试高二文科数学试题
2022-2023学年高二上学期期末考试数学(文)试题
2022-2023学年度上学期期末考试高二数学试卷(文科)第Ⅰ卷(选择题,满分60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设a ∈R ,则“1a >”是“21a >”的( ). A .充分非必要条件 B .必要非充分条件 C .充要条件D .既非充分也非必要条件2.直线1:30l x ay ++=和直线()2:230l a x y a -++=互相平行,则a 的值为( ). A .1-或3B .3-或1C .1-D .3-3、设m ,n 是两条不同的直线,α,β是两个不同的平面,则下列命题正确的是( ). A .若m α∥,n α∥,则m n ∥B .若αβ∥,m α⊂,n β⊂,则m n ∥C .若m αβ⋂=,n α⊂,n m ⊥,则n β⊥D .若m α⊥,m n ∥,n β⊂,则αβ⊥4.已知圆的方程为2260x y x +-=,则过点()1,2的该圆的所有弦中,最短弦长为( ).A .12B .1C .2D .45.函数()1sin f x x =+,其导函数为()f x ',则π3f ⎛⎫'=⎪⎝⎭( ). A .12B .12-C .32 D 36.已知抛物线24x y =上一点M 到焦点的距离为3,则点M 到x 轴的距离为( ). A .12B .1C .2D .47.已知命题:p x ∀∈R ,210ax ax ++>;命题:q x ∃∈R ,20x x a -+=.若p q ∧是真命题,则a 的取值范围是( ).A .(),4-∞B .[]0,4C .10,4⎛⎫ ⎪⎝⎭D .10,4⎡⎤⎢⎥⎣⎦8.若函数()219ln 2f x x x =-在区间[]1,1a a -+上单调递减,则实数a 的取值范围是( ). A .12a <≤B .4a ≥C .2a ≤D .03a <≤9.已知长方体1111ABCD A B C D -中,4AB BC ==,12CC =,则直线1BC 和平面1DBBD 所成角的正弦值等于( ). A .32B .52C .105D .101010.已知三棱锥P ABC -的三条侧棱两两互相垂直,且5AB =,7BC =,2AC =.则此三棱锥的外接球的体积为( ). A .8π3B .82π3C .16π3D .32π311.已知函数()21,12,1ax x f x xx x x ⎧++>⎪=⎨⎪-+≤⎩在R 上单调递增,则实数a 的取值范围是( ). A .[]0,1B .(]0,1C .[]1,1-D .(]1,1-12.已知1F ,2F 是椭圆与双曲线的公共焦点,P 是它们一个公共点,且12PF PF >,线段1PF 的垂直平分线过2F ,若椭圆的离心率为1e ,双曲线的离心率为2e ,则2122e e +的最小值为( ). A .6B .3C .6D .3第Ⅱ卷(非选择题,满分90分)二、填空题(本大题共4小题,每小题5分,共20分.将答案填在答题卡相应的位置上) 13.曲线21y x x=+在点()1,2处的切线方程为__________. 14.当直线()24y k x =-+和曲线24y x =-有公点时,实数k 的取值范围是__________. 15.点P 是椭圆221169x y +=上一点,1F ,2F 分别是椭圆的左,右焦点,若1212PF PF ⋅=.则12F PF ∠的大小为__________.16.若方程22112x y m m+=+-所表示曲线为C ,则有以下几个命题: ①当()1,2m ∈-时,曲线C 表示焦点在x 轴上的椭圆; ②当()2,m ∈+∞时,曲线C 表示双曲线; ③当12m =时,曲线C 表示圆; ④存在m ∈R ,使得曲线C 为等轴双曲线. 以上命题中正确的命题的序号是__________.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤) 17.(本小题10分)已知2:280p x x --+≥,()22:2100q x x m m -+=≤>.(1)若p 是q 的充分条件,求实数m 的取值范围.(2)若“p ⌝”是“q ⌝”的充分条件,求实数m 的取值范围. 18.(本小题12分)求下列函数的导数:(1)sin xy e x =; (2)2311y x x x x ⎛⎫=++ ⎪⎝⎭; (3)(3)sin cos 22x xy x =-. 19.(本小题12分)如图,四棱锥P ABCD -中,侧面PAD 为等边三角形且垂直于底面ABCD ,12AB BC AD ==,90BAD ABC ∠=∠=︒.(1)证明:直线BC ∥平面PAD ;(2)若PCD △的面积为7P ABCD -的体积. 20.(本小题12分)已知抛物线()21:20C y px p =>过点()1,1A . (1)求抛物线C 的方程;(2)过点()3,1P -的直线与抛物线C 交于M ,N 两个不同的点(均与点A 不重合),设直线AM ,AN 的斜率分别为12k k ,求证:12k k 为定值. 21.(本小题12分)已知若函数()34f x ax bx =-+,当2x =时,函数()f x 有极值43-. (1)求函数解析式; (2)求函数的极值;(3)若关于x 的方程()f x k =有三个零点,求实数k 的取值范围. 22.(本小题12分)已知椭圆()2222:10x y C a b a b+=>>3. (1)求椭圆C 的离心率;(2)点33,M ⎭在椭圆C 上,不过原点O 与直线l 与椭圆C 相交于A ,B 两点,与直线OM 相交于点N ,且N 是线段AB 的中点,求OAB △的最大值.四平市第一高级中学2019-2020学年度上学期期末考试高二数学试卷(文科)参考答案一、选择题 题号 1 2 3 4 5 6 7 8 9 10 11 12 答案ACDCACDACBCC13.10x y -+= 14.3,4⎡⎫+∞⎪⎢⎣⎭15.π316.②③ 三、解答题17.解:(1)因为2:280p x x --+≥,()22:2100q x x m m -+-≤>.故:42p x -≤≤,:11q m x m -≤≤+.若p 是q 的充分条件,则[][]4,21,1m m --⊆-+, 故4121mm-≥-⎧⎨≤+⎩,解得5m ≥.(2)若“p ⌝”是“q ⌝”的充分条件,即q 是p 的充分条件,则[][]1,14,2m m -+⊆-,即14120m m m -≥-⎧⎪+≤⎨⎪>⎩,解得01m <≤.即实数m 的取值范围为(]0,1.18.解:(1)()()sin sin sin cos xxxx y ex e x ex e x '''=+=+.(2)因为3211y x x =++,所以2323y x x '=-. (3)因为1sin 2y x x =-,所以11cos 2y x '=-. 19.解:(1)四棱锥P ABCD -中,因为90BAD ABC ∠=∠=︒,所以BC AD ∥. 因为AD ⊂平面PAD ,BC ⊄平面PAD , 所以直线BC ∥平面PAD . (2)由12AB BC AD ==,90BAD ABC ∠=∠=︒. 设2AD x =,则AB BC x ==,2CD x =.设O 是AD 的中点,连接PO ,OC . 设CD 的中点为E ,连接OE ,则22OE x =.由侧面PAD 为等边三角形,则3PO x =,且PO AD ⊥.平面PAD ⊥底面ABCD ,平面PAD ⋂底面ABCD ,且PO ⊂平面PAD . 故PO ⊥底面ABCD .又OE ⊂底面ABCD ,故PO OE ⊥,则2272x PE PO OE =+=, 又由题意可知PC PD =,故PE CD ⊥.PCD △面积为271272PE CD ⋅=,即:1722722x x =, 解得2x =,则3PO = 则()()111124223433232P ABCD V BC AD AB PO -=⨯+⨯⨯=⨯⨯+⨯⨯=. 20.解:(1)由题意抛物线22y px =过点()1,1A ,所以12p =. 所以抛物线的方程为2y x =.(2)设过点()3,1P -的直线l 的方程为()31x m y -=+, 即3x my m =++,代入2y x =得230y my m ---=,设()11,M x y ,()22,N x y ,则12y y m +=,123y y m =-, 所以()()1212122212121211111111111y y y y k k x x y y y y ----⋅=⋅=⋅=----++ ()()12121111312y y y y m m ===-++++--+.所以12k k ⋅为定值.21.解:(1)()23f x ax b '=-.由题意知()()2120428243f a b f a b '=-=⎧⎪⎨=-+=-⎪⎩,解得134a b ⎧=⎪⎨⎪=⎩. 所以所求的解析式为()31443f x x x =-+. (2)由(1)可得()()()2422f x x x x '=-=+-. 令()0f x '=得2x =或2x =-.当x 变化时,()f x ',()f x 随x 的变化情况如下表:x(),2-∞-2-()2,2-2 ()2,+∞()f x ' + 0 - 0 + ()f x↑极大值↓极小值↑所以当2x =-时,函数()f x 有极大值()23f -=; 当2x =时,函数()f x 有极小值()423f =-. (3)由(2)知,可得当2x <-或2x >时,函数()f x 为增函数; 当22x -<<时,函数()f x 为减函数. 所以函数()31443f x x x =-+的图象大致如图,由图可知当42833k -<<时,()f x 与y k =有三个交点,所以实数k 的取值范围为428,33⎛⎫-⎪⎝⎭. 22.解:(1)由题意,得3a c -=,则()2213a cb -=. 结合222b ac =-,得()()22213a c a c -=-,即22230c ac a -+=. 亦即22310e e -+=,结合01e <<,解得12e =. 所以椭圆C 的离心率为12. (2)由(1)得2a c =,则223b c =.将33,2M ⎭代入椭圆方程2222143x y c c +=,解得1c =. 所以椭圆方程为22143x y +=. 易得直线OM 的方程为12y x =. 当直线l 的斜率不存在时,AB 的中点不在直线12y x =上, 故直线l 的斜率存在.设直线l 的方程为()0y kx m m =+≠,与22143x y +=联立, 消y 得()2223484120k x kmx m +++-=, 所以()()()2222226443441248340k m k mk m ∆=-+-=+->.设()11,A x y ,()22,B x y ,则122834kmx x k +=-+,212241234m x x k -=+.由()121226234m y y k x x m k +=++=+,得AB 的中点2243,3434km m N k k ⎛⎫- ⎪++⎝⎭, 因为N 在直线12y x =上,所以224323434km m k k -=⨯++,解得32k =. 所以()248120m ∆=->,得1212m -<<,且0m ≠.则()222212121313412394122236m AB x x x x m m -=+-=-=-又原点O 到直线l 的距离213m d =所以()2222221393312121232666213AOBm m m S m m m -+=-=-⋅=△. 当且仅当2212m m -=,即6m =时等号成立,符合1212m -<<0m ≠.所以AOB △3。
高二上学期期末考试数学(文)试题及答案 (4)
学年第一学期阶段性考试 高二数学(文科)试卷第Ⅰ卷一、选择题:本大题共12小题。
每小题5分,在每小题给出的四个选项中,只有一项符合题目要求. 1.已知命题2015log ,:2=∈∀x R x p ,则p ⌝为( )A .2015log ,2=∉∀x R xB .2015log ,2≠∈∀x R xC .2015log ,020=∈∃x R xD .2015log ,020≠∈∃x R x2.为了检查某超市货架上的奶粉是否含有三聚氰胺,要从编号依次为1到50的袋装奶粉中抽取5袋进行检验,用系统抽样方法确定所选取的5袋奶粉的编号可能是( )A .5,10,15,20,25B .2,4,8,16,32C .5,6,7,8,9D .6,16,26,36,46 3.如果一个家庭有两个小孩,则两个孩子是一男一女的概率为( ) A .14 B .13 C .12 D .234.双曲线1222=-y x 的渐近线方程为( ) A. 02=±y x B. 02=±y x C .02=±y x D .02=±y x5.甲、乙两名学生五次数学测验成绩(百分制)如图所示. ①甲同学成绩的中位数大于乙同学成绩的中位数; ②甲同学的平均分与乙同学的平均分相等; ③甲同学成绩的方差大于乙同学成绩的方差. 以上说法正确的是( ) A .①②B .②③C .①③D .①②③6.用秦九韶算法求多项式7234)(234++++=x x x x x f 的值,则)2(f 的值为( ) A .98 B .105 C .112 D .119 7.运行如右图的程序后,输出的结果为( ) A .6053 B .54 C .65 D .76 8.已知椭圆221164x y +=过点)1,2(-P 作弦且弦被P 平分,则此弦 所在的直线方程为( )7 90 1 38 90 1 289甲乙ENDS PRINT WEND i i i i S S i WHILE S i 1))1(/(1601+=+*+=<==A .032=--y xB .012=--y xC .042=--y xD .042=+-y x9.已知)(x g 为函数)0(1232)(23≠--=a ax ax ax x f 的导函数,则它们的图象可能是( )A .B .C .D .10.已知倾斜角为︒45的直线l 过抛物线x y 42=的焦点,且与抛物线交于B A ,两点,则OAB ∆(其中O 为坐标原点)的面积为( ) A .2B .22C .23D .811.已知(),()f x g x 都是定义在R 上的函数,且满足以下条件:①()()xf x ag x =⋅(0,a >1)a ≠且;②()0g x ≠;③)(')()()('x g x f x g x f ⋅<⋅. 若(1)(1)5(1)(1)2f fg g -+=-,则实数a 的值为 ( )A .21 B .2 C .45 D .2或21 12.如图,直线m x =与抛物线y x 42=交于点A ,与圆4)1(22=+-x y 的实线部分(即在抛物线开口内 的圆弧)交于点B ,F 为抛物线的焦点,则ABF ∆的 周长的取值范围是( ) A .()4,2 B .()6,4 C .[]4,2 D . []6,4第Ⅱ卷二、填空题:本大题共四小题,每小题5分.13.将十进制数)10(2016化为八进制数为 . 14.已知变量x 与y 的取值如下表:x 23 5 6y 7a -8 a +9 12从散点图可以看出y 对x 呈现线性相关关系,则y 与x 的线性回归直线方程a bx y+=ˆ必经过的定点为 .15.已知P 为圆4)2(:22=++y x M 上的动点,)0,2(N ,线段PN 的垂直平分线与直线PM 的交点为Q ,点Q 的轨迹方程为 .16.已知函数xxe x f =)(,现有下列五种说法:①函数)(x f 为奇函数;②函数)(x f 的减区间为()-1∞,,增区间为()1+∞,;频率组距50 55 60 65 70 75 80体重(kg)O0.070.060.050.040.030.020.01③函数)(x f 的图象在0x =处的切线的斜率为1; ④函数)(x f 的最小值为1e-. 其中说法正确的序号是_______________(请写出所有正确说法的序号).三、解答题:解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分10分)设命题p :12>-x ;命题q :0)1()12(2≥+++-a a x a x .若p ⌝是q ⌝的必要不充分条件,求实数a 的取值范围.18.(本小题满分12分)某校对高二年段的男生进行体检,现将高二男生的体重()kg 数据进行整理后分成6组,并绘制部分频率分布直方图(如图所示).已知第三组[)65,60的人数为200.根据一般标准,高二男生体重超过65kg 属于偏胖,低于55kg 属于偏瘦.观察图形的信息,回答下列问题:(1)求体重在[)6560,内的频率,并补全频率分布直方图;(2)用分层抽样的方法从偏胖的学生中抽取6人对日常生活习惯及体育锻炼进行调查,则各组应分别抽取多少人?(3)根据频率分布直方图,估计高二男生的体重的中位数与平均数.19. (本小题满分12分)(1)执行如图所示的程序框图,如果输入的[]3,1-∈t ,若输出的s 的取值范围记为集合A ,求集合A ;(2)命题p :A a ∈,其中集合A 为第(1)题中的s 的取值范围;命题q :函数a x ax x x f +++=2331)(有极值; 若q p ∧为真命题,求实数a 的取值范围.20.(本小题满分12分)已知双曲线C :)00(12222>>=-,b a by a x .(1)有一枚质地均匀的正四面体玩具,玩具的各个面上分别写着数字1,2,3,4.若先后两次投掷玩具,将朝下的面上的数字依次记为b a ,,求双曲线C 的离心率小于5的概率;(2)在区间[]61,内取两个数依次记为b a ,,求双曲线C 的离心率小于5的概率.21.(本小题满分12分)已知椭圆C:)0(12222>>=+b a by a x 的中心在坐标原点O ,对称轴在坐标轴上,椭圆的上顶点与两个焦点构成边长为2的正三角形. (1)求椭圆C 的标准方程;(2)若斜率为k 的直线l 经过点)0,4(M ,与椭圆C 相交于A ,B 两点,且21>⋅OB OA ,求k 的取值范围.22. (本小题满分12分)已知函数)(2ln )(2R a x xa x a x f ∈++-=. (1)当1=a 时,求曲线)(x f y =在点))1(,1(f 处的切线方程;(2)当0>a 时,若函数()f x 在[1,]e 上的最小值记为)(a g ,请写出)(a g 的函数表达式.高二数学(文科)试卷参考答案一、DDCD BBCD ABAB二、13.)8(3740 14.()9,4 15.)0(1322<=-x y x 16.③④ 三、17.解:由p :12>-x 解得1<x 或3>x .……………………………… 3分由q :0)1()12(2≥+++-a a x a x 得[]0)1()(≥+--a x a x ,解得a x ≤或1+≥a x .……………………………… 6分∵p ⌝是q ⌝的必要不充分条件,∴p 是q 的充分不必要条件. …………………… 8分 ∴⎩⎨⎧≤+≥311a a ,则21≤≤a .∴实数a 的取值范围是[]21,.……………………………… 10分 18.解:(1)体重在[)65,60内的频率2.05)01.002.003.007.003.0(1=⨯++++-=04.052.0==组距频率 补全的频率分布直方图如图所示. ……………4分 (2)设男生总人数为n ,由2.0200=n,可得1000=n 体重超过kg 65的总人数为30010005)01.002.003.0(=⨯⨯++在[)70,65的人数为1501000503.0=⨯⨯,应抽取的人数为33001506=⨯, 在[)70,65的人数为1001000502.0=⨯⨯,应抽取的人数为23001006=⨯, 在[)80,75的人数为501000501.0=⨯⨯,应抽取的人数为1300506=⨯. 所以在[)70,65 ,[)75,70,[]80,75三段人数分别为3,2,1.…………………… 8分 (3)中位数为60kg 平均数为(52.50.0357.50.0762.50.0467.50.0372.50.0277.50.01)561.75⨯+⨯+⨯+⨯+⨯+⨯⨯=(kg)…12分19.解:(1)由程序框图可知,当11<≤-t 时,t s 2=,则[)2,2-∈s . 当31≤≤t 时,()322+--=t s组距kg)O0.0.0.0.0.0.0.∵该函数的对称轴为2=t ,∴该函数在[]21,上单调递增,在[]3,2上单调递减. ∴2,3min max ==s s ∴[]3,2∈s综上知,[]3,2-∈s ,集合[]3,2-=A ……………………………… 4分 (1)函数a x ax x x f +++=2331)(有极值,且12)(2'++=ax x x f , 0)('=x f 有两个不相等的实数根,即04)2(2>-=∆a 解得1-<a 或1>a即命题p :1-<a 或1>a .……………………………… 8分q p ∧为真命题,则⎩⎨⎧≤≤->-<3211a a 或a ,解得3112≤<-<≤-a 或a ;∴实数a 的取值范围是[)(]2,113--⋃,.……………………………… 12分20.解:双曲线的离心率22221ab ac a c e +===. 因为5e <a b ab 20422<<∴<∴.……………………………… 2分 (1) 因玩具枚质地是均匀的,各面朝下的可能性相等,所以基本事件),(b a 共有16个:(1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(2,3),(2,4),(3,1),(3,2),(3,3),(3,4),(4,1),(4,2),(4,3),(4,4).设“双曲线C 的离心率小于5”为事件A ,则事件A 所包含的基本事件为(1,1),(2,1),(2,2),(2,3),(3,1),(3,2),(3,3),(3,4),(4,1),(4,2),(4,3),(4,4)共有12个. 故双曲线C 的离心率小于5的概率为431612)(==A P .…………………………… 7分(2) ∵[][]6,1,6,1∈∈b a∴⎪⎩⎪⎨⎧<<≤≤≤≤a b b a 206161 所以以a 为横轴,以b 为纵轴建立直角坐标系,如图所示,21422155=⨯⨯-⨯=阴影S ,由几何概型可知,双曲线C 的离心率小于5的概率为2521=P .……………………………… 12分21.解:(1)∵椭圆的上顶点与两个焦点构成边长为2的正三角形,32,22222=-=∴==∴c a b a c∴椭圆C 的标准方程为13422=+y x .……………………………… 4分 (2) 设直线l 的方程为)4(-=x k y ,设A (x 1,y 1),B (x 2,y 2)联立⎩⎨⎧=+-=1243)4(22y x x k y ,消去y 可得(0126432)43(2222=-+-+k x k x k∵直线l 与椭圆C 相交于A ,B 两点,∴0>∆由0)1264)(43(4)32(2222>-+-=∆k k k 解得412<k 设),(11y x A ,),(22y x B则34322221+=+k k x x ,3412642221+-=k k x x ……………………………… 7分211643324431264)1(16)(4)1()4()4(2222222221221221212121>++-+-+=++-+=--+=+=⋅k k k k k k k k x x k x x k x k x k x x y y x x OB OA解得196272>k ∴41196272<<k所以k 的取值范围是211433143321<<-<<-k 或k .……………………………… 12分22.解:(1)∵)(2ln )(2R a x x a x a x f ∈++-=,∴12)(22'+--=xa x a x f 当1=a 时,121)(,2ln )(2'+--=++-=xx x f x x x x f 2)1(,3)1('-===f k f曲线)(x f y =在点))1(,1(f 处的切线方程为)1(23--=-x y 即052=-+y x .……………………………… 3分(2)222222'))(2(212)(x a x a x x a ax x x a x a x f +-=--=+--=0,0>>x a ,由0)('>x f 得a x 2>,由0)('<x f 得a x 20<<)(x f ∴在(]a 2,0上为减函数,在()+∞,2a 上为增函数.……………………………… 5分①当210120≤<≤<a 即a 时,)(x f 在[]e ,1上为增函数. 12)1()(2+==∴a f a g 在(]a 2,0上为减函数,在()+∞,2a 上为增函数.…………… 7分②当22121ea e 即a <<<<时,)(x f 在[]a 2,1上为减函数,在(]e a ,2上为增函数. a a a a f a g 3)2ln()2()(+-==∴……………………………… 9分③当22ea e 即a ≥≥时,)(x f 在[]e ,1上为减函数. e ea a e f a g ++-==∴22)()(……………………………… 11分综上所述,⎪⎪⎪⎩⎪⎪⎪⎨⎧≥++-<<+-≤<+=)2(2)221(3)2ln()210(12)(22e a e e a a e a a a a a a a g ……………………………… 12分。
高二数学上学期期中文科试题
高二数学上学期期中文科试题可能对于很多文科生来说数学是很难的,大家不要放弃哦,今天小编就给大家分享一下高二数学,就给阅读哦高二数学上期中文科试题第I卷共60分一、选择题:本大题有12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项符合题目要求.1. 已知是等比数列, ( )A.4B.16C.32D. 642.若a>b>0,下列不等式成立的是( )A.a23. 在中,,则一定是( )A.钝角三角形B.锐角三角形C.直角三角形D.等腰三角形4.在△ABC内角A,B, C的对边分别是a,b,c,已知a= ,c= ,∠A= ,则∠C的大小为( )A. 或B. 或C.D.5.原点和点(1,1)在直线x+y﹣a=0两侧,则a的取值范围是( )A.0≤a≤2B.026.在中,已知 ,则角A等于( )A. B. C. D.7.若数列为等差数列且,则sin 的值为( )A. B. C. D.8.在中,分别是角的对边,且 , ,则的面积等于( )A. B. C. D.109.《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有女子善织,日益功,疾,初日织五尺,今一月织九匹三丈(1匹=40尺,一丈=10尺),问日益几何?”其意思为:“有一女子擅长织布,每天比前一天更加用功,织布的速度也越来越快,从第二天起,每天比前一天多织相同量的布,第一天织5尺,一月织了九匹三丈,问每天增加多少尺布?”若一个月按30天算,则每天增加量为( )A. 尺B. 尺C. 尺D. 尺10.若不等式组表示的平面区域是一个三角形,则的取值范围是( )A. 或B.C. 或D.11.等比数列的前n项的和分别为, ,则 ( )A. B. C. D.12.已知单调递增数列{an}满足an=3n﹣λ•2n(其中λ为常数,n∈N+),则实数λ的取值范围是( )A.λ≤3B.λ<3C.λ≥3D.λ>3第Ⅱ卷共90分二、填空题:本大题有4小题,每小题5分,共20分,把答案填在答卷的相应位置.13.已知关于x的不等式ax2﹣(a+1)x+b<0的解集是{x|114.设且 ,则的最小值为15.若数列的前n项的和为,且,则的通项公式为_________.16.若数列为等差数列,首项,则使前项和的最大自然数n是_________________.三、解答题:本大题有6题,共70分,解答应写出文字说明、证明过程或演算步骤.17、(本题满分10分)(1)设数列满足,写出这个数列的前四项;(2)若数列为等比数列,且求数列的通项公式18.(本题满分12分)已知函数 .(1)当时,解不等式 ;(2)若不等式的解集为,求实数的取值范围.19.(本题满分12分)的内角的对边分别为 ,已知 .(1)求(2)若 , 面积为2,求20.(本题满分12分)在中,角所对的边分别为,设为的面积,满足(I)求角的大小;(II)若边长,求的周长的最大值.21.(本小题满分12分)已知实数满足不等式组 .(1)求目标函数的取值范围;(2)求目标函数的最大值.22.(本小题满分12分)已知等比数列满足 , ,公比(1)求数列的通项公式与前n项和 ;(2)设,求数列的前n项和 ;(3)若对于任意的正整数,都有成立,求实数m的取值范围. 高二数学(文科)参考答案一、选择题:本大题有12小题,每小题5分,共60分1-12:C C C D B C B C C A B B二、填空题:本大题有4小题,每小题5分,共20分13. 14.8 15. 16. 4034三、解答题:17.(本小题满分10分)(1) …………5分,(2)由已知得,联立方程组解得得,即…………10分18.(本小题满分12分).……4分(2)若不等式的解集为,则①当m=0时,-12<0恒成立,适合题意; ……6分②当时,应满足由上可知,……12分19. (1)由题设及得,故上式两边平方,整理得解得……………6分(2)由,故又,由余弦定理及得所以b=2……………12分20.解:(1)由题意可知,……………2分12absinC=34•2abcosC,所以tanC=3. 5分因为0所以,所以,当时,最大值为4,所以△ABC的周长的最大值为6其他方法请分步酌情给分21.(本小题满分12分)解:(1)画出可行域如图所示,直线平移到点B时纵截距最大,此时z取最小值;平移到点C时纵截距最小,此时z取最大值.由得由得∴C(3,4);当x=3,y=4时,z最大值2.………………………8分(2) 表示点到原点距离的平方,当点M在C点时,取得最大值,且………………12分22. 解:(1)由题设知,,又因为, ,解得:,故an=3 = ,前n项和Sn= - .……4分(2)bn= = = ,所以 = ,所以== < ,………8分(3)要使恒成立,只需,即解得或m≥1. ………………12分高二文科数学上学期期中试卷一、选择题:(本大题共12小题,每小题5分;在每小题给出的四个选项中,只有一项是符合题目要求的.)1.命题“若,则”的逆否命题是 ( )A. 若,则B. 若,则C. 若,则D. 若,则2 .命题“ ”的否定是 ( )A. B. C. D.3.若中心在原点的椭圆C的右焦点为F(1,0),离心率等于12,则C的方程是 ( )A. x23+y24=1B. x24+y23=1C. x24+y22=1D. x24+y23=14. 表示的曲线方程为 ( )[A. B.C. D.5.抛物线的准线方程是 ( )A. B. C. D.6.若k∈R则“k>5”是“方程x2k-5-y2k+2=1表示双曲线”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件7.已知是椭圆的两焦点,过点的直线交椭圆于点,若 ,则 ( )A.9B.10C.11D.128.已知双曲线的离心率为3,焦点到渐近线的距离为,则此双曲线的焦距等于 ( )A. B. C. D.9.双曲线的一个焦点为,椭圆的焦距为4,则A.8B.6C.4D.210.已知双曲线的两个顶点分别为,,点为双曲线上除,外任意一点,且点与点,连线的斜率分别为、,若,则双曲线的离心率为 ( )A. B. C. D.11.如果是抛物线的点,它们的横坐标依次为,是抛物线的焦点,若 ,则 ( )A. B. C. D.12.已知点,是椭圆上的动点,且,则的取值范围是 ( )A. B. C. D.二、填空题:(本大题共4小题,每小题5分)13.若命题“ ”是假命题,则实数的取值范围是 .14.已知直线和双曲线的左右两支各交于一点,则的取值范围是 .15.已知过抛物线的焦点,且斜率为的直线与抛物线交于两点,则 .16.已知是抛物线上的动点,点是圆上的动点,点是点在轴上的射影,则的最小值是 .三、解答题(本大题共6小题,共70分,解答题应写出文字说明,证明过程或演算步骤)17.(本小题满分10分)设命题函数在单调递增;命题方程表示焦点在轴上的椭圆.命题“ ”为真命题,“ ”为假命题,求实数的取值范围.18.(本小题满分12分)(Ⅰ)已知某椭圆过点,求该椭圆的标准方程.(Ⅱ)求与双曲线有共同的渐近线,经过点的双曲线的标准方程.19.(本小题满分12分)已知抛物线的顶点在原点,焦点在轴的正半轴且焦点到准线的距离为2.(Ⅰ)求抛物线的标准方程;(Ⅱ)若直线与抛物线相交于两点,求弦长 .20.(本小题满分12分)已知双曲线的离心率为,虚轴长为 .(Ⅰ)求双曲线的标准方程;(Ⅱ)过点,倾斜角为的直线与双曲线相交于、两点,为坐标原点,求的面积.21.(本小题满分12分)已知椭圆,过点,的直线倾斜角为,原点到该直线的距离为 .(Ⅰ)求椭圆的标准方程;(Ⅱ)斜率大于零的直线过与椭圆交于E,F两点,若,求直线EF的方程.22.(本小题满分12分)已知分别为椭圆C:的左、右焦点,点在椭圆上,且轴,的周长为6.(Ⅰ)求椭圆的标准方程;(Ⅱ)E,F是椭圆C上异于点的两个动点,如果直线PE与直线PF的倾斜角互补,证明:直线EF的斜率为定值,并求出这个定值.数学(文科)学科参考答案第Ⅰ 卷 (选择题共60分)一、选择题:(本大题共12小题,每小题5分;在每小题给出的四个选项中,只有一项是符合题目要求的.)题号 1 2 3 4 5 6 7 8 9 10 11 12答案 B D D C A A C D C B B A第Ⅱ 卷 (非选择题共90分)二、填空题:(本大题共4小题,每小题5分. )(13) ; (14) ; (15) ; (16) .三、解答题:(解答应写出必要的文字说明,证明过程或演算步骤.)(17)(本小题满分10分)解:命题p:函数在单调递增命题q:方程表示焦点在轴上的椭圆……4分“ ”为真命题,“ ”为假命题,命题一真一假……6 分① 当真假时:② 当假真时:综上所述:的取值范围为……10分(18)(本小题满分12分)解:(Ⅰ)设椭圆方程为,解得,所以椭圆方程为. ……6分(Ⅱ)设双曲线方程为,代入点,解得即双曲线方程为. ……12分(19)(本小题满分12分)解:(Ⅰ) 抛物线的方程为:……5分(Ⅱ)直线过抛物线的焦点,设,联立,消得,……9分或……12分(20)(本小题满分12分)解:(Ⅰ)依题意可得,解得双曲线的标准方程为. ……4分(Ⅱ)直线的方程为联立,消得,设,,由韦达定理可得 , ,……7分则……9分原点到直线的距离为……10分的面积为……12分(21)(本小题满分12分)解:(Ⅰ)由题意,,,解得,所以椭圆方程是:……4分(Ⅱ)设直线:联立,消得,设,,则 ,……① ……② ……6分,即……③ ……9分由①③得由②得……11分解得或 (舍)直线的方程为:,即……12分(22)(本小题满分12分)解:(Ⅰ)由题意,,,的周长为,,椭圆的标准方程为. ……4分(Ⅱ)由(Ⅰ)知,设直线方程:,联立,消得……5分设,点在椭圆上,……7分又直线的斜率与的斜率互为相反数,在上式中以代,,……9分……10分即直线的斜率为定值,其值为. ……12分高二数学上期中文科联考试题第Ⅰ卷(共100分)一、选择题(本大题共11个小题,每小题5分,共55分)1.已知sin α=25,则cos 2α=A.725B.-725C.1725D.-17252.已知数列1,3,5,7,…,2n-1,…,则35是它的A.第22项B.第23项C.第24项D.第28项3.在△ABC中,角A,B,C的对边分别为a,b,c,若b=c=2a,则cos B=A.18B.14C.12D.14.△ABC中,角A,B,C所对的边分别为a,b,c,若cbA.钝角三角形B.直角三角形C.锐角三角形D.等边三角形5.已知点(a,b) a>0,b>0在函数y=-x+1的图象上,则1a+4b 的最小值是A.6B.7C.8D.96.《九章算术》中“竹九节”问题:现有一根9节的竹子,自上而下各节的容积成等差数列,上面4节的容积共3升,下面3节的容积共4升,则从上往下数第6节的容积为A.3733B.6766C.1011D.23337.设Sn为等比数列{an}的前n项和, 27a4+a7=0,则S4S2=A.10B.9C.-8D.-58.已知数列{an}满足an+1+an=(-1)n•n,则数列{an}的前20项的和为A.-100B.100C.-110D.1109.若x,y满足约束条件x≥0,x+y-3≤0,x-2y≥0,则z=x+2y的最大值为A.3B.4C.5D.610.已知0A.13B.12C.23D.3411.已知等差数列{an}的公差d≠0,前n项和为Sn,若对所有的n(n∈N*),都有Sn≥S10,则A.an≥0B.a9•a10<0C.S2第Ⅰ卷选择题答题卡题号 1 2 3 4 5 6 7 8 9 10 11 得分答案二、填空题(本大题共3小题,每小题5分,共15分)12.在等比数列{an}中,a4•a6=2 018,则a3•a7= ________ .13.在△ABC中,a=3,b=1,∠A=π3,则cos B=________.14.对于实数a、b、c,有下列命题:①若a>b,则acbc2,则a>b;③若a ab>b2;④若c>a>b>0,则ac-a>bc-b;⑤若a>b,1a>1b,则a>0,b<0.其中正确的是________.(填写序号)三、解答题(本大题共3小题,共30分)15.(本小题满分8分)△ABC的内角A,B,C的对边分别为a,b,c,已知2cos C(acos B+bcos A)=c.(1)求角C;(2)若c=7,△ABC的面积为332,求△ABC的周长.16.(本小题满分10分)某厂拟生产甲、乙两种适销产品,每件销售收入分别为3 000元、2 000元. 甲、乙产品都需要在A、B两种设备上加工,在A、B设备上加工一件甲产品所需工时分别为1 h,2 h,加工一件乙产品所需工时分别为2 h,1 h,A、B两种设备每月有效使用台时数分别为400 h 和500 h,分别用x,y表示计划每月生产甲、乙产品的件数.(1)用x,y列出满足生产条件的数学关系式,并画出相应的平面区域;(2)问每月分别生产甲、乙两种产品各多少件,可使月收入最大?并求出最大收入.17.(本小题满分12分)已知公差不为零的等差数列{an}满足:a3+a8=20,且a5是a2与a14的等比中项.(1)求数列{an}的通项公式;(2)设数列{bn}满足bn=1anan+1,求数列{bn}的前n项和Sn.第Ⅱ卷(共50分)一、选择题18.(本小题满分6分)已知抛物线C:y2=8x的焦点为F,准线为l,P是l上一点,Q是直线PF与C的一个交点.若FP→=4FQ→,则|QF|等于( )A.72B.52C.3D.2二、填空题19.(本小题满分6分)如图,F1,F2是椭圆C1:x24+y2=1与双曲线C2的公共焦点,A,B分别是C1,C2在第二、四象限的公共点.若四边形AF1BF2为矩形,则C2的离心率是__________.三、解答题20.(本小题满分12分)在等腰梯形ABCD中,E、F分别是CD、AB的中点,CD=2,AB=4,AD=BC=2.沿EF将梯形AFED折起,使得∠AFB=60°,如图.(1)若G为FB的中点,求证:AG⊥平面BCEF;(2)求二面角C-AB-F的正切值.21.(本小题满分13分)已知二次函数f(x)=x2-16x+q+3.(1)若函数f(x)在区间[-1,1]上存在零点,求实数q的取值范围;(2)是否存在常数t(t≥0),当x∈[t,10]时,f(x)的值域为区间D,且区间D的长度为12-t(视区间[a,b]的长度为b-a).22.(本小题满分13分)已知中心在坐标原点,焦点在x轴上的椭圆过点P(2,3),且它的离心率e=12.(1)求椭圆的标准方程;(2)与圆(x-1)2+y2=1相切的直线l:y=kx+t交椭圆于M,N两点,若椭圆上一点C满足OM→+ON→=λOC→,求实数λ的取值范围.参考答案第Ⅰ卷(共100分)一、选择题题号 1 2 3 4 5 6 7 8 9 10 11答案 C B B A D A A A B B D1.C 【解析】cos 2α=1-2sin2α=1-2×252=1725.故选C.2.B 【解析】由数列前几项可知an=2n-1,令an=2n-1=35得n=23.故选B.3.B4.A 【解析】由正弦定理可得sin C5.D 【解析】a+b=1,∴1a+4b=1a+4b(a+b)=5+ba+4ab≥9,当且仅当b=2a=23时取等号.故选D.6.A 【解析】根据题意,设该竹子自上而下各节的容积为等差数列{an},设其公差为d,且d>0,由题意可得:a1+a2+a3+a4=3,a7+a8+a9=4,则4a1+6d=3,3a1+21d=4,解可得a1=1322,d=766,则第6节的容积a6=a1+5d=7466=3733.故答案为A.7.A 【解析】由27a4+a7=0,得q=-3,故S4S2=1-q41-q2=1+q2=10.故选A.8.A 【解析】由an+1+an=(-1)n•n,得a2+a1=-1,a3+a4=-3,a5+a6=-5,…,a19+a20=-19.∴an的前20项的和为a1+a2+…+a19+a20=-1-3-…-19=-1+192×10=-100,故选A.9.B 【解析】由x,y满足约束条件x≥0,x+y-3≤0,x-2y≥0.作出可行域如图,由z=x+2y,得y=-12x+z2.要使z最大,则直线y=-12x+z2的截距最大,由图可知,当直线y=-12x+z2过点A时截距最大.联立x=2y,x+y=3解得A(2,1),∴z=x+2y的最大值为2+2×1=4.故答案为B.10.B 【解析】∵0∴x(3-3x)=3x(1-x)≤3•x+1-x22=34,当且仅当x=12时取等号.∴x(3-3x)取最大值34时x的值为12.故选B.11.D 【解析】由?n∈N*,都有Sn≥S10,∴a10≤0,a11≥0,∴a1+a19=2a10≤0,∴S19=19(a1+a19)2≤0,故选D.二、填空题12.2 01813.32 【解析】∵a=3,b=1,∠A=π3,∴由正弦定理可得:sin B=bsin Aa=1×323=12,∵b14.②③④⑤【解析】当c=0时,若a>b,则ac=bc,故①为假命题;若ac2>bc2,则c≠0,c2>0,故a>b,故②为真命题;若a ab且ab>b2,即a2>ab>b2,故③为真命题;若c>a>b>0,则cabc-b,故④为真命题;若a>b,1a>1b,即bab>aab,故a•b<0,则a>0,b<0,故⑤为真命题.故答案为②③④⑤.三、解答题15.【解析】(1)∵在△ABC中,0已知等式利用正弦定理化简得:2cos C(sin AcosB+sin Bcos A)=sin C,整理得:2cos Csin(A+B)=sin C,即2cos Csin(π-(A+B))=sin C,2cos Csin C=sin C,∴cos C=12,∴C=π3.4分(2)由余弦定理得7=a2+b2-2ab•12,∴(a+b)2-3ab=7,∵S=12absin C=34ab=332,∴ab=6,∴(a+b)2-18=7,∴a+b=5,∴△ABC的周长为5+7.8分16.【解析】(1)设甲、乙两种产品月产量分别为x,y件,约束条件是2x+y≤500,x+2y≤400,x≥0,y≥0,由约束条件画出可行域,如图所示的阴影部分.5分(2)设每月收入为z千元,目标函数是z=3x+2y,由z=3x+2y可得y=-32x+12z,截距最大时z最大.结合图象可知,直线z=3x+2y经过A处取得最大值由2x+y=500,x+2y=400可得A(200,100),此时z=800.故安排生产甲、乙两种产品的月产量分别为200,100件可使月收入最大,最大为80万元.10分17.【解析】(1)设等差数列{an}的公差为d,∵a3+a8=20,且a5是a2与a14的等比中项,∴2a1+9d=20,(a1+4d)2=(a1+d)(a1+13d),解得a1=1,d=2,∴an=1+2(n-1)=2n-1.6分(2)bn=1(2n-1)(2n+1)=1212n-1-12n+1,∴Sn=b1+b2+b3+…+bn=121-13+13-15+…+12n-1-12n+1=121-12n+1=n2n+1.12分第Ⅱ卷(共50分)一、选择题18.C 【解析】∵FP→=4FQ→,∴|FP→|=4|FQ→|,∴|PQ||PF|=34.如图,过Q作QQ′⊥l,垂足为Q′,设l与x轴的交点为A,则|AF|=4,∴|QQ′||AF|=|PQ||PF|=34,∴|QQ′|=3,根据抛物线定义可知|QF|=|QQ′|=3,故选C.二、填空题19.62 【解析】|F1F2|=23.设双曲线的方程为x2a2-y2b2=1.∵|AF2|+|AF1|=4,|AF2|-|AF1|=2a,∴|AF2|=2+a,|AF1|=2-a.在Rt△F1AF2中,∠F1AF2=90°,∴|AF1|2+|AF2|2=|F1F2|2,即(2-a)2+(2+a)2=(23)2,∴a=2,∴e=ca=32=62.三、解答题20.【解析】(1)因为AF=BF,∠AFB=60°,△AFB为等边三角形.又G为FB的中点,所以AG⊥FB.2分在等腰梯形ABCD中,因为E、F分别是CD、AB的中点,所以EF⊥AB.于是EF⊥AF,EF⊥BF,则EF⊥平面ABF,所以AG⊥EF.又EF与FB交于一点F,所以AG⊥平面BCEF.5分(2)连接CG,因为在等腰梯形ABCD中,CD=2,AB=4,E、F分别是CD、AB中点,G为FB的中点,所以EC=FG=BG=1,从而CG∥EF.因为EF⊥平面ABF,所以CG⊥平面ABF.过点G作GH⊥AB于H,连结CH,据三垂线定理有CH⊥AB,所以∠CHG为二面角C-AB-F的平面角.8分因为Rt△BHG中,BG=1,∠GBH=60°,所以GH=32.在Rt△CGB中,CG⊥BG,BG=1,BC=2,所以CG=1.在Rt△CGH中,tan∠CHG=233,故二面角C-AB-F的正切值为233.12分21.【解析】(1)∵函数f(x)=x2-16x+q+3的对称轴是x=8,∴f(x)在区间[-1,1]上是减函数.∵函数在区间[-1,1]上存在零点,则必有f(1)≤0,f(-1)≥0,即1-16+q+3≤0,1+16+q+3≥0,∴-20≤q≤12.6分(2)∵0≤t<10,f(x)在区间[0,8]上是减函数,在区间[8,10]上是增函数,且对称轴是x=8.①当0≤t≤6时,在区间[t,10]上,f(t)最大,f(8)最小,∴f(t)-f(8)=12-t,即t2-15t+52=0,解得t=15±172,∴t=15-172;9分②当6∴f(10)-f(8)=12-t,解得t=8;11分③当8∴f(10)-f(t)=12-t,即t2-17t+72=0,解得t=8,9,∴t=9.综上可知,存在常数t=15-172,8,9满足条件.13分22.【解析】(1)设椭圆的标准方程为x2a2+y2b2=1(a>b>0),由已知得:4a2+3b2=1,ca=12,c2=a2-b2,解得a2=8,b2=6,所以椭圆的标准方程为x28+y26=1.4分(2)因为直线l:y=kx+t与圆(x-1)2+y2=1相切,所以|t+k|1+k2=1?2k=1-t2t(t≠0),6分把y=kx+t代入x28+y26=1并整理得:(3+4k2)x2+8ktx+4t2-24=0,设M(x1,y1),N(x2,y2),则有x1+x2=-8kt3+4k2,y1+y2=kx1+t+kx2+t=k(x1+x2)+2t=6t3+4k2, 8分因为λOC→=(x1+x2,y1+y2),所以C-8kt(3+4k2)λ,6t(3+4k2)λ,又因为点C在椭圆上,所以,8k2t2(3+4k2)2λ2+6t2(3+4k2)2λ2=1?λ2=2t23+4k2=21t22+ 1t2+1,11分因为t2>0,所以1t22+1t2+1>1,所以0<λ2<2,所以λ的取值范围为(-2,0)∪(0,2).13分。
高二文科数学选修1-1、1-2试卷
高二文科数学选修1-1、1-2试卷命题:福安十中 余智华一、选择题:(本题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的) 1.化简ii-+11的结果是( )。
(A )1(B )i -(C )—1(D )i本题考查复数简单计算,正确答案为:【D 】 2.“0a >”是“a >0”的( )。
(A )充分不必要条件 (B )必要不充分条件 (C )充要条件 (D )既不充分也不必要条件 本题考查充要条件的基本知识,正确答案为:【A 】3.已知命题 R x p ∈∀:,2≥x ,那么命题p ⌝为( )。
(A )2x x ∀∈≤R , (B )2x x ∃∈<R , (C )2x x ∀∈≤-R , (D )2x x ∃∈<-R , 本题考查全称命题与特称命题之间的转化,正确答案为:【B 】4. 设抛物线28y x =上一点P 到y 轴的距离是4,则点P 到该抛物线焦点的距离是( )。
(A ) 2 (B )4 (C ) 6 (D )10 本题考查抛物线的定义,正确答案为:【C 】5.若2m <,则方程22152x y m m+=--所表示的曲线是( )。
(A )焦点在x 轴上的椭圆 (B )焦点在y 轴上的椭圆 (C )焦点在x 轴上的双曲线 (D )焦点在y 轴上的双曲线 本题考查椭圆的定义,正确答案为:【A 】6.椭圆171622=+y x 的左右焦点为21,F F ,一直线过1F 交椭圆于,A B 两点,则2ABF ∆的周长为( )。
(A )32(B )16(C )8(D )4本题考查椭圆的定义运用,正确答案为:【B 】 7.下表是关于出生男婴与女婴调查的列联表那么,A 、C 的值分别是( )。
(A )47、53 (B )47、88(C )53、88 (D )82、88本题考查联表数据之间的关系,正确答案为:【B 】8.在独立性检验中,统计量2K 有两个临界值:3.841和6.635;当2K >3.841时,有95%的把握说明两个事件有关,当2K >6.635时,有99%的把握说明两个事件有关,当2K ≤3.841时,认为两个事件无关.在一项打鼾与患心脏病的调查中,共调查了2000人,经计算的2K =20.87,根据这一数据分析,认为打鼾与患心脏病之间( )。
重庆市江北中学校―(上)半期考试高二数学试题(文科)
高二年级数学试题(文科)命题人:徐云军 审题人:邬开友 (时间:120分钟 总分:150分)第Ⅰ卷(50分)一、选择题:(本大题共12个小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是正确的)。
1、若,0<<b a 下列不等式成立的是 ( )A .22b a < B .ab a <2C .1<a b D .ba 11< 2、不等式34≤-x 的整数解的个数是 ( )A .7B .6C .5D .43、已知R ∈α,则直线02008sin =--y x α的倾斜角的取值范围是 ( ) A .⎥⎦⎤⎢⎣⎡4,0π B .[)π,0 C .⎥⎦⎤⎢⎣⎡43,4ππ D .⎪⎭⎫⎢⎣⎡⋃⎥⎦⎤⎢⎣⎡πππ,434,0 4、直线3y x =绕原点逆时针旋转090,再向右平移1个单位,所得到的直线为 ( )A .1133y x =-+ B .113y x =-+ C .33y x =- D .113y x =+ 5、若P :32<-x , Q :01582<+-x x , 则P 是Q 的 ( ) A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件 D .既不充分也不必要条件 6、直线210x y -+=关于直线1x =对称的直线方程是 ( )A .210x y +-=B .210x y +-=C .230x y +-=D .230x y +-=7、若13)(2+-=x x x f ,12)(2-+=x x x g ,则)(x f 与)(x g 的大小关系为 ( )A .)()(x g x f >B .)()(x g x f =C .)()(x g x f <D .随x 值变化而变化 8、已知点)0,2()4,0(),(-B A y x P 和到的距离相等,则yx42+的最小值为 ( )A .2B .4C .28D .249、如直线1l 、2l 的斜率是二次方程x 2-4x+1=0的两根,那么1l 和2l 的夹角是 ( )A .4πB .3π C . 6π D . 8π 10、如果a x x >+++|9||1|对任意实数x 总成立,则a 的取值范围是 ( )A .}8|{<a aB . }8|{>a aC .}8|{≥a aD . }8|{≤a a 11、已知函数34)(2+-=x x x f ,集合}0)()(),{(≤+=y f x f y x M ,}0)()(),{(≥-=y f x f y x N则集合N M ⋂的面积是 ( ) A .4π B .2πC .πD .π2 12、若圆x 2+y 2-4x-4y+4=0上至少有三个不同点到直线l :y = k x +3的距离为1, 则直线l 的斜率k 的取值范围是 ( )A .),0[+∞B .]0,(-∞C .),34[+∞-D .]0,34[- 第Ⅱ卷(90分)二、填空题:(本大题共4个小题,每小题4分,共16分)。
高二期末考试数学试题及答案(文科)
第一学期期末考试高二数学试题一选择题1.椭圆13610022=+y x 的焦距等于( ). A .20B .16C .12D .82.某企业为了监控产品质量,从产品流转均匀的生产线上每间隔10分钟抽取一个样本进行检测,这种抽样方法是( ).A .抽签法B .随机数表法C .系统抽样法D .分层抽样法3.已知函数()2xf x =,则'()f x =( ).A .2xB .2ln 2x⋅ C .2ln 2x+ D .2ln 2x4.已知点F 是抛物线24y x =的焦点,点P 在该抛物线上,且点P 的横坐标是2, 则||PF =( ).A .2B .3C .4D .5 5.已知事件A 与事件B 发生的概率分别为()P A 、()P B ,有下列命题:①若A 为必然事件,则()1P A =. ②若A 与B 互斥,则()()1P A P B +=. ③若A 与B 互斥,则()()()P A B P A P B ⋃=+.其中真命题有( )个.A .0 B .1 C .2 D .36.“0a >”是“方程2y ax =表示的曲线为抛物线”的( )条件.A .充分不必要B .必要不充分C .充要D .既不充分也不必要 7.命题“2,210x R x ∀∈+>”的否定是( ).A .2,210x R x ∀∈+≤ B .200,210x R x ∃∈+>C .200,210x R x ∃∈+≤D .200,210x R x ∃∈+< 8.函数32y x x x =--的单调递增区间为( ) .A .[)1,1+3⎛⎤-∞-∞ ⎥⎝⎦和, B .113⎡⎤-⎢⎥⎣⎦C .[)1,1+3⎛⎤-∞-⋃∞ ⎥⎝⎦, D .113⎡⎤-⎢⎥⎣⎦,9.执行右边的程序框图,如果输入5a =, 那么输出=n ().A .2B .3 C .4D .510.已知椭圆22219x y b +=(03)b <<,左右焦点分别为1F ,2F ,过1F 的直线交椭圆于,A B 两点,若22||||AF BF +的最大值为8,则b 的值是( ). A . B C D二、填空题:(本大题共4题,每小题5分,共20分.请将答案填写在答卷相应位置上.)11的渐近线方程为 .12.样本2-,1-,0,1,2的方差为 .13.某城市近10年居民的年收入x 与支出y 之间的关系大致符合0.90.2y x =+(单位:亿元),预计今年该城市居民年收入为20亿元,则年支出估计是 亿元. 14.函数32()31f x x x =+-在1x =-处的切线方程是 . 三、解答题:(本大题6小题,共80分.解答应写出文字说明,证明过程或演算步骤.) 15.(本小题满分12分)某社团组织20名志愿者利用周末和节假日参加社会公益活动,志愿者中,年龄在20至40岁的有12人,年龄大于40岁的有8人.(1)在志愿者中用分层抽样方法随机抽取5名,年龄大于40岁的应该抽取几名? (2)上述抽取的5名志愿者中任取2名,求取出的2人中恰有1人年龄大于40岁的概率.16.(本小题满分12分)已知22x -≤≤,22y -≤≤,点P 的坐标为(,)x y .(1)求当,x y R ∈时,点P 满足22(2)(2)4x y -+-≤的概率; (2)求当,x y Z ∈时,点P 满足22(2)(2)4x y -+-≤的概率. 17.(本小题满分14分)设命题p :实数x 满足22430x ax a -+<,其中0a >;命题q :实数x 满足2560x x -+≤;(1)若1a =,且p q ∧为真,求实数x 的取值范围; (2)若p 是q 成立的必要不充分条件,求实数a 的取值范围.18.(本小题满分14分)已知椭圆2222:1x y C a b +=(0)a b >>的离心率为,直线:2l y x =+与圆222x y b +=相切.(1)求椭圆C 的方程;(2)设直线l 与椭圆C 的交点为,A B ,求弦长||AB .19.(本小题满分14分)已知3()f x ax bx c =++图象过点1(0,)3-,且在1x =处的切线方程是31y x =--.(1)求)(x f y =的解析式;(2)求)(x f y =在区间[]3,3-上的最大值和最小值. 20.(本小题满分14分)已知动直线l 与椭圆C :22132x y +=交于P ()11,x y 、Q ()22,x y 两个不同的点,且△OPQ 的面积OPQ S ∆O 为坐标原点.(1)证明2212x x +和2212y y +均为定值;(2)设线段PQ 的中点为M ,求||||OM PQ ⋅的最大值;(3)椭圆C 上是否存在点,,D E G ,使得2ODE ODG OEG S S S ∆∆∆===? 若存在,判断△DEG 的形状;若不存在,请说明理由.高二数学试题答案一、选择题(本大题共10小题,每小题5分,共50分)三、解答题:(本大题共6题,满分80.解答应写出文字说明,证明过程或演算步骤.) 15.(本小题满分12分)解:(1)若在志愿者中随机抽取5名,则抽取比例为51204=………………………2分 ∴年龄大于40岁的应该抽取1824⨯=人. ……………………………4分 (2)上述抽取的5名志愿者中,年龄在20至40岁的有3人,记为1,2,3年龄大于40岁的有2人,记为4,5,……………………………………………6分 从中任取2名,所有可能的基本事件为:(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5)(3,4),(3,5),(4,5),共10种,…8分其中恰有1人年龄大于40岁的事件有(1,4),(1,5),(2,4),(2,5)(3,4),(3,5),共6种,………………………………10分∴恰有1人年龄大于40岁的概率63105P ==.…………………………………12分 16.(本小题满分12分)解:(1)点P 所在的区域为正方形ABCD 的内部(含边界),……………(1分)满足22(2)(2)4x y -+-≤的点的区域为以(2,2)为圆心,2为半径的圆面(含边界). ……………………(3分)∴所求的概率211244416P ππ⨯==⨯. …………………………(5分) (2)满足,x y ∈Z ,且22x -≤≤,22y -≤≤的整点有25个 …………(8分)满足,x y ∈Z ,且22(2)(2)4x y -+-≤的整点有6个,……………(11分)∴所求的概率2625P =. ………………………………(12分) 17.(本小题满分14分)解(1)由22430x ax a -+<得(3)()0x a x a -⋅-<..................................1分又0a >,所以3a x a <<, (2)分当1a =时,13x <<,即p 为真命题时,实数x 的取值范围是13x <<……4分由2560xx -+≤得23x ≤≤.所以q 为真时实数x 的取值范围是23x ≤≤.…………………………………6分若p q ∧为真,则23x ≤<,所以实数x 的取值范围是[)2,3.……………8分(2) 设{}|3A x a x a =<<,{}|23B x x =≤≤q 是p 的充分不必要条件,则B A ⊂所以021233a a a <<⎧⇒<<⎨>⎩,所以实数a 的取值范围是()1,2.………14分18.(本小题满分12分)解:(1)又由直线:2l y x =+与圆222x y b +=相切得b ==, (2)分由3e =3a == (2)2222123(2)60322x y x x y x ⎧+=⎪⇒++-=⎨⎪=+⎩251260x x ⇒++=…………8分 21245624∆=-⋅⋅=,设交点,A B 坐标分别为()()1122,,,x y x y ………9分则1212126,,55x x x x +=-⋅=从而||5AB ==所以弦长||AB =14分 19.(本小题满分14分)解:(1)11(0)33f c =-⇒=-, (2)'()3f x ax b =+,∴()2'(1)31f a b=+,∴33a b +=-…………3分又∵切点为(1,4)-,∴1(1)43f a b =+-=-………………………5分联立可得1,43ab ==- (2)311()433f x x x =--2'()4f x x ⇒=-,令2'()0402f x x x =⇒-=⇒=±,令2'()0402f x x x >⇒->⇒<-或2x >,令2'()04022f x x x <⇒-<⇒-<<,………………………………10分………12分由上表知,在区间[]3,3-上,当2x =-时,m a x (2)5y f =-=当2x =时,m i n 17(2)3y f ==-………………14分20.(本小题满分14解:(1)当直线l 的斜率不存在时,P ,Q 两点关于x 轴对称,所以2121,.x x y y ==-因为11(,)P x y 在椭圆上,因此2211132x y += ①又因为OPQS ∆=所以11||||x y ⋅= ②由①、②得11||| 1.x y ==此时222212123,2,x x y y +=+=…………… 2分 当直线l 的斜率存在时,设直线l 的方程为,y kx m =+由题意知0m ≠,将其代入22132x y +=,得222(23)63(2)0k x kmx m +++-=, 其中22223612(23)(2)0,km k m ∆=-+->即2232k m +>…(*)又212122263(2),,2323km m x x x x k k -+=-=++所以||PQ ==因为点O 到直线l 的距离为d =所以1||2OPQS PQ d ∆=⋅==又OPQS ∆=整理得22322,k m +=且符合(*)式, 此时222221212122263(2)()2()23,2323km m x x x x x x k k-+=+-=--⨯=++ 222222121212222(3)(3)4() 2.333y y x x x x +=-+-=-+= 综上所述,222212123;2,x x y y +=+=结论成立。
12-13学年高二上学期期末考试文科数学试题
高二上学期期末考试文科数学试卷第Ⅰ卷(选择题,共60分)一、选择题(本大题共12小题,每小题5分,共60分,在每个小题给出的四个选项中,只有一项是符合题目要求的)1、函数()122+-=x x x f 在点()0,1T 处的切线方程是( )A 、x y =B 、1=yC 、0=xD 、0=y2、设抛物线的顶点在原点,焦点与椭圆12622=+yx右焦点重合,则此抛物线的方程是( )A 、y 2=-8xB 、y 2=-4xC 、y 2=8xD 、y 2=4x3、口袋内装有大小相同的红球、白球和黑球,从中摸出一个球,摸出红球的概率是0.42,摸出白球的概率是0.28,则摸出黑球的概率是( ) A 、0.42B 、0.28C 、0.7D 、0.34、若a ,b ∈R ,则a >b >0是a 2>b 2的( )A 、充分不必要条件B 、必要不充分条件C 、充要条件D 、既不充分也不必要条件5、给出如下程序:INPUT xIF x<0 THEN y=-1 ELSEIF x=0 THEN y=0ELSE y=1 END IF END IF PRINT y END输入x=3时,输出的结果是( ) A..1 B .-1 C .0 D .36、命题“对01,23≤+-∈∀x x R x ”的否定是( )A 、不存在x ∈R ,x 3-x 2+1≤0 B 、01,23≤+-∈∃x x R x C 、01,23>+-∈∃x x R xD 、01,23>+-∈∀x x R x7、某产品的广告费用x 与销售额y 的统计数据如下表:据上表得回归方程b a x b yˆˆˆˆ中的+=为9.4,据此预报广告费用为6万元时销售额约为( )A 、63.6万元B 、65.5万元C 、67.7万元D 、72.0万元8、运行如右图所示的程序框图,则输出的数是5的倍数的概率为( )A 、51B 、101C 、21 D 、2019、函数()⎪⎭⎫⎝⎛≤≤--=232333x x x x f 的值域是( ) A 、⎥⎦⎤⎢⎣⎡-89,89 B 、⎥⎦⎤⎢⎣⎡-2,89C 、⎥⎦⎤⎢⎣⎡-89,2 D 、[]2,2- 10、已知抛物线x y 42=的焦点为F ,A , B 是该抛物线上的两点,弦AB 过焦点F ,且4=AB |,则线段AB 的中点坐标是( ) A 、⎪⎭⎫⎝⎛1,21B 、 ()1,2C 、()0,1D 、()2,311、设21,F F 分别是双曲线)0,0(12222>>=-b a by ax 的左,右焦点,若在双曲线右支上存在点P ,满足212F F PF =,且2F 到直线1PF 的距离等于双曲线的实轴长,则该双曲线的离心率等于( )A 、2B 、2C 、23 D 、3512、已知1F , 2F 是椭圆6222=+y x 的两个焦点,点M 在此椭圆上且︒=∠6021MF F ,则21F MF ∆的面积等于( ) A 、2B 、3C 、2D 、5第Ⅱ卷(非选择题,共90分)二、填空题(本大题共4小题,每小题5分,共20分)13、从一堆苹果中任取20个,并得到它们的质量(单位:克)数据分布表如下:则这堆苹果中,质量不小于120克的苹果数约占苹果总数的 %. 14、样本数据“1,2,3,4,5,6,7”的标准差等于 (用数字作答)。
高二数学文科期末测试题
高二数学文科期末测试题高二数学文科期末测试题一.选择题(每小题5分,共60分)1.以下四个命题中,真命题的序号是(。
)A。
①②。
B。
①③。
C。
②③。
D。
③④2.“x≠”是“x>”的(。
)A。
充分而不必要条件。
B。
必要而不充分条件C。
充分必要条件。
D。
既不充分也不必要条件3.若方程C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$(a是常数),则下列结论正确的是(。
)A。
$\forall a\in R^+$,方程C表示椭圆。
B。
$\forall a\in R^-$,方程C表示双曲线C。
$\exists a\in R^-$,方程C表示椭圆。
D。
$\exists a\in R$,方程C表示抛物线4.抛物线:$y=x^2$的焦点坐标是(。
)A。
$(0,\frac{1}{4})$。
B。
$(0,\frac{1}{2})$。
C。
$(1,\frac{1}{4})$。
D。
$(1,\frac{1}{2})$5.双曲线:$\frac{y^2}{4}-\frac{x^2}{1}=1$的渐近线方程和离心率分别是(。
)A。
$y=\pm2x$,$e=3$。
B。
$y=\pm\frac{1}{2}x$,$e=5$C。
$y=\pm\frac{1}{2}x$,$e=3$。
D。
$y=\pm2x$,$e=5$6.函数$f(x)=e^xlnx$在点$(1,f(1))$处的切线方程是(。
)A。
$y=2e(x-1)$。
B。
$y=ex-1$。
C。
$y=e(x-1)$。
D。
$y=x-e$7.函数$f(x)=ax^3+x+1$有极值的充要条件是(。
)A。
$a>$。
B。
$a\geq$。
C。
$a<$。
D。
$a\leq$8.函数$f(x)=3x-4x^3$($x\in[0,1]$)的最大值是(。
)A。
$\frac{2}{3}$。
B。
$-1$。
C。
$1$。
D。
$-\frac{2}{3}$9.过点$P(0,1)$与抛物线$y^2=x$有且只有一个交点的直线有(。
高二下学期期中考试数学(文科)试题与答案
高二下学期期中考试数学(文科)试题与答案高二年级下学期期中考试数学(文)试题一、选择题(本大题共12小题,每小题5分,共60分)1.复数 $2-i$ 与 $2+i$ 的商为()A。
$1-\frac{4}{5}i$。
B。
$\frac{33}{43}+\frac{4}{5}i$。
C。
$1-\frac{1}{5}i$。
D。
$1+\frac{1}{5}i$2.设有一个回归方程为 $y=2-2.5x$,则变量 $x$ 增加一个单位时()A。
$y$ 平均增加 $2.5$ 个单位。
B。
$y$ 平均减少$2.5$ 个单位。
C。
$y$ 平均增加 $2$ 个单位。
D。
$y$ 平均减少 $2$ 个单位3.所有金属都能导电,铁是金属,所以铁能导电,属于哪种推理().A。
类比推理。
B。
演绎推理。
C。
合情推理。
D。
归纳推理4.点 $M$ 的极坐标 $(5,\frac{2\pi}{3})$ 化为直角坐标为()A。
$(-\frac{5\sqrt{3}}{2},-2)$。
B。
$(2,-2)$。
C。
$(-\frac{5}{2},2)$。
D。
$(2,2)$5.用反证法证明命题“若 $a^2+b^2=0$,则 $a$、$b$ 全为$0$($a$、$b\in R$)”,其假设正确的是()A。
$a$、$b$ 至少有一个不为 $0$。
B。
$a$、$b$ 至少有一个为 $0$。
C。
$a$、$b$ 全不为 $0$。
D。
$a$、$b$ 中只有一个为 $0$6.直线 $y=2x+1$ 的参数方程是($t$ 为参数)()A。
$\begin{cases}x=t^2\\y=2t^2+1\end{cases}$。
B。
$\begin{cases}x=2t-1\\y=4t+1\end{cases}$。
C。
$\begin{cases}x=t-1\\y=2t-1\end{cases}$。
D。
$\begin{cases}x=\sin\theta\\y=2\sin\theta+1\end{cases}$7.当 $\frac{2}{3}<m<1$ 时,复数 $m(3+i)-(2+i)$ 在复平面内对应的点位于()A。
河南省周口市太康县第二高级中学2022-2023学年高二上学期11月月考文科数学试题(含答案解析)
河南省周口市太康县第二高级中学2022-2023学年高二上学期11月月考文科数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.已知向量()2,1,3a =- ,()4,2,3b =- ,则2a b +=()A .()4,2,6-B .()8,4,6-C .()0,0,9D .()2,1,6-2.若()1,1,3A m n +-,()2,,2B m n m n -,()3,3,9C m n +-三点共线,则m n +的值为()A .0B .1-C .1D .2-3.已知()1,0,1a =r ,(),1,2b x =- ,且3a b ⋅= ,则向量a 与b的夹角为()A .56πB .6πC .3πD .23π4.在长方体1111ABCD A B C D -中,2BC =,14AB BB ==,E ,F 分别是11A D ,CD 的中点,则异面直线1A F 与1B E 所成角的余弦值为()A .34B .34-C D .65.已知(2,4)A 、(3,1)B -两点,直线l :y kx =与线段AB 相交,则直线l 的斜率的取值范围()A .[2,)+∞B .(,0][2,)-∞⋃+∞C .1,[1,)3⎛⎤-∞+∞ ⎥⎝⎦ D .1,[2,)3⎛⎤-∞-+∞ ⎥⎝⎦ 6.直线1:0l ax y b -+=,2:0(0)l bx y a ab +-=≠的图像可能是()A .B .C .D .7.在平面直角坐标系中,四点坐标分别为()((2,0,3,2,1,2,A B C -+()4,D a ,若它们都在同一个圆周上,则a 的值为()A .0B .1C .2D8.已知圆22:4210C x y x y +--+=及直线():2l y kx k k R =-+∈,设直线l 与圆C 相交所得的最长弦长为MN ,最短弦为PQ ,则四边形PMQN 的面积为()A .B .C .8D .二、多选题9.设{},,a b c是空间一个基底,则下列选项中正确的是()A .若,a b b c ⊥⊥r r r r ,则a c⊥B .,,a b c 两两共面,但,,a b c不可能共面C .对空间任一向量p ,总存在有序实数组(, , )x y z ,使p xa yb zc =++D .,,a b b c c a +++一定能构成空间的一个基底10.四边形ABCD 中,4AB BD DA ===,BC CD ==ABD △沿BD 拆起,当二面角A BD C --的大小在2,33ππ⎡⎤⎢⎥⎣⎦时,直线AB 和平面BCD 所成的角为α,则cos α的值可以为()A .12B .4C .34D .211.若椭圆221259x y +=上一点P 与左右焦点1F ,2F 组成一个直角三角形,则点P 到x 轴的距离可以是()A .165B .94C .95D .4512.已知m 是3与12的等比中项,则圆锥曲线2212x ym +=的离心率是()A .2B.3C.4D .2或4三、填空题13.若(1,1,0)a = ,(1,0,2)b =- ,则与a b +同方向的单位向量是_______.14.若直线y x b =+与曲线3y =有公共点,则b 的取值范围是______.15.若圆C 以椭圆2211612x y +=的右焦点为圆心、长半轴为半径,则圆C 的方程为__________.16.设12,F F 分别是椭圆22=1169x y +的两个焦点,点P 在椭圆上,若线段1PF 的中点在y 轴上,则12||||PF PF =______.四、解答题17.已知()1,1,2a λλ=+,()6,21,2b μ=- .(1)若//a b,分别求λ与μ的值;(2)若a = ,且a 与()2,2,c λλ=-- 垂直,求a.18.如图,在直四棱柱1111ABCD A B C D -中,底面ABCD 是边长为2的菱形,且13AA =,E ,F 分别为1CC ,1BD 的中点.(1)证明:EF ⊥平面11BB D D ;(2)若60DAB ∠=︒,求二面角11A BE D --的余弦值.19.已知直线方程l 经过两条直线1:3420l x y +-=与2:220l x y ++=的交点P .(1)求垂直于直线3:210l x y --=的直线l 的方程;(2)求与坐标轴相交于两点,且以P 为中点的直线方程.20.已知圆22:2220C x y x y ++--=,点(),1A m -、()4,2B m +,其中m R ∈.(1)若直线AB 与圆C 相切,求直线AB 的方程;(2)若以AB 为直径的圆D 与圆C 有公共点,求实数m 的取值范围.21.已知椭圆2222:1x y C a b +=的短轴长等于焦距,椭圆C 上的点到右焦点F 的最短距离1.(Ⅰ)求椭圆C 的方程;(Ⅱ)过点(20)E ,且斜率为(0)k k >的直线l 与C 交于M 、N 两点,P 是点M 关于x 轴的对称点,证明:N F P 、、三点共线.22.已知椭圆222:1(0)9x y C b b+=>上的动点P 到右焦点距离的最小值为3-.(1)求椭圆C 的方程;(2)若直线l 和椭圆C 交于M 、N 两点,A 为椭圆的右顶点,0AM AN ⋅=,求AMN 面积的最大值.参考答案:1.C【分析】根据空间向量的坐标运算公式求解即可.【详解】因为()2,1,3a =- ,所以()24,2,6a =- ,又()4,2,3b =- ,所以()20,0,9a b +=.故选:C.2.A【解析】三点共线转化为向量,AB AC共线,由向量共线可得.【详解】由题意(1,1,23),(2,2,6)AB m m n AC =---=-,,,A B C 三点共线,即,AB AC 共线,所以存在实数λ,使得AB AC λ=,所以1212236m m n λλλ-=⎧⎪=-⎨⎪--=⎩,解得0012m n λ⎧⎪=⎪=⎨⎪⎪=-⎩.所以0m n +=.故选:A .【点睛】本题考查空间向量共线定理,考查空间向量共线的坐标运算,属于基础题.3.B【分析】先求出向量a 与b 的夹角的余弦值,即可求出a 与b的夹角.【详解】()1,0,1a =r (),1,2b x =- ,3a b ⋅=所以·23a b x =+=,∴1x =,∴()1,1,2b =-,∴cos ||||a ba b a b ⋅==⨯,=,又∵]0[a b π∈ ,,,∴a 与b 的夹角为6π.故选:B.4.A【分析】分别以AB ,AD ,1AA 为x ,y ,z 轴正方向建系,则可求出11,,,A F B E 的坐标,进而可求出1A F ,1B E的坐标,代入公式即可求解.【详解】分别以AB ,AD ,1AA 为x ,y ,z轴正方向建立如图所示的空间直角坐标系,则点()10,0,4A ,()2,2,0F ,()14,0,4B ,()0,1,4E ,则()12,2,4A F =- ,()14,1,0B E =-.设直线1A F 与1B E 所成角的大小为θ,则02πθ≤≤,所以1111cos 34A F B E A F B Eθ⋅=== .故选:A .【点睛】本题考查空间向量中异面直线夹角的求法,关键在于建立适当的坐标系,属基础题.5.D【分析】作出图形,求出当直线l 分别经过点A 、B 时,直线l 的斜率k 的值,数形结合可得出实数k 的取值范围.【详解】直线:l y kx =恒过点()0,0O ,则直线OA 的斜率为40220AO k -==-,直线OB 的斜率为101303OB k -==---,如图,由图可知直线l 的斜率k 的取值范围是[)1,2,3⎛⎤-∞⋃+∞ ⎥⎝⎦,故选:D 6.C【分析】将两直线的方程均化为斜截式,先固定1l ,判断另外一条是否与之相符【详解】直线1l 可化为y ax b =+,直线2l 可化为y bx a =-+.A 中,由1l 可知,0,0a b ><,但此时与2l 图像不符,错误;B 中,由1l 可知,0,0a b >>,但此时与2l 图像不符,错误;C 中,由1l 可知,0,0a b <>,此时2l 图像合理,正确;D 中,由1l 可知,0,0a b >>,但此时与2l 图像不符,错误.故选:C 7.C【分析】设出圆的一般式220x y Dx Ey F ++++=,根据()((2,0,3,2,1,2,A B C -+求出444D E F =-⎧⎪=-⎨⎪=⎩,然后将点()4,D a 带入圆的方程即可求得结果.【详解】设圆的方程为220x y Dx Ey F ++++=,由题意得((((2222222020323201220D F D E F D E F ⎧+++=⎪⎪+-++-+=⎨⎪⎪++++++=⎩,解得444D E F =-⎧⎪=-⎨⎪=⎩,所以224440x y x y +--+=,又因为点()4,D a 在圆上,所以22444440a a +-⨯-+=,即2a =.故选:C.8.A【分析】由圆的方程可确定圆心和半径,由直线方程可确定直线所过定点;由过圆内一点最长弦为直径、最短弦为与最长弦垂直的弦,结合垂径定理可求得最长弦和最短弦,由对角线垂直的四边形面积公式可求得结果.【详解】将圆C 方程整理为:()()22214x y -+-=,则圆心()2,1C ,半径2r =;将直线l 方程整理为:()12y k x =-+,则直线l 恒过定点()1,2,且()1,2在圆C 内;最长弦MN 为过()1,2的圆的直径,则4MN =;最短弦PQ 为过()1,2,且与最长弦MN 垂直的弦,21112MN k -==-- ,1PQ k ∴=,∴直线PQ 方程为21y x -=-,即10x y -+=,∴圆心C 到直线PQ的距离为=dPQ ∴===;∴四边形PMQN的面积11422S MN PQ =⋅=⨯⨯故选:A.【点睛】结论点睛:过圆内一点()00,P x y 的最长弦为圆的直径;最短弦为过P 且与最长弦垂直的弦.9.BCD【分析】对于A 选项,垂直关系不传递判断;对于B 选项,由基底的概念判断;对于C 选项,由空间向量的基本定理判断;对于D 选项,易知,,a b c不共面.假设,,a b b c a c +++ 共面,利用反证法判断.【详解】对于A 选项,b 与,a c 都垂直,,a c 夹角不一定是π2,A 选项错误.对于B 选项,根据基底的概念可知,,a b c 两两共面,但,,a b c不可能共面,B 选项正确.对于C 选项,根据空间向量的基本定理可知,C 选项正确.对于D 选项,由于{},,a b c 是空间一个基底,所以,,a b c不共面.假设,,a b b c a c +++ 共面,不妨设()()a b x b c y c a +=+++r r r r r r ,化简得()()()110y a x b x y c -+--+=r r r r ,因为,,a b c 不共面,则10100y x x y -=⎧⎪-=⎨⎪+=⎩,而方程无解,所以,,a b b c a c +++ 不共面,可以作为空间的一个基底,D 选项正确.故选:BCD .10.AB【分析】建立空间直角坐标系,利用向量法求得cos α的取值范围,由此确定正确选项.【详解】ABD △是边长为4的等边三角形,BCD △是以BCD ∠为直角的等腰三角形,设BD 的中点为O ,则,OA BD OC BD ⊥⊥,二面角A BD C --的平面角为AOC ∠.以O 为原点建立如图所示空间直角坐标系,则()2,0,0B ,设2,33AOC ππθ⎡⎤∠=∈⎢⎥⎣⎦.则()0,cos ,sin A OA OA θθ⋅⋅,即()0,,A θθ,()2,,BA θθ=-,平面BCD 的法向量为()0,0,1n =,直线AB 与平面BCD 所成角为0,2απ⎡∈⎤⎢⎥⎣⎦,则sin sin 2n BA n BAαθ⋅==⋅,cos α2223339317sin ,sin ,1,sin ,,1sin ,444164416θθθθ⎤⎡⎤⎡⎤⎡⎤∈∈-∈---∈⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦,所以1cos 24α⎡∈⎢⎣⎦.故选:AB11.BC【分析】先由椭圆的标准方程求得,,a b c ,当112PF F F ⊥时,利用代入法即可求得所求;当212PF F F ⊥时,利用椭圆的对称性即可得解;当12PF PF ⊥时,利用椭圆的定义与勾股定理,结合三角形面积公式即可得解.【详解】因为椭圆221259x y +=,所以2225,9a b ==,则5a =,3b =,216c =,4c =,所以()()124,0,4,0F F -,1228F F c ==,当112PF F F ⊥时,不妨设()04,P y -,则()22041259y -+=,解得095y =±,所以点P 到x 轴的距离为095y =;当212PF F F ⊥时,由椭圆的对称性可知该情况与112PF F F ⊥的情况类同,故点P 到x 轴的距离也为95;当12PF PF ⊥时,不妨设12,PF m PF n ==,则222121064m n m n F F +=⎧⎪⎨+==⎪⎩,所以()()22221006436mn m n m n =+-+=-=,则18=mn ,所以,m n 是方程210180x x -+=的两根,易得()2104180∆=--⨯>,即存在,m n 满足题意,设点P 到x 轴的距离为h ,则12121122PF F S mn F F h == ,所以1218984mn h F F ===,即点P 到x 轴的距离为94;综上:点P 到x 轴的距离为95或94.故选:BC.12.AB【分析】根据已知条件可得6m =±,再分6m =和6m =-两种情况讨论,结合,,a b c 的关系以及离心率公式即可求解.【详解】因为m 是3与12的等比中项,所以231236m =⨯=,可得6m =±,当6m =时,曲线方程为22162x y +=,可得26a =,22b =,所以222624c a b =-=-=,所以2224263c e a ===,此时3e =,当6m =-时,曲线方程为22126y x -=,可得22a =,26b =,所以222268c a b =+=+=,所以222842c e a ===,此时2e =,所以圆锥曲线2212x y m +=的离心率是2或3,故选:AB.13.0,55⎛⎫ ⎪⎝⎭【分析】先由已知求出a b + 的坐标,再除以a b + 可得答案【详解】因为(1,1,0)a = ,(1,0,2)b =- ,所以(0,1,2)a b +=所以与a b +⎛= ⎝⎭,故答案为:55⎛⎫ ⎪⎝⎭14.1⎡⎤-⎣⎦【解析】曲线3y =表示圆心为(2,3),半径为2的半圆,画出图象,结合点到直线的距离公式,得出b 的取值范围.【详解】由240x x - ,解得04x根据二次函数的性质得出02,即13y曲线3y =可化为22(2)(3)4-+-=x y ,()04,13x y所以该曲线表示圆心为(2,3),半径为2的半圆因为直线y x b =+与曲线3y =有公共点,所以它位于12,l l 之间,如下图所示当直线y x b =+运动到1l 时,过(0,3),代入y x b =+得:3b =当直线y x b =+运动到2l 时,此时y x b =+与曲线相切2=,解得1b =-或1+要使得直线y x b =+与曲线3y =有公共点,则[1b ∈-故答案为:1⎡⎤-⎣⎦【点睛】本题主要考查了直线与圆的位置关系,属于中档题.15.22(2)16x y -+=【解析】根据椭圆的方程,可求出椭圆的右焦点和长半轴,椭圆的右焦点和长半轴是圆的圆心和半径,故可写出圆的方程.【详解】由椭圆方程可知221612a b ==,则24c =所以椭圆右焦点为()2,0长半轴为4.根据题意可知,()2,0为圆心,4为圆的半径.则圆的方程为()22216x y -+=.故答案为:()22216x y -+=.16.239【分析】先设P 点,中点,再求焦点12,F F ,再根据线段1PF 的中点在y 轴上,求出P 点坐标,再利用焦半径公式即可得12||,||PF PF 的长,则12||||PF PF 可解.【详解】设(,)p p P x y ,中点(0,)m n .由题意得12(F F ,4a =,e =1PF 的中点在y 轴上,则有02p x =,p x =22=1169x y +中得P 点坐标为9()4或9()4-根据焦半径公式可得,12239||,||44PF PF ==,∴12||23||9PF PF =.故答案为:239.【点睛】考查椭圆的焦半径公式,解题关键要求出P 点坐标.17.(1)15λ=,3μ=;(2)()0,1,2a =- .【分析】(1)根据平行关系可得a tb = ,由此构造方程组求得结果;(2)根据向量垂直和模长可构造方程组求得λ,由此得到a.【详解】(1)由//a b 得:a tb = ,即()1612122t t t λμλ+=⎧⎪=-⎨⎪=⎩,解得:153λμ⎧=⎪⎨⎪=⎩;(2)a c ⊥ ,()222122220a c λλλλ∴⋅=+--=-+= ,又a = ,=,即25230λλ+-=,由225230220λλλ⎧+-=⎨-+=⎩得:1λ=-,()0,1,2a ∴=- .18.(1)证明见解析;(2)26.【分析】(1)连接AC 交BD 于O 点,连接OF ,F 为1BD 的中点,易得四边形OFEC 为平行四边形,从而//OC FE ,再利用线面垂直的判定定理证得OC ⊥平面11BB D D 即可.(2)以O 为原点,以OB ,OC ,OF 建立空间直角坐标系,分别求得平面1A BE 的一个法向量(),,n x y z =r 和平面1D BE 的一个法向量()111,,m x y z =r ,然后由cos ,m n n m m n⋅=⋅ 求解.【详解】(1)如图所示:连接AC 交BD 于O 点,连接OF ,F 为1BD 的中点,所以1//OF DD ,112OF DD =,又E 为1CC 的中点﹐11//CC DD ,所以1//CE DD ,112CE DD =,所以//OF CE ,OF CE =,所以四边形OFEC 为平行四边形,//OC FE .直四棱柱1111ABCD A B C D -中,1DD ⊥平面ABCD ,OC ⊂平面ABCD ,所以1DD OC ⊥.又因为底面ABCD 是菱形,所以OC BD ⊥,又1DD BD D =I ,1DD ⊂平面11BB D D ,BD ⊂平面11BB D D ,所以OC ⊥平面11BB D D .所以EF ⊥平面11BB D D .(2)建立如图空间直角坐标系O xyz -,由60DAB ∠=︒,知2BD AB BC ===,又13AA =,则()1,0,0B,32E ⎛⎫ ⎪⎝⎭,()10,A ,()11,0,3D -,设(),,n x y z =r 为平面1A BE 的一个法向量.由100n A B n BE ⎧⋅=⎨⋅=⎩,得30302x z x z ⎧-=⎪⎨-+=⎪⎩,令y =()4n = .设()111,,m x y z =r 为平面1D BE 的一个法向量.由100m BD m BE ⎧⋅=⎨⋅=⎩,即11111230302x z x z -+=⎧⎪⎨-++=⎪⎩,令13x =,可得()3,0,2m =r.7cos ,26m n n m m n ⋅==⋅ .如图可知二面角11A BE D --为锐角,所以二面角11A BE D --的余弦值是26.【点睛】方法点睛:1、利用向量求异面直线所成的角的方法:设异面直线AC ,BD 的夹角为β,则cos β=AC BD AC BD⋅⋅ .2、利用向量求线面角的方法:(1)分别求出斜线和它所在平面内的射影直线的方向向量,转化为求两个方向向量的夹角(或其补角);(2)通过平面的法向量来求,即求出斜线的方向向量与平面的法向量所夹的锐角,取其余角就是斜线和平面所成的角.3、利用向量求面面角的方法:就是分别求出二面角的两个面所在平面的法向量,然后通过两个平面的法向量的夹角得到二面角的大小,但要注意结合实际图形判断所求角是锐角还是钝角.19.(1)220x y ++=;(2)40x y -+=.【详解】试题分析:(1)联立方程组求出两直线的交点()2,2P -,再由直线垂直的条件求得直线的斜率,代入直线方程的点斜式可得到直线l 的方程;(2)设过点()2,2P -的直线l 与x 轴交于点(),0A a 与y 轴交于点()0,B b ,由中点坐标公式求得,a b 的值,得到,A B 的坐标,可求出,A B 所在直线的斜率,再由直线方程的点斜式得答案.试题解析:(1)由3420220x y x y +-=⎧⎨++=⎩解得22x y =-⎧⎨=⎩,∴点P 的坐标是(-2,2).∵所求直线l 与l 3垂直,∴设直线l 的方程为2x +y +C =0.把点P 的坐标代入得2×(-2)+2+C =0,得C =2.∴所求直线l 的方程为2x +y +2=0.(2)设与x 轴交于A (a,0),与y 轴交于B (0,b ),∵点P (-2,2)为中点,∴a =-4,b =4,直线方程l 为44x y +=1,即x -y +4=0.20.(1)34170x y -+=或3430x y --=;(2)33.⎡⎤--⎣⎦【解析】(1)求出圆心C 的圆心坐标与半径长,求出直线AB 的方程,利用直线AB 与圆C 相切可得出圆心C 到直线AB 的距离等于圆C 的半径,可得出关于实数m 的等式,求出m 的值,进而可求得直线AB 的方程;(2)求出线段AB 的中点D 的坐标,由题意可得出关于m 的不等式,即可解得实数m 的取值范围.【详解】(1)圆C 的标准方程为()()22114x y ++-=,圆心()1,1C -,半径为2r =,直线AB 的斜率为()21344AB k m m +==+-,所以,直线AB 的方程为()314y x m +=-,即34340x y m ---=,由于直线AB 与圆C 相切,则31125m --=,解得13m =-或7m =-,因此,直线AB 的方程为34170x y -+=或3430x y --=;(2)线段AB 的中点为12,2D m ⎛⎫+ ⎪⎝⎭,且5AB =,由于以AB 为直径的圆D 与圆C 有公共点,则22AB AB r CD r -≤≤+,可得1922≤≤,解得33m --≤≤-,故实数m的取值范围为33⎡⎤--⎣⎦.【点睛】关键点睛:本题考查利用两圆有公共点求参数的取值范围,若两圆圆心分别为1C 、2C ,半径分别为1r 、2r ,可将问题等价转化为121212r r C C r r -≤≤+来处理.21.(1)2212x y +=;(2)证明见解析.【详解】本试题主要是考查了椭圆的方程和性质的运用,以及直线与椭圆的位置关系的运用.(1)利用椭圆的几何性质得到a,b,c 的关系式,从而解得(2)联立直线与椭圆的方程,结合韦达定理和向量的关系式得到证明.解:(I)由题可知:22{1b c a c =-=解得1a c ==,1b ∴=∴椭圆C 的方程为(II )设直线:(2)y k x =-,11()M x y ,,22()N x y ,,11()P x y -,,(10)F ,,由22(2){12y k x x y =-+=,,得2222(21)8820k x k x k +-+-=.所以2122821k x x k +=+,21228221k x x k -=+.而2222(1)(12)FN x y x kx k =-=-- ,,,1111(1)(12)FP x y x kx k =--=--+ ,,,1221(1)(2)(1)(2)x kx k x kx k -----+ 1212[23()4]k x x x x =-++22221642442121k k k k k ⎛⎫-=- ⎪++⎝⎭0=//FN FP∴ ∴N F P 、、三点共线22.(1)2219x y +=;(2)38.【分析】(1)由题意,得到33a a c =⎧⎪⎨-=-⎪⎩c =1b =,即可得到椭圆C 的方程;(2)设直线AM 的方程为(3)y k x =-,进而得到直线AN 的方程为1(3)y x k=--,联立方程组,求得点M 的横坐标21227391k x k -=+,得出,AM AN ,进而得到AMN 的面积的表达式,结合基本不等式,即可求解.【详解】(1)由题意,椭圆222:1(0)9x y C b b+=>上的动点P到右焦点距离的最小值为3-,可得33a a c =⎧⎪⎨-=-⎪⎩c =1b ==,故椭圆C 的方程为2219x y +=.(2)设直线AM 的方程为(3)y k x =-,不妨设0k >.因为0AM AN ⋅= ,则直线AN 的方程为1(3)y x k=--.由22(3),19y k x x y =-⎧⎪⎨+=⎪⎩可得()222291548190k x k x k +-+-=.设()11,M x y ,因为点A 的坐标为(3,0),所以212819391k x k -=+,即21227391k x k -=+,所以126||91AM x k =-=+,同理可得2266||991k AN k k ==++,所以AMN 的面积1||||2S AM AN =⋅()()()22213612991k k k k =+⋅++()()()222422218118198299164k k k k k k k k ++==++++()22183891641k k k k =≤+++,当且仅当()2226491k k =+,即43k =时等号成立.所以AMN 面积的最大值为38.【点睛】本题主要考查椭圆的标准方程的求解、及直线与圆锥曲线的位置关系的综合应用,解答此类题目,通常联立直线方程与椭圆(圆锥曲线)方程,应用一元二次方程根与系数的关系进行求解,此类问题易错点是复杂式子的变形能力不足,导致错解,能较好的考查考生的逻辑思维能力、运算求解能力、分析问题解决问题的能力等.。
高二数学下学期第二次5月月考试题 文 试题
泉港一中2021-2021学年度高二下学期第二次月考单位:乙州丁厂七市润芝学校 时间:2022年4月12日 创编者:阳芡明数学试题〔文科〕〔考试时间是是:120分钟 总分:150分〕第一卷〔选择题 一共60分〕一.选择题:本大题一一共12小题,每一小题5分,一共60分.在每一小题给出的四个选项里面,只有一项是哪一项符合题目要求的.1. 设}2|{->∈=x Q x A ,}2|{<∈=x R x B ,,那么以下结论中正确的选项是 ( )A .A ∈2B .)2,2(-=⋂B AC .R B A =⋃D .B A ⋂∈1 2. a R ∈,那么“1a〞是“11<a〞的 〔 〕 A .充要条件 B .既不充分也不必要条件 C .充分不必要条件 D .必要不充分条件 3.命题02,:>∈∀xR x P ,那么命题p ⌝是〔 〕A .02,00≤∈∃xR x B .02,≤∈∀xR x C .02,0<∈∃xR x D .02,<∈∀xR x 4.假设函数x y a log =的图像经过点〔3,2〕,那么函数1+=x a y 的图像必经过点( ) A.〔2,2〕 B.〔2,3〕 C. 〔3,3〕 D.〔2,4〕 5. 以下函数中,在(0)+∞,上单调递增又是偶函数的是 〔 〕A.3y x =B. y ln x =C.21y x=D.1-=x y 6. 以下命题中,假命题是 ( ) A .命题“面积相等的三角形全等〞的否命题B.,s i n x R x ∃∈C .假设xy=0,那么|x|+|y|=0〞的逆命题D .),,0(+∞∈∀x 23xx< 7.设0.3113211l o g2,l o g ,32a b c ⎛⎫=== ⎪⎝⎭,那么 ( )A 、a b c << B 、 b a c << C 、b c a << D 、a c b << 8. 方程4=+x e x的解所在的区间是 〔 〕 A .()1,0- B . ()0,1 C .()1,2 D .()2,39.函数y =|x|axx(a>1)的图像的大致形状是 ()10. 定义在R 上的函数⎩⎨⎧>---≤-=0)2()1(0)1(log )(2x x f x f x x x f ,那么)2018(f 的值是〔 〕 A .-11.假设函数()y f x =〔R x ∈〕满足()()1f x f x +=-,且[]1,1x ∈-时,()21f xx =-,函数()lg ,01,0x x g x x x>⎧⎪=⎨-<⎪⎩,那么函数()()()h x f x g x =-在区间[-4,5]内的零点的个数为 A .7 B .8 C .9 D .1012. 函数,log )31()(2xx x f -=实数c b a ,,满足)0(0)()()(c b a c f b f a f<<<<⋅⋅假设实数0x 为方程0)(=x f 的一个解,那么以下不等式中,不可能...成立的是 〔 〕 A .0x a < B . 0x b > C .0x c < D .0x c >第二卷〔非选择题 一共90分〕二.填空题:一共4小题,每一小题5分,一共20分,将答案写在答题纸的相应位置. 13二次函数4)(2++=mx x x f ,假设)1(+x f 是偶函数,那么实数m = . 14. 3log 1552245log 2log 2+++______.15.函数()()()()3141l o g 1a a x a x f x x x -+≤⎧⎪=⎨>⎪⎩是R 上的单调递减函数,那么a 的取值范围是________.16.设()f x 与()g x 是定义在同一区间[],a b 上的两个函数,假设对任意[],x a b ∈,都有 |()()|1f x g x -≤成立,那么称()f x 和()g x 在[],a b 上是“亲密函数〞,区间[],a b 称为“亲密区间〞.假设2()34f x x x =-+与()23g x x =-在[],a b 上是“亲密函数〞,那么其“亲密区间〞可以是_________.①[1.5,2] ②[2,2.5] ③[3,4] ④ [2,3]三.解答题:本大题有6小题,一共70分,解容许写出文字说明,证明过程或者演算步骤. 17.(本小题满分是10分)a >0,a ≠1,设p :函数2+=x a y 在(0,+∞)上单调递增,q :函数y =x 2+(2a -3)x +1的图像与x 轴交于不同的两点.假如p ∧q 真,务实数a 的取值范围.18.(本小题满分是12分)函数)1(log )(2-=x x f 的定义域为A ,函数)32(12)(≤≤-=x x x g 的值域为B.(I )求B A ⋂;(II )假设}12|{-≤≤=a x a x C ,且B C ⊆,务实数a 的取值范围.19.〔本小题满分是12分〕 幂函数)()(*322N m xx f m m ∈=--的图象关于y 轴对称,且在〔0,+∞〕上是减函数. 〔1〕求m 的值和函数f 〔x 〕的解析式 〔2〕解关于x 的不等式)21()2(x f x f -<+20.〔本小题满分是12分〕某公司对营销人员有如下规定(1)年销售额x 在8 万元以下,没有奖金,(2) 年销售额x (万元), ]64,8[∈x ,奖金y 万元, x y y a log ],6,3[=∈,且年销售额x 越大,奖金越多,(3) 年销售额超过64万元,按年销售额x 的10%发奖金. (1) 确定a 的值,并求奖金y 关于x 的函数解析式.(2) 某营销人员争取年奖金]10,4[∈y (万元),年销售额x 在什么范围内?21.〔本小题满分是12分〕函数 2()21(0)g x a x a x b a =-++>在区间[2,3]上有最大值4和最小值1。
高二文科数学上学期测试题
第Ⅰ卷(共50分)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.下列几何体各自的三视图中,只有两个视图相同的是( )A (1)(3)B (2)(3)C (2)(4)D (3)(4)2.椭圆5x 2+ky 2=5的一个焦点是(0,2),那么实数k 的值为( )(A)-25 (B)25 (C)-1 (D)13.一个四棱锥的侧棱长都相等,底面是正方形,其正(主)视图如右图所示,该四棱锥侧面积和体积分别是( )(A) (B) 83 (C) 81),3(D) 8,84.已知直线3x+2y-3=0和6x+my+1=0互相平行,则它们之间的距离是( ) (A)4(B)(C)(D)5.设椭圆的两个焦点分别为F 1、F 2,过F 2作椭圆长轴的垂线交椭圆于点P,若△F 1PF 2为等腰直角三角形,则椭圆的离心率是( ) (A) (B)-1(C)2-(D)6.k>9是方程+=1表示双曲线的( )(A)充分必要条件 (B)充分不必要条件(C)必要不充分条件 (D)既不充分又不必要条件7.已知平面α⊥平面β,则下列命题正确的个数是 ( ) ①α内的直线必垂直于β内的无数条直线②在β内垂直于α与β的交线的直线必垂直于α内的任意一条直线 ③α内的任何一条直线必垂直于β④过β内的任意一点作α与β交线的垂线,则这条直线必垂直于α (A)4 (B)3 (C)2 (D)18.给定两个命题q p ,,p q ⌝是的必要而不充分条件,则p q ⌝是( )(A)充分而不必要条件 (B)必要而不充分条件 (C)充要条件 (D)既不充分也不必要条件9.已知三棱柱ABC A 1B 1C 1的侧棱与底面垂直,体积为,底面是边长为的正三角形.若P 为底面A 1B 1C 1的中心,则PA 与平面ABC 所成角的大小为( ) (A) (B)(C)(D)10.如图所示,四边形ABCD 中,AD ∥BC,AD=AB,∠BCD=45°,∠BAD=90°,将△ABD 沿BD 折起,使平面ABD ⊥平面BCD,构成四面体ABCD,则在四面体ABCD 中,下列结论正确的是()(A)平面ABD ⊥平面ABC (B)平面ADC ⊥平面BDC (C)平面ABC ⊥平面BDC (D)平面ADC ⊥平面ABC第Ⅱ卷(共100分)二、填空题:本大题共5小题,每小题5分,共25分11.过点(3,1)作圆(x-2)2+(y-2)2=4的弦,其中最短弦的长为 . 12.一直线过点P(2,0),且点Q 到该直线的距离等于4,则该直线的倾斜角为 .13.已知双曲线22221(0,0)x y a b a b -=>>和椭圆221169x y +=有相同的焦点,且双曲线的离心率是椭圆离心率的两倍,则双曲线的方程为____________.14.在平面直角坐标系xOy 中,M 为不等式组2360200x y x y y +-≤⎧⎪+-≥⎨⎪≥⎩所表示的区域上一动点,则直线OM 的最小值为_______15.已知正四棱锥P-ABCD(底面是正方形且顶点P 在底面的射影为底面中心)中,PA=2,AB=,M 是侧棱PC 的中点,则异面直线PA 与BM 所成角的大小为.三、解答题:本大题共6小题,共75分.16.(本题满分12分)已知p:对任意实数x 都有ax 2+ax+1>0恒成立;q:关于x 的方程x 2-x+a=0有实数根,如果p ∨q 为真命题,p ∧q 为假命题,求实数a 的取值范围.17. (本题满分12分)如图,△ABC 是边长为2的正三角形.若AE=1,AE ⊥平面ABC,平面BCD ⊥平面ABC,BD=CD,且BD ⊥CD. (1)求证:AE ∥平面BCD;(2)求证:平面BDE ⊥平面CDE.18.(本题满分12分)已知坐标平面上点P(x,y)与两个定点M(26,1),N(2,1)的距离之比等于5,(1)求点P 的轨迹方程,并说明轨迹是什么图形(2)记(1)中的轨迹为C ,过点A(-2,3)的直线l 被C 所截得线段长为8,求直线l 的方程19.(本题满分12分)已知椭圆22x a +22y b=1(a>b>0)的一个顶点为A(0,1),离心率,过点B(0,-2)及左焦点F 1的直线交椭圆于C,D 两点,右焦点设为F 2. (1)求椭圆的方程; (2)求△CDF 2的面积.20. (本题满分13分)21.(本题满分14分)设F 1、F 2分别是椭圆24x +y 2=1的左、右焦点. (1)若P 是该椭圆第一象限上一点,1PF ·2PF =-54,求点P 的坐标;(2)设过定点M(0,2)的直线l 与椭圆交于不同的两点A 、B,且∠AOB 为锐角(其中O 为坐标原点),求直线l 的斜率k 的取值范围.(1)证明:PC⊥BD,(2)若E 为PA 的中点,求三棱锥P-BCE 的体积.如图,四棱锥P-ABCD 的底面ABCD 是边长为2的菱形,∠BAD=60°.已知参考答案1-10 DCBDBBCABD11.22 12.90°或30° 1313242=-y x 14.215.216.如果p 真q 假, 有0≤a<4,且a>14, 所以14<a<4; 如果p 假q 真,有a<0或a ≥4,且a ≤14,所以a<0. 所以实数a 的取值范围为(-≦,0)∪(14,4).17.证明:(1)取BC 的中点M,连接DM,因为BD=CD,且BD ⊥CD,BC=2. 所以DM=1,DM ⊥BC.又因为平面BCD ⊥平面ABC,所以DM ⊥平面ABC, 又AE ⊥平面ABC,所以AE ∥DM.又因为AE ⊄平面BCD,DM ⊂平面BCD, 所以AE ∥平面BCD.(2)由(1)已证AE ∥DM,又AE=1,DM=1,所以四边形DMAE 是平行四边形, 所以DE ∥AM.连接AM,易证AM ⊥BC,因为平面BCD ⊥平面ABC,所以AM ⊥平面BCD,所以DE ⊥平面BCD.又CD ⊂平面BCD,所以DE ⊥CD.因为BD ⊥CD,BD ∩DE=D,所以CD ⊥平面BDE.因为CD ⊂平面CDE, 所以平面BDE ⊥平面CDE.18. (2)由题意得直线CD 为y=-2x-2, 联立2222,12y x x y =--⎧⎪⎨+=⎪⎩得9x 2+16x+6=0, ≧Δ=162-4×9×6=40>0, ≨直线与椭圆有两个公共点, 设C(x 1,y 1),D(x 2,y 2),则111116,92,3x x x x ⎧+=-⎪⎪⎨⎪=⎪⎩≨1-x 2|=·=,又点F 2到直线BF 1的距离d=,所以2CDF S ∆=12|CD|·.19. (2)当直线l 的斜率不存在时,l:x=-2,此时所截得的线段的长为=8,≨l:x=-2符合题意.当直线l 的斜率存在时,设l 的方程为y-3=k(x+2), 即kx-y+2k+3=0,圆心到l的距离,由题意,)2+42=52, 解得k=512.≨直线l 的方程为512x-y+236=0. 即5x-12y+46=0. 综上,直线l 的方程为x=-2,或5x-12y+46=0. 20. (2)解:因为E 是PA 的中点, 所以P BCE V -=C PEB V -=12C PAB V -=12B APC V -. 由PB=PD=AB=AD=2知,△ABD ≌△PBD. 因为∠BAD=60°,所以又所以PO 2+AO 2=PA 2, 即PO ⊥AC,故S△APC=12PO ·AC=3.由(1)知,BO ⊥平面APC, 因此P BCE V -=12B APC V -=12·13·BO ·S △APC =12.21. (2)显然直线x=0不满足题设条件. 可设l 的方程为y=kx+2,设A(x 1,y 1),B(x 2,y 2),将y=kx+2代入24x +y 2=1得 (1+4k 2)x 2+16kx+12=0, x 1x 2=21214k +,x 1+x 2=-21614kk +, 由Δ>0得k 2>34① 又∠AOB 为锐角, ≨cos ∠AOB>0,≨OA ·OB >0,≨OA ·OB =x 1x 2+y 1y 2>0,将y 1=kx 1+2,y 2=kx 2+2代入上式并化简得 -14<k 2<4② 综合①②可知34<k 2<4,≨k 的取值范围是⎛- ⎝⎭∪2⎫⎪⎪⎝⎭。
高二文科数学测试题
高二文科数学测试题(时间:45分钟 满分:100分)一.选择题(每题5分,共30分)1.若一个平行六面体的四个侧面都是正方形,则这个平行六面体是 A .正方体 B .正四棱锥 C .长方体 D .直平行六面体2.有一个几何体的正视、侧视、俯视图分别如下,则该几何体的表面 积为A .π12B .π24C .π36D .π483.已知三个球的体积之比为1:8:27,则它们的表面积之比为A .1:2:3B .1:4:9C .2:3:4D .1:8:27 4.若α//β,a//α,则a 与β的关系是A .a//βB .a β⊂C .a//β或a β⊂D .A a =β 5.已知正方体外接球的体积是323π,那么正方体的棱长等于 A.22 B.233 C.423D.4336.如图,在正方体1111ABCD A B C D -中, E F G H ,,,分别为1AA ,AB ,1BB , 11B C 的中点,则异面直线EF 与GH 所成的角等于A.45° B.60° C.90° D.120°6565AFDBCGE 1BH1C1D 1A二.填空题(每小题5分,共20分) 7.如图所示,是一个正方体的展开图, 若将它还原为正方体, 则 直线AB 与直线CD 的位置关系是 .8.在正方体ABCD —A 1B 1C 1D 1中,BC 1与平面BB 1D 1D 所成的角是 .9.矩形长6,宽4,以其为圆柱侧面卷成圆柱,则圆柱体积为 _______10.下列命题中: (1)、平行于同一直线的两个平面平行; (2)、平行于同一平面的两个平面平行; (3)、垂直于同一直线的两直线平行; (4)、垂直于同一平面的两直线平行. 其中正确的个数有_____________。
三.解答题(50分)11.已知,,,E F G H 为空间四边形ABCD 的边,,,AB BC CD DA 上的点,且//EH FG .求证://EH BD .12.如图,棱长为1的正方体ABCD-A 1B 1C 1D 1中, (1)求证:AC ⊥平面B 1D 1DB; (2)求证:BD 1⊥平面ACB 1HGFE BC DAH G FED BA CD 1C 1B 1A 1CDBA高二文科数学答题卡一.选择题(30分)二.填空题(20分)7. 8.9 . 10.三.解答题(50分) 11.(15分) 解:1 23456H G FED BAC12.(1)(15分)解:(2)(20分)解:D1C1B1A1CDBA答案:一.选择题(30分)二.填空题(20分)7. 异面 8. 30 °9 . π3610. 2个三.解答题(50分) 11.(15分) 解:证明://,////EH BCD FG BCD EH BCD BD BCD EH BD EH FG ⊄⎫⎪⊂⇒⊂⇒⎬⎪⎭ 12.(1)(15分) 解:证明:∵AC⊥BD,AC⊥BB 1, ∴AC⊥平面B 1D 1DB .(2)(20分) 解:证明:连接A 1B ,在正方体ABCD-A 1B 1C 1D 1中, 面A 1B 1BA 是正方形,对角线A 1B⊥AB 1,在正方体ABCD-A 1B 1C 1D 1中,D 1A 1⊥面A 1B 1BA ,AB 1在面A 1B 1BA 上, ∴D 1A 1⊥AB 1,∵AB 1⊥A 1B ,AB 1⊥D 1A 1,A1B 和D 1A 1是面A 1BD 1内的相交直线, ∴AB 1⊥面A 1BD 1,又BD 1在面A 1BD 1上, ∴AB 1⊥BD 1,同理,D 1D⊥面ABCD , AC 在面ABCD 上,D 1D⊥AC,在正方形ABCD 中对角线AC⊥BD,∵AC⊥D1D,AC⊥BD,D1D 和BD 是面BDD1内的相交直线, ∴AC⊥面BDD 1,又BD 1在面BDD 1上,1 2 3 4 5 6 A B B C B B H G FED BACD 1C 1 B 1AC DBA∴AC⊥BD1,∵BD1⊥AB1,BD1⊥AC,AB1和AC是面ACB1内的相交直线∴BD1⊥面ACB1。
高二数学下学期期末考试试卷 文含解析 试题
2021—2021学年第二学期高二期末考试文科数学试题一、选择题:本大题一一共12小题,每一小题5分,一共60分。
在每一小题给出的四个选项里面,选出符合题目要求的一项。
,,那么A. B. C. D.【答案】C【解析】【分析】先化简集合A,再判断选项的正误得解.【详解】由题得集合A=,所以,A∩B={0},故答案为:C【点睛】此题主要考察集合的化简和运算,意在考察学生对这些知识的掌握程度和分析推理才能.2.(为虚数单位) ,那么A. B. C. D.【答案】B【解析】【分析】由题得,再利用复数的除法计算得解.【详解】由题得,故答案为:B【点睛】此题主要考察复数的运算,意在考察学生对该知识的掌握程度和分析推理计算才能.是定义在上的奇函数,当时,,那么A. B. C. D.【答案】D【解析】【分析】利用奇函数的性质求出的值.【详解】由题得,故答案为:D【点睛】(1)此题主要考察奇函数的性质,意在考察学生对该知识的掌握程度和分析推理计算才能.(2)奇函数f(-x)=-f(x).4.以下命题中,真命题是A. 假设,且,那么中至少有一个大于1B.C. 的充要条件是D.【答案】A【解析】【分析】逐一判断每一个选项的真假得解.【详解】对于选项A,假设x≤1,y≤1,所以x+y≤2,与矛盾,所以原命题正确.当x=2时,2x=x2,故B错误.当a=b=0时,满足a+b=0,但=﹣1不成立,故a+b=0的充要条件是=﹣1错误,∀x∈R,e x>0,故∃x0∈R,错误,故正确的命题是A,故答案为:A【点睛】〔1〕此题主要考察命题的真假的判断,考察全称命题和特称命题的真假,考察充要条件和反证法,意在考察学生对这些知识的掌握程度和分析推理才能.〔2〕对于含有“至少〞“至多〞的命题的证明,一般利用反证法.,那么该抛物线的焦点坐标为( )A. B. C. D.【答案】C【解析】【分析】先求出p的值,再写出抛物线的焦点坐标.【详解】由题得2p=4,所以p=2,所以抛物线的焦点坐标为〔1,0〕.故答案为:C【点睛】〔1〕此题主要考察抛物线的简单几何性质,意在考察学生对该知识的掌握程度和分析推理才能.(2)抛物线的焦点坐标为.是增函数,而是对数函数,所以是增函数,上面的推理错误的选项是A. 大前提B. 小前提C. 推理形式D. 以上都是【答案】A【解析】【分析】由于三段论的大前提“对数函数是增函数〞是错误的,所以选A. 【详解】由于三段论的大前提“对数函数是增函数〞是错误的,只有当a>1时,对数函数才是增函数,故答案为:A【点睛】(1)此题主要考察三段论,意在考察学生对该知识的掌握程度和分析推理才能.(2)一个三段论,只有大前提正确,小前提正确和推理形式正确,结论才是正确的.,,,那么A. B. C. D.【答案】C【解析】【分析】先证明c<0,a>0,b>0,再证明b>1,a<1,即得解.【详解】由题得,a>0,b>0.所以.故答案为:C【点睛】(1)此题主要考察指数函数对数函数的单调性,考察实数大小的比拟,意在考察学生对这些知识的掌握程度和分析推理才能.〔2〕实数比拟大小,一般先和“0〞比,再和“±1〞比.,,假设∥,那么A. B. C. D.【答案】D【解析】【分析】根据∥得到,解方程即得x的值.【详解】根据∥得到.故答案为:D【点睛】(1)此题主要考察向量平行的坐标表示,意在考察学生对该知识的掌握程度和分析推理计算才能.(2) 假如=,=,那么||的充要条件是.那么的值是.A. B. C. D.【答案】C【解析】【分析】先计算出f(2)的值,再计算的值.【详解】由题得f(2)=,故答案为:C【点睛】(1)此题主要考察分段函数求值,意在考察学生对该知识的掌握程度和分析推理计算才能.(2)分段函数求值关键是看自变量在哪一段.10.为等比数列,,,那么〔〕A. B. C. D.【答案】D【解析】试题分析:,由等比数列性质可知考点:等比数列性质视频11.某几何体的三视图(单位:cm)如下图,那么该几何体的体积是( )A. 72 cm3B. 90 cm3C. 108 cm3D. 138 cm3【答案】B【解析】由三视图可知:原几何体是由长方体与一个三棱柱组成,长方体的长宽高分别是:6,4,3;三棱柱的底面直角三角形的直角边长是4,3;高是3;其几何体的体积为:V=3×4×6+×3×4×3=90〔cm3〕.故答案选:B.上的奇函数满足,且在区间上是增函数.,假设方程在区间上有四个不同的根,那么A. -8B. -4C. 8D. -16【答案】A【解析】【分析】由条件“f〔x﹣4〕=﹣f〔x〕〞得f〔x+8〕=f〔x〕,说明此函数是周期函数,又是奇函数,且在[0,2]上为增函数,由这些画出示意图,由图可解决问题.【详解】f(x-8)=f[(x-4)-4]=-f(x-4)=-·-f(x)=f(x),所以函数是以8为周期的函数,函数是奇函数,且在[0,2]上为增函数,综合条件得函数的示意图,由图看出,四个交点中两个交点的横坐标之和为2×〔﹣6〕=-12,另两个交点的横坐标之和为2×2=4,所以x1+x2+x3+x4=﹣8.故答案为:A【点睛】(1)此题主要考察函数的图像和性质〔周期性、奇偶性和单调性〕,考察函数的零点问题,意在考察学生对这些知识的掌握程度和数形结合分析推理才能.(2)解答此题的关键是求出函数的周期,画出函数的草图,利用数形结合分析解答.二、填空题:本大题一一共4小题,每一小题5分,一共20分。
高二数学试题(文科)WORD
高二数学试题(文科)一、选择题:本大题共10小题,每个题5分,共50分.1.在空间直角坐标系中,点(1,0,0)Q ,点(0,1,1)R -,则线段QR 的长度为( )(A )2(B )3 (C )2 (D )32.下列说法正确的是 ( ) (A )不可能事件没有概率 (B )必然事件的概率为0 (C )随机事件的概率不大于1 (D )随机事件的概率可以小于03.如图,''''A B C D 为各边与坐标轴平行的正方形ABCD 的直观图,若''3A B =,则原正方形的面积是( )(A )9 (B )3 (C )94(D )364.如图是甲、乙两名篮球运动员每场比赛得分情况的 茎叶图,则甲得分的众数、乙得分的中位数分别是 ( )(A )14分,25分 (B )32分,25分 (C )32分,26分 (D )14分,26分5.在区间[2,4]-上随机地取一个数x ,满足||1x ≤的概率是 ( )(A )16 (B )13(C )23 (D )566.设m ,n 是两条直线,α是一个平面,l m ⊥,则下列命题正确..的是( ) (A )若l n ⊥,则//m n(B )若l n ⊥,则m n ⊥(C )若m α⊄,l α⊥,则//m α (D )若n α⊂,//m α且l n ⊥,则l α⊥7.如图,空间四边形ABCD 四边相等,顺次连接各边中点H G F E ,,,,则四边形EFGH 一定是 ( )(A )空间四边形 (B )正方形 (C )菱形 (D )矩形8.执行如图所示的程序框图,如果输入的3N =,则输出的S 的值为( ) (A )23 (B )32 (C )1724 (D )4124甲 乙 4 0 84 4 1 25 85 4 2 36 52 2 6 9 2 13 2 3 49 5 4 1第4题图C'D'A'B'第3题图第8题图GHBCADEF第7题图9.一个四面体的顶点在空间直角坐标系O xyz -中的坐标分别是(0,0,0),(3,0,3),(0,3,3),(3,2,0),若以yOz 为投影面画出该三棱锥的正视图,则得到的正视图为( )(A ) (B ) (C ) (D )10.已知区域2{(,)|04}x y y x Ω=≤≤-,函数2()()1x xa f x a a a -=--,其中 0a >且1a ≠,集合2{0|(1)(1)0}A m f m f m =>-+-≤,区域{(,)M x y =∈Ω |2,}y mx m m A =+∈,向区域Ω上随机投一点P ,点P 落在区域M 内的概率()P M =( )(A )14ππ- (B )22ππ- (C )22π- (D )14π-二、填空题:本大题共5个小题,每个题5分,共25分.11.某班有男生30名,女生20名,采用分层抽样的方法从这50名学生中抽取一个容量为5的一个样本,则应抽取的男生人数为________.12.阅读如图所示的程序,若输入的t 的值为6,则执行程序后输出的结果是________.13.某厂节能降耗技术改造后,生产某产品过程中记录的产量x (吨)与相应的生产能耗y (吨)的几组对应数据如下表:x 1 2 3 4 y22.534.5根据上表提供的数据,求得y 关于x 的线性回归方程为ˆy=0.8x + a ,那么 a 的值为________.14.三棱柱ABC A B C -111中,上、下两底面共有111111,,,,,AB BC CA A B B C C A 六条棱,从中任选两条棱,它们所在直线是异面直线的概率为_________.INPUT t IF t<=4 THEN c =0.2 ELSEc =0.2+0.1*(t -3) END IF PRINT c END15.如图,正方体 1111D C B A ABCD -,棱长为a ,下列命题正确的是:_________.(写出所有正确命题的编号)①P 点在BDC ∆1所在平面上运动,棱锥11D AB P -体积不变; ②直线1AC 与平面1BDC 的交点为三角形1BDC 的外心; ③若点M N L 、、分别是线段A B A D A A 11111、、上与端点不重合的三个动点,则MNL ∆必为锐角三角形;④若Q 为AA 1的中点,G 为底面A B C D 1111(包含边界)内的一个动点,且始终满足GQ A C ⊥1,则动点G 的轨迹长度为23a . 三、解答题:本大题共6小题,共75分.解答过程应写明文字说明、证明过程或推演步骤.16.(本小题满分12分)如图,棱长为1的正方体ABCD -A 1B 1C 1D 1中.(Ⅰ)求异面直线1A D 与AC 所成角的大小; (Ⅱ)求证:平面1ACB ⊥平面11BB D D .17.(本小题满分12分)袋中共有6个除颜色以外完全相同的小球,其中有标记为A ,B 的红球2个,标记为a ,b ,c ,d 的白球4个,若从中任意选取2个球.(Ⅰ)记{,}A a (不考虑顺序)为一种选取结果,试写出所有选取结果,并指出所有结果的个数;(Ⅱ)试求所选的两个球中至少有一个红球的概率.ABCDD 1C 1B 1A 1QG第15题图BD 1C 1 B 1A 1CDA第16题图18.(本小题满分12分)如图,在四棱锥P ABCD -中,PA ⊥平面A B C D ,底面A B C D 是菱形,2P A A B ==,60BAD ∠= ,且M 为PA 中点.(Ⅰ)求证://PC 平面MBD ; (Ⅱ)对线段PC 上任意一点G ,求证三棱锥G MBD -的体积为定值,并求出该值.19.(本小题满分12分)教育部、国家体育总局和共青团中央共同号召全国各级各类学校要广泛、深入地开展全国亿万大中学生阳光体育运动.为此,某校学生会对高二年级学生2013年6月这一个月时间内参加体育运动的情况进行统计,随机抽取了M 名学生作为样本,得到这M 名学生该月参加体育运动总时间的小时数.根据此数据作出了频数与频率的统计表和频率分布直方图(如图①)如下: 分组序号 2013年6月参加体育运动总时间(小时)组中值 (i a ) 频数 频率()i f1 [20,25)22.5 10 0.252 [25,30) 27.5 25n 3 [30,35) 32.5 mp4 [35,40)37.5 2 0.05合计——M1M BACD P G 第18题图a频率/组距2025303540参加体育运动 小时数O(Ⅰ)求出表中M ,p 及图①中a 的值;(Ⅱ)现以这M 人为样本来估计总体,若该校高二学生有720人,试估计该校高二学生在2013年6月参加体育运动总时间不超过30小时的人数;(Ⅲ)该校数学兴趣小组利用算法流程(如图②),对样本数据作进一步统计分析,求输出的S 的值.20.(本小题满分13分)将如图①所示的直角梯形ABEF (图中数字表示对应线段的长度)沿直线CD 折成直二面角,连接部分线段后围成一个空间几何体,如图②所示.(Ⅰ)设M 是FB 的中点,求证:EM ⊥平面BDF ; (Ⅱ)求空间几何体ABCDFE 的表面积.第19题图图②图①第20题图图①①12111A B F E D C图② ②M C DB A FE21.(本小题满分14分)如图,在四面体A BCD -中,AD ⊥平面BCD ,BC CD ⊥,2AD =,22BD =.M是AD 的中点,P 是BM 的中点,点Q 在线段AC 上,且QC AQ 3=.(Ⅰ)求证:PQ AD ⊥;(Ⅱ)若45BDC ∠=︒,求直线CD 与平面ACB 所成角的大小;(Ⅲ)若1CD =,则在线段BD 上是否存在点E ,使得平面CPE ⊥平面CMB ?若存在,请通过计算找出点E 的位置;若不存在,请说明理由.DBACMPQ第21题图。
高二文科数学综合测试题
高二文科数学综合测试题参考公式:锥体的体积公式13V Sh =,其中S 为锥体的底面面积,h 为锥体的高。
一.选择题:(本大题共10小题,每小题5分,共50分。
) 1.i 是虚数单位,复数31ii -等于 ( ) A .1i --B .1i -C .1i -+D .1i +2.已知全集U=R,集合2{|log 1}Px x ,那么U P ( )A.}20|{<<x xB.}2|{<x xC.}2.|{>x xD. }2|{≤x x3.设33tan ,,sin cos 32παπααα=<<-则的值( ) A.1322-+B.1322--C.1322+D.1322- 4.从1,2,3,4,5中随机取出二个不同的数,其和为奇数的概率为( )A .15 B .25 C .35 D .455.已知,m n 是两条不同直线,,,αβγ是三个不同平面,下列命题中正确的是( )A .,,m n m n αα若则‖‖‖B .,,αγβγαβ⊥⊥若则‖C .,,m m αβαβ若则‖‖‖D .,,m n m n αα⊥⊥若则‖6.已知函数2()(1cos 2)sin ,f x x x x R =+∈,则()f x 是( )A.最小正周期为π的奇函数B.最小正周期为2π的奇函数 C.最小正周期为π的偶函数 D.最小正周期为2π的偶函数7.过点P )1,2(的双曲线与椭圆1422=+y x 共焦点,则其渐近线方程是 ( )A .20x y ±=B .20x y ±= C . 20x y ±= D .20x y ±=8.已知ABC ∆中,4,43AB AC BC ===,点P 为BC 边所在直线上的一个动点,则()AP AB AC ⋅+满足( )A.最大值为16B.最小值为4C.为定值8D.与P 的位置有关 9.执行右面的程序框图,如果输入的N 是6,那么输出的p 的值是( ) A. 120 B. 720 C. 1440 D.504010.设x ,y 满足约束条件⎪⎩⎪⎨⎧≥≥≥-≤--,0,0,0,023y x y x y x 若目标函数zax by(0,0)a b 的最大值1,则ba 11+的最小值为( ) A. 4 B. 2 C. 22 D.132π6πo1x1-y二.填空题:(本大题11~13题为必做题,14~15题为选做题)11. 设抛物线的顶点在原点,其焦点F 在y 轴上,抛物线上的点(,2)P k -与点F 的距离为4,则抛物线方程为 .12 如图,是一个几何体的正视图、侧视图、俯视图,且正视图、侧视图都是矩形,则该几何体的体积是 .13. 已知22223322333388+=⨯+=⨯,,244441515+=⨯,……, 若288a a b b+=⨯(a 、b 为正整数)则a b += .14.(坐标系与参数方程选做题)(坐标系与参数方程选做题)已知直线l 的参数方程为:214x t y t ==+⎧⎨⎩(t 为参数),圆C 的极坐标为22ρθ=,则直线l 与圆C 的位置关系为________15.(几何证明选讲选做题)如右图:已知AC=BD ,过C 点的圆的切线与BA 的延长线交于E 点, 若ACE ∠=040,则BCD ∠= 。
高二文科数学期末试题
吴忠回中2012-2013学年第一学期期末考试高二数学(文科)试卷考试时间:120分钟 满分:150分 命题人 :王少华一、选择题:(本大题共12小题,每小题5分,满分60分)1.某公司现有职员160人,中级管理人员30人,高级管理人员10人,要从其中抽取20个人 进行身体健康检查,如果采用分层抽样的方法,则职员、中级管理人员和高级管理人员各应 该抽取多少人( )A .8,15,7B .16,2,2C .16,3,1D .12,3,5 2.下列说法中正确的是( )A .一个命题的逆命题为真,则它的逆否命题一定为真.B.“b a >”与“c b c a +>+”不等价.C.“若022=+b a ,则b a ,全为0”的逆否命题是“若b a ,全不为0,则022≠+b a ”.D .一个命题的否命题为真,则它的逆命题一定为真.3.从装有两个红球和两个黑球的口袋里任取两个球,那么互斥而不对立的两个事件是( ) A .“至少有一个黑球”与“都是黑球” B .“至少有一个黑球”与“至少有一个红球” C .“恰好有一个黑球”与“恰好有两个黑球” D .“至少有一个黑球”与“都是红球”4.一元二次不等式220ax bx ++>的解集是11(,)23-,则a b +的值是( )A . -14 B. -10 C. 14 D. 10 5.等差数列{}n a 中,若99=S ,则=+64a a ( )A.0B.1 C .2 D.3 6.在△ABC 中,若B a b sin 2=,则A 等于( )A . 6030或B . 6045或C . 60120或D .15030或 7.下列结论中正确的是( )① a >b >0,d >c >0⇒a c >bd, ② a >b ,c >d ⇒a -c >b -d ,③ a c 2>bc 2⇒a >b , ④ a >b ⇒a n >b n (n ∈N ,n >1). A .①②③ B .②③④ C .①③ D .①③④ 8.有下列四个命题① 命题“同位角相等,两直线平行”的逆否命题为:“两直线不平行,同位角不相等”. ② “1=x ”是“2430x x -+=”的充分必要条件. ③ 若p q ∧为假命题,则p 、q 均为假命题.④ 对于命题p :0x R ∃∈,200220x x ++≤, 则⌝p :x R ∀∈,2220x x ++>. 其中正确是 ( )A. ①②B. ①④C. ②③D. ③④9.已知正数x 、y 满足4x +9y=1,则xy 有( )A .最小值12B .最小值144C .最大值12D .最大值14410.若一个椭圆长轴的长度、短轴的长度和焦距成等差数列,则该椭圆的离心率是( )A.54 B .53 C. 52 D. 5111.设y x ,满足约束条件⎪⎩⎪⎨⎧≥≥≥+-≤--0,002063y x y x y x ,若目标函数)0,0(,>>+=b a by ax z 的最大值为12,则23a b +的最小值为( ). A .625 B.38 C. 311 D. 412.若椭圆两焦点为F 1(-4,0)、F 2(4,0),P 在椭圆上,且△PF 1F 2的最大面积是12,则椭圆方程是( ) A. x 225+y 29=1 B.x 228+y 212=1 C. x 236+y 220=1 D.x 220+y 24=1 二、填空题(本大题共4小题,每小题5分,共20分)13. 已知递增的等差数列{}n a 满足21321,4a a a ==-,则_____n a =14.在等比数列}{n a ,16221=+a a ,1843=+a a ,则=+54a a .15. 若△ABC 的两个焦点坐标为A (-4,0)、B (4,0),△ABC 的周长为18,则顶点C 的轨迹方程为 .16.已知三角形ABC 的面积4222c b a s -+=,则C ∠的大小是 .吴忠回中2012-2013学年第一学期期末考试高二数学(文科)答案卷一.选择题:题号 1 2 3 4 5 6 7 8 9 10 11 12 答案二、填空题:13.__ 14. 15. 16. 三、解答题:本大题共6小题,满分70分.解答须写出文字说明、证明过程和演算步骤17.(本小题满分10分)已知p :01662≥++-x x ,q : 04422≤-+-m x x ()0>m (1)若p 为真命题,求实数x 的取值范围.(2)若p 为q 成立的充分不必要条件,求实数m 的取值范围.18.(本小题满分12分)已知A 、B 两个盒子中分别装有标记为1、2、3、4的大小相同的四个小球,甲从A 盒中等可能地取出1个球,乙从B 盒中等可能地取出1个球. (1)用有序数对()j i ,表示事件“甲抽到标号为i 的小球,乙抽到标号为j 的小球”,求取出的两球标号之和为5的概率; (2)甲、乙两人玩游戏,约定规则:若甲抽到的小球的标号比乙大,则甲胜;反之,则乙胜. 你认为此规则是否公平?请说明理由.19.(本小题满分12分)在ABC ∆中,设角A 、B 、C 的对边分别为a 、b 、c ,且满足(2a -c )cosB=b cosC (1)求角B 的大小;(2) a +c =5,b =7,求ABC ∆的面积。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
机密★启用前 试卷类型 A
6月襄阳市普通高中调研统一测试
本试卷共4页,共22题,全卷满分150分。
考试用时120分钟。
★祝考试顺利★
注意事项:
1. 答卷前,请考生认真阅读答题卡上的注意事项。
非网评考生务必将自己的学校、班级、姓
名、考号填写在答题卡密封线内,将考号最后两位填在登分栏的座位号内。
网评考生务必将自己的姓名、考号填写在答题卡上指定位置,贴好条形码或将考号对应数字涂黑。
用2B 铅笔将试卷类型(A)填涂在答题卡相对应位置上。
2. 选择题的作答:每小题选出答案后,用2B 铅笔把答题卡是对应题目的答案标号涂黑。
如
需改动,用橡皮擦干净后,再选涂其它答案标号。
答在试题卷、草稿纸上无效。
3. 填空题和解答题的作答:用0.5毫米黑色墨水签字笔直接答在答题卡上每题对应的答题区
域内,答在试题卷、草稿纸上无效。
4. 考生必须保持答题卡的整洁。
考试结束后,监考人员将答题卡和机读卡一并收回,按小号
在上,大号在下的顺序分别封装。
一、选择题(本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有一项
是符合题目要求的。
)
1. 若集合2{20}A x x x =--<,{2}B x x a =-<<,则“A B φ≠”的充要条件是
A .a >-1
B .a ≥-1
C .a >-2
D .a ≤-2
2. 下列各式中,最小值等于2的是
A .y x
y x + B 2
C .1
tan tan θθ
+
D .22x x -+
3. 条件p :| x -4 | > 1,条件q :1
13x
>-,则¬
p 是¬q 的 A .充分不必要条件
B .必要不充分条件
C .充要条件
D .既不充分也不必要条件关于
4. 用反证法证明命题:“若整系数一元二次方程20(0)ax bx c a ++=≠有有理根,那么a 、b 、c 中至少有一个是偶数”时,下列假设中准确的是 A .假设a 、b 、c 都是偶数 B .假设a 、b 、c 都不是偶数 C .假设a 、b 、c 至多有一个是偶数 D .假设a 、b 、c 至多有两个是偶数
5. 一个物体的运动方程为21s t t =-+,其中s 的单位是米,t 的单位是秒,那么物体在3秒末的瞬时速度是 A .5米/秒 B .6米/秒 C .7米/秒 D .8米/秒
6. 抛物线22y x =的焦点坐标是
A .(
1
2
,0) B .(0,
12
) C .(0,
14
) D .(0,
18
) 7. 若直线l 过点(3,0)与双曲线22
194
y x -=只有一个公共点,则这样的直线有
A .1条
B .2条
C .3条
D .4条
8. 设函数3
()ln f x x x
=+,则 A .1
3x =
为f (x ) 的极大值点 B .1
3
x =
为f (x ) 的极小值点 C .x = 3为f (x ) 的极大值点 D .x = 3为f (x ) 的极小值点.
9. 对于R 上可导的函数f (x )满足(1)()0x f x '-≤,若m > n > 1,则必有 A .f (m ) + f (n ) < 2 f (1) B .f (m ) + f (n )≤2 f (1) C .f (m ) + f (n )≥2 f (1) D .f (m ) + f (n ) > 2 f (1)
10. 设()f x '是函数y = f (x )的导数,()f x ''是()f x '的导数,若方程()0f x ''=有实数解x 0,则称点(x 0,f (x 0))为函数y = f (x )的“拐点”.某同学经过探究发现:任何一个三次函数都有“拐点”;任何一个三次函数都有对称中心,且“拐点”就是对称中心.已知函数
32115()33212g x x x x =-+-,则122012
()()()201320132013
g g g +++=
A .2011
B .2012
C .2013
D .2014 二.填空题(本大题共7小题,每小题5分,共35分。
将答案填在答题卡相对应位置上。
)
11. 不等式的22214
x x x ++>+解集是 ▲ .
12. 某公司一年购买某种货物400吨,每次都购买x 吨,运费为4万元/次,一年的总存储费用
为4x 万元,要使一年的总运费与总存储费用之和最小,则x = ▲ 吨. 13. 若直线2y x m =+是曲线ln y x x =的切线,则实数m 的值为 ▲ .
14. 若抛物线2
2y px =的焦点与双曲线2
213
x y -=的右焦点重合,则常数p 的值等于 ▲ .
15. 已知双曲线的顶点与焦点分别是椭圆的22
221(0)y x a b a b
+=>>焦点与顶点,若双曲线的两
条渐近线与椭圆的交点构成的四边形恰为正方形,则椭圆的离心率为 ▲ .
16. 由命题“220x x x m ∃∈++R ,≤”是假命题,求得实数m 的取值范围是(a ,+∞),则实
数a 的值是 ▲ . 17. 给出下列结论:
①若命题p :∃x ∈R ,tan x = 1;命题q :∀x ∈R ,x 2-x +1>0,则命题“p ∧(¬q )”是假命题;
②已知直线l 1:ax + 3y -1 = 0,l 2:x + by + 1 = 0,则l 1⊥l 2的充要条件是
3a
b
=-;
③命题“若x2-3x + 2 = 0,则x = 1”的逆否命题为:“若x≠1,则x2-3x + 2≠0”.
其中准确结论的序号为▲(把你认为准确的结论的序号都填上).
三.解答题(本大题共5小题,满分65分。
解答应写出文字说明,证明过程或演算步骤。
)
18.(本大题满分12分)
已知x = 4是函数2
()ln1211
f x a x x x
=+-+的一个极值点.
(1)求a的值;
(2)求函数f (x)的单调区间.
19.(本大题满分12分)
已知命题p:“关于x的方程x2 + 2mx + 1 = 0有两个不相等的实根”;命题q:“函数f (x) = x2-2(m-2)x + 1在(1,2)上单调递减”.
(1)求命题p与命题q分别为真命题时相对应的实数m的取值范围;
(2)若命题“p∧(¬q)”为真命题,求实数m的取值范围.
20.(本大题满分13分)
若动点P到点F(0,
1
4
-)的距离比它到直线
5
4
y=的距离小1.
(1)求点P的轨迹E的方程;
(2)若直线y = mx-4与轨迹E交于A、B两点,且||
AB=求实数m的值.
21. (本大题满分14分)
已知椭圆22
221(0)y x a b a b
+=>>过点(0,1),其长轴、焦距和短轴的长的平方依次成等差
数列.直线l 与x 轴正半轴和y 轴分别交于点Q 、P ,与椭圆分别交于点M 、N ,各点均不重
合
且
满
足12PM MQ PN NQ λλ==,.
(1)求椭圆的标准方程;
(2)若123λλ+=-,试证明:直线l 过定点,并求此定点.
22. (本大题满分14分)
已知a 、b 为实数,函数3()f x x ax =+,2()g x x bx =+,若()()0f x g x ''≥在区间D 上恒成立,则称f (x )和g (x )在区间D 上单调性一致.
(1)设a > 0,若f (x )和g (x )在区间[-1,+∞)上单调性一致,求b 的取值范围.
(2)设a < 0且a ≠b ,若f (x )和g (x )在以a 、b 为端点的开区间上单调性一致,求| a -b |的最大值.
P Q
M
N
O
y
x。