第8讲 幂函数与函数应用教师
初中数学幂函数的性质教案
初中数学幂函数的性质教案教学目标:1. 知识与技能:理解幂函数的定义,掌握幂函数的性质,能够运用幂函数解决实际问题。
2. 过程与方法:通过观察、实验、探究等方法,引导学生发现幂函数的性质,培养学生的逻辑思维能力和解决问题的能力。
3. 情感、态度与价值观:激发学生对数学的兴趣,培养学生的团队合作意识,提高学生分析问题、解决问题的能力。
教学重难点:1. 重点:掌握幂函数的性质。
2. 难点:理解幂函数的单调性和奇偶性。
教学准备:1. 教学工具:多媒体课件、黑板、粉笔。
2. 学具:学生准备幂函数的图象和表格。
教学过程:一、导入(5分钟)1. 复习指数函数的定义和性质。
2. 提问:指数函数与幂函数有什么关系?二、新课导入(10分钟)1. 介绍幂函数的定义:一般地,函数的形式为y=x^a(a为常数),称为幂函数。
2. 分析幂函数的性质:a) 当a>0时,幂函数在x>0的区间上单调递增;b) 当a<0时,幂函数在x>0的区间上单调递减;c) 当a=0时,幂函数为常数函数。
三、实例分析(15分钟)1. 分析幂函数y=x^2的性质:a) 图像:抛物线,开口向上;b) 单调性:在x>0的区间上单调递增;c) 奇偶性:偶函数。
2. 分析幂函数y=x^-1的性质:a) 图像:反比例函数的图像;b) 单调性:在x>0的区间上单调递减;c) 奇偶性:奇函数。
四、学生实验探究(15分钟)1. 学生分组,每组选择一个幂函数进行实验。
2. 实验内容:观察幂函数的图像,分析幂函数的单调性和奇偶性。
3. 学生汇报实验结果,教师点评并总结。
五、巩固练习(10分钟)1. 学生自主完成幂函数的练习题。
2. 教师选取部分学生的作业进行点评。
六、课堂小结(5分钟)1. 回顾本节课学习的内容,总结幂函数的性质。
2. 强调幂函数在实际问题中的应用。
七、作业布置(5分钟)1. 完成幂函数的练习题。
2. 调查生活中常见的幂函数现象,下节课分享。
幂函数的教案
幂函数的教案幂函数的教案一、教学目标:1. 了解幂函数的定义和特性;2. 掌握幂函数的图像变化规律;3. 学会求解幂函数的零点和极值;4. 能够灵活应用幂函数解决实际问题。
二、教学重难点:1. 幂函数的图像变化规律;2. 幂函数的零点和极值的求解方法。
三、教学过程:1. 情境导入:通过一个实际问题引入幂函数的概念,如:“小明每天花费1小时做作业,他认为每增加一小时,成绩提高10分。
请问他在5小时内做作业,成绩会提高多少分?”引导学生思考这个问题所对应的数学函数关系。
2. 概念讲解:介绍幂函数的定义和表示形式,即y = ax^b,其中a和b是常数,a称为系数,b称为指数。
解释系数和指数的作用和意义,例如,系数决定幂函数的整体增大或减小趋势,指数决定幂函数的增长速度。
3. 图像观察:让学生观察不同幂函数的图像,理解系数和指数对图像的影响。
如,给出y = x^2,y = -x^2,y = 2x^2,y = (-2)x^2等函数,观察它们的图像变化规律。
引导学生发现系数为正表示图像开口朝上,系数为负表示图像开口朝下,指数为偶数表示图像在原点上下对称,指数为奇数表示图像在原点左右对称等规律。
4. 零点和极值的求解:介绍如何求解幂函数的零点和极值。
零点是函数图像与x轴的交点,可通过解方程ax^b = 0求得;极值是函数图像上最高点和最低点,可通过求导数后令导数等于零求得。
5. 实例分析:提供一些实际问题,要求学生应用幂函数解决。
如:“已知某商品的每年销售量增长20%,销售年限为5年,请问第5年的销售量是多少?”引导学生建立销售量和年份的函数关系,求解该问题。
6. 练习与拓展:给学生一些幂函数的求解题目进行练习,包括图像观察、零点和极值求解等。
并且可以拓展到一些高阶次的幂函数,让学生进行类比和归纳。
7. 总结回顾:对幂函数的定义和特性进行总结回顾,强调幂函数的重要性和应用价值。
鼓励学生独立思考和拓展,通过自主学习和探索更多关于幂函数的知识。
幂函数教案
幂函数教课设计一.教课目的:1.知识技术(1)理解幂函数的观点;(2)经过详细实例认识幂函数的图象和性质,并能进行初步的应用。
2.过程与方法类比研究一般函数,指数函数、对数函数的过程与方法,来研究幂函数的图象和性质。
3.感情、态度、价值观(1)进一步浸透数形联合与类比的思想方法;(2)领会幂函数的变化规律及包含此中的对称性。
二.要点、难点要点:从五个详细的幂函数中认识幂函数的观点和性质难点:从五个详细的幂函数的图象中归纳幂函数的性质,领会幂函数的图像的变化规律。
三.教课程序与环节设计问题引入.创建情境幂函数的图象和性质.组织研究幂函数性质的初步应用.试试练习复述幂函数的图象规律及性质.稳固反省幂函数性质的初步应用.作业回馈利用图形计算器或计算机研究一课外活动般幂函数的图象规律.四.教课过程1环节教课内容设计师生双边互动生:独立思虑达成引例。
阅读教材P90的详细实例(1)~(5),思虑以下问题:师:指引学生剖析归纳归纳得1.它们的对应法例分别是什么?创出结论。
2.以上问题中的函数有什么共同特点?设(答案)1.(1)乘以1;(2)求平方;(3)求立方;(4)开情方;(5)取倒数(或求-1次方)。
境2.上述问题中波及到的函数,都是形如yx的函数,此中x是自变量,是常数。
环节教课内容设计师生双边互动资料一:幂函数定义及其图象。
师生:共同辨析这种新函数与一般地,形如指数函数的异同。
师:指引学生用列表描点法,yx(aR)应用函数的性质,如奇偶性,的函数称为幂函数,此中为常数。
定义域等,画出函数图像,最练习1、以下函数中,哪几个函数是幂函数?组(1)y =12x2(2)y=2x后,教师利用电脑软件画出以上五个数数的图像。
织(3)y= x2 (4)y=1生:利用所学知识和方法试试(5)y= 探2 3x +2 (6)y=-x作出五个详细幂函数的图象,察看所图象,领会幂函数的变答案:(1),(4)化规律。
下边我们举例学习这种函数的一些性质。
2015届高考数学总复习第二章函数与导数第8课时指数函数、对数函数及幂函数教学案(含最新模拟、试题改编)
第二章 函数与导数第8课时 指数函数、对数函数及幂函数(2)第三章 (对应学生用书(文)、(理)22~23页)1. (必修1P 110复习9改编)函数y =a x -3+3恒过定点________. 答案:(3,4)解析:当x =3时,f(3)=a 3-3+3=4,∴ f(x)必过定点(3,4).2. (必修1P 110复习3改编)函数y =8-16x 的定义域是________.答案:⎝⎛⎦⎤-∞,34 解析:由8-16x ≥0,所以24x ≤23,即4x ≤3,定义域是⎝⎛⎦⎤-∞,34. 3. (必修1P 67练习3)函数f(x)=(a 2-1)x 是R 上的减函数,则a 的取值范围是________________.答案:(-2,-1)∪(1,2)解析:由0<a 2-1<1,得1<a 2<2,所以1<|a|<2,即-2<a <-1或1<a < 2.4. (必修1P 71习题13改编)已知函数f(x)=a +14x +1是奇函数,则常数a =________.答案:-12解析:由f(-x)+f(x)=0,得a =-12.5. (原创)函数y =1+⎝⎛⎭⎫45|x -1|的值域为__________. 答案:(1,2]解析:设y′=⎝⎛⎭⎫45u ,u =|x -1|. 由于u ≥0且y′=⎝⎛⎭⎫45u 是减函数, 故0<⎝⎛⎭⎫45|x -1|≤1,则1<y ≤2.1. 指数函数定义一般地,函数y=a x(a>0,a≠1)叫做指数函数,函数的定义域是R.2. 指数函数的图象与性质[备课札记]题型1 指数型函数的定义域、值域例1 已知x ∈[-3,2],求f(x)=14x -12x +1的最小值与最大值.解:f(x)=14x -12x +1=4-x -2-x +1=2-2x -2-x +1=⎝⎛⎭⎫2-x -122+34.∵ x ∈[-3,2], ∴ 14≤2-x ≤8.则当2-x =12,即x =1时,f(x)有最小值34;当2-x =8,即x =-3时,f(x)有最大值57.备选变式(教师专享)已知9x-10×3x+9≤0,求函数y =⎝⎛⎭⎫14x -1-4⎝⎛⎭⎫12x +2的最大值和最小值.解:由9x -10·3x +9≤0,得(3x -1)(3x -9)≤0, 解得1≤3x ≤9,∴ 0≤x ≤2.令(12)x =t ,则14≤t ≤1,y =4t 2-4t +2=4(t -12)2+1, 当t =12即x =1时,y min =1;当t =1即x =0时,y max =2.题型2 指数型函数的图象例2 已知函数f(x)=|2x -1-1|. (1) 作出函数y =f(x)的图象;(2) 若a<c ,且f(a)>f(c),求证:2a +2c <4.(1) 解:f(x)=⎩⎪⎨⎪⎧2x -1-1,x ≥1,1-2x -1,x<1,其图象如图所示.(2) 证明:由图知,f(x)在(-∞,1]上是减函数,在[1,+∞)上是增函数,故结合条件知必有a<1.若c ≤1,则2a <2,2c ≤2,所以2a +2c <4;若c>1,则由f(a)>f(c),得1-2a -1>2c -1-1,即2c -1+2a -1<2,所以2a +2c <4. 综上知,总有2a +2c <4. 备选变式(教师专享)画出函数y =||3x -1的图象,并利用图象回答:k 为何值时,方程||3x-1=k 无解?有一个解?有两个解?解:.由图知,当k<0时,方程无解;当k =0或k ≥1时,方程有一个解;当0<k<1时,方程有两个解.题型3 指数函数的综合运用例3 已知函数f(x)=⎝⎛⎭⎫1a x -1+12x 3(a>0且a ≠1).(1) 求函数f(x)的定义域; (2) 讨论函数f(x)的奇偶性;(3) 求a 的取值范围,使f(x)>0在定义域上恒成立. 解:(1) 由于a x -1≠0,则a x ≠1,所以x ≠0, 所以函数f(x)的定义域为{x|x ∈R ,且x ≠0}. (2) 对于定义域内任意的x ,有f(-x)=(1a x -1+12)(-x)3=-⎝⎛⎭⎫a x 1-a x +12x 3=-⎝⎛⎭⎫-1-1a x -1+12x 3=⎝⎛⎭⎫1a x -1+12x 3=f(x),所以f(x)是偶函数.(3) ① 当a>1时,对x>0,所以a x >1,即a x -1>0,所以1a x-1+12>0. 又x>0时,x 3>0,所以x 3⎝⎛⎭⎫1a x -1+12>0,即当x>0时,f(x)>0.由(2)知,f(x)是偶函数,即f(-x)=f(x),则当x<0时,-x>0,有f(-x)=f(x)>0成立. 综上可知,当a>1时,f(x)>0在定义域上恒成立. ② 当0<a<1时,f(x)=(a x +1)x 32(a x -1),当x>0时,0<a x <1,此时f(x)<0,不满足题意;当x<0时,-x>0,有f(-x)=f(x)<0,也不满足题意. 综上可知,所求a 的取值范围是a>1. 变式训练设a >0,f(x)=3x a +a3x 是R 上的偶函数.(1) 求a 的值;(2) 判断并证明函数f(x)在[0,+∞)上的单调性; (3) 求函数的值域.解:(1) 因为f(x)为偶函数,故f(1)=f(-1), 于是3a +a 3=13a +3a ,即9+a 23a =9a 2+13a .因为a >0,故a =1.(2) 设x 2>x 1≥0,f(x 1)-f(x 2)=(3x 2-3x 1)(13x 2+x 1-1).因为3x 为增函数,且x 2>x 1,故3x 2-3x 1>0.因为x 2>0,x 1≥0,故x 2+x 1>0,于是13x 2+x 1<1,即13x 2+x 1-1<0,所以f(x 1)-f(x 2)<0,所以f(x)在[0,+∞)上为增函数.(3) 因为函数为偶函数,且f(x)在[0,+∞)上为增函数,故f(0)=2为函数的最小值,于是函数的值域为[2,+∞).1. (2013·西安一检)函数y =a x -1a(a>0,a ≠1)的图象可能是________.(填序号)答案:④解析:当a>1时,y =a x -1a 为增函数,且在y 轴上的截距0<1-1a <1,故①②不正确;当0<a<1时,y =a x -1a 为减函数,且在y 轴上的截距1-1a<0,故④正确.2. (2013·温州二模)以下函数中满足f(x +1)>f(x)+1的是________.(填序号)① f(x)=lnx ;② f(x)=e x ;③ f(x)=e x -x ;④ f(x)=e x +x. 答案:④解析:若f(x)=e x +x ,则f(x +1)=e x +1+x +1=e ·e x +x +1>e x +x +1=f(x)+1. 3. (2013·天津)设函数f(x)=e x +x -2,g(x)=lnx +x 2-3.若实数a 、b 满足f(a)=0,g(b)=0,则g(a)、f(b)、0三个数的大小关系为________.答案:g(a)<0<f(b) 解析:易知f(x)是增函数,g(x)在(0,+∞)上也是增函数,由于f(a)=0,而f(0)=-1<0,f(1)=e -1>0,所以0<a<1;又g(1)=-2<0,g(2)=ln2+1>0,所以1<b<2,所以f(b)>0,g(a)<0,故g(a)<0<f(b).4. (2013·湖南)设函数f(x)=a x +b x -c x ,其中c>a>0,c>b>0.(1) 记集合M ={(a ,b ,c)|a 、b 、c 不能构成一个三角形的三条边长,且a =b},则(a ,b ,c)∈M 所对应的f(x)的零点的取值集合为________.(2) 若a 、b 、c 是△ABC 的三条边长,则下列结论正确的是________.(填序号) ① x ∈(-∞,1),f(x)>0;② x ∈R ,使a x 、b x 、c x 不能构成一个三角形的三条边长; ③ 若△ABC 为钝角三角形,则x ∈(1,2),使f(x)=0. 答案:(1) {x|0<x ≤1} (2) ①②③解析:(1) 因为c>a>0,c>b>0,a =b 且a 、b 、c 不能构成一个三角形的三条边长, 所以0<2a ≤c ,所以ca ≥2.令f(x)=0,得2a x=c x,即⎝⎛⎭⎫c a x=2,即x =log c a2,1x =log 2ca ≥1,所以0<x ≤1.(2) 由a 、b 、c 是△ABC 的三条边长,知a +b>c , 因为c>a>0,c>b>0,所以0<a c <1,0<bc <1,当x ∈(-∞,1)时,f(x)=a x+b x-c x=c x⎣⎢⎡⎦⎥⎤⎝⎛⎭⎫a c x +⎝⎛⎭⎫b c x -1>c x ⎝⎛⎭⎫a c +b c -1=c x ·a +b -c c >0,①正确;令a =2,b =3,c =4,则a 、b 、c 可以构成三角形,而a 2=4,b 2=9,c 2=16不能构成三角形,②正确;由c>a ,c>b ,且△ABC 为钝角三角形,则a 2+b 2-c 2<0.因为f(1)=a +b -c>0,f(2)=a 2+b 2-c 2<0,所以f(x)在(1,2)上存在零点,③正确.1. 已知函数f(x)=a -12x -1是定义在(-∞,-1]∪[1,+∞)上的奇函数,则f(x)的值域是________.答案:⎣⎡⎭⎫-32,-12∪⎝⎛⎦⎤12,32 解析:因为f(x)是奇函数,f(-1)+f(1)=0,解得a =-12,所以f(x)=-12-12x -1,易知f(x)在(-∞,-1]上为增函数,在[1,+∞)上也是增函数.当x ∈[1,+∞)时,f(x)∈⎣⎡⎭⎫-32,-12.又f(x)是奇函数,所以f(x)的值域是⎣⎡⎭⎫-32,-12∪⎝⎛⎦⎤12,32. 2. 已知f(x)=(e x -1)2+(e -x -1)2,则f(x)的最小值为________.答案:-2解析:将f(x)展开重新配方得f(x)=(e x +e -x )2-2(e x +e -x )-2,令t =e x +e -x , 则g(t)=t 2-2t -2=(t -1)2-3,t ∈ [2,+∞), 所以,最小值为-2.3. 设函数y =f(x)在(-∞,+∞)内有定义,对于给定的正数K ,定义函数f K (x)=⎩⎪⎨⎪⎧f (x ),f (x )≤K ,K ,f (x )>K.取函数f(x)=2-|x|.当K =12时,函数f K (x)的单调递增区间为________.答案:(-∞,-1)解析:函数f(x)=2-|x|=⎝⎛⎭⎫12|x|,作图易知f(x)≤K =12x ∈(-∞,-1]∪[1,+∞),故在(-∞,-1)上是单调递增的.4. 若函数f(x)=a x (a>1)的定义域和值域均为[m ,n],求实数a 的取值范围.解:由题意,⎩⎪⎨⎪⎧a m =m ,a n =n ,即方程a x =x 有两个不同的解,设f(x)=a x -x ,f ′(x)=a x lna -1,令f′(x)=0,得x =log a 1lna=-log a lna ,分析得f(-log a lna)<0即可,∴ 1<a<e 1e .1. 指数函数是中学数学中基本初等函数之一,是高考必考内容.本部分知识在高考中主要考查指数函数的定义域、值域、图象以及主要性质(单调性).2. 将指数函数y =a x (a>0,a ≠1)的图象进行平移、翻折,可作出y -y 0=f(x -x 0),y =|f(x)|,y =f(|x|)等函数的图象,要善于灵活应用这类函数图象变换画图和解题.3. 对可转化为a 2x +b·a x +c =0或a 2x +b·a x +c ≥0(≤0)形式的方程或不等式,常借助于换元法解决,但应注意换元后“新元”的范围.请使用课时训练(A )第8课时(见活页).[备课札记]。
幂函数的图像与性质教学案例
幂函数的图像与性质教学案例一、引言在数学中,幂函数是一类非常常见的函数。
幂函数可以用来描述许多实际问题中的关系,如物体的运动、人口的增长等。
了解幂函数的图像与性质对于理解函数的特点以及应用数学模型是非常重要的。
本文将通过一个具体的教学案例,帮助学生更好地理解幂函数以及它的图像与性质。
二、教学案例1. 目标通过本教学案例,学生将能够:- 了解幂函数的定义;- 掌握幂函数的图像特点;- 理解幂函数的性质;- 运用幂函数解决实际问题。
2. 教学内容本教学案例的主要内容包括:- 幂函数的定义;- 幂函数的图像与特点;- 幂函数的性质;- 幂函数的应用实例。
3. 教学步骤3.1. 引入与导入教师可以通过提问的方式引入幂函数的概念,例如:“在生活中,你们遇到过哪些与数量关系有关的问题?”、“你们能够列举出一些函数的例子吗?”等,通过学生的回答引导他们认识到幂函数是一种常见的函数。
3.2. 幂函数的定义与图像特点教师向学生介绍幂函数的定义,并通过具体的数值例子和函数表达式,展示不同幂函数的图像特点。
教师可以给出不同指数幂函数的函数图像,让学生观察函数图像的变化规律,并总结出不同指数对图像的影响。
3.3. 幂函数的性质教师通过讲解幂函数的性质,如定义域、值域、增减性等,让学生对幂函数有更深入的了解。
教师可以通过证明、举例等方式来说明这些性质。
3.4. 幂函数的应用实例教师给出幂函数在实际问题中的应用实例,例如人口增长问题、物体从高空自由落体的问题等。
学生需要通过分析实际问题,建立数学模型,并用幂函数解决问题。
4. 教学评估教师可以通过小组讨论、个人作业、课堂练习等方式来评估学生的学习效果。
例如,给学生提供一个幂函数的图像,要求他们根据图像的特点写出函数的表达式。
此外,教师还可以通过提问学生回答问题的方式,检查他们对幂函数的理解和应用。
5. 总结与拓展在课程的最后,教师对本课的内容进行总结,并鼓励学生思考如何将幂函数的知识应用到更多的实际问题中。
幂函数与指数函数的应用教学方法总结
幂函数与指数函数的应用教学方法总结幂函数和指数函数是高中数学中的重要内容,其在数学和实际问题中都具有广泛的应用。
为了提高学生对幂函数与指数函数的理解和应用能力,教师需要采用切合实际的教学方法。
本文将总结一些适用于幂函数与指数函数的应用教学方法,以帮助教师更好地进行教学。
一、培养兴趣与激发动机在教学幂函数与指数函数时,首先要培养学生的兴趣和激发他们的学习动机。
可以通过介绍幂函数与指数函数在生活和科学中的应用案例,如人口增长、传染病扩散等,引起学生的兴趣和好奇心,并展示它们在实际问题中的重要性。
二、启发式教学法启发式教学法是一种发现性学习方法,适用于教授幂函数与指数函数的应用。
教师可以提出一些具体问题或者情境,引导学生进行探索和发现。
例如,通过给出一组人口数据,要求学生根据已知数据拟合出人口增长的函数模型,从中体会到指数函数的应用。
三、实际问题解决幂函数和指数函数在解决实际问题中扮演着重要的角色。
在教学过程中,可以引入一些实际问题,让学生运用所学的幂函数与指数函数的知识进行分析和解决。
例如,通过给定的按利滚利方式计算银行存款增长的问题,学生可以运用指数函数的知识进行求解,进一步巩固他们的理解。
四、多媒体辅助教学利用多媒体技术进行教学能够更加生动形象地展示幂函数与指数函数的应用。
教师可以使用幻灯片、动画或者视频等多媒体资源,将抽象的概念和应用案例直观地呈现给学生。
这种方式能够激发学生的学习兴趣,加深他们对幂函数与指数函数的理解。
五、拓展性应用演练为了巩固学生对幂函数与指数函数的应用,教师应提供一些拓展性的应用题目,并组织学生进行演练。
可以通过多样化的题目设置,如探究指数函数与对数函数的关系、分析幂函数与指数函数在自然界中的应用等,来拓宽学生的思维视野和应用能力。
六、实践与实验在教学幂函数与指数函数的应用时,教师还可以设计一些实践和实验活动,让学生亲自动手进行探究和验证。
例如,通过实际测量不同质量的物体自由下落的时间,让学生观察和分析时间的变化规律,并用幂函数进行拟合与验证。
第8讲 必修1第二章 函数的图像(教师版)
教学课题 第8讲人教版必修1第二章 函数的图像教学目标 知识目标:1、掌握描点作图;2、理解图像的变换规律;能力目标:通过函数的图像培养学生数形结合的能力,锻炼学生数学理性思维。
教学重点与难点重点:图像的平移和变换难点:对图像的平移和变换的基本技巧教学过程 课堂导学 知识点梳理1.描点法作图方法步骤:(1)确定函数的定义域;(2)化简函数的解析式;(3)讨论函数的性质即奇偶性、周期性、单调性、最值(甚至变化趋势);(4)描点连线,画出函数的图象. 2.图象变换 (1)平移变换(2)对称变换①y =f (x )――――――――→关于x 轴对称y =-f (x ); ②y =f (x )―――――――――→关于y 轴对称y =f (-x ); ③y =f (x )―――――――――→关于原点对称y =-f (-x );④y =a x (a >0且a ≠1)――――――――→关于y =x 对称y =log a x (a >0且a ≠1). ⑤y =f (x )――――――――――――――――→保留x 轴上方图象将x 轴下方图象翻折上去y =|f (x )|. ⑥y =f (x )――――――――――→保留y 轴右边图象,并作其关于y 轴对称的图象y =f (|x |). (3)伸缩变换①y=f (x ) ――――――――――――――――――――→a>1,横坐标伸长为原来的a 倍,纵坐标不变0<a<1,横坐标缩短为原来的a 倍,纵坐标不变 y =f (ax ). ②y =f (x )――――――――――――――→a >1,纵坐标伸长为原来的a 倍,横坐标不变0<a <1,纵坐标缩短为原来的a 倍,横坐标不变 y =af (x ).答案 C5.已知函数f (x )=⎩⎪⎨⎪⎧log 2x (x >0),2x (x ≤0),且关于x 的方程f (x )-a =0有两个实根,则实数a 的范围是 .答案 (0,1]解析 当x ≤0时,0<2x ≤1,所以由图象可知要使方程f (x )-a =0有两个实根,即函数y =f (x )与y =a 的图象有两个交点,所以由图象可知0<a ≤1. 考题分类【考点1】作函数图像★例1 作出下列函数的图象: (1)y =|lg x |; (2)y =x +2x -1;(3)y =x 2-2|x |-1.解 (1)y =|lg x |=⎩⎪⎨⎪⎧lg x ,x ≥1,-lg x ,0<x <1,作出图象如图1.(2)因y =1+3x -1,先作出y =3x 的图象,将其图象向右平移1个单位,再向上平移1个单位,即得y =x +2x -1的图象,如图2.(3)y =⎩⎪⎨⎪⎧x 2-2x -1 (x ≥0),x 2+2x -1 (x <0).图象如图3.引申探究作函数y =|x 2-2x -1|的图象.解 y =⎩⎨⎧x 2-2x -1 (x ≥1+2或x ≤1-2)-x 2+2x +1 (1-2<x <1+2)如下图点评 (1)常见的几种函数图象如二次函数、反比例函数、指数函数、对数函数、幂函数、形如y =x +mx (m >0)的函数是图象变换的基础;(2)掌握平移变换、伸缩变换、对称变换规律,可以帮助我们简化作图过程.式训练1 作出下列函数的图象.(1)y =|x -2|·(x +1); (2)y =x +2x +3.解 (1)当x ≥2,即x -2≥0时,y =(x -2)(x +1)=x 2-x -2=(x -12)2-94;当x <2,即x -2<0时,y =-(x -2)(x +1)=-x 2+x +2=-(x -12)2+94.∴y =⎩⎨⎧(x -12)2-94,x ≥2,-(x -12)2+94,x <2.这是分段函数,每段函数的图象可根据二次函数图象作出(如图).(2)y =x +2x +3=1-1x +3,该函数图象可由函数y =-1x 向左平移3个单位,再向上平移1个单位得到,如下图所示. 【考点2】识图与辨图例2 (1)(2015·课标全国Ⅱ)如图,长方形ABCD 的边AB =2,BC =1,O 是AB 的中点,点P 沿着边BC ,CD 与DA 运动,记∠BOP =x .将动点P 到A ,B 两点距离之和表示为x 的函数f (x ),则y =f (x )的图象大致为( )(2)已知定义在区间[0,2]上的函数y=f(x)的图象如图所示,则y=-f(2-x)的图象为()式训练3 已知函数f (x )=x |m -x |(x ∈R ),且f (4)=0.(1)求实数m 的值; (2)作出函数f (x )的图象;(3)根据图象指出f (x )的单调递减区间; (4)根据图象写出不等式f (x )>0的解集; (5)求当x ∈[1,5)时函数的值域.解 (1)∵f (4)=0,∴4|m -4|=0,即m =4. (2)f (x )=x |4-x |=⎩⎪⎨⎪⎧x (x -4)=(x -2)2-4,x ≥4,-x (x -4)=-(x -2)2+4,x <4. f (x )的图象如图所示. (3)f (x )的单调递减区间是[2,4].(4)由图象可知,f (x )>0的解集为{x |0<x <4或x >4}. (5)∵f (5)=5>4,∴由图象知,函数在[1,5)上的值域为[0,5). 典型例题分析3.高考中的函数图象及应用问题一、已知函数解析式确定函数图象典例 (2015·北京海淀区期中测试)函数f (x )=2x +sin x 的部分图象可能是( )思维点拨 从y =f (x )的图象可先得到y =-f (x )的图象,再得y =-f (x +1)的图象.解析 要想由y =f (x )的图象得到y =-f (x +1)的图象,需要先将y =f (x )的图象关于x 轴对称得到y =-f (x )的图象,然后再向左平移一个单位得到y =-f (x +1)的图象,根据上述步骤可知C 正确. 答案 C温馨提醒 (1)对图象的变换问题,从f (x )到f (ax +b ),可以先进行平移变换,也可以先进行伸缩变换,要注意变换过程中两者的区别.(2)图象变换也可利用特征点的变换进行确定. 三、函数图象的应用典例:(1)已知函数f (x )=x |x |-2x ,则下列结论正确的是( ) A .f (x )是偶函数,递增区间是(0,+∞) B .f (x )是偶函数,递减区间是(-∞,1) C .f (x )是奇函数,递减区间是(-1,1) D .f (x )是奇函数,递增区间是(-∞,0)(2)设函数f (x )=|x +a |,g (x )=x -1,对于任意的x ∈R ,不等式f (x )≥g (x )恒成立,则实数a 的取值范围是________. 思维点拨 (1)画出函数f (x )的图象观察.(2)利用函数f (x ),g (x )图象的位置确定a 的范围. 解析 (1)将函数f (x )=x |x |-2x 去掉绝对值得f (x )=⎩⎪⎨⎪⎧x 2-2x ,x ≥0,-x 2-2x ,x <0,画出函数f (x )的图象,如图,观察得到,f (x )为奇函数,递减区间是(-1,1). (2)如图,作出函数f (x )=|x +a |与g (x )=x -1的图象,观察图象可知:当且仅当-a ≤1,即a ≥-1时,不等式f (x )≥g (x )恒成立,因此a 的取值范围是[-1,+∞).答案 (1)C (2)[-1,+∞)温馨提醒 (1)本题求解利用了数形结合的思想,数形结合的思想包括“以形助数”或“以数辅形”两个方面,本题属于“以形助数”,是指把某些抽象的问题直观化、生动化,能够变抽象思A .{x |-1<x ≤0}B .{x |-1≤x ≤1}C .{x |-1<x ≤1}D .{x |-1<x ≤2} 答案 C解析 令g (x )=y =log 2(x +1),作出函数g (x )的图象如图.由⎩⎪⎨⎪⎧ x +y =2,y =log 2(x +1), 得⎩⎪⎨⎪⎧x =1,y =1.∴结合图象知不等式f (x )≥log 2(x +1)的解集为{x |-1<x ≤1}. 6.已知函数f (x )的图象如图所示,则函数g (x )=log 2f (x )的定义域是.答案 (2,8]解析 当f (x )>0时,函数g (x )=log 2f (x )有意义,由函数f (x )的图象知满足f (x )>0的x ∈(2,8].7.用min{a ,b ,c }表示a ,b ,c 三个数中的最小值.设f (x )=min{2x ,x +2,10-x }(x ≥0),则f (x )的最大值为 . 答案 6解析 f (x )=min{2x ,x +2,10-x }(x ≥0)的图象如图.令x +2=10-x ,得x =4. 当x =4时,f (x )取最大值, f (4)=6.8.已知定义在R 上的函数f (x )=⎩⎪⎨⎪⎧lg|x |, x ≠0,1, x =0,关于x 的方程f (x )=c (c 为常数)恰有三个不同的实数根x 1,x 2,x 3,则x 1+x 2+x 3= . 答案 0解析 方程f (x )=c 有三个不同的实数根等价于y =f (x )与y =c 的图象有三个交点,画出函数f (x )的图象(图略),易知c =1,且方程f (x )=c 的一根为0,令lg|x |=1,解得x =-10或10,故方程f (x )=c 的另两根为-10和10,∴x 1+x 2+x 3=0.B 组 专项能力提升 (时间:15分钟)9.函数y =f (x )的图象如图所示,则函数y =log 12f (x )的图象大致是( )答案 C解析由函数y=f(x)的图象知,当x∈(0,2)时,f(x)≥1,所以log12f(x)≤0.又函数f(x)在(0,1)上是减函数,在(1,2)上是增函数,所以y=log12f(x)在(0,1)上是增函数,在(1,2)上是减函数.结合各选项知,选C.10.(2015·安徽)函数f(x)=ax+b(x+c)2的图象如图所示,则下列结论成立的是() A.a>0,b>0,c<0B.a<0,b>0,c>0C.a<0,b>0,c<0D.a<0,b<0,c<0答案 C。
幂函数及函数图像变换(教师)
幂函数及函数图像变换知识点1 幂函数 1.幂函数的定义一般地,形如y =x α(α∈R )的函数称为幂函数,其中底数x 是自变量,α为常数.2.幂函数的性质:(1)幂函数的图象都过点 ;(2)当0α>时,幂函数在[0,)+∞上 ;当0α<时,幂函数在(0,)+∞上 ; (3)当2,2α=-时,幂函数是 ;当11,1,3,3α=-时,幂函数是 . (4)任何幂函数都不过 象限;(5)当0α>时,幂函数的图象过 . 3.幂函数的图象在第一象限的分布规律:(1)在经过点(1,1)平行于y 轴的直线的右侧,按幂指数由小到大的关系幂函数的图象从 到 分布; (2)幂指数的分母为偶数时,图象只在 象限;幂指数的分子为偶数时,图象在第一、第二象限关于 轴对称;幂指数的分子、分母都为奇数时,图象在第一、第三象限 关于 对称.考向一 幂函数的定义【例1】►讨论下列函数的定义域、值域,奇偶性与单调性: (1)5y x = (2)43y x-= (3)54y x =(4)35y x-=(5)12y x-=分析:要求幂函数的定义域和值域,可先将分数指数式化为根式. 解:(1)定义域R ,值域R ,奇函数,在R 上单调递增.(2)定义域(,0)(0,)-∞⋃+∞,值域(0,)+∞,偶函数,在(,0)-∞上单调递增, 在(0,)+∞ 上单调递减.(3)定义域[0,)+∞,值域[0,)+∞,偶函数,非奇非偶函数,在[0,)+∞上单调递增. (4)定义域(,0)(0,)-∞⋃+∞,值域(,0)(0,)-∞⋃+∞,奇函数,在(,0)-∞上单调递减,在(0,)+∞上单调递减.(5)定义域(0,)+∞,值域(0,)+∞,非奇非偶函数,在(0,)+∞上单调递减. 【训练1】比较大小:(1)11221.5,1.7 (2)33( 1.2),( 1.25)-- (3)1125.25,5.26,5.26--- (4)30.530.5,3,log 0.5 解:(1)∵12y x =在[0,)+∞上是增函数,1.5 1.7<,∴11221.5 1.7< (2)∵3y x =在R 上是增函数, 1.2 1.25->-,∴33( 1.2)( 1.25)->- (3)∵1y x -=在(0,)+∞上是减函数,5.25 5.26<,∴115.25 5.26-->;∵ 5.26x y =是增函数,12->-,∴125.26 5.26-->;综上,1125.25 5.26 5.26--->>(4)∵300.51<<,0.531>,3log 0.50<,∴30.53log 0.50.53<<考向二 二次函数的图像和性质【例2】►(2010大连一模)函数f (x )=x 2-2x +2在闭区间[t ,t +1](t ∈R )上的最小值记为g (t ).(1)试写出g (t )的函数表达式; (2)作g (t )的图象并写出g (t )的最小值.[审题视点] 分类讨论t 的范围分别确定g (t )解析式. 解 (1)f (x )=(x -1)2+1.当t +1≤1,即t ≤0时,g (t )=t 2+1. 当t <1<t +1,即0<t <1时,g (t )=f (1)=1 当t ≥1时,g (t )=f (t )=(t -1)2+1 综上可知g (t )=⎩⎪⎨⎪⎧t 2+1≤0,t ≤0,1,0<t <1,t 2-2 t +2,t ≥1.(2)g (t )的图象如图所示,可知g (t )在(-∞,0]上递减,在[1,+∞)上递增,因此g (t )在[0,1]上取到最小值1.【训练2-1】 ►(2010·安徽)设abc >0,二次函数f (x )=ax 2+bx +c 的图象可能是( ).[审题视点] 分类讨论a >0,a <0.解析 若a >0,则bc >0,根据选项C 、D ,c <0,此时只有b <0,二次函数的对称轴方程x =-b2a >0,选项D 有可能;若a <0,根据选项A ,c <0,此时只能b >0,二次函数的对称轴方程x =-b2a >0,与选项A 不符合;根据选项B ,c >0,此时只能b <0,此时二次函数的对称轴方程x =-b2a <0,与选项B 不符合.综合知只能是选项D.答案 D【训练2-2】 (2011沈阳模拟)已知函数f (x )=x 2+2ax +2,x ∈[-5,5]. (1)当a =-1时,求函数f (x )的最大值和最小值.(2)求实数a 的取值范围,使y =f (x )在区间[-5,5]上是单调函数. 解 (1)当a =-1时,f (x )=x 2-2x +2=(x -1)2+1,x ∈[-5,5], ∴x =1时,f (x )取得最小值1; x =-5时,f (x )取得最大值37.(2)函数f (x )=(x +a )2+2-a 2的图象的对称轴为直线x =-a , ∵y =f (x )在区间[-5,5]上是单调函数, ∴-a ≤-5或-a ≥5,故a 的取值范围是a ≤-5或a ≥5.考向三 幂函数的图象和性质【例3】►已知幂函数f (x )=223m m x -- (m ∈N *)的图象关于y 轴对称,且在(0,+∞)上是减函数,求满足33(1)(32)m m a a --+<-的a 的取值范围.[审题视点] 由幂函数的性质可得到幂指数m 2-2m -3<0,再结合m 是整数,及幂函数是偶数可得m 的值.解 ∵函数在(0,+∞)上递减, ∴m 2-2m -3<0,解得-1<m <3.∵m ∈N *,∴m =1,2. 又函数的图象关于y 轴对称, ∴m 2-2m -3是偶数, 而22-2×2-3=-3为奇数, 12-2×1-3=-4为偶数, ∴m =1.而f (x )=x -13在(-∞,0),(0,+∞)上均为减函数,∴(a +1)-13<(3-2a )-13等价于a +1>3-2a >0或0>a +1>3-2a 或a +1<0<3-2a . 解得a <-1或23<a <32.故a 的取值范围为⎩⎨⎧⎭⎬⎫a |a <-1或23<a <32.【训练3】已知幂函数223mm y x --=(m Z ∈)的图象与x 轴、y 轴都无交点,且关于原点对称,求m 的值.分析:幂函数图象与x 轴、y 轴都无交点,则指数小于或等于零;图象关于原点对称,则函数为奇函数.结合m Z ∈,便可逐步确定m 的值. 解:∵幂函数223mm y x --=(m Z ∈)的图象与x 轴、y 轴都无交点,∴2230m m --≤,∴13m -≤≤;∵m Z ∈,∴2(23)m m Z --∈,又函数图象关于原点对称, ∴223m m --是奇数,∴0m =或2m =. 知识点2 函数图像 (1)平移变换①水平平移:y =f (x ±a )(a >0)的图象,可由y =f (x )的图象向左(+)或向右(-)平移a 个单位而得到.②竖直平移:y =f (x )±b (b >0)的图象,可由y =f (x )的图象向上(+)或向下(-)平移b 个单位而得到. (2)对称变换①y =f (-x )与y =f (x )的图象关于y 轴对称. ②y =-f (x )与y =f (x )的图象关于x 轴对称. ③y =-f (-x )与y =f (x )的图象关于原点对称.由对称变换可利用y =f (x )的图象得到y =|f (x )|与y =f (|x |)的图象.①作出y =f (x )的图象,将图象位于x 轴下方的部分以x 轴为对称轴翻折到上方,其余部分不变,得到y =|f (x )|的图象;②作出y =f (x )在y 轴上及y 轴右边的图象部分,并作y 轴右边的图象关于y 轴对称的图象,即得y =f (|x |)的图象. (3)伸缩变换①y =af (x )(a >0)的图象,可将y =f (x )图象上每点的纵坐标伸(a >1时)或缩(a <1时)到原来的a 倍,横坐标不变.②y =f (ax )(a >0)的图象,可将y =f (x )的图象上每点的横坐标伸(a <1时)或缩(a >1时)到原来的1a 倍,纵坐标不变. (4)翻折变换①作为y =f (x )的图象,将图象位于x 轴下方的部分以x 轴为对称轴翻折到上方,其余部分不变,得到y =|f (x )|的图象;②作为y =f (x )在y 轴上及y 轴右边的图象部分,并作y 轴右边的图象关于y 轴对称的图象,即得y =f (|x |)的图象.考向一 作函数图象【例1】►分别画出下列函数的图象: (1)y =|lg x |; (2)y =2x +2;(3)y =x 2-2|x |-1; (4)y =x +2x -1.[审题视点] 根据函数性质通过平移,对称等变换作出函数图象.解 (1)y =⎩⎪⎨⎪⎧lg x (x ≥1),-lg x (0<x <1).图象如图①.(2)将y =2x 的图象向左平移2个单位.图象如图②.(3)y =⎩⎪⎨⎪⎧x 2-2x -1 (x ≥0)x 2+2x -1 (x <0).图象如图③.(4)因y =1+3x -1,先作出y =3x 的图象,将其图象向右平移1个单位,再向上平移1个单位,即得y =x +2x -1的图象,如图④.【训练1-1】作出下列函数的图象:(1)y=2x+1-1;(2)y=sin|x|;(3)y=|log2(x+1)|.解(1)y=2x+1-1的图象可由y=2x的图象向左平移1个单位,得y=2x+1的图象,再向下平移一个单位得到y=2x+1-1的图象,如图①所示.(2)当x≥0时,y=sin|x|与y=sin x的图象完全相同,又y=sin|x|为偶函数,其图象关于y轴对称,如图②所示.(3)首先作出y=log2x的图象c1,然后将c1向左平移1个单位,得到y=log2(x+1)的图象c2,再把c2在x轴下方的图象翻折到x轴上方,即为所求图象c3:y=|log2(x+1)|.如图③所示(实线部分).【训练1-2】把函数y=f(x)=(x-2)2+2的图象向左平移1个单位,再向上平移1个单位,所得图象对应的函数的解析式是()A.y=(x-3)2+3B.y=(x-3)2+1C.y=(x-1)2+3 D.y=(x-1)2+1解析:把函数y=f(x)的图象向左平移1个单位,即把其中x换成x+1,于是得y=[(x +1)-2]2+2=(x-1)2+2,再向上平移1个单位,即得到y=(x-1)2+2+1=(x-1)2+3.答案:C考向二函数图象的识辨【例2】►函数f(x)=1+log2x与g(x)=21-x在同一直角坐标系下的图象大致是().[审题视点] 在同一个坐标系中判断两个函数的图象,可根据函数图象上的特征点以及函数的单调性来判断.解析 f (x )=1+log 2x 的图象由函数f (x )=log 2x 的图象向上平移一个单位而得到,所以函数图象经过(1,1)点,且为单调增函数,显然,A 项中单调递增的函数经过点(1,0),而不是(1,1),故不满足;函数g (x )=21-x =2×⎝⎛⎭⎫12x ,其图象经过(0,2)点,且为单调减函数,B 项中单调递减的函数与y 轴的交点坐标为(0,1),故不满足;D 项中两个函数都是单调递增的,故也不满足. 综上所述,排除A ,B ,D.故选C. 答案 C【训练2-1】 (2010·山东)函数y =2x -x 2的图象大致是( ).解析 当x >0时,2x =x 2有两根x =2,4;当x <0时,根据图象法易得到y =2x 与y =x 2有一个交点,则y =2x -x 2在R 上有3个零点,故排除B 、C ;当x →-∞时,2x →0.而x 2→+∞,故y =2x -x 2<0,故选A. 答案 A【训练2-2】(2011·郑州模拟)若函数f (x )=ka x -a -x (a >0且a ≠1)在(-∞,+∞)上既是奇函数又是增函数,则g (x )=log a (x +k )的图象是( ).考向三 函数图象的应用【例3】►已知函数f (x )=|x 2-4x +3|.(1)求函数f (x )的单调区间,并指出其增减性;(2)求集合M ={m |使方程f (x )=m 有四个不相等的实根}. [审题视点] 作出函数图象,由图象观察.解 f (x )=⎩⎪⎨⎪⎧(x -2)2-1, x ∈(-∞,1]∪[3,+∞),-(x -2)2+1, x ∈(1,3), 作出图象如图所示.(1)递增区间为[1,2]和[3,+∞),递减区间为(-∞,1]和[2,3].(2)由图象可知,y =f (x )与y =m 图象,有四个不同的交点,则0<m <1, ∴集合M ={m |0<m <1}.【训练3】 (2010·湖北)若直线y =x +b 与曲线y =3-4x -x 2有公共点,则b 的取值范围是( ).A .[-1,1+22]B .[1-22,1+22]C .[1-22,3]D .[1-2,3]解析 在同一坐标系下画出曲线y =3-4x -x 2(注:该曲线是以点C (2,3)为圆心、2为半径的圆不在直线y =3上方的部分)与直线y =x 的图象,平移该直线,结合图形分析可知,当直线沿y 轴正方向平移到点(0,3)的过程中的任何位置相应的直线与曲线y =3-4x -x 2都有公共点;注意到与y =x 平行且过点(0,3)的直线的方程是y =x +3;当直线y =x +b 与以点C (2,3)为圆心、2为半径的圆相切时(圆不在直线y =3上方的部分),有|2-3+b |2=2,b =1-2 2.结合图形可知,满足题意的只有C 选项. 答案 C基础练习:1.(人教A 版教材习题改编)已知a =log 0.70.8,b =log 1.10.9,c =1.10.9,则a ,b ,c 的大小关系是( ). A .a <b <c B .a <c <b C .b <a <cD .c <a <b解析 将三个数都和中间量1相比较:0<a =log 0.70.8<1,b =log 1.10.9<0,c =1.10.9>1. 答案 C2.(2011·安徽)设f (x )是定义在R 上的奇函数,当x ≤0时,f (x )=2x 2-x ,则f (1)=( ). A .-3 B .-1 C .1 D .3 解析 ∵f (x )为奇函数,∴f (1)=-f (-1)=-3.答案 A3.(2011·浙江)设函数f (x )=⎩⎪⎨⎪⎧-x ,x ≤0,x 2,x >0.若f (α)=4,则实数α等于( ).A .-4或-2B .-4或2C .-2或4D .-2或2解析 由⎩⎪⎨⎪⎧ α≤0,-α=4或⎩⎪⎨⎪⎧α>0,α2=4,得α=-4或α=2,故选B.答案 B4.已知函数f (x )=x 2-2x +2的定义域和值域均为[1,b ],则b 等于( ). A .3 B .2或3 C .2 D .1或2 解析 函数f (x )=x 2-2x +2在[1,b ]上递增, 由已知条件⎩⎪⎨⎪⎧f =1,fb =b ,b >1,即⎩⎪⎨⎪⎧b 2-3b +2=0,b >1.解得b =2.答案 C 5.(人教A 版)为了得到函数y =lg x +310的图象,只需把函数y =lg x 的图象上所有的点( ).A .向左平移3个单位长度,再向上平移1个单位长度B .向右平移3个单位长度,再向上平移1个单位长度C .向左平移3个单位长度,再向下平移1个单位长度D .向右平移3个单位长度,再向下平移1个单位长度解析 y =lg x +310=lg(x +3)-1可由y =lg x 的图象向左平移3个单位长度,向下平移1个单位长度而得到. 答案 C6.(2011·安徽)若点(a ,b )在y =lg x 图象上,a ≠1,则下列点也在此图象上的是( )A.⎝⎛⎭⎫1a ,b B .(10a,1-b ) C.⎝⎛⎭⎫10a ,b +1 D .(a 2,2b )解析 本题主要考查对数运算法则及对数函数图象,属于简单题.当x =a 2时,y =lg a 2=2lg a =2b ,所以点(a 2,2b )在函数y =lg x 图象上. 答案 D7.函数y =1-1x -1的图象是( ).解析 将y =-1x 的图象向右平移1个单位,再向上平移一个单位,即可得到函数y =1-1x -1的图象. 答案 B8.已知图①中的图象对应的函数为y =f (x ),则图②的图象对应的函数为( ).A .y =f (|x |)B .y =|f (x )|C .y =f (-|x |)D .y =-f (|x |)解析 y =f (-|x |)=⎩⎪⎨⎪⎧f (-x ),x ≥0,f (x ),x <0.答案 C9.设函数y =x 2-2x ,x ∈[-2,a ],求函数的最小值g (a ).[尝试解答] ∵函数y =x 2-2x =(x -1)2-1,∴对称轴为直线x =1,而x =1不一定在区间[-2,a ]内,应进行讨论.当-2<a <1时,函数在[-2,a ]上单调递减,则当x =a 时,y min =a 2-2a ;当a ≥1时,函数在[-2,1]上单调递减,在[1,a ]上单调递增,则当x =1时,y min =-1.综上,g (a )=⎩⎪⎨⎪⎧a 2-2a ,-2<a <1,-1,a ≥1.。
高中数学幂函数的教案
高中数学幂函数的教案
一、教学目标:
1. 理解幂函数的基本概念和特点;
2. 掌握幂函数的图像特征和性质;
3. 能够解决幂函数相关的问题。
二、教学重点:
1. 幂函数的定义和基本特点;
2. 幂函数的图像性质。
三、教学难点:
1. 幂函数的特殊情况的解决方法;
2. 幂函数的应用问题的解决。
四、教学过程:
1. 导入:通过实际生活中的例子引入幂函数的概念,引发学生的兴趣。
2. 概念讲解:介绍幂函数的定义和基本特点,解释幂函数的图像特征和性质。
3. 实例演练:通过案例分析,让学生运用所学知识解决幂函数相关的问题。
4. 拓展应用:引导学生探讨幂函数在实际问题中的应用,开拓思维。
五、课堂讨论:组织学生讨论幂函数的特殊情况和解决方法,促进学生之间的交流和思考。
六、练习测试:布置与幂函数相关的习题,检验学生对知识的掌握程度。
七、总结反思:引导学生总结本节课的重点知识,反思学习过程中的问题和感悟。
八、课后复习:提醒学生及时复习幂函数相关知识,完成作业,并准备下节课内容。
九、教学手段:采用多媒体教学、案例分析、讨论互动等方式,激发学生学习兴趣。
十、教学评估:根据学生的学习情况和表现,及时调整教学策略,确保教学效果。
十一、教学延伸:鼓励学生主动学习,拓展幂函数相关知识,提高数学思维能力。
以上是高中数学幂函数的教案范本,仅供参考。
祝教学顺利!。
10.高一寒假数学讲义:幂函数的图像与性质(应用)【讲师版】
高一寒假数学讲义“幂函数的图像与性质(应用)”学生姓名授课日期教师姓名授课时长知识定位熟练掌握幂函数的概念,幂函数的图像及幂函数的性质,会解决幂函数的综合问题及应用问题。
知识梳理一、幂函数的定义一般地,形如y xα=(x∈R)的函数称为幂函数,其中x是自变量,α是常数.如11234,,y x y x y x-===等都是幂函数,幂函数与指数函数,对数函数一样,都是基本初等函数.幂函数的几个特点:(1)以自变量为底的幂;(3)指数为常数;(4)自变量前的系数为1;(5)幂前的系数也为1。
特别的:y=x0(x≠0)也是幂函数,因为00没有意义,所以要去掉点(0,1);而y=1不是幂函数,是常数函数,定义域是x∈R。
二、幂函数的图像α取值范围不同,图像也不相同,α的正负:α>0时,图象过原点和(1,1),在第一象限的图象上升;α<0时,图象不过原点,在第一象限的图象下降,反之也成立注意判断幂函数的定义域的方法可概括为(对指数)“先看正负,是负去零,再看奇偶,是偶非负”。
比如幂函数11234,,y x y x y x -===定义域分别为x ∈R ,x ∈R ,x ≠0。
三、 幂函数的性质(1)所有的幂函数在x ∈(0,+∞)都有定义,并且图象都通过点(1,1) (2)指数是偶数的幂函数是偶函数,指数是奇数的幂函数是奇函数 (3)α>0(1)图象都经过点(0,0)和(1,1) (2)图象在第一象限,函数是增函数. α<0(1)图象都经过点(1,1); (2)图象在第一象限是减函数;(3)在第一象限内,图象向上与Y 轴无限接近,向右与X 轴无限地接近.四、 幂函数的运算(一)两个重要公式①⎪⎩⎪⎨⎧⎩⎨⎧<-≥==)0()0(||a a a a a a a n n ;②a a n n =)((注意a 必须使n a 有意义)。
(二)有理数指数幂 (1)幂的有关概念①正数的正分数指数幂:(0,,1)m n m na a a m n N n *=>∈>、且; ②正数的负分数指数幂: 11(0,,1)mn m nmnaa m n N n a a-*==>∈>、且③0的正分数指数幂等于0,0的负分数指数幂没有意义.注:分数指数幂与根式可以互化,通常利用分数指数幂进行根式的运算。
幂函数教案
幂函数教案1. 了解幂函数的定义与性质2. 掌握幂函数的图像特征和变化规律3. 能够应用幂函数解决实际问题教学重点:1. 幂函数的基本定义2. 幂函数的图像特征和变化规律3. 幂函数的应用教学难点:1. 幂函数的变化规律和推导过程2. 如何将幂函数应用于实际问题的解决教学方法:讲授、演示、模拟、探究、归纳、实践等多种教学方法相结合。
教学手段:多媒体教学手段、问答互动、小组合作等手段相结合。
教学过程:Step 1 引入新知1. 教师可以通过多媒体展示一些日常生活或工作中与幂函数相关的实例,如身高、电话费等,引发学生对幂函数的兴趣。
2. 教师可以让学生在小组内讨论幂函数的定义与性质,并让几位同学发表自己的理解和看法。
Step 2 探究幂函数的定义与性质1. 定义幂函数:f(x)=x^a (其中,a为常数,x为变量,且a≠0)2. 讲解幂函数的图像特征:a>1 时,是一条向上的单调增函数;a=1 时,是一条过原点的直线;0<a<1 时,是一条向下的单调增的函数;a<0 时,分为两种情况:a=-1时,是一条过原点的直线;a<-1时,是一条向下的单调减函数。
3. 幂函数的性质:偶函数、奇函数、单调性Step 3 探究幂函数的变化规律1. 讲解如何利用幂函数的图像,通过a的变化推导幂函数的特点和变化规律。
2. 让学生模拟实验,通过手工计算,验证幂函数的变化规律。
Step 4 应用幂函数解决实际问题1. 讲解如何将所学的幂函数应用于实际问题的解决。
2. 教师给出一些与幂函数相关的应用题,让学生在小组内讨论,并找到解题的有效方法。
Step 5 总结与拓展1. 用幂函数的概念总结一遍所学的知识点。
2. 教师可以适时地推出一些与幂函数相关的拓展问题,以拓展课堂思维。
3. 课堂评价:通过问答、小组讨论、实习演绎等方式,对学生的课堂表现进行评价。
教学反思:幂函数是高中数学中的一种基本函数,对于理解其他函数、解决实际问题等方面都具有很重要的作用。
幂函数(课件)
利用导数研究幂函数的极值 和拐点
01 03
详细描述
02
幂函数与其他初等函数的复 合函数性质
THANKS
感谢观看
幂函数在物理中的应用
力学
在力学中,幂函数可以描 述物体的运动规律,例如 加速度与时间的关系。
热力学
在热力学中,幂函数可以 描述气体分子的速度分布 规律。
电磁学
在电磁学中,幂函数可以 描述电流与电压的关系。
幂函数在其他领域的应用
经济学
计算机科学
在经济学中,幂函数可以用于描述商 品的需求量与价格的关系、消费者的 购买决策等。
02
幂函数的运算规则
幂的乘法规则
总结词
同底数幂相乘,指数相加
详细描述
幂函数是数学中一种重要的函数,其形式为 (a^x)(其中 (a) 是底数,(x) 是指 数)。当两个幂函数相乘时,如果它们的底数相同,则它们的指数相加。即, (a^x times a^y = a^{x+y})。
幂的除法规则
总结词
幂函数(优秀课件)
目 录
• 幂函数的基本概念 • 幂函数的运算规则 • 幂函数的应用 • 幂函数的扩展知识 • 幂函数的习题与解析
01
幂函数的基本概念
幂函数的定义
总结词
幂函数是一种数学函数,其一般形式 为$y=x^n$,其中$n$是一个实数。
详细描述
幂函数是函数的一种,其一般形式为$y=x^n$ ,其中$x$是自变量,$y$是因变量,$n$是一 个实数。当$n>0$时,幂函数在$(0, +infty)$ 区间内单调递增;当$n<0$时,幂函数在$(0, +infty)$区间内单调递减;当$n=0$时,幂函 数值为1。
《幂函数》教案
《幂函数》教案一.学习目标1.通过实例,了解幂函数的概念、图象和性质.会求幂函数的定义域,会应用幂函数的图象与性质比较数或代数式的大小.2.通过幂函数图象的学习,加深学生对幂函数性质的理解,使学生体会通过观察、分析函数图象来研究函数性质的方法.3.通过引导学生主动参与作图、分析图象的过程,培养学生的探索精神,增强学生对数学图形美的认识,并在研究函数变化的过程中渗透辨证唯物主义的观点.二.重点难点本节的教学重点是幂函数的概念、图象和性质,难点是将函数图象的直观特点上升到理性知识,归纳、概括成函数的性质.三.教学内容1.从学生已经掌握的最简单的函数y x =,2y x =,1y x =出发引入幂函数的定义:一般地,形如()y x R αα=∈的函数称为幂函数,其中α为常数.其本质特征是以幂的底x 为自变量,指数α为常数,这是判断一个函数是否为幂函数的重要依据和唯一标准.应当注意并不是任意的一次函数、二次函数都是幂函数,如1y x =+,22y x x =-等都不是幂函数.2.引导学生作出五个具体的幂函数y x =,2y x =,3y x =,1y x =,12y x =的图象:先列出对应值表,再用描点法画图.列出对应值表是描点法画图的关键,列表之后要引导学生耐心地,力求准确地画出图象,教师可以先用实物投影仪有选择地展示学生的作品,然后再用计算机展示各个函数的图象.3.先引导学生通过观察上述五个幂函数的图象,归纳、概括出幂函数在第一象限的性质,再引导学生探索“思考与讨论”中的三个问题,即当α为正偶数、α为正奇数时幂函数的主要性质,以及当1α>与01α<<时图象的区别.要培养学生的看图、析图能力,培养学生的归纳、概括能力,要让学生自主探索,主动学习.4.处理课本例题(1).对例1的分析:①要比较的两个代数式有什么相同点和不同点?答:都是幂的形式,且指数相同,但底数不同.因此我们想通过构造一个幂函数来解决这个问题.②构造一个什么样的幂函数?③要比较的两个代数式与所构造的幂函数有何关系?④利用幂函数在(0,)+∞上的单调性可以比较两个代数式值的大小.(2)对例2的分析:①在研究幂函数的性质时,通常将分式指数幂化为根式形式,负整指数幂化为分式形式再去进行讨论.②对于幂函数()y x R αα=∈的研究,首先应该分析函数的定义域、值域和奇偶性,由此可以确定图象的位置,即所在的象限.③只需弄清楚幂函数在第一象限的图象,再借助于奇偶函数的图象性质,即可画出整个函数的图象.5.让学生回忆本节收获,然后师生共同完成本节小结,巩固本节学习成果,使学生逐步养成爱总结、善总结、会总结的习惯和能力.。
中职数学:幂函数教学教案
中职数学:幂函数教学教案第一章:幂函数的概念与性质1.1 教学目标了解幂函数的定义及表达形式掌握幂函数的性质及其应用1.2 教学内容幂函数的定义:介绍幂函数的表达形式及参数含义幂函数的性质:单调性、奇偶性、周期性等幂函数的应用:解决实际问题,如物理、化学等领域1.3 教学方法采用讲授法,讲解幂函数的定义、性质及应用利用数学软件或图形计算器,展示幂函数的图像,增强直观感受举例讲解,让学生参与课堂,提高兴趣和积极性1.4 教学重点与难点幂函数的定义及表达形式幂函数的单调性、奇偶性、周期性等性质的判断与应用第二章:幂函数的图像与性质2.1 教学目标学会绘制幂函数的图像掌握幂函数的单调区间、极值等性质2.2 教学内容幂函数图像的绘制方法:利用数学软件或图形计算器幂函数的单调区间:判断函数的增减性幂函数的极值:求解函数的最大值、最小值2.3 教学方法利用数学软件或图形计算器,绘制幂函数的图像,让学生直观感受举例讲解,让学生学会判断幂函数的单调区间、求解极值的方法2.4 教学重点与难点幂函数图像的绘制方法判断幂函数的单调区间、求解极值的方法第三章:幂函数在实际问题中的应用3.1 教学目标学会将幂函数应用于实际问题中提高解决实际问题的能力3.2 教学内容幂函数在物理中的应用:如电学、热学等领域幂函数在化学中的应用:如化学反应速率、溶质浓度等幂函数在其他领域的应用:如经济学、生物学等3.3 教学方法举例讲解,让学生了解幂函数在各个领域的应用让学生分组讨论,寻找其他幂函数在实际问题中的应用3.4 教学重点与难点幂函数在实际问题中的应用方法第四章:幂函数的综合练习4.1 教学目标巩固幂函数的概念、性质及应用提高学生的综合运用能力4.2 教学内容编写具有代表性的练习题,涵盖幂函数的概念、性质及应用分析练习题的解题思路,让学生掌握解题技巧4.3 教学方法布置练习题,让学生独立完成分析练习题,讲解解题思路和方法4.4 教学重点与难点幂函数的综合运用能力第五章:总结与评价5.1 教学目标总结幂函数的学习内容,巩固知识点评价学生的学习效果5.2 教学内容回顾幂函数的概念、性质及应用,总结学习要点对学生的学习情况进行评价,提出改进建议5.3 教学方法让学生自主总结幂函数的学习内容教师点评,总结学习要点,提出改进建议5.4 教学重点与难点幂函数的学习要点的总结第六章:幂函数的扩展与深化6.1 教学目标学习幂函数的特殊情况,如指数函数、对数函数探讨幂函数与其他函数的关系,加深对幂函数的理解6.2 教学内容指数函数与幂函数的关系:探讨指数函数是幂函数的特殊形式对数函数与幂函数的关系:了解对数函数与幂函数的相互转化幂函数与其他函数的关系:如三角函数、反函数等6.3 教学方法对比讲解,让学生了解指数函数、对数函数与幂函数的关系举例讲解,让学生了解幂函数与其他函数的关系6.4 教学重点与难点指数函数与幂函数的关系幂函数与其他函数的关系的探讨第七章:幂函数在工程与科学计算中的应用7.1 教学目标学习幂函数在工程与科学计算中的应用提高学生解决实际问题的能力7.2 教学内容幂函数在工程计算中的应用:如电学、力学等领域幂函数在科学计算中的应用:如天体物理、生物医学等领域举例讲解,让学生了解幂函数在工程与科学计算中的应用让学生分组讨论,寻找其他幂函数在实际问题中的应用7.4 教学重点与难点幂函数在工程与科学计算中的应用方法第八章:幂函数与其它数学概念的联系8.1 教学目标理解幂函数与其他数学概念的联系提高学生的综合运用能力8.2 教学内容幂函数与不等式的关系:学习利用幂函数解决不等式问题幂函数与方程的关系:探讨幂函数与方程的求解方法幂函数与数列的关系:了解幂函数在数列中的应用8.3 教学方法举例讲解,让学生了解幂函数与不等式、方程、数列的关系让学生分组讨论,寻找其他幂函数与其他数学概念的联系8.4 教学重点与难点幂函数与不等式、方程、数列的关系的探讨第九章:幂函数的实验与探究9.1 教学目标培养学生的实验与探究能力加深对幂函数的理解利用数学软件或图形计算器,进行幂函数的实验探讨幂函数的性质,发现幂函数的规律9.3 教学方法引导学生进行实验,让学生观察幂函数的性质让学生分组讨论,总结幂函数的规律9.4 教学重点与难点幂函数实验的设计与分析幂函数规律的发现第十章:总结与评价10.1 教学目标总结幂函数的学习内容,巩固知识点评价学生的学习效果10.2 教学内容回顾幂函数的概念、性质、应用及与其他数学概念的联系,总结学习要点对学生的学习情况进行评价,提出改进建议10.3 教学方法让学生自主总结幂函数的学习内容教师点评,总结学习要点,提出改进建议10.4 教学重点与难点幂函数的学习要点的总结重点解析本文档涵盖的重点知识点包括:幂函数的定义与表达形式、幂函数的性质(单调性、奇偶性、周期性)、幂函数的图像绘制、幂函数在实际问题中的应用、幂函数的特殊情况(指数函数、对数函数)、幂函数与其他函数的关系、幂函数在工程与科学计算中的应用、幂函数与不等式、方程、数列的关系、幂函数的实验与探究。
关于幂函数的教案
关于幂函数的教案关于幂函数的教案一教学任务分析:(1)理解幂函数的概念,会画五种常见幂函数的图像;(2)结合幂函数的图像,理解幂函数图像的变化情况和性质;(3)通过观察、总结幂函数的性质,培养学生概括抽象和识图能力。
教学重点:常见幂函数的的概念、图像和性质。
教学难点:幂函数的单调性及比较两个幂值的大小。
教具准备:多媒体课件、投影仪、打印好的作业。
教学情景设计问题师生活动设计意图问题1:如果张红购买了1元/千克的蔬菜x千克,那么她需要付的钱数y(元)和购买的蔬菜量x?(千克)之间有何关系?问题2:如果正方形的边长为x,那么正方形面积y=?问题3:如果正方体的棱长为x,那么正方体体积y=问题4:如果正方形场地的面积为x,那么正方形的边长?y=?问题5:如果某人x秒内骑车行进1千米,那么他骑车的平均速度y=(千米/秒) 引导学生探索发现:通过生活实例,引出幂函数的概念,使学生体会到数学在生活中的应用,激发学生的学习兴趣。
你能发现这几个函数解析式有什么共同点吗?引导学生归纳结论(1)?指数为常数.(2)?右边均是以自变量为底的幂的形式; 认识五种常见的幂函数。
给出幂函数的定义:一般地,形如? 的函数称为幂函数,其中x为自变量,α为常数. 例1:在函数,,,中,哪几个函数是幂函数? 引导学生依据幂函数定义及特征头判断;1、即 (是)2、 (不是)3、 (不是)4、 (是) 正确认识幂函数请在同一坐标系内画出以上五个幂函数的图像指导学生画出图像,多媒体呈现图像训练学生的作图、识图能力。
观察以上图像将你发现的结论填入性质表?定义域值域关于幂函数的教案二教材分析:幂函数作为一类重要的函数模型,是学生在系统地学习了指数函数、对数函数之后研究的又一类基本的初等函数.?幂函数模型在生活中是比较常见的,学习时结合生活中的具体实例来引出常见的幂函数?.组织学生画出他们的图象,根据图象观察、总结这几个常见幂函数的性质.对于幂函数,只需重点掌握?这五个函数的图象和性质.学习中学生容易将幂函数和指数函数混淆,因此在引出幂函数的概念之后,可以组织学生对两类不同函数的表达式进行辨析.学生已经有了学习幂函数和对象函数的学习经历,这为学习幂函数做好了方法上的准备.因此,学习过程中,引入幂函数的概念之后,尝试放手让学生自己进行合作探究学习.课时分配 1课时教学目标重点:从五个具体的幂函数中认识的概念和性质难点:从幂函数的图象中概括其性质,据幂函数的单调性比较两个同指数的指数式的大小知识点:幂函数的定义、五个幂函数图象特征能力点:通过具体实例了解幂函数的图象和性质,并能进行简单的应用教育点:进一步渗透数形结合与类比的思想方法;体会幂函数的变化规律及蕴含其中的对称性自主探究点:通过作图归纳总结幂函数的相关性质考试点:了解幂函数的概念,结合函数的图象了解它们的变化情况易错易混点:学生容易将幂函数和指数函数混淆拓展点:通过指数函数的图象性质研究幂函数指数的变化教具准备:多媒体辅助教学课堂模式:导学案一、引入新课(一) 回顾引入师生互动师:数学的内在美常常让我感动,下面我们共同来欣赏运算的完美性,思考:由8、2、3、这四个数,运用数学符号可组成哪些等式?生:探讨,交流师生共同分析:设计意图(1)给出开放性问题,主要是为了提高学生的想象能力,激发他们学习新内容的兴趣(2)不但培养了学生动手的能力,也营造了师生合作,共同探讨问题的氛围师:我们知道对于等式1 .如果一定,随着的变化而变化,我们建立了指数函数2 . 如果一定,随着的变化而变化,我们建立了对数函数设想:如果一定,随着的变化而变化,是不是也可以确定一个函数呢?设计说明使学生回忆所学两个基本初等函数,为所要学习的幂函数作铺垫(二) 观察下列对象:问题(1):如果张红购买了每千克1元的蔬菜千克,那么她需要付的钱数 = 元,问题(2):如果正方形的边长为,那么正方形的面是 =问题3):如果正方体的边长为,那么正方体的体积是 =问题(4):如果正方形场地面积为,那么正方形的边长 =问题(5):如果某人 s内骑车行进了1km,那么他骑车的平均速度 =师生互动师:(1)它们的对应法则分别是什么?(2)以上问题中的函数有什么共同特征?让学生独立思考后交流,引导学生概括出结论生:(1)乘以1 (2)求平方 (3)求立方(4)求算术平方根 (5)求-1次方师:上述的问题涉及到的函数,都是形如:,其中是自变量,是常数.师生:共同辨析这种新函数与指数函数的异同.设计意图(1)引导学生从具体问题、实际问题中抽象出数学模型。
幂函数及函数应用(讲义及答案)
5
12.
函数
f
(x)
x
2
2x
3,x
≤
0
的零点个数为(
2 ln x,x 0
A.2
B.3
C.4
) D.5
13. 已知0 a 1,则方程a|x| | log xa | 的实数根的个数为(
)
A.1
B.2
C.3
D.4
14. 已知函数 f (x) 的图象是连续不断的,且有如下的 x, f (x) 的 对应值表:
1 当 m (m,n∈N*,且互质)时:
n 若 m,n 均为奇数,则函数 y x 是奇函数,其图象关于原点 对称; 若 m 为偶数,n 为奇数,则函数 y x 是偶函数,其图象关 于 y 轴对称; 若 m 为奇数,n 为偶数,则函数 y x 是非奇非偶函数,只 在第一象限内有图象.
2 当 m (m,n∈N*,且互质)时:
10. 比较下列各数的大小:
5
5
(1) 3 2
3.1 2 ;
6
(2) (0.3)11
5
(3) (0.88)3
(0.88)3 ;
(4)(
2
)
2 3
3
6
0.711 ;
( 1) 3 . 4
11. 函数 f (x)=2x+3x 的零点所在的一个区间是( A.(-2,-1) B.(-1,0) C.(0,1)
) D.(1,2)
线,并且有
,那么,函数 y f (x) 在区间
内有零点,即
,使得
,这个
c 也就是方程 f (x) 0 的根.
三、二分法 1. 定义:对于在区间[a,b]上连续不断,且 f (a) f (b) 0 的函数
幂函数的性质与应用
幂函数的性质与应用幂函数是数学中常见的一类函数,具有许多特殊的性质和广泛的应用。
本文将探讨幂函数的性质及其在不同领域中的应用。
一、幂函数的定义与性质幂函数可以表示为f(x)=ax^n的形式,其中a是常数,n是指数。
幂函数的性质如下:1. 定义域和值域:幂函数的定义域为全体实数,当指数n为整数时,值域是正实数;若n是奇数,值域为全体实数;若n是偶数,值域为非负实数。
2. 对称性:幂函数具有关于y轴的对称性,即f(x)=f(-x)。
这是因为当指数n为偶数时,x的正负变化不会影响结果。
3. 增减性:幂函数增减性取决于指数n的奇偶性。
当n为奇数时,幂函数是单调递增或递减的;当n为偶数时,幂函数在正数区间单调递增,在负数区间单调递减。
4. 极限性质:幂函数的极限性质与指数n的正负有关。
当n>0时,随着x趋近正无穷,幂函数趋近正无穷;当n<0时,随着x趋近正无穷,幂函数趋近零。
二、幂函数在科学和实际应用中的应用幂函数在不同领域中具有广泛的应用,包括物理学、经济学、生物学等。
1. 物理学中的应用:幂函数在描述一些物理现象中经常被使用。
例如,牛顿第二定律F=ma中的力与加速度的关系可以用幂函数表示。
2. 经济学中的应用:幂函数在描述经济增长、收入分配等方面起着重要作用。
例如,GDP与时间的关系可以用幂函数来模拟。
3. 生物学中的应用:幂函数在描述生物体积、生物种群增长等方面被广泛应用。
例如,生物体积与体重的关系可以用幂函数来表示。
4. 数据拟合与回归分析:幂函数可以用来拟合一些非线性关系的数据,并进行回归分析。
通过幂函数可以更好地描述数据的变化趋势和关系。
5. 优化问题:幂函数在一些优化问题中也常被应用。
例如,求解最优投资组合问题时,可以利用幂函数对不同资产的风险和收益进行建模。
三、结论幂函数作为一类常见的函数,在数学中具有一些特殊的性质和广泛的应用。
通过了解幂函数的性质,我们可以更好地理解和应用它们。
幂函数的教案
May you experience the deep malice in this world as soon as possible, and then start the happy life of loving himand who.精品模板助您成功!(页眉可删)幂函数的教案作为一位杰出的老师,时常会需要准备好教案,教案是实施教学的主要依据,有着至关重要的作用。
写教案需要注意哪些格式呢?以下是为大家收集的幂函数的教案,欢迎大家分享。
教学目标:1.使学生理解幂函数的概念,能够通过图象研究幂函数的性质;2.在作幂函数的图象及研究幂函数的性质过程中,培养学生的观察能力,概括总结的能力;3.通过对幂函数的研究,培养学生分析问题的能力.教学重点:常见幂函数的概念、图象和性质;教学难点:幂函数的`单调性及其应用.教学方法:采用师生互动的方式,由学生自我探索、自我分析,合作学习,充分发挥学生的积极性与主动性,教师利用实物投影仪及计算机辅助教学.教学过程:一、问题情境情境:我们以前学过这样的函数:y=x,y=x2,y=x1,试作出它们的图象,并观察其性质.问题:这些函数有什么共同特征?它们是指数函数吗?二、数学建构1.幂函数的定义:一般的我们把形如y=x(R)的函数称为幂函数,其中底数x是变量,指数是常数.2.幂函数y=x 图象的分布与的关系:对任意的 R,y=x在第I象限中必有图象;若y=x为偶函数,则y=x在第II象限中必有图象;若y=x为奇函数,则y=x在第III象限中必有图象;对任意的 R,y=x的图象都不会出现在第VI象限中.3.幂函数的性质(仅限于在第一象限内的图象):(1)定点:0时,图象过(0,0)和(1,1)两个定点;≤0时,图象过只过定点(1,1).(2)单调性:0时,在区间[0,+)上是单调递增;0时,在区间(0,+)上是单调递减.三、数学运用例1 写出下列函数的定义域,并判断它们的奇偶性(1)y= ; (2)y= ; (3)y= ; (4)y= .例2 比较下列各题中两个值的大小.(1)1.50.5与1.70.5 (2)3.141与π1(3)(-1.25)3与(-1.26)3 (4)3 与2例3 幂函数y=xm;y=xn;y=x1与y=x在第一象限内图象的排列顺序如图所示,试判断实数m,n与常数-1,0,1的大小关系.练习:(1)下列函数:①y=0.2x;②y=x0.2;③y=x3;④y=3x2.其中是幂函数的有 (写出所有幂函数的序号).(2)函数的定义域是 .(3)已知函数,当a= 时,f(x)为正比例函数;当a= 时,f(x)为反比例函数;当a= 时,f(x)为二次函数;当a= 时,f(x)为幂函数.(4)若a= ,b= ,c= ,则a,b,c三个数按从小到大的顺序排列为 .四、要点归纳与方法小结1.幂函数的概念、图象和性质;2.幂值的大小比较方法.五、作业课本P90-2,4,6.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
34
(2)∵y=x-1 是(-∞,0)上的减函数,且-2<-3,∴
-2 3
-1>
-3 5
-1.
35
1
1 1
1
1
1
(3)0.25 4 = 4 4 =2 2 ,6.25 4 =2.5 2
1
1
1
1
1
∵y=x 2 是[0,+∞)上的增函数,且 2<2.5,∴2 2 <2.5 2 ,即 0.25 4 <6.25 4 .
D.n<-1,m>1
答案 B
解析 在(0,1)内取同一值 x0,作直线 x=x0,与各图象有交点,如图所示.根据点低指数大,有 0<m<1,n <-1.
更多资料下载请加 QQ 群安老师高一玩转数学研讨群,群号 1036995874,
玩转数学
高一同步系列
安老师培优课堂
题型三 幂函数的性质
1
1
例 3 若(2m+1) 2 >(m2+m-1) 2 ,则实数 m 的取值范围是( )
C1,C2,C3,
C4 的指数α依次为( )
A.-2,-1,1,2 22
B.2,1,-1,-2 22
C.-1,-2,2,1
2
2
更多资料下载请加 QQ 群安老师高一玩转数学研讨群,群号 1036995874,
玩转数学
高一同步系列
安老师培优课堂
D.2,1,-2,-1
2
2
答案 B 解析 要确定一个幂函数 y=xα在坐标系内的分布特征,就要弄清幂函数 y=xα随着α值的改变图象的变化规 律.随着α的变大,幂函数 y=xα的图象在直线 x=1 的右侧由低向高分布.从图中可以看出,直线 x=1 右侧
|n|的大小.根据幂函数
y=xn
的性质,故
c1
的
n=2,c2
的
n=1,当 2
n<0
时,|n|越大,曲线越陡峭,所以曲线
c3
的
n=-1,曲线 2
c4
的
n=-2,故选
B.
[玩转跟踪]
1.如图是幂函数 y=xm 与 y=xn 在第一象限内的图象,则( )
A.-1<n<0<m<1
B.n<-1,0<m<1
C.-1<n<0,m>1
的图象,由高向低依次为
C1,C2,C3,C4,所以
C1,C2,C3,C4
的指数α依次为
2,1,-1,-2. 22
6.已知 2.4α>2.5α,则α的取值范围是________.
{x|x∈R 且 x≠0}
值域
R
[0,+∞)
R
[0,+∞)
{y|y∈R 且 y≠0}
奇偶性
奇函数
偶函数
奇函数 非奇非偶函数
奇函数
单调性
x∈[0,+∞)时,增;
增
增
x∈(-∞,0]时,减
x∈(0,+∞) 时,减; 增
x∈(-∞,0)时,减
(4)幂函数的共性
α>0 时,图象过原点和(1,1),在第一象限的图象上升;α<0 时,图象不过原点,在第一象限的图象下降.
幂函数的图象一定会出现在第一象限内,一定不会出现在第四象限,至于是否出现在第二、三象限内,要
看函数的奇偶性;幂函数的图象最多能同时出现在两个象限内;如果幂函数图象与坐标轴相交,则交点一
定是原点.
[玩转典例] 题型一 幂函数的概念 例 1 函数 f(x)=(m2-m-1)x m2 m3 是幂函数,且当 x∈(0,+∞)时,f(x)是增函数,求 f(x)的解析式. 解 根据幂函数定义得,m2-m-1=1,解得 m=2 或 m=-1, 当 m=2 时,f(x)=x3 在(0,+∞)上是增函数,当 m=-1 时,f(x)=x-3,在(0,+∞)上是减函数,不合要求. ∴f(x)的解析式为 f(x)=x3. [玩转跟踪]
(1)写出该种商品的日销售额 S 与时间 t 的函数关系;
(2)求日销售额 S 的最大值.
解
(1)根据题意得 S=
-2t+200
1t+30 2
,1≤t≤30,t∈N,
45-2t+200,31≤t≤50,t∈N,
-t2+40t+6 000,1≤t≤30,t∈N, 即 S=
-90t+9 000,31≤t≤50,t∈N.
2
2
2
解 2m+1>m2+m-1,得-1<m<2,综上所述, 5-1≤m<2. 2
例 4 比较下列各组数中两个数的大小:
11 11
-2
-3
(1) 3 2 与 4 2 ;(2) 3 -1 与 5 -1;
1
1
(3)0.25 4 与 6.25 4 ;(4)0.20.6 与 0.30.4.
1
11 11
解 (1)∵y=x 2 是[0,+∞)上的增函数,且1>1,∴ 3 2 > 4 2 .
玩转数学
高一同步系列
第 8 讲 幂函数与函数应用
[玩前必备] 1.幂函数 (1)定义:形如 y=xα(α∈R)的函数称为幂函数,其中 x 是自变量,α是常数. (2)幂函数的图象比较
安老师培优课堂
(3)幂函数的性质比较
函数
特征
y=x
性质
y=x2
y=x3
1
y= x 2
y=x-1
定义域
R
R
R
[0,+∞)
+∞)上单调递增,不合题意,y=x-2 在区间(0,+∞)上单调递减,符合题意,故选 A.
1
3.已知 f(x)= x2 ,若 0<a<b<1,则下列各式中正确的是( )
11 A.f(a)<f(b)<f a <f b
11 B.f a <f b <f(b)<f(a)
11 C.f(a)<f(b)<f b <f a
2
3
解 (1)∵y=x0.5 在[0,+∞)上是增函数且2>3,∴ 3 0.5> 5 0.5.
35
(2)∵y=x3 是 R 上的增函数,且 3.14<π,∴3.143<π3,∴-3.143>-π3.
1
13 11
1
31 11
(3)∵y= 2 x 是减函数,∴ 2 4 < 2 2 .y=x 2 是[0,+∞)上的增函数,∴ 4 2 > 2 2 .
A.-3 B.2 C.-3 或 2 D.3
考点 幂函数的性质
题点 幂函数的单调性
答案 A 解析 由 y=(m2+m-5)xm 是幂函数,知 m2+m-5=1,解得 m=2 或 m=-3.∵该函数在第一象限内是单
调递减的,∴m<0.故 m=-3.
5.如图所示曲线是幂函数
y=xα在第一象限内的图象,已知α取±2,±1四个值,则对应于曲线 2
1
1
D.f a <f(a)<f b <f(b)
考点 比较幂值的大小
题点 利用单调性比较大小
答案 C
1
11
解析 因为函数 f(x)= x2 在(0,+∞)上是增函数,又 0<a<b<1<1<1,故 f(a)<f(b)<f b <f a ,故选 C.
ba
4.已知 y=(m2+m-5)xm 是幂函数,且在第一象限内是单调递减的,则 m 的值为( )
例 2 如图所示,图中的曲线是幂函数 y=xn 在第一象限的图象,已知 n 取±2,±1四 2
个值,则相应于 c1,c2,c3,c4 的 n 依次为( )
A.-2,-1,1,2 22
B.2,1,-1,-2 22
C.-1,-2,2,1
2
2
D.2,1,-2,-1ຫໍສະໝຸດ 22答案 B
解析 考虑幂函数在第一象限内的增减性.注意当 n>0 时,对于 y=xn,n 越大,y=xn 增幅越快,n<0 时看
31 13 ∴ 4 2> 2 4.
3.下列函数中,既是偶函数,又在区间(0,+∞)上单调递减的函数是( )
A.y=x-2
B.y=x-1
C.y=x2
1
D.y=x 3
答案 A
1
解析 由于 y=x-1 和 y=x 3 都是奇函数,故 B、D 不合题意.又 y=x2 虽为偶函数,但在(0,+∞)上为增函
数,故 C 不合题意.y=x-2=x12在(0,+∞)上为减函数,且为偶函数,故 A 满足题意.
(4)由幂函数的单调性,知 0.20.6<0.30.6,又 y=0.3x 是减函数,∴0.30.4>0.30.6,从而 0.20.6<0.30.4.
[玩转跟踪]
1
1
1.若(a+1) 2 <(3-2a) 2 ,则实数 a 的取值范围是________.
答案 (1)-1 (2)[-1,2) 3
更多资料下载请加 QQ 群安老师高一玩转数学研讨群,群号 1036995874,
1.已知函数 f (x) x2m2m3(m ) 为偶函数,且在 (0, ) 上为增函数.
更多资料下载请加 QQ 群安老师高一玩转数学研讨群,群号 1036995874,
玩转数学
高一同步系列
安老师培优课堂
(1)求 m 的值,并确定 f (x) 的解析式; 解析.由条件幂函数 f (x) x2m2m3(m ) ,在 (0, ) 上为增函数,
题型四 函数应用
例 5 经市场调查,某种商品在过去 50 天的销售量和价格均为销售时间 t(天)的函数,且销售量近似地满足
f(t)=-2t+200(1≤t≤50,t∈N),前 30 天价格为 g(t)=1t+30(1≤t≤30,t∈N),后 20 天价格为 g(t)= 2
45(31≤t≤50,t∈N).
- -∞,
5-1
A.