汽车系统动力学期末重点
汽车系统动力学复习资料
行驶动力学汽车平顺性汽车平顺性的定义:汽车行驶过程中,振动与冲击环境对乘员舒适性的影响。
(发动机、传动系、不平路面等) 系统框图主要研究内容:评价、路面输入特性、振动系统分析 路面测量技术及数据处理 路面测量技术经典测量技术:水平仪和标尺测量 路面不平度测量仪 非接触式路面测量装置 倾斜测量装置 路面不平度路面不平度:通常把相对基准平面的高度q ,沿着道路走向长度l 的变化q(l) 称为道路不平度函数。
根据测量的路面不平度随机数据,在计算机上处理得到路面不平度功率谱)(n G q 或方差2q σ。
路面输入模型 频域模型 空间频率表达式 速度功率谱密度表达式加速度功率谱密度表达式空间与时间功率谱密度的关系 a)为空间频率谱密度b)速度不同时,空间与时间频率的关系 c)为时间频率谱密度时域模型对于线性车辆模型,S(f)表示的路面谱可以直接用来作为频域分析的输入。
当车辆模型中出现非线性元素时,需在时间域或距离域内来描述 1 积分白噪声 1200() () () p d d p d d n G n n n G n n G n n n --⎧≤⎪⎪=⎨⎪>⎪⎩200()(2)()q q G n n G n π=400()(2)()q q G n n G n π=()()2~2~021~000lim 11 11 ()limq n q n n pp q n pf G n n nf n uT T f n uG u f G f G n G fu u u f σσλλσ∆∆∆→--∆∆→=∆∆====⎛⎫====⎪∆⎝⎭为路面功率谱密度在内包含的功率又,,有 则022()up G f G f ==时,0()2()g Z t G uw t π=2 滤波白噪声路面对四轮汽车的输入功率谱密度 x(I)、y(I):左、右两个轮迹的不平度G xx (n)、G yy (n)、 G xy (n) 、 G yx (n) :分别为x(I)、y(I)的自谱和互谱 四轮的不平度函数分别为:q 1(I)=x(I) q 3(I)=y(I) q 2(I)=x(I-L) q 1(I)=y(I-L) 四轮输入时的考虑车辆在硬路面上直线行驶时,后轮的路面输入和前轮相比,只是时间上的滞后。
汽车系统动力学期末重点
1.除了影响车辆纵向运动及其子系统的动力学响应(如发动机、传动、加速、制动、防抱死和牵引力控制系统等方面的因素)外,还有车辆在垂向和横向两个方面的动力学内容,即行驶动力学和操纵动力学。
2.纵向动力学研究车辆直线运动及其控制的问题,主要是车辆沿前进方向的受力与其运动的关系,按车辆工况的不同,可分为驱动动力学和制动动力学。
3.行驶阻力的两个最基本部分是车辆的滚动阻力和空气阻力,行驶阻力代表了车辆对动力和功率的需求。
4.操纵动力学的研究范围的三个区域:线性域、非线性域、非线性联合工况。
5.车辆动力学特征的设计方法:系统建模、分析6.平衡条件:指稳定状态下车辆的基准条件。
7.干扰:指在平衡条件下系统参数的小幅度波动。
8.稳态:指当周期性(或恒定)操作输入(或扰动输入)施加在车辆上引起的周期性(或恒定)车辆响应,在任意长的时间内不发生变化时,便称该车处于稳定。
9.瞬态:指车辆的运动响应和作用在车辆上的外力或操作位置随时间变化而变化,便称此时车辆的运动处于瞬态。
10.车辆控制系统的构成包括:控制算法、传感器技术和执行机构的开发。
11.假如在车前部安装前视预瞄传感器来可靠地提供前轮前方路面的输入信息,那么主动悬架系统就可以利用车辆对前后轮的路面预测信息进行控制,这就是预瞄控制。
第二章1.建立系统微分方程的传统方法主要有两种:(1)利用牛顿矢量力学体系的动量定理及动量矩定理(2)利用拉格朗日的分析力学体系2.约束与约束方程:一般情况下,力学系统在运动时都会受到某些几何或运动学特性的限制,这些构成限制条件的具体物体称为约束,用数学方程所表示的约束关系称为约束方程3.完全约束:如果约束方程仅是系统位形和时间的解析方程,这种约束称为完全约束4.非完全约束:如果约束方程不仅包含系统的位形,还包括广义坐标对时间的导数或广义坐标的微分,而且不能通过积分使之转化为包含位形和和时间的完全约束方程,这种约束称为非完全约束5.完整系统:具有完整约束的力学系统6.非完整系统:具有非完整约束的力学系统第三章1.SAE标准轮胎运动坐标系:被定义为法向坐标向下的三维右手正交坐标系,坐标的原点是轮胎接地印迹中心,x轴定义为车轮平面与地面的交线,前进方向为正,y轴是指车轮旋转轴线在地面上的投影线,向右为正,z轴与地面垂直,向下为正。
车辆系统动力学复习重点
车辆系统动⼒学复习重点1.系统动⼒学研究内容及发展趋势研究内容长期以来,⼈们⼀直在很⼤程度上习惯按纵向、垂向和横向分别独⽴研究车辆动⼒学问题;⽽实际中的车辆同时会受到三个⽅向的输⼊,各⽅向所表现的运动响应特性必然是相互作⽤、相互耦合的.纵向动⼒学:纵向动⼒学研究车辆直线运动及其控制的问题,主要是车辆沿前进⽅向的受⼒与其运动的关系。
按车辆⼯况的不同,可分为驱动动⼒学和制动动⼒学两⼤部分。
⾏驶动⼒学:主要是研究由路⾯的不平激励,通过悬架和轮胎垂向⼒引起的车⾝跳动和俯仰以及车辆的运动。
操纵动⼒学:主要研究车辆的操纵特性,主要与轮胎侧向⼒有关,并由此引起车辆侧滑、横摆和侧倾运动。
操纵动⼒学的研究范围分为三个区域:线性域:侧向加速度越⼩于0.4kg时,通常意味着车辆在⾼附着路⾯做⼩转向运动;⾮线性域:在超过线性域且⼩于极限侧向加速度(约为0.8kg)范围内;⾮线性联合⼯况:通常指车辆在转弯制动或转弯加速时的情况。
发展趋势:(1)车辆主动控制:ABS,TCS等逐步向车⾝侧倾控制,可切换阻尼的半主动悬架和四轮底盘控制系统的集成,转向等当⾯扩展。
通过控制算法、传感器技术和执⾏机构的开发实现的⾃动调节。
(2)车辆多体运动动⼒学:车辆的多刚体模型逐步向多柔体模型发型。
可以准确分析虚拟样机的性能,检查虚拟样机的缺陷从⽽缩短产品的设计周期,节约试制费⽤,同时提⾼物理样机与最终产品之间的相似性。
(3)“⼈—车—路”闭环系统:充分考虑驾驶员模型以及车辆本⾝的⼀些动⼒学问题来提⾼汽车稳定性。
2.轮胎滚动阻⼒概念及其分类:概念:当充⽓的轮胎在理想路⾯(通常指平坦的⼲、硬路⾯)上直线滚动时,其外缘中⼼对称⾯与车轮滚动⽅向⼀致,所受到的滚动⽅向相反的阻⼒。
分类:弹性迟滞阻⼒、摩擦阻⼒和风扇效应阻⼒。
3.什么是滚动阻⼒系数?影响因素有哪些?其值等于相应载荷作⽤下滚动阻⼒F R与车轮垂直载荷F X的⽐值。
影响因素:车轮载荷(反⽐)、胎压(反⽐)、车速(正⽐,先缓慢增加,再明显增加)、轮胎的结构设计、嵌⼊材料和橡胶混合物的选⽤。
汽车系统动力学复习资料
、名词解释1. 状态变量:能够完全描述动态系统运动的最少的变量组称为系统的状态变量。
一个n阶微分方程描述的系统,就有n个状态变量,当他们的时间响应都求得时,系统的运动状态也就确定了。
2. ASR/TCS牵引力控制系统,其在驱动过程中通过调节驱动车轮牵引力实现驱动滑转控制,防止驱动车轮发生滑转。
3. 侧倾转向:在侧向力作用下,车厢发生侧倾,而引起车轮偏转,即车轮围绕垂直轴线或转向节主销转动。
4. 中性转向点:使汽车前,后轮产生同一侧偏角的侧向力作用点。
5. 附着椭圆:驱动力和制动力在不同侧偏角条件下的曲线的包络线是附着椭圆。
它确定了切向力与侧力或者制动力越大,侧偏力越小。
6.不足转向、中性转向、过多转向:7. 4WS :四轮转向,即后轮随动转向。
使后轮在前轮转向时,按照不冋要求随动转动一个转向角,用于提高车辆的操纵稳定性性能9. VDC :控制轮胎的侧向力,可以改善汽车转向操纵性能并提高抗侧向干扰能力10. ESP :车身电子稳定系统,ESP系统包含ABS (防抱死刹车系统)及ASR (驱动防滑转系统),是这两种系统功能上的延伸,它通过对从各传感器传来的车辆行驶状态信息进行分析,然后向ABS、ASR发出纠偏指令,来帮助车辆维持动态平衡。
11. 侧偏角、侧偏刚度:侧偏刚度为侧偏力与侧偏角的比值,实际上应为侧偏力与侧偏角构造曲线在侧偏角等于0度时曲线的斜率。
12. 侧倾中心:悬架侧倾中心定义为汽车车身侧倾时绕符合每个车轮滚动时瞬时中心约束运动的瞬时点。
13. 主动安全性、被动安全性:通过车辆的设计尽量减少或避免交通事故的发生;通过车辆设计师车辆发生事故时尽量减少对成员的伤害。
14. 操纵稳定性:在驾驶者不感到过分紧张、疲劳的条件下,汽车能遵循驾驶者通过转向系及转向车轮给定的方向行驶,且当遭遇外界干挠时,汽车能抵抗干挠而保持稳定行驶的能力。
第一章1■系统动力学的研究任务?主要研究内容?(1)研究任务:[1]系统设计:已知输入和设计系统的特性,使得它的输出满足一定的要求。
汽车理论复习知识点整理(考试用)
一、1.汽车的动力性:汽车在良好路面上直线行驶时,由汽车受到的纵向外力决定的、所能达到的平均行驶速度。
2.汽车动力性评价指标:最高车速ua max ,加速时间t ,最大爬坡度i max3.简述汽车动力性3个评价指标及计算方法:(提示:由驱动力-行驶阻力图,或动力特性图结合附着条件分析)最高车速计算方法:Fi=0 Fj=0 Ft=Ff+Fw最大爬坡度:由驱动力—行驶阻力平衡图和GF F F )(arcsinw f t +-=α再由公式i=tan α可计算出。
4.汽车的驱动力(地面对驱动轮的反作用力)(Ft 与发动机转矩Ttq 、变速器传动比 i g 、主减速器传动比 i 0、传动系的机械效率ηT 和车轮半径 r 等因素有关。
)5.发动机外特性曲线:发动机节气门全开(或高压油泵在最大供油量位置) 发动机部分负荷特性曲线:发动机节气门部分开启(或高压油泵在部分供油位置) 发动机使用外特性曲线:带上全部附件设备时的发动机特性曲线 (由上可知:使用外特性曲线的功率小于外特性曲线的功率)ri i T F T0g tq t η=6.传动系功率损失可分为:机械损失和液力损失7.车轮的半径分为:自由半径:车轮处于无载时的半径。
静力半径r s :汽车静止时,车轮中心至轮胎与道路接触面间的距离。
滚动半径r r :车轮几何中心到速度瞬心的距离。
8.汽车行驶阻力:a 滚动阻力Ff ( ) :车轮滚动时,轮胎与路面的接触区域产生法向、切向的相互作用力以及相应的轮胎和支承面的变形。
在硬路面上,轮胎变形是主要的,轮胎内部摩擦产生弹性迟滞损失。
滚动阻力无法在受力图上表现出来,他只是一个数值。
滚阻系数f (单位汽车重力所需之推力) 的影响因素:路面的种类、行驶车速、轮胎构造、材料、气压有关。
真正作用在驱动轮上驱动汽车行驶的力为地面切向反作用力,他的数值为驱动力-驱动轮上的滚动阻力。
驻波现象:车速达到某一临界车速左右时,滚动阻力迅速增加,轮胎发生驻波现象,轮胎周缘不再是圆形,而是明显的波浪状。
车辆系统动力学-复习提纲
1. 简要给出完整约束与非完整约束的概念2-23,24,25,1)、约束与约束方程一般的力学系统在运动时都会受到某些几何或运动学特性的限制,这些构成限制条件的具体物体称为约束,用数学方程所表示的约束关系称为约束方程。
2)、完整约束与非完整约束如果约束方程只是系统位形及时间的解析方程,则这种约束称为完整约束。
完整约束方程的一般形式为:式中,qi为描述系统位形的广义坐标(i=1,2,…,n);n为广义坐标个数;m为完整约束方程个数;t为时间。
如果约束方程是不可积分的微分方程,这种约束就称为非完整约束。
一阶非完整约束方程的一般形式为:式中,qi为描述系统位形的广义坐(i = 1, 2, …,n);为广义坐标对时间的一阶与数;n为广义坐标个数;m为系统中非完整约束方程个数;t为时间。
2. 解释滑动率的概念3-7,81.滑动率S车轮滑动率表示车轮相对于纯滚动(或纯滑动)状态的偏离程度,是影响轮胎产生纵向力的一个重要因素。
为了使其总为正值,可将驱动和被驱动两种情况分开考虑。
驱动工况时称为滑转率;被驱动(包括制动,常以下标b以示区别)时称为滑移率,二者统称为车轮的滑动率。
参照图3-2,若车轮的滚动半径为rd,轮心前进速度(等于车辆行驶速度)为uw,车轮角速度为ω,则车轮滑动率s定义如下:车轮的滑动率数值在0~1之间变化。
当车轮作纯滚动时,即uw=rd ω,此时s=0;当被驱动轮处于纯滑动状态时,s=1。
3. 轮胎模型中表达的输入量和输出量有哪些?3-22,23轮胎模型描述了轮胎六分力与车轮运动参数之间的数学关系,即轮胎在特定工作条件下的输入和输出之间的关系,如图3-7所示。
根据车辆动力学研究内容的不同,轮胎模型可分为:(1)轮胎纵滑模型主要用于预测车辆在驱动和制动工况时的纵向力。
(2)轮胎侧偏模型和侧倾模型主要用于预测轮胎的侧向力和回正力矩,评价转向工况下低频转角输入响应。
(3)轮胎垂向振动模型主要用于高频垂向振动的评价,并考虑轮胎的包容特性(包含刚性滤波和弹性滤波特性)。
(完整版)汽车理论复习重点
第一章汽车的动力性1.什么是汽车的动力性,其评价指标是什么?各指标的含义是什么?汽车动力性是指汽车在良好路面上直线行驶时由汽车受到的纵向外力决定的,所能达到的平均行驶速度。
评价指标汽车的最高车速、汽车的加速时间、汽车能爬上的最大坡度。
最高车速是指在水平良好的路面上汽车能达到的最高行驶速度。
汽车的加速时间表示汽车的加速能力,包括原地起步加速时间和超车加速时间。
汽车爬坡能力是用满载或者一部分负载的汽车在良好路面上的最大爬上坡度表示的。
2.什么是汽车的驱动力,它与汽车的结构参数及发动机的性能有何关系?汽车的驱动力汽车发动机产生的转矩,经传动系统传至驱动轮上,地面对车轮的反作用力与发动机转矩、变速器传动比、主减速器传动比、传动系的机械效率成正比,与车轮半径成反比。
3.汽车的车速如何计算,他与发动机转速及传动系参数的关系?4.何为发动机外特性?何为发动机使用外特性?它与外特性的差别,计算汽车动力性应使用何种发动机特性?传动系的功率损失分为机械损失和液力损失,分别说明两种损失的具体表现形式。
外特性:发动机节气门全开的速度特性。
使用外特性:带上全部附件设备时的发动机特性。
差别:外特性的最大功率大于使用外特性。
计算动力性用:使用外特性。
机械损失:齿轮传动副、轴承、油封等处的摩擦损失。
液力损失:消耗于润滑油的搅动、润滑油与旋转零件之间的表面摩擦等功率损失。
5.车轮自由半径、滚动半径、静力半径的含义?自由半径:车轮处于无载时的半径。
滚动半径:车轮滚动距离与车轮滚动圈数的比值。
静力半径:汽车静止时,车轮中心至轮胎与道路接触面间的距离。
6.何为汽车的驱动力图?当已知发动机使用外特性能及汽车相应结构参数,如何作汽车的驱动力图?驱动力图:一般用根据发动机外特性确定的驱动力与车速之间的函数关系曲线来全面表示汽车的驱动力。
用发动机外特性曲线、传动系传动比、传动效率、车轮半径等参数求出各个档位的驱动力值t F ,再根据发动机转速求出汽车行驶速度a u ,即可求得t F —a u 曲线。
车辆系统动力学知识点(二)2024
车辆系统动力学知识点(二)引言概述车辆系统动力学是研究车辆在各种运动状态下的力学性质和特性的学科领域。
在车辆系统动力学中,有一些重要的知识点需要了解和掌握。
本文将介绍车辆系统动力学的一些关键知识点,帮助读者深入理解车辆的运动和性能。
正文内容一、车辆质心与重心1. 了解质心和重心的概念2. 理解质心和重心在车辆运动中的作用3. 掌握计算质心和重心位置的方法4. 理解质心高度对车辆稳定性的影响5. 了解如何优化车辆的质心和重心位置二、车辆滚转与侧倾1. 了解车辆滚转和侧倾的概念2. 理解车辆在转弯过程中发生滚转和侧倾的原因3. 掌握计算车辆滚转和侧倾角度的方法4. 了解滚转和侧倾对车辆稳定性的影响5. 了解如何通过调整车辆悬挂系统来提高车辆的滚转和侧倾性能三、车辆悬挂系统1. 了解车辆悬挂系统的组成部分和功能2. 掌握车辆悬挂系统的工作原理3. 理解悬挂系统对车辆操控性和舒适性的影响4. 了解不同类型的悬挂系统及其特点5. 了解如何选择和调整悬挂系统以满足不同的需求四、车辆转向系统1. 了解车辆转向系统的组成部分和工作原理2. 掌握转向系统的调整和维护技巧3. 理解转向系统对车辆操纵性和稳定性的影响4. 了解不同类型的转向系统及其特点5. 了解如何选择和改进转向系统以提高车辆的操控性能五、车辆刹车系统1. 了解车辆刹车系统的组成部分和工作原理2. 掌握刹车系统的调整和维护技巧3. 理解刹车系统对车辆安全性和稳定性的影响4. 了解不同类型的刹车系统及其特点5. 了解如何选择和改进刹车系统以提高车辆的制动性能总结车辆系统动力学是车辆工程领域中一个重要的研究方向,了解和掌握车辆质心与重心、滚转与侧倾、悬挂系统、转向系统和刹车系统等知识点对于理解和提高车辆的性能至关重要。
通过优化车辆的动力学特性和系统设计,可以提高车辆的操纵性、稳定性和安全性,为驾驶员和乘客提供更加舒适和安全的乘车体验。
汽车系统动力学复习资料5
5车辆操纵稳定性汽车操纵稳定性的定义:在驾驶员不感觉过分紧张、疲劳的条件下,汽车能按照驾驶员通过转向系及转向车轮给定的方向行驶,且当受到外界干扰时,汽车能抵抗干扰而保持稳定行驶的能力。
意义:操纵方便性、高速安全性行驶方向:直线、转弯干扰:路不平、侧风、货物或乘客偏载汽车系统坐标系及运动形式汽车操纵稳定性输入、输出输入:转向盘角度输入。
响应:时域响应、频域响应。
汽车时域响应分为稳态响应和瞬态响应。
1、转向盘角阶跃输入下进入的稳态响应:等速直线行驶,急剧转动转向盘,然后维持转角不变,即对汽车施以转向盘角阶跃输入,汽车经短暂的过渡过程后进入等速圆周行驶工况。
2、转向盘角阶跃输入下的瞬态响应:等速直线行驶和等速圆周行驶两个稳态运动之间的过渡过程所对应的瞬间运动响应。
稳态响应特性分类:不足转向、中性转向、过度转向。
转向盘保持一个固定转角不变,缓慢加速或以不同车速等速行驶时,不足转向的汽车转向半径逐渐增大,中性转向的汽车转向半径不变,而过度转向的汽车转向半径逐渐减小。
驾驶员---汽车闭环系统汽车时域响应:把汽车作为开环控制系统的控制特性。
驾驶员-汽车系统闭环控制系统:在汽车行驶过程中,驾驶员根据需要,操纵转向盘使汽车做转向运动。
路面的凹凸不平、侧风、偏载等干扰因素会影响汽车的行驶。
驾驶员则根据道路、交通等情况,通过眼、手及身体感知的汽车运动状况(输出参数),经过头脑的分析、判断(反馈),修正其对转向盘的操纵。
如此不断地反复循环,使汽车能稳定行驶。
汽车操纵稳定性的评价方法1、客观评价法:通过道路试验,用测试仪器测量转向时的汽车系统的物理参数。
试验项目:(1)、蛇形试验:评价汽车的随动性、收敛性、方向操纵轻便性和事故可避性等。
(2)、响应试验(转向盘转角阶跃输入)转向瞬态:评价汽车的动态特性。
(3)、转向瞬态响应试验(转向盘转角脉冲输入):评价汽车的动态特性。
(4)、转向回正性能试验:评价汽车从曲线行驶自行回复到直线行驶的过渡过程和能力。
汽车动力学题库
2006.61.简要按形成原因汽车空气阻力怎么分类?简单概述各种阻力的形成。
(P82)汽车空气阻力分为形状阻力、干扰阻力、内循环阻力、诱导阻力以及摩擦阻力;1)形状阻力占压差阻力的大部分,主要与边界层流态和车身后的流体分离产生的尾涡有关;2)干扰阻力是由于车身表面凸起物、凹坑和车轮等局部的影响着气流的流动而引起的空气阻力;3)内循环阻力是流经车身内部的气流对通道的作用以及流动中的能量损耗产生的;4)诱导阻力是在侧面由下向上的气流形成的涡流的作用下,车顶上面的气流在后背向下偏转,产生的实际升力中一向后的水平分力;5)摩擦阻力是由于空气粘性使其在车身表面产生的切向力.2.简述汽车的楔形造型在空气动力特性方面的特点。
1)前端低矮,进入底部的空气量少,底部产生的空气阻力小;2)发动机罩与前风窗交接处转折平缓,产生的空气阻力小;3)后端上缘的尖棱,使得诱导阻力较小;4)前低后高,‘翼形’迎角小,使空气升力小;5)侧视轮廓图前小后大,气压中心偏后,空气动力稳定性好。
3.假设某电动汽车的质心位置在前后轮轴中间位置,且前后车轮的侧片刚度相同,电池组放在中间质心位置,试问该车稳态转向特性类型属于哪一类?在以下三种情况下,该车的稳态转向也行会如何变化?1)将电池组移到前轴放置;2)将电池组移到后轴放置;3)将电池组分为两部分(质量相等),分别放在前后轴上.根据稳定性因数公式该车稳态转向特性属于中性转向。
1)电池组移至前轴上放置,质心前移,变为不足转向;2)将电池组移到后轴上放置,质心后移,变为过多转向;3)质心位置不变,仍为中性转向。
4.什么是被动悬架、半主动悬架、主动悬架?说明采用天棚阻尼的可控悬架属于哪一类悬架及其理由。
被动悬架是悬挂刚度和阻尼系数都不可调节的传统悬架;半主动悬架的阻尼系数可自动控制,无需力发生器,受减振器原理限制,不能实现最优力控制规律;主动悬架的悬架力可自动控制,需要增设力发生器,理论上可实现最优力控制规律.采用天棚阻尼的可控悬架属于主动悬架,因为其天棚阻尼是可调节的,同时具有自动控制悬架力的力发生器。
汽车系统动力学复习笔记
汽车系统动力学复习笔记汽车系统动力学复习笔记系统的定义:相互作用相互依赖个组成部分组成的具有特定功能的有机整体,一个系统也也可以是一个更大系统的组成部分系统的特性:(1)、层次性:大系统可分解为有很多层次的结构(2)、整体性:个元素是相互联系(3)、目的性:人工系统是为某一目的而构成的(4)、功能共性:系统中都存在物质,能量和信息的流动系统研究生的内容(1)、系统的设计:已知输入时系统满足输出(2)、系统的识别:已知输入和输出来研究系统(3)、环境的预测:已知系统和输出确定输入系统动力学:讨论系统的数学模型和响应的学科汽车系统动力学:将汽车看成一个动态系统,来讨论它的数学模型和响应汽车系统动力学的特点:需要考虑环境因素,驾驶员因素,强调汽车各个子系统之间的联系并将汽车看成一个控制系统来进行分析汽车系统动力学研究的内容:轮胎动力学,汽车纵向、横向、垂直的动力学和多刚体动力学数学模型的方法:(1)各种数学方程单个或两个自由度的用牛顿力学或者动能定理,多自由度的用分析力学(2)用能量建功率流建立模型控制系统理论:输出和输入的拉氏变换函数的比之状态:系统的过去,将来和现在状态变量:可以完全表征系统运动的最小个数,系统变量的选取并不是唯一的状态向量:状态变量作为分量的向量状态空间:状态向量的所有可能值的几何状态方程:表述系统状态变量和系统输入的一阶微分方程X’=AX+BU输出方程:输出与状态变量间的函数关系Y=CX+DU状态空间表达式:状态方程与输出方程所构成的一个系统动态的完整描述可控性和可观性是最优控制中的两个重要概念可控性:在有限时间间隔内,可以用一个控制向量使系统的初始状态转移到任一状态,只要有一个状态变量不受控,则系统就不可控可控条件:矩阵K是非奇异矩阵(充要条件是矩阵K可逆,也就是矩阵K的行列式部位0)可观性:在有限时间间隔内,由输出和输入可以确定系统初始状态的每一个分量,只要有一个状态变量不能确定,则系统是不可观测的可观条件:矩阵K是非奇异矩阵(1)系统的状态方程:X’=AX+BU (该形式为标准形式)系统的输出方程:Y=CX+DU其中输入为U(2)线性定常熟系统的动态微分方程:指的是系统的输出的n阶各倒数线性和等于输入n 阶各倒数线性和(3)传递函数G(S):输出拉氏变换除以输入的拉式变换则系统特性:层次性、整体性、目的性、功能共性、汽车系统动力学就是把汽车当做一个动态系统,对其行为进行研究,讨论其数学模型和响应汽车系统动力学的研究内容1、环境和路面的分析以及其对汽车的作用2、汽车系统及其各子系统的相互作用3、汽车系统最佳控制盒最佳使用4、人车系统的相互匹配和模型研究模型分类比例物理模型数学等效模型数学模型轮胎滚动时两个重要的角度:侧偏角和外倾角,侧向力是侧偏角和外倾角两者的函数滚动阻力:轮胎的内摩擦、地面变形的阻尼,以及轮胎与路面间弹性变形与局部滑移产生的大小等于轮动阻力系数乘以轮胎垂直载荷直线行驶时滚动阻力1、干路面上滚动阻力系数与速度的平方有关2、湿路面滚动阻力对应于干路面上滚动阻力加上穿水阻力3、前束阻力正比于前束角的平方4、转弯时的滚动阻力:取决于行驶速度和转弯半径一、弹性拉伸绳模型(接触长度,松弛长度的特征长度,气体刚度)1、静止时的线性模型》》静止时的侧向刚度)1(2δ+-k2、静态绕Z 轴转动模型》》扭转刚度))1(3(23δδ++-l Kl 3、自由滚动线性模型(小侧滑或小曲率半径,连续地进入接触区)(1)滚动侧偏刚度》》静止时的)1(δ+倍(2)滚动扭转刚度》》与静态扭转刚度相等二、轮胎侧偏特性的数学模型1、假设:胎体刚性,胎面弹性,轮胎自由滚动,轮胎侧倾角为零,接触点各点摩擦系数为常数2、考虑胎体侧完变形的轮胎侧偏特性》》综合侧偏刚度=胎面+胎体的侧偏刚度3、影响因素:子午、大经、低压、宽辋、少帘层,地在和,高磨损都会是侧偏刚度最大。
汽车理论期末考试总结复习计划习题及答案
三、名词解释1、坡度阻力与道路阻力2、等速百公里油耗3、动力因素4、后备功率5、制动力系数与侧向力系数6、制动效率与利用附着系数7、制动器抗热衰退性与抗水衰退性8、制动器制动力分配系数8、接近角与离去角10、牵引系数与牵引效率11、附着力与附着率12、同步附着系数13、滑水现象14、制动跑偏与制动侧滑15、滑动率与制动力系数四、简答题1、滚动阻力与哪些因素有关2、在高速路上行驶时,轮胎气压高些好还是低些好为什么假设在松软的沙土路面或雪面上又如何3、为追求高的动力性,应如何换档假设追求低油耗,又该如何换档4、在设计传动系各档传动比时,应遵循怎样的根本原那么5、为降低空气阻力可采取哪些措施6、从保证制动时方向稳定性出发,对制动系的要求是7、汽车的稳态转向特性分为哪三种类型一般汽车应具有什么样的转向特性8、汽车满载和空载时是否具有相同的操纵稳定性9、车辆稳定性控制系统〔 VSC〕的控制原理是什么10、在制动过程中,假设只有前轮抱死或前轮先抱死,会出现什么情况如果只有后轴抱死或后轴先抱死又如何最理想的制动情况是11、纵向通过角和最小离地间隙对汽车通过性有何影响12、横向稳定杆起什么作用其装在前悬架与后悬架效果有何不同五、计算题1、某汽车的总质量m=3000kg,CD=,A=3m2,旋转质量换算系数δ=,坡度角α=5°,f=,车轮半径,传动系机械效率η=,加速度2,ua=30km/h,计算汽车克服各种阻力所需要的发动机输出功率2)。
2、设一驱动轿车轴距,质心高度hg,其前轴负荷为总重的%。
确定其在=和 =路面上所能到达的极限最高车速与极限最大爬坡度及极限最大加速度〔在求最大爬坡度和最大加速度时可设F W=0〕。
其它有关参数为:m=1600kg,CD=,A=2m2,f=,δ=1。
3、某车总质量为 m=2000kg,L=4m〔轴距〕,质心离前轴的距离为,离后轴的距离为,质心高度hg,在坡度i=%的良好路面上下坡时,求前后轴的轴荷分配系数〔注:前轴荷分配系数mf1=Fz1/Fz,后轴为mf2=Fz2/Fz〕。
汽车系统动力学复习资料5
5车辆操纵稳定性汽车操纵稳定性的定义:在驾驶员不感觉过分紧张、疲劳的条件下,汽车能按照驾驶员通过转向系及转向车轮给定的方向行驶,且当受到外界干扰时,汽车能抵抗干扰而保持稳定行驶的能力。
意义:操纵方便性、高速安全性行驶方向:直线、转弯干扰:路不平、侧风、货物或乘客偏载汽车系统坐标系及运动形式汽车操纵稳定性输入、输出输入:转向盘角度输入。
响应:时域响应、频域响应。
汽车时域响应分为稳态响应和瞬态响应。
1、转向盘角阶跃输入下进入的稳态响应:等速直线行驶,急剧转动转向盘,然后维持转角不变,即对汽车施以转向盘角阶跃输入,汽车经短暂的过渡过程后进入等速圆周行驶工况。
2、转向盘角阶跃输入下的瞬态响应:等速直线行驶和等速圆周行驶两个稳态运动之间的过渡过程所对应的瞬间运动响应。
稳态响应特性分类:不足转向、中性转向、过度转向。
转向盘保持一个固定转角不变,缓慢加速或以不同车速等速行驶时,不足转向的汽车转向半径逐渐增大,中性转向的汽车转向半径不变,而过度转向的汽车转向半径逐渐减小。
驾驶员---汽车闭环系统汽车时域响应:把汽车作为开环控制系统的控制特性。
驾驶员-汽车系统闭环控制系统:在汽车行驶过程中,驾驶员根据需要,操纵转向盘使汽车做转向运动。
路面的凹凸不平、侧风、偏载等干扰因素会影响汽车的行驶。
驾驶员则根据道路、交通等情况,通过眼、手及身体感知的汽车运动状况(输出参数),经过头脑的分析、判断(反馈),修正其对转向盘的操纵。
如此不断地反复循环,使汽车能稳定行驶。
汽车操纵稳定性的评价方法1、客观评价法:通过道路试验,用测试仪器测量转向时的汽车系统的物理参数。
试验项目:(1)、蛇形试验:评价汽车的随动性、收敛性、方向操纵轻便性和事故可避性等。
(2)、响应试验(转向盘转角阶跃输入)转向瞬态:评价汽车的动态特性。
(3)、转向瞬态响应试验(转向盘转角脉冲输入):评价汽车的动态特性。
(4)、转向回正性能试验:评价汽车从曲线行驶自行回复到直线行驶的过渡过程和能力。
车辆系统动力学重点梳理
基础概念一、车体运动的六种形式是什么?沿着XYZ 轴三个方向分别平移的:伸缩、横摆、浮沉。
沿着XYZ 轴三个轴分别回转的:侧滚、点头、摇头。
二、车辆动力性能有哪几种?(3种)各用什么指标描述?1. 运动平稳性:德国sperling 指标;国际联盟UIC 指标2. 运动稳定性:防止蛇行运动(运行速度远低于蛇行运动临界速度);防止脱轨稳定性(脱轨系数:Q/P 即横向力比垂向力;轮重减载率:△P/P );防止倾覆稳定性(倾覆系数:P 动载荷/P 静载荷)3. 曲线通过能力:磨耗指数三、轨道不平顺有哪几种?(4种)1. 几何性轨道不平顺:垂向不平顺(轨道在同一轮载下沿长度方向高低不平);水平不平顺(左右轨道对应点高度差);轨距不平顺(左右轨道横向平面内轨距有偏差);方向不平顺(左右轨道横向平面内弯曲不直)2. 随机性轨道不平顺3. 周期性轨道不平顺:钢轨接头处4. 局部轨道不平顺:路基隆起或下沉、过道岔、钢轨局部磨损、曲线顺坡轨距变化四、为何轮缘根部圆弧最小半径要小于钢轨肩部圆弧半径?一般情况下,当轮对相对于轨道的横移量不大时产生一点接触;而相对于轨道具有横移量过大时产生两点接触。
当轮缘根部半径小于钢轨肩部圆弧半径时,可以使轮对相对于轨道具有的较大横移量时(即轮缘根部移动到轨道肩部时)也不会出现两点接触,减小轮轨磨耗。
五、踏面斜度与等效斜度的定义、区别、作用?锥形踏面的车轮在滚动圆附近做一斜度为λ的直线段,当轮对中心离开对中位置时,有一横移量为y w 时,左右轮实际滚动圆:r L =r 0-λy w ,r R =r 0+λy w ,联立得: 踏面斜度:wL R y r 2r -=λ 对于纯锥形踏面,踏面斜度λ恒为常数;对于磨耗型踏面,踏面由多段弧组成,踏面斜度λ随着轮对横移量y w 的改变而改变,λ不再为一个恒定的常数,因此在计算时,取等效值,踏面等效斜度:w L R y r 2r e -=λ 等效斜度直接影响车辆曲线通过性能。
车辆系统动力学复习题 (2)
《车辆系统动力学》(此复习题覆盖大部分试题。
考试范围以课堂讲授内容为准。
) 一、概念题1. 约束和约束方程(19)力学系统在运动时会受到某些几何和运动学特性的限制,这些构成限制条件的物体称为约束。
用数学方程表示的约束关系称为约束方程。
2. 完整约束和非完整约束(19)如果系统约束方程仅是系统位形和时间的解析方程,则这种约束称为完整约束;如果约束方程不仅包括系统的位形,还包括广义坐标对时间的倒数或者广义坐标的微分,而且不能通过积分使之转化为包括位形和时间的完整约束方程,则这种约束就称为非完整约束。
3. 轮胎侧偏角(31)车轮回转平面与车轮中心运动方向的夹角。
4. 轮胎径向变形(31)定义为无负载时的轮胎半径rt 与负载时的轮胎半径rtf 之差。
5. 轮胎的滚动阻力系数(40)相应载荷下的滚动阻力与轮胎垂直载荷的比值。
6. 轮胎驱动力系数(50)轮胎驱动力系数定义为驱动力与法向力的比值 7. 边界层(70)当流体绕物体流动时,在物体壁面附近受流体粘性影响显著的薄层称为边界层。
8. 压力系数(74)假设车身某点压力p 、速度v ,来流压力p ∞、速度v ∞,定义压力系数21⎪⎪⎭⎫ ⎝⎛-==∞∞∞v v q p-p C p9. 风洞的堵塞比(77)车辆迎风面积和风洞送风横断面面积的关系(堵塞比) 10. 雷诺数(79)雷诺数定义为气流速度v 、流体特性长度L 的乘积与流体运动粘度ν的比值。
Re=vL/ν 11. 空气阻力系数(82-83)q /A F Aq F C D D D ==Fd 为空气阻力,A 为参考面积,通常采用汽车迎风面积,q 为动压力12. 旋转质量换算系数(88)12dv ii +=r m Θδ 其中 )(Ti c e 2g 20dr 20w i ΘΘΘi i Θi ΘΘ++++=为等效转动惯量。
mv 是整车整备质量,rd 为驱动轮的滚动半径。
13. 后备驱动力(92)车辆行驶时实际需要的驱动力FDem 与车辆所能提供的最大驱动力Fx 的差值。
车辆系统动力学知识点
车辆系统基础知识1.车辆系统中主要有哪几种非线性关系:(线性化方法、原理。
)轮轨接触几何关系:线性化时踏面锥度、重力刚度、重力角刚度为常数。
蠕滑率-力规律:蠕滑系数在线性化后也为常数。
车辆的悬挂特性:2.车辆系统动力学研究内容:蛇形运动稳定性;车辆曲线通过时运动状态和轮轨作用力;车辆对轨道不平顺的响应;过曲线时抗脱轨、抗倾覆性能;车辆纵向动力学,车辆间相互作用;新型悬挂形式,主动、半主动悬挂,径向转向架;弓网系统动态特性:受流、噪音;车辆系统空气动力学。
3.轨道车辆的不平顺及其对应的车辆振动类型:(此处需要补充各种常用轨道谱表示方式,以及不同振动形式耦合程度大小与关系)直线区段的四种不平顺分别为:垂向轨道不平顺,引起车辆的垂向振动,水平轨道不平顺,引起车辆的横向滚摆耦合振动;方向不平顺,引起车辆的侧滚和左右摇摆;轨距不平顺轨距不平顺对轮轨磨耗、车辆运行稳定性和安全性有一定影响。
车辆系统动力学指标及评价标准1.车辆运行安全性及评价标准:脱轨系数:评定防止车轮脱轨稳定性的脱轨系数,为某一时刻作用在车轮上的横向力Q和垂向力P的比值。
脱轨系数临界值定义为当轮轨接触的切向力T等于摩擦系数乘以接触法向力N时的Q/P值。
(有两类脱轨系数,一种与时间相关、一种与时间无关,像这种评价指标的原理,虽与考试没什么关系,但是可以尝试弄清楚,谁整理好了可以弄进来。
还有不同标准,比如《铁道机车动力学性能试验鉴定方法及评定标准》(TB/T 2360-93)《高速试验列车动力车强度及动力学性能规范》(95J 01-L)《高速试验列车动力车强度及动力学性能规范》(95J 01-M)的限定值,这些个常用标准,值得整理)轮重减载率:评定车辆在轮对横向力为零或接近于0的条件下,因一侧车轮严重减载而脱轨的安全性指标。
(同上)倾覆系数:评价车辆在侧向风力、离心力和横向振动惯性力的最不利组合下是否会导致使车辆向一侧倾覆。
(同上)2.车辆运行平稳性及评价指标:Sperling:评定车辆本身的运行品质以及旅客乘坐舒适度,根据振动加速度及其振动频率来衡量,不同类型的振动(横向、垂向、不同频率范围内的振动)得到的W值不同,然后汇总取算术平均得到总的平稳性指标。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.除了影响车辆纵向运动及其子系统的动力学响应(如发动机、传动、加速、制动、防抱死和牵引力控制系统等方面的因素)外,还有车辆在垂向和横向两个方面的动力学内容,即行驶动力学和操纵动力学。
2.纵向动力学研究车辆直线运动及其控制的问题,主要是车辆沿前进方向的受力与其运动的关系,按车辆工况的不同,可分为驱动动力学和制动动力学。
3.行驶阻力的两个最基本部分是车辆的滚动阻力和空气阻力,行驶阻力代表了车辆对动力和功率的需求。
4.操纵动力学的研究范围的三个区域:线性域、非线性域、非线性联合工况。
5.车辆动力学特征的设计方法:系统建模、分析8.稳态:指当周期性(或恒定)操作输入(或扰动输入)施加在车辆上引起的周期性(或恒定)车辆响应,在任意长的时间内不发生变化时,便称该车处于稳定。
9.瞬态:指车辆的运动响应和作用在车辆上的外力或操作位置随时间变化而变化,便称此时车辆的运动处于瞬态。
10.车辆控制系统的构成包括:控制算法、传感器技术和执行机构的开发。
11.假如在车前部安装前视预瞄传感器来可靠地提供前轮前方路面的输入信息,那么主动悬架系统就可以利用车辆对前后轮的路面预测信息进行控制,这就是预瞄控制。
第二章1.建立系统微分方程的传统方法主要有两种:(1)利用牛顿矢量力学体系的动量定理及动量矩定理(2)利用拉格朗日的分析力学体系2.约束与约束方程:一般情况下,力学系统在运动时都会受到某些几何或运动学特性的限制,这些构成限制条件的具体物体称为约束,用数学方程所表示的约束关系称为约束方程3.完全约束:如果约束方程仅是系统位形和时间的解析方程,这种约束称为完全约束4.非完全约束:如果约束方程不仅包含系统的位形,还包括广义坐标对时间的导数或广义坐标的微分,而且不能通过积分使之转化为包含位形和和时间的完全约束方程,这种约束称为非完全约束5.完整系统:具有完整约束的力学系统6.非完整系统:具有非完整约束的力学系统第三章1.SAE标准轮胎运动坐标系:被定义为法向坐标向下的三维右手正交坐标系,坐标的原点是轮胎接地印迹中心,x轴定义为车轮平面与地面的交线,前进方向为正,y轴是指车轮旋转轴线在地面上的投影线,向右为正,z轴与地面垂直,向下为正。
离程度,是影响轮胎产生纵向力的一个重要因素定义:车轮回转平面与车轮中心运动方向的夹角,顺时针方向为正。
4.根据车辆动力学研究的内容不同,轮胎模型可分为(1)轮胎纵滑模型(2)轮胎侧偏模型和侧倾模型(3)轮胎垂向振动模型y=Dsin(Carctan(Bx-E(Bx-arctanBx)))它以三角形函数组合的形式来拟合试验数据,得出了一套形式相同并可同时表达纵向力侧向力和回正力矩的轮胎模型(y可以是纵向力侧向力和回正力矩,而自变量x可以在不同情况下分别表示轮胎侧偏角或纵向滑移率)6.轮胎垂直刚度的三种不同定义:静刚度,非滚动动刚度,滚动动刚度。
7.在60—100HZ的频率范围内,子午线轮胎的垂向振动传递特性幅值显著地高于斜交轮胎,该频率范围的振动正对应于乘员的“颤振”感觉区域。
在约150—200HZ左右的频率范围,斜交轮胎的振动特性远差于子午线轮胎,通常将该频率范围的轮胎振动称之为轮胎“噪声”,即通常所说的“路面噪声”。
8.轮胎噪声的产生机理(1)空气泵吸效应随着轮胎的滚动,空气在胎面与路面的空隙中被吸入和挤压。
当压缩的空气在接地区间的出口处被告诉释放到空气中时,就会产生噪声。
(2)胎面单元振动当轮胎滚动时,胎面单元作用于路面,当它离开接触区域时,胎齿便由高变形状态下恢复,从而引起胎面噪声,此为主要的轮胎噪声源。
同时,胎体振动、胎面花纹沟、花纹凸块空隙就像谐振管一样,也促进了轮胎的噪声辐射。
由于空气泵吸效应、胎体和胎齿单元的振动均和车速有关,因此轮胎噪声的程度是车辆行驶速度的函数。
(3)路面材料对轮胎噪声也有影响。
9.影响轮胎侧向力的三个最重要的因素是侧偏角、垂向载荷和车轮外倾角。
侧偏角由轮胎的运行条件所决定,它取决于车辆前进速度、侧向速度、横摆角速度和转向角。
轮胎垂向载荷的静态值由车辆质量分布所决定,但随着载荷在纵向和侧向的重新分配,轮胎的垂向载荷会发生变化。
车轮外倾角由转向角和通过悬架杆系作用的车身侧倾所决定,但对非独立悬架车辆来说,外倾角只取决于车轴的侧倾角。
(填空题)10.整车建模中对轮胎模型的考虑因素(简答)1)在基本的线性操纵动力学模型中,轮胎只需产生与垂直载荷和侧偏角呈线性关系的侧向力(包括回正力矩)。
2)如果车辆模型考虑了车轮载荷重新分配的影响,那么轮胎模型还必须包括侧向力与轮胎垂向载荷的关系。
3)如果建模中还考虑了车身侧倾角与车轮外倾角的关系,那么轮胎模型中必须包含车轮外倾对轮胎力的影响。
4)在非线性域分析中,随着车辆模型复杂程度和精度的进一步提高,轮胎模型必须能充分考虑大侧偏角情况下的受力情况,并对其进行精确计算。
5)如果车辆模型包括纵向自由度,那么轮胎模型也必须包含纵向力。
因此,在需要同时考虑纵向力和侧向力的联合工况下,轮胎模型必须能够在两个方向准确的分配所能获得的轮胎力。
第四章1.车辆空气动力学的主要研究内容1)通过车身外部造型、流体控制和内部流通管道的设计来减小车辆的空气阻力。
2)在空气阻力一定的情况下,尽可能增加向下的气动压力以提高轮胎附着性,但同时减小对轮胎侧偏力的影响。
3)比例模型或全尺寸车辆空气动力学实验,以及对实验结果的分析,4)研究空气动力与地盘设计及汽车使用情况之间的相互关系及影响。
2.当理想不可压缩流体做定常运动时,可采用伯努利方程来描述其力学特性。
伯努利方程以理想流体和能量守恒的基础而建立,它忽略了空气重力的影响,用于描述流体速度和压强之间的关系。
3.由伯努利方程可知,如动压增加,则流体的静压必定减小,反之亦然。
4.风洞一般由动力段、收缩段、试验段以及扩散段组成。
5.空气阻力包括什么1)形状阻力2)内循环阻力3)诱导阻力4)摩擦阻力5)侧向气流的影响第五、六章1.按行驶状态的不同,车辆行驶阻力课分为稳态匀速行驶状态下的阻力和瞬态加速时的阻力两部分,前者包括车轮滚动阻力、空气阻力和坡度阻力,后者主要是指加速阻力。
2.为什么重型货车1挡加速度不如2挡?重型货车的δi对加速能力的影响比较显著,为了获取较强的爬坡能力,重型货车需在最低挡位下工作,这时的旋转质量换算系数相对较高,甚至1挡的加速能力还不如2挡,因此,为实现车辆的最大加速能力,换挡的最佳时机应该是发动机达最高转速,或在相邻的高挡能提供比当前更高加速度的情况下。
3.驱动效率τ定义为驱动轴静载Fzs与整车重量W的比值。
4.车辆制动性主要由下面三方面来评价:1)制动效能,即制动距离和制动减速度;2)制动效能的稳定性,即抗热衰退性能;3)制动时的方向稳定性,制动时车辆不发生跑偏,侧滑和失去转向能力的性能。
5.前后轮抱死的运动情况的分析:1)后轮先抱死:后轮已抱死拖滑,而前轮仍处于滚动状态,可能由路面倾斜坡度、侧风或左右车轮制动力不平衡等因素引起的侧向干扰力Fy作用于车辆质心,由于后轮抱死拖滑,后轮已无法提供侧向力来平衡Fy,而此时前轮产生的侧向力Fyf产生一个绕车辆质心的不稳定力矩Ffry*a,该力矩使车辆侧偏角β继续增加,导致车辆横摆加剧。
2)前轮先抱死:前轮先于后轮抱死,后轮能够产生侧向力来形成一个使车辆回正的稳定力矩Fry*b,从而减少车辆的初始侧偏角β,因而是稳定工况。
但前轮抱死后,由于前轮不能产生侧向力,会使车辆失去转向能力。
6.目前三种常用的ABS控制策略用于控制车轮制动压力,分别是单轮控制、低选控制和高选控制。
7.典型的TCS(驱动力控制系统)控制方式:发动机输出转矩调节、驱动轮制动力矩调节、差速器锁止控制、离合器/变速器控制。
第七章1.当量转动惯量的定义及计算当量转动惯量J是指传动系统中与曲轴不同速旋转零部件的转动惯量换算成曲轴同速旋转条件下的转动惯量2.传动系统的减振措施主要有哪两类1)调整传动系统本身的固有频率使其临界转速增加或者降低到发动机工作转速之外。
2)提高系统阻尼以衰减传动系统振动液力耦合器或液力变矩器具有良好的阻尼特性,可有效消除传动系统扭振。
3.双质量飞轮的优点1)降低了发动机—变速器振动系统的固有频率,可避免采油机怠速时发生共振。
2)可加大减振弹簧的布置半径,降低减震弹簧刚度,并容许增大转角。
3)由于其较好的减振效果,变速器中可采用粘度较低的齿轮油而不致产生齿轮冲击噪声,并可改善低温工况下的换挡性能。
而且,由于从动盘中无减振器,减少了从动盘的转动惯量,也有利于换挡平稳。
第九、十章1.在车辆悬架系统中,气体弹簧按其工作介质的不同,可分为空气弹簧和油气弹簧,空气弹簧按结构形式分为囊式和膜式。
2.可将振动输入按以下属性分类:振动的幅值和频率、作用的位置和方向、作用时间。
3.新标准规定,椅面垂直轴向(Zs)频率加权函数的最敏感频率范围为4~12.5Hz,其中4~8Hz范围内,人体内脏器官最易产生共振;而8~12.5Hz范围的振动对人体脊椎系统影响最大。
座椅面水平轴向Xs、Ys的频率加权函数的最敏感范围均为0.5~2Hz,约3Hz以下时水平振动比垂直振动更敏感1.除了影响车辆纵向运动及其子系统的动力学响应(如发动机、传动、加速、制动、防抱死和牵引力控制系统等方面的因素)外,还有车辆在垂向和横向两个方面的动力学内容,即行驶动力学和操纵动力学。
2.纵向动力学研究车辆直线运动及其控制的问题,主要是车辆沿前进方向的受力与其运动的关系,按车辆工况的不同,可分为驱动动力学和制动动力学。
3.行驶阻力的两个最基本部分是车辆的滚动阻力和空气阻力,行驶阻力代表了车辆对动力和功率的需求。
4.操纵动力学的研究范围的三个区域:线性域、非线性域、非线性联合工况。
5.车辆动力学特征的设计方法:系统建模、分析8.稳态:指当周期性(或恒定)操作输入(或扰动输入)施加在车辆上引起的周期性(或恒定)车辆响应,在任意长的时间内不发生变化时,便称该车处于稳定。
9.瞬态:指车辆的运动响应和作用在车辆上的外力或操作位置随时间变化而变化,便称此时车辆的运动处于瞬态。
10.车辆控制系统的构成包括:控制算法、传感器技术和执行机构的开发。
11.假如在车前部安装前视预瞄传感器来可靠地提供前轮前方路面的输入信息,那么主动悬架系统就可以利用车辆对前后轮的路面预测信息进行控制,这就是预瞄控制。
第二章1.建立系统微分方程的传统方法主要有两种:(1)利用牛顿矢量力学体系的动量定理及动量矩定理(2)利用拉格朗日的分析力学体系2.约束与约束方程:一般情况下,力学系统在运动时都会受到某些几何或运动学特性的限制,这些构成限制条件的具体物体称为约束,用数学方程所表示的约束关系称为约束方程3.完全约束:如果约束方程仅是系统位形和时间的解析方程,这种约束称为完全约束4.非完全约束:如果约束方程不仅包含系统的位形,还包括广义坐标对时间的导数或广义坐标的微分,而且不能通过积分使之转化为包含位形和和时间的完全约束方程,这种约束称为非完全约束5.完整系统:具有完整约束的力学系统6.非完整系统:具有非完整约束的力学系统第三章1.SAE标准轮胎运动坐标系:被定义为法向坐标向下的三维右手正交坐标系,坐标的原点是轮胎接地印迹中心,x轴定义为车轮平面与地面的交线,前进方向为正,y轴是指车轮旋转轴线在地面上的投影线,向右为正,z轴与地面垂直,向下为正。