流体力学 第六章

合集下载

流体力学 第六章 流体波动

流体力学 第六章 流体波动

由上式可见,波群中包含两个波动的乘积。
其中:
sinkx t
称为高频载波,其波数k和圆频率ω都分别接近 各个单波的波数和圆频率。即
k
k1 k2 2
k1
k2,
1 2
2
1
2
载波的波速也接近于各个单波的波速,即
c 1 2
k k1 k2
Q* 2Qcos kx t
称为低频包络,它是载波的包络线,或称波包,
1
界面波传播速度是有相同厚度H的重力表面
波速度的十分之一。
§3 群速度
单波(单色波,单纯波):具有一定振幅、一 定频率和一定波长在时间和空间都是无限的波 动。
群波(group wave):由各种单色波叠加而成 的波动。叠加结果,有些振幅是相抵消的,有 些是加强的。所以群波的振幅随时间和空间改 变。群波 混合波
设其形式解为:
u(x,t) B sin k(x ct) (6.2.21)
代入原方程,
u t
g
h x
h
t
H
u x
0
(6.2.22)
有:
B g A H
(6.2.23)
说明u和h位相相同(c>0),或位相相差180(0 c 0).
若取 1波速 1 对于海洋若取H=4km, 0.01, c 20m / s,
kx ly mz t (x, y, z,t)
其中:
/ t k / x l / y m / z
圆频率 x 方向的波数 y 方向的波数 z 方向的波数
全波数的概念
定义波数矢量为:
K ki lj mk
波数矢量垂直于等位相面(波阵面) (波数矢量即为波动传播的方向) 定义其模称为全波数

流体力学-第六章 旋转流体力学

流体力学-第六章 旋转流体力学

da A
da Ax
i
da Ay
j
d
a
Az
k
dt dr A
dt dA
dAx
dt
i
dAy
dt
j
dAz
k
dt dt dt
dt
dt
Chen Haishan NIM NUIST
da A da Axi Ay j Azk
dt
dt
展开
dA
dAx
i
dAy
j
dAz
k
dt dt
dt
dt
Chen Haishan NIM NUIST
假定流体运动满足: RO 1 或者RO 0(即 Rossby 数很小);
Ek
R0 Re
0
同时要求: RO L/UT 0 (即要求T很大,1/T 0,即 对应缓慢运动或者准定常流动)。
L R0 UT
V t
(V

)V
1 R0
1 p
1 Fr
g
Ek
一致,是衡量旋转效应的一个重要量。
Chen Haishan NIM NUIST
由Rossby数的定义可知: RO 1 ,偏向力的作用大,旋转效应重要; RO 1,偏向力的作用小,可不考虑地球的旋转效应。
另外的角度来考虑:
大尺度运动(L大),流速缓慢(U小)偏差大 RO 1,旋转效应重要,采用旋转流体运动方程;
普鲁德曼--泰勒定理:不可压或正压流体,在有 势力作用下的准定常缓慢运动,由于强旋转效应 ,其速度将与垂直坐标无关,流动趋于两维化( 流动是水平、二维的)。
普鲁德曼--泰勒定理的检验: 泰勒流体柱实验(P221)。
Chen Haishan NIM NUIST

流体力学第六章 势流理论

流体力学第六章  势流理论

2 r2 2
r2
Q ln(1 x cos1 )
2
r2
是个小量,利用泰劳展开得:
Q x cos1 2 r2
当δx→0时,Qδx→M, θ1 →θ,r2→r
利用泰劳展开: ln(1 z) z z2 z3
23
令 z x cos1
r2
展开后并略去δx 二阶以上小量,可得:
Q x cos1 2 r2
极坐标下: M cos
2 r
(6-10)
直角坐标下:
M
2
x x2 y2
(6-11)
对于流函数:
1
2
Q
2
(1
2)
Q
2
( )
这里:r2= x Sinθ1
所以
x sin 1
r2
代入上式得: Q x sin1
2 r2
当δx→0时,Qδx→M,r2→r,θ1→θ
等势线:圆心在x轴上,与y轴相切的一组圆。
这些圆与ψ=const正交
注意:
偶极子的轴线和方向
轴线:源和汇所在的直线
方向:由汇指向源的方向
图6-8(b)
偶极子的方向
为x轴负向
四、点涡(环流)
点涡:无界流场中坐标原点处一无穷长直线涡,
方向垂直于x0y平面,与xoy平面的交点 诱导速度沿点涡为中心的圆周切线方向,大小
第六章 势流理论
课堂提问:为什么上、下弧旋乒乓球的应对方法不同?
势流:理想流体绕物体的流动,或为无旋流动。 像波浪、机翼升力等问题用势流理论进行
研究可获得满意结果。
求解势流问题的思路如下: 1.流体力学最终目的是求流体作用于物体上的
力和力矩; 2.为求力和力矩,须知物面上压力分布,即

流体力学第六章 气体射流

流体力学第六章 气体射流

6.1 无限空间淹没紊流射流的特征
2.运动特征:速度分布具有相似性。 特留彼尔在轴对称射流主体段的实验结果,以及阿勃拉莫 维奇在起始段内的测定结果,见图6-2(a)及图6-3(a)。
6.1 无限空间淹没紊流射流的特征
6.1 无限空间淹没紊流射流的特征
3.动力特征 射流中的压强与周围流体中的压强相等。 可得各横截面上轴向动量相等——动量守恒,动量守 恒方程式为:
6.4 温差或浓度差射流
6.4 温差或浓度差射流
三.射流弯曲 温差射流或浓差射流由于密度与周围密度不同, 所受的重力与浮力不相平衡,使整个射流将发生向下或向上弯 曲。通过推导可得出无因次轨迹方程为
6.4 温差或浓度差射流
[例6-3]工作地点质量平均风速要求3m/s,工作面直径D=2.5m 送风温度为15℃,车间空气温度30 ℃,要求工作地点的质量 平均温度降到25 ℃ ,采用带导叶的轴流风机,紊流系数 = 0.12。求(1)风口的直径及速度;(2)风口到工作面的距离。 [解]温差 =15-30=-15 ℃
6 气体射流
6.1 无限空间淹没紊流射流的特征
一.射流结构 出流到无限大空间中,流动不受固体边壁的限制,为无限 空间射流,又称自由射流。射流的流动特性及结构图:
6.1 无限空间淹没紊流射流的特征
二.射流的特性 1. 几何特性: 外边界线为一直线。tan a 紊流系数 a 是表征射流流动结构的特征系数。它与出口断 面上紊流强度有关,紊流强度越大。各种不同形状喷嘴的紊 流系数和扩散角的实测值列于表6-1。
一.特点:1.温度边界层与速度边界层不重合。 2.射流发生弯曲。
6.4 温差或浓度差射流
二.特性: 1.温差特性: 试验得出,截面上温差(浓度差分布)分布具有相 似性。 与速度分布关系如下:

流体力学第六章流体节流与缝隙流动

流体力学第六章流体节流与缝隙流动

第六章流体节流与缝隙流动(了解各种节流及缝隙流动现象,理解影响流量的因素,理解偏心状缝。

掌握气蚀现象。

) §6.1 流体的节流节流:管道内流体流经断面突然缩小的截面后,又进入和以前一样断面的管道,致使压力下降的现象,称为节流。

一、气体节流气体节流后各参数的变化规律,表6-1进行简要分析二、液体节流缝隙中油液产生运动的原因:1)缝隙两端存在压力差;1)组成缝隙的壁面存在相对运动;3)缝隙大小的变化。

缝隙中油液的运动大都呈稳定层流:1)缝隙高度与其长度宽度相比很小,液体在缝隙中流动时受固体壁面的影响;2)油液具有一定的粘度,Re一般很小。

§6.2 液体在小孔中的流动通道截面为圆孔型(分为薄壁小孔型和细长小孔型)。

l d≤。

薄壁小孔:当横隔板壁厚L与孔口直径d之比小于0.5,即/0.5l d>。

液压和润滑系统中的导油管。

细长小孔:小孔的长径比/4§6.3 液体流经平面缝隙平面缝隙:由两平行平面夹成的缝隙。

齿轮泵齿顶与泵壳之间的油液运动,柴油机中滑块与导板之间的油液流动。

结论:1)缝隙中液体流速按抛物线规律分布的;2)流经平面缝隙的流量与缝隙厚度δ的三次方成正比,和动力粘度μ成反比。

§6.4 液体流经同心环状缝隙同心环状缝隙:由内外两个同心圆柱面所围成的缝隙。

结论:流经平面缝隙的流量与缝隙厚度δ的三次方成正比。

§6.5 液体流经偏心环状缝隙偏心环状缝隙:在船舶机械中的环状缝隙,当运动部件装配不当或工作受力不均时,同心环状缝隙就变成偏心环状缝隙。

结论:流经偏心环状缝隙的流量与偏心距成正比,偏心距最大时,泄漏量为同心环状缝隙的2.5倍。

§6.6 液体流经具有相对运动的平行面缝隙喷油泵中的柱塞泵。

类型:(1、2、3)1)平行剪切流动∆=p,由于液体粘滞性,通过平行板的运动液体运动。

2)压差流动液体的运动,在缝隙两端的压差作用下实现。

3)压差与剪切流动的合成液体的运动,在缝隙两端的压差和平行剪切力的作用下共同实现。

《流体力学》第六章气体射流

《流体力学》第六章气体射流
和圆断面射流相比,流量沿程的增加,流速沿 程的衰减都要慢些,这是因为运动的扩散被限 定在垂直于条缝长度的平面上的缘故。
.
射流参数的计算
段 名
参数名称
符号
圆断面射流
平面射流
扩散角 主
α tg3.4a tg2.44a

段 射流直径 或半高度
D b
D d0
6.8
as d0
0.147
b b0
2.44
0.095 as 0.147
d0
v1 0.492
v0
as 0.41
b0
v2
v2 v0
as
0.23 0.147
d0
v2 v0
0.833 as 0.41 b0
.
段名 参数名称
符 号
圆断面射流
平面射流

流量
Q
2
QQ0 10.76ar0s1.32ar0s
Q Q0
1 0.43 as b0

v 断面平均 流速
B0Kx
tgKxK3.4a
x
紊流系数
起始段
主体段
C
B
A
R
M
α r0
核心
0
D X0
边 E
界 层
Sn
F
S
X
射流结构
.
紊流系数与 出口断面上 紊流强度有 关,也与出 口断面上速 度分布的均 匀性有关。 (表6-1)
紊流系数
喷嘴种类 带有收缩口的喷嘴
a
0.066 0.071
圆柱形管
带有导风板的轴流式通风机 带导流板的直角弯管
已知射流直径D, v2,d0,a, 求S和Q0

流体力学第六章 流动阻力及能量损失

流体力学第六章 流动阻力及能量损失

第六章流动阻力及能量损失本章主要研究恒定流动时,流动阻力和水头损失的规律。

对于粘性流体的两种流态——层流与紊流,通常可用下临界雷诺数来判别,它在管道与渠道内流动的阻力规律和水头损失的计算方法是不同的。

对于流速,圆管层流为旋转抛物面分布,而圆管紊流的粘性底层为线性分布,紊流核心区为对数规律分布或指数规律分布。

对于水头损失的计算,层流不用分区,而紊流通常需分为水力光滑管区、水力粗糙管区及过渡区来考虑。

本章最后还阐述了有关的边界层、绕流阻力及紊流扩散等概念。

第一节流态判别一、两种流态的运动特征1883年英国物理学家雷诺(Reynolds O.)通过试验观察到液体中存在层流和紊流两种流态。

1.层流观看录像1-层流层流(laminar flow),亦称片流:是指流体质点不相互混杂,流体作有序的成层流动。

特点:(1)有序性。

水流呈层状流动,各层的质点互不混掺,质点作有序的直线运动。

(2)粘性占主要作用,遵循牛顿内摩擦定律。

(3)能量损失与流速的一次方成正比。

(4)在流速较小且雷诺数Re较小时发生。

2.紊流观看录像2-紊流紊流(turbulent flow),亦称湍流:是指局部速度、压力等力学量在时间和空间中发生不规则脉动的流体运动。

特点:(1)无序性、随机性、有旋性、混掺性。

流体质点不再成层流动,而是呈现不规则紊动,流层间质点相互混掺,为无序的随机运动。

(2)紊流受粘性和紊动的共同作用。

(3)水头损失与流速的1.75~2次方成正比。

(4)在流速较大且雷诺数较大时发生。

二、雷诺实验如图6-1所示,实验曲线分为三部分:(1)ab段:当υ<υc时,流动为稳定的层流。

(2)ef段:当υ>υ''时,流动只能是紊流。

(3)be段:当υc<υ<υ''时,流动可能是层流(bc段),也可能是紊流(bde段),取决于水流的原来状态。

图6-1图6-2观看录像3观看录像4观看录像5实验结果(图6-2)的数学表达式层流:m1=1.0, h f=k1v , 即沿程水头损失与流线的一次方成正比。

流体力学第六章

流体力学第六章

积分常数C1、C2由边界条件确定。
C1 exp( h) C2 exp( h) 0
消去一个常数
C C1 exp(h) C 2 exp(h) 2 C exp ( z h) exp ( z h) Cch ( z h) 2 Cch ( z h)sin x cos t 在 z0
t x x y y z
自由面上的运动边界条件
波浪问题的基本方程和边界条件:

2φ x
2

2φ y
2
1 t 2
n 0

z p pa

2
2
0
运动学方程 动力学方程

gz 0
=+

pa C (t ) dt
1 p pa gz 0 t 2
在自由面上: z , p pa
1 g 0 t 2
在自由面上:
z ( x, y, t ) , z z ( x x, y y, t t )
流体质点的速度 :
Ach ( z h) u cos x cos t x shh
w Ash ( z h) sin x cos t z shh
波数和频率之间的关系
Ach ( z h) sin x cos t shh
z0
0 在 z h z g 0 在 z 0 t
Ach ( z h) sin x cos t shh
2 gthh
流体质点的运动轨迹(有限水深):
u w
Ach ( z h) sh h Ash ( z h) sh h

流体力学 第6章

流体力学 第6章

6.5 紊流运动
紊流的形成过程
选定流层
6.5 紊流运动
紊流的形成过程
6.5 紊流运动
紊流的形成过程
6.5 紊流运动
紊流的形成过程
6.5 紊流运动
紊流的形成过程
6.5 紊流运动
紊流的形成过程
6.5 紊流运动
紊流的形成过程
6.5 紊流运动
紊流的形成过程
6.5 紊流运动
13600 ( 1) 0.3 4.23m 900
设为层流
4Q v 2 2.73m/s d
6.4 圆管中的层流运动
64 l v2 hf vd d 2 g
解得
2 gd 2 hf 8.54106 m 2 /s 64lv
7.69103 Pa s
【解】 列细管测量段前、后 断面的伯努利方程
p1 p2 hf g g
p1 p2 p1 p2 hf g g g
6.4 圆管中的层流运动
p1 g (h hp ) p2 gh p hp p1 p2 ( p ) ghp
h
p p1 p2 hf ( 1)hp g g
2r0
w v 8
6.3 沿程水头损失与剪应力的关系
w v 8
w 定义 v
—— 壁剪切速度,则
v v

8
(6 -11)
上式表明了为沿程阻力系数λ和壁面剪应力τw的关系 式。
6.4 圆管中的层流运动
6.4.1 流动特征
①有序性:水流呈层状流动,各层的质点互不掺混, 质点作有序的直线运动。
6.2.2 雷诺数 1. 圆管流雷诺数

流体力学第六章 气体射流

流体力学第六章 气体射流

射流考虑,当长宽比大于10时,按平面射流考虑。
6.按射流流体的流动方向与外界空间流体的流动
方向不同,可分为顺流射流、逆流射流和叉流射流。
7.按射流流体与外界空间内流体的温度及浓度不
同,可分为温差射流和浓差射流。
8.按射流流体内所携带的异相物质的不同,可分
为气液两相射流,气固两相射流和液固两相射流以及
流到无限大空间中,流动不受固体边壁的限制,
为无限空间射流,又自由射流。反之为有限空间 射流
射流的分类方法:
1.按射流流体的流动状态不同,可分为层流射流 和紊流射流。一般按喷口直径和出口流速计算的雷诺 数大于30以后即为紊流射流。 2.按射流流体的流动速度大小不同,可分为亚音 速射流和超音速射流。
3.按射流流体在充满静止流体的空间内扩散流动
R 3 .4 R 0 ( as R0 0 . 294 ) 3 . 4 a s R 0
所以,喷口至工作区的距离为
s R R0 3 .4 a 1 . 2 0 . 15 3 . 4 0 . 08 3 . 86 m
射流起始段长度为
习 题 解 析
s n 0 . 672 R0 a 0 . 672 0 . 15 0 . 08 1 . 26 m 3.86 m
R r0 = x x0 = x0 s x0 =1+ s x0 1 3 .4 a s r0 3 .4 ( as r0 0 . 294 )
R r0
3 .4 a x , x
x r0
D d0
as 6 .8 d 0 . 147 0

tg K a

0 . 965 as r0 0 . 294
,可得

《流体力学》第六章_粘性流体绕物体的流动

《流体力学》第六章_粘性流体绕物体的流动

第四节 平面层流边界层的微分方程
❖ 在这一节里,将利用边界层流动的特点如流体的粘度大小、 速度与温度梯度大和边界层的厚度与物体的特征长度相比为 一小量等对N-S方程进行简化从而导出层流边界层微分方程。 在简化过程中,假定流动为二维不可压定常流,不考虑质量 力,则流动的控制方程N-S方程为:
vx
vx x
◆空间流动三维问题,N—S方程及其求解 ◆扰流阻力及其计算 ◆附面层的问题
第一节 不可压缩粘性流体的运动微分方程
以流体微元为分析对象,流体的运动方程可写为 如下的矢量形式:
DV F P
Dt
(8-1)
这里 :
DV V V V
Dt t
(8-2)
是流体微团的加速度,微分符号:
D Dt
t
V
p 2
vr r
p
3
2 r0
cos
( ) r, rr0
(1 vr r
v0 r
v ) v
r
r
3
sin
2 r0
(8-25)
对上述两式积分,可分别得到作用在球面上的压强和切应力 的合力。将这两个合力在流动方向的分量相加,可得到流体 作用在圆球上的阻力为:
FD 6 r0 3 d
2vy z 2
)
p z
(2vz
x 2
2vz y 2
2vz z 2
)
(8-18)
一、蠕动流动的微分方程
●如果流动是不可压缩流体,则连续性方程为:
vx v y vz 0 x y z
(8-19)
将式(8-18)依次求
2 x
p
2

2 y
p
2
、 2

流体力学第六章

流体力学第六章
r0 d0
(3)起始段质量平均温差∆T2 将起始段的 qv 0 / qv代入T2 / T0 qv 0 / qv ,即得起始段 质量平均温差计算式为
T2 qv 0 T0 qv
1 as as 1 0 .76 1 .32 r0 r 0
2
二、射流弯曲
质量平均流速为轴心流速的 47%。因此用v2 代表使用区 v2 :不仅在数值上 v1 、 的流速要比 v1 更合适些。但必须注意, 不同,更重要的是在定义上根本不同,不可混淆。
五、起始段核心长度 Sn 及核心收缩角
r0 s n 0.672 a
r0 tg 1.49a sn
§6-4 平面射流
一、有限空间射流结构
C :漩涡中心
Ⅰ-Ⅰ断面也称第一临界断面, Ⅱ-Ⅱ断面也称第二临界断面 ,
橄榄形流场由三部分组成: 射流出口至断面Ⅰ-Ⅰ为自由扩张段
Ⅰ-Ⅰ断面至Ⅱ-Ⅱ断面为有限扩张段
Ⅱ-Ⅱ断面至Ⅳ-Ⅳ为收缩区段
二、有限空间射流动力特征与半经验公式
有限空间射流研究起来较自由射流困难得多。 有限空间射流不同于自由射流的重要特征是橄榄形边界 外部与固体边壁形成与射流方向相反的回流区。而空调工程 中,工作区通常就设在回流区内,因此对其风速需要限制。 计算回流区速度v 的半经验公式:
三、射流的动力特征
射流过流断面间的动量变化规律为射流的动力特征。
实验表明,射流中任意一点上的压强均等于周围气体的 压强。根据动量方程可以导出,射流各断面上的动量相等。 这就是射流的动力特征。
三、射流的动力特征
以圆断面射流为例,它的任意断面上的动量可表示为
Q0 v0 r v 2 u 2 y dy
得: 令

流体力学第六章

流体力学第六章
●圆柱形外管嘴恒定出流 ●圆柱形外管嘴的真空 ●圆柱形外管嘴的正常工作条件 ●其它类型管嘴的出流
在孔口上连接一段短管,即形成了的管嘴。 应用管嘴的目的是为了增加孔口出流的流量,或者是为了增加 或减小射流的速度。 管嘴的基本型式: (a)圆柱形外管嘴 (b)圆柱形内管嘴 (c)圆锥形收敛管嘴 (d)圆锥形扩张管嘴 (e)流线形管嘴 着重介绍圆柱形外管嘴的恒定出流。
解:水位由D降至0所需时间
t 1 0dh
A 2g D h
式中水箱水面面积
lBl2 D 2 2 hD 2 22l hD h2
t 1 02l hDh2dh
A 2g D
h
2 l 0(D h )12d (D h ) 4lD 32 4 .4 m in
A2 gD
3A2 g
§6-2 管嘴出流
φn--管嘴的流速系数,n
1
2
1 0.82 10.5
μn――管嘴的流量系数 因出口断面无收缩,n n 0.82
薄壁小孔自由出流 QA 2gH,0 全部完善收缩 μ=0.62
结论:在相同的水头作用下, μn/μ=1.32,同样断面管嘴的过 流能力是孔口的1.32倍。
二、圆柱形外管嘴的真空
孔口外面加管嘴后,增加了阻力,但流量并不减少,反而增加。 这是由于收缩断面处真空的作用。
2、按孔口作用水头(或压力) 的稳定与否分
恒定孔口出流:出流水头不变 非恒定孔口出流:出流水头变化
3、按出口出流后的周围介质分
自由出流:若液体经孔口流入大气,称自由出流。 淹没出流:液体经孔流入充满液体的空间,称淹没出流。
4、按孔壁的厚度分
薄壁孔口:液流与孔壁仅在一条周线上接触,壁厚对出流无影 响。
全部收缩的孔口分为:

流体力学第六章边界层理论(附面层理论)

流体力学第六章边界层理论(附面层理论)
减阻和节能
通过减小边界层的阻力,降低流体机械的能耗,提高运行效率。
流动分离控制
控制边界层的流动分离,防止流体机械中的流动失稳和振动,提 高设备稳定性。
流体动力学中的边界层效应
流动特性的影响
边界层内的流动特性对整体流动行为产生重要影响,如湍流、分离 流等。
流动阻力
边界层内的流动阻力决定了流体动力学的性能,如流体阻力、升力 等。
在推导过程中,需要考虑流体与固体表面之间的相互作用力,如粘性力和压力梯 度等,以及流体内部的动量传递和能量传递过程。
边界层方程的求解方法
边界层方程是一个复杂的偏微分方程,求解难度较大。常用的求解方法包括分离变量法、积分变换法、有限差分法和有限元 法等。
分离变量法是将多维问题简化为多个一维问题,通过求解一维问题得到原问题的解。积分变换法是通过积分变换将偏微分方 程转化为常微分方程,从而简化求解过程。有限差分法和有限元法则是将偏微分方程离散化,通过求解离散化的方程组得到 原问题的近似解。
边界层内的流动可以从层流转变为湍流,或从湍 流转为层流。
边界层内的流动状态
层流边界层
流速在物体表面附近呈现平滑变化的流动状态。
湍流边界层
流速在物体表面附近呈现不规则变化的流动状态。
混合流动状态
边界层内的流动状态可以是层流和湍流的混合状态。
03
边界层方程与求解方法
边界层方程的推导
边界层方程是流体力学中的重要方程,用于描述流体在固体表面附近的流动行为 。其推导基于Navier-Stokes方程,通过引入边界层假设,即认为在靠近固体表 面的薄层内,流体的速度梯度变化剧烈,而远离固体表面的流体则可以视为均匀 流动。
展望
随着科技的不断进步和研究的深入,边界层理论在未来 有望取得以下突破。首先,随着计算能力的提升,更加 精确和可靠的数值模拟方法将得到发展,这有助于更好 地理解和预测复杂流动现象。其次,随着实验技术的进 步,将能够获得更高精度的实验数据,为理论模型的发 展提供有力支持。最后,随着多学科交叉研究的深入, 将能够从不同角度全面揭示流体流动的内在机制,推动 流体力学理论的进一步发展。

流体力学第六章_伯努利积分和动量定理

流体力学第六章_伯努利积分和动量定理



m gΔh g ( z4 z3 ) ( m 1)gΔh ( c)

[例4.6] 文丘利流量计:沿总流的伯努利方程(3-3) 由连续性方程
V2 A1 V1 A2
( d)
将(d)式代入(c)式 ,整理后可得大管的平均速度为
V1 k 2 g h
上式中
( m / ) 1 k 2 ( A / A ) 1 1 2
动能 重力势能
2
(沿流线)
压强势能
b) 拉格朗日积分
rotv 0 , v grad
V grad P 0 2 t
2
V P F (t ) t 2
2
c) 伯努利-拉格朗日积分
V ~ V C 2
不可压缩重流体
2
V p C 2
2
可压缩均熵流体
V p C 2 1
2
说明1:
伯努利方程的限制条件 ①沿流线
1V12
2
条件的放宽
沿流束
gz1 p1


2V22
2
gz 2
p2

(沿流束)
②定常流
不定常流
(取α1=α2=1)
2 v V12 p1 V22 p2 gz1 gz2 ds 1 t 2 2
1/ 2
k称为流速系数,文丘利管的流量公式为
Q kA1 2 g h
沿流线伯努利方程的限制条件无粘性流体粘性流体gzgz无粘性流体粘性流体不可压缩流体可压缩流体常数62伯努利积分和拉格朗日积分的应用很大的容器表明自由面a静止不动从而这是个定常问题分析

流体力学第六章 边界层理论 (附面层理论)

流体力学第六章 边界层理论 (附面层理论)
整理ppt
流体力学第六章
1921年起,层流边界层的近似算法大量出现,这些算 法大多数以流体力学中的一般积分原理为基础:如卡门-波 尔豪森积分、列宾森的能量积分等.
整理ppt
流体力学第六章
整理ppt
流体力学第六章
第一节 普朗特边界层微分方程式 6.1.1普朗特理论
整理ppt
流体力学第六章
一、普朗特关于对边界层的定义:
整理ppt
6.2.3附加边界条件
流体力学第六章
以下三个方程均只有两个未知量: u(y),(x)
U(x),p(x)为已知 一.哥氏积分
k1x0uk2dyU kk11 x0udypx0ukdyk0uk1uy2dy
二.卡氏积分
x
0
u2dy
U
x
0
udy
p x
u y
0.
三.列氏积分
流体力学第六章
[u
v x
v
v y
]
(
p y
)
2v x2
2v y 2
U
(U L
)
1 L
(U
L
)2
1
(
p ) y
(U
L
)
1
2
U U 1 (U )2 1 ( p ) (U )2
LL L
y
L
p y
U2 L2
U2 U
L
2
整理ppt
流体力学第六章
比较
p x
U2 L
0
u
kdy
k
0
u
k 1
u y
2
dy
(6-2-3)
x
u 2dy
0

6工程流体力学 第六章理想不可压缩流体的定常流动

6工程流体力学 第六章理想不可压缩流体的定常流动

§6-1 理想不可压缩流体的一元流动(续41)
分别取进口截面与喉部截面为1、2计算截面, 利用伯努利方程可得:
gz——重力场中单位质量流体从z=0上升至z克服重
力所做的功,因此具有的重力势能。
p
——单位质量流体从 p=0至状态p克服压力所做
功,也可以理解为流体相对于p=0的状态所
蕴含的能量,这种能量称为压力能。
§6-1 理想不可压缩流体的一元流动(续9)
引入压力能的概念后,伯努利方程就 可理解为:
在重力场中,当理想不可压缩流体定常 流动时,单位质量流体沿流线的重力势能、 压力能和动能之和为常数,该定理反映了机 械能转化和守恒定理。
表示理论出流射流速度。
上述分析中,忽略了粘性和表面张力的影响。
§6-1 理想不可压缩流体的一元流动(续30)
速度系数定义为:
CV
实 际 平 均 速 度——速度系数 理论速度
Cd

际出流的体积流 理论体积流量
量——流量系数
CC
收 缩截 面 面积AC 孔 口 面 积A
——面积收缩系数
§6-1 理想不可压缩流体的一元流动(续31)
Cd
实际体积流量 理 论 体 积 流 量

缩 截 面 面 积 孔 口 面 积
实 理
际 论
平 速
均 度

度=CcCV
Q CdQth Cd A 2gH CcCV A 2gH
速度系数,体积收缩系数和流量系数均需由实 验确定。对于锐缘圆形孔口,
CV 0.97 0.99, Cc 0.61 0.66
§6-1 理想不可压缩流体的一元流动 一元流动: 所谓一元是指只有一个空间变量。
在流体力学中属于这种性质的流动是指沿流 线的流动。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

hf l
hf
64 l v 2 64 l v 2 l v2 hf vd d 2 g Re d 2 g d 2g

64 Re
第四节 紊流运动
1 圆管紊流的运动情况 2 紊流运动的特征 3 紊流阻力
1 圆管紊流的运动情况
2 紊流运动的特征
1 T u ' dt 0 T 0
p1 v p2 v Z1 Z2 hf 2g 2g
2 1 1 2 2 2
2 均匀流的沿程水头损失Z1 Biblioteka p11v12
2g
Z2
p2


2 2v2
2g
hf
h f ( Z1
p1

) (Z 2
p2

)
3 均匀流受力方程式
4 均匀流基本方程
沿程损失的经验公式
l v hf d 2g
2
二、局部水头损失
在边界急剧变化的区域,阻力主要地集中在该区 域内及其附近,这种集中分布的阻力称为局部阻力。 克服局部阻力的能量损失称为局部损失。 例如管道进口、变径管和阀门等处,都会产生局 部阻力。 引起局部阻力的原因是由于旋涡区的产生和速度 方向和大小的变化。
J 2 u r C 4
边界条件:当r = r0时,u=0,则
所 以

J 2 2 u (r0 r ) 4 J 2 r =0时, umax r0 4
J 2 C r0 4
则圆管断面平均流速v为:
J 2 2 udA (r0 r ) 2rdr 4 Q A J 2 1 A v r0 umax 2 A A r0 8 2
又被称为紊流综合公式,适用于整个紊流的 三个阻力区。莫迪据此绘成阻力系数图-----莫 迪图。
三、莫迪图
粗糙区
层流区
光 滑 区
四、非圆管的沿程损失
以上讨论的都是圆管,圆管是最常用的断面 形式。但工程上也常用到非圆管的情况。例如通风 系统中的风道,有许多就是矩形的。如果设法把非 圆管折合成圆管来计算,那么根据圆管制定的上述 公式和图表,也就适用于非圆管了。
流动现象
层流区
过渡区 紊流区
2、临界流速
实验表明:对于特定的流动装置上临界流速 v’k是不固定的,随着流动的起始条件和实验条件的 扰动程度不同, v’k值可以有很大的差异; 但是下临界流速 vk 却是不变的。在实际工程 中,扰动普遍存在,上临界流速没有实际意义。以 后所指的临界流速即是下临界流速。
1、能量方程
2 p1 p2 1v12 2v2 h j ( Z1 ) ( Z 2 ) g g 2g
2、动量方程
F Q( v
2 2
1v1 )
外力:AB面上的压力、2-2面上的压力、重力的分力 代入动量方程:
p1 A2 p2 A2 gA2 ( z1 z2 ) Q( 2v2 1v1 )
1.
2.
3.
4.
5.
6.
水头损失由哪几部分组成?产生水头损失的原因是什 么? 什么是层流和紊流?怎样判别水流的流态?试说明无 量纲数雷诺数Re的物理意义。 层流和紊流过流断面上的流速分布规律如何?造成它 们流速分布规律不同的原因是什么? 紊流的特征是什么?紊流中运动要素的脉动是如何处 理的? 请叙述同样的边界,在不同水流条件下为什么有时是 水力光滑的,有时却是水力粗糙的。 简单叙述尼古拉兹实验所得到的沿程水头损失系数λ 的变化规律。
第六章 流动阻力和水头损失
重点内容 授课内容 思考题 作业
重点内容
1. 2. 3. 4. 5. 掌握流动阻力和能量损失计算的公式 掌握流体运动两种形态及其判别 理解紊流特征 理解沿程阻力系数的变化规律,掌握 沿程能量损失的计算 理解局部主力产生的原因,掌握局部 阻力损失的计算
思考题
3、 hf 和 v 的关系
hf 和 v 的关系
•层流状态,试验点沿 ab线分布,m1=1 •紊流状态,试验点沿 ef分布,m2=1.75~2.0
•bd或ce段是不稳定的 区域
二、流态的判别准则 ― 临界雷诺数
雷诺等人进一步的买验表明:流动状态不仅和 流速 v 有关,还和管径 d 、流体的动力粘滞系数μ和 密度ρ 有关。以上四个参数可组合成一个无因次数,叫 做雷诺数,用 Re 表示。
第六章 流动阻力和水头损失
第一节 第二节 第三节 第四节 第五节 第六节 第七节 流动阻力和水头损失的分类 粘性流体的两种流态 圆管中的层流运动 紊流运动 紊流的沿程水头损失 局部水头损失 边界层概念与绕流阻力
作业

6.28
P171-6.12、6.14 ,P172-6.27、
λ =f(ks/d)
r0 / k s 15
紊流粗糙区(阻 力平方区)
30.6
60 126
层流区
Re <2000 λ =64 /Re
层流 紊流光滑区
252
507
Re >4000 λ =f(Re)
lg Re
4、阻力分区
5、层流底层的影响
工业管道紊流阻力系数的计算公式
一、光滑区和粗糙区的λ值
层流底层与紊流核心
层流底层的厚度占随着 Re 数的不断加大而越来越薄,它 的存在对管壁粗糙的扰动作用和导热性能有重大影响。
第三节 圆管中的层流运动
本节主要讲述圆管中层流运动的 规律以及从理论上导出沿程阻力系数的 计算公式。
一、均匀流基本方程 二、圆管的层流运动
1、均匀流的性质
过流断面的大小、形状沿程不变; 流线相互平行; 过流断面流速分布沿程不变; 均匀流只有沿程阻力损失,没有局部阻力损失。
第二节 粘性流体的两种流态
一、两种流态 二、流态的判别准则 ― 临界雷诺数
一、两种流态
1、雷诺试验 2、临界流速 3、 hf 和 v 的关系
1、雷诺试验
定义
层流:分层有规则的流动状态称为层流。 紊流:流体质点的运动轨迹是极不规则的, 各部分流体互相剧烈掺混,这种流动状态称 为紊流。
水力半径 R
水力半径 R 的定义为过流断面面积 A 和湿周 x 之比。
如果非圆管的水力半径等于某圆管的水力半径, 当其他条件相同时,这两个管道的沿程损失是相等的。 圆管 矩形管
ab R 2( a b )
明渠
d R 4
bh R b 2h
当量直径de
• 水力半径相等的圆管直径称为非圆管道的当量直径。

de=4R
圆管
de 4R
矩形管
2ab de ab
明渠
4bh de b 2h
第六节 局部水头损失
各种工业管道都要安装一些阀门、弯头、三 通 … … 等配件,用以控制和调节管内的流动。流 体经过这类配件时,由于边壁或流量的改变,均匀 流在这一局部地区遭到破坏,引起了流速的大小、 方向或分布的变化。由此产生的能量损失,称为局 部损失。
• 紊流的脉动:紊流中,液体质点随机性的互相掺混,质点间不 断的发生动量交换,导致各空间点的速度、压强等运动要素随时间 作不规则的变化的现象。
时均恒定流动
如果紊流流动中各物理量的时均值不 随时间而变,仅仅是空间点的函数,即称时 均流动是恒定流动。
3 紊流阻力
在紊流中,一方面因时均流速不同, 各流层间的相对运动,仍然存在着粘性切应 力,另一方面还存在着由脉动引起的动量交 换产生的惯性切应力。因此,紊流阻力包括 粘性切应力和惯性切应力。
动能修正系数α和动量修正系数β
u 3 u dA ( ) dA v A A 3 2 v A A
3
u 2 u dA ( ) dA v A 2 A 1.33 v A A
2
3 圆管层流的沿程阻力系数
Q J 2 v r0 A 8
32vl d 2
J
突扩的特例:
1
二、突然缩小管
突缩的特例
A2 0.5(1 ) A1
0.5
几种典型的局部阻碍
几种典型的局部阻碍
把各种局部阻碍的能量损失和局部阻碍附近 的流动情况对照比较,可以看出,无论是改变流速 的大小,还是改变它的方向,较大的局部损失总是 和旋涡区的存在相联系。旋涡区内不断产生着旋涡, 其能量来自主流,因而不断消耗主流的能量;旋涡 区愈大,能量损失也愈大。
一、突然扩大管
影响沿程损失的两个主要因素
在紊流中,由于断面上的流速变化主 要集中在邻近管壁的流层内,机械能转化为 热能的沿程损失主要集中在这里。因此,流 体所接触的壁面大小,也即湿周 X 的大小, 是影响能量损失的主要外因条件。
影响沿程损失的两个主要因素
若两种不同的断面形式具有相同的湿 周 X ,平均的流速相同。则过流断面面积A 越大,通过流体的数量就越多,因而单位重 量流体的能量损失就越小。
局部损失的 经验公式
v hm 2g
2
三、水头损失叠加原理
图4-1 沿程阻力与沿程水头损失
hl hf hm hfab hfbc hfcd hma hmb hmc
用压强损失表达
第二节 粘性流体的两种流态
从 19 世纪初期起,通过实验研究和 工程实践,人们注意到流体运动有两种结构 不同的流动状态,能量损失的规律与流态密 切相关。
整理得到:
p1 p2 v2 ( z1 ) (z2 ) ( 2 v2 1v1 ) g g g
所以突扩管的局部水头损失
相应有:
A1 2 v12 v12 h j (1 ) 1 A2 2 g 2g
(v1 v2 ) hj 2g
2
2 2 A2 v2 2 v2 h j ( 1) 2 A1 2g 2g
相关文档
最新文档