易出错.三、公式法:利用熟知的的公式求通项公式的方法称为公式法,常用的公式有an=Sn-Sn-1(n?叟2),等差数列或等比数列的通项公式。

通项公式的求法

通项公式的求法

(条件:若 {an }的相邻两项关系式可化为: 条件: Aan+1 ⋅ an + Ban+1 + Can + D = 0 (A ≠ 0) 可用这种方法;(其中方程 Ax + (B + C)x + D = 0 可用这种方法; 其中方程
2
该数列的特征根) 的根称为该数列的特征根)
可视an +1与an都为x得到x的一元二次方程求出特 征根
6
三、待定系数法
类型:an +1 = k ⋅ an + b
例 6:在数列{an}中,a1 = 1, an+1 = 3 ⋅ an − 1, 求 an .
7
四 Sn与 n及 的 系 , 通 an .知 a n 关 式 求 项
(n =1 ) S1 类 :应 公 an = 型 用 式 求 解 Sn − Sn−1(n ≥ 2)
17
七、对数法
q an +1 = pan ( p > 0) 类型七 类型七:

2 a1 = 2, an +1 = 3an + 6an + 2 ,求 17:数列 {a n }满足 :
数列 {a n }的通项公式
18
七、对数法
q an +1 = pan ( p > 0) 类型七 类型七:
的图象上,其中n = 1, 2,3,⋯,求数列{an }的通项公式。
13
引 拓 :an+1 = qan + An + Bn +C 伸 展
2
例13 :已知数列{an } 满足a1 = 1, 且an +1 = 2an + n − n + 1,

数列求通项公式的五种重要方法

数列求通项公式的五种重要方法

求通项公式的5种重要方法一、Sn 法,根据等差数列、等比数列的定义求通项an=Sn-S n-1*121{}(1)()3(1),;(2):{}.n n n n n a n S S a n N a a a =-∈ 已知数列的前项为,求求证数列是等比数列二、累加、累乘法1、累加法 适用于:1()n n a a f n +=+若1()n n a a f n +-=(2)n ≥,则 21321(1)(2)()n n a a f a a f a a f n +-=-=-=两边分别相加得 111()nn k a a f n +=-=∑例2 已知数列{}n a 满足11211n n a a n a +=++=,,求数列{}n a 的通项公式。

例3 已知数列{}n a 满足112313n n n a a a +=+⨯+=,,求数列{}n a 的通项公式。

例12、累乘法 适用于: 1()n n a f n a += 若1()n n a f n a +=,则31212(1)(2)()n na a a f f f n a a a +=== ,,, 两边分别相乘得,1111()n n k a a f k a +==⋅∏ 例4 已知数列{}n a 满足112(1)53n n n a n a a +=+⨯=,,求数列{}n a 的通项公式。

例5 已知11a =,1()n n n a n a a +=-*()n N ∈,求数列{}n a 通项公式.例6 已知数列{}n a 满足11231123(1)(2)n n a a a a a n a n -==++++-≥ ,,求{}n a 的通项公式。

三、待定系数法 适用于1()n n a qa f n +=+分析:通过凑配可转化为1121()[()]n n a f n a f n λλλ++=+;解题基本步骤:1、确定()f n2、设等比数列{}1()n a f n λ+,公比为2λ3、列出关系式1121()[()]n n a f n a f n λλλ++=+4、比较系数求1λ,2λ5、解得数列{}1()n a f n λ+的通项公式6、解得数列{}n a 的通项公式例7 已知数列{}n a 中,111,21(2)n n a a a n -==+≥,求数列{}n a 的通项公式。

求数列通项公式常用的七种方法

求数列通项公式常用的七种方法

第二章 数列的概念与简单表示法一、公式法:已知或根据题目的条件能够推出数列{}n a 为等差或等比数列,根据通项公式()d n a a n 11-+=或11-=n n q a a 进行求解.二、前n 项和法:已知数列{}n a 的前n 项和n s 的解析式,求n a .三、n s 与n a 的关系式法:已知数列{}n a 的前n 项和n s 与通项n a 的关系式,求n a . 四、累加法:当数列{}n a 中有()n f a a n n =--1,即第n 项与第1-n 项的差是个有“规律”的数时,就可以用这种方法.五、累乘法:它与累加法类似 ,当数列{}n a 中有()1nn a f n a -=,即第n 项与第1-n 项的商是个有“规律”的数时,就可以用这种方法. 六、构造法:一次函数法:在数列{}n a 中有1n n a ka b -=+(,k b 均为常数且0k ≠),从表面形式上来看n a 是关于1n a -的“一次函数”的形式,这时用下面的方法:取倒数法:这种方法适用于11n n n ka a ma p--=+()2,n n N *≥∈(,,k m p 均为常数 0m ≠),两边取倒数后得到一个新的特殊(等差或等比)数列或类似于 1n n a ka b -=+的式子.取对数法:一般情况下适用于1k ln n a a -=(,k l 为非零常数)特征根法:形如递推公式为n n n qa pa a +=++12(其中p ,q 均为常数)。

不动点法若,0≠A B 且0-≠AD BC ,解+=+Ax Bx Cx D,设βα,为其两根。

I 、若αβ≠,数列{}αβ--n n a a 是等比数列; II 、若αβ=,数列1{}-n a a是等差数列。

七、“m n n c ba a +=+1(c b ,为常数且不为0,*,N n m ∈)”型的数列求通项n a .例题讲解:1:已知{}n a 是一个等差数列,且5,152-==a a ,求{}n a 的通项公式.2:已知数列{}n a 的前n 项和12-=nn s ,求通项n a .3:已知数列{}n a 的前n 项和n s 满足n n s a 311=+,其中11=a ,求n a . 4:()12,011-+==+n a a a n n ,求通项n a5:111,1n n na a a n -==- ()2,n n N *≥∈ 求通项n a6:已知111,21n n a a a -==+ ()2,n n N *≥∈ 求通项n a7:已知11122,2n n n a a a a --==+ ()2,n n N *≥∈ 求通项n a8:已知()2113,2n n a a a n -==≥ 求通项n a9: 数列{}n a 满足),0(025312N n n a a a n n n ∈≥=+-++, b a a a ==21,,求n a10.已知数列{}n a 满足1172,223+-==+n n n a a a a ,求数列{}n a 的通项公式。

求数列通项公式的八种方法

求数列通项公式的八种方法

求数列通项公式的八种方法一、公式法(定义法)根据等差数列、等比数列的定义求通项 二、累加、累乘法1、累加法 适用于:1()n n a a f n +=+若1()n n a a f n +-=(2)n ≥,则21321(1)(2) ()n n a a f a a f a a f n +-=-=-=两边分别相加得 111()nn k a a f n +=-=∑例1 已知数列{}n a 满足11211n n a a n a +=++=,,求数列{}n a 的通项公式。

解:由121n n a a n +=++得121n n a a n +-=+则112322112()()()()[2(1)1][2(2)1](221)(211)12[(1)(2)21](1)1(1)2(1)12(1)(1)1n n n n n a a a a a a a a a a n n n n n n nn n n n ---=-+-++-+-+=-++-+++⨯++⨯++=-+-++++-+-=+-+=-++= 所以数列{}n a 的通项公式为2n a n =。

:例2 已知数列{}n a 满足112313nn n a a a +=+⨯+=,,求数列{}n a 的通项公式。

解法一:由1231n n n a a +=+⨯+得1231nn n a a +-=⨯+则11232211122112211()()()()(231)(231)(231)(231)32(3333)(1)33(13)2(1)313331331n n n n n n n n n n n n a a a a a a a a a a n n n n --------=-+-++-+-+=⨯++⨯+++⨯++⨯++=+++++-+-=+-+-=-+-+=+-所以3 1.nn a n =+-解法二:13231n n n a a +=+⨯+两边除以13n +,得111213333n n n n n a a +++=++, 则111213333n n n n n a a +++-=+,故 112232112232111122122()()()()33333333212121213()()()()3333333332(1)11111()1333333n n n n n n n n n n n n n n n n n n n n n a a a a a a a a a a a a n --------------=-+-+-++-+=+++++++++-=+++++++因此11(13)2(1)2113133133223n n n n na n n ---=++=+--⨯, 则21133.322n n n a n =⨯⨯+⨯- 2、累乘法 适用于: 1()n n a f n a +=若1()n n a f n a +=,则31212(1)(2)()n na aaf f f n a a a +===,,, 两边分别相乘得,1111()nn k a a f k a +==⋅∏ ]例3 已知数列{}n a 满足112(1)53nn n a n a a +=+⨯=,,求数列{}n a 的通项公式。

2024高考数学累加法累乘法求数列通项含答案

2024高考数学累加法累乘法求数列通项含答案

累加法累乘法求数列通项【必备知识点】◆累加法若数列a n满足a n+1−a n=f(n)(n∈N*),则称数列a n为“变差数列”,求变差数列a n的通项时,利用恒等式a n=a1+(a2−a1)+(a3−a2)+⋅⋅⋅+(a n−a n−1)=a1+f(1)+f(2)+f(3)+⋅⋅⋅+f(n−1)(n≥2)求通项公式的方法称为累加法.具体步骤:a2-a1=f(1)a3-a2=f(2)a4-a3=f(3)⋮⋮a n-a n-1=f(n-1)将上述n-1个式子相加(左边加左边,右边加右边)得:(a2-a1)+(a3-a2)+(a4-a3)+⋯+(a n-a n-1)=f(1)+f(2)+f(3)+⋯+f(n-1)整理得:a n-a1=f(1)+f(2)+f(3)+⋯+f(n-1)1已知数列a n满足a1=1,对任意的n∈N∗都有a n+1=a n+n+1,则a10=()A.36B.45C.55D.662已知数列a n满足a n+1-a n=2n,a1=1,则a5=()A.30B.31C.22D.233已知数列a n满足a1=2,a n+1-a n=1n n+1,则a10=()A.238B.289C.2910D.32111.已知数列{a n}满足a2=2,a2n=a2n-1+3n(n∈N*),a2n+1=a2n+(-1)n+1(n∈N*),则数列{a n }第2022项为()A.31012-52B.31012-72C.31011-52D.31011-722.已知数列{a n}满足a n+1-a n=2n(n∈N∗),a2=3,则a8=()A.511B.502C.256D.2553.已知数列a n满足a1=2,a n+1=a n-n,则求a100=4.数列a n中,a1=1,a n+1=a n+1n2+n,则a5=.5.已知数列a n满足a1=1,且a n-a n-1=n,(n≥2),若b n=12a n,n为正整数,则数列b n的前n项和S n=.2024高考数学累加法累乘法求数列通项6.若数列{a n +1-a n }是等比数列,且a 1=1,a 2=2,a 3=5,则a n =.◆累乘法若数列a n 满足a n +1a n=f (n )(n ∈N *),则称数列a n 为“变比数列”,求变比数列a n 的通项时,利用a n =a 1⋅a 2a 1⋅a 3a 2⋅a 4a 3⋅⋅⋅⋅an a n −1=a 1⋅f (1)⋅f (2)⋅f (3)⋅⋅⋅⋅f (n −1)(n ≥2)求通项公式的方法称为累乘法。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
n
4、设数列{an}的前n项和为sn , a1 1{ , sn nan}为常数列, 求其通项公式。
五、过关斩将答案
2 1、an 2 (提示:本题在用累乘 法的时候,等式右边运 算结果是保留了 n n 前两项的分子与最后两 项的分母)
2 2、an (提示:倒数法,两边 同时取倒数) n 1
1 利用{ }的通项公式求出 {an }的通项公式 an
四、总结并区分(灵丹妙药)
已知a1且an - an-1 f (n)(n 2) 1、累加法的适用条件:
an 2、累乘法的适用条件: 已知a1且 f (n)(n 2) an-1 an-1 已知a1且an (n 2) 3、倒数法的适用条件: pan-1 1
3、an 2n1 -(提示:累加法,等式 3 右边是一个等比数列的 前n -1项的和)
1 4、an 2 (提示:先根据常数列 和a1求出 {sn nan }的通项公式, n n 然后利用由sn求an , 最后用累乘法求得)
谢谢大家!
有问题随时欢迎大家提问源自(n - 1)(4 3n - 2) an - a1 2 2 3n - n - 2 an - 1 2 2 3 n -n 注意:有n-1个式子 a n 2
一、累加法
3、注意事项:
适用题型: 已知a1且an - an-1 f (n)(n 2)
或者会写成: an an-1 f (n)
数列通项公式的求法 第2课时
累加法,累乘法,倒数法
主讲人:张佩
本节课主要内容
一、了解什么题型使用累加法及累加法的具体使用步骤 二、了解什么题型使用累乘法及累乘法的具体使用步骤 三、了解什么题型使用倒数法及倒数法的具体使用步骤
四、总结并区分(灵丹妙药)
五、过关斩将
一、累加法
已知a1且an - an-1 f (n)(n 2) 1、累加法适用题型: {an }满足an - an-1 3n - ( 2 n 2), a1 1, 求其通项公式。 2、例题: 已知数列
a4 3 a3 4 ... an n -1 a n -1 n
注意:有n-1个式子
an 1 1 n 1 an n
二、累乘法
3、注意事项:
an 已知a1且 f (n)(n 2) 适用题型: an-1
或者会写成: an an-1 f (n)
将n=2,3,4...n代入给出得式子列出各式
解:将n=2,3,4...n分别代入上式得:
将上述各式左右分别相加得:
a2 - a1 4 a3 - a2 7 a4 - a3 10 ... an - an-1 3n - 2
a2 - a1 a3 - a2 a4 - a3 ... an - an-1 4 7 10 ... 3n - 2
将各式相乘时要注意哪些项约掉了
三、倒数法
an-1 已知 a 且 a (n 2) 分式的形式 1 n 1、倒数法适用题型: pan-1 1 an-1 {an }满足an (n 2), a1 1, 求其通项公式。 2、例题: 已知数列 3an-1 1 解:将原式两边同时取倒数得: 1

3an -1 1 1 1 3 an a n -1 an -1 1 1 3 an an -1
1 1 所以{ }是以 1为首项,d 3的等差数列 an a1
an
1 (n - 1) 3 3n - 2
1 an 3n - 2
三、倒数法
3、注意事项:
an-1 (n 2) 适用题型: 已知a1且an pan-1 1 1 1 将式子两侧同时取倒数得到 { a }是以 a 为首项,p为公差的等差数列 n 1
五、过关斩将
n -1 1、已知数列 {an }满足 a1 1.an an-1 (n 2)求其通项公式。 n 1
2an 2、已知数列 {an }满足a1 1, an1 , 求其通项公式。 an 2
3、已知数列 {an }满足a1 1, an an-1 2(n 2) , 求其通项公式。
将n=2,3,4...n代入给出得式子列出各式 将各式相加时要注意一共有n-1项
二、累乘法
an 已知 a 且 f ( n )(n 2) 1 1、累乘法适用题型: an-1 an n -1 {an}满足 (n 2),a1 1, 求其通项公式。 2、例题: 已知数列 an-1 n 将上述各式左右分别相乘得: 解:将n=2,3,4...n分别代入上式得: an 1 2 3 n - 1 a2 a3 a4 a2 1 a1 a2 a 3 an-1 2 3 4 n a1 2 an 1 a3 2 a2 3 a1 n
相关文档
最新文档