拉普拉斯变换及线性微分方程求解
拉普拉斯变换求解微分方程典型范例
Laplace 变换在微分方程(组)求解范例引言Laplace 变换就是由复变函数积分导出得一个非常重要得积分变换,它在应用数学中占有很重要得地位,特别就是在科学与工程中,有关温度、电流、热度、放射现象等方面都有广泛得应用、为了研究本文提出得各种问题,我们给出了Laplace 变换得概念以及一些性质、Laplace 变换得定义 设函数f(x)在区间上有定义,如果含参变量s 得无穷积分对s 得某一取值范围就是收敛得、则称为函数得Laplace 变换,称为原函数,称为象函数,并记为、性质1 (Laplace 变换存在定理)如果函数在区间上逐段连续,且存在数,,使得对于一切有,则当时,存在、性质2 (线性性质)设函数与满足Laplace 变换存在定理得条件,则在它们象函数定义域得共同部分上有其中与就是常数、性质3 (原函数得微分性质)如果,,,均满足Laplace 变换存在定理得条件,则或更一般地,有()()()()()()()112000n n n n n L f t s L f t s f s f f ---⎡⎤'=----⎡⎤⎣⎦⎣⎦、性质4 (象函数得微分性质)如果,则或一般地有、主要结论及推导对于Laplace 变换式,在积分号下对s 求导,得到(*)即再对(*)式求导,可得在一般情况下,对于任一正整数n,有即从而(1)对性质3及(1)式,可得()()()()()0d d d L tx t L x t sX s x sX s ds ds ds ''=-=--=-⎡⎤⎡⎤⎡⎤⎡⎤⎣⎦⎣⎦⎣⎦⎣⎦ ()()()()()200d d L tx t L x t s X s sx x ds ds '''''⎡⎤=-=---⎡⎤⎡⎤⎣⎦⎣⎦⎣⎦ 1、 利用Laplace 变换求解常系数微分方程例1 求方程得满足初始条件得解、解 对方程两端进行Laplace 变换得由此得把上式右端分解成分式对上式两端各项分别求出其原函数,再求与、即得原微分方程得解为例2 求微分方程满足初始条件,得特解、解 设,对微分方程两端取Laplace 变换得()()()()()()22321s Y s sy s y s sY s y s Y s s '⎡⎤----+=⎡⎤⎣⎦⎣⎦+ 考虑到初始条件得于就是对上述方程两端取Laplace 逆变换,得()()111121117117443113233t t t y t L Y s L L L e e e s s s -------⎡⎤⎡⎤⎡⎤==+-=+-⎡⎤⎣⎦⎢⎥⎢⎥⎢⎥+--⎣⎦⎣⎦⎣⎦ 于就是得到方程得解为2、 利用Laplace 变换求解常系数微分方程组例3 求解初值问题得解、解 设,对方程组取Laplace 变换,得到即从而有对上面方程组取Laplace 逆变换,得原方程组得解为例4 求微分方程组满足初始条件得解、解 设,对微分方程组取Laplace 变换得考虑到初始条件得由上面方程组解得对上方程组取Laplace 逆变换得原方程组得解为3、 利用Laplace 变换求解偏微分方程例5 求得定解、解 首先将定解问题取Laplace 变换,并记则有,,这样,就将原来得问题转化为含有参数得常微分方程得边值问题 以求得其解为对上式取Laplace 逆变换,得到原偏微分方程得解为例6 求方程得解、解 对方程两端关于t 施行Laplace 变换(取s 为实数),有求解得由条件得,从而,代入上式并应用Laplace 逆变换,有()()()()111111111,,1111t x u x t L u x s L L x xL xL x e s s s s s s ------⎡⎤⎡⎤⎛⎫⎡⎤⎡⎤===-=-=-⎡⎤⎢⎥ ⎪⎢⎥⎣⎦⎢⎥⎢⎥+++⎝⎭⎣⎦⎣⎦⎣⎦⎣⎦4、 利用Laplace 变换求解变系数得微分方程例7 求变系数微分方程满足初始条件得解、解 对方程两端同时施行Laplace 变换,利用Laplace 变换得微分性质有()()()()()()()()20020220s Y s sy y sY s y sY s Y s Y s ''''⎡⎤--------=⎡⎤⎡⎤⎡⎤⎣⎦⎣⎦⎣⎦⎣⎦结合初始条件,化简有解得,c 为任意常数、取Laplace 逆变换,则有例8 求解二阶变系数微分方程满足初始条件为常数)得解、 解 设,对方程两端取Laplace 变换,得即亦即()()()()()()200200d d s X s sx x sX s x X s ds ds '⎡⎤---+--=⎡⎤⎣⎦⎣⎦ 整理后化简可得而由在积分号下对s 求导得,可知所以有对上式取Laplace 逆变换得即得原变系数方程得解为。
拉普拉斯变换的性质及其在求解微分方程中的应用
拉普拉斯变换的性质及其在求解微分方程中的应用
拉普拉斯变换是一种将一个函数f(t) 转换成另一个函数F(s)
的变换工具,它与傅里叶变换有一些相似之处,但拉普拉斯变换更
加适用于求解微分方程。
拉普拉斯变换的性质包括:
1. 线性性:如果f1(t) 和f2(t) 的拉普拉斯变换分别是F1(s) 和F2(s),那么对于任意常数a 和b,它们的线性组合af1(t) +
bf2(t) 的拉普拉斯变换是aF1(s) + bF2(s)。
2. 移位性:如果f(t) 的拉普拉斯变换是F(s),那么e^(-
at)f(t) 的拉普拉斯变换是F(s+a)。
3. 前移性:如果f(t) 的拉普拉斯变换是F(s),那么t^n f(t) (n 为非负整数)的拉普拉斯变换是 (-1)^n F^(n) (s),其中
F^(n) 表示F(s) 的 n 阶导数。
4. 卷积定理:如果f1(t) 和f2(t) 的拉普拉斯变换分别是
F1(s) 和F2(s),那么它们的卷积f(t) = f1(t) * f2(t) 的拉普拉
斯变换是F1(s)F2(s)。
在求解微分方程时,拉普拉斯变换可以将微分方程转换为代数
方程,并使复杂的微分方程分析更容易。
将微分方程用拉普拉斯变
换表示后,可以通过代数运算求解它们的解析解,并通过反演拉普
拉斯变换得到原始函数的解析表达式。
特别地,拉普拉斯变换可以
轻松地求解初值问题和边界条件问题,因为它们的解析解可以在拉
普拉斯域中被求出。
拉普拉斯变换 微分方程
拉普拉斯变换与微分方程引言微分方程是数学中重要的一门学科,广泛应用于物理学、工程学等领域。
而拉普拉斯变换则是一种常用于解微分方程的工具,它能够将微分方程转化为代数方程,更便于求解。
本文将深入探讨拉普拉斯变换与微分方程的关系,以及如何利用拉普拉斯变换解微分方程。
拉普拉斯变换的定义拉普拉斯变换是一种由法国数学家拉普拉斯在19世纪提出的数学工具,用于将一个函数或信号在时间域上的表达转换为在复平面上的表达。
对于一个定义在半无穷区间上的函数f(t),它的拉普拉斯变换被定义为:+∞F(s)=∫e−stf(t)dt0−其中,s是复平面上的复变量,常被称为拉普拉斯变换变量。
拉普拉斯变换的性质拉普拉斯变换具有许多有用的性质,这些性质为解微分方程提供了便利。
以下是一些常见的拉普拉斯变换性质:线性性质如果f(t)和g(t)的拉普拉斯变换分别为F(s)和G(s),那么对于任意的实数a和b,af(t) + bg(t)的拉普拉斯变换为aF(s) + bG(s)。
平移性质如果f(t)的拉普拉斯变换为F(s),那么e^(-at)f(t)的拉普拉斯变换为F(s + a),其中a为正实数。
初值定理如果f(t)是一个连续函数,且存在极限lim(t->0) f(t) = L,那么L就是f(t)在t=0的初值,在拉普拉斯变换中,F(s) = L/s。
终值定理如果f(t)是一个连续函数,且存在极限lim(t->∞) f(t) = L,那么L就是f(t)在t趋向于无穷时的终值,在拉普拉斯变换中,lim(s->0) sF(s) = L。
拉普拉斯变换与微分方程的关系微分方程是描述自然现象中变化的数学方程,可以分为常微分方程和偏微分方程。
拉普拉斯变换可以通过转化微分方程为代数方程,从而更容易求解。
普通微分方程的解法对于给定的普通微分方程,我们可以通过Laplace变换将其转换为一个代数方程来求解。
具体的步骤如下:1.对于已知的微分方程,我们首先对方程的两边取拉普拉斯变换。
2-3 用拉普拉斯变换求解线性微分方程
−∞ 0 ε →0
∫
∞
r ( t ) dt =
∫
ε
lim
A
dt = lim
A
ε →0
t |ε = A 0
A – ε
δ (t ) =
{
0
t
0 ∞
t≠0 t=0
ε
δ(t)函数的图形如下图所示。 脉冲函数的积分就是阶跃函数。 脉冲函数的拉氏变换为
0
存在,则称它为函数f(t)的拉普拉斯变换。变换后 的函数是复变量s的函数,记作F(s)或L[f(t)]即
L[ f ( t )] = F ( s ) =
∫
∞
f ( t )e − st dt
0
常称F(s)为f(t) 的变换函数或象函数,而f(t)为 F(s) 的原函数。 在上式中,其积分下限为零,但严格说有0-和 0+之分 。对于在t=0处连续或只有第一类间断点的 函数,0-和0+型的拉氏变换是相同的,但对于在 t=0处有无穷跳跃的函数,两种拉氏变换的结果是 不一致的。为了反映这些函数在[0-,0+]区间的表 现,我们约定式中的积分下限为0-。 二、几种典型函数的拉氏变换 ㈠阶跃函数 阶跃函数的定义是
r (t ) =
{
0 A
t <0 t ≥0
对系统输入阶跃函数就是在t=0时,给系统加 上一个恒值输入量。其图形如下图所示。 若A=1,则称之为单位阶跃函数,记作1(t)即
1(t ) =
{
0 1
t <0 t ≥0
A 0
阶跃函数的拉氏变换为
R ( s ) = L[ r (t )] =
(整理)拉普拉斯拉斯变换可用于求解常系数线性微分方程
拉普拉斯拉斯变换可用于求解常系数线性微分方程,是研究线性系统的一种有效而重要的工具。
拉普拉斯拉斯变换是一种积分变换,它把时域中的常系数线性微分方程变换为复频域中的常系数线性代数方程。
因此,进行计算比较简单,这正是拉普拉斯拉斯变换(简称:拉氏变换)法的优点所在。
拉普拉斯拉斯变换的定义一个定义在区间的函数,其拉氏变换定义为L[f(t)]=F(s)=式中:s=б+jω为复数,有时称变量S为复频域。
应用拉普拉斯拉斯变换进行电路分析有称为电路的复频域分析,有时称为运算法F(s)又称为f(t)的象函数,而f(t)称为F(s)的原函数。
通常用“L[ ]”表示对方括号内的函数作拉氏变换。
拉普拉斯变换的基本性质本节将介绍拉氏变换的一些基本性质,利用这些基本性质,可以很容易的求得一些较复杂的原函数的象函数,同时,这些基本性质对于分析线性非时变网络也是非常必要的。
一、唯一性定义在区间的时间函数与其拉氏变换存在一一对应关系。
根据可以唯一的确定其拉氏变换;反之,根据,可以唯一的确定时间函数。
唯一性是拉氏变换非常重要的性质,正是这个性质,才是我们有可能将时域中的问题变换为复频域中的问题进行求解,并使在复频域中求得的结果有可能再返回到时域中去。
唯一性的证明从略。
二、线性性质若和是两个任意的时间函数,其拉氏变换分别为和,和是两个任意常数,则有证根据拉氏变换的定义可根据拉氏变换的定义可得例求的拉氏变换。
解三、时域导数性质(微分性质)例应用时域导数性质求的象函数。
四、时域积分性质(积分规则)例:求单位斜坡函数及的象函数。
五、时域平移性质(延迟性质)作业:书后习题1、2、3、4。
课后记事:注意板书层次,因为内容很多,不要太乱。
常用时间函数的象函数一览表,见教材221页。
8-2、8-3拉普拉斯反变换和运算电路图(4学时)(教材第221页)教学目的:具有单根、复根、重根三种情况下用部分分式及分解定理求待定系数法,运算电路图的画法。
教学重点:具有单根、复根时求待定系数法,熟练掌握反变换的求法,熟练掌握运算电路图的画法。
拉普拉斯(laplace)变换法解常微分方程的初值问题
拉普拉斯(laplace)变换法解常微分方程的初值问题要求:拉普拉斯变换是求解微分方程和求解初值问题的有力工具。
本文将讨论拉普拉斯变换及其在求解常微分方程初值问题中的应用。
拉普拉斯变换是一种数学工具,用于将函数从时域变换到频域。
它是以18世纪法国数学家皮埃尔·西蒙·拉普拉斯的名字命名的。
函数f(t)的拉普拉斯变换定义为F(s) = L{f(t)} = ∫_0^∞ f(t) exp(-st) dts是复数。
拉普拉斯逆变换由f(t) =L^-1 {F(s)}=∫_\infty^s F(s) exp(st) ds拉普拉斯变换是求解常微分方程的有力工具。
基本思想是通过拉普拉斯变换将给定的ODE从时域转换到频域。
然后我们可以解变换后的方程用拉普拉斯逆变换将解变换回时域。
ode的初值问题也可以用拉普拉斯变换来解决。
假设我们想解初值问题y'(t) + ay(t) = g(t)y(0) = y_0其中a y_0和g(t)是已知的。
我们可以对方程两边做拉普拉斯变换得到sY(s) - y_0 + aY(s) = ∫_0^∞ g(t) exp(-st) dt或者Y(s) = [1/(s+a)]∫_0^∞ g(t) exp(-st) dt + {y_0/ (s+a)}然后我们就可以解出Y(s)并进行拉普拉斯逆变换来得到初值问题的解y(t) = L^-1 {Y(s)}= ∫_\infty^s {[1/(s+a)]∫_0^∞ g(t) exp(-st) dt + {y_0/ (s+a)}}exp(st) ds这给了我们初值问题的解,以卷积积分的形式。
总之,拉普拉斯变换是求解常微分方程初值问题的有力工具。
它不仅方便,使用起来相对简单,而且为我们提供了一个精确的通用解。
此外,拉普拉斯变换还可用于求解偏微分方程的初值问题,使其更加实用。
拉普拉斯变换在求解微分方程中的应用总结归纳
精心整理目录引言 (1)1 拉普拉斯变换以及性质 (1)1.1拉普拉斯变换的定义 (1)1.2拉普拉斯变换的性质 (1)2 用拉普拉斯变换求解微分方程的一般步骤 (3)3 拉普拉斯变换在求解常微分方程中的应用 (3)3.1初值问题与边值问题 (3)3.2常系数与变系数常微分方程 (4)3.3含 函数的常微分方程 (5)3.4常微分方程组 (6)3.5拉普拉斯变换在求解非齐次微分方程特解中的应用 (6)3.6拉普拉斯变换在求解高阶微分方程中的推广 (9)4 拉普拉斯变换在求解偏微分方程中的应用 (10)4.1齐次与非齐次偏微分方程 (10)4.2有界与无界问题 (11)5 综合比较,归纳总结 (14)结束语 (15)参考文献 (15)英文摘要 (21)致谢 (16)拉普拉斯变换在求解微分方程中的应用物理系0801班学生岳艳林指导老师韩新华摘 要:拉普拉斯变换在求解微分方程中有非常重要的作用,本文首先介绍拉普拉斯变换的定义及性质;其次给出拉普拉斯变换求解微分方程的一般步骤;然后重点举例拉普拉斯变换在求解常微分方程(初值问题与边值问题、常系数与变系数常微分方程、含δ函数的常微分方程、常微分方程组、拉普拉斯变换在求解微分方程特解中的应用、拉普拉斯变换在求解高阶微分方程的推广)与典型偏微分方程(齐次与非齐次偏微分方程、有界与无界问题)中的应用举例;最后综合比较、归纳总结拉普拉斯变换在求解微分方程中的优势以及局限性。
关键词:拉普拉斯变换;拉普拉斯逆变换;常微分方程;偏微分方程;特解 引言傅里叶变换和拉普拉斯变换是常用的积分变换,但对函数进行傅里叶变换时必须满足狄里希利和在+∞<<∞-t 内绝对可积,但是在物理、无线电技术等实际应用中,许多以时间t 为自变量的函数通常在0t <时不需要考虑或者没有意义,像这样的函数不能取傅里叶变换。
为避免上述两个缺点,将函数进行适当改造,便产生了拉普拉斯变换[1]。
拉普拉斯变换求解微分方程
拉普拉斯变换求解微分方程拉普拉斯变换可以把微分方程转化为代数方程。
由于现在是在利用拉氏变换求解微分方程,所以我们暂时不关注拉普拉斯变换中比较细节的方面。
利用拉氏变换解微分方程的基本方法就是把以 t 为变量的函数变换到以 s 为变量的代数函数,而这个过程会把微分项转换为代数式,这样我们就可以求解不含微分项的方程了。
最后再利用拉普拉斯逆变换,把关于 s 的函数变换回关于 t 的函数,就完成了微分方程的求解。
不过我们要先有几样趁手的工具——常用函数的拉普拉斯变化对以及微分的拉普拉斯变换:L[f(t)]=F(s) 表示对 f(t) 进行拉普拉斯变换的结果是 F(s) ,反之, L−1[F(s)]=f(t)表示的是对 F(s) 进行拉普拉斯逆变换得到了函数 f(t) .常用函数的拉普拉斯变换(对应的逆变换也成立):L[1]=1sL[tm]=m!sm+1L[eat]=1s−aL[cosat]=ss2+a2L[sinat]=as2+a2L[eatf(t)]=F(s−a)拉普拉斯变换是具有线性性质的,也就是说, L[αf(t)+βg(t)]=αL[f(t)]+βL[g(t)] . 逆变换也具有线性性质。
对公式两侧同时进行拉普拉斯逆变换就可以得到逆变换的公式,比如第一个式子: L−1[L[1]]=L−1[1s] ,整理一下就能得到 L−1[1s]=1 .微分的拉普拉斯变换(需要知道原函数已经各阶导数在0处的值):L[f(n)(t)]=snF(s)−sn−1f(0)−sn−2f′(0)−...−s0f(n−1)(0)式中的 F(s) 是一个未知的函数,是需要我们解出来的。
百闻不如一见,来看例题。
先来一个简单的例题。
例1:求解微分方程 yt′=t,y(0)=1解:第一步,对方程两侧同时进行拉普拉斯变换,即 L[yt′]=L[t] 得到 sY(s)−y(0)=1s2 .第二步,带入初值 y(0)=1 ,得到 sY(s)−1=1s2 .第三步,求解 Y(s) .这时候我们把第二步得到的式子看成一个普通的代数式就可以,很容易解得 Y(s)=1s3+1s 。
用拉普拉斯变换求解微分方程的过程
用拉普拉斯变换求解微分方程的过程引言:微分方程是数学中一类重要的方程,它描述了自然界和工程中许多现象的变化规律。
求解微分方程是数学中的一个重要问题,有许多不同的方法可以解决,其中之一就是使用拉普拉斯变换。
本文将介绍使用拉普拉斯变换求解微分方程的过程。
第一部分:拉普拉斯变换的概念和基本性质在介绍求解微分方程的具体过程之前,首先需要了解拉普拉斯变换的概念和基本性质。
拉普拉斯变换是一种重要的数学工具,它可以将一个函数转换为一个复变量函数。
它的定义如下:L{f(t)} = F(s) = ∫[0,∞] f(t)e^(-st) dt其中,f(t)是输入函数,F(s)是拉普拉斯变换后的函数,s是复变量。
第二部分:拉普拉斯变换的性质和定理拉普拉斯变换具有很多重要的性质和定理,这些性质和定理可以简化求解微分方程的过程。
其中一些重要的性质和定理包括:- 线性性质:L{af(t) + bg(t)} = aF(s) + bG(s)- 积分性质:L{∫[0,t] f(u) du} = 1/s F(s)- 初值定理:L{f'(t)} = sF(s) - f(0)- 终值定理:lim_(t→∞) f(t) = lim_(s→0) sF(s)通过这些性质和定理,可以将微分方程转化为一个代数方程,从而更容易求解。
第三部分:拉普拉斯变换求解微分方程的具体步骤1. 对于给定的微分方程,首先将方程两边取拉普拉斯变换。
2. 根据拉普拉斯变换的性质和定理,将微分方程转化为一个代数方程。
3. 解代数方程得到拉普拉斯变换后的函数。
4. 根据拉普拉斯变换的反变换,将代数方程的解转化为原始函数的解。
5. 检验解是否满足原始微分方程,并根据初值条件确定特定的解。
第四部分:举例说明为了更好地理解使用拉普拉斯变换求解微分方程的过程,下面举一个例子进行说明。
例子:求解微分方程y''(t) + 3y'(t) + 2y(t) = 0,y(0) = 1,y'(0) = 0。
用拉普拉斯变换求解微分方程的过程
用拉普拉斯变换求解微分方程的过程拉普拉斯变换是一种将时间域函数转换为复频率域函数的方法,它在求解微分方程中有着广泛的应用。
下面将介绍用拉普拉斯变换求解微分方程的过程。
首先,我们需要将微分方程转换为代数方程。
假设我们要求解的微分方程为:y''(t) + 2y'(t) + 5y(t) = f(t)其中,y(t)为未知函数,f(t)为已知函数。
我们可以将该微分方程转换为拉普拉斯域中的代数方程:(s^2 Y(s) - s y(0) - y'(0)) + 2(s Y(s) - y(0)) + 5Y(s) = F(s)其中,Y(s)为y(t)的拉普拉斯变换,y(0)和y'(0)分别为y(t)在t=0时的初值和初导数,F(s)为f(t)的拉普拉斯变换。
接下来,我们需要解出Y(s)。
将上式变形可得:Y(s) = (s y(0) + y'(0) + F(s)) / (s^2 + 2s + 5)这样,我们就得到了y(t)的拉普拉斯逆变换:y(t) = L^-1{Y(s)} = L^-1{(s y(0) + y'(0) + F(s)) / (s^2 + 2s + 5)}其中,L^-1表示拉普拉斯逆变换。
最后,我们需要求出y(t)的具体表达式。
这可以通过分解分母的根来实现。
我们可以将分母的根表示为:s^2 + 2s + 5 = (s + 1)^2 + 4因此,我们可以将Y(s)表示为:Y(s) = (s y(0) + y'(0) + F(s)) / [(s + 1)^2 + 4]接下来,我们需要求出Y(s)的部分分式分解。
假设分解结果为:Y(s) = A / (s + 1) + B / (s + 1)^2 + C / (s^2 + 4)将Y(s)代入上式,可以得到:A = lim(s->-1) [(s + 1) Y(s)] = lim(s->-1) [(s + 1) (s y(0) + y'(0) +F(s)) / [(s + 1)^2 + 4]] = y(0) + lim(s->-1) [F(s) / (s + 1)]B = lim(s->-1) [d/ds((s + 1)^2 Y(s))] = lim(s->-1) [d/ds((s + 1)^2 (s y(0) + y'(0) + F(s)) / [(s + 1)^2 + 4])] = y'(0) + lim(s->-1) [(s + 1) F(s) / [(s + 1)^2 + 4]]C = lim(s->0) [s^2 Y(s)] = lim(s->0) [s^2 (s y(0) + y'(0) + F(s)) / [(s + 1)^2 + 4]] = lim(s->0) [s F(s) / [(s + 1)^2 + 4]]最终,我们可以得到y(t)的表达式:y(t) = (y(0) + lim(s->-1) [F(s) / (s + 1)]) e^(-t) + (y'(0) + lim(s->-1) [(s + 1) F(s) / [(s + 1)^2 + 4]]) t e^(-t) + lim(s->0) [s F(s) / [(s + 1)^2 + 4]] sin(2t)其中,e^(-t)和sin(2t)是拉普拉斯逆变换的结果。
拉普拉斯变换法在求解微分方程中的应用
拉普拉斯变换法在求解微分方程中的应用拉普拉斯变换法在求解微分方程中的应用微分方程是自然界中各种问题的数学表达式。
其中最常见的为线性微分方程,它们可以用拉普拉斯变换法求解。
拉普拉斯变换法不仅使求解微分方程变得容易,而且还具有广泛的应用。
一、拉普拉斯变换的定义拉普拉斯变换是一种函数变换方法,它能够将一个函数从时间域变换到频率域。
设函数f(t)在区间[0,∞)上有定义,并且成立:L{f(t)}=F(s)=∫_0^∞e^(-st)f(t)dt其中s为复变量,s可以取任意值。
函数F(s)就是函数f(t)的拉普拉斯变换。
二、拉普拉斯变换法的应用1.求解线性微分方程对于线性微分方程Lu(t)=f(t)(其中L为微分算子,u为未知函数,f为已知函数),可以将其转化为代数方程Lu(s)=F(s)。
因此,对于已知f(t),只需要求出它的拉普拉斯变换F(s),再求出L的逆变换L^-1,即可得到解u(t)。
2.求解常系数线性微分方程常系数线性微分方程具有形式为ay''(t)+by'(t)+cy(t)=f(t)的特定形式,其中a、b、c为常数。
利用拉普拉斯变换法,可以将它们转化为关于变量s的代数方程,可以更方便地求解。
3.求解偏微分方程偏微分方程是一类多元函数的微分方程,包括了一些重要的物理和工程问题。
利用拉普拉斯变换法将其转化为关于s的代数方程,再求出逆变换,可以得到偏微分方程的解。
三、总结拉普拉斯变换法是求解微分方程的一种常用方法,它可以将微分方程转化为代数方程来求解。
特别是对于常系数线性微分方程和偏微分方程,应用拉普拉斯变换法可以更方便地获得解析解。
因此,它在物理,工程学和应用数学中都有极为丰富的应用。
拉普拉斯变换求解微分方程典型范例
拉普拉斯变换求解微分方程典型范例Laplace 变换在微分方程(组)求解范例引言Laplace 变换是由复变函数积分导出的一个非常重要的积分变换,它在应用数学中占有很重要的地位,特别是在科学和工程中,有关温度、电流、热度、放射现象等方面都有广泛的应用.为了研究本文提出的各种问题,我们给出了Laplace 变换的概念以及一些性质.Laplace 变换的定义 设函数f(x)在区间[)0+∞,上有定义,如果含参变量s 的无穷积分()+0st e f t dt ∞-⎰对s 的某一取值范围是收敛的.则称()F s =()+0st e f t dt ∞-⎰为函数的Laplace 变换,()f t 称为原函数,()F s 称为象函数,并记为()()L f t F s =⎡⎤⎣⎦.性质1 (Laplace 变换存在定理)如果函数()f t 在区间[)0,+∞上逐段连续,且存在数0M >,00s ≥,使得对于一切0t ≥有0()s t f t Me <,则当0s s >时,()F s 存在.性质2 (线性性质)设函数和满足Laplace 变换存在定理的条件,则在它们象函数定义域的共同部分上有()()()()L f t g t L f t L g t αβαβ+=+⎡⎤⎡⎤⎡⎤⎣⎦⎣⎦⎣⎦其中α和β是常数.性质3 (原函数的微分性质)如果()f t ',()f t '',,()()n f t 均满足Laplace 变换存在定理的条件,则()()()0L f t sL f t f '=-⎡⎤⎡⎤⎣⎦⎣⎦或更一般地,有()()()()()()()112000n n n n n L f t s L f t s f s f f ---⎡⎤'=----⎡⎤⎣⎦⎣⎦.性质4 (象函数的微分性质)如果()()L f t F s =⎡⎤⎣⎦,则()()()+0st F s te f t dt L tf t ∞-'=-=-⎡⎤⎣⎦⎰或一般地有()()()()()()011nnn n st n F s t e f t dt L t f t +∞-⎡⎤=-=-⎣⎦⎰.主要结论及推导对于Laplace 变换式,在积分号下对s 求导,得到()()()0st F s t f t e dt +∞-'=-⎰(*)即()()()L t f t F s '-=⎡⎤⎣⎦再对(*)式求导,可得()()2L t f t F s ''⎡⎤=⎣⎦在一般情况下,对于任一正整数n ,有()()()1nnnn dL f t F s ds ⎡⎤-=⎣⎦即()()()1nnnn d L t f t L f t ds ⎡⎤=-⎡⎤⎣⎦⎣⎦ 从而()()()1n nnmmn d L t f t L f t ds ⎡⎤⎡⎤=-⎣⎦⎣⎦ (1)对性质3及(1)式,可得()()L x t X s =⎡⎤⎣⎦ ()()()0L x t sX s x '=-⎡⎤⎣⎦()()()()200L x t s X s sx x '''=--⎡⎤⎣⎦()()()dX s dL tx t L x t ds ds=-=-⎡⎤⎡⎤⎣⎦⎣⎦ ()()()()()0d d dL tx t L x t sX s x sX s ds ds ds ''=-=--=-⎡⎤⎡⎤⎡⎤⎡⎤⎣⎦⎣⎦⎣⎦⎣⎦()()X s sX s '=-+⎡⎤⎣⎦()()()()()200d d L tx t L x t s X s sx x ds ds '''''⎡⎤=-=---⎡⎤⎡⎤⎣⎦⎣⎦⎣⎦ ()()20d s X s sx ds⎡⎤=--⎣⎦()()()220sX s s X s x '⎡⎤=-+-⎣⎦ 1、 利用Laplace 变换求解常系数微分方程例1 求方程331x x x x ''''''+++=的满足初始条件()()()000x x x '''==的解.解 对方程两端进行Laplace 变换得()()321331s s s X s s+++=由此得()32331s s s X s s+++=把上式右端分解成分式()()()2311111+11X s s s s s =---++ 对上式两端各项分别求出其原函数,再求和.即得原微分方程的解为()()2211112122t t t t X t e te t e t t e ----=---=-++例2 求微分方程322t y y y e -'''-+=满足初始条件()02y =,()01y '=-的特解.解 设()()L y t Y s =⎡⎤⎣⎦,对微分方程两端取Laplace 变换得()()()()()()22321s Y s sy s y s sY s y s Y s s '⎡⎤----+=⎡⎤⎣⎦⎣⎦+ 考虑到初始条件得()()2232271ss Y s s s -+=+-+ 于是()()()2217255433112132s s Y s s s s s s s --==+-+--+-+ 对上述方程两端取Laplace 逆变换,得()()111121117117443113233t tt y t L Y s L L L e e e s s s -------⎡⎤⎡⎤⎡⎤==+-=+-⎡⎤⎣⎦⎢⎥⎢⎥⎢⎥+--⎣⎦⎣⎦⎣⎦ 于是得到方程的解为()217433t t t y t e e e ---=+-2、 利用Laplace 变换求解常系数微分方程组例3 求解初值问题()()2400,01dxx y dt dyx y dt x y ⎧=+⎪⎪⎪=-+⎨⎪⎪==⎪⎩的解.解设()()()0stX s L x t e x t dt+∞-==⎡⎤⎣⎦⎰,()()()0stY s L y t e y t dt +∞-==⎡⎤⎣⎦⎰对方程组取Laplace 变换,得到()()()()()()()()02+04sX s x X s Y s sY s y X s Y s -=⎧⎪⎨-=-+⎪⎩ 即()()()()()()2041s X s Y s X s s Y s --=⎧⎪⎨+-=⎪⎩ 从而有()()()()()22213211333X s s s Y s s s s ⎧=⎪-⎪⎨-⎪==+⎪---⎩对上面方程组取Laplace 逆变换,得原方程组的解为()()333tt tx t tey t e te⎧=⎪⎨=+⎪⎩ 例4 求微分方程组200x y x x y '''--=⎧⎨'-=⎩满足初始条件()()()00,01,01x x y '===的解.解 设()()L x t X s =⎡⎤⎣⎦,()()L y t Y s =⎡⎤⎣⎦对微分方程组取Laplace 变换得()()()()()()()()()20020000s X s sx x sY s y X s sX s x Y s ⎧'-----=⎡⎤⎪⎣⎦⎨--=⎪⎩ 考虑到初始条件得()()()()()21210s X s sY s sX s Y s ⎧--+=⎪⎨-=⎪⎩ 由上面方程组解得()()22111X s s s Y s s ⎧=⎪⎪+⎨⎪=⎪+⎩对上方程组取Laplace 逆变换得原方程组的解为()()sin cos x t ty t t =⎧⎪⎨=⎪⎩ 3、 利用Laplace 变换求解偏微分方程例5 求22200||3y x u x y x y u x u y ==⎧∂=⎪∂∂⎪⎪=⎨⎪=⎪⎪⎩()0,x y <<+∞的定解.解 首先将定解问题取Laplace 变换,并记()(),,L u x y u s y =⎡⎤⎣⎦则有0|3x u L su u su y x =∂⎡⎤=-=-⎢⎥∂⎣⎦,23u du L s x y dy ⎡⎤∂=-⎢⎥∂∂⎣⎦232!L x y y s ⎡⎤=⎣⎦,0032!||y y L u u s==⎡⎤==⎣⎦ 这样,就将原来的问题转化为含有参数的常微分方程的边值问题303232|y dus y dys u s =⎧-=⎪⎪⎨⎪=⎪⎩以求得其解为()24312,3+u s y y y s s =+ 对上式取Laplace 逆变换,得到原偏微分方程的解为()322,36x y u x y y x =++例6 求方程()()0,0,00x x u xu x u t u x ⎧+=⎪=⎨⎪=⎩()0,0x t >>的解.解 对方程两端关于t 施行Laplace 变换(取s 为实数),有()(),1,du x s s u x s dx x s+=求解得()()()1,1sxu x s c s x s s =++ 由条件()0,0u t =得()0,0u s =,从而()0c s =,代入上式并应用Laplace 逆变换,有()()()()111111111,,1111tx u x t L u x s L L x xL xL x e s s s s s s ------⎡⎤⎡⎤⎛⎫⎡⎤⎡⎤===-=-=-⎡⎤⎢⎥ ⎪⎢⎥⎣⎦⎢⎥⎢⎥+++⎝⎭⎣⎦⎣⎦⎣⎦⎣⎦4、 利用Laplace 变换求解变系数的微分方程例7 求变系数微分方程()()2120ty t y t y '''+-+-=满足初始条件()00y =的解.解 对方程两端同时施行Laplace 变换,利用Laplace 变换的微分性质有()()()()()()()()20020220s Y s sy y sY s y sY s Y s Y s ''''⎡⎤--------=⎡⎤⎡⎤⎡⎤⎣⎦⎣⎦⎣⎦⎣⎦结合初始条件()00y =,化简有()()()()221410ss Y s s Y s '++++=解得()()41cY s s =+,c 为任意常数.取Laplace 逆变换,则有()()13ty t L Y s ct e --==⎡⎤⎣⎦例8 求解二阶变系数微分方程()()()20tx t x t tx t '''++=满足初始条件()()001,0x x c '==(0c 为常数)的解.解 设()()L x t X s =⎡⎤⎣⎦,对方程两端取Laplace 变换,得()()()20L tx s x t tx t '''++=⎡⎤⎣⎦即()()()20L tx t L x t L tx t '''++=⎡⎤⎡⎤⎡⎤⎣⎦⎣⎦⎣⎦亦即()()()()()()200200d ds X s sx x sX s x X s ds ds '⎡⎤---+--=⎡⎤⎣⎦⎣⎦ 整理后化简可得()()211d X s X s ds s =-+ 而由()()0st F s f t e dt+∞-=⎰在积分号下对s 求导得()()()0st F s t f t e dt +∞-'=-⎰,可知()()()dX s L t x t ds-=⎡⎤⎣⎦ 所以有()()211L t x t s -=⎡⎤⎣⎦+ 对上式取Laplace 逆变换得()()1211t x t L s -⎡⎤-=⎢⎥+⎣⎦即得原变系数方程的解为()sin t=x tt。
拉普拉斯(Laplace)变换及其应用
2s 1
1
1
1
t
2.4 应用拉氏变换求解微分方程
S (t=0)
R + UC -
+
Us
-
C
这是一个一阶RC电路,我们取 电容两端的电压为输出电压,设 开关S闭合前,电路处于零初始状 态,即: uc (0 ) 0 在t=0时,开关S闭合,电路 接入直流电源Us。则根据KVL 定理,有:
u R uc U s
t 0
f ( ) d
p L( p)
1
0
性质3(相似性质) L
pt 性质4(延迟性质) L f ( t t 0 ) e L ( p )
p f ( a t ) L a a 1
性质5(位移性质) L
e
t
f ( t ) L ( p )
st 0
【例2-1】 求单位阶跃函数(Unit Step Function) 1(t)的象函数。
在自动控制原理中,单位阶跃函数是一个突加作用信 号,相当一个开关的闭合(或断开)。
在求它的象函数前,首先应给出单位阶跃函数的定义 式。
在自动控制系统中,单位阶跃函数相当一个突加作 用信号。它的拉氏式由定义式有:
F (t ) L[2 e
at
at
]
2 s
1 sa
3s 2a s ( s a)
例2-2 求
2s 1 s ( s 1)
的原函数。
解:首先用部分分式展开法,将所给的象函数展开:
2s 1 s( s 1) A s B s 1 A s B s 1 ( A B) s A s( s 1)
通过拉普拉斯变换求解线性微分方程的探讨
通过拉普拉斯变换求解线性微分方程的探讨摘要:通过拉普拉斯变换主要用于求解线性微分方程(或积分方程)。
经过变换,原来函数所遵从的微分(或积分)方程变成了像函数所遵从的代数方程,代数方程比较容易求解,从而化难为易,本论文将介绍通过”三“步求解线性微分(或)积分方程。
关键词:拉普拉斯变换 线性方程 原函数 像函数 反演(一) 拉普拉斯变换的定义傅里叶积分与傅里叶变换存在的条件是原函数()f x 在任一区间满足狄里希利条件,并且在(,)-∞∞区间上绝对可积。
这是一个相当强的条件,以致于许多常见的函数(如多项式,三角函数等)都不满足这一条件。
因此需要引入——拉普拉斯变换。
拉普拉斯变换常用于初始值问题,即已知某个物理量的初始时刻0t =的值(0)f ,而求解它在初始时刻之后的变化情况()f t ,至于它在初始时刻之前的值,我们并不感兴趣,不妨置()0f t = (0)t <为了获得宽松的变换条件,把()f t 加工为()g t ,()()t g t e f t σ-=这里t e σ-是收敛因子,就是说,正的实数σ的值选得如此之大,以保证()g t 在区间(,)-∞∞上绝对可积,。
于是,可以对()g t 实施傅里叶变换()011()()()22i t i t G g t e dt f t e dt ϖσϖϖππ∞∞--+-∞==⎰⎰将i σϖ+记作p ,并将()G ϖ改记作()2f p π,则 0()()pt f p f t e dt ∞-=⎰ (1)其中积分0()pt f t edt ∞-⎰称为拉普拉斯积分,()f p 称为()f t 的拉普拉斯变换函数.(1)代表从()f t 到()f p 的一种积分变换,称为拉普拉斯变换(简称拉式变换),pt e-称为拉普拉斯变换的核。
()G ϖ的傅里叶逆变换是1()()()2i t i t g t G e d f i e d ϖϖϖϖσϖϖπ∞∞-∞-∞==+⎰⎰即 ()1()()2i t f t f i e d σϖσϖϖπ∞+-∞=+⎰由 i p σϖ+= ,有1d dp i ϖ=所以 1()()2i ip i f t f p e dp i σσπ+∞-∞=⎰ ()f p 又称为像函数,而()f t 称为原函数,它们之间的关系常用简单的符号写为 []()()f p f t =℘1()()f t f p -⎡⎤=℘⎣⎦(二) 拉普拉斯变换的基本性质(1) 线性定理若1()f t 1()f p ,2()f t 2()f p ,则1122()()c f t c f t + 1122()()c f p c f p + (2) 导数定理'()()(0)f t p f p f - (3) 积分定理 []01()()t d t pψττψ℘⎰(4) 相似性定理1()()p f at f a a(5) 位移定理()()t e f t f p λλ-+(6) 延迟定理00()()pt f t t e f p --(7) 卷积定理 若11()()f t f p ,22()()f t f p ,则1212()()()()f t f t f p f p * 其中12120()()()()tf t f t f f t d τττ*≡-⎰(三) 拉普拉斯变换的反演(1) 有理分式反演法如果像函数是有理分式,只要把有理分式分解成分项分式,然后利用拉普拉斯变换的基本公式,就能得到相应的原函数。
拉普拉斯变换求解微分方程及微分方程组
1
2s (s)+2-, gzY(s)-I一 (s)+y(s)=·-i二
L
‘+ l
求 解 得
数 s=[5+jco,积分 F(s)= f(t)e一 在复平面 s的的某一域内收
X(s)=Y(s)=.击 ,取拉普拉斯逆变换得到微分方程的解
敛,则称 F(s)为 f it)的拉普拉斯变 换,记作:F(s)=L[ t)]。通过 为 x(t)=y(t)一sint.
(1)求 解 微 分 方 程 X”(c)一2x’(t)+2x(t)=2e cost,x(O)-x (0)=0
(2)求 解 微 分 方 程 组
解:令 x(s)=L[x(t)】,在微分方程两边同时取拉普拉斯变
I (r)+ )+xCt)+ (f)=O, (0)=j,(O)=0 【2x (O— (f)一 ( )+y(f)=sint,x (o)=Y (0)=一1
换,并结合初始条件,得s2x(s)一2sx(s)+2X(s)= l 二 解此方
求解上述 的微分方程及微分方程 组,如果继续把微分方 程得求x(s)=r ‰求拉氏逆变化,得x )= 2一(s1-):+1)1]2j]
程 的阶数提高或者把微分方程的个数增多,在高等数学知识 et 两zs m] te’ 两1】 te'sint.
更加的快捷和 方便 ,本 文将运用拉普拉斯变换 的先行性质 与微分性质进行 结合 ,从而达到求解的 目的。
关键词 解微分方程 微分 方程 的解 拉普拉斯变换
中 图分 类 号 :O175.14
文 献标 识 码 :A
1问题 的提 出
计 算 。
(1)求 解 微 分 方 程 (f)一2 +2x(f)=2e cost, (o)= (o)=0
拉普拉斯变换解微分方程组
拉普拉斯变换是一种数学变换方法,常用于解决微分方程问题。
对于线性常系数微分方程组,可以通过拉普拉斯变换转换为代数方程组来求解。
以下是一般的步骤:
1. 将微分方程组转换为代数方程组:将微分方程组中的导数项用拉普拉斯变量s表示,并将初始条件用初始值的拉普拉斯变换形式表示。
2. 对每个方程进行拉普拉斯变换:对于每个方程,将其变换为代数方程,即将微分方程的左侧利用拉普拉斯变换表中的公式进行变换,右侧保持原样。
3. 构建代数方程组:将每个方程的变换结果组合成一个代数方程组。
4. 求解代数方程组:对代数方程组进行求解,可以使用代数方法,如消元法、矩阵运算等。
5. 对结果进行逆变换:得到代数方程组的解后,将其进行逆变换,即将解的拉普拉斯变换表达式转换为时间域的解。
需要注意的是,拉普拉斯变换解微分方程组的基本思路是将
微分方程转化为代数方程,将微分方程的复杂计算转化为代数方程的简单计算。
具体的计算步骤和方法会根据每个具体的微分方程组而有所不同。
因此,在具体求解时,建议参考相关的数学教材或专业文献,或者使用数学软件来辅助计算。
拉普拉斯变换及线性微分方程求解
拉氏变换求解微分方程的一般步骤
考虑初始条件,对微分方程两边进行拉氏变换; 由代数方程求出输出量拉氏变换函数的表达式; 对输出量拉氏变换函数的表达式进行拉氏反变换. 课堂练习:P64 - 2-5(2)
作业: P70 2-5(选做一题)
�
A ( s ) = ( s s 1 )( s s 2 ) L ( s s n )
B ( s ) b0 s m + b1 s m 1 + L + b m 1 s + b m = F (s) = A( s ) ( s s1 )( s s 2 ) L ( s s n )
五,拉普拉斯反变换
1,A(s)=0无重根
t t ≥0 0 t<0
0 t
st ∞
F ( s ) = L [ t 1 ( t )] = t e = s
st
∫
0
t 1 ( t )e
dt
|
∞ 0
+
∞
∫
0
1 e s
st
1 dt = 2 s
3,等加速度函数
f(t)
1 2 L[ t 1(t )] = 2
4,指数函数
∞
1 2 f (t ) = t 1(t ) 2 ∞
如下述线性积分存在则称其为函数的拉普拉斯变换简称拉氏变拉普拉斯变换及线性微分方程求解拉普拉斯变换及线性微分方程求解一拉普拉斯变换的定义一拉普拉斯变换的定义一拉普拉斯变换的定义一拉普拉斯变换的定义1单位阶跃函数stst二几种典型函数的拉氏变换二几种典型函数的拉氏变换ststst二几种典型函数的拉氏变换二几种典型函数的拉氏变换3等加速度函数4指数函数dttestststst三拉氏变换的积分下限问题三拉氏变换的积分下限问题型拉氏变换1线性性质四拉氏变换的几个基本规则四拉氏变换的几个基本规则2微分法则sfdt四拉氏变换的几个基本规则四拉氏变换的几个基本规则四拉氏变换的几个基本规则四拉氏变换的几个基本规则3积分法则在s平面的右半平面及除原点以外的虚轴上解析则由终值四拉氏变换的几个基本规则四拉氏变换的几个基本规则难点
拉普拉斯变换在求解微分方程中的应用
目录前言 ...........................................................1拉普拉斯变换以及性质 (1)1.1拉普拉斯变换的定义 .......................................................1.2拉普拉斯变换的性质 .......................................................2用拉普拉斯变换求解微分方程的一般步骤.........................3拉普拉斯变换在求解常微分方程中的应用.........................3.1初值问题与边值问题 .......................................................3.2常系数与变系数常微分方程................................................3.3含函数的常微分方程 .....................................................3.4常微分方程组 ..............................................................3.5拉普拉斯变换在求解非齐次微分方程特解中的应用........................3.6拉普拉斯变换在求解高阶微分方程中的推行...............................4拉普拉斯变换在求解偏微分方程中的应用.........................4.1齐次与非齐次偏微分方程 ..................................................4.2有界与无界问题 ............................................................5综合比较,概括总结 ...........................................结束语 .........................................................参照文件 .......................................................英文纲要 (21)道谢 ...........................................................拉普拉斯变换在求解微分方程中的应用物理系 0801 班学生岳艳林指导老师韩新华摘要:拉普拉斯变换在求解微分方程中有特别重要的作用,本文第一介绍拉普拉斯变换的定义及性质;其次给出拉普拉斯变换求解微分方程的一般步骤;而后要点举例拉普拉斯变换在求解常微分方程(初值问题与边值问题、常系数与变系数常微分方程、含函数的常微分方程、常微分方程组、拉普拉斯变换在求解微分方程特解中的应用、拉普拉斯变换在求解高阶微分方程的推行)与典型偏微分方程(齐次与非齐次偏微分方程、有界与无界问题)中的应用举例;最后综合比较、概括总结拉普拉斯变换在求解微分方程中的优势以及限制性。
用拉普拉斯变换方法解微分方程[精品]
2–5 用拉普拉斯变换方法解微分方程拉普拉斯变换方法是解线性微分方程的一种简便方法,利用拉普拉斯变换法可以把微分方程变换成为代数方程,在利用现成的拉普拉斯变换表(参见附录一的附表1),即可方便地查得相应的微分方程解。
这样就使方程求解问题大为简化。
拉普拉斯变换法的另一个优点是在求解微分方程时,可同时获得的瞬态分量和稳态分量两部分。
有关拉普拉斯变换(简称拉氏变换)的公式见附录一。
应用拉氏变换法得到的解是线性微分方程的全解。
用古典方法求解微分方程全解时需要利用初始条件来确定积分常数的值,这一过程比较麻烦。
而应用拉氏变换就可省去这一步。
因为初始条件已自动地包含在微分方程的拉氏变换式之中了。
而且,如果所有初始条件都为零,那么求取微分方程的拉氏变换式就更为方便,只要简单地用复变量s 来代替微分方程中的dt d ,2s 代替22dt d ,…就可得到。
应用拉氏变换法解微分方程的步骤如下:(1)对线性微分方程中每一项进行拉氏变换,使微分方程变为复变量s 的代数方程(称为变换方程)(2)求解变换方程,得出系统输出变量的象函数表达式。
(3)将输出的象函数表达式展开成部分分式(部分分式展开法参见附录二)。
(4)对部分分式进行拉氏反变换(可查拉氏变换表),即得微分方程的全解。
举例说明【例2-7】 设RC 网络如图2-24所示,在开关K 闭合之前,电容C 上有初始电压)0(c u 。
试求将开关瞬时闭合后,电容的端电压c u (网络输出)。
解 开关K 瞬时闭合,相当于网络有阶跃电压0)(u t u c =·)(1t 输入。
故网络微分方程为⎪⎩⎪⎨⎧=+=⎰idt C u u Ri u c c r 1 消去中间变量i ,得网络微分方程为)(t u u dt du RC r c c =+(2-44) 对上式进行拉氏变换,得变换方程)()()0()(s U s U RCu s RCsU r c c c =+- 将输入阶跃电压的拉氏变换式su s U r 0)(=代入上式,并整理得电容端电压的拉氏变换式)0()1()1()(0c c u RCs RC RCs s u s U +++= 可见等式右边由两部分组成,一部分由输入所决定,另一部分由初始值决定。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1 2 1 2 1 st L[ t 1(t )] t 1(t )e dt 3 2 2 s 0
4、指数函数
0
t
L[e ] e e dt e
at at st 0 0
( s a )
1 dt sa
5、正弦函数sint
st
1 jt L[sin t ] sin te dt (e e jt )e st dt 2j 0 0 1 1 1 [ ] 2 2 j s j s j s 2
五、拉普拉斯反变换
1 st L [ f (t )] F ( s ) e dt f (t ) 2j j
1
j
由F(s)求f(t)常用部分分式法
B( s) b0 s m b1 s m1 bm1 s bm F ( s) n A( s) s a1 s n1 an1 s an
f (t ) t 1(t )
t t 0 0 t<0
0
t
F ( s ) L[t1(t )]
st t 1 ( t ) e dt 0
t st 1 st 1 e |0 e dt 2 s s s 0
3、等加速度函数
f(t)
1 2 f (t ) t 1(t ) 2
还可以用如下方法求解
系统的特征方程为
s s 1 0
2
特征方根为
s1, 2 0.5 j0.866
C1e( 0.5 j 0.866)t C2e( 0.5 j 0.866)t
系统的特解为 uc(t)=1 齐次通解解为
系统的通解为 1 C1e( 0.5 j 0.866 )t C2e( 0.5 j 0.866 )t 用待定系数法即可求出C1、C2。
6、单位脉冲函数
f (t ) (t )
L[ (t )]
0 t 0 t=0
且
st
(t )dt 1
(t )e
0
dt
三、拉氏变换的积分下限问题
(t )0 型拉氏变换
(t )0
0
0
( t ) e dt 0
st
U c (s) 1 1 0.1s 0.2 2 2 s s 1 s s s 1 1 ( s 0.5) 0.5 0.75 2 s ( s 0.5) 2 0.75 0.75 ( s 0.5) 0.75 0.1( s 0.5) 1.95 0.75 2 ( s 0.5) 2 0.75 0.75 ( s 0.5) 0.75
或F(s) Ci i 1 s - s i
n
n
n C si t -1 -1 i L [F(s)] f(t) L [ ] Ci e i 1 s - s i i 1
C i lim(s - s i ) F(s)
s s i
例: 求 解: 求
F ( s)
F ( s)
2
( 1)
(0)
( 2 )
1 1 f (t )( dt ) ] 2 F ( s ) 2 f s s
n
( 1)
1 (0) f s
(0)
……
1 1 ( 1) 1 (n) L[ f (t )(dt) ] n F (s) n f (0) f (0) s s s n
拉氏反变换得
uc (t ) 1 e 0.5t sin 0.866t 0.6667e 0.5t cos0.866t 0.1e 0.5t sin 0.866t 2.2575 e 0.5t cos0.866t
uc (t ) 1 0.9e0.5t sin 0.866t 1.59e0.5t cos0.866t
于是
2 1 1 f (t ) L [ F ( s )] L [ ] L [ ] 2e t e 2t s 1 s2
1 1
六、线性定常微分方程的解
L R
[例3] L=1H,C=1F,R=1,且 电容上初始电压uc(0)=0.1V,初始电 流i(0)=0.1A,电源电压ur(t)=1V,求 电压uc(t)的变化规律。
j
二、几种典型函数的拉氏变换
1、单位阶跃函数
f(t)
1 0
f (t ) 1(t )
1 t 0 0 t<0
t
1 st 1 F (s) L[1(t )] 1(t )e dt e |0 s s 0
st
二、几种典型函数的拉氏变换
2.单位斜坡函数
f(t)
四、拉氏变换的几个基本规则
4、终值定理
若函数 f(t) 的象函数为 F(s) ,且 F(s) 在 s 平面的右 半平面及除原点以外的虚轴上解析,则由终值
lim f (t ) lim sF ( s )
t s 0
难点:F(s)在s平面的右半平面及除原点外的 虚轴上解析。意思是:F(s)的分母,令分母 等于零的根不在右半平面及除原点外的虚轴 上,即位于左半平面及原点上。
型拉氏变换
st 0 st st
( t ) e dt ( t ) e dt ( t ) e dt
0 0 0 st
(t )e dt 1
0
四、拉氏变换的几个基本规则
1、线性性质 设F1(s)=L[f1(t)],F2(s)= L[f2(t)] ,a和b都是常数,则
由于
(0) uc
duc (t ) 1 1 i(t ) i(0) 0.1V dt t 0 C C t 0
将L,R,C, uc(0),uc’(0),代入得到
U r (s) 0.1s 0.2 U c (s) 2 s s 1 s2 s 1
由于Ur(s)=1/s,故有
存在,则称其为函数的拉普拉斯变换,简称拉氏变 换。
一、拉普拉斯变换的定义 2. 记作:F(s)或L[f(t)]
L[ f (t )] f (t )e st dt F ( s)
0
3. 拉氏反变换:
1 1 st L [ f (t )] F ( s ) e dt f (t ) 2j j
s3 ( s 1)(s 2)
的拉氏变换。
a a s3 1 2 ( s 1)(s 2) s 1 s 2
s3 a1 ( s 1) 2, ( s 1)(s 2) s 1 s3 a2 ( s 2) 1 ( s 1)(s 2) s 2
拉氏变换求解微分方程的一般步骤
考虑初始条件,对微分方程两边进行拉氏变换;
由代数方程求出输出量拉氏变换函数的表达式;
对输出量拉氏变换函数的表达式进行拉氏反变换。 课堂练习:P64 - 2-5(2)
作业: P70 2-5(选做一题)
L[af1 (t ) bf2 (t )] aL[ f1 (t )] bL[ f 2 (t )] aF1 ( s) bF2 ( s)
四、拉氏变换的几个基本规则
2、微分法则 设F(s)=L[f(t)] ,则
df (t ) L[ ] sF ( s ) f (0) dt
d f (t ) 2 L[ ] s F ( s) sf (0) f (0) 2 dt
A(s) (s s1 )(s s2 )(s sn )
B( s) b0 s m b1 s m1 bm1 s bm F ( s) A( s) ( s s1 )(s s 2 ) ( s s n )
五、拉普拉斯反变换
1、A(s)=0无重根
Ci Cn C1 C2 F ( s) s s1 s s 2 s si s sn
……
2
d f (t ) L[ n ] s n F (s) s n1 f (0) s n2 f (0) f ( n1) (0) dt
n
四、拉氏变换的几ห้องสมุดไป่ตู้基本规则
3、积分法则 设F(s)=L[f(t)] ,则
L[
L[
t
0
1 1 f (t ) dt ] F ( s ) f s s
拉普拉斯变换及线性微分方程求解
拉普拉斯变换的定义
几种典型信号的拉氏变换 拉氏变换的积分下限
拉氏变换的基本性质
拉氏反变换
微分方程的求解
拉普拉斯变换及线性微分方程求解
一、拉普拉斯变换的定义 1、定义:函数f(t),t为变量。如下述线性积分
0
f (t )e st d t(s为复变量 j )
Ur(t)
i(t) C
Uc(t)
[解]系统微分方程为
方程两边拉氏变换得
d 2uc (t ) duc (t ) LC RC uc (t ) ur (t ) dt 2 dt
(0)] RC[sU c (s) uc (0)] Uc (s) Ur (s) LC[s 2Uc (s) suc (0) uc