北师大版八年级数学下册第一章复习提纲
北师大版八年级下册数学各章知识要点总结

北师大版八年级下册数学各章知识要点总结北师大版八年级下册数学各章学问要点总结北师大版八年级数学下册各章学问要点总结第一章一元一次不等式和一元一次不等式组一、一般地,用符号“<”(或“≤”),“>”(或“≥”)连接的式子叫做不等式。
1、能使不等式成立的未知数的值,叫做不等式的解. 2、不等式的解不唯一,把全部满意不等式的解集合在一起,构成不等式的解集.3、求不等式解集的过程叫解不等式.4、由几个一元一次不等式组所组成的不等式组叫做一元一次不等式组5、不等式组的解集:一元一次不等式组各个不等式的解集的公共局部。
6、等式根本性质1:在等式的两边都加上(或减去)同一个数或整式,所得的结果仍是等式.根本性质2:在等式的两边都乘以或除以同一个数(除数不为0),所得的结果仍是等式.二、不等式的根本性质1:不等式的两边都加上(或减去)同一个整式,不等号的方向不变.(注:移项要变号,但不等号不变。
)性质2:不等式的两边都乘以(或除以)同一个正数,不等号的方向不变.性质3:不等式的两边都乘以(或除以)同一个负数,不等号的方向转变.不等式的根本性质、若a>b,则ac>bc;、若a>b,c>0则ac>bc,若cc,则a>c四、一元一次不等式与一次函数五、一元一次不等式组※1.定义:由含有一个一样未知数的几个一元一次不等式组成的不等式组,叫做一元一次不等式组.※2.一元一次不等式组中各个不等式解集的公共局部叫做不等式组的解集.假如这些不等式的解集无公共局部,就说这个不等式组无解.几个不等式解集的公共局部,通常是利用数轴来确定.※3.解一元一次不等式组的步骤:(1)分别求出不等式组中各个不等式的解集;(2)利用数轴求出这些解集的公共局部,(3)写出这个不等式组的解集.两个一元一次不等式组的解集的四种状况(a、b为实数,且a找公因式的一般步骤:(1)若各项系数是整系数,取系数的最大公约数;(2)取一样的字母,字母的指数取较低的;(3)取一样的多项式,多项式的指数取较低的.(4)全部这些因式的乘积即为公因式.四、分解因式的一般步骤为:(1)若有“-”先提取“-”,若多项式各项有公因式,则再提取公因式.(2)若多项式各项没有公因式,则依据多项式特点,选用平方差公式或完全平方公式.(3)每一个多项式都要分解到不能再分解为止.五、形如a+2ab+b或a-2ab+b的式子称为完全平方式.六、分解因式的方法:1、提公因式法。
北师大版数学八年级下册全册复习教案

34D 第一章三角形的证明【学习目标】1、在回顾与思考中建立本章的知识框架图,复习有关定理的探索与证明,证明的思路和方法,尺规作图等。
2、发展学生的初步的演绎推理能力,进一步掌握综合法的证明方法,提高学生用规范的数学语言表达论证过程的能力。
【学习重难点】重点:通过例题的讲解和课堂练习对所学知识进行复习巩固难点:本章知识的综合性应用。
【学习过程】1、等腰三角形的性质:(边);(角);“三线合一”的内容。
2、等边三角形的性质:(边);(角)。
3、判定等腰三角形的方法有:(边);(角)。
4、判定等边三角形的方法有:(边);(角)。
5、线段垂直平分线的性质定理:。
逆定理:。
三角形的垂直平分线性质:。
6、角的性质定理:。
逆定理:。
三角形的角平分线性质:。
7、三角形全等的判定方法有:。
8、30°锐角的直角三角形的性质:。
9、方法总结:(1)证明线段相等的方法:1)可证明它们所在的两个三角形全等;2)角平分线的性质定理:角平分线上的点到角两边的距离相等;)等角对等边;)等腰三角形三线合一的性质;5)中垂线的性质定理:线段垂直平分线上的点到线段两端点的距离相等。
(2)证明两角相等的方法:1)同角的余角相等;2)平行线性质;3)对顶角相等;4)全等三角形对应角相等;5)等边对等角;6)角平分线的性质定理和逆定理。
(3)证明垂直的方法:1)证邻补角相等;2)证和已知直角三角形全等;3)利用等腰三角形的三线合一性质;4)勾股定理的逆定理。
(4)等腰三角形的证明:主要用等腰三角形的两腰相等,两底角相等和三线合一性质解题。
1、填空:(1)△ABC 中,∠A ∶∠B ∶∠C =1∶2∶3,最小边BC =4cm ,最长边AB=。
(2)直角三角形两直角边分别是5cm 、12cm ,其斜边上的高是。
(3)若一个三角形的三条高线交点恰好是此三角形的一个顶点,则此三角形是三角形。
(4)三角形三边分别为a 、b 、c ,且a 2-bc =a (b -c ),则这个三角形(按边分类)一定是________2、已知:如图,是△ABC 的BC 边上的中点,DE ⊥AC ,DF ⊥AB ,垂足分别是E 、F ,且DE=DF 。
新北师大版八年级数学下册知识点总结

新北师大版八年级数学下册知识点总结XXX版八年级数学下册各章知识要点总结第一章三角形的证明一、全等三角形的判定和性质:判定方法:SSS、SAS、ASA、AAS、HL(直角三角形)对应边相等,对应角相等二、等腰三角形的性质和判定:有两边相等,底角相等等腰三角形的顶角平分线、底边中线和高线互相重合等边三角形的各角相等,每个角都等于60°判定方法:等角对等边三、直角三角形的性质和判定:两锐角互余直角边平方和等于斜边平方锐角等于30°的直角三角形,直角边等于斜边的一半斜边上的中线等于斜边的一半判定方法:三边平方和相等四、线段的垂直平分线和角平分线:垂直平分线上的点到两个端点的距离相等三角形三条边的垂直平分线相交于一点,这个点到三个顶点的距离相等(外心)角平分线上的点到两边距离相等三角形三条角平分线相交于一点,这个点到三条边的距离相等(内心)第二章一元一次不等式和一元一次不等式组本章主要介绍一元一次不等式和一元一次不等式组的概念、性质和解法。
一、一元一次不等式的概念和性质:形如ax+b0)的不等式称为一元一次不等式解不等式的基本方法是移项、化简、分段讨论不等式的解集可以用区间表示二、一元一次不等式的解法:通过移项将不等式化为ax)b的形式根据a的正负性和不等式符号确定解集的范围判断解集的开闭性和无解情况三、一元一次不等式组的概念和性质:形如ax+by)和dx+ey>f(或<)的不等式组称为一元一次不等式组解不等式组的基本方法是联立、消元、分段讨论不等式组的解集可以用平面区域表示四、一元一次不等式组的解法:通过联立将不等式组化为标准形式根据系数的正负性和不等式符号确定解集的范围判断解集的开闭性和无解情况总之,本章内容涵盖了三角形的证明和一元一次不等式及其组的解法,是初中数学中重要的基础知识。
定义:不等式是用符号“<”(或“≤”),“>”(或“≥”)连接的式子。
基本性质:不等式的两边都加(或减)同一个整式,不等号的方向不变;不等式的两边都乘(或除以)同一个正数,不等号的方向不变;不等式的两边都乘(或除以)同一个负数,不等号的方向改变。
北师大版八年级数学下册知识点总结

第一章 一元一次不等式和一元一次不等式组一. 不等关系1. 一般地,用符号“<”(或“≤”), “>”(或“≥”)连接的式子叫做不等式.2. 区别方程与不等式:方程表示是相等的关系,不等式表示是不相等的关系。
3. 准确“翻译”不等式,正确理解“非负数”、“不小于”等数学术语.非负数 <===> 大于等于0(≥0) <===> 0和正数 <===> 不小于0 非正数 <===> 小于等于0(≤0) <===> 0和负数 <===> 不大于0 二. 不等式的基本性质1. 掌握不等式的基本性质,并会灵活运用:(1) 不等式的两边加上(或减去)同一个整式,不等号的方向不变,即:如果a>b,那么a+c>b+c, a-c>b-c.(2) 不等式的两边都乘以(或除以)同一个正数,不等号的方向不变,即如果a>b,并且c>0,那么ac>bc,c b c a >. (3) 不等式的两边都乘以(或除以)同一个负数,不等号的方向改变,即:如果a>b,并且c<0,那么ac<bc,cb c a < 2. 比较大小:(a 、b 分别表示两个实数或整式) 一般地: 如果a>b,那么a-b 是正数;反过来,如果a-b 是正数,那么a>b; 如果a=b,那么a-b 等于0;反过来,如果a-b 等于0,那么a=b; 如果a<b,那么a-b 是负数;反过来,如果a-b 是正数,那么a<b; 即:a>b <===> a-b>0 a=b <===> a-b=0 a<b <===> a-b<0 (由此可见,要比较两个实数的大小,只要考察它们的差就可以了. 三. 不等式的解集:1. 能使不等式成立的未知数的值,叫做不等式的解;一个不等式的所有解,组成这个不等式的解集;求不等式的解集的过程,叫做解不等式.2. 不等式的解可以有无数多个,一般是在某个范围内的所有数,与方程的解不同.3. 不等式的解集在数轴上的表示:用数轴表示不等式的解集时,要确定边界和方向:①边界:有等号的是实心圆圈,无等号的是空心圆圈;②方向:大向右,小向左四. 一元一次不等式:1. 只含有一个未知数,且含未知数的式子是整式,未知数的次数是1. 像这样的不等式叫做一元一次不等式.2. 解一元一次不等式的过程与解一元一次方程类似,特别要注意,当不等式两边都乘以一个负数时,不等号要改变方向.3. 解一元一次不等式的步骤:①去分母;②去括号;③移项;④合并同类项;⑤系数化为1(不等号的改变问题) 4. 一元一次不等式基本情形为ax>b(或ax<b)①当a>0时,解为abx >;②当a=0时,且b<0,则x 取一切实数;当a=0时,且b ≥0,则无解;③当a<0时, 解为a bx <;5. 不等式应用的探索(利用不等式解决实际问题) 列不等式解应用题基本步骤与列方程解应用题相类似,即:①审: 认真审题,找出题中的不等关系,要抓住题中的关键字眼,如“大于”、“小于”、“不大于”、“不小于”等含义; ②设: 设出适当的未知数;③列: 根据题中的不等关系,列出不等式; ④解: 解出所列的不等式的解集;⑤答: 写出答案,并检验答案是否符合题意. 五. 一元一次不等式组1. 定义: 由含有一个相同未知数的几个一元一次不等式组成的不等式组,叫做一元一次不等式组.2. 一元一次不等式组中各个不等式解集的公共部分叫做不等式组的解集.如果这些不等式的解集无公共部分,就说这个不等式组无解. 几个不等式解集的公共部分,通常是利用数轴来确定.3. 解一元一次不等式组的步骤:(1)分别求出不等式组中各个不等式的解集;(2)利用数轴求出这些解集的公共部分,即这个不等式组的解集.两个一元一次不等式组的解集的四种情况(a、b为实数,且a<b)第二章分解因式一. 分解因式1. 把一个多项式化成几个整式的积的形式,这种变形叫做把这个多项式分解因式.2. 因式分解与整式乘法是互逆关系。
八年级下册数学北师大版第一章

八年级下册数学北师大版第一章1. 中心对称定义:如果一个图形绕某一点旋转180度,能与另一个图形重合,则这两个图形为中心对称图形。
性质:中心对称图形必定是旋转180度后重合的图形。
2. 中心对称图形定义:一个图形绕某一点旋转180度能够与自身重合,则这个图形叫做中心对称图形。
性质:中心对称图形的所有点都关于某一点对称。
3. 轴对称与轴对称图形定义:如果一个图形沿着某条直线对折,两侧的图形能完全重合,则这个图形称为轴对称图形。
性质:轴对称图形的对称轴两侧的图形是全等的。
4. 轴对称的性质如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线。
如果两个图形关于某直线对称,那么它们的对应线段(或延长)相等。
如果两个图形关于某直线对称,那么它们的对应角相等。
5. 全等三角形定义:两个三角形能够完全重合,则这两个三角形称为全等三角形。
性质:全等三角形的对应边相等,对应角相等。
6. 三角形全等的判定边边边(SSS):如果两个三角形的三边分别相等,那么这两个三角形全等。
边角边(SAS):如果两个三角形的两边及其夹角分别相等,那么这两个三角形全等。
角边角(ASA):如果两个三角形的两角及其夹边分别相等,那么这两个三角形全等。
角角边(AAS):如果两个三角形的两角及其对边分别相等,那么这两个三角形全等。
7. 直角三角形全等的判定斜边直角边(HL):如果两个直角三角形的斜边和一条直角边分别相等,那么这两个直角三角形全等。
8. 角的平分线性质角的平分线上的点到这个角的两边的距离相等。
9. 平行四边形定义:两组相对边平行或相等的四边形叫做平行四边形。
性质:对边平行、对角相等、对角线互相平分。
10. 矩形、菱形、正方形定义:有一个角是直角的平行四边形叫做矩形;一组邻边相等的平行四边形叫做菱形;有一个角是直角的菱形叫做正方形。
性质:矩形、菱形、正方形都是特殊的平行四边形,它们都具有平行四边形的所有性质,此外还有各自特殊的性质。
(完整版)北师大版八年级下册数学复习知识点及例题相结合

一. 不等关系第一章一元一次不等式和一元一次不等式组1. 一般地,用符号“<”(或“ ≥”), “>”(或“ ≤”)连接的式子叫做不等式.2.区别方程与不等式:方程表示是相等的关系,不等式表示是不相等的关系。
3.准确“翻译”不等式,正确理解“非负数”、“不小于”等数学术语.非负数⇔ 非正数⇔ 大于等于0( ≥ 0) ⇔小于等于0( ≤ 0) ⇔0 和正数0 和负数⇔不小于0⇔不大于0二. 不等式的基本性质1.掌握不等式的基本性质,并会灵活运用:(1)不等式的两边加上(或减去)同一个整式,不等号的方向不变,即:如果a>b,那么a+c>b+c, a-c>b-c.(2)不等式的两边都乘以(或除以)同一个正数,不等号的方向不变,即如果a>b,并且c>0,那么ac>bc, a >b .c c(3)不等式的两边都乘以(或除以)同一个负数,不等号的方向改变,即:如果a>b,并且c<0,那么ac<bc, a <bc c2.比较大小:(a、b 分别表示两个实数或整式) 一般地:如果a>b,那么a-b 是正数;反过来,如果a-b 是正数,那么a>b;如果a=b,那么a-b 等于0;反过来,如果a-b 等于0,那么a=b;如果a<b,那么a-b 是负数;反过来,如果a-b 是正数,那么a<b;即:a>b ⇔ a-b>0 a=b ⇔ a-b=0 a<b ⇔ a-b<0(由此可见,要比较两个实数的大小,只要作差即可)例下列各式一定成立的是( )A.7a﹥4a B. a﹥-a C. a+1﹥a-1 D. a≤a2例若a﹥b,且a、b 同号,以下不等式中一定成立的有①a2﹥b2 ②a3<b3 ③1/a<1/b ④a/b﹥1A. 0B. 1C. 2D. 3三. 不等式的解集:1.能使不等式成立的未知数的值,叫做不等式的解;一个不等式的所有解,组成这个不等式的解集;求不等式的解集的过程,叫做解不等式.2.不等式的解可以有无数多个,一般是在某个范围内的所有数,与方程的解不同.3.不等式的解集在数轴上的表示:用数轴表示不等式的解集时,要确定边界和方向:①边界:有等号的是实心点,无等号的是空心圆圈;②方向:大向右,小向左四. 一元一次不等式:1.只含有一个未知数,且含未知数的式子是整式,未知数的次数是1. 像这样的不等式叫做一元一次不等式.2.解一元一次不等式的过程与解一元一次方程类似,特别要注意,当不等式两边都乘以一个负数时,不等号要改变方向.3.解一元一次不等式的步骤:①去分母;②去括号;③移项;④合并同类项;⑤系数化为1(不等号的改变问题)4.一元一次不等式基本情形为ax>b(或ax<b)①当a>0 时,解为x >b;②当a=0 时,且b<0,则x 取一切实数;当a=0 时,且b≥0,则a无解;③当a<0 时, 解为x <b ;a5.不等式应用的探索(利用不等式解决实际问题)列不等式解应用题基本步骤与列方程解应用题相类似,即:①审: 认真审题,找出题中的不等关系,要抓住题中的关键字眼,如“大于”、“小于”、“不大于”、“不小于”等含义;②设: 设出适当的未知数;③列: 根据题中的不等关系,列出不等式;④解: 解出所列的不等式的解集;⑤答: 写出答案,并检验答案是否符合题意.例不等式mx﹥n(m≠0)的解集是( )A.x﹥n/m B.当m﹥0 时,x﹥n/m,当m<0 时,x<-n/mC.x<n/m D.当m﹥0 时,x﹥n/m,当m<0 时,x<n/m例如果不等式(a+1) x﹥(a+1)的解集为x<1,则a 必须满足的的条件是:A. a<0B. a≤-1C. a﹥-1D. a<-1例已知关于x 的不等式(2a-b)x+a-5b ﹥0 的解集为x<10/7,则ax+b﹥0 的解集为例若不等式组x﹥a 无解,则不等式组x﹥2-a 的解集是例水果店进了某中水果1t,进价是7 元/kg。
北师大版初中八年级数学下册单元复习课 第一章勾 股 定 理

(2)∵在△ABC 中,∠C=90°,AC=6,BC=8, ∴AB2=AC2+BC2=62+82=100,∴AB=10, 如图,作 CD⊥AB,垂足为 D, S△ABC=12 ×AC×BC=12 AB×CD, ∴CD=4.8, h(AB)=AB-CD, h(AB)=10-4.8=5.2.
4.(2021·信阳质检)如图,在四边形ABFC中,∠ABC=90°,CD⊥AD,AD2 =2AB2-CD2.求证:AB=BC.
(3)如果以正方形一边为斜边向外作直角三角形,再以该直角三角形的两直角 边分别向外作正方形,重复这一过程就可以得到如图8所示的“勾股树”.在 如图9所示的“勾股树”的某部分图形中,设大正方形M的边长为定值m,四 个小正方形A,B,C,D的边长分别为a,b,c,d,已知∠1=∠2=∠3=∠α, 则当∠α变化时,回答下列问题:(结果可用含m的式子表示) ①a2+b2+c2+d2=____________; ②b与c的关系为____________,a与d的关系为____________.
2.(2020·苏州中考)如图,在△ABC中,已知AB=2,AD⊥BC,垂足为D,BD =2CD.若E是AD的中点,则EC=___1___.
3.(2021·百色期中)我们规定:三角形任意一条边的“线高差”等于这条边与 这条边上的高之差.如图①,在△ABC中,CD为AB边上的高,AB的“线高 差”等于AB-CD,记为h(AB).
解:(1)①如果直角三角形的两条直角边分别为 a,b,斜边为 c,那么 a2+b2=c2. (或者:在直角三角形中,两条直角边的平方和等于斜边的平方.) ②在题图 1 中,大正方形的面积等于四个全等的直角三角形的面积与中间小正方 形面积的和. 即 c2=12 ab×4+(b-a)2,化简得:a2+b2=c2. 在题图 2 中,大正方形的面积等于四个全等的直角三角形的面积与中间小正方形 化 (1)将问题转化为三角形,利用勾股定理或勾股定理的逆定理解决问题. (2)借助方程思想,通过列方程解决问题. 2.善于寻找直角三角形 (1)题目中含有直角三角形,可直接利用. (2)通过作辅助线构造直角三角形,解决问题.
北师大版八年级下册数学期末知识点复习

北师大版八年级下册数学期末知识点复习八年级下册数学考试知识点复第一章证明(二)一、全等三角形的判定及性质全等三角形的性质是对应相等,即对应的角相等,对应的边相等。
判定全等三角形有五种方法:SSS(分别相等的三边)、SAS(分别相等的两边和它们夹角的正弦值相等)、ASA(分别相等的两角和夹角中间的边)、AAS(分别相等的两角和它们夹角的正弦值相等)、HL(分别相等的斜边和一个直角边的长度)。
等腰三角形的性质是两个底角相等,即等边对等角。
判定等腰三角形有一个角等于另一个角,即等角对等边。
等腰三角形还有一个推论是互相重合,即两个等腰三角形的两个底边相等,两个等腰角也相等。
等边三角形的性质是三个角都相等,每个角都等于60度,是轴对称图形,有一条对称轴。
判定等边三角形有两个方法:有一个角是60度的等腰三角形是等边三角形,三个角都相等的三角形是等边三角形。
直角三角形的勾股定理是直角边的平方和等于斜边的平方,逆定理是如果三角形两边的平方和等于第三边的平方,那么这个三角形是直角三角形。
含30度的直角三角形的边的性质是如果一个锐角等于30度,那么它所对的斜边等于另一条直角边的一半。
直角三角形斜边上的中线等于斜边的一半。
线段的垂直平分线的性质是线段垂直平分线上的点到线段两端点的距离相等。
判定线段垂直平分线的方法是到一条线段两个端点距离相等的点在这条线段的中垂线上。
三角形三边的垂直平分线相交于一点,这一点到三个顶点的距离相等。
角平分线的性质是角平分线上的点到角的两边距离相等。
判定角平分线的方法是到一个角的内部,且到角的两边距离相等的点在这个角的平分线上。
三角形的三条角平分线相交于一点,这一点到三条边的距离相等,叫做内心。
二、一元一次不等式和一元一次不等式组不等关系是数学中的一种关系,包括大于、小于、大于等于、小于等于四种形式。
一元一次不等式是形如ax+b>c的不等式,其中a、b、c都是实数,且a不等于0.解一元一次不等式可以用图像法或代数法,将不等式变形为x>或x<的形式。
北师大版数学八年级下第一章、一元一次不等式与不等式组培优复习讲义(一)

戴氏西门总校数学资料北师大版八年级下第一章、一元一次不等式与不等式组复习讲义(一)第一部分、要点概况(一)不等关系1、一般地,用符号“<”、“≤”、“>”、“≥”、“≠”连接的式子叫做不等式。
注意:⑴要弄清不等式和等式的区别:等式有等号,而不等式没有。
⑵常用的不等号有:<、≤、>、≥、≠。
⑶列不等式是数学化与符号化的过程,它与列方程类似,列不等式注意找到问题中不等关系的词,如: “正数(>0)”, “负数(<0)”, “非正数(≤0)”, “非负数(≥0)”, “超过(>0)”, “不足(<0)”, “至少(≥0)”, “至多(≤0)”, “不大于(≤0)”, “不小于(≥0)”⑷除了⑶常见不等式所表示的基本语言与含义还有: ①若a -b >0,则a 大于b ; ②若a -b <0,则a 小于b ; ③若a -b ≥0,则a 不小于b ; ④若a -b ≤0,则a 不大于b ;⑤若ab >0或0ab >,则a 、b 同号; ⑥若ab <0或0ab<,则a 、b 异号。
⑸不等号具有方向性,其左右两边不能随意交换:a <b 可转换为b >a ,c ≥d 可转换为d ≤c 。
例1:判断下列哪些式子是不等式,哪些不是不等式。
①32>-; ②21x ≤; ③21x -; ④s vt =; ⑤283m x <-;⑥124x x ->-;⑦38x ≠;⑧5223x x -≈-+;⑨240x +>;⑩230xπ+>。
不等式: 。
变式训练1:已知下列各式:①-1<0,②2+3=5 ③3x>7 ④2x-3y=1 ,其中不等式有不等式: 。
例2:⑴a 是正数: ;⑵x 的平方是非负数: ; ⑶a 不大于b : ;⑷x 的3倍与-2的差是负数: ;⑸长方形的长为x cm ,宽为10cm ,其面积不小于200cm 2: 。
变式训练2:用不等式表示:(1)x 与1的差不大于y 的3倍; (2)a 与b 的平方和是非负数;例3:试判断237a a -+与32a -+的大小变式训练3-1:比较1415-与1314-的大小。
北师大版八年级下册数学期末总复习 知识清单

八年级下册数学期末总复习知识清单(北师大版)学校:_______________班级:_______________姓名:_______________目录第一章三角形的证明第二章一元一次不等式与一元一次不等式组第三章图形的平移与旋转第四章因式分解第五章分式与分式方程第六章平行四边形第一章三角形的证明一、全等三角形判定、性质1、五种基本判定定理:SSS、SAS、ASA、AAS、HL(直角三角形专属判定定理)2、全等三角形的对应边相等、对应角相等。
【例题】如如如如如AC=AD如如ACB=如ADB=90°如如如如如如如如如如如A、1对B、2对C、3对D、4对【解析过程】如如如如ACB=如ADB=90°如AB=AB如AC=AD如如Rt如ACB如Rt如ADB如HL如如如BC=BD如如CAB=如DAB如如ABC=如ABD如如AC=AD如如CAE=如DAE如如如ACE如如ADE如SAS如如如BC=BD如如CBE=如DBE如BE=BE如如如BCE如如BDE如SAS如如如如如C如二、等腰三角形的性质定理:等腰三角形有两边相等;(定义)定理:等腰三角形的两个底角相等(简写成“等边对等角”)。
推论1:等腰三角形顶角的平分线、底边上的中线及底边上的高线互相重合。
(三线合一)推论2:等边三角形的各角都相等,并且每一个角都等于60°。
等腰三角形是以底边的垂直平分线为对称轴的轴对称图形;【例题1】如如如如如ABC如如AB=AD=DC如如BAD=26°如如如C如如如如【解析过程】【例题2】已知实数b a 、满足0)4(|2|2=-+-b a ,则以b a 、的值为两边的等腰三角形的周长是_________【解析过程】如如如如如如如a -2=0如b -4=0如如如a=2如b=4如如a=2如如如如如如如如如如如如如如4如4如2如如 4如4如2如如如如如如如 如 如如如如如如如10如如a=2如如如如如如如如如如如如如如4如2如2如2+2=4如如如如如如如如如 如如如如如如如如如如如如10如三、等腰三角形的判定1. 有关的定理及其推论定理:有两个角相等的三角形是等腰三角形(简写成“等角对等边”。
北师大版初二数学下册知识点归纳

【导语】学会整合知识点。
把需要学习的信息、掌握的知识分类,做成思维导图或知识点卡⽚,会让你的⼤脑、思维条理清醒,⽅便记忆、温习、掌握。
同时,要学会把新知识和已学知识联系起来,不断糅合、完善你的知识体系。
这样能够促进理解,加深记忆。
下⾯是为您整理的《北师⼤版初⼆数学下册知识点归纳》,仅供⼤家参考。
北师⼤版初⼆数学下册知识点归纳篇⼀ 第⼀章分式 1分式及其基本性质分式的分⼦和分母同时乘以(或除以)⼀个不等于零的整式,分式的只不变 2分式的运算 (1)分式的乘除乘法法则:分式乘以分式,⽤分⼦的积作为积的分⼦,分母的积作为积的分母除法法则:分式除以分式,把除式的分⼦、分母颠倒位置后,与被除式相乘。
(2)分式的加减加减法法则:同分母分式相加减,分母不变,把分⼦相加减;异分母分式相加减,先通分,变为同分母的分式,再加减 3整数指数幂的加减乘除法 4分式⽅程及其解法 第⼆章反⽐例函数 1反⽐例函数的表达式、图像、性质 图像:双曲线 表达式:y=k/x(k不为0) 性质:两⽀的增减性相同; 2反⽐例函数在实际问题中的应⽤ 第三章勾股定理 1勾股定理:直⾓三⾓形的两个直⾓边的平⽅和等于斜边的平⽅ 2勾股定理的逆定理:如果⼀个三⾓形中,有两个边的平⽅和等于第三条边的平⽅,那么这个三⾓形是直⾓三⾓形。
第四章四边形 1平⾏四边形 性质:对边相等;对⾓相等;对⾓线互相平分。
判定:两组对边分别相等的四边形是平⾏四边形; 两组对⾓分别相等的四边形是平⾏四边形; 对⾓线互相平分的四边形是平⾏四边形; ⼀组对边平⾏⽽且相等的四边形是平⾏四边形。
推论:三⾓形的中位线平⾏第三边,并且等于第三边的⼀半。
2特殊的平⾏四边形:矩形、菱形、正⽅形 (1)矩形 性质:矩形的四个⾓都是直⾓; 矩形的对⾓线相等; 矩形具有平⾏四边形的所有性质 判定:有⼀个⾓是直⾓的平⾏四边形是矩形;对⾓线相等的平⾏四边形是矩形; 推论:直⾓三⾓形斜边的中线等于斜边的⼀半。
北师大八年级数学下册教案:第一章三角形的证明复习教案

举例:给出一个具体直角三角形的边长,要求学生求解另一条边长。
(5)三角形面积的计算:熟练掌握海伦公式、三角形面积与底和高的关系,能够计算不同类型三角形的面积。
举例:给出一个三角形的三边长,要求学生运用海伦公式计算其面积。
2.教学难点
(1)几何逻辑推理:对于三角形性质与判定的逻辑推理过程,学生可能难以理解,需要教师通过具体实例和图示进行讲解。
难点举例:证明三角形两边之和大于第三边的过程中,学生可能对“反证法”的理解存在困难。
(2)全等三角形的判定:在实际应用中,学生可能难以找到合适的全等条件进行判断,需要教师引导学生如何观察和分析问题。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“三角形在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
3.提升学生的数学建模能力:通过全等三角形、等腰三角形和直角三角形的判定与应用,让学生在实际问题中构建数学模型,增强数学应用意识。
4.培养学生的数学抽象素养:引导学生从具体的三角形实例中抽象出一般性规律,提升数学抽象思维。
5.增强学生的数学运算能力:在三角形面积计算等方面,让学生熟练掌握相关公式,提高运算速度和准确性。
难点举例:在复杂的图形中,学生可能难以发现两个三角形之间的全等关系。
(3)等腰三角形的性质与判定:学生容易忽视等腰三角形底角相等这一性质,导致解题错误。
北师大版八年级数学下册第一章复习(知识点+试题)

知识点一:等腰三角形1、全等三角形的性质及判定全等三角形的性质:对应边相等,对应角相等。
判定三角形全等的四种方法:SSS, SAS, ASA, AAS.2、等腰三角形的性质定理:①等腰三角形,两底角相等(等边对等角)。
②等腰三角形,底边的高,顶角的角平分线,底边的中线重合。
(“三线合一”)③等腰三角形两底角的角平分线相等,两腰的中线相等,两腰的高相等。
(特殊线段相等)等腰三角形的判定定理:有两角相等的三角形是等腰三角形(等角对等边)。
知识点二:等边三角形1、等边三角形的性质定理:等边三角形,三条边相等,三个内角都相等,且都等于60°。
2、等边三角形的判定定理:①有一个角是60 °的等腰三角形是等边三角形。
②三个角都相等的三角形是等边三角形。
知识点三:反证法步骤:①假设:假设结论不成立;②推论:将假设当条件继续推论,得岀与已知条件、公理、定义、定理相矛盾的结论;③假设不成立;④原命题成立。
知识点四:直角三角形1、直角三角形性质定理:①角的角度:直角三角形,两锐角互余。
②边的角度:勾股定理:直角三角形中,两直角边的平方和等于斜边的平方。
2、直角三角形的判定定理:①角的角度:两锐角互余的三角形是直角三角形。
②边的角度:勾股定理的逆定理(在三角形中,若其中两边的平方等于第三边的平方,则此三角形是直角三角形。
)3、特殊的直角三角形:①在直角三角形中,有一个角是30°,则它所对的直角边是斜边的一半。
②在直角三角形中,若直角边是斜边的一半,那么直角边所对的角为30°。
4、“ HL”定理:斜边和一条直角边分别相等的两个三角形全等。
(注意:此定理只是用于直角三角形中,用之前要强调两个三角形是直角三角。
)知识点五:垂直平分线(点到点)1、性质定理:垂直平分线上的点到这条线段两个端点的距离相等。
2、判定定理:到线段两个端点的距离相等的点在这条线段的垂直平分线上。
(垂直平分线点到点的距离相等)V------------------判定定理3、三角形三边的垂直平分线:三角形的三条边的垂直平分线交于一点,并且这一点到三角形三个顶点的距离相等。
八年级下册数学北师大版第一章

八年级下册数学北师大版第一章全文共四篇示例,供读者参考第一篇示例:八年级下册数学北师大版第一章主要包括整式的概念和运算,是数学学习中的重要内容之一。
整式是指由常数和变数及其乘积通过加法或减法运算而得到的代数式。
在学习整式的过程中,我们不仅需要了解整式的基本概念和性质,还需要掌握整式的各种运算方法。
本文将围绕这些内容展开详细的讲解。
我们需要了解整式的基本概念。
整式包括单项式和多项式两种形式。
单项式是只包含一个项的代数式,例如3x、-5y、2xy等;多项式是由多个项相加或相减而成的代数式,例如2x+3y、4x^2-5xy+7等。
整式中的每一项都由一个系数和一个幂次组成,例如在2x^2y中,系数为2,幂次为2。
整式的运算是整式学习的重点之一。
整式的加法和减法运算遵循同类项相加减原则,即只有系数和幂次都相同的项才能进行加减运算。
在2x+3y和3x+2y中,x和y分别为变数,2和3为系数,在两式中x和y的系数分别为2和3,幂次都为1,所以可以进行加减运算,最终得到结果为5x+5y。
而2x^2和3x^2在幂次相同的情况下也可以进行加法运算,最终得到5x^2。
除了加法和减法外,整式还包括乘法和除法运算。
整式的乘法运算遵循分配律和合并同类项原则,即两个整式相乘时,先分别求出每一个项的积,然后合并同类项。
在(2x+3)(4x-5)中,先求出每一项的积,得到8x^2-10x+12x-15,然后合并同类项,最终得到8x^2+2x-15。
除法运算是整式运算中相对较为复杂的一个环节。
整式的除法运算可以通过长除法或因式分解法进行,其中长除法适用于任意整式,而因式分解法适用于整式之间的特定关系。
通过长除法,可以找到整式相除的商和余数,从而得到整式的商式和余式。
八年级下册数学北师大版第一章涵盖了整式的概念和运算,是数学学习的重要内容之一。
通过学习整式,可以提高学生的代数思维能力和解决问题的能力。
希望本文的内容对于大家在数学学习中有所帮助。
北师大版数学八年级下册第1章小结与复习教案

四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《小结与复习》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过需要计算直角三角形边长或是求解几何图形面积的情况?”(如房屋装修时计算地板面积)这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索数学在生活中的应用。
6.总结回顾环节,我注意到部分学生对课堂所学知识点的掌握不够扎实。为了提高学生的记忆效果,我将在今后的教学中,勾股定理及其应用的复习,提高学生运用逻辑推理解决问题的能力。
2.空间想象:通过平面几何图形的面积计算,培养学生对几何图形的空间想象和直观感知。
3.数学运算:加强实数与二次根式的运算训练,提高学生的数学运算能力。
4.数据观念:掌握数据的收集与处理方法,形成数据观念,培养学生对数据的敏感性和分析能力。
2.平面几何图形的面积计算:复习三角形、四边形、圆等几何图形的面积计算公式,并解决与面积相关的实际问题。
3.实数与二次根式:巩固实数的概念,掌握二次根式的化简与运算。
4.数据的收集与处理:掌握数据的收集、整理、描述和分析方法,学会使用统计图表。
二、核心素养目标
北师大版数学八年级下册第1章《小结与复习》的核心素养目标如下:培养学生的逻辑推理、空间想象、数学运算和数据观念等能力。
举例:学生在计算复杂多边形的面积时,要学会将其分解为简单图形,并运用相应公式计算。
(3)实数与二次根式:熟练掌握实数的概念,以及二次根式的化简和运算。
举例:学生在解决含有二次根式的数学问题时,要能够熟练地进行化简和运算。
1-1等腰三角形1-2直角三角形复习2022-2023学年北师大版数学八年级下册

角形;
(2)若∠BAC=∠DAE≠60° ①如图2,当点D在线段BC上移动,判断△BEF的形状并证明; ②当点D在线段BC的延长线上移动,△BEF是什么三角形?请 直接写出结论并画出相应的图形.
解:(1)∵AB=AC,AD=AE,∠BAC=∠DAE=60°, ∴△AED和△ABC为等边三角形, ∴∠C=∠ABC=60°,∠EAB=∠DAC, ∴△EAB≌△DAC, ∴∠EBA=∠C=60°, ∵EF∥BC, ∴∠EFB=∠ABC=60°, ∵在△EFB中,∠EFB=∠EBA=60°,
B
30°
的正北方向,此时它与灯塔的距离是
_2_0___3_海里(结果保留根号).
A
C
东
小结(2分钟)
(考点)
1、等腰三角形的性质与判定: 等边对等角、三线合一
2、等边三角形的性质定理及其判定定理 3、直角三角形的性质定理及其判定定理 4、反证法的证明步骤,互逆命题、互逆定理的概念
(易错点) 1.做没有图形的几何问题求边长或角度时应注意:
是否进行分类讨论
2.做互逆命题的问题应注意:
注意互逆命题的语言的准确性
当堂训练(15分钟) 1、如图,长方形纸片ABCD,AD∥BC,将长方
形纸片折叠,使点D与点B重合,点C落在点C’ 处,折痕为EF,则 △BEF为 等腰 三角形.
2.如图,已知∠AOB=60°,点P在边OA上,OP=8, 点M,N在边OB上,PM=PN,若MN=2,则ON=( B )
②AB=AC,点D为射线BC上一个动点(不与B、C重合),
以AD为一边向AD的左侧作△ADE,使AD=AE,
∠DAE=∠BAC,过点E作BC的平行线,交直线AB于点F,连 接BE.
北师大版八年级数学下册第一章复习提纲

八年级下第一章预习纲领一、全等三角形的判断及性质1、性质:全等三角形对应相等、对应2、判断:分别相等的两个三角形全等(相等;SSS);分别相等的两个三角形全等(ASA);分别相等的两个三角形全等(SSS);相等的两个三角形全等(AAS);相等的两个直角三角形全等(HL );二、等腰三角形1------------------2、判断:有两个角相等的三角形是等腰三角形(即---------------------- )3、推论:等腰三角形、、相互重合(即“4、等边三角形的性质及判断定理”)性质定理:等边三角形的三个角都相等,而且每个角都等于;等边三角形是轴对称图形,有条对称轴。
判断定理:( 1)有一个角是60°的 -------- 三角形是等边三角形;(2)三个角都 ---------- 的三角形是等边三角形。
三、直角三角形1、勾股定理及其逆定理定理:直角三角形的两条直角边的等于的平方。
逆定理:假如三角形两边的平方和等于第三边的平方,那么这个三角形是2、含30°的直角三角形的边的性质定理:在直角三角形中,假如一个锐角等于30°,那么等于3、直角三角形斜边的中线等于的一半。
四、线段的垂直均分线性质:垂直均分线上的点到的距离相等;判断:到一条线段两个端点距离相等的点在这条线段的三角形三边的垂直均分线的性质:三角形三条边的垂直均分线订交于一点,而且这一点到三个极点的距离相等。
五、角均分线性质:角均分线上的点到的距离相等;的一半。
判断:在一个角内部,且到角两边的距离相等的点,在这个角的均分线上。
三角形角均分线的性质定理:性质:三角形的三条角均分线订交于一点,而且这一点到三条边的距离相等。
这个点叫心里。
典型习题例 1.如图,在△ ABC 中,∠ C=90°, AC=14 , BD 均分∠ ABC ,交 AC 于 D ,AD ∶ DC=5 ∶ 2,则点 D 到AB的距离为()A. 10B. 4C. 7 D . 6例 2.如图,△ABC中, AB=AC=BD, AD=DC,则∠BAC的度数为()A . 120°B .108°C. 100° D . 135°例 3.如图,△ ABC中,∠ B,∠ C 的角均分线订交于点O ,过O作 DE ∥BC,若BD+CE=5,则DE等于()A.7B.6C.5D.4ADC B第 2 题第 1 题第 3 题例 4.如图,在△ ABC 中, AC=BC ,∠ C=90 °, AD是△ ABC 的角均分线, DE ⊥ AB,垂足为 E。
八下数学北师大版第一章讲解

八下数学北师大版第一章讲解Mathematics is a subject that is often feared and misunderstood by many students. However, with the right approach and guidance, it can be a fascinating and rewarding subject to learn. In the first chapter of the eighth-grade mathematics textbook published by Beijing Normal University Press, the fundamentals of mathematics are introduced in a clear and concise manner. This chapter sets the stage for the rest of the book, laying the groundwork for more complex concepts to come.数学是一个经常被许多学生所害怕和误解的学科。
然而,通过正确的方法和指导,它可以成为一门令人着迷和有益的学科。
在北京师范大学出版的八年级数学教科书的第一章中,基本的数学原理以清晰简洁的方式介绍。
这一章为接下来的内容打下了基础,为更复杂的概念做好铺垫。
The first chapter covers a variety of topics, including the number line, integers, rational numbers, and irrational numbers. These concepts are essential building blocks for understanding more advanced mathematical principles. Each topic is explained in a step-by-step manner, making it easy for students to grasp the underlyingconcepts. By breaking down complex ideas into manageable steps, students can build a solid foundation for future learning.第一章涵盖了各种主题,包括数轴、整数、有理数和无理数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
八年级下第一章预习大纲
一、全等三角形的判定及性质
1、性质:全等三角形对应相等、对应相等;
2、判定:分别相等的两个三角形全等(SSS);
分别相等的两个三角形全等(ASA);
分别相等的两个三角形全等(SSS);
相等的两个三角形全等(AAS);
相等的两个直角三角形全等(HL);
二、等腰三角形
1、性质:等腰三角形的两个底角相等(即------------------)。
2、
3、判定:有两个角相等的三角形是等腰三角形(即----------------------)
4、推论:等腰三角形、、互相重合(即“”)
4、等边三角形的性质及判定定理
性质定理:等边三角形的三个角都相等,并且每个角都等于;等边三角形是轴对称图形,有条对称轴。
判定定理:(1)有一个角是60°的--------三角形是等边三角形;
(2)三个角都----------的三角形是等边三角形。
三、直角三角形
1、勾股定理及其逆定理
定理:直角三角形的两条直角边的等于的平方。
逆定理:如果三角形两边的平方和等于第三边的平方,那么这个三角形是
2、】
3、含30°的直角三角形的边的性质
定理:在直角三角形中,如果一个锐角等于30°,那么等于的一半。
3、直角三角形斜边的中线等于的一半。
四、线段的垂直平分线
性质:垂直平分线上的点到的距离相等;
判定:到一条线段两个端点距离相等的点在这条线段的。
三角形三边的垂直平分线的性质:
三角形三条边的垂直平分线相交于一点,并且这一点到三个顶点的距离相等。
五、角平分线
性质:角平分线上的点到的距离相等;
~
判定:在一个角内部,且到角两边的距离相等的点,在这个角的平分线上。
三角形角平分线的性质定理:
性质:三角形的三条角平分线相交于一点,并且这一点到三条边的距离相等。
这个点叫内心。
典型习题
例1.如图,在△ABC中,∠C=90°,AC=14,BD平分∠ABC,交AC于D,
AD∶DC=5∶2,则点D到AB的距离为()
A.10 B.4 C.7 D.6
例2.如图,△ABC 中,AB=AC=BD ,AD=DC ,则∠BAC 的度数为( )
A .120°
B .108°
C .100°
D .135°
例3.如图,△ABC 中,∠B ,∠C 的角平分线相交于点O ,过O 作DE ∥BC ,若BD+CE=5,则DE 等于( )
…
A .7
B .6
C .5
D .4
例4.如图,在△ABC 中,AC=BC ,∠C=90°,AD 是△ABC 的角平分线,DE ⊥AB ,垂足为E 。
(1)若CD=5,求AC 的长。
/
(2)求证:AB=AC+CD
例5.如图,在矩形ABCD 中,AB=6,BC=8,将矩形ABCD 沿CE 折叠后,使点D 恰好落在对角线AC 上的点F 处。
(1)求EF 的长;(2)求梯形ABCE 的面积。
—
例6.如图,已知在△ABC 中,AB=AC ,AB 的垂直平分线D 胶AC 于点E , CE 的垂直平分线正好经过点B ,与A 相交于点F ,求∠A 的度数。
【
C
B
A
D 第1题
第2题
第3题
例7.如图,AD 是△ABC 的角平分线,DE 、DF 分别是△ABD 和△ACD 的高。
求证:AD 垂直平分EF 。
例8.如图1,点C 为线段AB 上一点,△ACM ,△CBN 是等边三角形,直线AN ,MB 交于点F 。
(1)求证:AN=BM ;
(2)求证:△CEF 为等边三角形;
(3)将△ACM 绕点C 按逆时针方向旋转90°,其他条件不变,在图2中补出符合要求的图形,并判断第(1)、(2)两小题的结论是否仍然成立。
(不要求证明)
<
图1 图2
测试题:
1.设M 表示直角三角形,N 表示等腰三角形,P 表示等边三角形,Q 表示等腰直角三角形,则下列四个图中,能表示他们之间关系的是( )
2.具有下列条件的两个等腰三角形,不能判断它们全等的是( ) A. 顶角、一腰对应相等 B. 底边、一腰对应相等 C. 两腰对应相等 D. 一底角、底边对应相等
3.△ABC 中,∠A :∠B :∠C=1:2:3,CD ⊥AB 于点D ,若BC=a ,则AD 等于( )
A a
B a
C a
D a
..
..1
23
232
3
$
4.下列命题的逆命题是真命题的是( )
A. 对顶角相等
B. 若a=b ,则|a|=|b|
C. 末位是零的整数能被5整除
D. 直角三角形的两个锐角互余 5.如图,△ABC 中,AB=AC ,点D 在AC 边上,且BD=BC=AD , 则∠A 的度数为( ) A. 30°
B. 36°
C. 45°
D. 70°
6.下列说法错误的是( )
A. 任何命题都有逆命题
B. 定理都有逆定理
C. 命题的逆命题不一定是正确的
D. 定理的逆定理一定是正确的 7.如果等腰三角形的一个角是80°,那么另外两个角是____________度。
]
8.等腰三角形底角15°,则等腰三角形的顶角、腰上的高与底边的夹角分别是
__________。
9在△ABC 和△ADC 中,下列论断:①AB=AD ;②∠BAC=∠DAC ;③BC=DC ,把其中两个论断作为条件,另一个论断作为结论,写出一个真命题:____________。
10.如图,折叠长方形的一边AD ,点D 落在BC 边的点F 处,已知:AB=8cm ,BC=10cm ,则△EFC 的周长=____________cm 。
11. 阅读下题及其证明过程:
已知:如图,D 是△ABC 中BC 边上一点,EB=EC ,∠ABE=∠ACE ,求证:∠BAE=∠CAE 。
证明:在△AEB 和△AEC 中,
EB EC ABE ACE AE AE ===⎧⎨⎪
⎩
⎪∠∠
∴△AEB ≌△AEC (第一步) ∴∠BAE=∠CAE (第二步)
问:上面证明过程是否正确若正确,请写出每一步推理根据;若不正确,请指出错在哪
,
12.已知,如图,O 是△ABC 的∠ABC 、∠ACB 的角平分线的交点,OD ∥AB 交BC 于D ,OE ∥AC 交BC 于E ,若BC=10cm ,求△ODE 的周长;
13.已知:如图,D 是等腰△ABC 底边BC 上一点,它到两腰AB 、AC 的距离分别为DE 、DF 。
(1)当D 点在什么位置时,DE=DF 并加以证明。
(2)探索DE 、DF 与等腰△ABC 的高的关系。
'
14.已知如图所示,ABC ∆的C B ∠∠,的外角平分线交于点D ,求证:AD 是BAC ∠的平分线.
"
15.如图,已知AC 、BD 相交于点E ,且AC=BD ,AB=DC 。
求证:BE=CE 。
`
A
B C
D
A D
E
B
C
16如图:1=∆ABC S ,若ACE DEC BDE S S S ∆∆∆==,求ADE ∆的面积.
A E
D
C
B。