单片机双机之间的串行通信设计

合集下载

单片机双机串口通信

单片机双机串口通信

单片机双机串口通信在现代电子技术领域,单片机的应用无处不在。

而单片机之间的通信则是实现复杂系统功能的关键之一。

其中,双机串口通信是一种常见且重要的通信方式。

什么是单片机双机串口通信呢?简单来说,就是让两个单片机能够通过串口相互交换数据和信息。

想象一下,两个单片机就像是两个小伙伴,它们需要交流分享彼此的“想法”和“知识”,串口通信就是它们交流的“语言”。

串口通信,顾名思义,是通过串行的方式来传输数据。

这和我们日常生活中并行传输数据有所不同。

在并行传输中,多个数据位同时传输;而在串行传输中,数据一位一位地按顺序传送。

虽然串行传输速度相对较慢,但它所需的硬件连线简单,成本较低,对于单片机这种资源有限的设备来说,是一种非常实用的通信方式。

在进行单片机双机串口通信时,我们首先要了解串口通信的一些基本参数。

比如波特率,它决定了数据传输的速度。

就像两个人说话的快慢,如果波特率设置得不一致,那么双方就无法正常理解对方的意思,数据传输就会出错。

常见的波特率有 9600、115200 等。

还有数据位、停止位和校验位。

数据位决定了每次传输的数据长度,常见的有 8 位;停止位表示一个数据帧的结束,通常是 1 位或 2 位;校验位则用于检验数据传输的正确性,有奇校验、偶校验和无校验等方式。

为了实现双机串口通信,我们需要在两个单片机上分别进行编程。

编程的主要任务包括初始化串口、设置通信参数、发送数据和接收数据。

初始化串口时,我们要配置好相关的寄存器,使其工作在我们期望的模式下。

比如设置波特率发生器的数值,以确定合适的波特率。

发送数据相对来说比较简单。

我们将要发送的数据放入特定的寄存器中,然后启动发送操作,单片机就会自动将数据一位一位地通过串口发送出去。

接收数据则需要我们不断地检查接收标志位,以确定是否有新的数据到来。

当有新数据时,从接收寄存器中读取数据,并进行相应的处理。

在实际应用中,单片机双机串口通信有着广泛的用途。

比如在一个温度监测系统中,一个单片机负责采集温度数据,另一个单片机则负责将数据显示在屏幕上或者上传到网络。

双机串行通信的设计与实现

双机串行通信的设计与实现

双机串行通信的设计与实现设计流程如下:1.确定通信协议:在设计双机串行通信时,首先要确定通信协议,包括数据格式、数据传输速率、错误检测和纠错等方面。

常见的协议有RS-232、RS-485、USB等。

2.硬件设计:双机串行通信需要使用串行通信接口进行数据传输。

设计中需要考虑硬件的选型,如选择合适的串行通信芯片、电平转换电路、线缆等。

根据通信协议的要求,确定串行通信接口的电平、波特率等参数。

3. 软件设计:在设计双机串行通信的软件时,需要实现数据的发送和接收功能。

常见的操作系统如Windows、Linux等提供了串口通信的API函数,可以方便地实现通信功能。

软件设计包括以下几个方面:a)串口初始化:设置串口的波特率、数据位数、停止位数、校验位等参数。

b)数据发送:将需要发送的数据经过封装后发送给串口。

c)数据接收:通过串口接收数据,并解析数据格式。

d)错误检测与纠错:对接收到的数据进行错误检测,如使用奇偶校验、CRC等方式进行数据完整性检验,针对错误数据进行纠正或丢弃。

e)数据处理:根据具体应用场景对接收到的数据进行处理,如进行数据解析、存储、显示等。

4.通信测试与调试:设计完成后,需要进行通信测试与调试,确保双机串行通信的正确性和稳定性。

通过发送和接收数据进行测试,检查通信协议的实现是否正确,数据的传输是否准确。

实现双机串行通信的关键在于硬件设计与软件设计的合理结合。

合理选择适合的硬件设备,同时根据通信协议的要求进行软件开发,能够保证通信的可靠性和稳定性。

总而言之,双机串行通信的设计与实现需要确定通信协议、硬件设计与软件开发,通过测试和调试保证通信的正确性与稳定性。

它是计算机通信的重要组成部分,应用广泛。

单片机单片机课程设计-双机串行通信

单片机单片机课程设计-双机串行通信

单片机单片机课程设计-双机串行通信单片机课程设计双机串行通信在当今的电子信息领域,单片机的应用无处不在。

而双机串行通信作为单片机系统中的一个重要环节,为实现设备之间的数据交换和协同工作提供了关键的技术支持。

一、双机串行通信的基本原理双机串行通信是指两个单片机之间通过串行接口进行数据传输的过程。

串行通信相较于并行通信,具有线路简单、成本低、抗干扰能力强等优点。

在串行通信中,数据是一位一位地按顺序传输的。

常见的串行通信协议有 UART(通用异步收发器)、SPI(串行外设接口)和 I2C(内部集成电路)等。

在本次课程设计中,我们主要采用 UART 协议来实现双机串行通信。

UART 协议包括起始位、数据位、奇偶校验位和停止位。

起始位用于标识数据传输的开始,通常为逻辑 0;数据位可以是 5 位、6 位、7 位或 8 位,具体取决于通信双方的约定;奇偶校验位用于检验数据传输的正确性,可选择奇校验、偶校验或无校验;停止位用于标识数据传输的结束,通常为逻辑 1。

二、硬件设计为了实现双机串行通信,我们需要搭建相应的硬件电路。

首先,每个单片机都需要有一个串行通信接口,通常可以使用单片机自带的UART 模块。

在硬件连接方面,我们将两个单片机的发送端(TXD)和接收端(RXD)交叉连接。

即单片机 A 的 TXD 连接到单片机 B 的 RXD,单片机 B 的 TXD 连接到单片机 A 的 RXD。

同时,还需要共地以保证信号的参考电平一致。

此外,为了提高通信的稳定性和可靠性,我们可以在通信线路上添加一些滤波电容和上拉电阻。

三、软件设计软件设计是实现双机串行通信的核心部分。

在本次课程设计中,我们使用 C 语言来编写单片机的程序。

对于发送方单片机,首先需要对 UART 模块进行初始化,设置波特率、数据位、奇偶校验位和停止位等参数。

然后,将要发送的数据放入发送缓冲区,并通过 UART 发送函数将数据一位一位地发送出去。

对于接收方单片机,同样需要对 UART 模块进行初始化。

单片机串行通信实验报告(实验要求、原理、仿真图及例程)

单片机串行通信实验报告(实验要求、原理、仿真图及例程)

《嵌入式系统原理与实验》实验指导实验三调度器设计基础一、实验目的和要求1.熟练使用Keil C51 IDE集成开发环境,熟练使用Proteus软件。

2.掌握Keil与Proteus的联调技巧。

3.掌握串行通信在单片机系统中的使用。

4.掌握调度器设计的基础知识:函数指针。

二、实验设备1.PC机一套2.Keil C51开发系统一套3.Proteus 仿真系统一套三、实验容1.甲机通过串口控制乙机LED闪烁(1)要求a.甲单片机的K1按键可通过串口分别控制乙单片机的LED1闪烁,LED2闪烁,LED1和LED2同时闪烁,关闭所有的LED。

b.两片8051的串口都工作在模式1,甲机对乙机完成以下4项控制。

i.甲机发送“A”,控制乙机LED1闪烁。

ii.甲机发送“B”,控制乙机LED2闪烁。

iii.甲机发送“C”,控制乙机LED1,LED2闪烁。

iv.甲机发送“C”,控制乙机LED1,LED2停止闪烁。

c.甲机负责发送和停止控制命令,乙机负责接收控制命令并完成控制LED的动作。

两机的程序要分别编写。

d.两个单片机都工作在串口模式1下,程序要先进行初始化,具体步骤如下:i.设置串口模式(SCON)ii.设置定时器1的工作模式(TMOD)iii.计算定时器1的初值iv.启动定时器v.如果串口工作在中断方式,还必须设置IE和ES,并编写中断服务程序。

(2)电路原理图Figure 1 甲机通过串口控制乙机LED闪烁的原理图(3)程序设计提示a.模式1下波特率由定时器控制,波特率计算公式参考:b.可以不用使用中断方式,使用查询方式实现发送与接收,通过查询TI和RI标志位完成。

2.单片机与PC串口通讯及函数指针的使用(1)要求:a.编写用单片机求取整数平方的函数。

b.单片机把计算结果向PC机发送字符串。

c.PC机接收计算结果并显示出来。

d.可以调用Keil C51 stdio.h 中的printf来实现字符串的发送。

基于51单片机的多机通信系统设计

基于51单片机的多机通信系统设计

基于51单片机的多机通信系统设计多机通信系统是指通过一台主机与多台从机之间进行数据交互和通信的系统。

在本设计中,我们将使用51单片机实现一个基于串行通信的多机通信系统。

系统硬件设计如下:1.主机:使用一个51单片机作为主机,负责发送数据和接收数据。

2.从机:使用多个51单片机作为从机,每个从机负责接收数据和发送数据给主机。

3.串口:主机和从机之间通过串口进行通信。

我们可以使用RS232标准通信协议。

系统软件设计如下:1.主机设计:a.初始化串口:设置串口参数,如波特率、数据位、停止位等。

b.发送数据:将需要发送的数据存储在发送缓冲区中,通过串口发送给从机。

c.接收数据:接收从机发送的数据,并存储在接收缓冲区中。

2.从机设计:a.初始化串口:设置串口参数,如波特率、数据位、停止位等。

b.接收数据:接收主机发送的数据,并存储在接收缓冲区中。

c.发送数据:将需要发送的数据存储在发送缓冲区中,通过串口发送给主机。

系统工作流程如下:1.主机启动,执行初始化操作,包括初始化串口。

2.从机启动,执行初始化操作,包括初始化串口。

3.主机发送数据给从机:主机将需要发送的数据存储在发送缓冲区中,通过串口发送给从机。

4.从机接收并处理数据:从机接收主机发送的数据,并存储在接收缓冲区中,对接收到的数据进行处理。

5.从机发送数据给主机:从机将需要发送的数据存储在发送缓冲区中,通过串口发送给主机。

6.主机接收并处理数据:主机接收从机发送的数据,并存储在接收缓冲区中,对接收到的数据进行处理。

7.主机和从机循环执行步骤3-6,实现多机之间的数据交互和通信。

多机通信系统的设计考虑到以下几个方面:1.硬件设计:需要合理选择单片机和串口的类型和参数,确保系统的稳定性和可靠性。

2.软件设计:需要设计适应系统需求的通信协议和数据处理提取方法,保证数据的准确性和完整性。

3.通信协议:需要定义主机和从机之间的通信协议,包括数据的格式、传输方式等,以便实现正确的数据交互。

单片机串行通信的设计

单片机串行通信的设计

单片机串行通信的设计单片机串行通信是指通过串行接口,将数据一位一位地传输到另一个单片机或外部设备的通信方式。

串行通信相比并行通信具有线路数量少、布线简单的优势,因此在嵌入式系统和通信领域得到广泛应用。

本文将围绕单片机串行通信的设计展开论述。

一、串行通信原理串行通信主要利用两根线路进行数据传输,一条线路作为数据线,一条线路作为时钟线。

发送方按照一定的时钟频率将数据位逐位传输到接收方,接收方根据时钟信号判断数据位的高低状态。

二、串行通信接口串行通信主要有两种接口方式:UART(通用异步收发器)和SPI(串行外设接口)。

1. UART:UART是一种异步通信方式,数据通过单个数据线进行传输。

UART有两个引脚:一根引脚用于数据传输(TXD - 发送,RXD - 接收),另一个引脚用于时钟同步(Baud Rate Generator - 波特率发生器)。

UART通信需要发送方和接收方的波特率一致,否则会导致数据传输错误。

2.SPI:SPI是一种同步通信方式,数据通过多个数据线进行传输。

SPI有四个引脚:主输出/从输入(MISO)、主输入/从输出(MOSI)、时钟信号(CLK)和片选信号(CS)。

SPI通信中的主从关系是由软件决定的,主设备负责控制时序和片选,从设备则根据主设备的控制信号进行数据传输。

三、串行通信的数据传输串行通信的数据传输基本步骤如下:1.初始化串行通信接口:设置波特率、数据位长度、停止位等参数,并打开串行通信开关。

2.发送方数据准备:将需要传输的数据准备好,存储到发送缓冲区中。

3.数据传输:根据数据位长度和波特率设定的时钟频率,将数据位逐位输出到数据线。

4.接收方接收数据:根据时钟信号,逐位读取数据线上的数据位,并存储到接收缓冲区中。

5.结束通信:关闭串行通信开关,并进行后续处理。

四、串行通信的设计考虑因素在设计单片机串行通信时,需要考虑以下因素:1.通信协议:选用合适的通信协议,例如UART协议或SPI协议。

单片机的双机串口通信原理

单片机的双机串口通信原理

单片机的双机串口通信原理单片机的双机串口通信原理是通过串口连接两个单片机,使它们能够进行数据的传输和通信。

串口是一种常见的通信方式,它使用两条信号线进行数据的传输:一条是串行数据线(TXD),用于发送数据;另一条是串行接收线(RXD),用于接收数据。

通过串口通信,两个单片机可以进行双向的数据传输,实现信息的互相交流和共享。

在双机串口通信中,一台单片机充当主机(Master),另一台单片机充当从机(Slave)。

主机负责发起通信请求并发送数据,从机负责接收并响应主机发送的数据。

通信过程中,主机和从机需要遵守相同的协议和通信规则,以确保数据的正确和可靠传输。

双机串口通信的主要步骤如下:1. 端口初始化:在双机串口通信开始之前,两台单片机的串口端口需要初始化。

主机和从机需要设置相同的波特率(Baud Rate),数据位数(Data Bits)、停止位数(Stop Bits)和校验方式(Parity Bit),确保两台单片机之间的通信能够正常进行。

2. 数据发送:主机将要发送的数据写入到串口发送寄存器中,然后通过串口发送线路将数据位一位一位地发送给从机。

主机发送完所有数据位后,等待从机的响应。

3. 数据接收:从机通过串口接收线路接收主机发送的数据位,然后将接收到的数据位存放在串口接收寄存器中,等待从机的处理。

4. 数据处理:从机接收到主机发送的数据后,根据通信协议和通信规则进行数据处理。

从机可能需要对数据进行校验、解析和执行相应的操作,然后将处理结果写入到串口发送寄存器中,以供主机进行相应的处理。

5. 响应发送:从机将处理结果写入到串口发送寄存器中,然后通过串口发送线路将数据位一位一位地发送给主机。

从机发送完所有数据位后,等待主机的进一步操作。

6. 数据接收:主机通过串口接收线路接收从机发送的数据位,然后将接收到的数据位存放在串口接收寄存器中,等待主机的处理。

7. 数据处理:主机接收到从机发送的数据后,根据通信协议和通信规则进行数据处理。

单片机双机串行实验报告

单片机双机串行实验报告

单片机双机串行实验报告实验目的:通过单片机实现双机串行通信功能,掌握串行通信的原理、方法和程序设计技巧。

实验原理:双机串行通信是指通过串行口将两台单片机连接起来,实现数据的传输和互动。

常用的串行通信方式有同步串行通信和异步串行通信。

异步串行通信是指通过发送和接收数据时的起始位、停止位和校验位进行数据的传输。

而同步串行通信是指通过外部时钟信号进行数据的同步传输。

实验器材:1.两台单片机开发板(MCU7516)2.两个串口线3.两台计算机实验步骤:1.将两台单片机开发板连接起来,通过串口线连接它们的串行口。

2.在两台计算机上分别打开串口调试助手软件,将波特率设置为相同的数值(例如9600)。

3.在编程软件中,编写两个程序分别用于发送数据和接收数据。

4.在发送数据的程序中,首先要设置串口的波特率、数据位、停止位和校验位,并将数据存储在缓冲区中。

然后利用串口发送数据的指令将数据发送出去。

5.在接收数据的程序中,同样要设置串口的参数。

然后使用串口接收数据的指令将接收到的数据存储在缓冲区中,并将其打印出来。

实验结果与分析:经过实验,我们成功地实现了单片机之间的双机串行通信。

发送数据的单片机将数据发送出去后,接收数据的单片机能够正确地接收到数据,并将其打印出来。

实验中需要注意的是,串口的波特率、数据位、停止位和校验位必须设置为相同的数值。

否则,发送数据的单片机和接收数据的单片机无法正常进行通信。

同时,在实验之前,需要了解单片机开发板支持的串口通信相关的指令和函数。

实验总结:通过本次实验,我们深入了解了单片机之间的双机串行通信原理和方法。

掌握了串口的设置和使用方法,以及相关的指令和函数。

在实验中,我们学会了如何通过串行口实现数据的传输和互动,为今后的单片机应用和开发打下了基础。

同时,我们还发现,双机串行通信在实际应用中有着广泛的用途。

例如,可以通过串行通信实现两台计算机之间的数据传输,或者实现单片机与计算机之间的数据收发。

单片机单片机课程设计报告-双机串行通信

单片机单片机课程设计报告-双机串行通信

基于51单片机的双机串行通信设计【摘要】串行通信是单片机的一个重要应用。

本次课程设计就是要利用单片机来完成一个系统,实现双片单片机串行通信。

通信的结果实用数码管进展显示,数码管采用查表方式显示。

两个单片机之间采用RS232进展双机通信。

在通信过程中,使用通信协议进展通信。

【关键字】51单片机,串行通信,接口一、总体设计1.设计要求:两片单片机之间进展串行通信,发送端将0~f循环发送到接收端,并在接收端显示。

2.设计方案:本次设计,对于两片89C51,采用RS232进展双机通信。

发送方的数据由串行口TXD 段输出,经过电平转换芯片MAX232将TTL电平转换为RS232电平输出,经过传输线将信号传送到接收端。

接收方也使用MAX232芯片进展电平转换后,信号到达接收方串行口的接收端。

承受方接收后,在数码管上显示接收的信息。

为提高抗干扰能力,还可以在输入输出端加光耦合进展光电隔离。

软件局部,通过通信协议进展发送接收,主机先送AAH给从机,当从机接收到AAH 后,向主机答复BBH。

主机收到BBH后就把数码表TAB[16]中的10个数据送给从机,并发送检验和。

从机收到16个数据并计算接收到数据的检验和,与主机发送来的检验和进展比拟,假设检验和一样那么发送00H给主机;否那么发送FFH给主机,重新承受。

从机收到16个正确数据后送到一个数码管显示。

二、硬件设计1.51单片机串行通信功能图1.AT89C51计算机与外界的信息交换称为通信,常用的通信方式有两种:并行通信和串行通信。

51单片机用4个接口与外界进展数据输入与数据输出就是并行通信,并行通信的特点是传输信号的速度快,但所用的信号线较多,本钱高,传输的距离较近。

串行通信的特点是只用两条信号线〔一条信号线,再加一条地线作为信号回路〕即可完成通信,本钱低,传输的距离较远。

51单片机的串行接口是一个全双工的接口,它可以作为UART〔通用异步承受和发送器〕用,也可以作为同步移位存放器用。

单片机双机之间的串行通讯设计报告

单片机双机之间的串行通讯设计报告

单片机双机之间的串行通讯设计报告摘要:本文介绍了一种基于单片机的双机之间的串行通讯设计。

该设计使用两个单片机,通过串行通信协议进行数据传输。

通讯过程中,两台单片机之间通过数据线连接,并使用中断方式进行数据接收和发送。

同时,本文还介绍了串行口工作方式 0 的应用,以及如何使用移位寄存器进行串行口扩展。

通过该设计,可以实现两台单片机之间的高速数据传输,并且具有良好的稳定性和可靠性。

关键词:单片机,串行通讯,中断方式,移位寄存器,串行口扩展一、引言串行通讯是计算机系统中常用的一种数据传输方式,它可以实现不同设备之间的数据传输。

在单片机应用中,串行通讯也是一种常见的数据传输方式。

本文介绍了一种基于单片机的双机之间的串行通讯设计,该设计使用两个单片机通过串行通信协议进行数据传输。

本文还介绍了串行口工作方式 0 的应用,以及如何使用移位寄存器进行串行口扩展。

通过该设计,可以实现两台单片机之间的高速数据传输,并且具有良好的稳定性和可靠性。

二、设计原理该串行通讯设计使用两个单片机,分别为发送单片机和接收单片机。

发送单片机将数据通过串行口发送到接收单片机,接收单片机再将接收到的数据进行处理。

两台单片机之间通过数据线连接,并使用中断方式进行数据接收和发送。

在串行通讯中,数据是通过串行口进行传输的。

串行口工作方式0 是一种常见的串行口工作方式,它使用移位寄存器进行数据接收和发送。

在移位寄存器中,数据被移位到寄存器中进行传输,从而实现了数据的串行传输。

三、设计实现1. 硬件设计在该设计中,发送单片机和接收单片机分别使用一个串行口进行数据传输。

发送单片机将数据通过串行口发送到接收单片机,接收单片机再将接收到的数据进行处理。

两台单片机之间通过数据线连接,并使用中断方式进行数据接收和发送。

硬件设计主要包括两个单片机、串行口、数据线和中断控制器。

其中,两个单片机分别拥有自己的串行口,并且都能够接收和发送数据。

数据线将两台单片机连接在一起,中断控制器用于处理数据的接收和发送。

单片机双机通信原理

单片机双机通信原理

单片机双机通信原理双机通信是指通过单片机(Microcontroller,MCU)系统中的串行通信接口,在两个单片机之间进行数据传输和交换的过程。

其中一个单片机被定义为主机(Master),另一个被定义为从机(Slave)。

双机通信可以实现不同单片机之间的数据共享和协作,使得系统具备更高的可靠性、灵活性和性能。

在双机通信的原理中,主机负责发起通信和控制通信过程,从机负责接收主机发送的指令并执行相应的操作。

通信的过程一般包括以下几个步骤:1. 主机初始化:主机在通信开始前需要进行初始化设置,包括选择合适的通信波特率(Baud Rate),设置通信参数和接收/发送缓冲区等。

2. 建立连接:主机通过发送一个特定的请求信号来与从机建立通信连接。

请求信号可以是一个特定的命令码或者特定的数据帧。

3. 从机响应:从机接收到主机发送的请求信号后,通过发送一个响应信号来回复主机。

响应信号可以是一个应答码或者相应的数据帧。

4. 数据传输:一旦建立了连接并完成了响应过程,主机和从机可以开始进行数据传输。

主机通过发送数据帧给从机,从机则接收并处理这些数据。

5. 错误处理:在数据传输过程中,可能会发生数据错误或者通信错误。

主机和从机通过相应的机制(如校验和)来检测和处理这些错误,以保证通信的可靠性和准确性。

6. 断开连接:当数据传输完成后,主机和从机可以通过发送断开连接的信号来结束通信过程。

断开连接的信号可以是特定的命令码或者特定的数据帧。

总的来说,双机通信的原理是通过主机和从机之间的串行通信接口进行数据传输和交换。

通过建立连接、数据传输和断开连接等步骤,实现两个单片机之间的数据共享和协作。

这种通信方式广泛应用于各种嵌入式系统中,如智能家居系统、工业自动化系统等。

双机通信实验报告

双机通信实验报告

一、实验目的1. 掌握双机通信的基本原理和实现方法。

2. 熟悉串行通信的硬件接口和软件编程。

3. 通过实验,加深对单片机串行通信的理解和应用。

二、实验原理双机通信是指两台计算机或单片机之间的数据交换。

串行通信是双机通信中常用的一种通信方式,它将数据一位一位地按顺序传送,适合于远距离通信。

本实验采用单片机串行通信,通过串行口实现数据传输。

三、实验设备1. 两套单片机实验装置(如AT89S51单片机最小系统)2. 串行通信线(如RS-232线)3. 串口调试工具(如串口助手)4. 连接线和电源四、实验内容1. 硬件连接将两套单片机实验装置通过串行通信线连接起来,确保连接线正确无误。

2. 软件编程(1)单片机编程编写单片机程序,实现数据的发送和接收。

程序主要包括以下部分:- 初始化串行口:设置波特率、数据位、停止位和校验位等。

- 发送数据:将数据写入发送缓冲区,启动发送。

- 接收数据:检测接收缓冲区是否有数据,读取数据。

(2)PC端编程编写PC端程序,实现数据的发送和接收。

程序主要包括以下部分:- 串口配置:设置串口号、波特率、数据位、停止位和校验位等。

- 发送数据:将数据写入串口缓冲区,启动发送。

- 接收数据:从串口缓冲区读取数据,显示或处理。

3. 调试与测试(1)单片机端调试- 使用串口调试工具,发送数据到单片机。

- 检查单片机接收到的数据是否正确。

(2)PC端调试- 使用串口调试工具,发送数据到PC。

- 检查PC接收到的数据是否正确。

五、实验结果与分析1. 硬件连接硬件连接正确,两套单片机实验装置通过串行通信线连接。

2. 软件编程(1)单片机程序```c// 单片机程序示例(AT89S51)#include <reg51.h>#define BAUDRATE 9600sbit TXD = P3^1; // 发送引脚sbit RXD = P3^0; // 接收引脚void Serial_Init() {TMOD = 0x20; // 定时器1工作在模式2TH1 = 0xFD; // 设置波特率TL1 = 0xFD;TR1 = 1; // 启动定时器1SCON = 0x50; // 设置串行口工作在模式1 }void main() {Serial_Init();while (1) {// 发送数据TXD = 1; // 发送起始位while (!TXD); // 等待发送完成// 发送数据字节for (char i = 0; i < 8; i++) {TXD = 1; // 发送数据位while (!TXD);TXD = 0; // 发送停止位while (!TXD);}// 接收数据RXD = 1; // 接收起始位while (!RXD); // 等待接收完成// 接收数据字节for (char i = 0; i < 8; i++) {RXD = 1; // 接收数据位while (!RXD);RXD = 0; // 接收停止位while (!RXD);}}}```(2)PC端程序```c// PC端程序示例(C#)using System;using System.IO.Ports;class Program {static void Main() {SerialPort serialPort = new SerialPort("COM1", 9600, Parity.None, 8, StopBits.One);serialPort.Open();while (true) {// 发送数据serialPort.WriteLine("Hello, world!");// 接收数据string receivedData = serialPort.ReadLine();Console.WriteLine("Received: " + receivedData);}serialPort.Close();}}```3. 调试与测试通过串口调试工具,发送数据到单片机和PC,检查接收到的数据是否正确。

单片机双机之间的串行通信设计

单片机双机之间的串行通信设计

单片机双机之间的串行通信设计1.引言单片机双机之间的串行通信是指两个或多个单片机之间通过串口进行数据传输和通信的过程。

串行通信是一种逐位传输数据的方式,与并行通信相比,它占用的硬件资源更少,且传输距离较远。

本文将介绍单片机双机之间串行通信的设计过程,包括硬件设计和软件编程。

2.硬件设计串行通信需要使用到两个主要的硬件部件:串口芯片和通信线路。

串口芯片负责将要发送或接收的数据转换成串行数据流,并通过通信线路进行传输。

通信线路通常包括两根传输数据的线路(TX和RX)、地线和时钟线。

2.1串口芯片的选择常用的串口芯片有MAX232、MAX485、CH340等。

选择合适的芯片需要考虑通信距离、通信速率、系统的功耗等因素。

对于较短的通信距离和较低的通信速率,可以选择MAX232芯片;而对于长距离通信和较高的通信速率,可以选择MAX485芯片。

2.2通信线路设计通信线路的设计需要考虑信号的传输质量和抗干扰能力。

通常使用双绞线或者屏蔽线路来减小信号的串扰和干扰。

对于短距离通信,双绞线即可满足需求;而对于长距离通信,需要采用屏蔽线路来减小串扰和干扰。

3.软件设计串行通信的软件设计主要包括通信协议的制定和数据包的格式规定。

3.1通信协议的选择通信协议是指数据传输的一套规则和约定,它规定了数据的格式、传输顺序、误码校验等内容。

常用的通信协议有UART、RS232、SPI、I2C等。

UART是最常用的通信协议,它一般使用异步通信方式,并具有较高的通信速率和稳定性。

3.2数据包的格式规定数据包是一组有意义的数据的集合,它包括起始位、数据位、停止位和校验位等。

起始位用于标识一个数据包的开始,通常为逻辑低电平;数据位用于存储要传输的数据;停止位用于标识数据包的结束,通常为逻辑高电平;校验位用于检测数据传输过程中是否发生错误。

校验位可以是奇校验、偶校验、无校验等。

4.实验步骤4.1连接硬件根据硬件设计部分的要求,将串口芯片和通信线路连接到单片机上。

单片机双机之间的串行通信设计

单片机双机之间的串行通信设计

单片机双机串行实验报告实验报告:单片机双机串行通信实验一、实验目的本实验旨在通过单片机实现双机间的串行通信,包括数据的发送和接收,并利用这种通信方式完成一定的任务。

二、实验原理1.串行通信:串行通信是将数据一个个位发送或接收的方式。

数据通过一个线路逐位发送或接收,可以减少通信所需的线路数目。

2. UART串口通信:UART是通用异步收发传输器(Universal Asynchronous Receiver/Transmitter)的简称,是一种最常用的串口通信方式,通常用于单片机与计算机、单片机与单片机之间的通信。

3.串口模块:串口模块是负责将数据转变为串行传输的硬件模块,包括发送端和接收端。

通过设置波特率、数据位、校验位和停止位等参数,可以实现数据的可靠传输。

4.单片机串口通信:单片机内部集成了UART串口通信接口,只需要通过相应的寄存器配置,可以实现串口通信功能。

5.双机串行通信:双机串行通信是通过串口将两台单片机进行连接,一台单片机作为发送端,负责将数据发送出去;另一台单片机作为接收端,负责接收并处理发送的数据。

三、实验器材与软件1.实验器材:两台单片机、USB转TTL模块、杜邦线若干。

2. 实验软件:Keil C51集成开发环境。

四、实验内容与步骤1.配置发送端单片机(1)连接单片机和USB转TTL模块,将USB转TTL模块的TXD端连接到单片机的P3口,将GND端连接到单片机的地线。

(2)在Keil C51环境下创建新工程,编写发送端程序。

(3)配置串口通信的波特率、数据位、校验位和停止位,并打开串口发送中断。

(4)循环发送指定的数据。

2.配置接收端单片机(1)连接单片机和USB转TTL模块,将USB转TTL模块的RXD端连接到单片机的P3口,将GND端连接到单片机的地线。

(2)在Keil C51环境下创建新工程,编写接收端程序。

(3)配置串口通信的波特率、数据位、校验位和停止位,并打开串口接收中断。

双机串行通信的设计与实现

双机串行通信的设计与实现

双机串行通信的设计与实现一、设计要求1.单机自发自收串行通信。

接收键入字符,从8251A的发送端发送,与同一个8251A的接收端接收,然后在屏幕上显示出来。

2.双机串行通信,在一台PC机键入字符,从8251A的发送端发送给另一台PC机,另一台PC机的8251A的接收端接收,然后在屏幕上显示出来。

二、所用设备IBM-PC机两台(串行通信接口8251A两片,串行发送器MC1488和串行接收器MC1489各两片,定时器/计数器8253,终端控制器8259等),串口线一根串行直连电缆用于两台台电脑通过串行口直接相连,电缆两端的插头都是9 针的母插头:三、硬件方案1.设计思想计算机传输数据有并行和串行两种模式。

在并行数据传输方式中,使用8条或更多的导线来传送数据,虽然并行传送方式的速度很快,但由于信号的衰减或失真等原因,并行传输的距离不能太长,在串行通信方式中,通信接口每次由CPU得到8位的数据,然后串行的通过一条线路,每次发送一位将该数据放送出去。

串行通信采用两种方式:同步方式和异步方式。

同步传输数据时,一次传送一个字节,而异步传输数据是一次传送一个数据块。

串口是计算机上一种非常通用设备串行通信的协议。

大多数计算机包含两个基于RS232的串口。

串口按位(bit)发送和接收字节。

尽管比按字节(byte)的并行通信慢,但是串口可以在使用一根线发送数据的同时用另一根线接收数据。

典型地,串口用于ASCII码字符的传输。

通信使用3根线完成:(1)地线,(2)发送,(3)接收。

由于串口通信是异步的,端口能够在一根线上发送数据同时在另一根线上接收数据。

其他线用于握手,但是不是必须的。

串口通信最重要的参数是波特率、数据位、停止位和奇偶校验。

对于两个进行通行的端口,这些参数必须匹配:RS-232(ANSI/EIA-232标准)是IBM-PC及其兼容机上的串行连接标准。

可用于许多用途,比如连接鼠标、打印机或者Modem,同时也可以接工业仪器仪表。

单片机双机之间的串行通信设计精选文档

单片机双机之间的串行通信设计精选文档

单片机双机之间的串行通信设计精选文档 TTMS system office room 【TTMS16H-TTMS2A-TTMS8Q8-专业方向课程设计报告题目:单片机双机之间的串行通信设计单片机双机之间的串行通信设计一.设计要求:两片单片机利用串行口进行串行通信:串行通信的波特率可从键盘进行设定,可选的波特率为1200、2400、4800和9600bit/s。

二、方案论证:方案一:以两片51单片机作为通信部件,以4*4矩阵键盘作为数据输入接口,通过16个不同键值输入不同的信息,按照51单片机的方式3进行串口通信,从机采用中断方式接收信息并按照通信协议改变波特率或者用I/O口输出、CD4511译码、数码管显示相关数据,整个系统的软件部分采用C语言编写。

方案二:整个系统的硬件设计与方案一样,但是通信方式采用方式一进行通信,主从机之间的访问采用查询方式,数据输出直接由单片机的译码程序输出译码数据,同时软件编写采用汇编语言。

两种方式从设计上来说各有特色,而且两种方式都应该是可行的。

方案一中按照方式三通信可以输出九位数据而方式一只能输出八位数据,但就本题的要求来说方式一就可以了。

主从机之间的交流采用中断方式是一种高效且保护单片机的选择,但是相比之下本人对查询方式的理解更好一些。

数码管的显示若采用CD4511译码则直接输出数据就可以了,但是这样会增加硬件陈本,而且单片机的资源大部分都还闲置着,所以直接编写一段译码程序是比较好的做法。

另外在软件编写上,采用C语言在后续设计中对硬件的考虑稍少一些,换言之采用汇编可以使自己对整个通信过程及单片机的部分结构有更清晰地认识所以综合考虑采用方案二。

三、理论设计:采用AltiumDesigner绘制的原理图(整图)本系统主要包括五个基本模块:单片机最小系统(包括晶振电路、电源、复位电路及相关设置电路)、4*4矩阵键盘、功能控制电路、数据显示电路、波特率更改指示电路。

本设计的基本思路是通过控制口选择将要实现的功能,然后矩阵键盘输入数据,单片机对数据进行处理(加校验码、设置功能标志位),然后与从机握手,一切就绪之后后就开始发送数据,然后从机对接收数据校验,回发校验结果,主机根据校验结果进行下一步动作,或者重发,或者进入下一数据的发送过程,然后按照此过程不段循环,直到结束。

单片机双机串行通信多数据传输汇编语言编程实现

单片机双机串行通信多数据传输汇编语言编程实现

• 178•串口是单片机与其他单片机或计算机系统进行异步串行通信的标准I/O 接口,在系统设计中应用非常广泛。

以教学中使用的CPU 字长是8位的51单片机为例,实现双机间多数据串行传输,在多数据发送时为每个数据增加特征值,接收的时候通过特征值判断接收的数据,此方法最多可以实现双机间16个数据的传送,适用于5-8个通道的数据采集系统。

将此设计思想应用在0-999s 的秒表系统设计中,系统运行稳定,实现预期效果。

单片机串口是异步串行通信,发送方发送数据并不考虑接收方什么时候接收,如果是传送1个数据比较好处理,串口无论工作在查询方式下还是中断方式下,接收方的CPU 只要检测RI =1,就可以接收数据。

如果发送方发送的是多个数据,接收方接收的是发送方发送的多个数据的哪一个?发送方发送的多个数据是动态变化的,尽管发送方发送多个数据的顺序在编程中是固定不变的,但是串口通信是异步的,接收方接收时,无法知道此次接收的数据是发送方发送的哪一个数据,所以接收方必须有能力判断接收到的是哪一个数据才能真正实现异步串行通信多数据的正确传送。

1 发送数据的加密原理及编程实现要想让接收方有能力判断接收的数据是哪一个数据,可以对要发送的数据做加密处理,数据加密技术是网络中最基本的安全技术,主要是通过对网络中传输的信息进行数据加密来保障其安全性。

本设计借用数据加密的思想,对要发送的数据采用增加特征值的加密处理方法,乙机接收数据后,通过解密获取特征值,就可以知道接收的是哪一个数据了。

特征值的选取要视发送数据的范围,本文以发送压缩BCD 码说明数据加密的原理及编程实现。

1.1 发送数据的加密原理压缩BCD 码是用4位二进制表示1位十进制,由于设计中使用的单片机CPU 的字长是8位的,所以一次可以处理1个字节数据,用字节表示1位BCD 码的时候,高4位一定是“0”,低4位是”0-9”中的1个数字,这样用高4位的“0”就可以实现对数据加密处理。

单片机双机通信与PCB设计

单片机双机通信与PCB设计

单片机双机通信与PCB设计单片机双机通信是指通过两个或多个单片机之间的通信实现数据传输和交互。

在嵌入式系统中,常常需要多个单片机之间进行通信,以实现系统的协同工作。

而PCB设计则是在电路板上布局和连接各种电子元器件的过程,必要时需要考虑通信线路和接口的设计。

常见的串行通信协议有UART、SPI、I2C等,它们都可以在两个单片机之间进行数据传输。

其中,UART协议是最常用的一种,它可以采用异步通信方式,通过一个引脚进行数据传输。

UART通信需要定义好波特率、数据位、停止位等参数,以确保数据的正常传输。

SPI(Serial Peripheral Interface)是一种同步的串行通信协议,可以支持多主机进行数据传输。

SPI通信需要定义好时钟极性、时钟相位等参数,并且需要至少三个引脚进行数据传输。

I2C(Inter-Integrated Circuit)是一种串行通信协议,它可以通过两根引脚进行数据传输。

I2C通信需要定义好从机地址、时钟频率等参数,以确保数据的正常传输。

在进行单片机双机通信时,需要考虑的因素有很多。

首先是通信协议的选择,根据实际需求选择合适的通信协议。

其次是硬件接口的设计,需要设计好数据线、时钟线、复位线等硬件接口。

还需要考虑数据的传输方向和速率等参数,以确保通信的稳定性和可靠性。

在进行单片机双机通信的PCB设计时,需要首先确定好电路板上各个元器件的布局。

要考虑到各个元器件之间的连接关系和通信线路的走向。

同时还要注意信号线和电源线的分离,以减少干扰。

另外,还要注意防止信号的串扰和干扰,采取适当的布线方式和屏蔽措施。

在进行单片机双机通信的PCB设计时,还需要注意电路板的大小和形状。

尽量使电路板尺寸小巧,以节约空间。

同时还要注意电路板的层次和层数,以满足通信线路的需求。

在单片机双机通信的PCB设计中,还需要进行电磁兼容性测试和可靠性测试。

电磁兼容性测试是为了确保电路板的电磁辐射和抗干扰能力达到规定的标准,不会对周围的设备产生干扰。

双机之间的串行通信设计

双机之间的串行通信设计

双机之间的串行通信设计双机之间的串行通信设计一. 设计目的1、了解串行通信的工作原理2、了解键盘设定的工作原理3、掌握80C51的定时器1计数器1的编程4、掌握电路板的实物焊接随着电子技术的飞速发展,单片机也步如一个新的时代,越来越多的功能各异的单片机为我们的设计提供了许多新的方法与思路。

对于莫一些场合,比如:复杂的后台运算及通信与高实时性前台控制系统、软件资源消耗大的系统、功能强大的低消耗系统、加密系统等等。

如果合理使用多种不同类型的单片机组合设计,可以得到极高灵活性与性能价格比,因此,多种异型单片机系统设计渐渐成为一种新的思路,单片机技术作为计算机技术的一个重要分支,由于单片机体积小,系统运行可靠,数据采集方便灵活,成本低廉等优点,在通信中发挥着越来越重要的作用。

但能在一些相对复杂的单片机应用系统中,仅仅一个单片机资源是不够的,往往需要两个或多个单片机系统协同工作。

这就对单片机通信提出了很高要求。

二.串行口及其扩展简介1.串行通信的基本特征是数据逐位顺序进行传送2.全双工制式是指通信双方均设有发送器和接收器,并且信道划分为发送信道和接收信道,因此全双工制式可实现甲乙双方同时发送和接收数据,发送时能接收,接收时也能发送3.串行通信的传送速率用于说明数据传送的快慢.“波特率”表示每秒种传输离散信号事件的个数,或每秒信号电平的变化次数,单位为band(波特)。

“比特率”是指每秒传送二进制数据的位数,单位为比特/秒,记作bits/s或b/s或bps。

在二进制的情况下,波特率与比特率数值相等4.SM0=1、SM1=0,选择方式2;由TXD引脚发送数据。

由RXD引脚接收数据。

方式2波特率: 波特率=(2SMOD /64) ╳ fosc三、设计要求1.两片单片机利用串行口进行串行通信:串行通信的波特率可从键盘进行设定,可选的波特率为1200、2400、4800和9600bit/s。

串行口工作方式为方式1的全双工串行通信。

单片机多机串行通信设计方法分析

单片机多机串行通信设计方法分析

二 、 多机 通 信 过 程
在 多 机 通 信 时 串 口必 须 工 作 在 方 式 2 或方式3 , 根 据 通 信 要 求 设 置 单 片机 通 信 控 制 寄存 器 S C O N中 的每 一 位 。 多 机 通信 的过 程 如 下 。 第 一 ,所 有 从 机 处 于 地址 帧 接 收 状 态 ( S M2 = I ) 。 第 二 ,主 机 先 发送 一个 地 址 帧 ,其 中前 8 位 数 据 表 示要 寻址 的从 机 地 址 ,第 9 位 为 1( T B 8 = I )表 示该 帧 为 地址 帧 。 第 三 , 所 有 从 机 接 收 到 地 址 帧 后 ,把 接 收到 的地 址 与
E X P I O B 盯I O _l 探索
单片机多机串行通信设计方法分析
文/ 孙 慧 汤 宇

要 :本 文从 多机 通信 协 议 入 手 ,重 点 研 究 了如 何 利 用查 询 法 和 中 断法 实现 主从 式通 信 ,并 通过 P r o t e u s 仿 真 软 件 对
两种 通 信 方 法进 行 了仿 真 验证 。查 询 法 通 信 易 于 实现 ,但 占用单 片机 内部 资 源较 多。 中断 法通 信 更 稳 定 可 靠 ,可 以大 大提 高 单 片机 的 工作 效率 。 关 键 词 :单 片机 多机 通 信 查询 法 中断 法 P r o t e u s 仿 真
断 ,进 入 相 应 的 中 断 服 务 程 序 ,把 接 收 到 的 地 址 和 本 机 地
址 进 行 比较 。 如 果 相符 合 就 令 其 S M2 =O,并 向主 机发 回本 机 地 址 以 作 应 答 ,主 机 得 到 应 答 信 号 并 校 验 成 功 后 ,就 与 该 从 机 联 通 实 现 双 机 通 信 ,准 备 接 收 主 机 发 来 的 命 令 或 数
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

单片机双机之间的串行通信设计Prepared on 24 November 2020专业方向课程设计报告题目:单片机双机之间的串行通信设计单片机双机之间的串行通信设计一.设计要求:两片单片机利用串行口进行串行通信:串行通信的波特率可从键盘进行设定,可选的波特率为1200、2400、4800和9600bit/s。

二、方案论证:方案一:以两片51单片机作为通信部件,以4*4矩阵键盘作为数据输入接口,通过16个不同键值输入不同的信息,按照51单片机的方式3进行串口通信,从机采用中断方式接收信息并按照通信协议改变波特率或者用I/O口输出、CD4511译码、数码管显示相关数据,整个系统的软件部分采用C语言编写。

方案二:整个系统的硬件设计与方案一样,但是通信方式采用方式一进行通信,主从机之间的访问采用查询方式,数据输出直接由单片机的译码程序输出译码数据,同时软件编写采用汇编语言。

两种方式从设计上来说各有特色,而且两种方式都应该是可行的。

方案一中按照方式三通信可以输出九位数据而方式一只能输出八位数据,但就本题的要求来说方式一就可以了。

主从机之间的交流采用中断方式是一种高效且保护单片机的选择,但是相比之下本人对查询方式的理解更好一些。

数码管的显示若采用CD4511译码则直接输出数据就可以了,但是这样会增加硬件陈本,而且单片机的资源大部分都还闲置着,所以直接编写一段译码程序是比较好的做法。

另外在软件编写上,采用C语言在后续设计中对硬件的考虑稍少一些,换言之采用汇编可以使自己对整个通信过程及单片机的部分结构有更清晰地认识所以综合考虑采用方案二。

三、理论设计:采用AltiumDesigner绘制的原理图(整图)本系统主要包括五个基本模块:单片机最小系统(包括晶振电路、电源、复位电路及相关设置电路)、4*4矩阵键盘、功能控制电路、数据显示电路、波特率更改指示电路。

本设计的基本思路是通过控制口选择将要实现的功能,然后矩阵键盘输入数据,单片机对数据进行处理(加校验码、设置功能标志位),然后与从机握手,一切就绪之后后就开始发送数据,然后从机对接收数据校验,回发校验结果,主机根据校验结果进行下一步动作,或者重发,或者进入下一数据的发送过程,然后按照此过程不段循环,直到结束。

单片机最小系统:接上电源和地,晶振电路提供脉冲,加上复位电路,将EA接入高电电平选择片内程序存储器。

这是一个单片机能够工作的最低设置。

4*4矩阵键盘:将矩阵键盘接入p1口通过按键扫描程序读写P1口从而判断有无安键按下,通过查键值程序确定其键值从而得到输入数据。

这是整个系统的输入接口。

功能控制电路:控制键(图中为K3)被按下时为低电平,否则为高电平,这样就可以根据读入的的电平差别控制通信系统的功能。

高电平时让从机显示接收到的数据,低电平从机更改波特率。

数据显示模块:译码程序将获得的数据译成可直接显示的段码输到p2口,用数码管显示。

为防止单片机的带负载能力不足,本设计中加了上拉电阻使数码管显示更清晰。

波特率更改指示电路:在从机更改波特率之后同时给P1口写数是相应指示灯亮,指示此时两机之间通信的波特率为多少。

控制键未被按下控制键未被按下时,从机显示接收到到的数据指示灯未亮表明此时从机未设置波特率,以初始波特率工作控制键被按下指示灯亮表明通信系统此时以指定波特率控制键被按下时,从机不显示数据两机之间数用示波器观察两下图是系统软件仿真的结果,以下现象表明系统能正常工作并实现预设结果。

五、作品功能和使用说明:接上电源系统开始工作,功能件控制从机功能,键盘输入数据,主机发送数据,从机接收数据。

当控制键未被按下时,从机显示接收到的数据;控制键被按下时从机不再显示数据,只更改波特率,同时点亮相应的指示灯。

指示灯会指示当前工作的波特率,灯不亮时单片机以默认波特率工作。

系统断电时结束通信。

波特率指示电源接口及开从机只显示数据从机更改波特六、心得体会:经过这几天的努力终于将设计完成了。

整个过程虽然遇到很多问题,但是确实感觉又学到了了不少东西。

整个系统的设计很快就决定下来了,但是在软件编写完之后进行软件仿真时,一直不能不能成功。

然后一步步的查错,从功能流程图开始,一步步检查,理清系统的时序逻辑关系。

确保逻辑功能没问题后,对软件进行调试,逐步调试、设置相关寄存器、查看相应的io口,然后发现这里也没什么问题。

于是直接在程序中设置标志位,观察程序的运行情况。

后来发现问题主要出现在两个地方:一是软件不能自动返回,重复执行,于是在程序中增加了循环语句和返回语句;二是没有正确保存数据和取数据,主要体现在查键值后没有保护数据及进行校验后没有进行重取原数据,这是两个非常易错的问题。

另外功能上单片机之间的“握手”和等待通讯过程也是非常重要的。

另外在硬件制作时也遇到了一些问题,主要是在制作PCB板时由于腐蚀过度导致出现了很多断路,以至调试时得检查电路,同时对整个系统的美观造成很大影响。

不过,这次设计确实让我对通信过程有更深的理解。

七、参考文献[1]李建忠.单片机原理及应用(第二版.西安电子科技大学出版社)[2]何小艇.电子系统设计(第四版.浙江大学出版社)系统程序:/************************************************************************* * 约定:主机发送呼叫信号"0EH",咨询从机是否可以接受数据 ** 从机发送"01H"表示可以接受,否则发送"02H"表示暂时不能接受数据 ** 主机只有收到了应答信号"01H"才向从机发送数据,否则继续呼叫 ** 主机收到"0FH"表示发送正确,收到"F0H"表示发送错误 ** 设置:串口工作于方式1 ,定时器做波特率发生器工作于方式2,SMOD=1, * * 波特率为1200时计数初值为D0, 2400--E8H, 4800-F4H, 9600-FAH ** 两片单片机开始波特率设为4800 ** 通过按键进行功能选择,按下=0设置波特率未按=1数据显示 * *************************************************************************/主机程序:/*****************发送程序********************/ORG 0000HLJMP MAINORG 0030HMAIN: MOV SP,#60HMOV TMOD, #20H ;置定时器/计数器1工作于方式2定时MOV TL1, #0F4H ;置定时器/计数器1初值,初始波特率为4800 MOV TH1, #0F4H ;置重装值MOV PCON,#80H ;SMOD=1MOV SCON,#50H ;串行口工作于方式1SETB TR1/****************首先进行查键子程序***************/BEGAIN: ACALL KEYMOV R1,AACALL HUJIAOAJMP BEGAIN/************按键扫描****************/KEY: ACALL KS1 ;调用判断有无键按下子程序JNZ LK1 ;有键按下(A)=0,AJMP KEYLK1: ACALL DELAYACALL KS1JNZ CKEYAJMP KEYCKEY: MOV R2,#7FHMOV R4,#00HCKEY1: MOV P1,R2JB ,LONEMOV A,#00HAJMP LPK ;转到键值计算子程序LONE: JB ,LTWOMOV A,#04HAJMP LPKLTWO: JB ,LTHRMOV A,#08HAJMP LPKLTHR: JB ,NEXT0MOV A,#0CHLPK: ADD A,R4PUSH ACCLK3: ACALL KS1JNZ LK3ACALL DELAYPOP ACCRETNEXT0: INC R4MOV A,R2JNB ,KENDRR AMOV R2,AAJMP CKEY1KEND: AJMP KEYKS1: MOV P1,#0FHMOV A,P1CPL AANL A,#0FHRET/************然后呼叫从机***************/HUJIAO: CALL DELAYMOV A,#0EHCPLMOV SBUF,AWAIT1: JBC TI,TXYES ;等待发送完成SJMP WAIT1TXYES: JBC RI,NEXT1 ;等待从机回答SJMP TXYESNEXT1: MOV A,SBUF ;判断从机是否同意,不同意则继续呼叫CJNE A,#01H,HUJIAOPANDUAN: JB ,XSHU ;功能键被按下,则发送数据设置波特率,否则只显示发送数据SHEZ: MOV A,R1SETB ;=1显示 =0设置波特率MOV C,PMOV ,CMOV SBUF,AWAIT2: JNB TI,WAIT2CLR TIWAITC1: JNB RI,WAITC1CLR RICPLMOV A,SBUFCJNE A,#0FH,SHEZMOV A,R1ANL A,#0FHCJNE A,#00H,L1MOV TL1, #0D0H ;重设波特率为1200MOV TH1, #0D0HLJMP FHL1: CJNE A,#01H,L2MOV TL1, #0E8H ;重设波特率为2400MOV TH1, #0E8HLJMP FHL2: CJNE A,#02H,L3MOV TL1, #0F4H ;重设波特率为4800MOV TH1, #0F4HLJMP FHL3: CJNE A,#03H,FHMOV TL1, #0FAH ;重设波特率为9600MOV TH1, #0FAHLJMP FHXSHU:MOV A,R1 ;只显示数字时,A的高位不处理直接发送 MOV C,PMOV ,CMOV SBUF,AWAIT3: JNB TI,WAIT3CLR TIWAITC: JNB RI,WAITCCLR RIMOV A,SBUFCJNE A,#0FH,XSHUCLRFH:RET/**********延时子程序*********/DELAY:MOV R6,#0FFHLOOP1: DJNZ R6,LOOP1RETJS:END从机程序:/*****************接收程序********************/ORG 0000HLJMP MAINORG 0030HMAIN: MOV SP,#60HRSTRT: MOV TMOD, #20H ;置定时器/计数器1工作于方式2定时MOV TL1, #0F4H ;置定时器/计数器1初值,初始波特率为4800MOV TH1, #0F4H ;置重装值MOV PCON,#80H ;SMOD=1MOV SCON,#50H ;串行口工作于方式1SETB TR1JIESHOU: CLR TIJNB RI,JIESHOUCLR RIMOV A,SBUFCJNE A,#0EH,FA2FA1: MOV A,#01HMOV SBUF,ACPLWAIT1: JBC TI,RXSJMP WAIT1FA2: MOV A,#02HMOV SBUF,AWAIT2: JBC TI,JIESHOUSJMP WAIT2RX: CLR TIJNB RI,RXCLR RIMOV A,SBUFMOV C,PMOV R1,AJC FAF0FA0F: MOV A,#0FHMOV SBUF,AWAIT3: JNB TI,WAIT3CLR TISJMP CHULIFAF0: MOV A,#0F0HMOV SBUF,AWAIT4: JNB TI,WAIT4CLR TILJMP RXCHULI: MOV A,R1JB ,SHEZ ;=1显示 =0设置波特率XIANS:ANL A,#0FHLCALL DISPLAYLJMP JSSHEZ:MOV P2,#00HANL A,#0FHCJNE A,#00H,L1MOV TL1, #0D0H ;重设波特率为1200MOV TH1, #0D0HMOV P1,#0FEH ;CLRLJMP JSL1: CJNE A,#01H,L2MOV TL1, #0E8H ;重设波特率为2400MOV TH1, #0E8HMOV P1,#0FDH ;CLRLJMP JSL2: CJNE A,#02H,L3MOV TL1, #0F4H ;重设波特率为4800 MOV TH1, #0F4HMOV P1,#0FBH ;CLRLJMP JSL3: CJNE A,#03H,JIEMOV TL1, #0FAH ;重设波特率为9600 MOV TH1, #0FAHMOV P1,#0F7H ;CLRJIE: LJMP JS/**********延时子程序*********/DELAY:MOV R6,#03FHLOOP1: DJNZ R6,LOOP1RET/**********译码程序**********/DISPLAY:CJNE A,#00H,LT1MOV A,#00111111B ;0SJMP LASTLT1: CJNE A,#01H,LT2MOV A,#00000110B ;1SJMP LASTLT2: CJNE A,#02H,LT3MOV A,#01011011B ;2SJMP LASTLT3: CJNE A,#03H,LT4MOV A,#01001111B ;3SJMP LASTLT4: CJNE A,#04H,LT5MOV A,#01100110B ;4SJMP LASTLT5: CJNE A,#05H,LT6MOV A,#01101101B ;5SJMP LASTLT6: CJNE A,#06H,LT7MOV A,#01111101B ;6SJMP LASTLT7: CJNE A,#07H,LT8MOV A,#00000111B ;7SJMP LASTLT8: CJNE A,#08H,LT9MOV A,#01111111B ;8SJMP LASTLT9: CJNE A,#09H,LT10MOV A,#01101111B ;9SJMP LASTLT10: CJNE A,#0AH,LT11MOV A,#01110111B ;ASJMP LASTLT11: CJNE A,#0BH,LT12MOV A,#01111111B ;BSJMP LASTLT12: CJNE A,#0CH,LT13MOV A,#00111001B ;CSJMP LASTLT13: CJNE A,#0DH,LT14MOV A,#00111111B ;DSJMP LASTLT14: CJNE A,#0EH,LT15MOV A,#01111001B ;ESJMP LASTLT15: CJNE A,#0FH,LASTMOV A,#01110001B ;FLAST:MOV P2,ARETJS:LJMP JIESHOUEND。

相关文档
最新文档