初中八年级数学 《立方根》教案

合集下载

《立方根》教案教学

《立方根》教案教学

《立方根》教案教学教案教学:立方根教学目标:1.知识目标:能够理解和运用立方根的概念,掌握立方根的计算方法;2.能力目标:能够在给定的问题中运用立方根解决实际问题;3.情感目标:培养学生的数学思维、逻辑思维和解决问题的能力。

教学重点:1.立方根的概念;2.立方根的计算方法。

教学难点:1.立方根的计算方法的运用;2.立方根在实际问题中的应用。

教学准备:1.已经准备好的教案;2.课件、教具等教学辅助工具;3.学生的练习册、作业本等。

教学过程:第一步:导入新知识(5分钟)1.利用课件向学生展示一个长方体,引导学生思考立方体的特点;2.提问:什么是立方体?学生回答后,教师给出定义并强调长方体的3个边长是相等的;3.提问:若一个长方体的体积为8,你能否求出它的边长?为什么?学生回答后,教师引出立方根的概念。

第二步:讲解立方根的概念(10分钟)1.向学生解释立方根的定义:一个数的立方根是指这个数的立方等于这个数本身;2.通过课件和实际例子向学生展示立方根的概念,让学生能够理解立方根这个概念的意义。

第三步:讲解立方根的计算方法(15分钟)1.向学生讲解求立方根的基本原理:通过试探和逼近的方法求出一个数的立方根;2.提醒学生立方根的符号是∛;3.让学生通过课件上的示例,理解如何使用计算器来计算立方根;4.引导学生掌握手工计算立方根的方法,例如牛顿法等。

第四步:练习与巩固(20分钟)1.让学生在练习册上完成针对立方根计算方法的练习题,帮助他们巩固所学知识;2.检查学生的答案,解答学生在练习中遇到的问题。

第五步:应用与拓展(20分钟)1.给学生一些关于立方根的实际问题,引导学生通过运用立方根解决实际问题;2.引导学生思考立方根在其他领域的应用,例如建筑、科学等。

第六步:总结与反馈(10分钟)1.让学生简要总结本节课所学内容,再次强调立方根的概念和计算方法;2.随堂测试:出一道与立方根相关的问题,检查学生对所学知识的掌握程度;3.给学生布置相关的课后作业,巩固和拓展所学知识。

初中数学立方根教案

初中数学立方根教案

初中数学立方根教案一、教学内容本节课选自人教版初中数学教材八年级上册第十七章《立方根与立方》,主要内容包括:立方根的定义与性质,以及立方根的计算方法。

具体章节为17.1节,内容涉及立方根的概念、计算和应用。

二、教学目标1. 理解立方根的定义,掌握立方根的计算方法。

2. 能够运用立方根解决实际问题,提高解决问题的能力。

3. 培养学生的逻辑思维能力和空间想象力。

三、教学难点与重点1. 教学难点:立方根的性质和计算方法。

2. 教学重点:立方根的定义及其应用。

四、教具与学具准备1. 教具:多媒体教学设备、立方体模型。

2. 学具:立方根计算器、练习本、笔。

五、教学过程1. 实践情景引入:展示立方体模型,引导学生观察并思考其体积与棱长的关系。

2. 立方根定义:通过实践情景,引导学生发现立方体的体积与棱长的立方关系,从而引出立方根的定义。

3. 例题讲解:讲解立方根的计算方法,通过例题演示计算过程,强调注意事项。

4. 随堂练习:布置相关练习题,让学生独立完成,并及时给予反馈。

5. 知识拓展:介绍立方根在实际生活中的应用,如体积计算、密度计算等。

六、板书设计1. 立方根的定义:若一个数的立方等于另一个数,那么这个数叫做另一个数的立方根。

2. 立方根的计算方法:通过立方体的体积与棱长关系,推导立方根的计算方法。

3. 例题:展示计算立方根的步骤和答案。

七、作业设计1. 作业题目:(2)一个立方体的体积是64立方厘米,求其棱长。

2. 答案:(1)27的立方根是3,64的立方根是4,125的立方根是5。

(2)立方体的棱长是4厘米。

八、课后反思及拓展延伸1. 课后反思:通过本节课的学习,学生是否掌握了立方根的定义和计算方法,能否运用立方根解决实际问题。

2. 拓展延伸:引导学生思考立方根在其他领域的应用,如科学、工程等领域,提高学生的创新思维能力。

重点和难点解析1. 立方根的定义及其理解。

2. 立方根的计算方法及其应用。

3. 教学过程中的实践情景引入和例题讲解。

八年级数学上册《立方根》教案、教学设计

八年级数学上册《立方根》教案、教学设计
2.学生在小组内积极讨论,交流各自的想法和发现。教师巡回指导,给予提示和建议。
3.各小组汇报讨论成果,教师点评并总结,强调立方根计算的关键点和注意事项。
(四)课堂练习,500字
1.教师出示一组课堂练习题,包括计算立方根、求解立方根的整数部分和小数部分等。
2.学生独立完成练习题,教师巡回指导,及时解答学生的疑问。
2.学生回答:“一个魔方的体积是由它的棱长决定的。”教师追问:“那么,如果已知一个魔方的体积,我们如何求出它的棱长呢?”
3.学生思考后,教师引导学生回顾已学的平方根和算术平方根的概念,为新课立方根的学习做好铺垫。
(二)讲授新知,500字
1.教师正式引入立方根的概念,给出定义:“如果一个数的立方等于另一个数,那么这个数叫做另一个数的立方根。”
二、学情分析
八年级的学生已经具备了一定的数学基础,对算术平方根的概念和性质有了初步的了解。在此基础上,引入立方根的概念,学生能够更容易地理解和掌握。然而,由于立方根的计算和应用较为抽象,学生可能会在具体操作过程中遇到困难。因此,在教学过程中,教师需关注以下几点:
1.学生对立方根概念的接受程度,关注学生是否能够将新知识与已有知识体系相融合;
(三)情感态度与价值观
1.增强学生对数学学科的兴趣和热情,激发学生学习数学的积极性;
2.培养学生勇于探索、善于思考的精神,提高学生面对困难和挑战的自信心;
3.培养学生合作交流的意识,使学生学会倾听、尊重他人,形成良好的人际关系;
4.培养学生严谨、踏实的学术态度,使学生认识到数学知识在日常生活和国家发展中的重要作用,树立正确的价值观。
6.课堂小结,反思提升
在课堂结束时,教师应引导学生进行课堂小结,总结本节课所学知识,反思自己在学习过程中的优点和不足。同时,教师要对学生的学习情况进行评价,为下一节课的教学提供参考。

立方根数学教案

立方根数学教案

立方根数学教案标题:立方根数学教案一、教学目标:1. 理解立方根的定义,掌握立方根的基本性质。

2. 能够正确计算一个数的立方根,解决与立方根有关的实际问题。

3. 培养学生的逻辑思维能力和空间想象能力。

二、教学重点和难点:重点:理解立方根的定义,掌握立方根的基本性质。

难点:理解和运用立方根的概念解决实际问题。

三、教学过程:1. 引入新课教师可以通过生活中的实例引入新课,比如“一个正方体的体积为27立方米,求其边长是多少?”这样的问题可以引导学生思考并引出立方根的概念。

2. 新课讲解(1)定义:如果一个数的立方等于a,那么这个数就叫做a的立方根,记作$\sqrt[3]{a}$。

(2)基本性质:①正数有一个正的立方根;②负数有一个负的立方根;③零的立方根是零。

3. 练习巩固通过一系列的练习题,让学生熟悉立方根的计算方法,并掌握如何用立方根解决问题。

例如:“求-8的立方根”,“已知一个正方体的体积为64立方米,求其边长”。

4. 课堂小结回顾本节课学习的主要内容,强调立方根的定义和基本性质,以及如何计算立方根。

5. 作业布置设计一些与立方根相关的题目作为课后作业,以便学生进一步理解和掌握所学知识。

四、教学反思:在教学过程中,要注意引导学生主动思考,提高他们的逻辑思维能力和空间想象能力。

同时,要注重理论联系实际,让学生在解决实际问题的过程中加深对立方根的理解。

五、拓展阅读:对于有兴趣的学生,可以推荐他们阅读一些关于立方根的扩展知识,如立方根的历史、应用等,以拓宽他们的视野。

六、教学评估:通过课堂练习、课后作业和测验等方式,对学生的学习情况进行评估,了解他们对立方根的理解程度和应用能力。

湘教版数学八年级上册3.2《立方根》教学设计1

湘教版数学八年级上册3.2《立方根》教学设计1

湘教版数学八年级上册3.2《立方根》教学设计1一. 教材分析《立方根》是湘教版数学八年级上册3.2节的内容,本节课主要让学生掌握立方根的概念,学会求一个数的立方根,以及理解立方根在实际生活中的应用。

教材通过引入立方根的概念,让学生借助立方体的模型,直观地理解立方根的含义,并通过例题和练习,让学生掌握求立方根的方法。

二. 学情分析学生在七年级时已经学习了平方根的概念,掌握了求一个数的平方根的方法,这对他们学习立方根提供了基础。

但八年级的学生对抽象概念的理解还有一定难度,因此,在教学过程中,需要借助具体的模型和实例,让学生直观地理解立方根的概念。

三. 教学目标1.知识与技能:让学生掌握立方根的概念,学会求一个数的立方根,能运用立方根解决实际问题。

2.过程与方法:通过观察立方体模型,引导学生发现立方根的规律,培养学生的观察能力和推理能力。

3.情感态度与价值观:激发学生对数学的兴趣,培养学生积极思考、合作探究的学习态度。

四. 教学重难点1.重点:立方根的概念及其求法。

2.难点:立方根在实际生活中的应用。

五. 教学方法1.情境教学法:通过引入立方体模型,让学生直观地理解立方根的概念。

2.引导发现法:引导学生观察立方体模型,发现立方根的规律。

3.实践操作法:让学生动手操作,求解具体数的立方根。

4.讨论法:分组讨论,引导学生合作探究,解决实际问题。

六. 教学准备1.教具:立方体模型、多媒体课件。

2.学具:练习本、笔。

七. 教学过程1. 导入(5分钟)教师出示一个立方体模型,引导学生观察,并提出问题:“请大家想想,一个立方体的体积是多少?”学生回答:“一个立方体的体积是边长的三次方。

”教师总结:“很好,那么,如果我们要知道一个数的立方根,该怎么求呢?”从而引出本节课的主题——立方根。

2. 呈现(10分钟)教师通过多媒体课件,呈现立方根的定义和求法。

立方根的定义:如果一个数x的立方等于a,那么x是a的立方根。

求一个数的立方根的方法:可以通过立方的逆运算——三次方根运算来求解。

《立方根》优质教案

《立方根》优质教案

《立方根》优质教案教案内容:一、教学内容本节课的教学内容选自人教版初中数学八年级上册第6章第3节《立方根》。

本节课主要内容包括:立方根的定义,立方根的性质,立方根的运算方法,以及立方根在实际问题中的应用。

二、教学目标1. 理解立方根的概念,掌握立方根的性质和运算方法。

2. 能够运用立方根解决实际问题。

3. 培养学生的逻辑思维能力和创新精神。

三、教学难点与重点1. 立方根的概念和性质。

2. 立方根的运算方法。

3. 立方根在实际问题中的应用。

四、教具与学具准备1. 教具:黑板、粉笔、多媒体教学设备。

2. 学具:笔记本、尺子、圆规、三角板、计算器。

五、教学过程1. 实践情景引入:教师展示一个正方体模型,引导学生观察正方体的特征,并提出问题:“正方体的体积是多少?”学生通过观察和思考,可以得出正方体的体积是边长的三次方。

2. 立方根的定义:教师引导学生思考:“如果我们知道一个数的立方是另一个数,那么我们如何求出这个数呢?”学生通过讨论和思考,可以得出这个数就是原数的立方根。

教师给出立方根的定义,并解释立方根的性质。

3. 立方根的运算方法:4. 立方根在实际问题中的应用:教师提出一个实际问题:“一个正方体的体积是27立方米,求这个正方体的边长。

”学生运用立方根的知识,解决问题并得出答案。

六、板书设计1. 立方根的定义。

2. 立方根的性质。

3. 立方根的运算方法。

4. 立方根在实际问题中的应用。

七、作业设计1. 题目:已知一个数的立方是27,求这个数。

答案:3。

2. 题目:已知一个正方体的体积是64立方米,求这个正方体的边长。

答案:4米。

八、课后反思及拓展延伸1. 课后反思:教师反思本节课的教学效果,是否达成了教学目标,学生是否掌握了立方根的知识,哪些学生需要进一步辅导。

2. 拓展延伸:教师提出一个拓展问题:“立方根在实际生活中有哪些应用?”引导学生思考和讨论,进一步巩固立方根的知识。

重点和难点解析一、立方根的概念和性质1. 立方根的定义:教师在讲解立方根的定义时,应强调“立方根”就是一个数乘以自身两次后得到的结果。

2022年初中数学《立方根》精品教案(公开课)

2022年初中数学《立方根》精品教案(公开课)

6.2 立方根教学目标【知识与技能】1.了解立方根的概念,初步学会用根号表示一个数的立方根.2.了解立方与开立方互为逆运算,会用立方运算或计算器求某数的立方根.3.能用类比平方根的方法学习立方根及开立方运算.【过程与方法】用类比的方法探寻出立方根的运算及表示方法,并能总结出平方根与立方根的异同. 【情感态度】开展学生的求同存异思维,使他们能在复杂的环境中明辨是非,并能作出正确的处理. 教学重难点【教学重点】立方根的概念及求法.【教学难点】立方根与平方根的区别.课前准备无教学过程一、情境导入,初步认识问题填写,并探求交流立方值与平方值的不同.鼓励学生踊跃发言表述各自总结的结论.【教学说明】求立方运算时,当底数互为相反数,其立方值也互为相反数,这与平方运算不同,平方运算的底数为相反数时,平方值相等.故一个正数的平方根有两个值,但一个正数的立方根只有一个值.引出立方根定义:假设x3=a,那么x为a的立方根,记为3a.根据上述定义,请学生口述以下问题的结果,并推广到一般规律.【教学总结】由教师汇总得出以下结论:1.正数的立方根是正数,负数的立方根是负数,0的立方根是0.2.33a a -=-.二、思考探究,获取新知例1 求以下各数的立方根.分析:依据立方根的定义,先写出这四个数分别是由哪个数的立方得到的,从而求出立方根.【教学说明】被开方数是带分数时,先将其化成假分数. 例2 求以下各式的值.分析:先要分清符号的实际意义,如3512表示求-512的立方根,而-3512表示求512的立方根的相反数.解:(1)-8;(2)29;(3)-0.2;(4)6. 【教学说明】以上两例中可总结得到:(1)任何数的立方根只有一个,而且被开方数的符号与立方根的符号相同;(2)被开方数是算式,可先算出结果.例3 求以下各式中的x.分析:可根据立方根的定义求得x 的大小.(2)(3)(4)中分别把(x+2),(x-1),(2x+3)看作一个整体.【教学说明】此题实质是解关于x的三次方程,两边同时开立方是解题的根本思路.3,小华又将铁块从水中提起,量得水杯中的水位下降了0.62cm,请问烧杯内部的底面半径和铁块的棱长各是多少?(用计算器求结果,结果精确到0.1cm).3的水的体积,是铁块的体积,也是高为0.62cm烧杯的体积.【答案】烧杯内部的底面半径约是4.6cm,铁块的棱长约是3.4cm.【教学说明】引导学生完成上述问题后,指导学生用计算器求立方根,并用实际训练形成应用能力.三、运用新知,深化理解2.某金属冶炼厂将27个大小相同的立方体钢铁在炉火中熔化后浇铸成一个长方体钢铁,此长方体的长,宽,高分别为160cm,80cm和40cm,求原来立方体钢铁的边长.3.有一边长为6cm的正方体的容器中盛满水,将这些水倒入另一正方体容器时,还需再加水127cm3才满,求另一正方体容器的棱长.4.假设3x+16的立方根是4,求2x+4的平方根.【教学说明】通过上述几道题目的练习,可进一步稳固对本节知识的理解和领悟. 四、师生互动,课堂小结按以下问题顺序让学生表达,并补充完善.1.立方和开立方的意义.2.正数、0、负数的立方根的特征.3.立方根与平方根的异同.课后作业1.布置作业:从教材“〞中选取.2.完成练习册中本课时的练习.教学反思本课时教学要突出表达“创设情境——提出问题——建立模型——解决问题〞的思路,提倡学生自主学习,利用平方根的知识类比学习立方根的知识.1.4二次函数与一元二次方程的联系1.通过探索,理解二次函数与一元二次方程之间的联系,会用二次函数图象求一元二次方程的近似解;(重点)2.通过研究二次函数与一元二次方程的联系体会数形结合思想的应用.(难点)一、情境导入小唐画y=x2-6x+c的图象时,发现其顶点在x轴上,请你帮小唐确定字母c的值是多少?二、合作探究探究点一:二次函数与一元二次方程的联系【类型一】二次函数图象与x轴交点情况的判断以下函数的图象与x轴只有一个交点的是()A.y=x2+2x-3 B.y=x2+2x+3C.y=x2-2x+3 D.y=x2-2x+1解析:选项A中b2-4ac=22-4×1×(-3)=16>0,选项B中b2-4ac=22-4×1×3=-8<0,选项C中b2-4ac=(-2)2-4×1×3=-8<0,选项D中b2-4ac=(-2)2-4×1×1=0,所以选项D的函数图象与x轴只有一个交点.应选D.变式训练:见《》本课时练习“课后稳固提升〞第1题【类型二】利用函数图象与x轴交点情况确定字母的取值范围(2021·武汉模拟)二次函数y=kx2-6x+3的图象与x轴有交点,那么k的取值范围是()A.k<3 B.k<3且k≠0C.k≤3 D.k≤3且k≠0解析:∵二次函数y=kx2-6x+3的图象与x轴有交点,∴方程kx2-6x+3=0(k≠0)有实数根,即Δ=36-12k≥0,k≤3.由于是二次函数,故k≠0,那么k的取值范围是k≤3且k≠D.方法总结:二次函数y=ax2+bx+c,当b2-4ac>0时,图象与x轴有两个交点;当b2-4ac=0时,图象与x轴有一个交点;当b2-4ac<0时,图象与x轴没有交点.变式训练:见《》本课时练习“课堂达标训练〞第4题【类型三】利用抛物线与x轴交点坐标确定一元二次方程的解(2021·苏州中考)假设二次函数y=x2+bx的图象的对称轴是经过点(2,0)且平行于y轴的直线,那么关于x 的方程x 2+bx =5的解为( )A.⎩⎪⎨⎪⎧x 1=0,x 2=4B.⎩⎪⎨⎪⎧x 1=1,x 2=5C.⎩⎪⎨⎪⎧x 1=1,x 2=-5D.⎩⎪⎨⎪⎧x 1=-1,x 2=5 解析:∵对称轴是经过点(2,0)且平行于y 轴的直线,∴-b2=2,解得bx 2-4x =5,解得x 1=-1,x 2D.方法总结:此题容易出错的地方是不知道二次函数的图象与一元二次方程的解的关系导致无法求解.变式训练:见《 》本课时练习“课堂达标训练〞第1题 探究点二:用二次函数的图象求一元二次方程的近似解利用二次函数的图象求一元二次方程-x 2+2x -3=-8的实数根(精确到0.1). 解析:对于y =-x 2+2x -3,当函数值为-8时,对应点的横坐标即为一元二次方程-x 2+2x -3=-8的实数根,故可通过作出函数图象来求方程的实数根.解:在平面直角坐标系内作出函数y =-x 2+2x -3的图象,如图.由图象可知方程-x 2+2x -3=-8的根是抛物线y =-x 2+2x -3与直线y =-8的交点的横坐标,左边的交点横坐标在-1与-2之间,另一个交点的横坐标在3与4之间.(1)先求在-2和-1之间的根,利用计算器进行探索:x y因此x ≈-1.4是方程的一个实数根. (2)另一个根可以类似地求出:x yx ≈3.4是方程的另一个实数根.方法总结:用二次函数的图象求一元二次方程满足精确度的实数根的方法:(1)作出函数的图象,并由图象确定方程解的个数;(2)由图象与y =h 的交点的位置确定交点横坐标的取值范围;(3)利用计算器求方程的实数根.变式训练:见《 》本课时练习“课堂达标训练〞第8题 探究点三:二次函数与一元二次方程在运动轨迹中的应用某学校初三年级的一场篮球比赛中,如图,队员甲正在投篮,球出手时距地面209米,与篮框中心的水平距离为7米,当球出手后水平距离为4米时到达最大高度4米,设篮球运行轨迹为抛物线,篮框距地面3米.(1)建立如下列图的平面直角坐标系,问此球能否准确投中? (2)此时,假设对方队员乙在甲面前1米处跳起盖帽拦截,,那么他能否获得成功?解析:这是一个有趣的、贴近学生日常生活的应用题,由条件可得到出手点、最高点(顶点)和篮框的坐标,再由出手点、顶点的坐标可求出函数表达式;判断此球能否准确投中的关键就是判断代表篮框的点是否在抛物线上;判断盖帽拦截能否获得成功,就是比较当x =1时函数y 的值与最大摸高3.1米的大小.解:(1)由条件可得到出手点、最高点和篮框的坐标分别为A (0,209),B (4,4),C (7,3),其中B 是抛物线的顶点.设二次函数关系式为y =a (x -h )2+k ,将点A 、B 的坐标代入,可得y =-19(x -4)2+4.将点C 的坐标代入上式,得左边=3,右边=-19(7-4)2+4=3,左边=右边,即点C在抛物线上.所以此球一定能投中;(2)将x =1代入函数关系式,得y =3.因为3.1>3,所以盖帽能获得成功. 变式训练:见《 》本课时练习“课后稳固提升〞第7题 三、板书设计教学过程中,强调学生自主探索和合作交流,通过观察二次函数与x 轴的交点个数,讨论一元二次方程的根的情况,体会知识间的相互转化和相互联系.。

第9讲-立方根(教案)

第9讲-立方根(教案)
3.发展数学建模素养:将立方根应用于实际问题,培养学生建立数学模型,运用数学知识解决现实问题的能力。
4.增强数学运算能力:通过立方根的计算练习,提高学生对数学运算的熟练度和准确性,培养严谨的数学计算习惯。
5.激发数学探究精神:鼓励学生在学习过程中积极思考、探索立方根的奥秘,发展学生的创新意识和探究精神。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与立方根相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作,如用立方根计算不同边长立方体的体积。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“立方根在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
-举例:一个立方体的体积是64立方厘米,求其边长。
2.教学难点
估算,这是学生容易感到困难的地方。
-举例:估算15的立方根,在2和3之间,学生需要掌握估算的方法和技巧。
-立方根与平方根的区别和联系:学生容易混淆平方根和立方根的概念,需要明确它们的区别和联系。
在教学过程中,教师应针对以上重点和难点内容,采用直观演示、实例讲解、互动提问、小组讨论等多种教学方法,帮助学生透彻理解立方根的概念、性质和计算方法,并能将其应用于实际问题中,从而有效突破教学难点。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《立方根》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过需要求解一个数的立方根的情况?”(如:计算一个立方体的体积)这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索立方根的奥秘。

八年级数学下册《立方根》教案、教学设计

八年级数学下册《立方根》教案、教学设计
三、教学重难点和教学设想
(一)教学重难点
1.重点:立方根的概念、性质和计算方法,以及立方根在实际问题中的应用。
2.难点:立方根的估算方法,以及如何运用立方根解决实际问题。
(二)教学设想
1.教学方法:
(1)采用启发式教学,引导学生通过观察、类比、归纳等方法,发现立方根的性质和计算方法。
(2)运用实际问题,激发学生的学习兴趣,培养学生的应用意识。
(三)学生小组讨论
1.教学活动设计:教师组织学生进行小组讨论,让学生在合作交流中掌握立方根的计算方法。
-教师给出计算立方根的例子,如计算∛8。
-学生分组讨论,尝试不同的计算方法,如直接开方、估算等。
-每个小组派代表分享计算方法,其他小组进行评价、补充。
2.教学目标:通过学生小组讨论,培养学生合作交流的能力,提高学生计算立方根的技能。
-教师提问:“同学们,我们之前学习了平方根,那么你们知道立方根吗?它有什么作用呢?”
-学生回答,教师总结。
2.教学目标:通过导入新课,使学生认识到立方根在实际生活中的应用,激发学生学习立方根的兴趣。
(二)讲授新知
1.教学活动设计:教师通过讲解立方根的定义、表示方法和性质,引导学生理解立方根的含义,并学会运用立方根进行计算。
-探究:立方根在生活中的应用,例如在建筑、制造等领域。
4.小组合作题:
-小组讨论:比较平方根和立方根的性质、计算方法等,总结它们的异同点。
-小组分享:每个小组整理讨论成果,并向全班同学分享。
作业要求:
1.学生独立完成基础巩固题和实际应用题,巩固立方根的计算方法和性质。
2.学生在完成拓展思考题时,要注重思考过程,可查阅资料或与同学讨论,培养解决问题的能力。
二、学情分析

初中教学设计:立方根教案设计

初中教学设计:立方根教案设计

初中教学设计:立方根教案设计一、教学目标:1. 知识与技能:(1)理解立方根的概念,掌握求一个数的立方根的方法。

(2)能够运用立方根解决实际问题。

2. 过程与方法:(1)通过观察、实验、探究等环节,引导学生发现立方根的性质。

(2)培养学生的运算能力、逻辑思维能力及解决实际问题的能力。

3. 情感态度与价值观:激发学生对数学的兴趣,培养学生的团队合作精神,使学生感受到数学在生活中的应用。

二、教学重点与难点:1. 教学重点:(1)立方根的概念及求法。

(2)运用立方根解决实际问题。

2. 教学难点:立方根在实际问题中的应用。

三、教学方法:1. 采用问题驱动法,引导学生主动探究立方根的性质。

2. 利用多媒体辅助教学,直观展示立方根的求解过程。

3. 运用实例分析法,让学生感受立方根在实际问题中的应用。

四、教学准备:1. 教师准备:立方根的相关教学资源,如课件、例题、习题等。

2. 学生准备:预习立方根相关知识,了解立方根的基本概念。

五、教学过程:1. 导入新课:(1)复习立方体的相关知识,引导学生思考立方体的体积与边长的关系。

(2)提问:如果已知一个立方体的体积,如何求它的边长?2. 探究立方根:(1)引导学生观察、实验,发现立方根的性质。

(2)总结立方根的定义及求法。

3. 运用立方根解决实际问题:(1)出示实例,让学生尝试运用立方根解决问题。

(2)分组讨论,分享解题过程及心得。

4. 练习与巩固:(1)出示练习题,让学生独立完成。

(2)讲解练习题,总结解题方法。

5. 课堂小结:回顾本节课所学内容,引导学生总结立方根的概念、性质及应用。

6. 布置作业:(1)巩固立方根的基本概念、性质。

(2)运用立方根解决实际问题。

六、教学拓展:1. 引导学生思考:立方根有哪些性质?2. 探讨立方根的运算规律,如:立方根的乘法、除法、幂运算等。

3. 引导学生发现立方根在数学中的其他应用,如:立体图形的体积计算、物质的溶解度等。

七、课堂互动:1. 提问:立方根在实际生活中有哪些应用?2. 学生分享实例,教师点评并总结。

八年级数学《立方根》教学设计(通用4篇)

八年级数学《立方根》教学设计(通用4篇)

八年级数学《立方根》教学设计八年级数学《立方根》教学设计(通用4篇)作为一名教学工作者,时常要开展教学设计的准备工作,教学设计是根据课程标准的要求和教学对象的特点,将教学诸要素有序安排,确定合适的教学方案的设想和计划。

我们该怎么去写教学设计呢?以下是小编帮大家整理的八年级数学《立方根》教学设计(通用4篇),希望能够帮助到大家。

八年级数学《立方根》教学设计1一、教学目标:1、通过实例经历立方根概念的产生过程。

2、了解立方根的概念,会用根号表示。

3、了解开立方与立方互为逆运算,会用立方运算求立方根。

二、教学的重点和难点:重点:立方根的概念和开立方运算。

难点:例2第(2)题涉及两种开方运算的混合运算,基础较差的学生容易混淆,是本节课的难点。

三、教学过程:㈠创设情境、引入新知我以学生们比较熟悉的魔方引入。

提出问题:①平常的生活中,同学们有玩过魔方吗?②一个三阶魔方第一层有多少个立方体?③它一共由多少个小立方体组成的?④由8个小立方体组成的是几阶魔方你知道吗?64个小立方体?引出立方根的定义。

㈡启发诱导、探究新知1、立方根的定义:一般地,一个数的立方等于a,这个数就叫做a的立方根,也叫做a的三次方根,2、立方根的表示方法:3a根指数根号被开方数3、读做:三次根号㈢勤于实践、应用新知1、例1:求下列各数的立方根:(1)125 (2)—27 (3)(4)— 0、064 (5) 0师给出(1)(2)两小题的解法步骤,(3)(4)(5)小题由学生板演之后:观察并思考:一个数的立方根的个数有几个?一个数的立方根的符号与这个数的符号存在什么关系?得出事实:一个正数有一个正的立方根,一个负数有一个负的立方根,零的立方根是零。

2、开立方的定义:求一个数的立方根的运算,叫做开立方3、探究平方根与立方根的异同点正数零负数1 0 —1平方根立方根仔细看一看,大胆说一说:不同点:①正数和负数的平方根与立方根的个数不同②表示平方根和立方根的符号不同相同点:①0的平方根、立方根都是0②求平方根、立方根的过程都是一种逆运算。

浙教版初中数学立方根教案

浙教版初中数学立方根教案

浙教版初中数学立方根教案一、教学内容本节课选自浙教版初中数学教材八年级上册第十二章“数的开方”中的第三节“立方根”。

具体内容包括:立方根的定义与性质,立方根的计算方法,以及立方根在实际问题中的应用。

二、教学目标1. 知识与技能:理解立方根的定义,掌握立方根的计算方法,能够解决实际问题。

2. 过程与方法:通过自主探究、合作交流,培养学生的逻辑思维能力和解决问题的能力。

3. 情感态度与价值观:激发学生学习数学的兴趣,提高学生运用数学知识解决实际问题的意识。

三、教学难点与重点教学难点:立方根的计算方法。

教学重点:立方根的定义及性质。

四、教具与学具准备教具:立方体模型、三角板、圆规。

学具:计算器、草稿纸、直尺。

五、教学过程1. 实践情景引入利用立方体模型,引导学生观察和思考:如何求一个立方体的体积?2. 立方根的定义与性质(1)通过计算立方体的体积,引出立方根的概念。

(2)讨论立方根的性质,如:正数的立方根是正数,负数的立方根是负数,0的立方根是0。

3. 立方根的计算方法(1)通过例题讲解,让学生掌握立方根的计算方法。

(2)随堂练习,巩固立方根的计算。

4. 立方根在实际问题中的应用(1)举例说明立方根在实际问题中的应用。

(2)分组讨论,让学生自己找出生活中的立方根问题,并解决。

(2)拓展延伸:引导学生思考更高次方根的性质和计算方法。

六、板书设计1. 立方根的定义2. 立方根的性质3. 立方根的计算方法4. 立方根在实际问题中的应用七、作业设计1. 作业题目:(1)计算下列数的立方根:27,64,0。

(2)一个立方体的体积为64立方厘米,求它的棱长。

(3)拓展题:求解方程x^3 = 27。

2. 答案:(1)3,4,0(2)4厘米(3)x = 3八、课后反思及拓展延伸本节课通过实践情景引入,让学生在观察和思考中掌握立方根的概念和计算方法。

在课后反思中,教师应关注学生对立方根性质的理解程度,以及在实际问题中的应用能力。

《立方根》教案

《立方根》教案

《立方根》教案教案:《立方根》(一)一、教学目标:1.理解什么是立方根。

2.能够找出给定数的立方根。

3.掌握立方根的计算方法。

二、教学重点:1.立方根的定义和性质。

2.理解立方根的求解方法。

三、教学难点:1.立方根的计算方法。

2.难题解析与策略。

四、教学准备:1.教师准备:教学课件、教具、课堂练习题。

2.学生准备:课本、笔记。

五、教学过程:Step 1. 导入新知1.以一个实际问题引入:“小明有一块长为8米、宽为8米、高为8米的立方体,求立方体的体积。

”2.引导学生思考立方体和立方根之间的关系。

3.提出问题:“如果已知一个数的体积,如何求这个数的边长呢?”Step 2. 讲解立方根的定义和性质1.定义:立方根是指一个数的立方等于给定数的运算。

2.性质:a)任何正整数的立方根都是正整数。

b)任何负整数的立方根既可以是正整数也可以是负整数。

Step 3. 计算立方根1.先引导学生通过实验法求解立方根。

2.介绍立方根的计算方法:a)开方法:将一个数的立方根写成开平方的形式,然后用平方根的计算方法求解。

b)近似法:通过近似计算得到一个数的近似立方根。

3.示范计算方法,并进行练习。

Step 4. 难题解析与讨论1.给出一些难题,引导学生进行思考和讨论。

2.解析难题的解题思路和策略。

Step 5. 课堂练习1.出示练习题,让学生独立完成。

2.班级合作,互相讨论和解答。

六、教学反思:本节课主要是讲解立方根的定义和性质,以及立方根的计算方法。

通过实例引入,学生能够理解立方根的概念,并学会通过开方法和近似法求解立方根。

在教学过程中,我注意通过引导让学生主动思考问题,培养他们的数学思维能力。

同时,通过讨论解析难题,学生能够深入理解问题的本质和解题的策略。

在课堂练习环节,我采用了合作学习的方式,让学生在小组内共同解答问题,提高了课堂练习的效果。

总体来说,本节课教学效果较好,学生对立方根的理解和计算能力都有了一定的提高。

人教版数学八年级上册13.2《立方根》教学设计

人教版数学八年级上册13.2《立方根》教学设计

人教版数学八年级上册13.2《立方根》教学设计一. 教材分析《立方根》是人教版数学八年级上册第13.2节的内容,主要介绍立方根的概念、性质和运算法则。

通过本节课的学习,使学生理解立方根的概念,掌握立方根的性质和运算法则,能够熟练运用立方根解决实际问题。

教材通过丰富的例题和练习题,帮助学生巩固所学知识,提高解决问题的能力。

二. 学情分析学生在学习本节课之前,已经学习了有理数、实数等基础知识,对数的运算有一定的了解。

但学生对立方根的概念和性质可能较为陌生,需要通过实例和讲解使其理解和掌握。

此外,学生可能对解决实际问题中涉及的立方根运算有一定的困难,需要教师在课堂上进行引导和解答。

三. 教学目标1.知识与技能:理解立方根的概念,掌握立方根的性质和运算法则;能够运用立方根解决实际问题。

2.过程与方法:通过观察、实验、探究等方法,引导学生发现立方根的性质和运算法则;培养学生的逻辑思维能力和问题解决能力。

3.情感态度与价值观:激发学生对数学的兴趣,培养学生的自主学习能力和团队合作精神。

四. 教学重难点1.重点:立方根的概念、性质和运算法则。

2.难点:立方根在实际问题中的应用。

五. 教学方法1.情境教学法:通过生活实例引入立方根的概念,激发学生的学习兴趣。

2.引导发现法:教师引导学生观察、实验、探究,发现立方根的性质和运算法则。

3.练习法:通过丰富的练习题,巩固所学知识,提高解决问题的能力。

六. 教学准备1.教学课件:制作课件,展示立方根的概念、性质和运算法则。

2.练习题:准备一些有关立方根的练习题,用于课堂练习和课后作业。

3.教学道具:准备一些立方体模型,用于直观展示立方根的概念。

七. 教学过程1.导入(5分钟)利用生活实例,如冰淇淋制作、土壤湿度测量等,引导学生思考涉及到的数学问题。

通过提问,引入立方根的概念。

2.呈现(15分钟)讲解立方根的概念,引导学生观察立方体模型,使其理解立方根的直观意义。

通过PPT展示立方根的性质和运算法则,让学生初步掌握。

《立方根》优质教案

《立方根》优质教案

《立方根》优质教案一、教学内容本节课选自人教版八年级下册数学教材,第十七章《数的开方》第二节《立方根》。

具体内容包括:1. 立方根的定义及其性质;2. 立方根的计算方法;3. 立方根在实际问题中的应用。

二、教学目标1. 知识目标:让学生理解并掌握立方根的概念,熟练运用立方根的性质进行计算;2. 能力目标:培养学生运用数学知识解决实际问题的能力,提高学生的逻辑思维和运算能力;3. 情感目标:激发学生学习数学的兴趣,培养学生的合作意识和探究精神。

三、教学难点与重点教学重点:立方根的定义、性质及计算方法。

教学难点:立方根性质的灵活运用,解决实际问题。

四、教具与学具准备1. 教具:多媒体课件、黑板、粉笔;2. 学具:立方体模型、计算器、练习本。

五、教学过程1. 情景引入通过展示立方体模型,引导学生思考如何计算立方体的体积,从而引入立方根的概念。

2. 知识讲解(1)立方根的定义:讲解立方根的概念,举例说明;(2)立方根的性质:引导学生观察立方根的性质,如正数的立方根为正数,负数的立方根为负数,0的立方根为0;(3)立方根的计算方法:介绍立方根的计算方法,如分解质因数法、估算法等。

3. 例题讲解讲解教材中的例题,分析解题思路,示范解题过程。

4. 随堂练习布置教材中的练习题,让学生独立完成,并及时给予反馈。

5. 课堂小结六、板书设计1. 《立方根》2. 内容:(1)立方根的定义;(2)立方根的性质;(3)立方根的计算方法;(4)例题及解题过程;(5)课堂练习。

七、作业设计1. 作业题目:(1)求下列数的立方根:8、27、64、1;(2)已知一个数的立方根是3,求这个数;(3)一个立方体的体积是343cm³,求它的棱长。

2. 答案:八、课后反思及拓展延伸1. 反思:本节课学生对立方根的概念和性质掌握情况较好,但在计算立方根时,部分学生对方法掌握不够熟练,需要加强练习;2. 拓展延伸:引导学生思考立方根在其他领域的应用,如科学计算、工程设计等,激发学生学习兴趣。

湘教版数学八年级上册3.2《立方根》教学设计2

湘教版数学八年级上册3.2《立方根》教学设计2

湘教版数学八年级上册3.2《立方根》教学设计2一. 教材分析《立方根》是湘教版数学八年级上册3.2的内容,本节课主要让学生理解立方根的概念,掌握求立方根的方法,并能运用立方根解决实际问题。

教材通过引入立方根的概念,让学生通过观察、操作、思考、交流等活动,体验探索解决问题的过程,培养学生的数学思维能力和空间想象能力。

二. 学情分析学生在七年级时已经学习了平方根的概念,对根的概念有一定的认识。

但立方根与平方根有所不同,需要学生能够从新的角度去理解。

另外,学生对于实数的认知还不够深入,需要在教学过程中引导学生理解实数与立方根的关系。

三. 教学目标1.理解立方根的概念,掌握求立方根的方法。

2.能够运用立方根解决实际问题。

3.培养学生的数学思维能力和空间想象能力。

四. 教学重难点1.立方根的概念。

2.求立方根的方法。

3.实数与立方根的关系。

五. 教学方法采用问题驱动法、案例分析法、小组合作法等教学方法,引导学生通过观察、操作、思考、交流等活动,探索立方根的概念和求法,培养学生的数学思维能力和空间想象能力。

六. 教学准备1.PPT课件。

2.教学案例和实际问题。

3.练习题。

七. 教学过程1.导入(5分钟)通过一个实际问题引出立方根的概念,如:“一个正方体的体积是27立方米,求这个正方体的边长。

”让学生思考如何解决这个问题,从而引出立方根的概念。

2.呈现(10分钟)用PPT展示立方根的定义,解释立方根的概念,让学生理解立方根的内涵。

同时,呈现一些立方根的例子,让学生观察、操作、思考,进一步理解立方根的求法。

3.操练(10分钟)让学生分组讨论,每组选取一个实际问题,运用立方根的知识解决。

教师巡回指导,解答学生的疑问。

4.巩固(10分钟)让学生在课堂上完成一些立方根的练习题,巩固所学知识。

教师及时批改,给予反馈。

5.拓展(10分钟)引导学生思考实数与立方根的关系,如:一个实数的立方根是什么?实数的立方根有界吗?让学生进行小组讨论,分享自己的观点。

(八年级数学教案)立方根

(八年级数学教案)立方根

立方根八年级数学教案●一、教学目标1.了解和开立方的概念;2.会用根号表示一个数的,掌握开立方运算;3.培养学生用类比的思想求的运算能力;4.由立方与的教学,渗透数学的转化思想;5.通过符号的引入体验数学的简洁美.●二、教学重点和难点教学重点:的概念与性质.教学难点:会求某些数的.●三、教学方法启发式,讲练结合●四、教学手段幻灯片.五、教学过程(一)复习提问请同学们回忆一下,平方根我们是如何定义的?平方根有哪些性质?在同学们回答后,启发学生是否可试着给数的下个定义.1.的概念:如果一个数的立方等于a,这个数就叫做a的.(也称数a的三次方根)用数学式表示为:若x3=a,则x叫做a的,或称x叫做a的三次方根.2.的表示方法:类似于平方根德表示方法,数a的我们用符号来表示.读作“三次根号下a”,其中a叫做被开方数,3叫做根指数,注意,在前面我们学习平方根的表示方法说过当根指数为2时可以省略不写,现在是了,这个根指数3是绝对不可省的,否则就会与平方根混淆了,例如表示125的,而则表示125的算术平方根.练习:用根号表示下列各数的:3.开立方概念:求一个数的的运算,叫做开立方.4.开立方运算与立方运算互为逆运算.因此,我们可以根据立方运算来求一些数的.例1.求下列各数的:解:(1)∵(-2)3=-8,(2)∵23=8,(4)∵(0.6)3=0.216,(5)∵03=0,下面我们思考这样一个问题:一个正数有几个平方根?负数有没有平方根?一个正数有几个?负数有没有?请学生来回答这个问题.由前面刚刚做过的题我们不难看出像8、0.126、103、这样的正数,有一个正的;像-8、、这样的负数有一个负的;0的是0.由此我们得了的性质.5.的性质:(1)正数有一个正的.(2)负数有一个负的.(3)0的是0.这里我们不妨与平方根的性质做个比较,平方根中,正数有两个平方根,它们互为相反数,正数只有一个正的;在平方根中负数是没有平方根的,而负数有一个负的;平方根与唯一相同之处是0的平方根,都是它本身.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《立方根》教案
教学目标
(一)教学知识点
1.了解立方根的概念,会用根号表示一个数的立方根.
2.能用立方运算求某些数的立方根,了解开立方与立方互为逆运算.
3.了解立方根的性质.
4.区分立方根与平方根的不同.
(二)能力训练要求
1.在学了平方根的基础上,要求学生能用类比的方法学习立方根的有关知识,领会类比思想.
2.发展学生的求同求异思维,使他们能在复杂环境中明辨是非.
(三)情感与价值观要求
当今社会是科学飞速发展、信息千变万化的时代,每一个人都不可能把一生中要接触的知识全部学会,因此让他们会学知识比学会知识更重要,这就要从小培养良好的学习习惯,能自己解决的问题就自己解决,其中类比的学习方法就是一种重要的学习方法,本节课重点训练学生的类比思想的养成.
教学重点
立方根的概念.
教学难点
1.正确理解立方根的概念.
2.会求一个数的立方根.
3.区分立方根与平方根的不同之处.
教学方法
类比学习法.
教学过程
一、新课导入
上节课我们学习了平方根的定义,若x2=a,则x叫a的平方根,即x=±a.
若正方体的棱长为a,体积为8,根据正方体体积的公式得a3=8,那a叫8的什么呢?本节课请大家根据上节课的内容自己来类推出结论,若x3=a,则x叫a的什么呢?
二、新课讲解
1.请大家先回忆平方根的定义下面大家能不能再根据平方根的写法来类推立方根的记法呢?
若x的平方等于a,则x叫a的平方根,记作x=±2a,读作x等于正、负二次根号a,简称为x等于正,负根号a.若x的立方等于a,则x叫a的立方根,记作x=±3a,读作x等于正、负三次根号a,简称x等于正、负根号a.
[师]请大家对这位同学的回答展开讨论,小组总结后选代表发言.
[生甲]我认为这位同学回答得不对.如果x2=a,则x=±a,x3=a时,x=±a也成立的话,那如何区分平方根与立方根呢?
[生乙]因为乘方与开方是互为逆运算,求立方根可通过逆运算立方来求,如x3=8,因为23=8,所以x=2,只有一个根而不是±2,所以立方根的个数不正确.
[师]大家的分析非常有道理,请认真看书第13、14页可知,若一个数x的立方等于a,即x3=a,那么这个数x就叫做a的立方根(cube root;也叫三次方根)如2是8的立方根,记为x=3a,读作x等于三次根号a.
开立方的定义
[师]大家先回忆开平方的定义,再类推开立方的定义.
[生]求一个数a的平方根的运算,叫做开平方,则求一个数a的立方根的运算,叫做开立方,其中a叫做被开方数.
(2)立方根的性质
[师]2的立方等于多少?是否有其他的数,它的立方也是8?
[生]2的立方等于8,(-2)3=-8,所以没有其他的数的立方等于8.
[师]-3的立方等于多少?是否有其他的数,它的立方也是-27?
[生]-3的立方等于-27,33=27,所以没有其他的数的立方等于-27.
[师]0的立方等于多少?0有几个立方根?
[生]0的立方等于0,0有1个立方根是0.
[师]从刚才的讨论中,大家总结一下正数有几个立方根?0有几个立方根?负数有
几个立方根?
[生]正数有一个立方根,0有一个立方根是0,负数有一个立方根.
[师]对.正数有一个正的立方根、负数有一个负的立方根,0的立方根有一个,是0.
(3)平方根与立方根的区别与联系.
[师]我们已经学习了平方根与立方根的定义,并会求某些数的平方根和立方根,下面请大家说说它们的联系与区别.
[生]从定义来看,若一个数x 的平方等于a ,即x 2=a ,则x 叫a 的平方根;若一个数x 的立方等于a ,即x 3=a ,则x 叫a 的立方根,都是一个数x 的乘方等于a ,但一个是平方,另一个是立方.
[生]一个正数的平方根有两个,一个负数没有平方根,零的平方根有一个是零;一个正数的立方根有一个,并且是正数,一个负数有一个负的立方根,零的立方根有一个是零.
[生]它们的表示方法和读法不同,一个正数a 的平方根表示为±a ,立方根表示为3a .
2.例题讲解
[例1]求下列各数的立方根:
(1)-27;(2)125
8;(3)0.216;(4)-5. [师]请大家思考下列问题.
3a 表示a 的立方根,则(3a )3等于什么?33a 等于什么?
大家可以先举例后找规律:(3a )3=a .
又∵a 3是a 的立方,所以a 3的立方根就是a ,所以33a =a .下面就这两个式子进行练习.
[例2]求下列各式的值:
(1)38 ;(2)3064.0;(3)-3
125
8;(4)(39)3 三、课堂练习
(一)随堂练习
1.求下列各式的值:
3.
2.一个正方体,它的体积是棱长为3厘米的正方体体积的8倍,这个正方体的棱长是多少?
四、课时小结
1.立方根的定义.
2.立方根的性质.
3.开立方的定义.
4.平方根与立方根的区别与联系.
5.会求一个数的立方根.
五、课后作业
习题2.5.。

相关文档
最新文档