【人教A版】高中数学必修二:全册作业与测评 课时提升作业(一) 1.1.1(附答案)
新人教A版高中数学必修二全册同步课时分层练习
新人教A版高中数学必修二全册同步课时分层练习课时分层作业(一) 棱柱、棱锥、棱台的结构特征(建议用时:45分钟)[基础达标练]一、选择题1.观察如下所示的四个几何体,其中判断不正确的是( )A.①是棱柱B.②不是棱锥C.③不是棱锥D.④是棱台B[结合棱柱、棱锥、棱台的定义可知①是棱柱,②是棱锥,④是棱台,③不是棱锥,故B错误.]2.下列说法正确的是( )A.有2个面平行,其余各面都是梯形的几何体是棱台B.多面体至少有3个面C.各侧面都是正方形的四棱柱一定是正方体D.九棱柱有9条侧棱,9个侧面,侧面为平行四边形D[选项A错误,反例如图①;一个多面体至少有4个面,如三棱锥有4个面,不存在有3个面的多面体,所以选项B错误:选项C错误,反例如图②,上、下底面是全等的菱形,各侧面是全等的正方形,它不是正方体;根据棱柱的定义,知选项D正确.]①②3.如图所示都是正方体的表面展开图,还原成正方体后,其中两个完全一样的是( )①②③④A.①②B.②③C.③④D.①④B[在图②③中,⑤不动,把图形折起,则②⑤为对面,①④为对面,③⑥为对面,故图②③完全一样,而①④则不同.]4.如图,将装有水的长方体水槽固定底面一边后倾斜一个小角度,则倾斜后水槽中的水形成的几何体是( )A.棱柱B.棱台C.棱柱与棱锥的组合体D.不能确定A[如图.因为有水的部分始终有两个平面平行,而其余各面都易证是平行四边形,因此是棱柱.]5.用一个平面去截一个三棱锥,截面形状是( )A.四边形B.三角形C.三角形或四边形D.不可能为四边形C[按如图①所示用一个平面去截三棱锥,截面是三角形;按如图②所示用一个平面去截三棱锥,截面是四边形.]①②二、填空题6.一棱柱有10个顶点,其所有的侧棱长的和为60 cm,则每条侧棱长为________cm.12[该棱柱为五棱柱,共有5条侧棱,每条侧棱长都相等,所以每条侧棱长为12 cm.] 7.如图所示,在所有棱长均为1的三棱柱上,有一只蚂蚁从点A出发,围着三棱柱的侧面爬行一周到达点A1,则爬行的最短路程为________.10[将三棱柱沿AA1展开如图所示,则线段AD1即为最短路线,即AD1=AD2+DD21=10.]8.以三棱台的顶点为三棱锥的顶点,这样可以把一个三棱台分成________个三棱锥.3[如图,三棱台可分成三棱锥C1ABC,三棱锥C1ABB1,三棱锥AA1B1C1,三个.]三、解答题9.如图所示的几何体中,所有棱长都相等,分析此几何体的构成?有几个面、几个顶点、几条棱?[解]这个几何体是由两个同底面的四棱锥组合而成的八面体,有8个面,都是全等的正三角形;有6个顶点;有12条棱.10.试从正方体ABCDA1B1C1D1的八个顶点中任取若干,连接后构成以下空间几何体,并且用适当的符号表示出来.(1)只有一个面是等边三角形的三棱锥;(2)四个面都是等边三角形的三棱锥;(3)三棱柱.[解](1)如图①所示,三棱锥A1AB1D1(答案不唯一).(2)如图②所示,三棱锥B1ACD1(答案不唯一).(3)如图③所示,三棱柱A1B1D1ABD(答案不唯一).①②③[能力提升练]1.由五个面围成的多面体,其中上、下两个面是相似三角形,其余三个面都是梯形,并且这些梯形的腰延长后能相交于一点,则该多面体是( )A.三棱柱B.三棱台C.三棱锥D.四棱锥B[该多面体有三个面是梯形,而棱锥最多有一个面是梯形(底面),棱柱最多有两个面是梯形(底面),所以该多面体不是棱柱、棱锥,而是棱台.三个梯形是棱台的侧面,另两个三角形是底面,所以这个棱台是三棱台.]2.五棱柱中,不同在任何侧面且不同在任何底面的两顶点的连线称为它的对角线,那么一个五棱柱的对角线共有________条.10 [在上底面选一个顶点,同时在下底面选一个顶点,且这两个顶点不在同一侧面上,这样上底面每个顶点对应两条对角线,所以共有10条.]课时分层作业(二) 旋转体与简单组合体的结构特征(建议用时:45分钟)[基础达标练]一、选择题1.下列几何体中是旋转体的是 ( )①圆柱;②六棱锥;③正方体;④球体;⑤四面体.A .①和⑤B .①C .③和④D .①和④D [根据旋转体的概念可知,①和④是旋转体.]2.图①②中的图形折叠后的图形分别是( )① ②A .圆锥、棱柱B .圆锥、棱锥C .球、棱锥D .圆锥、圆柱B [根据图①的底面为圆,侧面为扇形,得图①折叠后的图形是圆锥;根据图②的底面为三角形,侧面均为三角形,得图②折叠后的图形是棱锥.]3.圆锥的侧面展开图是直径为a 的半圆面,那么此圆锥的轴截面是( )A .等边三角形B .等腰直角三角形C .顶角为30°等腰三角形D .其他等腰三角形A [设圆锥底面圆的半径为r ,依题意可知2πr =π·a 2,则r =a 4,故轴截面是边长为a 2的等边三角形.]4.如图,在日常生活中,常用到的螺母可以看成一个组合体,其结构特征是( )A .一个棱柱中挖去一个棱柱B .一个棱柱中挖去一个圆柱C .一个圆柱中挖去一个棱锥D .一个棱台中挖去一个圆柱B [一个六棱柱挖去一个等高的圆柱,选B.]5.用长为8,宽为4的矩形做侧面围成一个圆柱,则圆柱的轴截面的面积为( )A .32B .32πC .16πD .8πB [若8为底面周长,则圆柱的高为4,此时圆柱的底面直径为8π,其轴截面的面积为32π;若4为底面周长,则圆柱的高为8,此时圆柱的底面直径为4π,其轴截面的面积为32π.] 二、填空题6.如图是一个几何体的表面展开图形,则这个几何体是________.圆柱 [一个长方形和两个圆折叠后,能围成的几何体是圆柱.]7.下列命题中错误的是________.①过球心的截面所截得的圆面的半径等于球的半径;②母线长相等的不同圆锥的轴截面的面积相等;③圆台所有平行于底面的截面都是圆面;④圆锥所有的轴截面都是全等的等腰三角形.② [因为圆锥的母线长一定,根据三角形面积公式,当两条母线的夹角为90°时,圆锥的轴截面面积最大.]8.一个半径为5 cm 的球,被一平面所截,球心到截面圆心的距离为4 cm ,则截面圆面积为________ cm 2.9π [设截面圆半径为r cm ,则r 2+42=52,所以r =3.所以截面圆面积为9π cm 2.]三、解答题9.如图所示,梯形ABCD 中,AD ∥BC ,且AD <BC ,当梯形ABCD 绕AD 所在直线旋转一周时,其他各边旋转围成了一个几何体,试描述该几何体的结构特征.[解] 如图所示,旋转所得的几何体是一个圆柱挖去两个圆锥后剩余部分构成的组合体.10.一个圆台的母线长为12 cm ,两底面面积分别为4π cm 2和25π cm 2.求:(1)圆台的高;(2)截得此圆台的圆锥的母线长.[解] (1)圆台的轴截面是等腰梯形ABCD (如图所示).由已知可得上底面半径O 1A =2(cm),下底面半径OB =5(cm),又因为腰长为12 cm ,所以高AM =122-(5-2)2=315(cm).(2)如图所示,延长BA ,OO 1,CD ,交于点S ,设截得此圆台的圆锥的母线长为l ,则由△SAO 1∽△SBO 可得l -12l =25,解得l =20 (cm),即截得此圆台的圆锥的母线长为20 cm.[能力提升练]1.如右图所示的平面中阴影部分绕中间轴旋转一周,形成的几何体形状为( )A .一个球体B .一个球体中间挖出一个圆柱C .一个圆柱D .一个球体中间挖去一个长方体B [圆旋转一周形成球,圆中的矩形旋转一周形成一个圆柱,所以选B.]2.如图所示,已知圆锥SO 中,底面半径r =1,母线长l =4,M 为母线SA 上的一个点,且SM =x ,从点M 拉一根绳子,围绕圆锥侧面转到点A .则绳子的最短长度的平方f (x )=x 2+16(0≤x ≤4) [将圆锥的侧面沿SA 展开在平面上,如图所示,则该图为扇形,且弧AA ′的长度L 就是圆O 的周长,所以L =2πr =2π,所以∠ASM =L 2πl ×360°=2π2π×4×360°=90°. 由题意知绳子长度的最小值为展开图中的AM ,其值为AM =x 2+16(0≤x ≤4).所以f (x )=AM 2=x 2+16(0≤x ≤4).]课时分层作业(三) 中心投影与平行投影 空间几何体的三视图(建议用时:45分钟)[基础达标练]一、选择题1.直线的平行投影可能是( )A .点B .线段C .射线D .曲线A [直线的平行投影可能是直线也可能是点,故选A.]2.下列说法错误的是( )A .正视图反映了物体上下、左右的位置关系,即反映了物体的高度和长度B .俯视图反映了物体左右、前后的位置关系,即反映了物体的长度和宽度C .侧视图反映了物体上下、前后的位置关系,即反映了物体的高度和宽度D .一个几何体的正视图和俯视图高度一样,正视图和侧视图长度一样,侧视图和俯视图宽度一样D [正视图和俯视图长度一样;正视图和侧视图高度一样;侧视图和俯视图宽度一样.故3.有下列说法:①从投影的角度看,三视图是在平行投影下画出来的投影图;②平行投影的投影线互相平行,中心投影的投影线相交于一点;③空间图形经过中心投影后,直线变成直线,平行线还是成平行的直线;④空间几何体在平行投影与中心投影下有不同的表现形式.其中正确说法有( )A.1个B.2个C.3个D.4个C[由投影的知识知①②④正确.只有③错误,空间图形经过中心投影后,直线变成直线、平行线有可能变成了相交直线,综上可知正确说法有3个,故选C.]4.一个长方体去掉一个小长方体,所得几何体的正视图与侧视图分别如图所示,则该几何体的俯视图为( )C[正视图中小长方形在左上方,对应俯视图应该在左侧,排除B,D,侧视图中小长方形在右上方,排除A,故选C.]5.如图所示,五棱柱的侧视图应为( )A B C DB[从五棱柱左面看,是2个矩形,上面的小一点,故选B.]二、填空题6.如下图,图①②③是图④表示的几何体的三视图,其中图①是________,图②是________,图③是________(说出视图名称).① ② ③ ④正视图 侧视图 俯视图 [由几何体的位置知,①为正视图,②为侧视图,③为俯视图.]7.若线段AB 平行于投影面,O 是线段AB 上一点,且AO OB =m n,点A ′,O ′,B ′分别是A ,O ,B 在投影面上的投影点,则A ′O ′O ′B ′=________. m n [由题意知AB ∥A ′B ′,OO ′∥AA ′,OO ′∥BB ′,则有A ′O ′O ′B ′=AO OB =m n.] 8.某四棱锥的三视图如图所示,则该四棱锥的最长棱的长度为________.23 [由三视图知可把四棱锥放在一个正方体内部,四棱锥为D BCC 1B 1,最长棱为DB 1=DC 2+BC 2+BB 21=4+4+4=2 3.]三、解答题9.如图所示的几何体是由一个长方体木块锯成的.(1)判断该几何体是否为棱柱;(2)画出它的三视图.[解](1)是棱柱.因为该几何体的前、后两个面互相平行,其余各面都是矩形,而且相邻矩形的公共边都互相平行.(2)该几何体的三视图如图:10.某组合体的三视图如图所示,试画图说明此组合体的结构特征.[解]该三视图表示的几何体是由一个四棱柱和一个四棱台拼接而成的组合体(如图所示).[能力提升练]1.如图所示,画出四面体AB1CD1三视图中的正视图,以AA1D1D为投影面,则得到的正视图可以为( )A B C DA [显然AB 1,AC ,B 1D 1,CD 1分别投影得到正视图的外轮廓,B 1C 为可见实线,AD 1为不可见虚线.故A 正确.]2.太阳光线与地面成60°的角,照射在地面上的一个皮球上,皮球在地面上的投影长是103,则皮球的直径是________.15 [皮球的直径d =103sin 60°=103×32=15.]课时分层作业(四) 空间几何体的直观图(建议用时:45分钟)[基础达标练]一、选择题1.如图,已知等腰三角形ABC ,则如下所示的四个图中,可能是△ABC 的直观图的是( )① ② ③ ④A .①②B .②③C .②④D .③④D [原等腰三角形画成直观图后,原来的腰长不相等,③④两图分别为在∠x ′O ′y ′成135°和45°的坐标系中的直观图.]2.对于用斜二测画法画水平放置的图形的直观图来说,下列描述不正确的是( ) A .三角形的直观图仍然是一个三角形 B .90°的角的直观图会变为45°的角 C .与y 轴平行的线段长度变为原来的一半 D .由于选轴的不同,所得的直观图可能不同B [对于A ,根据斜二测画法特点知,相交直线的直观图仍是相交直线,因此三角形的直观图仍是一个三角形,故A 正确;对于B ,90°的角的直观图会变为45°或135°的角,故B 错误;C ,D 显然正确.]3.把△ABC 按斜二测画法得到△A ′B ′C ′(如图所示),其中B ′O ′=C ′O ′=1,A ′O ′=32,那么△ABC 是一个( )A .等边三角形B .直角三角形C .等腰三角形D .三边互不相等的三角形A [根据斜二测画法还原三角形在直角坐标系中的图形,如图所示:由图易得AB =BC =AC =2,故△ABC 为等边三角形,故选A.]4.一个建筑物上部为四棱锥,下部为长方体,且四棱锥的底面与长方体的上底面尺寸一样,已知长方体的长、宽、高分别为20 m 、5 m 、10 m ,四棱锥的高为8 m ,若按1∶500的比例画出它的直观图,那么直观图中,长方体的长、宽、高和棱锥的高应分别为( )A .4 cm ,1 cm ,2 cm ,1.6 cmB .4 cm ,0.5 cm ,2 cm ,0.8 cmC .4 cm ,0.5 cm ,2 cm ,1.6 cmD .2 cm ,0.5 cm ,1 cm ,0.8 cmC [由比例尺可知长方体的长、宽、高和四棱锥的高分别为4 cm ,1 cm ,2 cm 和1.6 cm ,再结合斜二测画法,可知直观图的相应尺寸应分别为4 cm ,0.5 cm ,2 cm ,1.6 cm.]5.如果一个水平放置的图形的斜二测直观图是一个底角为45°,腰和上底均为1的等腰梯形,那么原平面图形的面积是( )A .2+ 2B .1+22C .2+22D .1+ 2A [画出其相应平面图易求,故选A.]二、填空题6.斜二测画法中,位于平面直角坐标系中的点M(4,4)在直观图中的对应点是M′,则点M′的坐标为________.M′(4,2)[在x′轴的正方向上取点M1,使O′M1=4,在y′轴上取点M2,使O′M2=2,过M1和M2分别作平行于y′轴和x′轴的直线,则交点就是M′.]7.水平放置的△ABC的斜二测直观图如图所示,已知A′C′=3,B′C′=2,则AB边上的中线的实际长度为________.2.5 [由直观图知,由原平面图形为直角三角形,且AC=A′C′=3,BC=2B′C′=4,计算得AB=5,所求中线长为2.5.]8.如图所示,水平放置的△ABC在直角坐标系中的直观图,其中D′是A′C′的中点,且∠ACB≠30°,则原图形中与线段BD的长相等的线段有________条.2 [△ABC为直角三角形,因为D为AC中点,所以BD=AD=CD.所以与BD的长相等的线段有2条.]三、解答题9.如图,△A′B′C′是水平放置的平面图形的直观图,试画出原平面图形△ABC.[解](1)画法:过C′,B′分别作y′轴的平行线交x′轴于D′,E′;(2)在直角坐标系xOy中.在x轴上取二点E,D使OE=O′E′,OD=O′D′,再分别过E,D作y轴平行线,取EB=2E′B′,DC=2D′C′.连接OB,OC,BC即求出原△ABC.10.画出底面是正方形,侧棱均相等的四棱锥的直观图.[解] (1)画轴.画x 轴、y 轴、z 轴,使∠xOy =45°,∠xOz =90°,如图①. (2)画底面.以O 为中心在xOy 平面内画出正方形水平放置的直观图ABCD . (3)画顶点.在Oz 轴上截取OP ,使OP 的长度是原四棱锥的高.(4)成图.连接PA 、PB 、PC 、PD ,并擦去辅助线,得四棱锥的直观图如图②.① ② [能力提升练]1.已知两个圆锥,底面重合在一起,其中一个圆锥顶点到底面的距离为2 cm ,另一个圆锥顶点到底面的距离为3 cm ,则其直观图中这两个顶点之间的距离为( )A .2 cmB .3 cmC .2.5 cmD .5 cm D [由题意可知其直观图如下图:由图可知两个顶点之间的距离为5 cm.故选D.]2.已知用斜二测画法,画得的正方形的直观图面积为182,则原正方形的面积为________.72 [如图所示,作出正方形OABC 的直观图O ′A ′B ′C ′,作C ′D ′⊥x ′轴于点D ′.S 直观图=O ′A ′×C ′D ′.又S 正方形=OC ×OA .所以S 正方形S 直观图=OC ×OAO ′A ′×C ′D ′,又在Rt △O ′D ′C ′中,O ′C ′=2C ′D ′,即C ′D ′=22O ′C ′,结合平面图与直观图的关系可知OA =O ′A ′,OC =2O ′C ′,所以S 正方形S 直观图=OC ×OA OA ×22O ′C ′=2O ′C ′22O ′C ′=2 2. 又S 直观图=182,所以S 正方形=22×182=72.]课时分层作业(五) 柱体、锥体、台体的表面积与体积(建议用时:45分钟)[基础达标练]一、选择题1.将边长为1的正方形以其一边所在直线为旋转轴旋转一周,所得几何体的侧面积是( )A .4πB .3πC .2πD .πC [底面圆半径为1,高为1,侧面积S =2πrh =2π×1×1=2π.故选C.]2.已知高为3的直棱柱ABC A 1B 1C 1的底面是边长为1的正三角形,则三棱锥B 1ABC 的体积为( )A .14B .12C .36D .34D [由题意,锥体的高为BB 1,底面为S △ABC =34,所以V =13Sh =13×34×3=34.] 3.如果轴截面为正方形的圆柱的侧面积是4π,那么圆柱的体积等于( ) A .π B .2π C .4π D .8πB [设圆柱的底面半径为r ,则圆柱的母线长为2r , 由题意得S 圆柱侧=2πr ×2r =4πr 2=4π, 所以r =1, 所以V圆柱=πr 2×2r =2πr 3=2π.]4.如图,一个底面半径为2的圆柱被一平面所截,截得的几何体的最短和最长母线长分别为2和3,则该几何体的体积为( )A .5πB .6πC .20πD .10πD [用一个完全相同的几何体把题中几何体补成一个圆柱,如图,则圆柱的体积为π×22×5=20π,故所求几何体的体积为10π.]5.体积为52的圆台,一个底面积是另一个底面积的9倍,那么截得这个圆台的圆锥的体积是( )A .54B .54πC .58D .58πA [设上底面半径为r ,则由题意求得下底面半径为3r ,设圆台高为h 1,则52=13πh 1(r2+9r 2+3r ·r ),∴πr 2h 1=12.令原圆锥的高为h ,由相似得r 3r =h -h 1h,∴h =32h 1,∴V 原圆锥=13π(3r )2×h =3πr 2×32h 1=92×12=54.]二、填空题6.已知圆锥SO 的高为4,体积为4π,则底面半径r =________. 3 [设底面半径为r ,则13πr 2×4=4π,解得r =3,即底面半径为 3.]7.已知一个圆台的正视图如图所示, 若其侧面积为35π, 则a 的值为____.2 [圆台的两底面半径分别为1,2,高为a , 则母线长为1+a 2, 则其侧面积等于π(1+2)·(1+a 2)=35π,解得a 2=4,所以a =2(舍去负值).]8.已知一个圆锥的侧面展开图为半圆,且面积为S ,则圆锥的底面面积是________.S2[如图所示, 设圆锥的底面半径为r , 母线长为l .由题意,得⎩⎪⎨⎪⎧12πl 2=S ,πl =2πr ,解得r =S2π.所以圆锥的底面面积为πr 2=π×S 2π=S2.]三、解答题9.若圆锥的表面积是15π,侧面展开图的圆心角是60°,求圆锥的体积. [解] 设圆锥的底面半径为r ,母线为l , 则2πr =13πl ,得l =6r .又S 锥=πr 2+πr ·6r =7πr 2=15π,得r =157, 圆锥的高h =35·157, V =13πr 2h =13π×157×35×157=2537π. 10.在长方体ABCD A 1B 1C 1D 1中,截下一个棱锥C A 1DD 1,求棱锥C A 1DD 1的体积与剩余部分的体积之比.[解] 已知长方体可以看成直四棱柱,设它的底面ADD 1A 1的面积为S ,高为h ,则它的体积为V =Sh .而棱锥C A 1DD 1的底面积为12S ,高为h ,故三棱锥C A 1DD 1的体积为:VC A 1DD 1=13⎝ ⎛⎭⎪⎫12S h =16Sh ,余下部分体积为:Sh -16Sh =56Sh .所以棱锥C A 1DD 1的体积与剩余部分的体积之比1∶5.[能力提升练]1.三棱锥P ABC 中,D ,E 分别为PB ,PC 的中点,记三棱锥D ABE 的体积为V 1,P ABC 的体积为V 2,则V 1V 2=________.14 [如图,设点C 到平面PAB 的距离为h ,三角形PAB 的面积为S ,则V 2=13Sh ,V 1=V E ADB =13×12S ×12h =112Sh ,所以V 1V 2=14.] 2.用一张正方形的纸把一个棱长为1的正方体礼品盒完全包住,不将纸撕开,则所需纸的最小面积是________.8 [如图①为棱长为1的正方体礼品盒,先把正方体的表面按图所示方式展成平面图形,再把平面图形尽可能拼成面积较小的正方体,如图②所示,由图知正方形的边长为22,其面积为8.]课时分层作业(六) 球的体积和表面积(建议用时:45分钟)[基础达标练]一、选择题1.如果三个球的半径之比是1∶2∶3,那么最大球的表面积是其余两个球的表面积之和的( )A .59倍B .95倍 C .2倍 D .3倍 B [设小球半径为1,则大球的表面积S 大=36π,S 小+S 中=20π,36π20π=95.]2.把半径分别为6 cm ,8 cm ,10 cm 的三个铁球熔成一个大铁球,这个大铁球的半径为( )A .3 cmB .6 cmC .8 cmD .12 cmD [由43πR 3=43π·63+43π·83+43π·103,得R 3=1 728,检验知R =12.]3.将直径为2的半圆绕直径所在的直线旋转半周而形成的曲面所围成的几何体的表面积为( )A .2πB .3πC .4πD .6πB [由题意知,该几何体为半球, 表面积为大圆面积加上半个球面积, S =π×12+12×4×π×12=3π.]4.将棱长为2的正方体削成一个体积最大的球,则这个球的体积为( ) A .163πB .4π3C .323πD .4πB [根据题意知,此球为正方体的内切球,所以球的直径等于正方体的棱长,故r =1,所以V =43πr 3=43π.]5.已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为( )A .πB .3π4C .π2D .π4B [设圆柱的底面半径为r ,球的半径为R ,且R =1,由圆柱两个底面的圆周在同一个球的球面上可知,r ,R 及圆柱的高的一半构成直角三角形.∴r =1-⎝ ⎛⎭⎪⎫122=32.∴圆柱的体积为V =πr 2h =34π×1=3π4.故选B.] 二、填空题6.若一个球的表面积与其体积在数值上相等,则此球的半径为________. 3 [设此球的半径为R ,则4πR 2=43πR 3,R =3.]7.如图是一个几何体的三视图,根据图中的数据可得该几何体的表面积为________.33π [由三视图可知该几何体是上面为半球,下面为圆锥的组合体,所以表面积S =12×4π×32+π×3×5=33π.]8.如图,在圆柱O 1O 2内有一个球O ,该球与圆柱的上、下底面及母线均相切,记圆柱O 1O 2的体积为V 1,球O 的体积为V 2,则V 1V 2的值是________.32[设球O 的半径为R , ∵球O 与圆柱O 1O 2的上、下底面及母线均相切, ∴圆柱O 1O 2的高为2R ,底面半径为R .∴V 1V 2=πR 2·2R 43πR3=32.] 三、解答题9.某组合体的直观图如图所示,它的中间为圆柱形,左右两端均为半球形,若图中r =1,l =3,试求该组合体的表面积和体积.[解] 该组合体的表面积S =4πr 2+2πrl =4π×12+2π×1×3=10π.该组合体的体积V =43πr 3+πr 2l =43π×13+π×12×3=13π3.10.已知过球面上A ,B ,C 三点的截面和球心的距离等于球半径的一半,且AB =18,BC=24,AC =30,求球的表面积和体积.[解] 因为AB ∶BC ∶AC =18∶24∶30=3∶4∶5, 所以△ABC 是直角三角形,∠B =90°.又球心O 到截面△ABC 的投影O ′为截面圆的圆心,也即是Rt △ABC 的外接圆的圆心,所以斜边AC 为截面圆O ′的直径(如图所示), 设O ′C =r ,OC =R ,则球半径为R ,截面圆半径为r , 在Rt △O ′CO 中,由题设知sin ∠O ′CO =OO ′OC =12, 所以∠O ′CO =30°,所以rR=cos 30°=32,即R =23r ,(*) 又2r =AC =30⇒r =15,代入(*)得R =10 3.所以球的表面积为S =4πR 2=4π×(103)2=1 200π. 球的体积为V =43πR 3=43π×(103)3=4 0003π.[能力提升练]1.如果一个球的外切圆锥的高是这个球的半径的3倍,则圆锥的侧面积和球的表面积之比为( )A .4∶3B .3∶1C .3∶2D .9∶4C [作圆锥的轴截面,如图,设球半径为R ,则圆锥的高h =3R ,圆锥底面半径r =3R ,则l =(h 2+r 2)=23R ,所以S 圆锥侧S 球 =πrl 4πR 2=π×3R ·23R 4πR 2=32.] 2.在封闭的直三棱柱ABC A 1B 1C 1内有一个体积为V 的球. 若AB ⊥BC ,AB =6,BC =8,AA 1=3,则V 的最大值是________.9π2[当球的半径最大时,球的体积最大. 在直三棱柱内,当球和三个侧面都相切时,因为AB ⊥BC ,AB =6,BC =8,所以AC =10,底面的内切圆的半径即为此时球的半径r =6+8-102=2,直径为4>侧棱. 所以球的最大直径为3,半径为32,此时体积V =9π2.]课时分层作业(七) 平面(建议用时:45分钟)[基础达标练]一、选择题1.已知点A ,直线a ,平面α,以下命题表述正确的个数是( )①A ∈a ,a ⊄α⇒Aα;②A ∈a ,a ∈α⇒A ∈α;③Aa ,a ⊂α⇒A α;④A ∈a ,a ⊂α⇒A ⊂α.A .0B .1C .2D .3A [①不正确,如a ∩α=A ;②不正确,∵“a ∈α”表述错误;③不正确,如图所示,A a ,a ⊂α,但A ∈α;④不正确,“A ⊂α”表述错误.]2.下列命题中正确命题的个数是( ) ①三角形是平面图形; ②四边形是平面图形;③四边相等的四边形是平面图形; ④圆是平面图形. A .1个 B .2个 C .3个D .4个B [根据公理2可知①④正确,②③错误.故选B.] 3.两个平面若有三个公共点,则这两个平面( ) A .相交 B .重合C .相交或重合D .以上都不对C [若三点在同一条直线上,则这两个平面相交或重合,若三点不共线,则这两个平面重合.]4.如果空间四点A,B,C,D不共面,那么下列判断中正确的是( )A.A,B,C,D四点中必有三点共线B.A,B,C,D四点中不存在三点共线C.直线AB与CD相交D.直线AB与CD平行B[两条平行直线、两条相交直线、直线及直线外一点都分别确定一个平面,选B.] 5.三条两两平行的直线可以确定平面的个数为( )A.0 B.1C.0或1 D.1或3D[当三条直线是同一平面内的平行直线时,确定一个平面,当三条直线是三棱柱侧棱所在的直线时,确定三个平面,选D.]二、填空题6.设平面α与平面β相交于l,直线a⊂α,直线b⊂β,a∩b=M,则M________l.∈[因为a∩b=M,a⊂α,b⊂β,所以M∈α,M∈β.又因为α∩β=l,所以M∈l.] 7.在长方体ABCDA1B1C1D1的所有棱中,既与AB共面,又与CC1共面的棱有________条.5[由题图可知,既与AB共面又与CC1共面的棱有CD、BC、BB1、AA1、C1D1共5条.] 8.已知平面α与平面β、平面γ都相交,则这三个平面可能的交线有________条.1或2或3 [当β与γ相交时,若α过β与γ的交线,有1条交线;若α不过β与γ的交线,有3条交线;当β与γ平行时,有2条交线.]三、解答题9.已知:A∈l,B∈l,C∈l,D l,如图所示.求证:直线AD,BD,CD共面.[证明]因为D l,所以l与D可以确定平面α,因为A∈l,所以A∈α,又D∈α,所以AD⊂α.同理,BD⊂α,CD⊂α,所以AD,BD,CD在同一平面α内,即它们共面.10.求证:三棱台A1B1C1ABC三条侧棱延长后相交于一点.[证明]如图,延长AA1,BB1,设AA1∩BB1=P,又BB1⊂面BC1,∴P∈面BC1,AA1⊂面AC1,∴P∈面AC1,∴P为平面BC1和面AC1的公共点,又∵面BC1∩面AC1=CC1,∴P∈CC1,即AA1,BB1,CC1延长后交于一点P.[能力提升练]1.如图,α∩β=l,A∈α,C∈β,C l,直线AD∩l=D,过A、B、C三点确定的平面为γ,则平面γ、β的交线必过( )A.点A B.点BC.点C,但不过点D D.点C和点DD[A、B、C确定的平面γ与直线BD和点C确定的平面重合,故C、D∈γ,且C、D∈β,故C,D在γ和β的交线上.]2.若直线l与平面α相交于点O,A,B∈l,C,D∈α,且AC∥BD,则O,C,D三点的位置关系是________.共线[∵AC∥BD,∴AC与BD确定一个平面,记作平面β,则α∩β=CD.∵l∩α=O,∴O∈α. 又∵O∈AB⊂β,∴O∈直线CD,∴O,C,D三点共线.]课时分层作业(八) 空间中直线与直线之间的位置关系(建议用时:45分钟)[基础达标练]一、选择题1.若a和b是异面直线,b和c是异面直线,则a和c的位置关系是( )A.异面或平行B.异面或相交C.异面D.相交、平行或异面D[异面直线不具有传递性,可以以长方体为载体加以说明,a、b异面,直线c的位置可如图所示.]2.分别和两条异面直线平行的两条直线的位置关系是( )A.一定平行B.一定相交C.一定异面D.相交或异面D[可能相交也可能异面,选D.]3.在正方体AC1中,E,F分别是线段BC,CD1的中点,则直线A1B与直线EF的位置关系是( )A.相交B.异面C.平行D.垂直A[如图所示,直线A1B与直线外一点E确定的平面为A1BCD1,EF⊂平面A1BCD1,且两直线不平行,故两直线相交.]4.如图所示,在正方体ABCDA1B1C1D1中,E,F分别是AB,AD的中点,则异面直线B1C与EF所成的角的大小为( )A.30° B.45°C.60°D.90°C[连接B1D1,D1C(图略),则B1D1∥EF,故∠D1B1C即为所求,又B1D1=B1C=D1C,∴∠D1B1C =60°.]5.设P是直线l外一定点,过点P且与l成30°角的异面直线( )A.有无数条B.有两条C.至多有两条D.有一条A[如图,过点P作直线l′∥l,以l′为轴,与l′成30°角的圆锥面的所有母线都与l成30°角.因此,这样的异面直线有无数条.]二、填空题6.如图所示,在三棱锥PABC的六条棱所在的直线中,异面直线共有________对.3 [PA与BC,PB与AC,PC与AB互为异面直线,∴共3对.]7.给出下列四个命题,其中正确命题的序号是________.①在空间,若两条直线不相交,则它们一定平行;②平行于同一条直线的两条直线平行;③一条直线和两条平行直线的一条相交,那么它也和另一条相交;④空间四条直线a,b,c,d,如果a∥b,c∥d,且a∥d,那么b∥c.②④[①错,可以异面;②正确,公理4;③错误,和另一条可以异面;④正确,由平行直线的传递性可知.]8.如图所示,正方体ABCDA1B1C1D1中,AC与BC1所成角的大小是________.。
新教材人教A版高中数学必修第二册全册课时练习(一课一练,含解析)
人教A版高中数学必修第二册全册课时练习6.1 平面向量的概念 .............................................................................................................. - 2 - 6.2.1 向量的加法运算........................................................................................................ - 5 - 6.2.2 向量的减法运算........................................................................................................ - 8 - 6.2.3 向量的数乘运算...................................................................................................... - 11 - 6.2.4 向量的数量积............................................................................................................ - 14 - 6.3.1 平面向量基本定理.................................................................................................... - 18 - 6.3.2 平面向量的正交分解及坐标表示............................................................................ - 21 - 6.3.3 平面向量加、减运算的坐标表示............................................................................ - 21 - 6.3.4 平面向量数乘运算的坐标表示.............................................................................. - 24 - 6.3.5 平面向量数量积的坐标表示.................................................................................. - 27 - 6.4 平面向量的应用........................................................................................................ - 30 -7.1.1 数系的扩充和复数的概念...................................................................................... - 34 - 7.1.2 复数的几何意义...................................................................................................... - 37 - 7.2.1 复数的加、减运算及其几何意义.......................................................................... - 39 -7.2.2 复数的乘、除运算.................................................................................................. - 43 -8.1.1 棱柱、棱锥、棱台的结构特征................................................................................ - 46 - 8.1.2 圆柱、圆锥、圆台、球、简单组合体的结构特征................................................ - 49 - 8.2 立体图形的直观图........................................................................................................ - 51 - 8.3.1 棱柱、棱锥、棱台的表面积和体积...................................................................... - 55 - 8.3.2 圆柱、圆锥、圆台、球的表面积和体积.............................................................. - 59 - 8.4.1 平面 ......................................................................................................................... - 62 - 8.4.2 空间点、直线、平面之间的位置关系.................................................................. - 66 - 8.5.1 直线与直线平行...................................................................................................... - 69 - 8.5.2 直线与平面平行...................................................................................................... - 73 - 8.5.3 平面与平面平行...................................................................................................... - 76 - 8.6.1 直线与直线垂直...................................................................................................... - 80 - 8.6.2 直线与平面垂直...................................................................................................... - 85 -8.6.3平面与平面垂直 ....................................................................................................... - 89 -9.1.1简单随机抽样 ........................................................................................................... - 94 - 9.1.2 分层随机抽样 ............................................................................................................. - 96 - 9.1.3 获取数据的途径 ......................................................................................................... - 96 - 9.2.1总体取值规律的估计 ............................................................................................. - 100 - 9.2.2 总体百分位数的估计 ............................................................................................... - 105 - 9.2.3 总体集中趋势的估计 ............................................................................................... - 105 -9.2.4 总体离散程度的估计 ............................................................................................... - 105 -10.1.1有限样本空间与随机事件.................................................................................... - 110 - 10.1.2事件的关系和运算 ............................................................................................... - 112 - 10.1.3古典概型 ............................................................................................................... - 115 - 10.1.4概率的基本性质 ................................................................................................... - 118 - 10.2事件的相互独立性 .................................................................................................. - 121 - 10.3频率与概率 .............................................................................................................. - 126 -6.1 平面向量的概念一、选择题1.下列物理量:①质量;②速度;③位移;④力;⑤加速度;⑥路程;⑦密度;⑧功.其中不是向量的有( )A .1个B .2个C .3个D .4个【解析】一个量是不是向量,就是看它是否同时具备向量的两个要素:大小和方向.由于速度、位移、力、加速度都是由大小和方向确定的,所以是向量;而质量、路程、密度、功只有大小而没有方向,所以不是向量. 【答案】D2.下列命题中,正确命题的个数是( ) ①单位向量都共线; ②长度相等的向量都相等; ③共线的单位向量必相等;④与非零向量a 共线的单位向量是a|a |.A .3B .2C .1D .0【解析】根据单位向量的定义,可知①②③明显是错误的,对于④,与非零向量a 共线的单位向量是a |a |或-a|a |,故④也是错误的.【答案】D3.如图,等腰梯形ABCD 中,对角线AC 与BD 交于点P ,点E ,F 分别在两腰AD ,BC 上,EF 过点P ,且EF ∥AB ,则( )A.AD →=BC →B.AC →=BD →C.PE →=PF →D.EP →=PF →【解析】由平面几何知识知,AD →与BC →方向不同, 故AD →≠BC →;AC →与BD →方向不同,故AC →≠BD →; PE →与PF →的模相等而方向相反,故PE →≠PF →. EP →与PF →的模相等且方向相同,∴EP →=PF →.【答案】D4.若|AB →|=|AD →|且BA →=CD →,则四边形ABCD 的形状为( ) A .正方形 B .矩形 C .菱形 D .等腰梯形【解析】由BA →=CD →,知AB =CD 且AB ∥CD ,即四边形ABCD 为平行四边形.又因为|AB →|=|AD →|,所以四边形ABCD 为菱形. 【答案】C 二、填空题5.如图,已知正方形ABCD 的边长为2,O 为其中心,则|OA →|=________.【解析】因为正方形的对角线长为22,所以|OA →|= 2. 【答案】 2 6.如图,四边形ABCD 是平行四边形,E ,F 分别是AD 与BC 的中点,则在以A 、B 、C 、D 四点中的任意两点为始点和终点的所有向量中,与向量EF →方向相反的向量为________.【解析】因为AB ∥EF ,CD ∥EF ,所以与EF →平行的向量为DC →,CD →,AB →,BA →,其中方向相反的向量为BA →,CD →. 【答案】BA →,CD →7.给出下列命题:①若AB →=DC →,则A 、B 、C 、D 四点是平行四边形的四个顶点; ②在▱ABCD 中,一定有AB →=DC →; ③若a =b ,b =c ,则a =c ; ④若a ∥b ,b ∥c ,则a ∥c .其中所有正确命题的序号为________.【解析】AB →=DC →,A 、B 、C 、D 四点可能在同一条直线上,故①不正确;在▱ABCD 中,|AB →|=|DC →|,AB →与DC →平行且方向相同,故AB →=DC →,故②正确;a =b ,则|a |=|b |,且a 与b 方向相同;b =c ,则|b |=|c |,且b 与c 方向相同,则a 与c 长度相等且方向相同,故a =c ,故③正确;对于④,当b =0时,a 与c 不一定平行,故④不正确. 【答案】②③ 三、解答题8.在如图的方格纸(每个小方格的边长为1)上,已知向量a . (1)试以B 为起点画一个向量b ,使b =a ;(2)画一个以C 为起点的向量c ,使|c |=2,并说出c 的终点的轨迹是什么.【解析】(1)根据相等向量的定义,所作向量b 应与a 同向,且长度相等,如下图所示. (2)由平面几何知识可作满足条件的向量c ,所有这样的向量c 的终点的轨迹是以点C 为圆心,2为半径的圆,如下图所示.9.一辆汽车从A 点出发向西行驶了100千米到达B 点,然后又改变了方向向北偏西40°走了200千米到达C 点,最后又改变方向,向东行驶了100千米到达D 点. (1)作出向量AB →,BC →,CD →; (2)求|AD →|.【解析】(1)如图所示.(2)由题意,易知AB →与CD →方向相反,故AB →与CD →共线,即AB ∥CD . 又|AB →|=|CD →|,所以四边形ABCD 为平行四边形. 所以|AD →|=|BC →|=200(千米).10.如图,在△ABC 中,已知向量AD →=DB →,DF →=EC →,求证:AE →=DF →.证明:由DF →=EC →,可得DF =EC 且DF ∥EC , 故四边形CEDF 是平行四边形,从而DE ∥FC . ∵AD →=DB →,∴D 为AB 的中点. ∴AE →=EC →,∴AE →=DF →.6.2.1 向量的加法运算一、选择题1.点O 是平行四边形ABCD 的两条对角线的交点,则AO →+OC →+CB →等于( )A.AB →B.BC →C.CD →D.DA →【解析】因为点O 是平行四边形ABCD 的两条对角线的交点,则AO →+OC →+CB →=AC →+CB →=AB →.故选A. 【答案】A2.设a 表示“向东走5 km”,b 表示“向南走5 km”,则a +b 表示( ) A .向东走10 km B .向南走10 km C .向东南走10 km D .向东南走5 2 km 【解析】如图所示,AC →=a +b ,|AB →|=5,|BC →|=5,且AB ⊥BC ,则|AC →|=52,∠BAC =45°. 【答案】D3.已知向量a ∥b ,且|a |>|b |>0,则向量a +b 的方向( ) A .与向量a 方向相同 B .与向量a 方向相反 C .与向量b 方向相同 D .不确定【解析】如果a 和b 方向相同,则它们的和的方向应该与a (或b )的方向相同;如果它们的方向相反,而a 的模大于b 的模,则它们的和的方向与a 的方向相同. 【答案】A4.如图所示的方格纸中有定点O ,P ,Q ,E ,F ,G ,H ,则OP →+OQ →=( )A.OH →B.OG →C.FO →D.EO →【解析】设a =OP →+OQ →,以OP ,OQ 为邻边作平行四边形,则OP 与OQ 之间的对角线对应的向量即向量a =OP →+OQ →,由a 和FO →长度相等,方向相同,得a =FO →,即OP →+OQ →=FO →. 【答案】C 二、填空题5.在△ABC 中,AB →=a ,BC →=b ,CA →=c ,则a +b +c =________.【解析】由向量加法的三角形法则,得AB →+BC →=AC →,即a +b +c =AB →+BC →+CA →=0. 【答案】06.化简(AB →+MB →)+(BO →+BC →)+OM →=________.【解析】原式=(AB →+BO →)+(OM →+MB →)+BC →=AO →+OB →+BC →=AB →+BC →=AC →. 【答案】AC →7.在菱形ABCD 中,∠DAB =60°,|AB →|=1,则|BC →+CD →|=________. 【解析】在菱形ABCD 中,连接BD , ∵∠DAB =60°,∴△BAD 为等边三角形, 又∵|AB →|=1,∴|BD →|=1,|BC →+CD →|=|BD →|=1. 【答案】1 三、解答题8.如图,已知向量a 、b ,求作向量a +b .【解析】(1)作OA →=a ,AB →=b ,则OB →=a +b ,如图(1); (2)作OA →=a ,AB →=b ,则OB →=a +b ,如图(2); (3)作OA →=a ,AB →=b ,则OB →=a +b ,如图(3).9.如图所示,设O 为正六边形ABCDEF 的中心,作出下列向量: (1)OA →+OC →; (2)BC →+FE →.【解析】(1)由图可知,四边形OABC 为平行四边形,所以由向量加法的平行四边形法则,得OA →+OC →=OB →.(2)由图可知,BC →=FE →=OD →=AO →,所以BC →+FE →=AO →+OD →=AD →.10.如图,在重300 N 的物体上拴两根绳子,这两根绳子在铅垂线的两侧,与铅垂线的夹角分别为30°,60°,当整个系统处于平衡状态时,求两根绳子的拉力.【解析】如图,作▱OACB ,使∠AOC =30°,∠BOC =60°, 则∠ACO =∠BOC =60°,∠OAC =90°.设向量OA →,OB →分别表示两根绳子的拉力,则CO →表示物体所受的重力,且|OC →|=300 N. 所以|OA →|=|OC →|cos 30°=1503(N), |OB →|=|OC →|cos 60°=150 (N).所以与铅垂线成30°角的绳子的拉力是150 3 N ,与铅垂线成60°角的绳子的拉力是150 N.6.2.2 向量的减法运算一、选择题1.下列运算中正确的是( ) A.OA →-OB →=AB → B.AB →-CD →=DB → C.OA →-OB →=BA → D.AB →-AB →=0【解析】根据向量减法的几何意义,知OA →-OB →=BA →,所以C 正确,A 错误;B 显然错误;对于D ,AB →-AB →应该等于0,而不是0.【答案】C2.下列四式中不能化简为PQ →的是( ) A.AB →+(PA →+BQ →) B .(AB →+PC →)+(BA →-QC →) C.QC →-QP →+CQ → D.PA →+AB →-BQ →【解析】D 中,PA →+AB →-BQ →=PB →-BQ →=PB →+QB →不能化简为PQ →,其余选项皆可. 【答案】D3.在△ABC 中,D 是BC 边上的一点,则AD →-AC →等于( ) A.CB → B.BC → C.CD → D.DC →【解析】在△ABC 中,D 是BC 边上一点,则由两个向量的减法的几何意义可得AD →-AC →=CD →. 【答案】C4.如图,在四边形ABCD 中,设AB →=a ,AD →=b ,BC →=c ,则DC →=( ) A .a -b +c B .b -(a +c ) C .a +b +c D .b -a +c【解析】DC →=DA →+AB →+BC →=a -b +c . 【答案】A 二、填空题5.EF →+DE →-DB →=________.【解析】EF →+DE →-DB →=EF →+BE →=BF →. 【答案】BF →6.若a ,b 为相反向量,且|a |=1,|b |=1,则|a +b |=________,|a -b |=________.【解析】若a ,b 为相反向量,则a +b =0,所以|a +b |=0,又a =-b ,所以|a |=|-b |=1,因为a 与-b 共线同向,所以|a -b |=2. 【答案】0 27.设点M 是线段BC 的中点,点A 在直线BC 外,且|BC →|=4,|AB →+AC →|=|AB →-AC →|,则|AM →|=________.【解析】以AB ,AC 为邻边作平行四边形ACDB ,由向量加减法几何意义可知,AD →=AB →+AC →,CB →=AB →-AC →,∵|AB →+AC →|=|AB →-AC →|,平行四边形ABCD 为矩形,∴|AD →|=|CB →|,又|BC →|=4,M 是线段BC 的中点, ∴|AM →|=12|AD →|=12|BC →|=2.【答案】2 三、解答题8.如图,已知向量a ,b ,c 不共线,求作向量a +b -c .【解析】方法一:如图①,在平面内任取一点O ,作OA →=a ,AB →=b ,则OB →=a +b ,再作OC →=c ,则CB →=a +b -c .方法二:如图②,在平面内任取一点O ,作OA →=a ,AB →=b ,则OB →=a +b ,再作CB →=c ,连接OC ,则OC →=a +b -c .9.化简下列各式:(1)(AB →+MB →)+(-OB →-MO →); (2)AB →-AD →-DC →.【解析】(1)方法一 原式=AB →+MB →+BO →+OM →=(AB →+BO →)+(OM →+MB →)=AO →+OB →=AB →. 方法二 原式=AB →+MB →+BO →+OM →=AB →+(MB →+BO →)+OM →=AB →+MO →+OM →=AB →+0=AB →. (2)方法一 原式=DB →-DC →=CB →.方法二 原式=AB →-(AD →+DC →)=AB →-AC →=CB →. 10.如图,解答下列各题:(1)用a ,d ,e 表示DB →; (2)用b ,c 表示DB →; (3)用a ,b ,e 表示EC →; (4)用d ,c 表示EC →.【解析】由题意知,AB →=a ,BC →=b ,CD →=c ,DE →=d ,EA →=e ,则 (1)DB →=DE →+EA →+AB →=a +d +e . (2)DB →=CB →-CD →=-BC →-CD →=-b -c . (3)EC →=EA →+AB →+BC →=a +b +e . (4)EC →=-CE →=-(CD →+DE →)=-c -d .6.2.3 向量的数乘运算一、选择题1.4(a -b )-3(a +b )-b 等于( ) A .a -2b B .a C .a -6b D .a -8b【解析】原式=4a -4b -3a -3b -b =a -8b .2.点C 在直线AB 上,且AC →=3AB →,则BC →等于( ) A .-2AB → B.13AB →C .-13AB →D .2AB →【解析】如图,AC →=3AB →,所以BC →=2AB →. 【答案】D3.已知向量a ,b 是两个不共线的向量,且向量m a -3b 与a +(2-m )b 共线,则实数m 的值为( )A .-1或3 B. 3 C .-1或4 D .3或4【解析】因为向量m a -3b 与a +(2-m )b 共线,且向量a ,b 是两个不共线的向量,所以m =-32-m ,解得m =-1或m =3. 【答案】A 4.如图,已知AB →=a ,AC →=b ,BD →=3DC →,用a ,b 表示AD →,则AD →=( ) A .a +34bB.34a +14bC.14a +14bD.14a +34b 【解析】AD →=AB →+BD →=AB →+34BC →=AB →+34(AC →-AB →)=14AB →+34AC →=14a +34b .【答案】D5.已知|a |=4,|b |=8,若两向量方向同向,则向量a 与向量b 的关系为b =________a . 【解析】由于|a |=4,b =8,则|b |=2|a |,又两向量同向,故b =2a . 【答案】26.点C 在线段AB 上,且AC CB =32,则AC →=________AB →,BC →=________AB →.【解析】因为C 在线段AB 上,且AC CB =32,所以AC →与AB →方向相同,BC →与AB →方向相反,且AC AB =35,BC AB =25,所以AC →=35AB →,BC →=-25AB →. 【答案】35 -257.已知向量a ,b 满足|a |=3,|b |=5,且a =λb ,则实数λ的值是________. 【解析】由a =λb ,得|a |=|λb |=|λ||b |.∵|a |=3,|b |=5, ∴|λ|=35,即λ=±35.【答案】±35三、解答题 8.计算(1)13(a +2b )+14(3a -2b )-12(a -b ); (2)12⎣⎢⎡⎦⎥⎤3a +2b-23a -b -76⎣⎢⎡⎦⎥⎤12a +37⎝ ⎛⎭⎪⎫b +76a . 【解析】(1)原式=⎝ ⎛⎭⎪⎫13+34-12a +⎝ ⎛⎭⎪⎫23-12+12b =712a +23b . (2)原式=12⎝ ⎛⎭⎪⎫73a +b -76⎝ ⎛⎭⎪⎫a +37b =76a +12b -76a -12b =0. 9.已知E ,F 分别为四边形ABCD 的对角线AC ,BD 的中点,设BC →=a ,DA →=b ,试用a ,b 表示EF →.【解析】如图所示,取AB 的中点P ,连接EP ,FP .在△ABC 中,EP 是中位线, 所以PE →=12BC →=12a .在△ABD 中,FP 是中位线,所以PF →=12AD →=-12DA →=-12b .在△EFP 中,EF →=EP →+PF →=-PE →+PF →=-12a -12b =-12(a +b ).10.已知e ,f 为两个不共线的向量,若四边形ABCD 满足AB →=e +2f ,BC →=-4e -f ,CD →=-5e -3f .(1)用e 、f 表示AD →;(2)证明:四边形ABCD 为梯形.【解析】(1)AD →=AB →+BC →+CD →=(e +2f )+(-4e -f )+(-5e -3f )=(1-4-5)e +(2-1-3)f =-8e -2f .(2)证明:因为AD →=-8e -2f =2(-4e -f )=2BC →, 所以AD →与BC →方向相同,且AD →的长度为BC →的长度的2倍, 即在四边形ABCD 中,AD ∥BC ,且AD ≠BC , 所以四边形ABCD 是梯形.6.2.4 向量的数量积一、选择题1.若|m |=4,|n |=6,m 与n 的夹角为45°,则m ·n =( ) A .12 B .12 2 C .-12 2 D .-12【解析】m ·n =|m ||n |cos θ=4×6×cos 45°=24×22=12 2. 【答案】B2.已知a ·b =-122,|a |=4,a 和b 的夹角为135°,则|b |=( ) A .12 B .3 C .6 D .3 3【解析】a ·b =|a ||b |cos 135°=-122,又|a |=4,解得|b |=6. 【答案】C3.已知向量a ,b 满足|a |=2,|b |=3,a ·(b -a )=-1,则a 与b 的夹角为( ) A.π6 B.π4 C.π3 D.π2【解析】因为|a |=2,a ·(b -a )=-1, 所以a ·(b -a )=a ·b -a 2=a ·b -22=-1, 所以a ·b =3.又因为|b |=3,设a 与b 的夹角为θ,则cos θ=a ·b |a ||b |=32×3=12.又θ∈[0,π],所以θ=π3. 【答案】C4.若a ·b >0,则a 与b 的夹角θ的取值范围是( )A.⎣⎢⎡⎭⎪⎫0,π2B.⎣⎢⎡⎭⎪⎫π2,πC.⎝⎛⎦⎥⎤π2,π D.⎝ ⎛⎭⎪⎫π2,π 【解析】因为a ·b >0,所以cos θ>0,所以θ∈⎣⎢⎡⎭⎪⎫0,π2.【答案】A 二、填空题5.如图所示,在Rt△ABC 中,∠A =90°,AB =1,则AB →·BC →的值是________.【解析】方法一 AB →·BC →=|AB →||BC →|cos(180°-∠B )=-|AB →||BC →|cos∠B =-|AB →||BC→|·|AB →||BC →|=-|AB →|2=-1.方法二 |BA →|=1,即BA →为单位向量,AB →·BC →=-BA →·BC →=-|BA →||BC →|cos∠B ,而|BC →|·cos∠B =|BA →|,所以AB →·BC →=-|BA →|2=-1. 【答案】-16.已知向量a ,b 满足|a |=1,|b |=4,且a ·b =2,则a 与b 的夹角为________.【解析】设a 与b 的夹角为θ,cos θ=a ·b |a |·|b |=21×4=12,又因为θ∈[0,π],所以θ=π3. 【答案】π37.已知|a |=3,向量a 与b 的夹角为π3,则a 在b 方向上的投影为________.【解析】向量a 在b 方向上的投影为|a |cos θ=3×cos π3=32.【答案】32三、解答题8.已知|a |=3,|b |=4,a 与b 的夹角为120°,求: (1)a 2-b 2;(2)(2a -b )·(a +3b ).【解析】(1)a 2-b 2=|a |2-|b |2=32-42=-7.(2)(2a -b )·(a +3b )=2a 2+5a ·b -3b 2=2|a |2+5|a ||b |·cos 120°-3|b |2=2×32+5×3×4×⎝ ⎛⎭⎪⎫-12-3×42=-60. 9.(1)已知|a |=|b |=5,向量a 与b 的夹角为π3,求|a +b |,|a -b |,|3a +b |;(2)已知|a |=|b |=5,且|3a -2b |=5,求|3a +b |的值;(3)如图,已知在▱ABCD 中,AB =3,AD =1,∠DAB =π3,求对角线AC 和BD 的长.【解析】(1)a ·b =|a ||b |cos π3=5×5×12=252,∴|a +b |=a +b 2=|a |2+2a ·b +|b |2=25+2×252+25=53,|a -b |=a -b2=|a |2+|b |2-2a ·b =25=5, |3a +b |=3a +b2=9a 2+b 2+6a ·b =325=513.(2)∵|3a -2b |2=9|a |2-12a ·b +4|b |2=9×25-12a ·b +4×25=325-12a ·b ,又|3a -2b |=5,∴325-12a ·b =25,则a ·b =25.∴|3a +b |2=(3a +b )2=9a 2+6a ·b +b 2=9×25+6×25+25=400.故|3a +b |=20. (3)设AB →=a ,AD →=b ,则|a |=3,|b |=1,a 与b 的夹角θ=π3.∴a ·b =|a ||b |cos θ=32.又∵AC →=a +b ,DB →=a -b , ∴|AC →|=AC →2=a +b 2=a 2+2a ·b +b 2=13,|DB →|=DB →2=a -b2=a 2-2a ·b +b 2=7.∴AC =13,BD =7.10.已知|a |=2|b |=2,且向量a 在向量b 方向上的投影为-1. (1)求a 与b 的夹角θ; (2)求(a -2b )·b ;(3)当λ为何值时,向量λa +b 与向量a -3b 互相垂直? 【解析】(1)由题意知|a |=2,|b |=1. 又a 在b 方向上的投影为|a |cos θ=-1, ∴cos θ=-12,∴θ=2π3.(2)易知a ·b =-1,则(a -2b )·b =a ·b -2b 2=-1-2=-3. (3)∵λa +b 与a -3b 互相垂直,∴(λa +b )·(a -3b )=λa 2-3λa ·b +b ·a -3b 2 =4λ+3λ-1-3=7λ-4=0, ∴λ=47.6.3.1 平面向量基本定理一、选择题1.已知向量a =e 1-2e 2,b =2e 1+e 2,其中e 1,e 2不共线,则a +b 与c =6e 1-2e 2的关系是( ) A .不共线 B .共线 C .相等 D .不确定 【解析】∵a +b =3e 1-e 2, ∴c =2(a +b ).∴a +b 与c 共线. 【答案】B2.已知AD 是△ABC 的中线,AB →=a ,AD →=b ,以a ,b 为基底表示AC →,则AC →=( ) A.12(a -b ) B .2b -a C.12(b -a ) D .2b +a【解析】如图,AD 是△ABC 的中线,则D 为线段BC 的中点,从而AD →=12(AB →+AC →),则AC →=2AD→-AB →=2b -a . 【答案】B3.在正方形ABCD 中,AC →与CD →的夹角等于( ) A .45° B.90° C .120° D.135° 【解析】如图所示,将AC →平移到CE →,则CE →与CD →的夹角即为AC →与CD →的夹角,夹角为135°. 【答案】D4.若D 点在三角形ABC 的边BC 上,且CD →=4DB →=rAB →+sAC →,则3r +s 的值为( ) A.165 B.125 C.85 D.45【解析】∵CD →=4DB →=rAB →+sAC →, ∴CD →=45CB →=45(AB →-AC →)=rAB →+sAC →,∴r =45,s =-45.∴3r +s =125-45=85.【答案】C 二、填空题5.已知向量a ,b 是一组基底,实数x ,y 满足(3x -4y )a +(2x -3y )b =6a +3b ,则x -y 的值为________.【解析】因为a ,b 是一组基底,所以a 与b 不共线, 因为(3x -4y )a +(2x -3y )b =6a +3b ,所以⎩⎪⎨⎪⎧3x -4y =6,2x -3y =3,解得⎩⎪⎨⎪⎧x =6,y =3,所以x -y =3.【答案】36.已知O ,A ,B 是平面上的三个点,直线AB 上有一点C ,满足2AC →+CB →=0,若OA →=a ,OB →=b ,用a ,b 表示向量OC →,则OC →=________.【解析】AC →=OC →-OA →,CB →=OB →-OC →,∵2AC →+CB →=0,∴2(OC →-OA →)+(OB →-OC →)=0,∴OC →=2OA →-OB →=2a -b . 【答案】2a -b7.在正方形ABCD 中,E 是DC 边上的中点,且AB →=a ,AD →=b ,则BE →=________.【解析】BE →=BC →+CE →=AD →-12AB →=b -12a .【答案】b -12a三、解答题8.已知e 1,e 2是平面内两个不共线的向量,a =3e 1-2e 2,b =-2e 1+e 2,c =7e 1-4e 2,试用向量a 和b 表示c .【解析】因为a ,b 不共线,所以可设c =x a +y b , 则x a +y b =x (3e 1-2e 2)+y (-2e 1+e 2) =(3x -2y )e 1+(-2x +y )e 2=7e 1-4e 2. 又因为e 1,e 2不共线,所以⎩⎪⎨⎪⎧3x -2y =7,-2x +y =-4,解得⎩⎪⎨⎪⎧x =1,y =-2,所以c =a -2b .9.如图所示,设M ,N ,P 是△ABC 三边上的点,且BM →=13BC →,CN →=13CA →,AP →=13AB →,若AB →=a ,AC→=b ,试用a ,b 将MN →、NP →、PM →表示出来. 【解析】NP →=AP →-AN →=13AB →-23AC →=13a -23b ,MN →=CN →-CM →=-13AC →-23CB →=-13b -23(a -b )=-23a +13b ,PM →=-MP →=-(MN →+NP →)=13(a +b ).10.若点M 是△ABC 所在平面内一点,且满足:AM →=34AB →+14AC →.(1)求△ABM 与△ABC 的面积之比;(2)若N 为AB 中点,AM 与CN 交于点O ,设BO →=xBM →+yBN →,求x ,y 的值. 【解析】(1)由AM →=34AB →+14AC →可知M ,B ,C 三点共线,如图,令BM →=λBC →⇒AM →=AB →+BM →=AB →+λBC →=AB →+λ(AC →-AB →)=(1-λ)AB →+λAC →⇒λ=14,所以S △ABM S △ABC =14,即面积之比为1 4. (2)由BO →=xBM →+yBN →⇒BO →=xBM →+y 2BA →,BO →=x 4BC →+yBN ,由O ,M ,A 三点共线及O ,N ,C 三点共线⇒⎩⎪⎨⎪⎧ x +y2=1,x4+y =1⇒⎩⎪⎨⎪⎧x =47,y =67.6.3.2 平面向量的正交分解及坐标表示 6.3.3 平面向量加、减运算的坐标表示一、选择题1.设i ,j 是平面直角坐标系内分别与x 轴,y 轴正方向相同的两个单位向量,O 为坐标原点,若OA →=4i +2j ,OB →=3i +4j ,则2OA →+OB →的坐标是( ) A .(1,-2) B .(7,6) C .(5,0) D .(11,8)【解析】因为OA →=(4,2),OB →=(3,4), 所以2OA →+OB →=(8,4)+(3,4)=(11,8). 【答案】D2.已知向量a =(-1,2),b =(1,0),那么向量3b -a 的坐标是( ) A .(-4,2) B .(-4,-2) C .(4,2) D .(4,-2)【解析】3b -a =3(1,0)-(-1,2)=(4,-2).【答案】D3.已知向量a =(1,2),2a +b =(3,2),则b =( ) A .(1,-2) B .(1,2) C .(5,6) D .(2,0)【解析】b =(3,2)-2a =(3,2)-(2,4)=(1,-2). 【答案】A4.已知向量i =(1,0),j =(0,1),对坐标平面内的任一向量a ,给出下列四个结论: ①存在唯一的一对实数x ,y ,使得a =(x ,y );②若x 1,x 2,y 1,y 2∈R ,a =(x 1,y 1)≠(x 2,y 2),则x 1≠x 2,且y 1≠y 2; ③若x ,y ∈R ,a =(x ,y ),且a ≠0,则a 的起点是原点O ; ④若x ,y ∈R ,a ≠0,且a 的终点坐标是(x ,y ),则a =(x ,y ). 其中正确结论的个数是( ) A .1 B .2 C .3 D .4【解析】由平面向量基本定理知①正确;若a =(1,0)≠(1,3),但1=1,故②错误;因为向量可以平移,所以a =(x ,y )与a 的起点是不是原点无关,故③错误;当a 的终点坐标是(x ,y )时,a =(x ,y )是以a 的起点是原点为前提的,故④错误.【答案】A 二、填空题5.在平面直角坐标系内,已知i 、j 是两个互相垂直的单位向量,若a =i -2j ,则向量用坐标表示a =________.【解析】由于i ,j 是两个互相垂直的单位向量,所以a =(1,-2). 【答案】(1,-2)6.如右图所示,已知O 是坐标原点,点A 在第一象限,|OA →|=43,∠xOA =60°,则向量OA →的坐标为________.【解析】设点A (x ,y ),则x =|OA →|·cos 60°=43cos 60°=23,y =|OA →|·sin 60°=43sin 60°=6,即A (23,6),所以OA →=(23,6). 【答案】(23,6)7.已知向量a =(x +3,x 2-3x -4)与AB →相等,其中A (1,2),B (3,2),则x =________.【解析】易得AB →=(2,0),由a =(x +3,x 2-3x -4)与AB →相等得⎩⎪⎨⎪⎧x +3=2,x 2-3x -4=0,解得x =-1.【答案】-1 三、解答题8.如图,取与x 轴、y 轴同向的两个单位向量i ,j 作为基底,分别用i ,j 表示OA →,OB →,AB →,并求出它们的坐标.【解析】由图形可知,OA →=6i +2j ,OB →=2i +4j ,AB →=-4i +2j ,它们的坐标表示为OA →=(6,2),OB →=(2,4),AB →=(-4,2).9.已知a =(2,-4),b =(-1,3),c =(6,5),p =a +2b -c . (1)求p 的坐标 ;(2)若以a ,b 为基底,求p 的表达式.【解析】(1)p =(2,-4)+2(-1,3)-(6,5)=(-6,-3). (2)设p =λa +μb (λ,μ∈R ),则(-6,-3)=λ(2,-4)+μ(-1,3)=(2λ-μ,-4λ+3μ),所以⎩⎪⎨⎪⎧2λ-μ=-6,-4λ+3μ=-3,所以⎩⎪⎨⎪⎧λ=-212,μ=-15,所以p =-212a -15b .10.已知O 是△ABC 内一点,∠AOB =150°,∠BOC =90°,设OA →a ,OB →=b ,OC →=c ,且|a |=2,|b|=1,|c |=3,试用a ,b 表示c .【解析】如图,以O 为原点,OA →为x 轴的非负半轴建立平面直角坐标系,由三角函数的定义,得B (cos 150°,sin 150°),C (3cos 240°,3sin 240°). 即B ⎝ ⎛⎭⎪⎫-32,12,C ⎝ ⎛⎭⎪⎫-32,-332,又∵A (2,0), 故a =(2,0),b =⎝ ⎛⎭⎪⎫-32,12,c =⎝ ⎛⎭⎪⎫-32,-332. 设c =λ1a +λ2b (λ1,λ2∈R ),∴⎝ ⎛⎭⎪⎫-32,-332=λ1(2,0)+λ2⎝ ⎛⎭⎪⎫-32,12=⎝⎛⎭⎪⎫2λ1-32λ2,12λ2,∴⎩⎪⎨⎪⎧2λ1-32λ2=-32,12λ2=-332,∴⎩⎨⎧λ1=-3,λ2=-33,∴c =-3a -33b .6.3.4 平面向量数乘运算的坐标表示一、选择题1.已知平面向量a =(1,2),b =(-2,m ),且a ∥b ,则2a +3b =( ) A .(-2,-4) B .(-3,-6) C .(-4,-8) D .(-5,-10)【解析】由a =(1,2),b =(-2,m ),且a ∥b ,得1×m =2×(-2),解得m =-4,所以b =(-2,-4),所以2a +3b =2(1,2)+3(-2,-4)=(-4,-8). 【答案】C2.已知向量a =(1,2),b =(λ,1),若(a +2b )∥(2a -2b ),则λ的值等于( ) A.12 B.13 C .1 D .2【解析】a +2b =(1,2)+2(λ,1)=(1+2λ,4),2a -2b =2(1,2)-2(λ,1)=(2-2λ,2),由(a +2b )∥(2a -2b ),可得2(1+2λ)-4(2-2λ)=0,解得λ=12,故选A.【答案】A3.已知A (1,-3),B ⎝ ⎛⎭⎪⎫8,12,且A ,B ,C 三点共线,则点C 的坐标可以是( ) A .(-9,1) B .(9,-1) C .(9,1) D .(-9,-1) 【解析】设点C 的坐标是(x ,y ), 因为A ,B ,C 三点共线, 所以AB →∥AC →.因为AB →=⎝ ⎛⎭⎪⎫8,12-(1,-3)=⎝ ⎛⎭⎪⎫7,72,AC →=(x ,y )-(1,-3)=(x -1,y +3),所以7(y +3)-72(x -1)=0,整理得x -2y =7,经检验可知点(9,1)符合要求,故选C. 【答案】C4.已知向量OA →=(3,-4),OB →=(6,-3),OC →=(2m ,m +1),若AB →∥OC →,则实数m 的值为( ) A.35 B .-35 C .3 D .-3【解析】向量OA →=(3,-4),OB →=(6,-3), ∴AB →=(3,1),∵OC →=(2m ,m +1),AB →∥OC →, ∴3m +3=2m ,解得m =-3,故选D.【答案】D 二、填空题5.已知向量a =(3x -1,4)与b =(1,2)共线,则实数x 的值为________.【解析】因为向量a =(3x -1,4)与b =(1,2)共线,所以2(3x -1)-4×1=0,解得x =1. 【答案】16.已知A (2,1),B (0,2),C (-2,1),O (0,0),给出下列结论: ①直线OC 与直线BA 平行; ②AB →+BC →=CA →; ③OA →+OC →=OB →; ④AC →=OB →-2OA →.其中,正确结论的序号为________.【解析】①因为OC →=(-2,1),BA →=(2,-1),所以OC →=-BA →,又直线OC ,BA 不重合,所以直线OC ∥BA ,所以①正确;②因为AB →+BC →=AC →≠CA →,所以②错误;③因为OA →+OC →=(0,2)=OB →,所以③正确;④因为AC →=(-4,0),OB →-2OA →=(0,2)-2(2,1)=(-4,0),所以④正确. 【答案】①③④7.已知向量a =(1,2),b =(1,λ),c =(3,4).若a +b 与c 共线,则实数λ=________. 【解析】因为a +b =(1,2)+(1,λ)=(2,2+λ),所以根据a +b 与c 共线得2×4-3×(2+λ)=0,解得λ=23.【答案】23三、解答题8.已知a =(x,1),b =(4,x ),a 与b 共线且方向相同,求x . 【解析】∵a =(x,1),b =(4,x ),a ∥b . ∴x 2-4=0,解得x 1=2,x 2=-2.当x =2时,a =(2,1),b =(4,2),a 与b 共线且方向相同; 当x =-2时,a =(-2,1),b =(4,-2),a 与b 共线且方向相反. ∴x =2.9.已知A ,B ,C 三点的坐标分别为(-1,0),(3,-1),(1,2),并且AE →=13AC →,BF →=13BC →,求证:EF →∥AB →.证明:设E (x 1,y 1),F (x 2,y 2),依题意有AC →=(2,2),BC →=(-2,3),AB →=(4,-1). ∵AE →=13AC →,∴AE →=⎝ ⎛⎭⎪⎫23,23,∵BF →=13BC →,∴BF →=⎝ ⎛⎭⎪⎫-23,1.∵AE →=(x 1+1,y 1)=⎝ ⎛⎭⎪⎫23,23,∴E ⎝ ⎛⎭⎪⎫-13,23,∵BF →=(x 2-3,y 2+1)=⎝ ⎛⎭⎪⎫-23,1,∴F ⎝ ⎛⎭⎪⎫73,0, ∴EF →=⎝ ⎛⎭⎪⎫83,-23.又∵4×⎝ ⎛⎭⎪⎫-23-83×(-1)=0,∴EF →∥AB →. 10.已知a =(1,0),b =(2,1). (1)当k 为何值时,k a -b 与a +2b 共线?(2)若AB →=2a +3b ,BC →=a +m b 且A ,B ,C 三点共线,求m 的值. 【解析】(1)k a -b =k (1,0)-(2,1)=(k -2,-1),a +2b =(1,0)+2(2,1)=(5,2).因为k a -b 与a +2b 共线,所以2(k -2)-(-1)×5=0,得k =-12.(2)因为A ,B ,C 三点共线, 所以AB →=λBC →,λ∈R , 即2a +3b =λ(a +m b ),所以⎩⎪⎨⎪⎧2=λ,3=mλ,解得m =32.6.3.5 平面向量数量积的坐标表示一、选择题1.若向量a =(3,m ),b =(2,-1),a ·b =0,则实数m 的值为( )A .-32 B.32C .2D .6【解析】依题意得6-m =0,m =6,选D. 【答案】D2.向量a =(1,-1),b =(-1,2),则(2a +b )·a =( ) A .-1 B .0 C .1 D .2【解析】a =(1,-1),b =(-1,2), ∴(2a +b )·a =(1,0)·(1,-1)=1. 【答案】C3.已知a ,b 为平面向量,且a =(4,3),2a +b =(3,18),则a ,b 夹角的余弦值等于( ) A.865 B .-865 C.1665 D .-1665【解析】∵a =(4,3),∴2a =(8,6).又2a +b =(3,18), ∴b =(-5,12),∴a ·b =-20+36=16. 又|a |=5,|b |=13, ∴cos〈a ,b 〉=165×13=1665.【答案】C4.已知向量a =(-1,2),b =(3,1),c =(k,4),且(a -b )⊥c ,则k =( ) A .-6 B .-1 C .1 D .6【解析】∵a =(-1,2),b =(3,1),∴a -b =(-4,1),∵(a -b )⊥c ,∴-4k +4=0,解得k =1. 【答案】C 二、填空题5.a =(-4,3),b =(1,2),则2|a |2-3a ·b =________. 【解析】因为a =(-4,3),所以2|a |2=2×(-42+32)2=50.a ·b =-4×1+3×2=2.所以2|a |2-3a ·b =50-3×2=44. 【答案】446.设向量a =(1,0),b =(-1,m ).若a ⊥(m a -b ),则m =________.【解析】由题意得,m a -b =(m +1,-m ),根据向量垂直的充要条件可得1×(m +1)+0×(-m )=0,所以m =-1.【答案】-17.已知平面向量a =(1,2),b =(4,2),c =m a +b (m ∈R ),且c 与a 的夹角等于c 与b 的夹角,则m =________.【解析】c =(m +4,2m +2),|a |=5,|b |=25, 设c ,a 的夹角为α,c ,b 的夹角为θ,又因为cos α=c ·a |c ||a |,cos θ=c ·b |c ||b |,由题意知c ·a |a |=c ·b |b |,即5m +85=8m +2025. 解得m =2. 【答案】2 三、解答题8.已知平面向量a =(1,x ),b =(2x +3,-x ),x ∈R . (1)若a ⊥b ,求x 的值; (2)若a ∥b ,求|a -b |.【解析】(1)若a ⊥b ,则a ·b =(1,x )·(2x +3,-x )=1×(2x +3)+x (-x )=0,即x 2-2x -3=0,解得x =-1或x =3.(2)若a ∥b ,则1×(-x )-x (2x +3)=0, 即x (2x +4)=0,解得x =0或x =-2. 当x =0时,a =(1,0),b =(3,0), |a -b |=|(1,0)-(3,0)|=|(-2,0)|=2. 当x =-2时,a =(1,-2),b =(-1,2), |a -b |=|(1,-2)-(-1,2)|=|(2,-4)|=2 5.9.已知向量a ,b ,c 是同一平面内的三个向量,其中a =(1,-1). (1)若|c |=32,且c ∥a ,求向量c 的坐标;(2)若b 是单位向量,且a ⊥(a -2b ),求a 与b 的夹角θ.【解析】(1)设c =(x ,y ),由|c |=32,c ∥a 可得⎩⎪⎨⎪⎧y +x =0,x 2+y 2=18,所以⎩⎪⎨⎪⎧x =-3,y =3,或⎩⎪⎨⎪⎧x =3,y =-3,故c =(-3,3)或c =(3,-3).(2)因为|a |=2,且a ⊥(a -2b ),所以a ·(a -2b )=0,即a 2-2a ·b =0,∴a ·b =1,故cos θ=a ·b |a |·|b |=22,∵θ∈[0,π], ∴θ=π4.10.在△PQR 中,PQ →=(2,3),PR →=(1,k ),且△PQR 的一个内角为直角,求k 的值. 【解析】(1)当∠P 为直角时,PQ ⊥PR , ∴PQ →·PR →=0,即2+3k =0,∴k =-23.(2)当∠Q 为直角时,QP ⊥QR ,易知QP →=(-2,-3),QR →=PR →-PQ →=(-1,k -3). 由QP →·QR →=0,得2-3(k -3)=0,∴k =113.(3)当∠R 为直角时,RP ⊥RQ ,易知RP →=(-1,-k ),RQ →=PQ →-PR →=(1,3-k ). 由RP →·RQ →=0,得-1-k (3-k )=0,∴k =3±132.综上所述,k 的值为-23或113或3+132或3-132.6.4 平面向量的应用一、选择题1.已知三个力F 1=(-2,-1),F 2=(-3,2),F 3=(4,-3)同时作用于某物体上的一点,为使物体保持平衡,现加上一个力F 4,则F 4等于( ) A .(-1,-2) B .(1,-2) C .(-1,2) D .(1,2)【解析】F 4=-(F 1+F 2+F 3)=-[(-2,-1)+(-3,2)+(4,-3)]=(1,2). 【答案】D2.△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,若b 2=ac ,c =2a ,则cos C =( ) A.24 B .-24C.34 D .-34【解析】由题意得,b 2=ac =2a 2,即b =2a ,∴cos C =a 2+b 2-c 22ab =a 2+2a 2-4a 22a ×2a=-24.【答案】B3.河水的流速为2 m/s ,一艘小船以垂直于河岸方向10 m/s 的速度驶向对岸,则小船在静水中的速度大小为( ) A .10 m/s B .226 m/s C .4 6 m/s D .12 m/s【解析】由题意知|v 水|=2 m/s ,|v 船|=10 m/s ,作出示意图如右图. ∴小船在静水中的速度大小|v |=102+22=104=226 (m/s). 【答案】B4.在△ABC 中,AB =3,AC 边上的中线BD =5,AC →·AB →=5,则AC 的长为( ) A .1 B .2 C .3 D .4【解析】因为BD →=AD →-AB →=12AC →-AB →,所以BD →2=⎝ ⎛⎭⎪⎫12AC →-AB →2=14AC →2-AC →·AB →+AB →2,即14AC →2=1,所以|AC →|=2,即AC =2. 【答案】B 二、填空题5.如图所示,一力作用在小车上,其中力F 的大小为10牛,方向与水平面成60°角,当小车向前运动10米时,力F 做的功为________焦耳. 【解析】设小车位移为s ,则|s |=10米,W F =F ·s =|F ||s |·cos 60°=10×10×12=50(焦耳).【答案】506.若AB →=3e ,DC →=5e ,且|AD →|=|BC →|,则四边形ABCD 的形状为________. 【解析】由AB →=3e ,DC →=5e ,得AB →∥DC →,AB →≠DC →,又因为ABCD 为四边形,所以AB ∥DC ,AB ≠DC . 又|AD →|=|BC →|,得AD =BC , 所以四边形ABCD 为等腰梯形. 【答案】等腰梯形7.某同学骑电动车以24 km/h 的速度沿正北方向的公路行驶,在点A 处测得电视塔S 在电动车的北偏东30°方向上,15 min 后到点B 处,测得电视塔S 在电动车的北偏东75°方向上,则点B 与电视塔的距离是________ km.【解析】如题图,由题意知AB =24×1560=6,在△ABS 中,∠BAS =30°,AB =6,∠ABS =180°-75°=105°,∴∠ASB =45°,由正弦定理知BS sin 30°=AB sin 45°,∴BS =AB ·sin 30°sin 45°=32(km). 【答案】3 2 三、解答题 8.如图所示,在正方形ABCD 中,P 为对角线AC 上任一点,PE ⊥AB ,PF ⊥BC ,垂足分别为E ,F ,连接DP ,EF ,求证:DP ⊥EF .证明:方法一 设正方形ABCD 的边长为1,。
人教版高中数学必修第二册 课时作业(一) 【含解析】
数学必修第二册课时作业(一)【原卷版】1.给出下列物理量:①质量;②速度;③位移;④力;⑤路程;⑥功;⑦加速度.其中是向量的有()A.4个B.5个C.6个D.7个2.【多选题】下列结论正确的是()A.若|a|=|b|,则a=b或a=-bB.非零向量a与b平行,则a与b的方向相同或相反C.起点不同,但方向相同且模相等的向量是相等向量D.与非零向量a平行的单位向量有1个3.设O是△ABC的外心,则AO→,BO→,CO→是()A.相等向量B.模相等的向量C.平行向量D.起点相同的向量4.【多选题】如图,O是正方形ABCD的中心,则下列结论正确的是()A.AO→=OC→B.AO→∥AC→C.AB→与CD→共线D.AO→=BO→5.在△ABC中,AB=AC,D,E分别是AB,AC的中点,则()A.AB→与AC→共线B.DE→与CB→共线C.AD→与AE→相等D.AD→与BD→相等6.四边形ABCD中,AB→=2DC→,则四边形ABCD为()A.平行四边形B.矩形C.梯形D.菱形7.在坐标平面上,把所有单位向量的起点平移到坐标系的原点,则它们的终点所构成的图形是________.8.已知在边长为2的菱形ABCD中,∠ABC=60°,则|BD→|=________.9.某人向正东方向行进100m后,再向正南方向行进1003m,则此人位移的方向是________.10.如图,若四边形ABCD 为正方形,△BCE 为等腰直角三角形,则:(1)图中与AB →共线的向量有________________________________________________________________;(2)图中与AB →相等的向量有________;(3)图中与AB →的模相等的向量有_______________________________________;(4)图中与EC →相等的向量有________.11.如图,在平行四边形ABCD 中,E ,F 分别是AD ,BC 的中点,则以A ,B ,C ,D ,E ,F 这六个点中任意两点分别作为起点和终点的所有向量中,与向量EF →方向相反的向量是________.12.若A 地位于B 地正西方向5km 处,C 地位于A 地正北方向5km 处,则C 地相对于B 地的位移是________.13.一辆消防车从A 地去B 地执行任务,先从A 地向北偏东30°方向行驶2km 到达D 地,然后从D 地沿北偏东60°方向行驶6km 到达C 地,从C 地又向南偏西30°方向行驶2km 才到达B 地.(1)在图中画出向量AD →,DC →,CB →,AB →;(2)描述B 地相对于A 地的位置.14.如图,在四边形ABCD 中,已知M ,N 分别是BC ,AD 的中点,且AB →=DC →,求证:CN 綉MA .15.中国象棋中规定:马走“日”字.下图是中国象棋的半个棋盘,若马在A 处,可跳到A 1处,也可跳到A 2处,用向量AA 1→或AA 2→表示马走了“一步”.试在图中画出马在B ,C 处走了“一步”的所有情况.1.O 是△ABC 内一点,若|OA →|=|OB →|=|OC →|,则O 是△ABC 的()A .重心B .内心C .外心D .垂心2.【多选题】下列命题中是真命题的是()A .向量AB →∥CD →(AB →,CD →为非零向量)就是AB →所在的直线平行于CD →所在的直线B .零向量与任一向量平行C .相等向量一定是平行向量D .平行向量一定是相等向量3.如图,已知四边形ABCD 是平行四边形,O 是两条对角线的交点,设点集M ={A ,B ,C ,D ,O },向量集合T ={PQ →|P ∈M ,Q ∈M ,且P ,Q 不重合},求集合T 中元素的个数.4.对于下列各种情况,各向量的终点的集合分别是什么图形?(1)把所有单位向量的起点平行移动到同一点P ;(2)把平行于直线l 的所有向量的起点平移到直线l 上的点P ;(3)把平行于直线l 的所有单位向量的起点平移到直线l 上的点P .5.民间流传的一种智力玩具七巧板是将一块正方形切割为五个等腰直角三角形和一个正方形、一个平行四边形,如图所示.试写出图中与FE →模相等的向量.6.指出下图中的平行向量和相等向量.7.如图所示,在四边形ABCD中,AB→=DC→,N,M是AD,BC上的点,且CN→=MA→.(1)求证:DN→=MB→;(2)试写出图中与向量DN→共线的向量.数学必修第二册课时作业(一)【解析版】1.给出下列物理量:①质量;②速度;③位移;④力;⑤路程;⑥功;⑦加速度.其中是向量的有()A .4个B .5个C .6个D .7个答案A解析速度、位移、力、加速度这4个物理量是向量,它们都有大小和方向.2.【多选题】下列结论正确的是()A .若|a |=|b |,则a =b 或a =-bB .非零向量a 与b 平行,则a 与b 的方向相同或相反C .起点不同,但方向相同且模相等的向量是相等向量D .与非零向量a 平行的单位向量有1个答案BC解析A 中两个向量未必共线;D 中与非零向量a 平行的单位向量有2个.3.设O 是△ABC 的外心,则AO →,BO →,CO →是()A .相等向量B .模相等的向量C .平行向量D .起点相同的向量答案B4.【多选题】如图,O 是正方形ABCD 的中心,则下列结论正确的是()A.AO →=OC →B.AO →∥AC →C.AB →与CD →共线 D.AO →=BO→答案ABC解析根据正方形的特征,结合相等向量,平行向量作出判断,只有D 是错误的,AO →与BO →只是模相等,由于方向不相同,所以不是相等向量.5.在△ABC 中,AB =AC ,D ,E 分别是AB ,AC 的中点,则()A.AB →与AC →共线 B.DE →与CB →共线C.AD →与AE →相等D.AD →与BD →相等答案B解析如图,因为D ,E 分别是AB ,AC 的中点,所以由三角形的中位线定理可得DE ∥BC .所以DE →与CB →共线.6.四边形ABCD 中,AB →=2DC →,则四边形ABCD 为()A .平行四边形B .矩形C .梯形D .菱形答案C解析∵AB →=2DC →,∴AB ∥DC 且AB ≠DC .∴四边形ABCD 为梯形.7.在坐标平面上,把所有单位向量的起点平移到坐标系的原点,则它们的终点所构成的图形是________.答案单位圆8.已知在边长为2的菱形ABCD 中,∠ABC =60°,则|BD →|=________.答案23解析由题意知AC ⊥BD ,且∠ABD =30°,设AC ,BD 交点为O ,在Rt △ABO 中,|BO →|=|AB →|·cos 30°=2×32=3,∴|BD →|=2|BO →|=23.9.某人向正东方向行进100m 后,再向正南方向行进1003m ,则此人位移的方向是________.答案南偏东30°解析如图所示,此人从点A 出发,经点B ,到达点C ,则tan ∠BAC =BC BA =1003100=3,∵∠BAC 是三角形的内角,∴∠BAC =60°,即位移的方向是南偏东30°.10.如图,若四边形ABCD 为正方形,△BCE 为等腰直角三角形,则:(1)图中与AB →共线的向量有________________________________________________________________;(2)图中与AB →相等的向量有________;(3)图中与AB →的模相等的向量有_______________________________________;(4)图中与EC →相等的向量有________.答案(1)DC →,BE →,BA →,CD →,EB →,AE →,EA →(2)DC →,BE→(3)BA →,BE →,EB →,DC →,CD →,AD →,DA →,BC →,CB →(4)BD→11.如图,在平行四边形ABCD 中,E ,F 分别是AD ,BC 的中点,则以A ,B ,C ,D ,E ,F 这六个点中任意两点分别作为起点和终点的所有向量中,与向量EF →方向相反的向量是________.答案BA →,FE →,CD→解析由平行四边形的性质,可知AB 綉EF 綉DC .则与向量EF →方向相反的向量有BA →,FE →,CD →.12.若A 地位于B 地正西方向5km 处,C 地位于A 地正北方向5km 处,则C 地相对于B 地的位移是________.答案西北方向52km解析根据题意画出图形如图所示,由图可知|BC →|=52km ,且∠ABC =45°,故C 地相对于B 地的位移是西北方向52km.13.一辆消防车从A 地去B 地执行任务,先从A 地向北偏东30°方向行驶2km 到达D 地,然后从D 地沿北偏东60°方向行驶6km 到达C 地,从C 地又向南偏西30°方向行驶2km才到达B 地.(1)在图中画出向量AD →,DC →,CB →,AB →;(2)描述B 地相对于A 地的位置.解析(1)作向量AD →,DC →,CB →,AB →如图所示.(2)由题意知AD →=BC →,所以四边形ABCD 为平行四边形,所以AB →=DC →,所以B 地相对于A 地的位置为“北偏东60°,相距6km ”.14.如图,在四边形ABCD 中,已知M ,N 分别是BC ,AD 的中点,且AB →=DC →,求证:CN 綉MA .证明因为AB →=DC →,所以AB =DC ,且AB ∥DC .所以四边形ABCD 是平行四边形.所以AD →=BC →.又因为M ,N 分别是BC ,AD 的中点,所以AN =MC ,且AN ∥MC .所以四边形AMCN 是平行四边形.所以CN 綉MA .15.中国象棋中规定:马走“日”字.下图是中国象棋的半个棋盘,若马在A 处,可跳到A 1处,也可跳到A 2处,用向量AA 1→或AA 2→表示马走了“一步”.试在图中画出马在B ,C 处走了“一步”的所有情况.解析根据规则,作出符合要求的所有向量,如图.1.O 是△ABC 内一点,若|OA →|=|OB →|=|OC →|,则O 是△ABC 的()A .重心B .内心C .外心D .垂心答案C解析由条件知点O 到△ABC 三个顶点的距离相等,所以O 是△ABC 的外心.2.【多选题】下列命题中是真命题的是()A .向量AB →∥CD →(AB →,CD →为非零向量)就是AB →所在的直线平行于CD →所在的直线B .零向量与任一向量平行C .相等向量一定是平行向量D .平行向量一定是相等向量答案BC解析向量AB →∥CD →包含AB →所在的直线与CD →所在的直线平行和重合两种情况,故A 是假命题;零向量的方向是任意的,因此与任一向量平行,故B 是真命题;相等向量的方向相同,因此相等向量一定是平行向量,故C 是真命题;平行向量的长度不一定相同,即使长度相同,方向也有可能相反,因此平行向量不一定是相等向量,故D 是假命题.3.如图,已知四边形ABCD 是平行四边形,O 是两条对角线的交点,设点集M ={A ,B ,C ,D ,O },向量集合T ={PQ →|P ∈M ,Q ∈M ,且P ,Q 不重合},求集合T 中元素的个数.解析从模和方向两个角度考虑,以下向量是互不相等的向量:AB →,BA →,AD →,DA →,AO →,OA →,AC →,CA →,BO →,OB →,BD →,DB →,其他向量都与它们中的某一个相等,故集合T 中有12个元素.4.对于下列各种情况,各向量的终点的集合分别是什么图形?(1)把所有单位向量的起点平行移动到同一点P ;(2)把平行于直线l 的所有向量的起点平移到直线l 上的点P ;(3)把平行于直线l 的所有单位向量的起点平移到直线l 上的点P .解析(1)是以P 点为圆心,以1个单位长度为半径的圆.(2)是直线l .(3)是直线l 上与点P 的距离为1个单位长度的两个点.5.民间流传的一种智力玩具七巧板是将一块正方形切割为五个等腰直角三角形和一个正方形、一个平行四边形,如图所示.试写出图中与FE →模相等的向量.解析与FE →模相等的向量有EF →,DO →,OD →,GH →,HG →,OB →,BO →,AO →,OA →,共9个.6.指出下图中的平行向量和相等向量.解析平行向量有CD →∥AB →∥IJ →∥MN →,EF →∥GH →∥KL →.相等向量有CD →=MN →,AB →=IJ →.7.如图所示,在四边形ABCD 中,AB →=DC →,N ,M 是AD ,BC 上的点,且CN →=MA →.(1)求证:DN →=MB →;(2)试写出图中与向量DN →共线的向量.解析(1)证明:因为AB →=DC →,所以|AB →|=|DC →|,且AB ∥CD .因此四边形ABCD 是平行四边形,所以|DA →|=|CB →|,且DA ∥CB .同理,由CN →=MA →,可证四边形CNAM 是平行四边形,所以CM →=NA →.所以|MB →|=|DN →|,即DN →与MB →的模相等,又DN →与MB →的方向相同,故DN →=MB →.(2)图中与向量DN →共线的向量有NA →,AN →,ND →,CM →,MC →,MB →,BM →,CB →,BC →,DA →,AD →.。
高中数学 全册综合检测试题课时作业(含解析)新人教A版必修第二册-新人教A版高一第二册数学试题
全册综合检测试题时间:120分钟 分值:150分第Ⅰ卷(选择题,共60分)一、单项选择题每小题5分,共40分 1.下列命题为假命题的是( D ) A .复数的模是非负实数B .复数等于零的充要条件是它的模等于零C .两个复数的模相等是这两个复数相等的必要条件D .复数z 1>z 2的充要条件是|z 1|>|z 2|解析:A 中,任何复数z =a +b i(a ,b ∈R )的模|z |=a 2+b 2≥0总成立,所以A 正确;B 中,由复数为零的条件z =0⇔⎩⎪⎨⎪⎧a =0,b =0⇔|z |=0,故B 正确;C 中,若z 1=a 1+b 1i ,z 2=a 2+b 2i(a 1,b 1,a 2,b 2∈R ),且z 1=z 2,则有a 1=a 2,b 1=b 2,所以|z 1|=|z 2|;反之,由|z 1|=|z 2|,推不出z 1=z 2,如z 1=1+3i ,z 2=1-3i 时,|z 1|=|z 2|,故C 正确;D 中,若z 1=a 1+b 1i ,z 2=a 2+b 2i ,z 1>z 2,则a 1>a 2,b 1=b 2=0,此时|z 1|>|z 2|;若|z 1|>|z 2|,z 1与z 2不一定能比较大小,所以D 错误.2.随机调查某校50个学生在学校的午餐费,结果如表:餐费/元 6 7 8 人数102020这50A .7.2,0.56 B .7.2,0.56 C .7,0.6 D .7,0.6解析:根据题意,计算这50个学生午餐费的平均值是x =150×(6×10+7×20+8×20)=7.2,方差是s 2=150[10×(6-7.2)2+20×(7-7.2)2+20×(8-7.2)2]=150(14.4+0.8+12.8)=0.56.3.设α,β为两个平面,则α∥β的充要条件是( B ) A .α内有无数条直线与β平行 B .α内有两条相交直线与β平行 C .α,β平行于同一条直线 D .α,β垂直于同一平面解析:当α内有无数条直线与β平行,也可能两平面相交,故A 错.同样当α,β平行于同一条直线或α,β垂直于同一平面时,两平面也可能相交,故C ,D 错.由面面平行的判定定理可得B 正确.4.如图,在三棱柱ABC A 1B 1C 1中,侧棱垂直于底面,底面是边长为2的正三角形,侧棱长为3,则CC 1与平面AB 1C 1所成的角为( A )A.π6B.π4 C.π3D.π2解析:如图,取B 1C 1中点为D ,连接AD ,A 1D ,因为侧棱垂直于底面,底边是边长为2的正三角形,所以三棱柱ABC A 1B 1C 1是正三棱柱,所以CC 1∥AA 1,所以AA 1与平面AB 1C 1所成的角即是CC 1与平面AB 1C 1所成的角,因为B 1C 1⊥A 1D ,B 1C 1⊥AA 1,所以B 1C 1⊥平面AA 1D ,所以平面AA 1D ⊥平面AB 1C 1,所以AA 1与平面AB 1C 1所成角为∠A 1AD ,因为AA 1=3,A 1D =3,所以tan ∠A 1AD =A 1D AA 1=33,所以∠A 1AD =π6,所以CC 1与平面AB 1C 1所成角为π6.5.正方形ABCD 的边长为2,点E 为BC 边的中点,F 为CD 边上一点,若AF →·AE →=|AE →|2,则|AF →|=( D )A .3B .5 C.32D.52解析:以A 为坐标原点,AB 所在直线为x 轴,AD 所在直线为y 轴建立坐标系,如图所示,因为E 为BC 边的中点,所以E (2,1),因为F 为CD 边上一点,所以可设F (t,2)(0≤t ≤2),所以AF →=(t,2),AE →=(2,1),由AF →·AE →=|AE →|2可得:2t +2=22+1=5,所以t =32,所以AF →=⎝ ⎛⎭⎪⎫32,2, 所以|AF →|=322+22=52.6.已知点O 是△ABC 内部一点,并且满足OA →+2OB →+3OC →=0,△BOC 的面积为S 1,△ABC 的面积为S 2,则S 1S 2=( A )A.16B.13C.23D.34 解析:因为OA →+2OB →+3OC →=0,所以OA →+OC →=-2(OB →+OC →),如图,分别取AC ,BC 的中点D ,E ,则 OA →+OC →=2OD →,OB →+OC →=2OE →, 所以OD →=-2OE →,即O ,D ,E 三点共线且|OD →|=2|OE →|, 则S △OBC =13S △DBC ,由于D 为AC 中点,所以S △DBC =12S △ABC ,所以S △OBC =16S △ABC ,即S 1S 2=16.7.为向国际化大都市目标迈进,某市今年新建三大类重点工程,它们分别是30项基础设施类工程,20项民生类工程和10项产业建设类工程.现有3名民工相互独立地从这60个项目中任选一个项目参与建设,则这3名民工选择的项目所属类别互异的概率是( D )A.12B.13C.14D.16解析:记第i 名民工选择的项目属于基础设施类、民生类、产业建设类分别为事件A i ,B i ,C i ,i =1,2,3.由题意,事件A i ,B i ,C i (i =1,2,3)相互独立,则P (A i )=3060=12,P (B i )=2060=13,P (C i )=1060=16,i =1,2,3,故这3名民工选择的项目所属类别互异的概率是P =6P (A i B i C i )=6×12×13×16=16.8.如图,△ABC 是边长为23的正三角形,P 是以C 为圆心,半径为1的圆上任意一点,则AP →·BP →的取值X 围是( A )A .[1,13]B .(1,13)C .(4,10)D .[4,10]解析:取AB 的中点D ,连接CD ,CP ,则CA →+CB →=2CD →,所以AP →·BP →=(CP →-CA →)·(CP →-CB →)=CA →·CB →-2CD →·CP →+1=(23)2cos π3-2×3×1×cos〈CD →,CP →〉+1=7-6cos 〈CD →,CP →〉,所以当cos 〈CD →,CP →〉=1时,AB →·BP →取得最小值为1;当cos 〈CD →,CP →〉=-1时,AP →·BP→取得最大值为13,因此AP →·BP →的取值X 围是[1,13].二、多项选择题每小题5分,共20分9.为了反映各行业对仓储物流业务需求变化的情况,以及重要商品库存变化的动向,中国物流与采购联合会和中储发展股份某某通过联合调查,制定了中国仓储指数.由2017年1月至2018年7月的调查数据得出的中国仓储指数,绘制出如下的折线图.根据该折线图,下列结论错误的是( ABC ) A .2017年各月的仓储指数最大值是在3月份 B .2018年1月至7月的仓储指数的中位数约为55 C .2018年1月与4月的仓储指数的平均数约为52D .2017年1月至4月的仓储指数相对于2018年1月至4月,波动性更大解析:2017年各月的仓储指数最大值是在11月份,所以A 错误;由题图知,2018年1月至7月的仓储指数的中位数约为52,所以B 错误;2018年1月与4月的仓储指数的平均数约为51+552=53,所以C 错误;由题图可知,2017年1月至4月的仓储指数比2018年1月至4月的仓储指数波动更大.所以D 正确.10.已知数据x 1,x 2,x 3,…,x n 是A 市n (n ≥3,n ∈N *)个普通职工的年收入,设这n 个数据的中位数为x ,平均数为y ,方差为z ,如果再加上世界首富的年收入x n +1,对于这(n +1)个数据,下列说法错误的是( ACD )A .年收入平均数可能不变,中位数可能不变,方差可能不变B .年收入平均数大大增大,中位数可能不变,方差变大C .年收入平均数大大增大,中位数可能不变,方差也不变D .年收入平均数大大增大,中位数一定变大,方差可能不变解析:∵数据x 1,x 2,x 3,…,x n 是A 市n (n ≥3,n ∈N *)个普通职工的年收入,而x n +1为世界首富的年收入,则x n +1会远大于x 1,x 2,x 3,…,x n ,∴对于这(n +1)个数据,年收入平均数大大增大,但中位数可能不变,也可能稍微变大,但由于数据的集中程度受到x n +1比较大的影响,数据更加离散,则方差变大.故A 、C 、D 说法错误,符合题意.11.已知向量a ,e 满足a ≠e ,|e |=1,且对任意t ∈R ,恒有|a -t e |≥|a -e |成立,则( BC )A .a ⊥eB .a·e =1C .e ⊥(a -e )D .(a +e )⊥(a -e )解析:由条件可知|a -t e |2≥|a -e |2对t ∈R 恒成立,又∵|e |=1,∴t 2-2t a ·e +2a ·e -1≥0对t ∈R 恒成立,即Δ=(-2a ·e )2-8a ·e +4≤0恒成立,∴(a ·e -1)2≤0恒成立,而(a ·e -1)2≥0,∴a ·e -1=0,即a ·e =1=e 2,∴e ·(a -e )=0,即e ⊥(a -e ).12.如图,在矩形ABCD 中,AB =2AD =2,E 为AB 的中点,将△ADE 沿DE 翻折到△A 1DE 的位置,A 1∉平面ABCD ,M 为A 1C 的中点,则在翻折过程中,下列结论正确的是( ABC )A .恒有BM ∥平面A 1DEB .B 与M 两点间距离恒为定值C .三棱锥A 1DEM 的体积的最大值为212D .存在某个位置,使得平面A 1DE ⊥平面A 1CD解析:如图,取A 1D 的中点N ,连接MN ,EN ,可得四边形BMNE 是平行四边形,所以BM ∥EN ,所以BM ∥平面A 1DE ,故A 正确;(也可以延长DE ,CB 交于H ,可证明MB ∥A 1H ,从而证 BM ∥平面A 1DE ) 因为DN =12,DE =2,∠A 1DE =∠ADE =45°,根据余弦定理得EN 2=14+2-2×2×12×22,得EN =52, 因为EN =BM ,故BM =52,故B 正确; 因为M 为A 1C 的中点,所以三棱锥C A 1DE 的体积是三棱锥M A 1DE 的体积的两倍,故三棱锥C A 1DE 的体积VC A 1DE =VA 1DEC =13S △CDE ·h ,其中h 表示A 1到底面ABCD 的距离,当平面A 1DE ⊥平面ABCD 时,h 达到最大值,此时VA 1DEC 取到最大值26,所以三棱锥M A 1DE 体积的最大值为212,即三棱锥A 1DEM 体积的最大值为212,故C 正确; 考察D 选项,假设平面A 1DE ⊥平面A 1CD ,因为平面A 1DE ∩平面A 1CD =A 1D ,A 1E ⊥A 1D , 故A 1E ⊥平面A 1CD ,所以A 1E ⊥A 1C , 则在△A 1CE 中,∠EA 1C =90°,A 1E =1,EC =2,所以A 1C =1,又因为A 1D =1,CD =2,所以A 1D +A 1C =CD , 故A 1,C ,D 三点共线.所以A 1∈CD ,得A 1∈平面ABCD ,与题干条件A 1∉平面ABCD 矛盾,故D 不正确.故选ABC.第Ⅱ卷(非选择题,共90分)三、填空题每小题5分,共20分13.随着社会的发展,食品安全问题渐渐成为社会关注的热点,为了提高学生的食品安全意识,某学校组织全校学生参加食品安全知识竞赛,成绩的频率分布直方图如图所示,数据的分组依次为[20,40),[40,60),[60,80),[80,100],若该校的学生总人数为 3 000,则成绩不超过60分的学生人数大约为900.解析:由题图知,成绩不超过60分的学生的频率为(0.005+0.01)×20=0.3,所以成绩不超过60分的学生人数大约为0.3×3 000=900.14.从3名男同学和2名女同学中任选2名同学参加志愿者服务,则选出的2名同学中至少有1名女同学的概率是710. 解析:从3名男同学和2名女同学中任选2名同学参加志愿者服务,共有10种情况.若选出的2名学生恰有1名女生,有6种情况,若选出的2名学生都是女生,有1种情况,所以所求的概率为6+110=710.15.已知复数z 1=2+3i ,z 2=a +b i ,z 3=1-4i ,它们在复平面上所对应的点分别为A ,B ,C ,若OC →=2OA →+OB →,则a =-3,b =-10. 解析:因为OC →=2OA →+OB →, 所以1-4i =2(2+3i)+(a +b i)即⎩⎪⎨⎪⎧1=4+a ,-4=6+b ,所以⎩⎪⎨⎪⎧a =-3,b =-10.16.已知正方体ABCD A 1B 1C 1D 1的棱长为2,除平面ABCD 外,该正方体其余各面的中心分别为点E ,F ,G ,H ,M ,则四棱锥M EFGH 的体积为23.解析:因为底面EFGH 的对角线EG 与FH 互相垂直, 所以S EFGH =12×EG ×FH =12×2×2=2,又M 到底面EFGH 的距离等于棱长的一半, 即h =12×2=1,所以四棱锥M EFGH 的体积:V M EFGH =13×S EFGH ×h =13×2×1=23.四、解答题写出必要的计算步骤,只写最后结果不得分,共70分17.(10分)某市举办法律知识问答活动,随机从该市18~68岁的人群中抽取了一个容量为n 的样本,并将样本数据分成五组:[18,28),[28,38),[38,48),[48,58),[58,68],并绘制如图所示的频率分布直方图,再将其分别编号为第1组,第2组,…,第5组.该部门对回答问题的情况进行统计后,绘制了下表.组号 分组 回答正确的人数回答正确的人数占本组的比例第1组 [18,28) 5 0.5第2组 [28,38) 18 a第3组 [38,48) 270.9 第4组 [48,58) x0.36 第5组[58,68]30.2(1)分别求出a,x的值;(2)从第2,3,4组回答正确的人中用分层随机抽样的方法抽取6人,则第2,3,4组每组各应抽取多少人?(3)在(2)的前提下,在所抽取的6人中随机抽取2人颁发幸运奖,求第2组至少有1人获得幸运奖的概率.解:(1)第1组的人数为5÷0.5=10,第1组的频率为0.010×10=0.1,所以n=10÷0.1=100.第2组的频率为0.020×10=0.2,人数为100×0.2=20,所以a=18÷20=0.9.第4组的频率为0.025×10=0.25,人数为100×0.25=25,所以x=25×0.36=9.(2)第2,3,4组回答正确的人数的比为18279=231,所以第2,3,4组每组各应抽取2人、3人、1人.(3)记“第2组至少有1人获得幸运奖”为事件A,设抽取的6人中,第2组的2人为a1,a2,第3组的3人为b1,b2,b3,第4组的1人为c,则从6人中任意抽取2人所有可能的结果为(a1,a2),(a1,b1),(a1,b2),(a1,b3),(a1,c),(a2,b1),(a2,b2),(a2,b3),(a2,c),(b1,b2),(b1,b3),(b1,c),(b2,b3),(b2,c),(b3,c),共15种.其中第2组至少有1人获得幸运奖的结果为(a1,a2),(a1,b1),(a1,b2),(a1,b3),(a1,c),(a2,b1),(a2,b2),(a2,b3),(a2,c),共9种.故P(A)=915=35.所以抽取的6人中第2组至少有1人获得幸运奖的概率为35.18.(12分)某中学组织了一次数学学业水平模拟测试,学校从测试合格的男、女生中各随机抽取100人的成绩进行统计分析,分别制成了如图所示的男生和女生数学成绩的频率分布直方图.(注:分组区间为[60,70),[70,80),[80,90),[90,100])(1)若得分大于或等于80认定为优秀,则男、女生的优秀人数各为多少?(2)在(1)中所述的优秀学生中用分层随机抽样的方法抽取5人,从这5人中任意选取2人,求至少有一名男生的概率.解:(1)由题可得,男生优秀人数为100×(0.01+0.02)×10=30,女生优秀人数为100×(0.015+0.03)×10=45.(2)因为样本量与总体中的个体数的比是530+45=115,所以样本中包含的男生人数为30×115=2,女生人数为45×115=3.设抽取的5人分别为A ,B, C, D ,E ,其中A ,B 为男生,C, D ,E 为女生,从5人中任意选取2人,试验的样本空间Ω={(A ,B ),(A ,C ),(A ,D ),(A ,E ),(B ,C ),(B ,D ),(B ,E ),(C ,D ),(C ,E ),(D ,E ) },共10个样本点.事件“至少有一名男生”包含的样本点有:(A ,B ),(A ,C ),(A ,D ),(A ,E ),(B ,C ),(B ,D ),(B ,E ),共7个样本点,故至少有一名男生的概率为P =710,即选取的2人中至少有一名男生的概率为710.19.(12分)已知在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,满足sin 2A +sin 2B -sin 2C =-3sin A sin B .(1)求角C 大小;(2)若c =2,求3a +b 的取值X 围.解:(1)因为sin 2A +sin 2B -sin 2C =-3sin A sin B , 所以由正弦定理得a 2+b 2-c 2=-3ab ,所以cos C =a 2+b 2-c 22ab =-3ab 2ab =-32,因为C ∈(0,π),所以C =5π6. (2)由正弦定理得2R =csin C =4,所以3a +b =2R (3sin A +sin B ) =4[3sin A +sin(π6-A )]=4(3sin A +12cos A -32sin A )=4sin(A +π6),因为A ∈(0,π6),所以A +π6∈(π6,π3),所以sin(A +π6)∈(12,32),所以3a +b 的取值X 围是(2,23).20.(12分)如图,A ,C 两岛之间有一片暗礁,一艘小船于某日上午8时从A 岛出发,以10海里/小时的速度,沿北偏东75°方向直线航行,下午1时到达B 处.然后以同样的速度,沿北偏东15°方向直线航行,下午4时到达C 岛.(1)求A ,C 两岛之间的直线距离; (2)求∠BAC 的正弦值.解:(1)在△ABC 中,由已知,AB =10×5=50,BC =10×3=30,∠ABC =180°-75°+15°=120°.根据余弦定理,得AC 2=502+302-2×50×30cos120°=4 900,所以AC =70. 故A ,C 两岛之间的直线距离是70海里. (2)在△ABC 中,据正弦定理,得BC sin ∠BAC =ACsin ∠ABC,所以sin ∠BAC =BC sin ∠ABC AC =30sin120°70=3314, 故∠BAC 的正弦值是3314.21.(12分)如图,在四棱锥P ABCD 中,底面ABCD 为平行四边形,△PCD 为等边三角形,平面PAC ⊥平面PCD ,PA ⊥CD ,CD =2,AD =3.(1)设G ,H 分别为PB ,AC 的中点,求证:GH ∥平面PAD ; (2)求证:PA ⊥平面PCD ;(3)求直线AD 与平面PAC 所成角的正弦值. 解:(1)证明:连接BD,如图,易知AC∩BD=H,BH=DH,又BG=PG,故GH∥PD,又因为GH⊄平面PAD,PD⊂平面PAD,所以GH∥平面PAD.(2)证明:取棱PC的中点N,连接DN,如图,依题意,得DN⊥PC,又因为平面PAC⊥平面PCD,平面PAC∩平面PCD=PC,所以DN⊥平面PAC,又PA⊂平面PAC,故DN⊥PA,又因为PA⊥CD,CD∩DN=D,所以PA⊥平面PCD.(3)连接AN,如图,由(2)中DN⊥平面PAC,可知∠DAN为直线AD与平面PAC所成的角.因为△PCD为等边三角形,CD=2且N为PC的中点,所以DN=3,又DN⊥AN,在Rt△AND中,sin∠DAN=DNAD =33,所以直线AD与平面PAC所成角的正弦值为33.22.(12分)如图,在四棱锥PABCD中,△PAD为正三角形,平面PAD⊥平面ABCD,AB ∥CD,AB⊥AD,CD=2AB=2AD=4.(1)求证:平面PCD⊥平面PAD;(2)求三棱锥PABC的体积;(3)在棱PC上是否存在点E,使得BE∥平面PAD?若存在,请确定点E的位置,并证明;若不存在,请说明理由.解:(1)证明:因为AB∥CD,AB⊥AD,所以CD⊥AD.因为平面PAD⊥平面ABCD,平面PAD∩平面ABCD=AD,所以CD⊥平面PAD.因为CD⊂平面PCD,所以平面PCD⊥平面PAD.(2)取AD的中点O,连接PO,如图.因为△PAD为正三角形,所以PO⊥AD.因为平面PAD ⊥平面ABCD,平面PAD∩平面ABCD=AD,PO⊂平面PAD,所以PO⊥平面ABCD,所以PO为三棱锥PABC的高.因为△PAD为正三角形,CD=2AB=2AD=4,所以PO=3,所以V三棱锥PABC=S△ABC·PO=13×12×2×2×3=233.(3)在棱PC上存在点E,当E为PC的中点时,BE∥平面PAD.证明:如图,分别取CP,CD的中点E,F,连接BE,BF,EF,所以EF∥PD.因为AB∥CD,CD=2AB,所以AB∥FD,AB=FD,所以四边形ABFD为平行四边形,所以BF∥AD. 因为BF∩EF=F,AD∩PD=D,所以平面BEF∥平面PAD.因为BE⊂平面BEF,所以BE∥平面PAD.。
最新人教版高中数学必修2课时同步测题(全册 共236页 附解析)
最新人教版高中数学必修2课时同步测题(全册共236页附解析)目录1.1 空间几何体的结构1.1.1 棱柱、棱锥、棱台的结构特征1.1.2 圆柱、圆锥、圆台、球、简单组合体的结构特征1.2 空间几何体的三视图和直观图1.2.1 中心投影与平行投影1.2.2 空间几何体的三视图1.2.3 空间几何体的直观图1.3 空间几何体的表面积与体积1.3.1 柱体、锥体、台体的表面积与体积1.3.2 球的体积和表面积章末复习课第一单元评估验收卷(一)第二章点、直线、平面之间的位置关系2.1 空间点、直线、平面之间的位置关系2.1.1 平面第二章点、直线、平面之间的位置关系2.1 空间点、直线、平面之间的位置关系2.1.2 空间中直线与直线之间的位置关系2.1.3 空间中直线与平面之间的位置关系2.1.4 平面与平面之间的位置关系2.2 直线、平面平行的判定及其性质2.2.1 直线与平面平行的判定2.2.2 平面与平面平行的判定2.2.3 直线与平面平行的性质2.2.4 平面与平面平行的性质2.3 直线、平面垂直的判定及其性质2.3.1 直线与平面垂直的判定2.3.2 平面与平面垂直的判定2.3.3 直线与平面垂直的性质2.3.4 平面与平面垂直的性质章末复习课第二单元评估验收卷(二)第三章直线与方程3.1 直线的倾斜角与斜率3.1.1 倾斜角与斜率3.1.2 两条直线平行与垂直的判定3.2 直线的方程3.2.1 直线的点斜式方程3.2.2 直线的两点式方程第一章空间几何体1.1 空间几何体的结构1.1.1 棱柱、棱锥、棱台的结构特征A级基础巩固一、选择题1.下列几何体中棱柱有()A.5个B.4个C.3个D.2个解析:由棱柱的定义及几何特征,①③为棱柱.答案:D2.对有两个面互相平行,其余各面都是梯形的多面体,以下说法正确的是()A.棱柱B.棱锥C.棱台D.一定不是棱柱、棱锥解析:根据棱柱、棱锥、棱台的特征,一定不是棱柱、棱锥.答案:D3.下列图形经过折叠可以围成一个棱柱的是()解析:A、B、C、中底面多边形的边数与侧面数不相等.答案:D4.由5个面围成的多面体,其中上、下两个面是相似三角形,其余三个面都是梯形,并且这些梯形的腰延长后能相交于一点,则该多面体是()A.三棱柱B.三棱台C.三棱锥D.四棱锥解析:根据棱台的定义可判断知道多面体为三棱台.答案:B5.某同学制作了一个对面图案均相同的正方形礼品盒,如图所示,则这个正方体礼品盒的表面展开图应该为(对面是相同的图案)()解析:其展开图是沿盒子的棱剪开,无论从哪个棱剪开,剪开的相邻面在展开在图中可以不相邻,但未剪开的相邻面在展开图中一定相邻,又相同的图案是盒子相对的面,展开后绝不能相邻.答案:A二、填空题6.如图所示,正方形ABCD中,E,F分别为CD,BC的中点,沿AE,AF,EF将其折成一个多面体,则此多面体是________.解析:折叠后,各面均为三角形,且点B、C、D重合为一点,因此该多面体为三棱锥(四面体).答案:三棱锥(四面体)7.一个棱柱有10个顶点,所有的侧棱长的和为60 cm,则每条侧棱长为________cm.解析:由题设,该棱柱为五棱柱,共5条侧棱.所以每条侧棱的长为605=12(cm).答案:128.①有两个面互相平行,其余各面都是平行四边形的几何体的侧棱一定不相交于一点,故一定不是棱台;②两个互相平行的面是平行四边形,其余各面是四边形的几何体不一定是棱台;③两个互相平行的面是正方形,其余各面是四边形的几何体一定是棱台.其中正确说法的个数为________.解析:①正确,因为具有这些特征的几何体的侧棱一定不相交于一点,故一定不是棱台;②正确;③不正确,当两个平行的正方形完全相等时,一定不是棱台.答案:29.根据如图所示的几何体的表面展开图,画出立体图形.解:图①是以ABCD为底面,P为顶点的四棱锥.图②是以ABCD和A1B1C1D1为底面的棱柱.其图形如图所示.B级能力提升1.如图所示,将装有水的长方体水槽固定底面一边后倾斜一个小角度,则倾斜后水槽中的水形成的几何体是()A.棱柱B.棱台C.棱柱与棱锥的组合体D.不能确定解析:如图所示,倾斜小角度后,因为平面AA1D1D∥平面BB1C1C,所以有水的部分始终有两个平面平行,而其余各面都易证是平行四边形(水面与两平行平面的交线)因此呈棱柱形状.答案:A2.一个正方体的六个面上分别标有字母A,B,C,D,E,F,下图是此正方体的两种不同放置,则与D面相对的面上的字母是________.解析:由图知,标字母C的平面与标有A、B、D、E的面相邻,则与D面相对的面为E面,或B面,若B面与D面相对,则A面与B面相对,这时图②不可能,故只能与D面相对的面上字母为B.答案:B3.如图所示,M是棱长为2 cm的正方体ABCD-A1B1C1D1的棱CC1的中点,求沿正方体表面从点A到点M的最短路程.解:若以BC为轴展开,则A,M两点连成的线段所在的直角三角形的两直角边的长度分别为2 cm,3 cm,故两点之间的距离是13 cm.若以BB1为轴展开,则A,M两点连成的线段所在的直角三角形的两直角边的长度分别为1,4,故两点之间的距离是17 cm.故沿正方体表面从点A到点M的最短路程是13 cm.第一章空间几何体1.1 空间几何体的结构1.1.2 圆柱、圆锥、圆台、球、简单组合体的结构特征A级基础巩固一、选择题1.下列几何体中是旋转体的是()①圆柱②六棱锥③正方体④球体⑤四面体A.①和⑤B.①C.③和④D.①和④解析:圆柱、球体是旋转体,其余均为多面体.答案:D2.如图所示的简单组合体的结构特征是()A.由两个四棱锥组合成的B.由一个三棱锥和一个四棱锥组合成的C.由一个四棱锥和一个四棱柱组合成的D.由一个四棱锥和一个四棱台组合成的解析:这个8面体是由两个四棱锥组合而成.答案:A3.下图是由哪个平面图形旋转得到的()解析:图中几何体由圆锥、圆台组合而成,可由A中图形绕图中虚线旋转360°得到.答案:A4.如图所示的几何体是从一个圆柱中挖去一个以圆柱的上底面为底面,下底面圆心为顶点的圆锥而得到的.现用一个平面去截这个几何体,若这个平面平行于底面,那么截面图形为()解析:截面图形应为图C所示的圆环面.答案:C5.用一张长为8、宽为4的矩形硬纸卷成圆柱的侧面,则相应圆柱的底面半径是()A.2 B.2πC.2π或4πD.π2或π4解析:如图所示,设底面半径为r,若矩形的长8恰好为卷成圆柱底面的周长,则2πr=8,所以r=4π;同理,若矩形的宽4恰好为卷成圆柱的底面周长,则2πr=4,所以r=2π.所以选C.答案:C二、填空题6.等腰三角形绕底边上的高所在的直线旋转180°,所得几何体是________.解析:结合旋转体及圆锥的特征知,所得几何体为圆锥.答案:圆锥7.给出下列说法:①圆柱的母线与它的轴可以不平行;②圆锥的顶点、圆锥底面圆周上任意一点及底面圆的圆心三点的连线,都可以构成直角三角形;③在圆台的上、下两底面圆周上各取一点,则这两点的连线是圆台的母线;④圆柱的任意两条母线所在的直线是互相平行的.其中正确的是____________(填序号).解析:由旋转体的形成与几何特征可知①③错误,②④正确.答案:②④8.如图是一个几何体的表面展成的平面图形,则这个几何体是__________.答案:圆柱三、解答题9.如图所示的物体是运动器材——空竹,你能描述它的几何特征吗?解:此几何体是由两个大圆柱、两个小圆柱和两个小圆台组合而成的.10.如图所示,用一个平行于圆锥SO底面的平面截这个圆锥,截得圆台上、下底面的半径分别2 cm和5 cm,圆台的母线长是12 cm,求圆锥SO的母线长.解:如图,过圆台的轴作截面,截面为等腰梯形ABCD,由已知可得上底半径O1A=2 cm,下底半径OB=5 cm,且腰长AB=12 cm.设截得此圆台的圆锥的母线长为l,则由△SAO1∽△SBO,可得l-12 l=25,所以l=20 cm.故截得此圆台的圆锥的母线长为20 cm.B级能力提升1.如图所示的平面中阴影部分绕中间轴旋转一周,形成的几何体形状为()A.一个球体B.一个球体中间挖出一个圆柱C.一个圆柱D.一个球体中间挖去一个长方体解析:外面的圆旋转形成一个球,里面的长方形旋转形成一个圆柱.所有形成的几何为一个球体挖出一个圆柱.答案:B2.一个半径为5 cm的球,被一平面所截,球心到截面圆心的距离为4 cm,则截面圆面积为__________cm2.解析:如图所示,过球心O作轴截面,设截面圆的圆心为O1,其半径为r.由球的性质,OO1⊥CD.在Rt△OO1C中,R=OC=5,OO1=4,则O1C=3,所以截面圆的面积S=π·r2=π·O1C2=9π.答案:9π3.如图,底面半径为1,高为2的圆柱,在A点有一只蚂蚁,现在这只蚂蚁要围绕圆柱由A点爬到B点,问蚂蚁爬行的最短距离是多少?解:把圆柱的侧面沿AB剪开,然后展开成为平面图形——矩形,如图所示,连接AB′,即为蚂蚁爬行的最短距离.因为AB=A′B′=2,AA′为底面圆的周长,且AA′=2π×1=2π.所以AB′=A′B′2+AA′2=4+(2π)2=21+π2,所以蚂蚁爬行的最短距离为21+π2.第一章空间几何体1.2 空间几何体的三视图和直观图1.2.1 中心投影与平行投影1.2.2 空间几何体的三视图A级基础巩固一、选择题1.以下关于投影的叙述不正确的是()A.手影就是一种投影B.中心投影的投影线相交于点光源C.斜投影的投影线不平行D.正投影的投影线和投影面垂直解析:平行投影的投影线互相平行,分为正投影和斜投影两种,故C错.2.如图所示,水平放置的圆柱形物体的三视图是()答案:A3.如图,在直角三角形ABC,∠ACB=90°,△ABC绕边AB 所在直线旋转一周形成的几何体的正视图为()解析:由题意,该几何体是两个同底的圆锥组成的简单组合体,且上部分圆锥比底部圆锥高,所以正视图应为选项B.答案:B4.一个几何体的三视图形状都相同、大小均相等,那么这个几何体不可以是()A.球B.三棱锥C.正方体D.圆柱解析:球的三视图都是圆;三棱锥的三视图都是全等的三角形;正方体的三视图都是正方形;圆柱的底面放置在水平面上,则其俯视图是圆,正视图是矩形,故几何体不可能是圆柱.5.一个四棱锥S-ABCD,底面是正方形,各侧棱长相等,如图所示,其正视图是一等腰三角形,其腰长与图中等长的线段是()A.AB B.SBC.BC D.SE解析:正视图的投影面应是过点E与底面ABCD垂直的平面,所以侧棱SB在投影面上的投影为线段SE.答案:D二、填空题6.下列几何体各自的三视图中,有且仅有两个视图相同的是________(填序号).①正方体②圆锥③三棱台④正四棱锥解析:在各自的三视图中,①正方体的三个视图都相同;②圆锥有两个视图相同;③三棱台的三个视图都不同;④正四棱锥有两个视图相同.所以满足仅有两个视图相同的是②④.答案:②④7.一个简单几何体的正视图、侧视图如图所示,则其俯视图不可能为:①长方形;②正方形;③圆.其中满足条件的序号是________.答案:②③8.下图中的三视图表示的几何体是________.解析:根据三视图的生成可知,该几何体为三棱柱.答案:三棱柱三、解答题9.根据三视图(如图所示)想象物体原形,指出其结构特征,并画出物体的实物草图.解:由俯视图知,该几何体的底面是一直角梯形;由正视图知,该几何体是一四棱锥,且有一侧棱与底面垂直.所以该几何体如图所示.10.画出图中3个图形的指定视图.解:如图所示.B级能力提升1.如图所示为一个简单几何体的三视图,则其对应的实物图是()答案:A2.已知正三棱锥V-ABC的正视图、俯视图如图所示,它的侧棱VA=2,底面的边AC=3,则由该三棱锥得到的侧视图的面积为________.解析:正三棱锥V-ABC的侧视图不是一个等腰三角形,而是一个以一条侧棱、该侧棱所对面的斜高和底面正三角形的一条高构成的三角形,如侧视图所示(其中VF是斜高),由所给数据知原几何体的高为3,且CF=3 2.故侧视图的面积为S=12×32×3=334.答案:33 43.如图所示的是某两个几何体的三视图,试判断这两个几何体的形状.解:①由俯视图知该几何体为多面体,结合正视图和侧视图知,几何体应为正六棱锥.②由几何体的三视图知该几何体的底面是圆,相交的一部分是一个与底面同圆心的圆,正视图和侧视图是由两个全等的等腰梯形组成的.故该几何体是两个圆台的组合体.第一章空间几何体1.2 空间几何体的三视图和直观图1.2.3 空间几何体的直观图A级基础巩固一、选择题1.关于斜二测画法所得直观图,以下说法正确的是()A.等腰三角形的直观图仍是等腰三角形B.正方形的直观图为平行四边形C.梯形的直观图不是梯形D.正三角形的直观图一定为等腰三角形解析:由直观图的性质知B正确.答案:B2.利用斜二测画法画边长为3 cm的正方形的直观图,正确的是图中的()解析:正方形的直观图应是平行四边形,且相邻两边的边长之比为2∶1.答案:C3.如图,用斜二测画法画一个水平放置的平面图形为一个正方形,则原来图形的形状是()解析:直观图中正方形的对角线为2,故在平面图形中平行四边形的高为22,只有A项满足条件,故A正确.答案:A4.已知两个圆锥,底面重合在一起,其中一个圆锥顶点到底面的距离为2 cm,另一个圆锥顶点到底面的距离为3 cm,则其直观图中这两个顶点之间的距离为()A.2 cm B.3 cm C.2.5 cm D.5 cm解析:因为这两个顶点连线与圆锥底面垂直,现在距离为5 cm,而在直观图中根据平行于z轴的线段长度不变,仍为5 cm.答案:D5.若一个三角形采用斜二测画法,得到的直观图的面积是原三角形面积的()A.24B.2倍 C.22 D.2倍解析:底不变,只研究高的情况即可,此结论应识记.答案:A二、填空题6.如图所示,△A′B′C′是△ABC的水平放置的直观图,A′B′∥y轴,则△ABC是________三角形.解析:由于A′B′∥y轴,所以在原图中AB∥y轴,故△ABC为直角三角形.答案:直角7.已知△ABC的直观图如图所示,则△ABC的面积为________.解析:△ABC中,∠A=90°,AB=3,AC=6,所以S=12×3×6=9.答案:98.如图所示,水平放置的△ABC的斜二测直观图是图中的△A′B′C′,已知A′C′=6,B′C′=4,则AB边的实际长度是_______.解析:在原图中AC=6,BC=4×2=8,∠AOB=90°,所以AB=62+82=10.答案:10三、解答题9.如图所示,已知水平放置的平面图形的直观图是一等腰直角三角形ABC,且AB=BC=1,试画出它的原图形.解:(1)在如图所示的图形中画相应的x轴、y轴,使∠xOy=90°(O与A′重合);(2)在x轴上取C′,使A′C′=AC,在y轴上取B′,使A′B′=2AB;(3)连接B′C′,则△A′B′C′就是原图形.10.画出底面是正方形、侧棱均相等的四棱锥的直观图(棱锥的高不做具体要求).解:画法:(1)画轴.画Ox轴、Oy轴、Oz轴,∠xOy=45°(135°),∠xOz=90°,如图.(2)画底面.以O为中心在xOy平面内,画出底面正方形的直观图ABCD.(3)画顶点.在Oz轴上截取OP,使OP的长度是四棱锥的高.(4)成图.顺次连接PA、PB、PC、PD,并擦去辅助线,得四棱锥的直观图.B级能力提升1.水平放置的△ABC有一边在水平线上,它的斜二测直观图是正△A′B′C′,则△ABC为()A.锐角三角形B.直角三角形C.钝角三角形D.以上都有可能解析:如下图所示,斜二测直观图还原为平面图形,故△ABC 是钝角三角形.答案:C2.如图,Rt△O′A′B′是一平面图形的直观图,直角边O′B′=1,则这个平面图形的面积是________.解析:因为O′B=1,所以O′A′=2,所以在Rt△OAB中,∠AOB=90°,OB=1,OA=2 2.所以S△AOB=12×1×22= 2.答案:23.如图是一个空间几何体的三视图,试用斜二测画法画出它的直观图.解:根据三视图可以想象出这个几何体是六棱台.(1)画轴.如图①,画x轴、y轴、z轴,使∠xOy=45°,∠xOz =90°.(2)画两底面,由三视图知该几何体为六棱台,用斜二测画法画出底面正六边形ABCDEF,在z轴上截取OO′,使OO′等于三视图中的相应高度,过O′作Ox的平行线O′x′,Oy的平行线O′y′,利用O′x与O′y′画出底面正六边形A′B′C′D′E′F′.(3)成图.连接A′A,B′B,C′C,D′D,E′E,F′F,整理得到三视图表示的几何体的直观图,如图②.第一章空间几何体1.3 空间几何体的表面积与体积1.3.1 柱体、锥体、台体的表面积与体积A级基础巩固一、选择题1.轴截面是正三角形的圆锥称作等边圆锥,则等边圆锥的侧面积是底面积的( )A .4倍B .3倍 C.2倍D .2倍解析:设轴截面正三角形的边长为2a ,所以S 底=πa 2,S 侧=πa ·2a =2πa 2,因此S 侧=2S 底. 答案:D2.如图所示,ABC A ′B ′C ′是体积为1的棱柱,则四棱锥C -AA ′B ′B 的体积是( )A.13B.12C.23D.34解析:因为V C A ′B ′C ′=13V 柱=13,所以V C AA ′B ′B =1-13=23.答案:C3.若一个圆锥的轴截面是等边三角形,其面积为3,则这个圆锥的全面积为( )A .3πB .33πC .6πD .9π解析:由于圆锥的轴截面是等边三角形,所以2r =l , 又S 轴=12×l 2×sin 60°=34l 2=3,所以l =2,r =1.所以S圆锥表=πr2+πrl=π+2π=3π.故选A.答案:A4.(2015·课标全国Ⅰ卷)《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依恒内角,下周八尺,高五尺.问:积及为米几何?”其意思为:“在屋内墙角处堆放米(如图所示,米堆为一个圆锥的四分之一),米堆底部的弧长为8尺,米堆的高为5尺,问米堆的体积和堆放的米各为多少?”已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放米约有()A.14斛B.22斛C.36斛D.66斛解析:由l=14×2πr=8得圆锥底面的半径r=16π≈163,所以米堆的体积V=14×13πr2h=14×2569×5=3209(立方尺),所以堆放的米有3209÷1.62≈22(斛).答案:B5.已知正方体的8个顶点中,有4个为侧面是等边三角形的一三棱锥的顶点,则这个三棱锥与正方体的表面积之比为()A.1∶ 2 B.1∶ 3C.2∶ 2 D.3∶ 6解析:棱锥B′ ACD′为适合条件的棱锥,四个面为全等的等边三角形,设正方体的边长为1,则B′C=2,S△B′AC=3 2.三棱锥的表面积S 锥=4×32=23,又正方体的表面积S 正=6. 因此S 锥∶S 正=23∶6=1∶ 3. 答案:B 二、填空题6.若一个圆台的正视图如图所示,则其侧面积为________.解析:由正视图可知,该圆台的上、下底面圆的半径分别为1,2,其高为2,所以其母线长l =⎝ ⎛⎭⎪⎫4-222+22=5, 所以S 侧=π(1+2)×5=35π. 答案:35π7.下图是一个空间几何体的三视图,这个几何体的体积是________.解析:由图可知几何体是一个圆柱内挖去一个圆锥所得的几何体,V =V 圆柱-V 圆锥=π×22×3-13π×22×3=8π.答案:8π8.(2015·福建卷)某几何体的三视图如图所示,则该几何体的表面积等于________.解析:由三视图知,该几何体是直四棱柱,底面是直角梯形,且底面梯形的周长为4+ 2.则S侧=8+22,S底=2×(1+2)2×1=3.故S表=S侧+S底=11+2 2.答案:11+22三、解答题9.已知圆柱的侧面展开图是长、宽分别为2π和4π的矩形,求这个圆柱的体积.解:设圆柱的底面半径为R,高为h,当圆柱的底面周长为2π时,h=4π,由2πR=2π,得R=1,所以V圆柱=πR2h=4π2.当圆柱的底面周长为4π时,h=2π,由2πR=4π,得R=2,所以V圆柱=πR2h=4π·2π=8π2.所以圆柱的体积为4π2或8π2.10.一个正三棱柱的三视图如图所示(单位:cm),求这个正三棱柱的表面积与体积.解:由三视图知直观图如图所示,则高AA′=2 cm,底面高B′D′=23cm ,所以底面边长A ′B ′=23×23=4(cm).一个底面的面积为12×23×4=43(cm 2).所以表面积S =2×43+4×2×3=24+83(cm 2), V =43×2=83(cm 3).所以表面积为(24+83)cm 2,体积为83(cm 3).B 级 能力提升1.某几何体的三视图如图所示,俯视图是由一个半圆与其直径组成的图形,则此几何体的体积是( )A.203π B.103π C .6πD.163π 解析:该几何体的上方是以2为底面圆的半径,高为2的圆锥的一半,下方是以2为底面圆的半径,高为1的圆柱的一半,其体积为V =π×22×12+12×13π×22×2=2π+43π=103π.答案:B2.(2015·江苏卷)现有橡皮泥制作的底面半径为5,高为4的圆锥和底面半径为2、高为8的圆柱各一个,若将它们重新制作成总体积与高均保持不变,但底面半径相同的新的圆锥与圆柱各一个,则新的底面半径为__________.解析:底面半径为5,高为4的圆锥和底面半径为2、高为8的圆柱的总体积为13π×52×4+π×22×8=196π3.设新的圆锥和圆柱的底面半径为r ,则13π·r 2×4+π·r 2×8=28π3r 2=196π3,解得r =7.答案:73.某几何体的三视图如图所示(单位:cm),求该几何体的体积.解:由三视图知,该几何体是一个四棱柱与一个四棱锥的组合体. V 四棱柱=23=8,V 四棱锥=13×22×2=83.故几何体的体积V =V 四棱柱+V 四棱锥=8+83 =323(cm 3).第一章 空间几何体 1.3 空间几体的表面积与体积 1.3.2 球的体积和表面积A 级 基础巩固一、选择题1.若一个球的体积扩大到原来的27倍,则它的表面积扩大到原来的( )A .3倍B .3 3 倍C .9倍D .9 3 倍解析:由V ′=27 V ,得R ′=3R ,R ′R=3则球的表面积比S ′∶S =⎝ ⎛⎭⎪⎫R ′R 2=9. 答案:C2.把3个半径为R 的铁球熔成一个底面半径为R 的圆柱,则圆柱的高为( )A .RB .2RC .3RD .4R 解析:设圆柱的高为h ,则πR 2h =3×43πR 3,所以h =4R . 答案:D3.如图所示,是某几何体的三视图,则该几何体的体积为( )A .9π+42B .36π+18 C.92π+12 D.92π+18解析:由三视图可知该几何体是一个长方体和球构成的组合体,其体积V=43π⎝⎛⎭⎪⎫323+3×3×2=92π+18.答案:D4.设长方体的长、宽、高分别为2a,a,a,其顶点都在一个球面上,则该球的表面积为()A.3πa2B.6πa2C.12πa2D.24πa2解析:设该球的半径为R,所以(2R)2=(2a)2+a2+a2=6a2,即4R2=6a2.所以球的表面积为S=4πR2=6πa2.答案:B5.下图是一个几何体的三视图,根据图中数据,可得几何体的表面积是()A.4π+24 B.4π+32C.22πD.12π解析:由三视图可知,该几何体上部分为半径为1的球,下部分为底边长为2,高为3的正四棱柱,几何体的表面积为4π+32.答案:B二、填空题6.将一钢球放入底面半径为3 cm 的圆柱形玻璃容器中,水面升高4 cm ,则钢球的半径是________.解析:圆柱形玻璃容器中水面升高4cm ,则钢球的体积为V =π×32×4=36π,即有43πR 3=36π,所以R =3.答案:3 cm7.两个球的表面积之差为48π,它们的大圆周长之和为12π,则这两个球的半径之差为________.解析:由题意设两球半径分别为R 、r (R >r ),则:⎩⎪⎨⎪⎧4πR 2-4πr 2=48π2πR +2πr =12π即⎩⎪⎨⎪⎧R 2-r 2=12R +r =6.,所以R -r =2. 答案:28.已知某几何体的三视图如图所示,则该几何体的体积为________.解析:由三视图可知几何体为组合体,上方是半径为1的球,下方是长方体,其底面是边长为2的正方形,侧棱长为4,故其体积V =43×π×13+2×2×4=16+4π3. 答案:16+4π3三、解答题9.某组合体的直观图如图所示,它的中间为圆柱形,左右两端均为半球形,若图中r =1,l =3,试求该组合体的表面积和体积.解:组合体的表面积S =4πr 2+2πrl =4π×12+2π×1×3=10π. 因为圆柱的体积V 圆柱=πr 2l =π×12×3=3π,又两个半球的体积2V 半球=43πr 3=43π, 因此组合体的体积V =3π+43π=133π. 10.如图,一个圆柱形的玻璃瓶的内半径为3 cm ,瓶里所装的水深为8 cm ,将一个钢球完全浸入水中,瓶中水的高度上升到8.5 cm ,求钢球的半径.解:设球的半径为R ,由题意可得43πR 3=π×32×0.5, 解得:R =1.5 (cm),所以所求球的半径为1.5 cm.B 级 能力提升1.用与球心距离为1的平面去截球,所得的截面面积为π,则球的体积为( )A.8π3B.82π3 C .82π D.32π3解析:截面面积为π,则该小圆的半径为1,设球的半径为R ,则R 2=12+12=2,所以R =2,V =43πR 3=82π3.答案:B2.边长为42的正方形ABCD 的四个顶点在半径为5的球O 的表面上,则四棱锥O -ABCD 的体积是________.解析:因为正方形ABCD 外接圆的半径r =(42)2+(42)22=4.又因为球的半径为5, 所以球心O 到平面ABCD 的距离d =R 2-r 2=3,所以V O ABCD =13×(42)3×3=32. 答案:323.体积相等的正方体、球、等边圆柱(轴截面为正方形的圆柱)的表面积分别是S 1,S 2,S 3,试比较它们的大小.解:设正方体的棱长为a ,球的半径为R ,等边圆柱的底面半径为r ,则S 1=6a 2,S 2=4πR 2,S 3=6πr 2.由题意知,43πR 3=a 3=πr 2·2r , 所以R =334πa ,r =312πa , 所以S 2=4π⎝⎛⎭⎪⎪⎫334πa 2=4π·3916π2a 2=336πa 2, S 3=6π⎝⎛⎭⎪⎪⎫312πa 2=6π·314π2a 2=354πa 2, 所以S 2<S 3.又6a 2>3312πa 2=354πa 2,即S 1>S 3. 所以S 1,S 2,S 3的大小关系是S 2<S 3<S 1.章末复习课[整合·网络构建][警示·易错提醒]1.台体可以看成是由锥体截得的,易忽视截面与底面平行且侧棱(母线)延长后必交于一点.2.空间几何体不同放置时其三视图不一定相同.3.对于简单组合体,若相邻两物体的表面相交,表面的交线是它们的分界线,在三视图中,易忽视虚线的画法.4.求组合体的表面积时:组合体的衔接部分的面积问题易出错.5.由三视图计算几何体的表面积与体积时,由于几何体的还原不准确及几何体的结构特征认识不准易导致失误.6.易混侧面积与表面积的概念.专题1空间几何体的三视图与直观图三视图是立体几何中的基本内容,能根据三视图识别其所表示的立体模型,并能根据三视图与直观图所提供的数据解决问题.主要考查形式:(1)由三视图中的部分视图确定其他视图;(2)由三视图还原几何体;(3)三视图中的相关量的计算.其中(3)是本章的难点,也是重点之一,解这类题的关键是准确地将三视图中的数据转化为几何体中的数据.[例1](1)若一个正三棱柱的三视图如图所示,则这个正三棱柱的高和底面边长分别为()A.2,23B.22,2C.4,2D.2,4(2)(2016·全国Ⅲ卷)如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的表面积为()A.18+36 5 B.54+18 5 C.90 D.81解析:(1)由三视图的画法规则知,正视图与俯视图长度一致,正视图与侧视图高度一致,俯视图与侧视图宽度一致.所以侧视图中2为正三棱柱的高,23为底面等边三角形的高,所以底面等边三角形边长为4.(2)由三视图可知,该几何体的底面是边长为3的正方形,高为6,侧棱长为35,则该几何体的表面积S=2×32+2×3×35+2×3×6=54+18 5.故选B.答案:(1)D(2)B。
高中人教版数学A版必修2(课时作业与单元测试卷):阶段测试(一)
阶段测试(一)满分:150分 时间:120分钟一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.下列说法正确的是( ) A .三点确定一个平面 B .四边形一定是平面图形 C .梯形一定是平面图形D .平面α和平面β有不同在一条直线上的三个交点 答案:C解析:经过两条平行直线有且只有一个平面,故选C. 2.若α∥β,a ∥α,则a 与β的关系是( ) A .a ∥β B .a ⊂β C .a ∥β或a ⊂β D .a ∩β=A 答案:C解析:考虑直线可以平行移动.3.设α,β是两个不同的平面,m ,n ,l 是三条不同的直线,下列命题中正确的是( ) A .若α∩β=l ,m ⊂α,n ⊂β,则m ,n 一定相交 B .若α∥β,m ⊂α,n ⊂β,则m ,n 一定平行 C .若α∥β,m ∥α,n ∥β,则m ,n 一定平行 D .若α⊥β,m ⊥α,n ⊥β,则m ,n 一定垂直 答案:D解析:A 中的m ,n 也可能平行或异面,A 错误;B 中的m ,n 也可能异面,B 错误;C 中的m ,n 也可能相交或异面,C 错误;易知D 正确.故选D.4.已知三棱锥的底面是正三角形,其正视图与俯视图如图所示,则其侧视图的面积为( )A.34 B.32 C.34D .1 答案:C 解析:由正视图与俯视图,可知该几何体为正三棱锥,易知其侧视图的面积为12×32×3=34. 5.若直线l ∥平面α,直线a ⊂α,则l 与a 的位置关系是( ) A .l ∥a B .l 与a 异面C .l 与a 相交D .l 与a 没有公共点 答案:D6.等体积的球和正方体的表面积S 球与S 正方体的大小关系是( )A .S 正方体>S 球B .S 正方体<S 球C .S 正方体=S 球D .无法确定 答案:A解析:设正方体的棱长为a ,球的半径为R ,由题意,得V =43πR 3=a 3,∴a =3V ,R =33V 4π,∴S 正方体=6a 2=63V 2=3216V 2,S 球=4πR 2=336πV 2<3216V 2.7.有一个几何体的正视、侧视、俯视图分别如下,则该几何体的表面积为( )A .12πB .24πC .36πD .48π 答案:B解析:该几何体是一圆锥,S 侧=πrl =15π,S 底=πr 2=9π,S 表=24π. 8.若a ,b 是异面直线,直线c ∥a ,则c 与b 的位置关系是( ) A .相交 B .异面C .平行D .异面或相交 答案:D9.在直棱柱ABCDEF -A 1B 1C 1D 1E 1F 1中,ABCDEF 为正六边形,则下列判断错误的是( )A .A 1B 1∥平面FCD 1E 1 B .CD ⊥平面AA 1C 1CC .平面ABC 1F 1∥平面FCD 1E 1 D .AD ⊥C 1F 答案:D解析:对于A ,由正六边形的性质,知A 1B 1∥D 1E 1,所以A 1B 1∥平面FCD 1E 1,所以A 判断正确.对于B ,由正六边形的性质,知CD ⊥AC ,又CC 1⊥底面ABCDEF ,所以CC 1⊥CD ,所以CD ⊥平面AA 1C 1C ,所以B 判断正确.对于C ,由正六边形的性质,知AB ∥CF ,所以AB ∥平面FCD 1E 1,又由正六棱柱的性质,知AF 1∥CD 1,所以AF 1∥平面FCD 1E 1,又AB 与AF 1为平面ABC 1F 1中的相交直线,所以平面ABC 1F 1∥平面FCD 1E 1,所以C 判断正确.故选D. 10.已知一个全面积为44的长方体,且它的长、宽、高的比为::1,则此长方体的外接球的表面积为( )A .7πB .14πC .21πD .28π 答案:D解析:外接球的直径等于长方体的体对角线长.11.l 1,l 2,l 3是空间三条不同的直线,则下列命题正确的是( ) A .l 1⊥l 2,l 2⊥l 3⇒l 1∥l 3 B .l 1⊥l 2,l 2∥l 3⇒l 1⊥l 3C .l 1∥l 2∥l 3⇒l 1,l 2,l 3共面D .l 1,l 2,l 3共点⇒l 1,l 2,l 3共面 答案:B解析:A 选项还有可能异面或者相交,C 、D 不一定.12.如图,在棱长为1的正方体ABCD -A 1B 1C 1D 1中,P 为线段A 1B 上的动点,则下列结论错误的是( )A .DC 1⊥D 1PB .平面D 1A 1P ⊥平面A 1APC .∠APD 1的最大值为90° D .AP +PD 1的最小值为 2+ 2答案:C解析:连接CD 1,易得DC 1⊥平面A 1BCD 1,∴DC 1⊥D 1P ,故A 结论正确;∵D 1A 1⊥平面ABB 1A 1,∴平面D 1A 1P ⊥平面A 1AP ,故B 结论正确;当0<A 1P <22时,∠APD 1为钝角,故C 结论错误;将平面AA 1B 沿A 1B 展成与平面A 1BCD 1共面的平面图形,线段AD 1即AP +PD 1的最小值,解三角形得AD 1=2+2,故D 结论正确.故选C.二、填空题:本大题共4小题,每小题4分,共16分,把答案填在题中横线上. 13.切割某圆柱后得到的几何体的三视图如图所示,其中俯视图是圆心角为60°的扇形,则该几何体的体积为________.答案:2π解析:由三视图,知该几何体为圆柱的一部分,其高为3,底面扇形的半径为2,圆心角为π3,所以几何体的体积V =16×π×22×3=2π.14.如图,在正方体ABCD —A 1B 1C 1D 1中,点P 是上底面A 1B 1C 1D 1内一动点,则三棱锥P —ABC 的主视图与左视图的面积的比值为________.答案:1解析:把P 选在和B 1重合的位置,主视图与左视图完全一样.15.如图,直四棱柱ABCD -A 1B 1C 1D 1的底面是边长为1的正方形,AA 1=2,则异面直线A 1B 1与BD 1的夹角等于________.答案:60°解析:由直四棱柱ABCD -A 1B 1C 1D 1的底面是边长为1的正方形,AA 1=2,可得BD 1=2.由AB ∥A 1B 1,知∠ABD 1就是异面直线A 1B 1与BD 1的夹角.连接AD 1,则AB ⊥AD 1,cos ∠ABD 1=AB BD 1=12,所以∠ABD 1=60°,即异面直线A 1B 1与BD 1的夹角等于60°.16.一个透明密闭的正方体容器中,恰好盛有该容器一半容积的水,任意转动这个正方体,则水面在容器中的形状可以是:①三角形;②矩形;③正方形;④正六边形.其中正确的结论是________.(把你认为正确的序号都填上)答案:②③④解析:可以看做用一个平面去截正方体,截面的形状.三、解答题:本大题共6小题,共74分.解答应写出文字说明、证明过程或演算步骤. 17.(12分)如图所示,已知四边形ABCD 是矩形,E 是以DC 为直径的半圆周上一点,且平面CDE ⊥平面ABCD .求证:CE ⊥平面ADE .证明:因为E 是以DC 为直径的半圆周上一点,所以CE ⊥DE .又因为平面CDE ⊥平面ABCD ,平面CDE ∩平面ABCD =DC ,因为AD ⊥DC ,所以AD ⊥平面CDE .又CE ⊂平面CDE ,所以AD ⊥CE .又DE ∩AD =D ,所以CE ⊥平面ADE .18.(12分)如图,正方体ABCD -A ′B ′C ′D ′的棱长为a ,连接A ′C ′,A ′D ,A ′B ,BD ,BC ′,C ′D ,得到一个三棱锥.(1)求三棱锥A ′-BC ′D 的表面积与正方体的表面积的比值; (2)求三棱锥A ′-BC ′D 的体积.解:(1)正方体ABCD -A ′B ′C ′D ′的棱长为a ,则三棱锥A ′-BC ′D 的棱长为2a ,表面积为4×34×(2a )2=23a 2,正方体表面积为6a 2,∴三棱锥A ′-BC ′D 的表面积与正方体表面积的比值为3:3;(2)三棱锥A ′-BC ′D 的体积为a 3-4×13×12a 3=13a 3.19.(12分)如图,四棱锥P -ABCD 中,底面ABCD 是边长为22的正方形,其他四个侧面都是腰长为5的等腰三角形,过棱PD 的中点E 作截面EFGH ,使截面EFGH ∥平面PBC ,且截面EFGH 分别交棱P A ,AB ,CD 于点F ,G ,H .(1)证明:EF ∥GH ;(2)求三棱锥F -ABD 的体积.解:(1)∵平面EFGH ∥平面PBC ,平面EFGH ∩平面PCD =EH ,平面PBC ∩平面PCD =PC ,∴EH ∥PC .又E 是PD 的中点,∴H 是CD 的中点. 同理可证F ,G 分别是P A ,AB 的中点, ∴EF ∥AD ,GH ∥AD , ∴EF ∥GH .(2)如图,连接AC ,设AC ∩BD =O ,连接PO .∵底面ABCD 是边长为22的正方形,∴AC ⊥BD ,且AC =BD =4. ∵侧面为全等的等腰三角形, ∴PO ⊥AC ,PO ⊥BD .又AC ∩BD =O ,∴PO ⊥平面ABCD .在Rt △POA 中,PO =(5)2-⎝⎛⎭⎫422=1.又F 在P A 的中点,∴V F -ABD =12V P -ABD .又V P -ABD =13S △ABD ·PO =13×12×(22)2×1=43,∴V F -ABD =23.20.(12分)如图是一个几何体的正视图和俯视图. (1)试判断该几何体的形状;(2)画出该几何体的侧视图,并求侧视图的面积; (3)求该几何体的体积.解:(1)由题意,可知该几何体为正六棱锥.(2)其侧视图如图所示,其中AB =AC ,AD ⊥BC ,且BC =3a ,AD =3a ,所以该平面图形的面积S =12×3a ×3a =32a 2.(3)体积V =13×6×34a 2×3a =32a 3.21.(12分)如图,已知矩形ABCD 中,AB =10,BC =6,将矩形沿对角线BD 把△ABD折起,使A 移到A 1点,且A 1在平面BCD 上的射影O 恰好在CD 上.(1)求证:BC ⊥A 1D ;(2)求证:平面A 1BC ⊥平面A 1BD ; (3)求三棱锥A 1-BCD 的体积.解:(1)证明:∵A 1在平面BCD 上的射影O 在CD 上, ∴A 1O ⊥平面BCD .又BC ⊂平面BCD ,∴BC ⊥A 1O ,又∵BC ⊥CO ,A 1O ∩CO =O ,∴BC ⊥平面A 1CD ,又∵A 1D ⊂平面A 1CD . ∴BC ⊥A 1D .(2)证明:∵四边形ABCD 为矩形,∴A 1D ⊥A 1B . 由(1)知A 1D ⊥BC ,A 1B ∩BC =B , ∴A 1D ⊥平面A 1BC .又∵A 1D ⊂平面A 1BD ,∴平面A 1BC ⊥平面A 1BD . (3)解:∵A 1D ⊥平面A 1BC ,∴A 1D ⊥A 1C . ∵A 1D =6,CD =10,∴A 1C =8,∴VA 1-BCD =VD -A 1BC =13×(12×6×8)×6=48.22.(14分)如图,三棱柱ABC -A 1B 1C 1中,侧面AA 1C 1C ⊥侧面ABB 1A 1,AC =AA 1=2AB ,∠AA 1C 1=60°.AB ⊥AA 1,H 为棱CC 1的中点,D 为BB 1的中点.(1)求证:A 1D ⊥平面AB 1H ;(2)AB =2,求三棱柱ABC -A 1B 1C 1的体积.证明:(1)连接AC1,∵AC=AA1,∠ACC1=∠AA1C1=60°,∴△ACC1是等边三角形,∴AH⊥CC1,∵CC1∥AA1,∴AH⊥AA1,又∵侧面AA1C1C⊥侧面ABB1A1,侧面AA1C1C∩侧面ABB1A1=AA1,AH⊂平面AA1C1C,∴AH⊥平面ABB1A1,∵A1D⊂平面ABB1A1,∴AH⊥A1D.∵四边形ABB1A1是平行四边形,AB⊥AA1,∴四边形ABB1A1是矩形,∵AA1=2AB,∴B1D=22AB,∴B1DA1B1=22,A1B1AA1=22,又∵∠DB1A1=∠B1A1A=90°,∴△DB1A1∽△B1A1A,∴∠DA1B1=∠A1AB1=∠AB1D,∴∠AB1D+∠A1DB1=∠DA1B1+∠A1DB1=90°,∴A1D⊥AB1,又∵AH⊂平面AB1H,AB1⊂平面AB1H,AH∩AB1=A,∴A1D⊥平面AB1H.(2)连接BH,∵AH⊥AA1,AB⊥AA1,AH⊂平面ABH,AB⊂平面ABH,AB∩AH=A,∴AA1⊥平面ABH,∵AH⊥平面AB1BA1,AB⊂平面ABB1A1,∴AH⊥AB.∵AB=2,∴AC=AA1=2,∴AH= 3.∴V棱柱ABC-A1B1C1=S△ABH·AA1=12×2×3×2= 6.。
【人教A版】高中数学必修二:全册作业与测评 综合质量评估(附答案)
综合质量评估(第一至第四章)(120分钟150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知圆的方程是(x-2)2+(y-3)2=4,则点P(3,2)满足( )A.是圆心B.在圆上C.在圆内D.在圆外【解析】选C.因为(3-2)2+(2-3)2=2<4,故点P(3,2)在圆内.2.直线x-y-4=0与圆x2+y2-2x-2y-2=0的位置关系是( )A.相交B.相切C.相交且过圆心D.相离【解析】选D.圆的方程为(x-1)2+(y-1)2=4,则圆心到直线的距离d=错误!未找到引用源。
=2错误!未找到引用源。
>2,所以直线与圆相离.【补偿训练】(2015·郑州高一检测)对任意实数k,圆C:(x-3)2+(y-4)2=13与直线l:kx-y-4k+3=0的位置关系是( )A.相交B.相切C.相离D.与k取值有关【解析】选 A.对任意实数k,直线l:kx-y-4k+3=0恒过定点(4,3),而(4-3)2+(3-4)2<13,故定点(4,3)在圆C内部,所以直线与圆相交.3.(2015·乌海高一检测)已知空间两点P1(-1,3,5),P2(2,4,-3),则|P1P2|等于( ) A.错误!未找到引用源。
B.3错误!未找到引用源。
C.错误!未找到引用源。
D.错误!未找到引用源。
【解析】选A.错误!未找到引用源。
=错误!未找到引用源。
=错误!未找到引用源。
.4.已知两圆的方程是x2+y2=1和x2+y2-6x-8y+9=0,那么这两个圆的位置关系是( ) A.外离 B.相交 C.外切 D.内切【解析】选C.将圆x2+y2-6x-8y+9=0,化为标准方程得(x-3)2+(y-4)2=16.所以两圆的圆心距为错误!未找到引用源。
=5,又r1+r2=5,所以两圆外切.5.设l,m,n表示三条直线,α,β,γ表示三个平面,给出下列四个结论:①若l⊥α,m⊥α,则l∥m;②若m⊂β,n是l在β内的射影,m⊥l,则m⊥n;③若m⊂α,m∥n,则n∥α;④若α⊥γ,β⊥γ,则α⊥β.其中正确的为( )A.①②B.①②③C.①②③④D.③④【解析】选A.①正确,②可用线面垂直证明,正确,③中,n可能在α内;④中,可能有α,β相交或平行,故选A.6.(2015·临汾高一检测)垂直于直线y=x+1且与圆x2+y2=1相切于第一象限的直线方程是( )A.x+y-错误!未找到引用源。
高中数学必修2全册课时同步测试卷及答案
【若缺失公式、图片现象属于系统读取不成功,文档内容齐全完整,请放心下载。
】第一章空间几何体§1.1空间几何体的结构第1课时多面体的结构特征一、基础过关1.下列说法中正确的是() A.棱柱的侧面可以是三角形B.由6个大小一样的正方形所组成的图形是正方体的展开图C.正方体的各条棱长都相等D.棱柱的各条棱长都相等2.棱台不具备的特点是() A.两底面相似B.侧面都是梯形C.侧棱都相等D.侧棱延长后都交于一点3. 如图,将装有水的长方体水槽固定底面一边后倾斜一个小角度,则倾斜后水槽中的水形成的几何体是()A.棱柱B.棱台C.棱柱与棱锥的组合体 D.不能确定4.若棱台上、下底面的对应边之比为1∶2,则上、下底面的面积之比是() A.1∶2 B.1∶4 C.2∶1 D.4∶15.一个棱柱有10个顶点,所有的侧棱长的和为60 cm,则每条侧棱长为________cm. 6.在下面的四个平面图形中,哪几个是侧棱都相等的四面体的展开图________(填序号).7.如图所示为长方体ABCD—A′B′C′D′,当用平面BCFE把这个长方体分成两部分后,各部分形成的多面体还是棱柱吗?如果不是,请说明理由;如果是,指出底面及侧棱.8. 如图所示的是一个三棱台ABC—A1B1C1,如何用两个平面把这个三棱台分成三部分,使每一部分都是一个三棱锥.二、能力提升9.下图中不可能围成正方体的是()10.在正方体上任意选择4个顶点,它们可能是如下各种几何体的4个顶点,这些几何体是________(写出所有正确结论的编号).①矩形;②不是矩形的平行四边形;③有三个面为等腰直角三角形,有一个面为等边三角形的四面体;④每个面都是等边三角形的四面体;⑤每个面都是直角三角形的四面体.11.根据下列对于几何体结构特征的描述,说出几何体的名称.(1)由八个面围成,其中两个面是互相平行且全等的正六边形,其它各面都是矩形;(2)由五个面围成,其中一个面是正方形,其它各面都是有一个公共顶点的全等三角形.三、探究与拓展12.正方体的截面可能是什么形状的图形?答案1.C 2.C 3.A 4.B 5.12 6.①②7.解截面BCFE右侧部分是棱柱,因为它满足棱柱的定义.它是三棱柱BEB′—CFC′,其中△BEB′和△CFC′是底面.EF,B′C′,BC是侧棱,截面BCFE左侧部分也是棱柱.它是四棱柱ABEA′—DCFD′.其中四边形ABEA′和四边形DCFD′是底面.A′D′,EF,BC,AD为侧棱.8.解过A1、B、C三点作一个平面,再过A1、B、C1作一个平面,就把三棱台ABC—A1B1C1分成三部分,形成的三个三棱锥分别是A1—ABC,B—A1B1C1,A1—BCC1.9.D10.①③④⑤11.解(1)该几何体有两个面是互相平行且全等的正六边形,其他各面都是矩形,可满足每相邻两个面的公共边都相互平行,故该几何体是六棱柱.(2)该几何体的其中一个面是四边形,其余各面都是三角形,并且这些三角形有一个公共顶点,因此该几何体是四棱锥.12.解本问题可以有如下各种答案:①截面可以是三角形:等边三角形、等腰三角形、一般三角形;②截面三角形是锐角三角形;③截面可以是四边形:平行四边形、矩形、菱形、正方形、梯形、等腰梯形;截面为四边形时,这个四边形中至少有一组对边平行;④截面可以是五边形;⑤截面可以是六边形;⑥截面六边形可以是等角(均为120°)的六边形.特别地,可以是正六边形.截面图形举例【若缺失公式、图片现象属于系统读取不成功,文档内容齐全完整,请放心下载。
(人教版新课标)高中数学必修2所有课时练习(含答案可编辑)
第一章空间几何体课时作业(一)棱柱、棱锥、棱台的结构特征姓名______________ 班级_________学号__________一、选择题(每小题5分,共20分)1.从长方体的一个顶点出发的三条棱上各取一点E,F,G,过此三点作长方体的截面,那么截去的几何体是()A.三棱柱B.三棱锥C.四棱柱D.四棱锥答案: B2.下列说法中正确的是()①一个棱柱至少有五个面;②用一个平面去截棱锥,底面和截面之间的部分叫棱台;③棱台的侧面是等腰梯形;④棱柱的侧面是平行四边形.A.①④B.②③C.①③D.②④解析:因为棱柱有两个底面,因此棱柱的面数由侧面个数决定,而侧面个数与底面多边形的边数相等,故面数最少的棱柱为三棱柱,有五个面,①正确;②中的截面与底面不一定平行,故②不正确;由于棱台是由棱锥截来的,而棱锥的所有侧棱不一定相等,所以棱台的侧棱不一定都相等,即不一定是等腰梯形,③不正确;由棱柱的定义知④正确,故选A.答案: A3.正五棱柱中,不同在任何侧面且不同在任何底面的两顶点的连线称为它的对角线,那么一个正五棱柱对角线的条数共有()A.20 B.15C.12 D.10解析:正五棱柱任意不相邻的两条侧棱可确定一个平面,每个平面可得到正五棱柱的两条对角线,五个平面共可得到10条对角线,故选D.答案: D4.纸制的正方体的六个面根据其方位分别标记为上、下、东、南、西、北,现在沿该正方体的一些棱将正方体剪开,外面朝上展平,得到右侧的平面图形,则标“△”的面的方位是()A.南B.北C.西D.下解析:将所给图形还原为正方体,如图所示,最上面为△,最左面为东,最里面为上,将正方体旋转后让东面指向东,让“上”面向上可知“△”的方位为北.故选B.答案: B二、填空题(每小题5分,共10分)5.如图,正方形ABCD中,E,F分别为CD,BC的中点,沿AE,AF,EF将其折成一个多面体,则此多面体是________.解析:此多面体由四个面构成,故为三棱锥,也叫四面体.答案:三棱锥(也可答四面体)6.下列命题中,真命题有________.①棱柱的侧面都是平行四边形;②棱锥的侧面为三角形,且所有侧面都有一个公共点;③棱台的侧面有的是平行四边形,有的是梯形;④棱台的侧棱所在直线均相交于同一点;⑤多面体至少有四个面.解析:棱柱是由一个平面多边形沿某一方向平移而形成的几何体,因而侧面是平行四边形,故①对.棱锥是由棱柱的一个底面收缩为一个点而得到的几何体,因而其侧面均是三角形,且所有侧面都有一个公共点,故②对.棱台是棱锥被平行于底面的平面所截后,截面与底面之间的部分,因而其侧面均是梯形,且所有的侧棱延长后均相交于一点(即原棱锥的顶点),故③错④对.⑤显然正确.因而真命题有①②④⑤.答案:①②④⑤三、解答题(每小题10分,共20分)7.(1)如图所示的几何体是不是棱台?为什么?(2)如图所示的几何体是不是锥体?为什么?解析:(1)①②③都不是棱台.因为①和③都不是由棱锥所截得的,故①③都不是棱台;虽然②是由棱锥所截得的,但截面不和底面平行,故不是棱台.只有用平行于棱锥底面的平面去截棱锥,底面与截面之间的部分才是棱台.(2)都不是.棱锥定义中要求各侧面有一个公共顶点.图①中侧面ABC与CDE没有公共顶点,故该几何体不是锥体;图②中侧面ABE与面CDF没有公共点,故该几何体不是锥体.8.判断下列语句的对错.(1)一个棱锥至少有四个面;(2)如果四棱锥的底面是正方形,那么这个四棱锥的四条侧棱都相等;(3)五棱锥只有五条棱;(4)用与底面平行的平面去截三棱锥,得到的截面三角形和底面三角形相似.解析:(1)正确.(2)不正确.四棱锥的底面是正方形,它的侧棱可以相等,也可以不相等.(3)不正确.五棱锥除了五条侧棱外,还有五条底边,故共有10条棱.(4)正确.尖子生题库☆☆☆9.(10分)在如图所示的三棱柱ABC-A1B1C1中,请连接三条线,把它分成三部分,使每一部分都是一个三棱锥.解析:如图,连接A1B,BC1,A1C,则三棱柱ABC-A1B1C1被分成三部分,形成三个三棱锥,分别是A1-ABC,A1-BB1C1,A1-BCC1.课时作业(二)圆柱、圆锥、圆台、球的结构特征简单组合体的结构特征姓名______________ 班级_________学号__________一、选择题(每小题5分,共20分)1.下列四种说法①在圆柱的上、下两底面的圆周上各取一点,则这两点的连线是圆柱的母线;②圆锥的顶点与底面圆周上任意一点的连线是圆锥的母线;③在圆台上、下两底面的圆周上各取一点,则这两点的连线是圆台的母线;④圆柱的任意两条母线相互平行.其中正确的是()A.①②B.②③C.①③D.②④解析:①所取的两点与圆柱的轴OO′的连线所构成的四边形不一定是矩形,若不是矩形,则与圆柱母线定义不符.③所取两点连线的延长线不一定与轴交于一点,不符合圆台母线的定义.②④符合圆锥、圆柱母线的定义及性质.故选D.答案: D2.下图是由选项中的哪个图形旋转得到的()解析:该组合体上部是圆锥,下部是圆台,由旋转体定义知,上部由直角三角形的直角边为轴旋转形成,下部由直角梯形垂直于底边的腰为轴旋转形成.故选A.答案: A3.如图所示为一个空间几何体的竖直截面图形,那么这个空间几何体自上而下可能是()A.梯形、正方形B.圆台、正方形C.圆台、圆柱D.梯形、圆柱解析:空间几何体不是平面几何图形,所以应该排除A、B、D.答案: C4.如图所示的几何体,关于其结构特征,下列说法不正确的是()A.该几何体是由两个同底的四棱锥组成的几何体B.该几何体有12条棱、6个顶点C.该几何体有8个面,并且各面均为三角形D.该几何体有9个面,其中一个面是四边形,其余均为三角形解析:该几何体用平面ABCD可分割成两个四棱锥,因此它是这两个四棱锥的组合体,因而四边形ABCD是它的一个截面而不是一个面.故选D.答案: D二、填空题(每小题5分,共10分)5.有下列说法:①与定点的距离等于定长的点的集合是球面;②球面上三个不同的点,一定都能确定一个圆;③一个平面与球相交,其截面是一个圆面.其中正确说法的个数为________.解析:命题①②都对,命题③中一个平面与球相交,其截面是一个圆面,③对.答案: 36.下面几何体的截面一定是圆面的是________.(填正确序号)①圆柱②圆锥③球④圆台答案:③三、解答题(每小题10分,共20分)7.如图所示几何体可看作由什么图形旋转360°得到?画出平面图形和旋转轴.解析:先画出几何体的轴,然后再观察寻找平面图形.旋转前的平面图形如下:8.如图所示的几何体是否为台体?为什么?尖子生题库☆☆☆9.(10分)一个圆台的母线长为12 cm,两底面面积分别为4π cm2和25π cm2,求:(1)圆台的高;(2)截得此圆台的圆锥的母线长.解析:(1)圆台的轴截面是等腰梯形ABCD(如图所示).由已知可得上底一半O1A=2 cm,下底一半OB=5 cm.又因为腰长为12 cm,所以高AM=122-(5-2)2=315(cm).(2)如图所示,延长BA ,OO 1,CD ,交于点S ,设截得此圆台的圆锥的母线长为l ,则由△SAO 1∽△SBO 可得l -12l =25,解得l =20 cm.即截得此圆台的圆锥的母线长为20 cm.课时作业(三) 中心投影与平行投影空间几何体的三视图姓名______________ 班级_________学号__________一、选择题(每小题5分,共20分) 1.下列说法正确的是( ) A .矩形的平行投影一定是矩形 B .梯形的平行投影一定是梯形C .两条相交直线的平行投影可能平行D .若一条线段的平行投影是一条线段,则中点的平行投影仍为这条线段投影的中点 解析: 对于A ,矩形的平行投影可以是线段、矩形、平行四边形,主要与矩形的放置及投影面的位置有关;同理,对于B ,梯形的平行投影可以是梯形或线段;对于C ,平行投影把两条相交直线投射成两条相交直线或一条直线;D 正确。
人教A版高中数学必修第二册测试题(含答案)
人教A版高中数学必修第二册测试题(含答案)一、单选题1.设D为所在平面内一点,且,则()A.B.C.D.2.若复数为纯虚数,则实数()A.B.0C.5D.3.已知四边形为平行四边形,其中,则顶点的坐标为()A.B.C.D.4.如图是依据某城市年龄在20岁到45岁的居民上网情况调查而绘制的频率分布直方图,现已知年龄在[30,35),[35,40),[40,45)的上网人数呈现递减的等差数列分布,则年龄在[35,40)的网民出现的频率为( )A.0.04B.0.06C.0.2D.0.35.某三棱锥的三视图如右图所示,该三棱锥的体积为A.B.C.D.6.如果一个三位数的十位上的数字比个位和百位上的数字都大,则称这个三位数为“凸数”(如132),现从集合中任取3个互不相同的数字,组成一个三位数,则这个三位数是“凸数”的概率为()A.B.C.D.7.下列说法正确的个数是()①一组数据的标准差越大,则说明这组数据越集中;②曲线与曲线的焦距相等;③在频率分布直方图中,估计的中位数左边和右边的直方图的面积相等;④已知椭圆,过点作直线,当直线斜率为时,M刚好是直线被椭圆截得的弦AB的中点.A.1B.2C.3D.48.在中,一定成立的等式是()A.B.C.D.9.从高二某班级中抽出三名学生.设事件甲为“三名学生全不是男生”,事件乙为“三名学生全是男生”,事件丙为“三名学生至少有一名是男生”,则()A.甲与丙互斥B.任何两个均互斥C.乙与丙互斥D.任何两个均不互斥10.已知是平面,是直线,则下列命题不正确的是()A.若则B.若则C.若则D.若,则11.某中学的高一、高二、高三共有学生1350人,其中高一500人,高三比高二少50人,为了解该校学生健康状况,现采用分层抽样方法进行调查,在抽取的样本中有高一学生120人,则该样本中的高二学生人数为( )A.80B.96C.108D.110二、填空题12.在复变函数相关领域中,欧拉公式为(这里是虚数单位),当时,可以得到,这个公式被誉为数学中最令人着迷的公式,根据欧拉公式,则______.13.玲玲和倩倩是一对好朋友,她俩都想去观看某明星的演唱会,可手里只有一张票,怎么办呢?玲玲对倩倩说:“我向空中抛2枚同样的一元硬币,如果落地后一正一反,就我去;如果落地后两面一样,就你去!”你认为这个游戏公平吗?答:________.14.气象意义上从春季进入夏季的标志为连续5天的日平均温度均不低于22℃.现有甲、乙、丙三地连续5天的日平均温度的记录数据:(记录数据都是正整数)①甲地5个数据的中位数为24,众数为22;②乙地5个数据的中位数为27,总体均值为24;③丙地5个数据中有一个数据是32,总体均值为26,总体方差为10.8.则肯定进入夏季的地区有_____.15.已知水平放置的△ABC按“斜二测画法”得到如图所示的直观图,其中B′O′=C′O′=2,∠B'A'C'=90°,则原△ABC的面积为______.三、解答题16.在中,角所对的边分别为已知.(1)求A的大小;(2)如果,求的面积.17.宜宾市创建全国文明城市期间,一单位有甲、乙、丙三个志愿小组,其中甲组4人,乙组8人,丙组12人,现用分层抽样方法从这三个组中选出6人组成宣传小组.(1)应从甲组、乙组、丙组中各抽取多少人?(2)记选出6人分别为,现从这6人中抽取2人进入某小区进行创文宣传;①试用所给的字母列举出所有可能的抽取结果;②设事件是“抽取2人来自同一志愿小组”,求事件发生的概率. 18.某公司有名员工,根据男女员工人数比例,用分层随机抽样的方法从中抽取了人,调查他们的通勤时间(上下班途中花费的总时间,单位:分钟),将数据按照,, ,分成组,并整理得到如下频率分布直方图:(I)从总体中随机抽取人,估计其通勤时间小于分钟的概率;(Ⅱ)求样本数据的中位数的估计值;(Ⅲ)已知样本中通勤时间大于或等于分钟的人都是男员工,通勤时间小于分钟的人中有一半是男员工,求该公司男员工的人数.19.如图,在三棱柱ABC-A1B1C1中,CC1⊥底面ABC,AC⊥CB,点M和N分别是B1C1和BC的中点.(1)求证:MB∥平面AC1N;(2)求证:AC⊥MB.20.设,复数,其中为虚数单位.(1)当为何值时,复数是虚数?(2)当为何值时,复数是纯虚数?(3)当为何值时,复数所对应的点在复平面内位于第四象限?21.如图,已知正方体内接于球O,且球的半径为,P,Q分别是,上的动点.(1)求正方体的棱长;(2)求的最小值;(3)若平面与平面所成二面角的大小为,平面与平面所成二面角的大小为,试求的最小值,及此时P点的位置.参考答案1.D2.A3.D4.C5.A6.D7.B8.C9.A10.D11.C12.413.公平14.①③15.816.(1);(2)17.(1)甲组1人,乙组2人,丙组3人;(2)①,;②.18.(Ⅰ);(Ⅱ);(Ⅲ).19.(1)见解析;(2)见解析20.(1)且;(2);(3). 21.(1)2(2)(3),点P位于BC的中点。
学案导学高中数学(人教A版,必修二)课时作业与单元检测
第三章 章末检测(B)(时间:120分钟 满分:150分)一、选择题(本大题共12小题,每小题5分,共60分)1.如图直线l 1,l 2,l 3的倾斜角分别为α1,α2,α3,则有( )A .α1<α2<α3B .α1<α3<α2C .α3<α2<α1D .α2<α1<α32.直线x +2y -5=0与2x +4y +a =0之间的距离为5,则a 等于( ) A .0 B .-20 C .0或-20 D .0或-103.若直线l 1:ax +3y +1=0与l 2:2x +(a +1)y +1=0互相平行,则a 的值是( ) A .-3 B .2 C .-3或2 D .3或-2 4.下列说法正确的是( )A .经过定点P 0(x 0,y 0)的直线都可以用方程y -y 0=k (x -x 0)表示B .经过定点A (0,b )的直线都可以用方程y =kx +b 表示C .不经过原点的直线都可以用方程x a +yb=1表示D .经过任意两个不同的点P 1(x 1,y 1)、P 2(x 2,y 2)的直线都可以用方程(y -y 1)(x 2-x 1)=(x -x 1)(y 2-y 1)表示5.点M (4,m )关于点N (n ,-3)的对称点为P (6,-9),则( ) A .m =-3,n =10 B .m =3,n =10 C .m =-3,n =5 D .m =3,n =56.以A (1,3),B (-5,1)为端点的线段的垂直平分线方程是( ) A .3x -y -8=0 B .3x +y +4=0 C .3x -y +6=0 D .3x +y +2=07.过点M (2,1)的直线与x 轴,y 轴分别交于P ,Q 两点,且|MP |=|MQ |,则l 的方程是( ) A .x -2y +3=0 B .2x -y -3=0 C .2x +y -5=0 D .x +2y -4=08.直线mx -y +2m +1=0经过一定点,则该点的坐标是( ) A .(-2,1) B .(2,1) C .(1,-2) D .(1,2) 9.如果AC <0且BC <0,那么直线Ax +By +C =0不通过( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限10.直线2x +3y -6=0关于点(1,-1)对称的直线方程是( ) A .3x -2y +2=0 B .2x +3y +7=0 C .3x -2y -12=0 D .2x +3y +8=011.已知点P (a ,b )和Q (b -1,a +1)是关于直线l 对称的两点,则直线l 的方程是( ) A .x +y =0 B .x -y =0 C .x +y -1=0 D .x -y +1=012.设x +2y =1,x ≥0,y ≥0,则x 2+y 2的最小值和最大值分别为( )A .15,1B .0,1C .0,15D .15,2二、填空题(本大题共4小题,每小题5分,共20分)13.不论a 为何实数,直线(a +3)x +(2a -1)y +7=0恒过第________象限.14.原点O 在直线l 上的射影为点H (-2,1),则直线l 的方程为______________. 15.经过点(-5,2)且横、纵截距相等的直线方程是____________________.16.与直线3x +4y +1=0平行且在两坐标轴上截距之和为73的直线l 的方程为______________.三、解答题(本大题共6小题,共70分)17.(10分)已知直线2x +(t -2)y +3-2t =0,分别根据下列条件,求t 的值:(1)过点(1,1);(2)直线在y 轴上的截距为-3.18.(12分)直线l 过点(1,4),且在两坐标轴上的截距的积是18,求此直线的方程.19.(12分)光线从A (-3,4)点出发,到x 轴上的点B 后,被x 轴反射到y 轴上的C 点,又被y 轴反射,这时反射光线恰好过D (-1,6)点,求直线BC 的方程.20.(12分) 如图所示,某县相邻两镇在一平面直角坐标系下的坐标为A (1,2),B (4,0),一条河所在的直线方程为l :x +2y -10=0,若在河边l 上建一座供水站P ,使之到A ,B 两镇的管道最省,那么供水站P 应建在什么地方?21.(12分)已知△ABC的顶点A为(3,-1),AB边上的中线所在直线方程为6x+10y-59=0,∠B的平分线所在直线方程为x-4y+10=0,求BC边所在直线的方程.22.(12分)已知直线l过点P(3,1),且被两平行直线l1:x+y+1=0和l2:x+y+6=0截得的线段长度为5,求直线l的方程.第三章直线与方程(B) 答案1.B2.C3.A4.D[斜率有可能不存在,截距也有可能不存在.]5.D [由对称关系n =4+62,-3=m +(-9)2,可得m =3,n =5.]6.B [所求直线过线段AB 的中点(-2,2),且斜率k =-3,可得直线方程为3x +y +4=0.] 7.D [由题意可知M 为线段PQ 的中点,Q (0,2),P (4,0),可求得直线l 的方程x +2y -4=0.] 8.A [将原直线化为点斜式方程为y -1=m (x +2),可知不论m 取何值直线必过定点(-2,1).]9.C [将原直线方程化为斜截式为y =-A B x -CB ,由AC <0且BC <0,可知AB >0,直线斜率为负,截距为正,故不过第三象限.]10.D [所求直线与已知直线平行,且和点(1,-1)等距,不难求得直线为2x +3y +8=0.] 11.D [∵k PQ =a +1-bb -1-a=-1,∴k l =1.显然x -y =0错误,故选D .] 12.A [x 2+y 2为线段AB 上的点与原点的距离的平方,由数形结合知,O 到线段AB 的距离的平方为最小值,即d 2=15,|OB |2=1为最大值.]13.二解析 直线方程可变形为:(3x -y +7)+a (x +2y )=0.由⎩⎪⎨⎪⎧ 3x -y +7=0x +2y =0得,⎩⎪⎨⎪⎧x =-2y =1. ∴直线过定点(-2,1).因此直线必定过第二象限. 14.2x -y +5=0解析 所求直线应过点(-2,1)且斜率为2,故可求直线为2x -y +5=0.15.y =-25x 或x +y +3=0解析 不能忽略直线过原点的情况. 16.3x +4y -4=0解析 所求直线可设为3x +4y +m =0,再由-m 3-m 4=73,可得m =-4.17.解 (1)代入点(1,1), 得2+(t -2)+3-2t =0,则t =3. (2)令x =0,得y =2t -3t -2=-3,解得t =95.18.解 设直线l 的方程为x a +yb=1,则⎩⎪⎨⎪⎧ab =181a +4b =1,解得⎩⎪⎨⎪⎧a =3b =6或⎩⎪⎨⎪⎧a =32b =12则直线l 的方程2x +y -6=0 或8x +y -12=0.19.解如图所示,由题设,点B 在原点O 的左侧,根据物理学知识,直线BC 一定过(-1,6)关于y 轴的对称点(1,6),直线AB 一定过(1,6)关于x 轴的对称点(1,-6)且k AB =k CD ,∴k AB =k CD =4+6-3-1=-52.∴AB 方程为y -4=-52(x +3).令y =0,得x =-75,∴B ⎝⎛⎭⎫-75,0. CD 方程为y -6=-52(x +1).令x =0,得y =72,∴C ⎝⎛⎭⎫0,72. ∴BC 的方程为x -75+y72=1,即5x -2y +7=0. 20.解如图所示,过A 作直线l 的对称点A ′,连接A ′B 交l 于P , 若P ′(异于P )在直线上,则|AP ′|+|BP ′|=|A ′P ′|+|BP ′|>|A ′B |. 因此,供水站只有在P 点处,才能取得最小值,设A ′(a ,b ), 则AA ′的中点在l 上,且AA ′⊥l , 即⎩⎪⎨⎪⎧a +12+2×b +22-10=0,b -2a -1·⎝⎛⎭⎫-12=-1,解得⎩⎪⎨⎪⎧a =3,b =6,即A ′(3,6).所以直线A ′B 的方程为6x +y -24=0,解方程组⎩⎪⎨⎪⎧6x +y -24=0,x +2y -10=0,得⎩⎨⎧x =3811,y =3611,所以P 点的坐标为⎝⎛⎭⎫3811,3611. 故供水站应建在点P ⎝⎛⎭⎫3811,3611处.21.解 设B (4y 1-10,y 1), 由AB 中点在6x +10y -59=0上, 可得:6·4y 1-72+10·y 1-12-59=0,y 1=5, 所以B (10,5).设A 点关于x -4y +10=0的对称点为A ′(x ′,y ′), 则有⎩⎪⎨⎪⎧x ′+32-4·y ′-12+10=0y ′+1x ′-3·14=-1⇒A ′(1,7),∵点A ′(1,7),B (10,5)在直线BC 上, ∴y -57-5=x -101-10, 故BC :2x +9y -65=0.22.解 方法一 若直线l 的斜率不存在,则直线l 的方程为x =3,此时与直线l 1,l 2的交点分别为A (3,-4),B (3,-9).截得的线段AB 的长为|AB |=|-4+9|=5,符合题意.若直线l 的斜率存在,则设直线l 的方程为y =k (x -3)+1.解方程组⎩⎪⎨⎪⎧y =k (x -3)+1,x +y +1=0得⎩⎪⎨⎪⎧x =3k -2k +1,y =-4k -1k +1,所以点A 的坐标为⎝ ⎛⎭⎪⎫3k -2k +1,-4k -1k +1. 解方程组⎩⎪⎨⎪⎧y =k (x -3)+1,x +y +6=0得⎩⎪⎨⎪⎧x =3k -7k +1,y =-9k -1k +1,所以点B 的坐标为⎝ ⎛⎭⎪⎫3k -7k +1,-9k -1k +1. 因为|AB |=5,所以⎝ ⎛⎭⎪⎫3k -2k +1-3k -7k +12+⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫-4k -1k +1-⎝ ⎛⎭⎪⎫-9k -1k +12=25. 解得k =0,即所求直线为y =1.综上所述,所求直线方程为x =3或y =1.方法二 设直线l 与直线l 1,l 2的交点分别为A (x 1,y 1),B (x 2,y 2), 则x 1+y 1+1=0,x 2+y 2+6=0. 两式相减,得(x 1-x 2)+(y 1-y 2)=5.① 因为|AB |=5,所以(x 1-x 2)2+(y 1-y 2)2=25.②由①②可得⎩⎪⎨⎪⎧ x 1-x 2=5,y 1-y 2=0,或⎩⎪⎨⎪⎧x 1-x 2=0,y 1-y 2=5.所以直线的倾斜角为0°或90°.又P (3,1)在l 上,所以x =3或y =1.。
【人教A版】高中数学必修一:全册作业与测评(含答案) 课时提升作业(一) 1.1.1.1
温馨提示:此套题为Word版,请按住Ctrl,滑动鼠标滚轴,调节合适的观看比例,答案解析附后。
关闭Word文档返回原板块。
课时提升作业(一)集合的含义(25分钟60分)一、选择题(每小题5分,共25分)1.下列指定的对象,不能组成集合的是( )A.一年中有31天的月份B.平面上到点O距离是1的点C.满足方程x2-2x-3=0的xD.某校高一(1)班性格开朗的女生【解析】选D.因为A,B,C所给的对象都是确定的,从而可以组成集合,而D中所给的对象没有具体的标准来衡量一名女生怎样才能算性格开朗,故不能组成集合.【补偿训练】(2015·昆明高一检测)下列对象能组成集合的是( )A.中国大的城市B.方程x2-9=0在实数范围内的解C.直角坐标平面内第一象限的一些点D.√3的近似值的全体【解析】选B.A中的城市大到什么程度不明确,所以不能组成集合;B能组成集合;C中“一些点”无明确的标准,对于某个点是否在“一些点”中无法确定,因此“直角坐标平面内第一象限的一些点”不能组成集合;D中“√3的近似值”不明确精确到什么程度,因此很难判断一个数如“2”是不是它的近似值,所以不能组成集合.2.(2015·黄山高一检测)若a是R中的元素,但不是Q中的元素,则a可以是( )D.√7A.3.14B.-5C.37【解析】选D.√7不是有理数,是无理数,故选D.三个元素,集合B中含有3.(2015·达州高一检测)设a,b∈R,集合A中含有0,b,ba1,a,a+b三个元素,且集合A与集合B相等,则a+2b= ( )A.1B.0C.-1D.不确定=-1,所以a=-1,b=1,所以【解析】选A.由集合元素的互异性可知a+b=0,所以baa+2b=1.4.集合A的元素y满足y=x2+1,集合B的元素(x,y)满足y=x2+1(A,B中x∈R,y∈R).选项中元素与集合的关系都正确的是( )A.2∈A,且2∈BB.(1,2)∈A,且(1,2)∈BC.2∈A,且(3,10)∈BD.(3,10)∈A,且2∈B【解析】选C.集合A中元素y是实数,不是点,故选项B,D不对.集合B的元素(x,y)是点而不是实数,2∈B不正确,所以A错.故选C.【误区警示】易错选为B.虽然元素满足的表达式是相同的,但是元素的含义是不同的.A中的元素y指的是函数的值,而B中的元素是数对.5.已知集合M具有性质:若a∈M,则2a∈M,现已知-1∈M,则下列元素一定是M中的元素的是( )A.1B.0C.-2D.2【解析】选C.因为-1∈M,所以2×(-1)∈M,即-2∈M.【补偿训练】对于含有三个元素2,4,6的集合A,若a∈A,则6-a∈A,那么a的取值是.【解析】当a=2时,6-a=4∈A;当a=4时,6-a=2∈A;当a=6时,6-a=0∉A,所以a=2或a=4.答案:2或4二、填空题(每小题5分,共15分)6.(2015·宝鸡高一检测)对于自然数集N,若a∈N,b∈N,则a+b N,ab N.【解析】因为a∈N,b∈N,所以a,b是自然数,所以a+b,ab也是自然数,所以a+b∈N,ab∈N.答案:∈∈7.已知集合M含有三个元素1,2,x2,则x的取值范围为.【解析】根据元素的互异性知x2≠1,且x2≠2,所以x≠±1,且x≠±√2.答案:x≠±1,且x≠±√28.(2015·成都高一检测)已知集合P中元素x满足:x∈N,且2<x<a,又集合P中恰有三个元素,则整数a= .【解析】因为x∈N,且2<x<a,所以结合数轴知a=6.答案:6三、解答题(每小题10分,共20分)9.若所有形如3a+√2b(a∈Z,b∈Z)的数组成集合A,判断6-2√2是不是集合A中的元素.【解题指南】明确集合A中元素的特征是正确解答本题的关键.【解析】因为在3a+√2b(a∈Z,b∈Z)中,令a=2,b=-2,即可得到6-2√2,所以6-2√2√是集合A中的元素.10.(2015·广州高一检测)已知集合M含有三个元素-2,3x2+3x-4,x2+x-4.若2∈M,求x.【解题指南】由2∈M可得3x2+3x-4=2或x2+x-4=2,得出x的值后不要忘记验证. 【解析】当3x2+3x-4=2,即x2+x-2=0时,解得x=-2或x=1.经检验,当x=-2时,x2+x-4=-2,不满足集合元素的互异性,舍去;当x=1时,x2+x-4=-2,也不满足集合元素的互异性,舍去;当x2+x-4=2时,即x2+x-6=0,解得x=-3或2.当x=-3时,M={-2,14,2}满足题意;当x=2时,M={-2,14,2}也满足题意.所以x=-3或x=2.(20分钟40分)一、选择题(每小题5分,共10分)1.(2015·兰州高一检测)由a,a,b,b,a2,b2组成集合A,则集合A中的元素最多有( )A.6个B.5个C.4个D.3个【解题指南】结合集合元素的互异性求解.【解析】选C.根据集合中元素的互异性可知,集合A中的元素最多有4个,故选C.2.(2015·宿州高一检测)集合A中的元素y满足y∈N且y=-x2+1,若t∈A,则t 的值为( )A.0B.1C.0或1D.小于等于1【解析】选C.因为y=-x2+1≤1,且y∈N,所以y的值为0,1.又t∈A,则t的值为0或1.【误区警示】解题过程中要特别注意y∈N这个条件,否则极易错选为D.二、填空题(每小题5分,共10分)3.(2015·乌鲁木齐高一检测)若集合P中含有两个元素1,2,集合Q含有两个元素1,a2,若集合P与集合Q相等,则a= .【解析】由于两集合相等,所以a2=2,即a=±√2.答案:±√2∈A,且集合A中只含有一个元素a,则a的值为.4.若1−a1+a【解析】由题意,得1−a=a,所以a2+2a-1=0且a≠-1,所以a=-1±√2.1+a答案:-1±√2三、解答题(每小题10分,共20分)5.已知由方程kx2-8x+16=0的根组成的集合A只有一个元素,试求实数k的值. 【解析】当k=0时,原方程变为-8x+16=0,所以x=2,此时集合A中只有一个元素2.当k≠0时,要使一元二次方程kx2-8x+16=0只有一个实根,需Δ=64-64k=0,即k=1.此时方程的解为x1=x2=4,集合A中只有一个元素4.综上可知k=0或1.【误区警示】解答本题时易不考虑二次项系数k是否为0而直接利用根与系数的关系求解致错.6.某研究性学习小组共有8位同学,记他们的学号分别为1,2,3,…,8.现指导老师决定派某些同学去市图书馆查询有关数据,分派的原则为:若x号同学去,则8-x号同学也去.请你根据老师的要求回答下列问题:(1)若只有一个名额,请问应该派谁去?(2)若有两个名额,则有多少种分派方法?【解析】本题实质是考查集合中元素的特性,只有一个名额等价于x=8-x,有两个名额则为x和8-x.分派去图书馆查数据的所有同学组成一个集合,记作M,则有x∈M,8-x∈M.(1)若只有一个名额,即M中只有一个元素,必须满足x=8-x,故x=4,所以应该派学号为4的同学去.(2)若有两个名额,即M中有且仅有两个不同的元素x和8-x,从而全部含有两个元素的集合M含有元素的情况为:1,7或2,6或3,5,也就是有两个名额的分派方法有3种.关闭Word文档返回原板块。
最新【精品】人教a版高中数学必修2一课一练全册汇编含答案名师优秀教案
【精品】人教a版高中数学必修2一课一练全册汇编含答案人教A版高中数学必修2《一课一练》全册汇编含答案《1.1 空间几何体的结构》一课一练1《1.1 空间几何体的结构》一课一练2《1.2 空间几何体的三视图》一课一练1《1.2 空间几何体的直观图》一课一练2《1.3 柱体、锥体、台体的体积》一课一练2《1.3 柱体、锥体、台体的表面积》一课一练1《2.1 直线与平面、平面与平面位置关系》一课一练2《2.1 空间中直线与直线之间的位置关系》一课一练1《2.2 直线、平面平行的判定及其性质》一课一练1《2.2 直线、平面平行的判定及其性质》一课一练2《2.2 直线、平面平行的判定及其性质》一课一练3《2.2 直线、平面平行的判定及其性质》一课一练4《2.3 直线、平面垂直的判定及其性质》一课一练1《2.3 直线、平面垂直的判定及其性质》一课一练2《2.3 直线、平面垂直的判定及其性质》一课一练3《2.3 直线、平面垂直的判定及其性质》一课一练4《3.1 直线的倾斜角与斜率》一课一练1《3.1 直线的倾斜角与斜率》一课一练2《3.2 直线的方程》一课一练1《3.2 直线的方程》一课一练2《3.2 直线的方程》一课一练3《3.2 直线的方程》一课一练4《3.2 直线的方程》一课一练5《3.2 直线的方程》一课一练6《3.3 直线的交点坐标与距离公式》一课一练1《3.3 直线的交点坐标与距离公式》一课一练2《4.1 圆的方程》一课一练1《4.1 圆的方程》一课一练2《4.1 圆的方程》一课一练3《4.1 圆的方程》一课一练4《4.2 直线、圆的位置关系》一课一练1《4.2 直线、圆的位置关系》一课一练2《4.3 空间直角坐标系》一课一练1《4.3 空间直角坐标系》一课一练2- 1 -人教A版高中数学必修2《一课一练》新课标高一数学同步测试(1)—1.1空间几何体本试卷分第?卷和第?卷两部分.共150分.第?卷(选择题,共50分)一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的,请把正确答案的代号填在题后的括号内(每小题5分,共50分)(1(直线绕一条与其有一个交点但不垂直的固定直线转动可以形成 ( )A(平面 B(曲面 C(直线 D(锥面 2(一个多边形沿不平行于矩形所在平面的方向平移一段距离可以形成 ( )A(棱锥 B(棱柱 C(平面 D(长方体 3(有关平面的说法错误的是 ( )A(平面一般用希腊字母α、β、γ…来命名,如平面α…B(平面是处处平直的面C(平面是有边界的面D(平面是无限延展的4(下面的图形可以构成正方体的是 ( )A B C D5(圆锥的侧面展开图是直径为a的半圆面,那么此圆锥的轴截面是 ( )A(等边三角形 B(等腰直角三角形C(顶角为30?的等腰三角形 D(其他等腰三角形6(A、B为球面上相异两点,则通过A、B两点可作球的大圆有 ( )A(一个 B(无穷多个 C(零个 D(一个或无穷多个 7(四棱锥的四个侧面中,直角三角最多可能有 ( )A(1 B(2 C(3 D(4 8(下列命题中正确的是 ( )A(由五个平面围成的多面体只能是四棱锥B(棱锥的高线可能在几何体之外C(仅有一组对面平行的六面体是棱台D(有一个面是多边形,其余各面是三角形的几何体是棱锥9(长方体三条棱长分别是AA′=1,AB=2,AD=4,则从A点出发,沿长方体的表面到C′的最短矩离是 ( )2937 A(5 B(7 C( D( 10(已知集合A={正方体},B={长方体},C={正四棱柱},D={直四棱柱},E={棱柱},F={直平行六面体},则 ( )A,B,C,D,F,E A( B( ACBFDE,,,,,C( D(它们之间不都存在包含关系 CABDFE,,,,,第1页共127页人教A版高中数学必修2《一课一练》第?卷(非选择题,共100分)二、填空题:请把答案填在题中横线上(每小题6分,共24分). 11(线段AB长为5cm,在水平面上向右平移4cm后记为CD,将CD沿铅垂线方向向下移动3cm后记为C′D′,再将C′D′沿水平方向向左移4cm记为A′B′,依次连结构成长方体ABCD—A′B′C′D′.?该长方体的高为 ;?平面A′B′C′D′与面CD D′C′间的距离为 ;?A到面BC C′B′的距离为 .12(已知,ABCD为等腰梯形,两底边为AB,CD且AB>CD,绕AB所在的直线旋转一周所得的几何体中是由、、的几何体构成的组合体. 13(下面是一多面体的展开图,每个面内都给了字母,请根据要求回答问题: ?如果A在多面体的底面,那么哪一面会在上面 ;?如果面F在前面,从左边看是面B,那么哪一个面会在上面 ;?如果从左面看是面C,面D在后面,那么哪一个面会在上面 .14(长方体ABCD—ABCD中,AB=2,BC=3, 1111AA=5,则一只小虫从A点沿长方体的表面爬到C点的最短距离是 ( 11三、解答题:解答应写出文字说明、证明过程或演算步骤(共76分) 15((12分)根据图中所给的图形制成几何体后,哪些点重合在一起(16((12分)若一个几何体有两个面平行,且其余各面均为梯形,则它一定是棱台,此命题是否正确,说明理由(第2页共127页人教A版高中数学必修2《一课一练》17((12分)正四棱台上,下底面边长为a,b,侧棱长为c,求它的高和斜高( 18((12分)把一个圆锥截成圆台,已知圆台的上、下底面半径的比是1?4,母线长10cm.求:圆锥的母长(19((14分)已知正三棱锥S-ABC的高SO=h,斜高SM=n,求经过SO的中点且平行于底面的截面?ABC的面积( 11120((14分)有在正方形ABCD中,E、F分别为AB、BC的中点,现在沿DE、DF 及EF第3页共127页人教A版高中数学必修2《一课一练》把?ADE、?CDF和?BEF折起,使A、B、C三点重合,重合后的点记为P.问:?依据题意制作这个几何体;?这个几何体有几个面构成,每个面的三角形为什么三角形;?若正方形边长为a,则每个面的三角形面积为多少(参考答案(一)一、DBCCA DDBAB二、11(?3CM?4CM?5CM; 12(圆锥、圆台、圆锥; 13(?F?C?A; 14(5( 2三、15(解:J与N,A、M与D,H与E,G与F,B与C.16(解:未必是棱台,因为它们的侧棱延长后不一定交于一点,如图,用一个平行于楔形底面的平面去截楔形,截得的几何体虽有两个面平行,其余各面是梯形,但它不是棱台,所以看一个几何体是否棱台,不仅要看是否有两个面平行,其余各面是否梯形,还要看其侧棱延长后是否交于一点.小结:棱台的定义,除了用它作判定之外,至少还有三项用途:?为保证侧棱延长后交于一点,可以先画棱锥再画棱台;?如果解棱台问题遇到困难,可以将它还原为棱锥去看,因为它是由棱锥截来的;?可以利用两底是相似多边形进行有关推算.,,,,,,OOBB,OOEE和BEEB17(分析:棱台的有关计算都包含在三个直角梯形及两个直角三角形,,,,OBEOBE和中,而直角梯形常需割成一个矩形和一个直角三角形对其进行求解,所以要熟悉两,,,,底面的外接圆半径()内切圆半径()的差,特别是正三、正四、正六棱台. OB,OBOE,OE略解: hOOBFhEEBG,,,,,,,,,,21BF,(b,a)BG,(b,a)22122222?h,c,(b,a),2c,(b,a)22112222hcbacba,,,,,,,()()4 42第4页共127页人教A版高中数学必修2《一课一练》l,圆台上、下底半径为. 18(解:设圆锥的母线长为rR,l,10r?,lRl,101 ?,l440?,lcm()340 答:圆锥的母线长为cm. 332219(解:设底面正三角形的边长为a,在RT?SOM中SO=h,SM=n,所以OM=,又MO=a,即n,l66332222222a=,,截面面积为3(n,l)( n,l?s,a,33(n,l),ABC44320(解:?略(?这个几何体由四个面构成,即面DEF、面DFP、面DEP、面EFP.由平几知识可知DE=DF,?DPE=?EPF=?DPF=90?,所以?DEF为等腰三角形,?DFP、?EFP、?DEP为直角三角形.325a,EF=2a,所以,S=a。
人教A版高一数学必修第二册全册复习测试题卷含答案解析(54)
高一数学必修第二册全册复习测试题卷(共22题)一、选择题(共10题)1.已知一家便利店从1月份至5月份的营业收入与成本支出的折线图如下:关于该便利店1月份至5月份的下列描述中,正确的是( )A.各月的利润保持不变B.各月的利润随营业收入的增加而增加C.各月的利润随成本支出的增加而增加D.各月的营业收入与成本支出呈正相关关系2.设i是虚数单位,如果复数(a+1)+(−a+7)i(a∈R)的实部与虚部相等,那么实数a的值为( )A.4B.3C.2D.13.关于频率分布直方图中小长方形的高的说法,正确的是( )A.表示该组上的个体在样本中出现的频率B.表示取某数的频率C.表示该组上的个体数与组距的比值D.表示该组上的个体在样本中出现的频率与组距的比值4.观察新生婴儿的体重,其频率分布直方图如图所示,则新生婴儿体重在(2700,3000)内的频率为( )A.0.001B.0.1C.0.2D.0.35. 如果一组数据“x 1,x 2,x 3,x 4,x 5”的平均数是 2,方差是 13,那么另一组数据“3x 1−2,3x 2−2,3x 3−2,3x 4−2,3x 5−2”的平均数和方差分别为 ( ) A . 2,13B . 2,1C . 4,23D . 4,36. 在 △ABC 中,∠BAC =π2,AB =AC =2,P 为 △ABC 所在平面上任意一点,则 PA⃗⃗⃗⃗⃗ ⋅(PB ⃗⃗⃗⃗⃗ +PC ⃗⃗⃗⃗⃗ ) 的最小值为 ( ) A . 1B . −12C . −1D . −27. 已知互相垂直的平面 α,β 交于直线 l ,若直线 m ,n 满足 m ∥α,n ⊥β,则 ( ) A .m ∥lB .m ∥nC .n ⊥lD .m ⊥n8. 复数 i (2−i )= ( ) A . 1+2iB . 1−2iC . −1+2iD . −1−2i9. 若复数 z 满足 z (1+i )=2i ,其中 i 为虚数单位,则 z = ( ) A . 1−iB . 1+iC . −1+iD . −1−i10. 在 △ABC 中,B =30∘,AB =2√3,AC =2,则 △ABC 的面积是 ( )A . √3B . 2√3C . √3 或 2√3D . 2√3 或 4√3二、填空题(共6题) 11. 思考辨析,判断正误.在 △ABC 中,已知两边及夹角时,△ABC 不一定唯一.( )12. 根据党中央关于“精准脱贫”的要求,某市农业经济部门派甲、乙、丙 3 位专家对 A ,B 两个区进行调研,每个区至少派 1 位专家,则甲、乙两位专家均派遣至 A 区的概率为 .13. 已知向量 a =(2,1),b ⃗ =(−1,x ),若 (a +b ⃗ )∥(a −b ⃗ ),则实数 x 的值为 .14. 半径为 3 的球体表面积为 .15. 平面与平面垂直的性质定理:文字语言:两个平面垂直,如果一个平面内有一直线垂直于这两个平面的 ,那么这条直线与另一个平面 .符号语言:α⊥β,α∩β=l,,⇒a⊥β.图形语言:16.若复数z=2+i,其中i为虚数单位,则z在复平面内对应点的坐标为.1−2i三、解答题(共6题)17.已知圆柱的底面直径与高都等于球的直径.求证:(1) 球的表面积等于圆柱的侧面积;.(2) 球的表面积等于圆柱全面积的2318.在静水中划船的速度的大小是每分钟40m,水流速度的大小是每分钟20m,如果一小船从岸边某处出发,沿着垂直于水流的方向到达对岸,则小船的行进方向应指向哪里?19.在△ABC中,内角A,B,C所对的边分别为a,b,c,且满足b2+c2−a2=2bcsin(B+C).(1) 求角A的大小;,求△ABC的面积.(2) 若a=2,B=π320.应用面面平行判断定理应具备哪些条件?21.在北京市“危旧房改造”中,小强一家搬进了回龙观小区.这个小区冬季用家庭燃气炉取暖.为了估算冬季取暖第一个月使用天然气的开支情况,从11月15日起,小强连续八天每天晚上记录了天然气表显示的读数,如下表(注:天然气表上先后两次显示的读数之差就是这段时间内使用天然气的数量):日期15日16日17日18日19日20日21日22日小强的天然气表显示读数(单位:m3)220229241249259270279290妈妈11月15日买了一张面值600元的天然气使用卡,已知每立方米天然气1.70元,请你估算这张卡够小强家用一个月(按30天计算)吗?为什么?22.甲、乙两人在相同条件下各射靶10次,每次射靶的成绩情况如图所示.(1) 结合平均数和方差分析谁更优秀;(2) 结合平均数和中位数分析谁的成绩好些;(3) 结合平均数和命中9环及以上的次数分析谁的成绩好些;(4) 从折线图上两人射击命中环数的走势分析谁更有潜力.答案一、选择题(共10题) 1. 【答案】D【知识点】频率分布直方图2. 【答案】B【解析】由题意得 a +1=−a +7,则 a =3.故选B . 【知识点】复数的乘除运算3. 【答案】D【解析】频率分布直方图中小长方形的高是 频率组距,面积表示频率.【知识点】频率分布直方图4. 【答案】D【知识点】频率分布直方图5. 【答案】D【知识点】样本数据的数字特征6. 【答案】C【解析】如图,以直线 AB ,AC 分别为 x ,y 轴建立平面直角坐标系, 则 A (0,0),B (2,0),C (0,2),设 P (x,y ),则 PA⃗⃗⃗⃗⃗ =(−x,−y ),PB ⃗⃗⃗⃗⃗ =(2−x,−y ),PC ⃗⃗⃗⃗⃗ =(−x,2−y ),PB ⃗⃗⃗⃗⃗ +PC ⃗⃗⃗⃗⃗ =(2−2x,2−2y ), 所以PA⃗⃗⃗⃗⃗ ⋅(PB ⃗⃗⃗⃗⃗ +PC ⃗⃗⃗⃗⃗ )=−x (2−2x )−y (2−2y )=2x 2−2x +2y 2−2y =2(x −12)2+2(y −12)2−1,当 x =12,y =12 时,PA ⃗⃗⃗⃗⃗ ⋅(PB ⃗⃗⃗⃗⃗ +PC⃗⃗⃗⃗⃗ ) 取得最小值,为 −1. 故选C .【知识点】平面向量数量积的坐标运算7. 【答案】C【解析】由题意知α∩β=l,所以l⊂β,因为n⊥β,所以n⊥l.【知识点】直线与直线的位置关系、点、线、面的位置关系8. 【答案】A【解析】i(2−i)=1+2i.【知识点】复数的乘除运算9. 【答案】B【解析】因为复数z满足z(1+i)=2i,所以z=2i1+i=1+i.【知识点】复数的乘除运算10. 【答案】C【解析】由AB=2√3,AC=2,B=30∘及正弦定理ACsinB =ABsinC得sinC=ABsinBAC=2√3×122=√32.由C为三角形的内角可知C=60∘或120∘.因此A=90∘或30∘.在△ABC中,由AB=2√3,AC=2,A=90∘或30∘,得面积S=12AC⋅AB⋅sinA=2√3或√3.【知识点】正弦定理二、填空题(共6题)11. 【答案】×【知识点】余弦定理12. 【答案】16【解析】该试验所有的样本点为(甲,乙丙),(乙,甲丙),(丙,甲乙),(甲乙,丙),(甲丙,乙),(乙丙,甲)(其中每个样本点表示的都是“派往A区调研的专家、派往B区调研的专家”),共6个,其中甲、乙两位专家均被派遣至 A 区的样本点有 1 个,因此,所求事件的概率为 16. 【知识点】古典概型13. 【答案】 −12【解析】因为 a =(2,1),b⃗ =(−1,x ), 所以 a +b ⃗ =(1,x +1),a −b ⃗ =(3,1−x ), 又 (a +b ⃗ )∥(a −b⃗ ), 所以 1−x −3(x +1)=0, 解得 x =−12.【知识点】平面向量数乘的坐标运算14. 【答案】 36π【知识点】球的表面积与体积15. 【答案】交线;垂直; a ⊂α ; a ⊥l【知识点】平面与平面垂直关系的性质16. 【答案】 (0,1)【知识点】复数的几何意义、复数的乘除运算三、解答题(共6题) 17. 【答案】(1) 略. (2) 略.【知识点】圆柱的表面积与体积、球的表面积与体积18. 【答案】如图所示,设向量 OA⃗⃗⃗⃗⃗ 的长度和方向表示水流速度的大小和方向,向量 OB ⃗⃗⃗⃗⃗ 的长度和方向表示船在静水中速度的大小和方向,以 OA⃗⃗⃗⃗⃗ ,OB ⃗⃗⃗⃗⃗ 为邻边作平行四边形 OACB ,连接 OC . 依题意得 OC ⃗⃗⃗⃗⃗ ⊥OA ⃗⃗⃗⃗⃗ ,∣∣BC ⃗⃗⃗⃗⃗ ∣∣=∣∣OA ⃗⃗⃗⃗⃗ ∣∣=20,∣∣OB ⃗⃗⃗⃗⃗ ∣∣=40,所以 ∠BOC =30∘.故船应向上游且与河岸夹角为 60∘ 的方向行进. 【知识点】平面向量的实际应用问题19. 【答案】(1) 因为 A +B +C =π, 所以 sin (B +C )=sinA , 所以 b 2+c 2−a 2=2bcsinA ,所以b 2+c 2−a 22bc=sinA ,由余弦定理得 cosA =sinA ,可得 tanA =1, 又因为 A ∈(0,π), 所以 A =π4.(2) 根据正弦定理得 b =a sinA ⋅sinB =√6,又 sinC =sin (A +B )=sin (π4+π3)=√6+√24, 所以S △ABC =12absinC =12⋅2⋅√6⋅√6+√24=3+√32.【知识点】余弦定理、正弦定理20. 【答案】①平面 α 内两条相交直线 a ,b ,即 a ⊂α,b ⊂α,a ∩b =P .②两条相交直线 a ,b 都与 β 平行,即 a ∥β,b ∥β. 【知识点】平面与平面平行关系的判定21. 【答案】 300×1.70<600,够用.【知识点】样本数据的数字特征22. 【答案】(1) 根据题意作出统计表:平均数方差中位数命中9环及以上次数甲7 1.271乙75.47.53因为平均数相同,且 s 甲2<s 乙2,所以甲的成绩比乙稳定,甲更优秀.(2) 因为平均数相同,甲的中位数 < 乙的中位数, 所以乙的成绩比甲好.(3) 因为平均数相同,且乙命中 9 环及以上的次数比甲多, 所以乙的成绩比甲好.(4) 因为甲的成绩在平均线附近波动,而乙的成绩整体处于上升趋势,从第 4 次开始射靶的环数没有比甲少的情况发生, 所以乙更有潜力.【知识点】样本数据的数字特征。
人教新课标版数学高一-人教A版必修2 课时提升 平面1
温馨提示:此套题为Word版,请按住Ctrl,滑动鼠标滚轴,调节合适的观看比例,答案解析附后。
关闭Word文档返回原板块。
课时提升作业(七)平面(15分钟30分)一、选择题(每小题4分,共12分)1.下列叙述正确的是( )A.若P∈α,Q∈α,则PQ∈αB.若P∈α,Q∈β,则α∩β=PQC.若AB⊂α,C∈AB,D∈AB,则CD∈αD.若AB⊂α,AB⊂β,则A∈α∩β且B∈α∩β【解析】选D.点在直线或平面上,记作A∈l,A∈α,直线在平面内记作AB⊂α或l⊂α,故D正确.【补偿训练】下面说法中(其中A,B表示点,a表示直线,α表示平面):①因为A⊂α,B⊂α,所以AB⊂α;②因为A∈α,B∈α,所以AB∈α;③因为A∉a,a⊂α,所以A∉α;④因为A∉α,a⊂α,所以A∉a.其中正确的说法的序号是( )A.①④B.②③C.④D.③【解析】选C.点在平面上,用“∈”表示,不能用“⊂”表示,故①不正确;AB在α内,用“⊂”表示,不能用“∈”表示,故②不正确;由A∉a,a ⊂α,不能得出A∉α,故③不正确;由A∉α,a⊂α,知A∉a,故④正确.2.下列说法中正确的个数为( )①三角形一定是平面图形;②若四边形的两对角线相交于一点,则该四边形是平面图形;③圆心和圆上两点可确定一个平面;④三条平行线最多可确定三个平面.A.1B.2C.3D.4【解析】选C.由公理2可知①正确;因为两对角线相交,故可确定一平面,故②正确;当圆上两点与圆心共线时,不能确定平面,故③错误;每两条平行线可确定一个平面,故最多可确定3个平面,④正确. 3.(2015·成都高一检测)在空间四边形ABCD的边AB,BC,CD,DA上分别取E,F,G,H四点,如EF与HG交于点M,那么( )A.M一定在直线AC上B.M一定在直线BD上C.M可能在直线AC上,也可能在直线BD上D.M既不在直线AC上,也不在直线BD上【解析】选A.如图,因为EF∩HG=M,所以M∈EF,M∈HG,又EF⊂平面ABC,HG⊂平面ADC,故M∈平面ABC,M∈平面ADC,所以M∈平面ABC∩平面ADC=AC.二、填空题(每小题4分,共8分)4.空间中有五个点,其中有四个点在同一平面内,但没有任何三点共线,这样的五个点确定的平面最多可以是________个.【解析】因为空间中有五个点,其中有四个点在同一平面内,但没有任何三点共线,所以同一平面的四个点一定能两两连线,最多可连6条线,由三点确定一平面知任意一条线加上第五个点都会形成一个平面,因此有6个平面,再加上共面的4点确定的平面总共是7个平面.答案:75.若直线l与平面α相交于点O,A,B∈l,C,D∈α,且AC∥BD,则O,C,D 三点的位置关系是__________.【解析】如图,因为AC∥BD,所以AC与BD确定一个平面,记为β,则α∩β=CD,因为l∩α=O,所以O∈α,又O∈AB⊂β,所以O∈β,所以O∈CD.故O,C,D共线.答案:共线三、解答题6.(10分)如图,△ABC与△A 1B1C1不全等,且A1B1∥AB,B1C1∥BC,C1A1∥CA.求证:AA1,BB1,CC1交于一点.【证明】如图所示,因为A1B1∥AB,所以A1B1与AB确定一平面,记为平面α.同理,将B1C1与BC所确定的平面记为平面β,C1A1与CA所确定的平面记为平面γ.易知β∩γ=C1C.又△ABC与△A1B1C1不全等,所以AA1与BB1相交,设交点为P,P∈AA1,P∈BB1.而AA1⊂γ,BB1⊂β,所以P∈γ,P∈β,所以P在平面β与平面γ的交线上.又β∩γ=C1C,所以P∈C1C,所以AA1,BB1,CC1交于一点.(15分钟30分)一、选择题(每小题5分,共10分)1.已知A,B是点,a,b,l是直线,α是平面,如果a⊂α,b⊂α,l∩a=A,l ∩b=B,那么下列关系中成立的是( )A.l⊂αB.l∈αC.l∩α=AD.l∩α=B 【解析】选A.因为l∩a=A,a⊂α,所以A∈α,又l∩b=B,b⊂α,所以B∈α,故l⊂α.【补偿训练】用符号语言表示下列语句,正确的个数是( )(1)点A在平面α内,但不在平面β内:A⊂α,A⊄β.(2)直线a经过平面α外的点A,且a不在平面α内:A∈a,A∉α,a⊄α.(3)平面α与平面β相交于直线l,且l经过点P:α∩β=l,P∈l.(4)直线l经过平面α外一点P,且与平面α相交于点M:P∈l,l∩α=M.A.1B.2C.3D.4【解析】选B.(1)错误,点A和平面的关系应是A∈α,A∉β,(4)错误,缺少P∉α,(2)(3)正确.2.(2015·青岛高一检测)一条直线和直线外三个点最多能确定的平面个数是( ) A.4 B.6 C.7 D.10【解析】选A.当直线外这三点不共线且任意两点的连线不平行于该直线时,确定的平面个数最多为4个.【误区警示】本题易选C.产生错误的原因是先在已知直线上任取2点,这样共5点构成一个四棱锥,这样4个侧面,两个对角面,一个底面共7个,将条件作了转换,由原来的一条直线转换成两个点.二、填空题(每小题5分,共10分)3.如图,在正方体ABCD-A′B′C′D′中,下列说法正确的有________(填序号).(1)直线AC′在平面CC′B′B内.(2)设正方形ABCD与A′B′C′D′的中心分别为O与O′,则平面AA′C′C与平面BB′D′D的交线为OO′.(3)由点A,O,C可以确定一个平面.(4)由点A,C′,B′确定的平面是ADC′B′.【解析】(1)点C′在平面CC′B′B内,点A不在平面CC′B′B内,所以AC′不在平面CC′B′B内.(2)OO′既在平面AA′C′C内,又在平面BB′D′D内,所以平面AA′C′C与平面BB′D′D的交线为OO′.(3)点A,O,C在同一条直线上,故不能确定一个平面.(4)因为AD∥B′C′,所以A,D,C′,B′在同一个平面内,所以由点A,C′,B′确定的平面是ADC′B′.答案:(2)(4)4.下列说法①空间三条直线两两平行,则三条直线在同一个平面内;②空间三条直线两两相交,则三条直线在同一个平面内;③空间四点E,F,G,H在同一平面内,则直线EF与GH可能平行,也可能相交.其中正确的序号是__________.【解析】三棱柱的三条侧棱两两平行,但三条侧棱所在直线不在同一平面内,故①错;若三条直线交于同一点,则三条直线可能不在同一平面内,故②错;同一平面内两条直线不平行,就相交,故③正确.答案:③三、解答题5.(10分)如图,在正方体ABCD-A1B1C1D1中,B1D与平面ACD1交于点O,BD 与平面ACD1交于点M,求证:M,O,D1三点共线.【证明】连接MD1,则MD1是平面ACD1和平面BB1D1D的交线,又O∈B1D,B1D⊂平面BB1D1D,所以O∈平面BB1D1D,又O∈平面ACD1,所以O∈MD1,所以M,O,D1三点共线.关闭Word文档返回原板块。
最新人教A版高中数学必修二全册同步课时跟踪练习
最新人教A版高中数学必修二全册同步课时跟踪练习棱柱、棱锥、棱台的结构特征圆柱、圆锥、圆台、球及简单组合体的结构特征中心投影与平行投影及空间几何体的三视图空间几何体的直观图柱体、锥体、台体的表面积与体积球的体积和表面积平面空间中直线与直线之间的位置关系空间中直线与平面之间的位置关系平面与平面之间的位置关系直线与平面、平面与平面平行的判定直线与平面、平面与平面平行的性质直线与平面垂直的判定平面与平面垂直的判定直线与平面垂直的性质平面与平面垂直的性质倾斜角与斜率两条直线平行与垂直的判定直线的点斜式方程直线的两点式方程直线的一般式方程两条直线的交点坐标、两点间的距离点到直线的距离、两条平行线间的距离圆的标准方程圆的一般方程直线与圆的位置关系圆与圆的位置关系直线与圆的方程的应用空间直角坐标系棱柱、棱锥、棱台的结构特征一、题组对点训练对点练一棱柱的结构特征1.下面没有体对角线的一种几何体是()A.三棱柱B.四棱柱C.五棱柱D.六棱柱解析:选A三棱柱只有面对角线,没有体对角线.2.关于如图所示的4个几何体,说法正确的是()A.只有②是棱柱B.只有②④是棱柱C.只有①②是棱柱 D.只有①②④是棱柱解析:选D解决这类问题,要紧扣棱柱的定义:有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行.图①②④满足棱柱的定义,正确;图③不满足侧面都是平行四边形,不正确.3.如图,将装有水的长方体水槽固定底面一边后将水槽倾斜一个小角度,则倾斜后水槽中的水形成的几何体的形状是________.解析:由于倾斜角度较小,所以倾斜后水槽中水形成的几何体的形状应为四棱柱.答案:四棱柱对点练二棱锥、棱台的结构特征4.三棱锥的四个面中可以作为底面的有()A.1个B.2个C.3个 D.4个解析:选D三棱锥的每一个面均可作为底面,应选D.5.下面说法中,正确的是()A.上下两个底面平行且是相似四边形的几何体是四棱台B.棱台的所有侧面都是梯形C.棱台的侧棱长必相等D.棱台的上下底面可能不是相似图形解析:选B由棱台的结构特点可知,A、C、D不正确.6.下列四个几何体为棱台的是()解析:选C棱台的底面为多边形,各个侧面为梯形,侧棱延长后又交于一点,只有C 项满足这些要求.对点练三多面体的表面展开图7.下列图形中,不是三棱柱展开图的是()解析:选C本题考查三棱柱展开图的形状.显然C无法将其折成三棱柱,故选C.8.如图所示,不是正四面体(各棱长都相等的三棱锥)的展开图的是()A.①③B.②④C.③④ D.①②解析:选C可选择阴影三角形作为底面进行折叠,发现①②可折成正四面体,③④不论选哪一个三角形作底面折叠都不能折成正四面体.9.如图,这是一个正方体的表面展开图,若把它再折回成正方体后,有下列命题:①点H与点C重合;②点D,M,R重合;③点B与点Q重合;④点A与点S重合.其中正确命题的序号是________(把你认为正确命题的序号都填上).解析:将正方体的六个面分别用“前”“后”“左”“右”“上”“下”标记,若记面NPGF为“下”,面PSRN为“后”,则面PQHG,MNFE,EFCB,DEBA分别为“右”“左”“前”“上”.按各面的标记折成正方体,则点D,M,R重合;点G,C重合;点B,H重合;点A,S,Q重合.故②④正确,①③错误.答案:②④二、综合过关训练1.下列图形经过折叠可以围成一个棱柱的是()解析:选D A、B、C中底面边数与侧面个数不一致,故不能围成棱柱.2.以下有三个结论:①有两个面互相平行,其余各面都是四边形的多面体一定是棱柱;②有一个面是多边形,其余各面都是三角形的多面体一定是棱锥;③侧面都是矩形的棱柱是长方体.正确的个数是()A.0 B.1C.2 D.3解析:选A由棱柱、棱锥定义知①②错;侧面都是矩形的棱柱可能是斜棱柱,故③错.3.某同学制作了一个对面图案相同的正方体礼品盒(如图),则这个正方体礼品盒的表面展开图应该为()解析:选A两个☆不能并列相邻,B、D错误;两个※不能并列相邻,C错误,故选A.也可通过实物制作检验来判定.4.下列说法正确的是()A.有2个面平行,其余各面都是梯形的几何体是棱台B.多面体至少有3个面C.各侧面都是正方形的四棱柱一定是正方体D.九棱柱有9条侧棱,9个侧面,侧面为平行四边形解析:选D选项A错误,反例如图1;一个多面体至少有4个面,如三棱锥有4个面,不存在有3个面的多面体,所以选项B错误;选项C错误,反例如图2,上、下底面是全等的菱形,各侧面是全等的正方形,它不是正方体;根据棱柱的定义,知选项D正确.5.若一个棱台共有21条棱,则这个棱台是________棱台.解析:由棱台的概念可知,棱台的上下底面为相似多边形,边数相同;侧面为梯形,侧面个数与底面多边形边数相同,可知该棱台为七棱台.答案:七6.如图所示平面图形沿虚线折起后,(1)为________,(2)为________,(3)为________.解析:结合棱柱、棱锥的概念可知,(1)是四棱柱,(2)是三棱锥,(3)是四棱锥.答案:四棱柱三棱锥四棱锥7.观察下列四张图片,结合所学知识说出这四个建筑物主要的结构特征.解:(1)是上海世博会中国馆,其主体结构是四棱台.(2)是法国卢浮宫,其主体结构是四棱锥.(3)是国家游泳中心“水立方”,其主体结构是四棱柱.(4)是美国五角大楼,其主体结构是五棱柱.8.如图在以O为顶点的三棱锥中,过O的三条棱两两夹角都是30°,在一条棱上取A、B两点,OA=4 cm,OB=3 cm,以A、B为端点用一条绳子紧绕三棱锥的侧面一周(绳和侧面无摩擦),求此绳在A、B两点间的最短绳长.解:作出三棱锥的侧面展开图,如图A、B两点间最短绳长就是线段AB的长度.在△AOB中,∠AOB=30°×3=90°,OA=4 cm,OB=3 cm,所以AB=OA2+OB2=5 cm.所以此绳在A、B两点间的最短绳长为5 cm.圆柱、圆锥、圆台、球及简单组合体的结构特征一、题组对点训练对点练一旋转体的结构特征1.下列几何体中是旋转体的是()①圆柱;②六棱锥;③正方体;④球体;⑤四面体.A.①和⑤B.①C.③和④ D.①和④解析:选D根据旋转体的概念可知,①和④是旋转体.2.下面几何体的轴截面(过旋转轴的截面)是圆面的是()A.圆柱B.圆锥C.球 D.圆台解析:选C圆柱的轴截面是矩形,圆锥的轴截面是等腰三角形,圆台的轴截面是等腰梯形,只有球的轴截面是圆面.3.有下列说法:①球的半径是球面上任意一点与球心的连线;②球的直径是球面上任意两点间的连线;③用一个平面截一个球,得到的是一个圆.其中正确说法的序号是________.解析:利用球的结构特征判断:①正确;②不正确,因为直径必过球心;③不正确,因为得到的是一个圆面.答案:①对点练二简单组合体4.下列几何体是简单组合体的是()解析:选D A选项中的几何体是圆锥,B选项中的几何体是圆柱,C选项中的几何体是球,D选项中的几何体是一个圆台中挖去一个圆锥,是简单组合体.5.以钝角三角形的较小边所在的直线为轴,其他两边旋转一周所得到的几何体是()A.两个圆锥拼接而成的组合体B.一个圆台C.一个圆锥D.一个圆锥挖去一个同底的小圆锥解析:选D如图以AB为轴所得的几何体是一个大圆锥挖去一个同底的小圆锥.6.指出如图(1)(2)所示的图形是由哪些简单几何体构成的.解:分割图形,使它的每一部分都是简单几何体.图(1)是由一个三棱柱和一个四棱柱拼接而成的简单组合体.图(2)是由一个圆锥和一个四棱柱拼接而成的简单组合体.对点练三有关几何体的计算7.用长为4,宽为2的矩形作侧面围成一个圆柱,此圆柱轴截面面积为()A.8 B.8π C.4π D.2π解析:选B由题意可知,假设围成的圆柱底面周长为4,高为2,设圆柱底面圆的半径为r,则2πr=4,所以r=2π,所以截面是长为2,宽为4π的矩形,所以截面面积为2×4π=8π.同理,当围成的圆柱底面周长为2,高为4时,截面面积为8π.8.一个圆锥的母线长为20 cm,母线与轴的夹角为30°,则圆锥的高为________cm.解析:h=20 cos 30°=103(cm).答案:10 3二、综合过关训练1.如图所示的平面中阴影部分绕中间轴旋转一周,形成的几何体形状为()A.一个球体B.一个球体中间挖出一个圆柱C.一个圆柱D.一个球体中间挖去一个长方体解析:选B圆旋转一周形成球,圆中的矩形旋转一周形成一个圆柱,所以选B.2.下列说法中正确的个数是()①用一个平面去截一个圆锥得到一个圆锥和一个圆台;②圆锥中过轴的截面是一个等腰三角形;③分别以矩形(非正方形)的长和宽所在直线为旋转轴,旋转一周得到的两个几何体是两个不同的圆柱.A.0 B.1 C.2 D.3解析:选C①中,必须用一个平行于底面的平面去截圆锥,才能得到一个圆锥和一个圆台,故①说法错误;显然②③说法正确.故说法正确的有2个.3.若圆柱体被平面截成如图所示的几何体,则它的侧面展开图是()解析:选D结合几何体的实物图,从截面最低点开始高度增加缓慢,然后逐渐变快,最后增加逐渐变慢,不是均衡增加的,所以A、B、C错误.4.两平行平面截半径为5的球,若截面面积分别为9 π和16 π,则这两个平面间的距离是()A.1B.7C.3或4 D.1或7解析:选D如图(1)所示,若两个平行平面在球心同侧,则CD=52-32-52-42=1.如图(2)所示,若两个平行截面在球心两侧,则CD=52-32+52-42=7.5.给出下列说法:①圆柱的底面是圆面;②经过圆柱任意两条母线的截面是一个矩形面;③圆台的任意两条母线的延长线,可能相交,也可能不相交;④夹在圆柱的两个截面间的几何体还是一个旋转体,其中说法正确的是________.解析:①正确,圆柱的底面是圆面;②正确,经过圆柱任意两条母线的截面是一个矩形面;③不正确,圆台的母线延长一定相交于一点;④不正确,夹在圆柱的两个平行于底面的截面间的几何体才是旋转体.答案:①②6.已知圆锥的底面半径为1 cm,高为 2 cm,其内部有一个内接正方体,则这个内接正方体的棱长为________.解析:设正方体的棱长为a,则a2=1-22a1,即a=2 2.答案:22cm7.如图所示,梯形ABCD中,AD∥BC,且AD<BC,当梯形ABCD绕AD所在直线旋转一周时,其他各边旋转围成了一个几何体,试描述该几何体的结构特征.解:如图所示,旋转所得的几何体是一个圆柱挖去两个圆锥后剩余部分构成的简单组合体.8.圆台的一个底面周长是另一个底面周长的3倍,轴截面的面积等于392 cm2,母线与轴的夹角是45°,求这个圆台的高、母线长和两底面半径.解:圆台的轴截面如图所示,设圆台上、下底面半径分别为x cm,3x cm,延长AA1交OO1的延长线于S,在Rt△SOA中,∠ASO=45°,则∠SAO=45°,所以SO=AO=3x,SO1=A1O1=x,所以OO1=2x.又S轴截面=12(6x+2x)·2x=392,所以x=7.所以圆台的高OO1=14 (cm),母线长l=2OO1=142(cm),两底面半径分别为7 cm,21 cm.中心投影与平行投影及空间几何体的三视图一、题组对点训练对点练一平行投影和中心投影1.直线的平行投影可能是()A.点B.线段C.射线 D.曲线解析:选A直线的平行投影可能是直线也可能是点,故选A.2.下列的四个图形中采用中心投影画法的是()解析:选A根据平行投影和中心投影的画法规则,B、C、D选项中的图形均为平行投影下的图形,而A选项中的图形采用的是中心投影画法.3.如图,E,F分别是正方体ABCD-AB1C1D1的面ADD1A1和面BCC1B1的中心,则四边形BFD1E在该正方体的面上的正投影可能是________(把所有可能图形的序号都填上).解析:图②是在平面DCC1D1或平面ABCD上的正投影;图③是在平面BCC1B1上的正投影.图①④均不符合.答案:②③对点练二简单几何体的三视图4.已知一个几何体的三视图如图所示,则此几何体的组成为()A.上面为棱台,下面为棱柱B.上面为圆台,下面为棱柱C.上面为圆台,下面为圆柱 D.上面为棱台,下面为圆柱解析:选C结合三视图,易知该几何体上面为圆台,下面为圆柱.5.如图所示的几何体中,正视图与侧视图都是长方形的是________.解析:(2)的侧视图是三角形,(5)的正视图和侧视图都是等腰梯形,其余的都符合条件.答案:(1)(3)(4)6.如图所示的螺栓是由棱柱和圆柱构成的组合体,试画出它的三视图.解:三视图如图所示.对点练三由三视图还原空间几何体7.(2018·全国卷Ⅰ)某圆柱的高为2,底面周长为16,其三视图如图所示.圆柱表面上的点M在正视图上的对应点为A,圆柱表面上的点N在左视图上的对应点为B,则在此圆柱侧面上,从M到N的路径中,最短路径的长度为() A.217 B.2 5C.3 D.2解析:选B先画出圆柱的直观图,根据题图的三视图可知点M,N的位置如图①所示.圆柱的侧面展开图及M,N的位置(N为OP的四等分点)如图②所示,连接MN,则图中MN即为M到N的最短路径.∵ON=14×16=4,OM=2,∴MN=OM2+ON2=22+42=2 5.8.如图是一个几何体的三视图,则可以判断此几何体是________.解析:由三视图可知,此几何体为一个正四棱锥.答案:正四棱锥9.如图,图(1)、(2)、(3)是图(4)表示的几何体的三视图,其中图(1)是________,图(2)是________,图(3)是________(写出视图名称).解析:由几何体的位置知,(1)为正视图,(2)为侧视图,(3)为俯视图.答案:正视图侧视图俯视图二、综合过关训练1.下列命题中正确的是()A.矩形的平行投影一定是矩形B.梯形的平行投影一定是梯形C.两条相交直线的投影可能平行D.一条线段的中点的平行投影仍是这条线段投影的中点解析:选D矩形的平行投影可能是线段,平行四边形或矩形,梯形的平行投影可能是线段或梯形,两条相交直线的投影是两条相交直线或是一条直线.因此A、B、C均错,故D 正确.2.沿一个正方体三个面的对角线截得的几何体如图所示,则该几何体的侧视图为()解析:选B依题意,侧视图中棱的方向从左上角到右下角,故选B.3.某个游戏环节,玩家需按墙上的空洞造型摆出相同姿势,才能穿墙而过,否则会被墙推入水池.类似地,有一个几何体恰好无缝隙地以三个不同形状的“姿势”穿过“墙”上的三个空洞,则该几何体为()解析:选A由题意知,图中正方形、圆形、三角形对应某几何体的三视图,结合选项中给出的图形分析可知,A中几何体满足要求.故选A.4.在一个几何体的三视图中,正视图和侧视图是两个完全相同的图形,如图所示,则相应的俯视图可以为()A.①②B.②③C.③④ D.②④解析:选D若俯视图为图①,则该几何体的正视图的上方三角形应该没有高线,故俯视图不可能为图①,排除选项A;若俯视图为图③,则该几何体的侧视图的上方应该没有左边小三角形,故俯视图不可能为图③,排除选项B、C;若俯视图为图②,则该几何体是由上面是正四棱锥,下面是正方体组合而成的简单组合体;若俯视图为图④,则该几何体是由上面是正四棱锥,下面是圆柱组合而成的简单组合体.故选D.5.由小正方体木块搭成的几何体的三视图如图所示,则该几何体由________块小正方体木块搭成.解析:小木块的排列方式如图所示.由图知,几何体由7块小正方体木块搭成.答案:76.若一个正三棱柱(底面为正三角形,侧面为矩形的棱柱)的三视图如图所示,则这个正三棱柱的侧棱长和底面边长分别为________、________.解析:侧视图中尺寸2为正三棱柱的侧棱长,尺寸23为俯视图正三角形的高,所以正三棱柱的底面边长为4.答案:2 47.某组合体的三视图如图所示,试画图说明此组合体的结构特征.解:该三视图表示的几何体是由一个四棱柱和一个四棱台拼接而成的组合体(如图所示).8.如图,在正四棱柱ABCD-A1B1C1D1中,AB=1,AA1=2,点P是平面A1B1C1D1内的一个动点,求三棱锥P -ABC 的正视图与俯视图的面积的比值的最大值.解:点P 是平面A 1B 1C 1D 1内的一个动点,则三棱锥P -ABC 的正视图始终是一个底为1,高为2的三角形, 其面积S 1=12×1×2=1.当点P 在底面ABCD 内的投影点在△ABC 的内部或边界上时,其俯视图的面积最小, 最小面积S 2=12×1×1=12,所以三棱锥P -ABC 的正视图与俯视图的面积的比值的最大值为S 1S 2=2.空间几何体的直观图一、题组对点训练 对点练一 斜二测画法1.用斜二测画法画水平放置的△ABC 时,若∠A 的两边分别平行于x 轴、y 轴,且∠A =90°,则在直观图中∠A ′=( )A .45°B .135°C .45°或135°D.90°解析:选C 在画直观图时,∠A ′的两边依然分别平行于x ′轴、y ′轴,而∠x ′O ′y ′=45°或135°.2.用斜二测画法画水平放置的平面图形的直观图,对其中的线段说法错误的是( ) A .原来相交的仍相交 B .原来垂直的仍垂直 C .原来平行的仍平行 D .原来共点的仍共点解析:选B 根据斜二测画法,原来垂直的未必垂直. 3.关于斜二测画法所得直观图的说法正确的是( ) A .直角三角形的直观图仍是直角三角形 B .梯形的直观图是平行四边形 C .正方形的直观图是菱形D .平行四边形的直观图仍是平行四边形解析:选D 由斜二测画法规则可知,平行于y 轴的线段长度减半,直角坐标系变成斜坐标系,而平行性没有改变,故只有选项D 正确.4.如图,已知等腰三角形ABC ,则如图所示的四个图中,可能是△ABC 的直观图的是 ( )A.①②B.②③C.②④ D.③④解析:选D原等腰三角形画成直观图后,原来的腰长不相等,③④两图分别是∠x′O′y′成135°和45°的坐标系中的直观图.5.画出水平放置的四边形OBCD(如图所示)的直观图.解:(1)过点C作CE⊥x轴,垂足为E,如图(1)所示,画出对应的x′轴、y′轴,使∠x′O′y′=45°.(2)如图(2)所示,在x′轴上取点B′,E′,使得O′B′=OB,O′E′=OE;在y′轴上取一点D,使得O′D′=12OD;过E′作E′C′∥y′轴,使E′C′=12EC.(3)连接B′C′,C′D′,并擦去x′轴与y′轴及其他一些辅助线,如图(3)所示,四边形O′B′C′D′就是所求的直观图.对点练二由直观图还原平面图形6.用斜二测画法画一个水平放置的平面图形的直观图为如图所示的一个正方形,则原来的图形是()解析:选A由直观图的画法可知,落在y轴上的对角线的长为22,结合各选项可知选A.7.如图所示,△A′B′C′是水平放置的△ABC的直观图,则在△ABC的三边及中线AD中,最长的线段是()A.AB B.ACC.BC D.AD解析:选B由直观图可知△ABC是以∠B为直角的直角三角形,所以斜边AC最长.8.如图所示,Rt△O′A′B′是一平面图形的直观图,直角边O′B′=1,则这个平面图形的面积是()A.2 2 B.1C. 2D.4 2解析:选C在△AOB中,OB=O′B′=1,OA=2O′A′=22,且∠AOB=90°,S△AOB=12OA·OB=12×1×22= 2.二、综合过关训练1.已知一个建筑物上部为四棱锥,下部为长方体,且四棱锥的底面与长方体的上底面尺寸一样,长方体的长、宽、高分别为20 m,5 m,10 m,四棱锥的高为8 m,如果按1∶500的比例画出它的直观图,那么在直观图中,长方体的长、宽、高和棱锥的高应分别为() A.4 cm,1 cm,2 cm,1.6 cmB.4 cm,0.5 cm,2 cm,0.8 cmC.4 cm,0.5 cm,2 cm,1.6 cmD.4 cm,0.5 cm,1 cm,0.8 cm解析:选C直观图中长、宽、高应分别按原尺寸的1500,11 000,1500计算,最后单位转化为cm.2.如图所示的正方形O′A′B′C′的边长为1 cm,它是水平放置的一个平面图形的直观图,则原图形的周长是()A.6 cm B.8 cmC.(2+32) cm D.(2+23) cm解析:选B直观图中,O′B′=2,原图形中OC=AB=(22)2+12=3,OA=BC =1,∴原图形的周长是2×(3+1)=8.3.如图是利用斜二测画法画出的△ABO的直观图,已知O′B′=4,A′B′∥y′轴,且△ABO的面积为16,过A′作A′C′⊥x′轴,则A′C′的长为()A.2 2 B. 2C.16 2 D.1解析:选A 因为A ′B ′∥y ′轴,所以在△ABO 中,AB ⊥OB .又△ABO 的面积为16,所以12AB ·OB =16.所以AB =8,所以A ′B ′=4.如图,作A ′C ′⊥O ′B ′于点C ′,所以B ′C ′=A ′C ′,所以A ′C ′的长为4sin 45°=2 2.4.已知两个圆锥,底面重合在一起,其中一个圆锥顶点到底面的距离为2 cm ,另一个圆锥顶点到底面的距离为3 cm ,则其直观图中这两个顶点之间的距离为( )A .2 cmB .3 cmC .2.5 cmD .5 cm解析:选D 圆锥顶点到底面的距离即圆锥的高,故两顶点间距离为2+3=5 cm ,在直观图中与z 轴平行的线段长度不变,仍为5 cm.5.有一个长为5,宽为4 的矩形,则其直观图的面积为________. 解析:由于该矩形的面积为S =5×4=20,所以由公式S ′=24S ,得其直观图的面积为S ′=24S =5 2. 答案:5 26.一个水平放置的平面图形的斜二测直观图是直角梯形ABCD ,如图所示,∠ABC =45°,AB =AD =1,DC ⊥BC ,则原平面图形的面积为________.解析:过A 作AE ⊥BC ,垂足为E .∵DC ⊥BC 且AD ∥BC ,∴ADCE 是矩形,∴EC =AD =1.由∠ABC =45°,AB =AD =1知BE =22,∴原平面图形是梯形且上、下两底边长分别为1和1+22,高为2, ∴原平面图形的面积为12×⎝⎛⎭⎫1+1+22×2=2+22.答案:2+227.如图,四边形A ′B ′C ′D ′是边长为1的正方形,且它是某个四边形按斜二测画法画出的直观图,请画出该四边形的原图形,并求出原图形的面积.解:画出平面直角坐标系xOy ,使点A 与O 重合, 在x 轴上取点C ,使AC =2, 再在y 轴上取点D ,使AD =2, 取AC 的中点E ,连接DE 并延长至点B , 使DE =EB ,连接DC ,CB ,BA ,则四边形ABCD 为正方形A ′B ′C ′D ′的原图形(也可以过点C 作BC ∥y 轴,且使CB =AD =2,然后连接AB ,DC ),如图所示.易知四边形ABCD 为平行四边形,∵AD =2,AC =2,∴S ▱ABCD =2×2=2 2. 8.如图为一几何体的展开图:沿图中虚线将它们折叠起来,请画出其直观图.解:由题设中所给的展开图可以得出,此几何体是一个四棱锥,其底面是一个边长为2的正方形,垂直于底面的侧棱长为2,其直观图如图所示.柱体、锥体、台体的表面积与体积一、题组对点训练对点练一 柱体、锥体、台体的侧面积与表面积 1.棱长为3的正方体的表面积为( ) A .27 B .64 C .54D.36解析:选C 根据表面积的定义,组成正方体的面共6个,且每个都是边长为3的正方形.从而,其表面积为6×32=54.2.若圆锥的高等于底面直径,则它的底面积与侧面积之比为( ) A .1∶2 B .1∶ 3 C .1∶ 5D.3∶2解析:选C 设圆锥底面半径为r ,则高h =2r ,∴其母线长l =5r .∴S 侧=πrl =5πr 2,S 底=πr 2.则S 底∶S 侧=1∶ 5.3.已知正四棱锥的顶点都在同一球面上,若该棱锥的高为4,底面边长为2,则该球的表面积为( )A.81π4B .16πC .9πD.27π4解析:选A 如图,设球心为O ,半径为r ,则在Rt △AOF 中,(4-r )2+(2)2=r 2,解得r =94,所以该球的表面积为4πr 2=4π×⎝⎛⎭⎫94 2=81π4.4.圆台的一个底面周长是另一个底面周长的3倍,母线长为3,圆台的侧面积为84π,则圆台较小底面的半径为( )A .7B .6C .5D.3解析:选A 设圆台较小底面半径为r ,则另一底面半径为3r .由S =π(r +3r )·3=84π,解得r =7.5.一个高为2的圆柱,底面周长为2π,该圆柱的表面积为________.解析:由底面周长为2π可得底面半径为1.S 底=2πr 2=2π,S 侧=2πr ·h =4π,所以S 表=S底+S 侧=6π. 答案:6π对点练二 柱体、锥体、台体的体积6.某几何体的三视图如图所示(单位:cm),则该几何体的体积(单位:cm 3)是( )A .2B .4C .6D.8解析:选C 由几何体的三视图可知,该几何体是一个底面为直角梯形,高为2的直四棱柱,直角梯形的两底边长分别为1,2,高为2,∴该几何体的体积为V =12×(2+1)×2×2=6.7.若圆锥的侧面展开图为一个半径为2的半圆,则圆锥的体积是________.解析:易知圆锥的母线长为2,设圆锥的底面半径为r ,则2πr =12×2π×2,∴r =1,则高h =l 2-r 2= 3.∴V 圆锥=13πr 2· h =13π×3=3π3.答案:3π38.某几何体的三视图如图所示,图中的四边形都是边长为2的正方形,正视图和侧视图中的两条虚线都互相垂直且相等,则该几何体的体积是________.解析:几何体的直观图为正方体去掉以正方体中心为顶点,上底面为底面的四棱锥,其体积为2×2×2-13×1×22=203.答案:203对点练三 求几何体体积的方法9.如图,在正三棱柱ABC -A 1B 1C 1中,AB =4,AA 1=6.若E ,F 分别是棱BB 1,CC 1上的点,则三棱锥A -A 1EF 的体积是________.解析:因为在正三棱柱ABC -A 1B 1C 1中,AA 1∥BB 1,AA 1⊂平面AA 1C 1C ,BB 1⊄平面AA 1C 1C ,所以BB 1∥平面AA 1C 1C ,从而点E 到平面AA 1C 1C 的距离就是点B 到平面AA 1C 1C 的距离,作BH ⊥AC ,垂足为点H ,由于△ABC 是正三角形且边长为4,所以BH =23,从而三棱锥A -A 1EF 的体积VA -A 1EF =VE -A 1AF =13S △A 1AF ·BH =13×12×6×4×23=8 3.答案:8 3 二、综合过关训练1.如图,ABC -A ′B ′C ′是体积为1的棱柱,则四棱锥C -AA ′B ′B 的体积是( )A.13 B.12 C.23D.34解析:选C ∵V C -A ′B ′C ′=13V 棱柱=13,∴V C -AA ′B ′B =1-13=23. 2.已知一个圆柱的侧面展开图是一个正方形,则这个圆柱的表面积与侧面积的比值是( )A.1+2π2πB.1+4π4πC.1+2ππD.1+4π2π解析:选A 设圆柱的底面半径为r ,高为h ,。
新教材人教A版高中数学必修第二册全册课时练习(一课一练,含解析)
人教A版高中数学必修第二册全册课时练习6.1 平面向量的概念 .............................................................................................................. - 2 - 6.2.1 向量的加法运算........................................................................................................ - 5 - 6.2.2 向量的减法运算........................................................................................................ - 8 - 6.2.3 向量的数乘运算...................................................................................................... - 11 - 6.2.4 向量的数量积............................................................................................................ - 14 - 6.3.1 平面向量基本定理.................................................................................................... - 18 - 6.3.2 平面向量的正交分解及坐标表示............................................................................ - 21 - 6.3.3 平面向量加、减运算的坐标表示............................................................................ - 21 - 6.3.4 平面向量数乘运算的坐标表示.............................................................................. - 24 - 6.3.5 平面向量数量积的坐标表示.................................................................................. - 27 - 6.4 平面向量的应用........................................................................................................ - 30 -7.1.1 数系的扩充和复数的概念...................................................................................... - 34 - 7.1.2 复数的几何意义...................................................................................................... - 37 - 7.2.1 复数的加、减运算及其几何意义.......................................................................... - 39 -7.2.2 复数的乘、除运算.................................................................................................. - 43 -8.1.1 棱柱、棱锥、棱台的结构特征................................................................................ - 46 - 8.1.2 圆柱、圆锥、圆台、球、简单组合体的结构特征................................................ - 49 - 8.2 立体图形的直观图........................................................................................................ - 51 - 8.3.1 棱柱、棱锥、棱台的表面积和体积...................................................................... - 55 - 8.3.2 圆柱、圆锥、圆台、球的表面积和体积.............................................................. - 59 - 8.4.1 平面 ......................................................................................................................... - 62 - 8.4.2 空间点、直线、平面之间的位置关系.................................................................. - 66 - 8.5.1 直线与直线平行...................................................................................................... - 69 - 8.5.2 直线与平面平行...................................................................................................... - 73 - 8.5.3 平面与平面平行...................................................................................................... - 76 - 8.6.1 直线与直线垂直...................................................................................................... - 80 - 8.6.2 直线与平面垂直...................................................................................................... - 85 -8.6.3平面与平面垂直 ....................................................................................................... - 89 -9.1.1简单随机抽样 ........................................................................................................... - 94 - 9.1.2 分层随机抽样 ............................................................................................................. - 96 - 9.1.3 获取数据的途径 ......................................................................................................... - 96 - 9.2.1总体取值规律的估计 ............................................................................................. - 100 - 9.2.2 总体百分位数的估计 ............................................................................................... - 105 - 9.2.3 总体集中趋势的估计 ............................................................................................... - 105 -9.2.4 总体离散程度的估计 ............................................................................................... - 105 -10.1.1有限样本空间与随机事件.................................................................................... - 110 - 10.1.2事件的关系和运算 ............................................................................................... - 112 - 10.1.3古典概型 ............................................................................................................... - 115 - 10.1.4概率的基本性质 ................................................................................................... - 118 - 10.2事件的相互独立性 .................................................................................................. - 121 - 10.3频率与概率 .............................................................................................................. - 126 -6.1 平面向量的概念一、选择题1.下列物理量:①质量;②速度;③位移;④力;⑤加速度;⑥路程;⑦密度;⑧功.其中不是向量的有( )A .1个B .2个C .3个D .4个【解析】一个量是不是向量,就是看它是否同时具备向量的两个要素:大小和方向.由于速度、位移、力、加速度都是由大小和方向确定的,所以是向量;而质量、路程、密度、功只有大小而没有方向,所以不是向量. 【答案】D2.下列命题中,正确命题的个数是( ) ①单位向量都共线; ②长度相等的向量都相等; ③共线的单位向量必相等;④与非零向量a 共线的单位向量是a|a |.A .3B .2C .1D .0【解析】根据单位向量的定义,可知①②③明显是错误的,对于④,与非零向量a 共线的单位向量是a |a |或-a|a |,故④也是错误的.【答案】D3.如图,等腰梯形ABCD 中,对角线AC 与BD 交于点P ,点E ,F 分别在两腰AD ,BC 上,EF 过点P ,且EF ∥AB ,则( )A.AD →=BC →B.AC →=BD →C.PE →=PF →D.EP →=PF →【解析】由平面几何知识知,AD →与BC →方向不同, 故AD →≠BC →;AC →与BD →方向不同,故AC →≠BD →; PE →与PF →的模相等而方向相反,故PE →≠PF →. EP →与PF →的模相等且方向相同,∴EP →=PF →.【答案】D4.若|AB →|=|AD →|且BA →=CD →,则四边形ABCD 的形状为( ) A .正方形 B .矩形 C .菱形 D .等腰梯形【解析】由BA →=CD →,知AB =CD 且AB ∥CD ,即四边形ABCD 为平行四边形.又因为|AB →|=|AD →|,所以四边形ABCD 为菱形. 【答案】C 二、填空题5.如图,已知正方形ABCD 的边长为2,O 为其中心,则|OA →|=________.【解析】因为正方形的对角线长为22,所以|OA →|= 2. 【答案】 2 6.如图,四边形ABCD 是平行四边形,E ,F 分别是AD 与BC 的中点,则在以A 、B 、C 、D 四点中的任意两点为始点和终点的所有向量中,与向量EF →方向相反的向量为________.【解析】因为AB ∥EF ,CD ∥EF ,所以与EF →平行的向量为DC →,CD →,AB →,BA →,其中方向相反的向量为BA →,CD →. 【答案】BA →,CD →7.给出下列命题:①若AB →=DC →,则A 、B 、C 、D 四点是平行四边形的四个顶点; ②在▱ABCD 中,一定有AB →=DC →; ③若a =b ,b =c ,则a =c ; ④若a ∥b ,b ∥c ,则a ∥c .其中所有正确命题的序号为________.【解析】AB →=DC →,A 、B 、C 、D 四点可能在同一条直线上,故①不正确;在▱ABCD 中,|AB →|=|DC →|,AB →与DC →平行且方向相同,故AB →=DC →,故②正确;a =b ,则|a |=|b |,且a 与b 方向相同;b =c ,则|b |=|c |,且b 与c 方向相同,则a 与c 长度相等且方向相同,故a =c ,故③正确;对于④,当b =0时,a 与c 不一定平行,故④不正确. 【答案】②③ 三、解答题8.在如图的方格纸(每个小方格的边长为1)上,已知向量a . (1)试以B 为起点画一个向量b ,使b =a ;(2)画一个以C 为起点的向量c ,使|c |=2,并说出c 的终点的轨迹是什么.【解析】(1)根据相等向量的定义,所作向量b 应与a 同向,且长度相等,如下图所示. (2)由平面几何知识可作满足条件的向量c ,所有这样的向量c 的终点的轨迹是以点C 为圆心,2为半径的圆,如下图所示.9.一辆汽车从A 点出发向西行驶了100千米到达B 点,然后又改变了方向向北偏西40°走了200千米到达C 点,最后又改变方向,向东行驶了100千米到达D 点. (1)作出向量AB →,BC →,CD →; (2)求|AD →|.【解析】(1)如图所示.(2)由题意,易知AB →与CD →方向相反,故AB →与CD →共线,即AB ∥CD . 又|AB →|=|CD →|,所以四边形ABCD 为平行四边形. 所以|AD →|=|BC →|=200(千米).10.如图,在△ABC 中,已知向量AD →=DB →,DF →=EC →,求证:AE →=DF →.证明:由DF →=EC →,可得DF =EC 且DF ∥EC , 故四边形CEDF 是平行四边形,从而DE ∥FC . ∵AD →=DB →,∴D 为AB 的中点. ∴AE →=EC →,∴AE →=DF →.6.2.1 向量的加法运算一、选择题1.点O 是平行四边形ABCD 的两条对角线的交点,则AO →+OC →+CB →等于( )A.AB →B.BC →C.CD →D.DA →【解析】因为点O 是平行四边形ABCD 的两条对角线的交点,则AO →+OC →+CB →=AC →+CB →=AB →.故选A. 【答案】A2.设a 表示“向东走5 km”,b 表示“向南走5 km”,则a +b 表示( ) A .向东走10 km B .向南走10 km C .向东南走10 km D .向东南走5 2 km 【解析】如图所示,AC →=a +b ,|AB →|=5,|BC →|=5,且AB ⊥BC ,则|AC →|=52,∠BAC =45°. 【答案】D3.已知向量a ∥b ,且|a |>|b |>0,则向量a +b 的方向( ) A .与向量a 方向相同 B .与向量a 方向相反 C .与向量b 方向相同 D .不确定【解析】如果a 和b 方向相同,则它们的和的方向应该与a (或b )的方向相同;如果它们的方向相反,而a 的模大于b 的模,则它们的和的方向与a 的方向相同. 【答案】A4.如图所示的方格纸中有定点O ,P ,Q ,E ,F ,G ,H ,则OP →+OQ →=( )A.OH →B.OG →C.FO →D.EO →【解析】设a =OP →+OQ →,以OP ,OQ 为邻边作平行四边形,则OP 与OQ 之间的对角线对应的向量即向量a =OP →+OQ →,由a 和FO →长度相等,方向相同,得a =FO →,即OP →+OQ →=FO →. 【答案】C 二、填空题5.在△ABC 中,AB →=a ,BC →=b ,CA →=c ,则a +b +c =________.【解析】由向量加法的三角形法则,得AB →+BC →=AC →,即a +b +c =AB →+BC →+CA →=0. 【答案】06.化简(AB →+MB →)+(BO →+BC →)+OM →=________.【解析】原式=(AB →+BO →)+(OM →+MB →)+BC →=AO →+OB →+BC →=AB →+BC →=AC →. 【答案】AC →7.在菱形ABCD 中,∠DAB =60°,|AB →|=1,则|BC →+CD →|=________. 【解析】在菱形ABCD 中,连接BD , ∵∠DAB =60°,∴△BAD 为等边三角形, 又∵|AB →|=1,∴|BD →|=1,|BC →+CD →|=|BD →|=1. 【答案】1 三、解答题8.如图,已知向量a 、b ,求作向量a +b .【解析】(1)作OA →=a ,AB →=b ,则OB →=a +b ,如图(1); (2)作OA →=a ,AB →=b ,则OB →=a +b ,如图(2); (3)作OA →=a ,AB →=b ,则OB →=a +b ,如图(3).9.如图所示,设O 为正六边形ABCDEF 的中心,作出下列向量: (1)OA →+OC →; (2)BC →+FE →.【解析】(1)由图可知,四边形OABC 为平行四边形,所以由向量加法的平行四边形法则,得OA →+OC →=OB →.(2)由图可知,BC →=FE →=OD →=AO →,所以BC →+FE →=AO →+OD →=AD →.10.如图,在重300 N 的物体上拴两根绳子,这两根绳子在铅垂线的两侧,与铅垂线的夹角分别为30°,60°,当整个系统处于平衡状态时,求两根绳子的拉力.【解析】如图,作▱OACB ,使∠AOC =30°,∠BOC =60°, 则∠ACO =∠BOC =60°,∠OAC =90°.设向量OA →,OB →分别表示两根绳子的拉力,则CO →表示物体所受的重力,且|OC →|=300 N. 所以|OA →|=|OC →|cos 30°=1503(N), |OB →|=|OC →|cos 60°=150 (N).所以与铅垂线成30°角的绳子的拉力是150 3 N ,与铅垂线成60°角的绳子的拉力是150 N.6.2.2 向量的减法运算一、选择题1.下列运算中正确的是( ) A.OA →-OB →=AB → B.AB →-CD →=DB → C.OA →-OB →=BA → D.AB →-AB →=0【解析】根据向量减法的几何意义,知OA →-OB →=BA →,所以C 正确,A 错误;B 显然错误;对于D ,AB →-AB →应该等于0,而不是0.【答案】C2.下列四式中不能化简为PQ →的是( ) A.AB →+(PA →+BQ →) B .(AB →+PC →)+(BA →-QC →) C.QC →-QP →+CQ → D.PA →+AB →-BQ →【解析】D 中,PA →+AB →-BQ →=PB →-BQ →=PB →+QB →不能化简为PQ →,其余选项皆可. 【答案】D3.在△ABC 中,D 是BC 边上的一点,则AD →-AC →等于( ) A.CB → B.BC → C.CD → D.DC →【解析】在△ABC 中,D 是BC 边上一点,则由两个向量的减法的几何意义可得AD →-AC →=CD →. 【答案】C4.如图,在四边形ABCD 中,设AB →=a ,AD →=b ,BC →=c ,则DC →=( ) A .a -b +c B .b -(a +c ) C .a +b +c D .b -a +c【解析】DC →=DA →+AB →+BC →=a -b +c . 【答案】A 二、填空题5.EF →+DE →-DB →=________.【解析】EF →+DE →-DB →=EF →+BE →=BF →. 【答案】BF →6.若a ,b 为相反向量,且|a |=1,|b |=1,则|a +b |=________,|a -b |=________.【解析】若a ,b 为相反向量,则a +b =0,所以|a +b |=0,又a =-b ,所以|a |=|-b |=1,因为a 与-b 共线同向,所以|a -b |=2. 【答案】0 27.设点M 是线段BC 的中点,点A 在直线BC 外,且|BC →|=4,|AB →+AC →|=|AB →-AC →|,则|AM →|=________.【解析】以AB ,AC 为邻边作平行四边形ACDB ,由向量加减法几何意义可知,AD →=AB →+AC →,CB →=AB →-AC →,∵|AB →+AC →|=|AB →-AC →|,平行四边形ABCD 为矩形,∴|AD →|=|CB →|,又|BC →|=4,M 是线段BC 的中点, ∴|AM →|=12|AD →|=12|BC →|=2.【答案】2 三、解答题8.如图,已知向量a ,b ,c 不共线,求作向量a +b -c .【解析】方法一:如图①,在平面内任取一点O ,作OA →=a ,AB →=b ,则OB →=a +b ,再作OC →=c ,则CB →=a +b -c .方法二:如图②,在平面内任取一点O ,作OA →=a ,AB →=b ,则OB →=a +b ,再作CB →=c ,连接OC ,则OC →=a +b -c .9.化简下列各式:(1)(AB →+MB →)+(-OB →-MO →); (2)AB →-AD →-DC →.【解析】(1)方法一 原式=AB →+MB →+BO →+OM →=(AB →+BO →)+(OM →+MB →)=AO →+OB →=AB →. 方法二 原式=AB →+MB →+BO →+OM →=AB →+(MB →+BO →)+OM →=AB →+MO →+OM →=AB →+0=AB →. (2)方法一 原式=DB →-DC →=CB →.方法二 原式=AB →-(AD →+DC →)=AB →-AC →=CB →. 10.如图,解答下列各题:(1)用a ,d ,e 表示DB →; (2)用b ,c 表示DB →; (3)用a ,b ,e 表示EC →; (4)用d ,c 表示EC →.【解析】由题意知,AB →=a ,BC →=b ,CD →=c ,DE →=d ,EA →=e ,则 (1)DB →=DE →+EA →+AB →=a +d +e . (2)DB →=CB →-CD →=-BC →-CD →=-b -c . (3)EC →=EA →+AB →+BC →=a +b +e . (4)EC →=-CE →=-(CD →+DE →)=-c -d .6.2.3 向量的数乘运算一、选择题1.4(a -b )-3(a +b )-b 等于( ) A .a -2b B .a C .a -6b D .a -8b【解析】原式=4a -4b -3a -3b -b =a -8b .2.点C 在直线AB 上,且AC →=3AB →,则BC →等于( ) A .-2AB → B.13AB →C .-13AB →D .2AB →【解析】如图,AC →=3AB →,所以BC →=2AB →. 【答案】D3.已知向量a ,b 是两个不共线的向量,且向量m a -3b 与a +(2-m )b 共线,则实数m 的值为( )A .-1或3 B. 3 C .-1或4 D .3或4【解析】因为向量m a -3b 与a +(2-m )b 共线,且向量a ,b 是两个不共线的向量,所以m =-32-m ,解得m =-1或m =3. 【答案】A 4.如图,已知AB →=a ,AC →=b ,BD →=3DC →,用a ,b 表示AD →,则AD →=( ) A .a +34bB.34a +14bC.14a +14bD.14a +34b 【解析】AD →=AB →+BD →=AB →+34BC →=AB →+34(AC →-AB →)=14AB →+34AC →=14a +34b .【答案】D5.已知|a |=4,|b |=8,若两向量方向同向,则向量a 与向量b 的关系为b =________a . 【解析】由于|a |=4,b =8,则|b |=2|a |,又两向量同向,故b =2a . 【答案】26.点C 在线段AB 上,且AC CB =32,则AC →=________AB →,BC →=________AB →.【解析】因为C 在线段AB 上,且AC CB =32,所以AC →与AB →方向相同,BC →与AB →方向相反,且AC AB =35,BC AB =25,所以AC →=35AB →,BC →=-25AB →. 【答案】35 -257.已知向量a ,b 满足|a |=3,|b |=5,且a =λb ,则实数λ的值是________. 【解析】由a =λb ,得|a |=|λb |=|λ||b |.∵|a |=3,|b |=5, ∴|λ|=35,即λ=±35.【答案】±35三、解答题 8.计算(1)13(a +2b )+14(3a -2b )-12(a -b ); (2)12⎣⎢⎡⎦⎥⎤3a +2b-23a -b -76⎣⎢⎡⎦⎥⎤12a +37⎝ ⎛⎭⎪⎫b +76a . 【解析】(1)原式=⎝ ⎛⎭⎪⎫13+34-12a +⎝ ⎛⎭⎪⎫23-12+12b =712a +23b . (2)原式=12⎝ ⎛⎭⎪⎫73a +b -76⎝ ⎛⎭⎪⎫a +37b =76a +12b -76a -12b =0. 9.已知E ,F 分别为四边形ABCD 的对角线AC ,BD 的中点,设BC →=a ,DA →=b ,试用a ,b 表示EF →.【解析】如图所示,取AB 的中点P ,连接EP ,FP .在△ABC 中,EP 是中位线, 所以PE →=12BC →=12a .在△ABD 中,FP 是中位线,所以PF →=12AD →=-12DA →=-12b .在△EFP 中,EF →=EP →+PF →=-PE →+PF →=-12a -12b =-12(a +b ).10.已知e ,f 为两个不共线的向量,若四边形ABCD 满足AB →=e +2f ,BC →=-4e -f ,CD →=-5e -3f .(1)用e 、f 表示AD →;(2)证明:四边形ABCD 为梯形.【解析】(1)AD →=AB →+BC →+CD →=(e +2f )+(-4e -f )+(-5e -3f )=(1-4-5)e +(2-1-3)f =-8e -2f .(2)证明:因为AD →=-8e -2f =2(-4e -f )=2BC →, 所以AD →与BC →方向相同,且AD →的长度为BC →的长度的2倍, 即在四边形ABCD 中,AD ∥BC ,且AD ≠BC , 所以四边形ABCD 是梯形.6.2.4 向量的数量积一、选择题1.若|m |=4,|n |=6,m 与n 的夹角为45°,则m ·n =( ) A .12 B .12 2 C .-12 2 D .-12【解析】m ·n =|m ||n |cos θ=4×6×cos 45°=24×22=12 2. 【答案】B2.已知a ·b =-122,|a |=4,a 和b 的夹角为135°,则|b |=( ) A .12 B .3 C .6 D .3 3【解析】a ·b =|a ||b |cos 135°=-122,又|a |=4,解得|b |=6. 【答案】C3.已知向量a ,b 满足|a |=2,|b |=3,a ·(b -a )=-1,则a 与b 的夹角为( ) A.π6 B.π4 C.π3 D.π2【解析】因为|a |=2,a ·(b -a )=-1, 所以a ·(b -a )=a ·b -a 2=a ·b -22=-1, 所以a ·b =3.又因为|b |=3,设a 与b 的夹角为θ,则cos θ=a ·b |a ||b |=32×3=12.又θ∈[0,π],所以θ=π3. 【答案】C4.若a ·b >0,则a 与b 的夹角θ的取值范围是( )A.⎣⎢⎡⎭⎪⎫0,π2B.⎣⎢⎡⎭⎪⎫π2,πC.⎝⎛⎦⎥⎤π2,π D.⎝ ⎛⎭⎪⎫π2,π 【解析】因为a ·b >0,所以cos θ>0,所以θ∈⎣⎢⎡⎭⎪⎫0,π2.【答案】A 二、填空题5.如图所示,在Rt△ABC 中,∠A =90°,AB =1,则AB →·BC →的值是________.【解析】方法一 AB →·BC →=|AB →||BC →|cos(180°-∠B )=-|AB →||BC →|cos∠B =-|AB →||BC→|·|AB →||BC →|=-|AB →|2=-1.方法二 |BA →|=1,即BA →为单位向量,AB →·BC →=-BA →·BC →=-|BA →||BC →|cos∠B ,而|BC →|·cos∠B =|BA →|,所以AB →·BC →=-|BA →|2=-1. 【答案】-16.已知向量a ,b 满足|a |=1,|b |=4,且a ·b =2,则a 与b 的夹角为________.【解析】设a 与b 的夹角为θ,cos θ=a ·b |a |·|b |=21×4=12,又因为θ∈[0,π],所以θ=π3. 【答案】π37.已知|a |=3,向量a 与b 的夹角为π3,则a 在b 方向上的投影为________.【解析】向量a 在b 方向上的投影为|a |cos θ=3×cos π3=32.【答案】32三、解答题8.已知|a |=3,|b |=4,a 与b 的夹角为120°,求: (1)a 2-b 2;(2)(2a -b )·(a +3b ).【解析】(1)a 2-b 2=|a |2-|b |2=32-42=-7.(2)(2a -b )·(a +3b )=2a 2+5a ·b -3b 2=2|a |2+5|a ||b |·cos 120°-3|b |2=2×32+5×3×4×⎝ ⎛⎭⎪⎫-12-3×42=-60. 9.(1)已知|a |=|b |=5,向量a 与b 的夹角为π3,求|a +b |,|a -b |,|3a +b |;(2)已知|a |=|b |=5,且|3a -2b |=5,求|3a +b |的值;(3)如图,已知在▱ABCD 中,AB =3,AD =1,∠DAB =π3,求对角线AC 和BD 的长.【解析】(1)a ·b =|a ||b |cos π3=5×5×12=252,∴|a +b |=a +b 2=|a |2+2a ·b +|b |2=25+2×252+25=53,|a -b |=a -b2=|a |2+|b |2-2a ·b =25=5, |3a +b |=3a +b2=9a 2+b 2+6a ·b =325=513.(2)∵|3a -2b |2=9|a |2-12a ·b +4|b |2=9×25-12a ·b +4×25=325-12a ·b ,又|3a -2b |=5,∴325-12a ·b =25,则a ·b =25.∴|3a +b |2=(3a +b )2=9a 2+6a ·b +b 2=9×25+6×25+25=400.故|3a +b |=20. (3)设AB →=a ,AD →=b ,则|a |=3,|b |=1,a 与b 的夹角θ=π3.∴a ·b =|a ||b |cos θ=32.又∵AC →=a +b ,DB →=a -b , ∴|AC →|=AC →2=a +b 2=a 2+2a ·b +b 2=13,|DB →|=DB →2=a -b2=a 2-2a ·b +b 2=7.∴AC =13,BD =7.10.已知|a |=2|b |=2,且向量a 在向量b 方向上的投影为-1. (1)求a 与b 的夹角θ; (2)求(a -2b )·b ;(3)当λ为何值时,向量λa +b 与向量a -3b 互相垂直? 【解析】(1)由题意知|a |=2,|b |=1. 又a 在b 方向上的投影为|a |cos θ=-1, ∴cos θ=-12,∴θ=2π3.(2)易知a ·b =-1,则(a -2b )·b =a ·b -2b 2=-1-2=-3. (3)∵λa +b 与a -3b 互相垂直,∴(λa +b )·(a -3b )=λa 2-3λa ·b +b ·a -3b 2 =4λ+3λ-1-3=7λ-4=0, ∴λ=47.6.3.1 平面向量基本定理一、选择题1.已知向量a =e 1-2e 2,b =2e 1+e 2,其中e 1,e 2不共线,则a +b 与c =6e 1-2e 2的关系是( ) A .不共线 B .共线 C .相等 D .不确定 【解析】∵a +b =3e 1-e 2, ∴c =2(a +b ).∴a +b 与c 共线. 【答案】B2.已知AD 是△ABC 的中线,AB →=a ,AD →=b ,以a ,b 为基底表示AC →,则AC →=( ) A.12(a -b ) B .2b -a C.12(b -a ) D .2b +a【解析】如图,AD 是△ABC 的中线,则D 为线段BC 的中点,从而AD →=12(AB →+AC →),则AC →=2AD→-AB →=2b -a . 【答案】B3.在正方形ABCD 中,AC →与CD →的夹角等于( ) A .45° B.90° C .120° D.135° 【解析】如图所示,将AC →平移到CE →,则CE →与CD →的夹角即为AC →与CD →的夹角,夹角为135°. 【答案】D4.若D 点在三角形ABC 的边BC 上,且CD →=4DB →=rAB →+sAC →,则3r +s 的值为( ) A.165 B.125 C.85 D.45【解析】∵CD →=4DB →=rAB →+sAC →, ∴CD →=45CB →=45(AB →-AC →)=rAB →+sAC →,∴r =45,s =-45.∴3r +s =125-45=85.【答案】C 二、填空题5.已知向量a ,b 是一组基底,实数x ,y 满足(3x -4y )a +(2x -3y )b =6a +3b ,则x -y 的值为________.【解析】因为a ,b 是一组基底,所以a 与b 不共线, 因为(3x -4y )a +(2x -3y )b =6a +3b ,所以⎩⎪⎨⎪⎧3x -4y =6,2x -3y =3,解得⎩⎪⎨⎪⎧x =6,y =3,所以x -y =3.【答案】36.已知O ,A ,B 是平面上的三个点,直线AB 上有一点C ,满足2AC →+CB →=0,若OA →=a ,OB →=b ,用a ,b 表示向量OC →,则OC →=________.【解析】AC →=OC →-OA →,CB →=OB →-OC →,∵2AC →+CB →=0,∴2(OC →-OA →)+(OB →-OC →)=0,∴OC →=2OA →-OB →=2a -b . 【答案】2a -b7.在正方形ABCD 中,E 是DC 边上的中点,且AB →=a ,AD →=b ,则BE →=________.【解析】BE →=BC →+CE →=AD →-12AB →=b -12a .【答案】b -12a三、解答题8.已知e 1,e 2是平面内两个不共线的向量,a =3e 1-2e 2,b =-2e 1+e 2,c =7e 1-4e 2,试用向量a 和b 表示c .【解析】因为a ,b 不共线,所以可设c =x a +y b , 则x a +y b =x (3e 1-2e 2)+y (-2e 1+e 2) =(3x -2y )e 1+(-2x +y )e 2=7e 1-4e 2. 又因为e 1,e 2不共线,所以⎩⎪⎨⎪⎧3x -2y =7,-2x +y =-4,解得⎩⎪⎨⎪⎧x =1,y =-2,所以c =a -2b .9.如图所示,设M ,N ,P 是△ABC 三边上的点,且BM →=13BC →,CN →=13CA →,AP →=13AB →,若AB →=a ,AC→=b ,试用a ,b 将MN →、NP →、PM →表示出来. 【解析】NP →=AP →-AN →=13AB →-23AC →=13a -23b ,MN →=CN →-CM →=-13AC →-23CB →=-13b -23(a -b )=-23a +13b ,PM →=-MP →=-(MN →+NP →)=13(a +b ).10.若点M 是△ABC 所在平面内一点,且满足:AM →=34AB →+14AC →.(1)求△ABM 与△ABC 的面积之比;(2)若N 为AB 中点,AM 与CN 交于点O ,设BO →=xBM →+yBN →,求x ,y 的值. 【解析】(1)由AM →=34AB →+14AC →可知M ,B ,C 三点共线,如图,令BM →=λBC →⇒AM →=AB →+BM →=AB →+λBC →=AB →+λ(AC →-AB →)=(1-λ)AB →+λAC →⇒λ=14,所以S △ABM S △ABC =14,即面积之比为1 4. (2)由BO →=xBM →+yBN →⇒BO →=xBM →+y 2BA →,BO →=x 4BC →+yBN ,由O ,M ,A 三点共线及O ,N ,C 三点共线⇒⎩⎪⎨⎪⎧ x +y2=1,x4+y =1⇒⎩⎪⎨⎪⎧x =47,y =67.6.3.2 平面向量的正交分解及坐标表示 6.3.3 平面向量加、减运算的坐标表示一、选择题1.设i ,j 是平面直角坐标系内分别与x 轴,y 轴正方向相同的两个单位向量,O 为坐标原点,若OA →=4i +2j ,OB →=3i +4j ,则2OA →+OB →的坐标是( ) A .(1,-2) B .(7,6) C .(5,0) D .(11,8)【解析】因为OA →=(4,2),OB →=(3,4), 所以2OA →+OB →=(8,4)+(3,4)=(11,8). 【答案】D2.已知向量a =(-1,2),b =(1,0),那么向量3b -a 的坐标是( ) A .(-4,2) B .(-4,-2) C .(4,2) D .(4,-2)【解析】3b -a =3(1,0)-(-1,2)=(4,-2).【答案】D3.已知向量a =(1,2),2a +b =(3,2),则b =( ) A .(1,-2) B .(1,2) C .(5,6) D .(2,0)【解析】b =(3,2)-2a =(3,2)-(2,4)=(1,-2). 【答案】A4.已知向量i =(1,0),j =(0,1),对坐标平面内的任一向量a ,给出下列四个结论: ①存在唯一的一对实数x ,y ,使得a =(x ,y );②若x 1,x 2,y 1,y 2∈R ,a =(x 1,y 1)≠(x 2,y 2),则x 1≠x 2,且y 1≠y 2; ③若x ,y ∈R ,a =(x ,y ),且a ≠0,则a 的起点是原点O ; ④若x ,y ∈R ,a ≠0,且a 的终点坐标是(x ,y ),则a =(x ,y ). 其中正确结论的个数是( ) A .1 B .2 C .3 D .4【解析】由平面向量基本定理知①正确;若a =(1,0)≠(1,3),但1=1,故②错误;因为向量可以平移,所以a =(x ,y )与a 的起点是不是原点无关,故③错误;当a 的终点坐标是(x ,y )时,a =(x ,y )是以a 的起点是原点为前提的,故④错误.【答案】A 二、填空题5.在平面直角坐标系内,已知i 、j 是两个互相垂直的单位向量,若a =i -2j ,则向量用坐标表示a =________.【解析】由于i ,j 是两个互相垂直的单位向量,所以a =(1,-2). 【答案】(1,-2)6.如右图所示,已知O 是坐标原点,点A 在第一象限,|OA →|=43,∠xOA =60°,则向量OA →的坐标为________.【解析】设点A (x ,y ),则x =|OA →|·cos 60°=43cos 60°=23,y =|OA →|·sin 60°=43sin 60°=6,即A (23,6),所以OA →=(23,6). 【答案】(23,6)7.已知向量a =(x +3,x 2-3x -4)与AB →相等,其中A (1,2),B (3,2),则x =________.【解析】易得AB →=(2,0),由a =(x +3,x 2-3x -4)与AB →相等得⎩⎪⎨⎪⎧x +3=2,x 2-3x -4=0,解得x =-1.【答案】-1 三、解答题8.如图,取与x 轴、y 轴同向的两个单位向量i ,j 作为基底,分别用i ,j 表示OA →,OB →,AB →,并求出它们的坐标.【解析】由图形可知,OA →=6i +2j ,OB →=2i +4j ,AB →=-4i +2j ,它们的坐标表示为OA →=(6,2),OB →=(2,4),AB →=(-4,2).9.已知a =(2,-4),b =(-1,3),c =(6,5),p =a +2b -c . (1)求p 的坐标 ;(2)若以a ,b 为基底,求p 的表达式.【解析】(1)p =(2,-4)+2(-1,3)-(6,5)=(-6,-3). (2)设p =λa +μb (λ,μ∈R ),则(-6,-3)=λ(2,-4)+μ(-1,3)=(2λ-μ,-4λ+3μ),所以⎩⎪⎨⎪⎧2λ-μ=-6,-4λ+3μ=-3,所以⎩⎪⎨⎪⎧λ=-212,μ=-15,所以p =-212a -15b .10.已知O 是△ABC 内一点,∠AOB =150°,∠BOC =90°,设OA →a ,OB →=b ,OC →=c ,且|a |=2,|b|=1,|c |=3,试用a ,b 表示c .【解析】如图,以O 为原点,OA →为x 轴的非负半轴建立平面直角坐标系,由三角函数的定义,得B (cos 150°,sin 150°),C (3cos 240°,3sin 240°). 即B ⎝ ⎛⎭⎪⎫-32,12,C ⎝ ⎛⎭⎪⎫-32,-332,又∵A (2,0), 故a =(2,0),b =⎝ ⎛⎭⎪⎫-32,12,c =⎝ ⎛⎭⎪⎫-32,-332. 设c =λ1a +λ2b (λ1,λ2∈R ),∴⎝ ⎛⎭⎪⎫-32,-332=λ1(2,0)+λ2⎝ ⎛⎭⎪⎫-32,12=⎝⎛⎭⎪⎫2λ1-32λ2,12λ2,∴⎩⎪⎨⎪⎧2λ1-32λ2=-32,12λ2=-332,∴⎩⎨⎧λ1=-3,λ2=-33,∴c =-3a -33b .6.3.4 平面向量数乘运算的坐标表示一、选择题1.已知平面向量a =(1,2),b =(-2,m ),且a ∥b ,则2a +3b =( ) A .(-2,-4) B .(-3,-6) C .(-4,-8) D .(-5,-10)【解析】由a =(1,2),b =(-2,m ),且a ∥b ,得1×m =2×(-2),解得m =-4,所以b =(-2,-4),所以2a +3b =2(1,2)+3(-2,-4)=(-4,-8). 【答案】C2.已知向量a =(1,2),b =(λ,1),若(a +2b )∥(2a -2b ),则λ的值等于( ) A.12 B.13 C .1 D .2【解析】a +2b =(1,2)+2(λ,1)=(1+2λ,4),2a -2b =2(1,2)-2(λ,1)=(2-2λ,2),由(a +2b )∥(2a -2b ),可得2(1+2λ)-4(2-2λ)=0,解得λ=12,故选A.【答案】A3.已知A (1,-3),B ⎝ ⎛⎭⎪⎫8,12,且A ,B ,C 三点共线,则点C 的坐标可以是( ) A .(-9,1) B .(9,-1) C .(9,1) D .(-9,-1) 【解析】设点C 的坐标是(x ,y ), 因为A ,B ,C 三点共线, 所以AB →∥AC →.因为AB →=⎝ ⎛⎭⎪⎫8,12-(1,-3)=⎝ ⎛⎭⎪⎫7,72,AC →=(x ,y )-(1,-3)=(x -1,y +3),所以7(y +3)-72(x -1)=0,整理得x -2y =7,经检验可知点(9,1)符合要求,故选C. 【答案】C4.已知向量OA →=(3,-4),OB →=(6,-3),OC →=(2m ,m +1),若AB →∥OC →,则实数m 的值为( ) A.35 B .-35 C .3 D .-3【解析】向量OA →=(3,-4),OB →=(6,-3), ∴AB →=(3,1),∵OC →=(2m ,m +1),AB →∥OC →, ∴3m +3=2m ,解得m =-3,故选D.【答案】D 二、填空题5.已知向量a =(3x -1,4)与b =(1,2)共线,则实数x 的值为________.【解析】因为向量a =(3x -1,4)与b =(1,2)共线,所以2(3x -1)-4×1=0,解得x =1. 【答案】16.已知A (2,1),B (0,2),C (-2,1),O (0,0),给出下列结论: ①直线OC 与直线BA 平行; ②AB →+BC →=CA →; ③OA →+OC →=OB →; ④AC →=OB →-2OA →.其中,正确结论的序号为________.【解析】①因为OC →=(-2,1),BA →=(2,-1),所以OC →=-BA →,又直线OC ,BA 不重合,所以直线OC ∥BA ,所以①正确;②因为AB →+BC →=AC →≠CA →,所以②错误;③因为OA →+OC →=(0,2)=OB →,所以③正确;④因为AC →=(-4,0),OB →-2OA →=(0,2)-2(2,1)=(-4,0),所以④正确. 【答案】①③④7.已知向量a =(1,2),b =(1,λ),c =(3,4).若a +b 与c 共线,则实数λ=________. 【解析】因为a +b =(1,2)+(1,λ)=(2,2+λ),所以根据a +b 与c 共线得2×4-3×(2+λ)=0,解得λ=23.【答案】23三、解答题8.已知a =(x,1),b =(4,x ),a 与b 共线且方向相同,求x . 【解析】∵a =(x,1),b =(4,x ),a ∥b . ∴x 2-4=0,解得x 1=2,x 2=-2.当x =2时,a =(2,1),b =(4,2),a 与b 共线且方向相同; 当x =-2时,a =(-2,1),b =(4,-2),a 与b 共线且方向相反. ∴x =2.9.已知A ,B ,C 三点的坐标分别为(-1,0),(3,-1),(1,2),并且AE →=13AC →,BF →=13BC →,求证:EF →∥AB →.证明:设E (x 1,y 1),F (x 2,y 2),依题意有AC →=(2,2),BC →=(-2,3),AB →=(4,-1). ∵AE →=13AC →,∴AE →=⎝ ⎛⎭⎪⎫23,23,∵BF →=13BC →,∴BF →=⎝ ⎛⎭⎪⎫-23,1.∵AE →=(x 1+1,y 1)=⎝ ⎛⎭⎪⎫23,23,∴E ⎝ ⎛⎭⎪⎫-13,23,∵BF →=(x 2-3,y 2+1)=⎝ ⎛⎭⎪⎫-23,1,∴F ⎝ ⎛⎭⎪⎫73,0, ∴EF →=⎝ ⎛⎭⎪⎫83,-23.又∵4×⎝ ⎛⎭⎪⎫-23-83×(-1)=0,∴EF →∥AB →. 10.已知a =(1,0),b =(2,1). (1)当k 为何值时,k a -b 与a +2b 共线?(2)若AB →=2a +3b ,BC →=a +m b 且A ,B ,C 三点共线,求m 的值. 【解析】(1)k a -b =k (1,0)-(2,1)=(k -2,-1),a +2b =(1,0)+2(2,1)=(5,2).因为k a -b 与a +2b 共线,所以2(k -2)-(-1)×5=0,得k =-12.(2)因为A ,B ,C 三点共线, 所以AB →=λBC →,λ∈R , 即2a +3b =λ(a +m b ),所以⎩⎪⎨⎪⎧2=λ,3=mλ,解得m =32.6.3.5 平面向量数量积的坐标表示一、选择题1.若向量a =(3,m ),b =(2,-1),a ·b =0,则实数m 的值为( )A .-32 B.32C .2D .6【解析】依题意得6-m =0,m =6,选D. 【答案】D2.向量a =(1,-1),b =(-1,2),则(2a +b )·a =( ) A .-1 B .0 C .1 D .2【解析】a =(1,-1),b =(-1,2), ∴(2a +b )·a =(1,0)·(1,-1)=1. 【答案】C3.已知a ,b 为平面向量,且a =(4,3),2a +b =(3,18),则a ,b 夹角的余弦值等于( ) A.865 B .-865 C.1665 D .-1665【解析】∵a =(4,3),∴2a =(8,6).又2a +b =(3,18), ∴b =(-5,12),∴a ·b =-20+36=16. 又|a |=5,|b |=13, ∴cos〈a ,b 〉=165×13=1665.【答案】C4.已知向量a =(-1,2),b =(3,1),c =(k,4),且(a -b )⊥c ,则k =( ) A .-6 B .-1 C .1 D .6【解析】∵a =(-1,2),b =(3,1),∴a -b =(-4,1),∵(a -b )⊥c ,∴-4k +4=0,解得k =1. 【答案】C 二、填空题5.a =(-4,3),b =(1,2),则2|a |2-3a ·b =________. 【解析】因为a =(-4,3),所以2|a |2=2×(-42+32)2=50.a ·b =-4×1+3×2=2.所以2|a |2-3a ·b =50-3×2=44. 【答案】446.设向量a =(1,0),b =(-1,m ).若a ⊥(m a -b ),则m =________.。
【人教A版】高中数学必修二:全册作业与测评 单元质量评估(一)(附答案)
单元质量评估(一)(第一、二章)(120分钟150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列推理错误的是( )A.A∈l,A∈α,B∈l,B∈α⇒l⊂αB.A∈α,A∈β,B∈α,B∈β⇒α∩β=ABC.l⊄α,A∈l⇒A∉αD.A∈l,l⊂α⇒A∈α【解析】选C.若直线l∩α=A,显然有l⊄α,A∈l,但A∈α.2.一个等腰三角形绕它的底边所在直线旋转360°形成的曲面所围成的几何体是( )A.球体B.圆柱C.圆台D.两个共底面的圆锥组成的组合体【解析】选D.等腰三角形的底边所在直线为旋转轴,所得几何体是两个共底面的圆锥组成的组合体.3.如图所示为某一平面图形的直观图,则此平面图形可能是下图中的( )【解析】选A.由直观图知,原四边形一组对边平行且不相等为梯形,且梯形两腰不能与底垂直.4.下列命题正确的是( )A.一直线与一个平面内的无数条直线垂直,则此直线与平面垂直B.两条异面直线不能同时垂直于一个平面C.直线与平面所成的角的取值范围是:0°<θ≤180°D.两异面直线所成的角的取值范围是:0°<θ<90°.【解析】选B. A错误,一直线与一个平面内的无数条直线垂直,并不意味着和平面内的任意直线垂直,所以此直线与平面不一定垂直;B正确,由线面垂直的性质定理可知,两条异面直线不能同时垂直于一个平面;C错误,直线与平面所成的角的取值范围是:0°≤θ≤90°;D错误,两异面直线所成的角的取值范围是:0°<θ≤90°.5.(2015·深圳高二检测)用一个平行于水平面的平面去截球,得到如图所示的几何体,则它的俯视图是( )【解析】选B. D选项为正视图或侧视图,俯视图中显然应有一个被遮挡的圆,所以内圆是虚线.【补偿训练】某几何体的三视图如图所示,则这个几何体是( )A.三棱锥B.三棱柱C.四棱锥D.四棱柱【解题指南】本题考查的是几何体的三视图,在判断时要结合三种视图进行判断.【解析】选B.由题知,该几何体的三视图为一个三角形,两个四边形,经分析可知该几何体为三棱柱.6.(2015·安徽高考)已知m,n是两条不同直线,α,β是两个不同平面,则下列命题正确的是( )A.若α,β垂直于同一平面,则α与β平行B.若m,n平行于同一平面,则m与n平行C.若α,β不平行,则在α内不存在与β平行的直线D.若m,n不平行,则m与n不可能垂直于同一平面【解析】选D.7.(2015·长白山高一检测)已知一平面平行于两条异面直线,一直线与两异面直线都垂直,那么这个平面与这条直线的位置关系是( )A.平行B.垂直C.斜交D.不能确定【解析】选B.根据线面平行的性质,在已知平面内可以作出两条相交直线与已知两条异面直线分别平行.因此,一直线与两异面直线都垂直,一定与这个平面垂直.8.如图,将一个正方体沿相邻三个面的对角线截出一个棱锥,则棱锥的体积与原正方体的体积之比为( )A.1∶3B.1∶4C.1∶5D.1∶6【解析】选D.设正方体的棱长为a,则棱锥的体积V1=错误!未找到引用源。
(人教版)高中数学必修二(全册)同步练习+单元检测卷汇总
(人教版)高中数学必修二(全册)同步练习+单元检测卷汇总课后提升作业一棱柱、棱锥、棱台的结构特征(45分钟70分)一、选择题(每小题5分,共40分)1.下列说法中正确的是( )A.棱柱的面中,至少有两个面互相平行B.棱柱中两个互相平行的平面一定是棱柱的底面C.棱柱中一条侧棱的长就是棱柱的高D.棱柱的侧面一定是平行四边形,但它的底面一定不是平行四边形【解析】选A.棱柱的两底面互相平行,故A正确;棱柱的侧面也可能有平行的面(如正方体),故B错;立在一起的一摞书可以看成一个四棱柱,当把这摞书推倾斜时,它的侧棱就不是棱柱的高,故C错;由棱柱的定义知,棱柱的侧面一定是平行四边形,但它的底面可以是平行四边形,也可以是其他多边形,故D错.2.四棱柱有几条侧棱,几个顶点( )A.四条侧棱、四个顶点B.八条侧棱、四个顶点C.四条侧棱、八个顶点D.六条侧棱、八个顶点【解析】选C.结合正方体可知,四棱柱有四条侧棱,八个顶点.3.下列说法错误的是( )A.多面体至少有四个面B.九棱柱有9条侧棱,9个侧面,侧面为平行四边形C.长方体、正方体都是棱柱D.三棱柱的侧面为三角形【解析】选D.三棱柱的侧面是平行四边形,故D错误.4.如图,将装有水的长方体水槽固定底面一边后倾斜一个小角度,则倾斜后水槽中的水形成的几何体是( )A.棱柱B.棱台C.由一个棱柱与一个棱锥构成D.不能确定【解析】选 A.根据棱柱的结构特征,当倾斜后水槽中的水形成了以左右(或前后)两个侧面为底面的四棱柱.5.(2016·郑州高一检测)如图都是正方体的表面展开图,还原成正方体后,其中两个完全一样的是( )A.(1)(2)B.(2)(3)C.(3)(4)D.(1)(4)【解题指南】让其中一个正方形不动,其余各面沿这个正方形的各边折起,进行想象后判断.【解析】选B.在图(2)(3)中,⑤不动,把图形折起,则②⑤为对面,①④为对面,③⑥为对面,故图(2)(3)完全一样,而(1)(4)则不同. 【补偿训练】下列图形经过折叠可以围成一个棱柱的是( )【解析】选D.A,B,C中底面多边形的边数与侧面数不相等.6.若棱台上、下底面的对应边之比为1∶2,则上、下底面的面积之比是( )A.1∶2B.1∶4C.2∶1D.4∶1【解析】选 B.由棱台的概念知,上、下两底面是相似的多边形,故它们的面积之比等于对应边长之比的平方,故为1∶4.7.(2016·温州高一检测)在五棱柱中,不同在任何侧面且不同在任何底面的两顶点的连线称为它的对角线,那么一个五棱柱的对角线的条数共有( )A.20条B.15条C.12条D.10条【解析】选 D.因为棱柱的侧棱都是平行的,所以过任意不相邻的两条侧棱的截面为一个平行四边形,共可得5个截面,每个平行四边形可得到五棱柱的两条对角线,故共有10条对角线.8.(2015·广东高考)若空间中n个不同的点两两距离都相等,则正整数n的取值( )A.大于5B.等于5C.至多等于4D.至多等于3【解析】选 C.正四面体的四个顶点是两两距离相等的,即空间中n 个不同的点两两距离都相等,则正整数n的取值至多等于4.二、填空题(每小题5分,共10分)9.在正方体上任意选择4个顶点,它们可能是如下各种几何体的4个顶点,这些几何体是________.(写出所有正确结论的编号)①矩形;②不是矩形的平行四边形;③有三个面为等腰直角三角形,有一个面为等边三角形的四面体;④每个面都是等边三角形的四面体;⑤每个面都是直角三角形的四面体.【解析】如图:①正确,如图四边形A1D1CB为矩形;②错误,任意选择4个顶点,若组成一个平面图形,则必为矩形或正方形,如四边形ABCD为正方形,四边形A1BCD1为矩形;③正确,如四面体A1ABD;④正确,如四面体A1C1BD;⑤正确,如四面体B1ABD;则正确的说法是①③④⑤.答案:①③④⑤10.(2016·天津高一检测)一个棱柱有10个顶点,所有的侧棱长的和为60cm,则每条侧棱长为________cm.【解析】因为n棱柱有2n个顶点,又此棱柱有10个顶点,所以它是五棱柱,又棱柱的侧棱都相等,五条棱长的和为60cm,可知每条侧棱长为12cm.答案:12三、解答题(每小题10分,共20分)11.根据下面对几何体结构特征的描述,说出几何体的名称.(1)由8个面围成,其中2个面是互相平行且全等的六边形,其他各面都是平行四边形.(2)由5个面围成,其中一个是正方形,其他各面都是有1个公共顶点的三角形.【解析】(1)根据棱柱的结构特征可知,该几何体为六棱柱.(2)根据棱锥的结构特征可知,该几何体为四棱锥.12.已知三棱柱ABC-A′B′C′,底面是边长为1的正三角形,侧面为全等的矩形且高为8,求一点自A点出发沿着三棱柱的侧面绕行一周后到达A′点的最短路线长.【解析】将三棱柱侧面沿侧棱AA′剪开,展成平面图形如图,则AA″即为所求的最短路线.在Rt△AA1A″中,AA1=3,A1A″=8,所以AA″==.【延伸探究】本题条件不变,求一点自A点出发沿着三棱柱的侧面绕行两周后到达A′点的最短路线长.【解析】将两个相同的题目中的三棱柱的侧面都沿AA′剪开,然后展开并拼接成如图所示,则AA″即为所求的最短路线.在Rt△AA1A″中,AA1=6,A1A″=8,所以AA″===10.【能力挑战题】如图,在边长为2a的正方形ABCD中,E,F分别为AB,BC的中点,沿图中虚线将3个三角形折起,使点A,B,C重合,重合后记为点P.问:(1)折起后形成的几何体是什么几何体?(2)这个几何体共有几个面,每个面的三角形有何特点?(3)每个面的三角形面积为多少?【解析】(1)如图,折起后的几何体是三棱锥.(2)这个几何体共有4个面,其中△DEF为等腰三角形,△PEF为等腰直角三角形,△DPE和△DPF均为直角三角形.(3)S△PEF=a2,S△DPF=S△DPE=×2a×a=a2,S△DEF=S正方形ABCD-S△PEF-S△DPF-S△DPE=(2a)2-a2-a2-a2=a2.关闭Word文档返回原板块温馨提示:此套题为Word版,请按住Ctrl,滑动鼠标滚轴,调节合适的观看比例,答案解析附后。
【人教A版】高中数学必修二:课时提升作业(一) 1.1.1
温馨提示:此套题为Word版,请按住Ctrl,滑动鼠标滚轴,调节合适的观看比例,答案解析附后。
关闭Word文档返回原板块。
课时提升作业(一)棱柱、棱锥、棱台的结构特征(15分钟30分)一、选择题(每小题4分,共12分)1.下列几何体中棱柱有( )A.5个B.4个C.3个D.2个【解析】选D.由棱柱的三个结构特征知,①③为棱柱.2.(2015·吉林高二检测)下列图形经过折叠可以围成一个棱柱的是( )【解析】选D. A,B,C中底面多边形的边数与侧面数不相等.故符合条件的是D. 【补偿训练】下列图形中,不能折成三棱柱的是( )【解析】选C.C中,两个底面均在上面,因此不能折成三棱柱.其他各项均能折成三棱柱.3.(2015·长春高二检测)有两个面平行的多面体不可能是( )A.棱柱B.棱锥C.棱台D.长方体【解析】选B.棱锥的任意两个面都相交,不可能有两个面平行,所以不可能是棱锥.【补偿训练】(2015·青岛高一检测)棱台不具有的性质是( )A.两底面相似B.侧面都是梯形C.侧棱长都相等D.侧棱延长后交于一点【解析】选C.棱台是由平行于棱锥底面的平面截棱锥得到的,所以两底面相似,侧棱延长后交于一点,侧面都是梯形,故A,B,D选项都正确.【拓展延伸】棱台定义的应用(1)为保证侧棱延长后交于一点,可以先画棱锥再画棱台.(2)如果解棱台问题遇到困难,可以将它还原为棱锥去看,因为它是由棱锥截来的.(3)可以利用两底是相似多边形进行有关推算.二、填空题(每小题4分,共8分)4.(2015·深圳高一检测)如图,正方形ABCD中,E,F分别为CD,BC的中点,沿AE,AF,EF将其折成一个多面体,则此多面体是.【解析】此多面体由四个面构成,故为三棱锥,也是四面体.答案:三棱锥(四面体)5.一个棱柱有10个顶点,所有的侧棱长的和为60cm,则每条侧棱长为cm. 【解析】是五棱柱,侧棱长相等,为60÷5=12(cm).答案:12【补偿训练】多面体最少有几个面,几个顶点,几条棱?【解析】多面体最少有4个面,4个顶点,6条棱(即三棱锥).三、解答题6.(10分)试从正方体ABCD-A1B1C1D1的八个顶点中任取若干,连接后构成以下空间几何体,并且用适当的符号表示出来.(1)只有一个面是等边三角形的三棱锥.(2)四个面都是等边三角形的三棱锥.(3)三棱柱.【解题指南】(1)根据正方体的棱相等,面对角线都相等,可连对角线得到.(2)根据正方体的特征,只能由对角线连接而成.(3)根据棱柱底面平行可在相邻侧面上画平行线截得.【解析】(1)如图所示,三棱锥A1-AB1D1(答案不唯一).(2)如图所示,三棱锥B1-ACD1(答案不唯一).(3)如图所示,三棱柱A1B1D1-ABD(答案不唯一).(15分钟30分)一、选择题(每小题5分,共10分)1.(2015·日照高一检测)如图,将装有水的长方体水槽固定底面一边后倾斜一个小角度,则倾斜后水槽中的水形成的几何体是( )A.棱柱B.棱台C.棱柱与棱锥的组合体D.不能确定【解析】选A.长方体水槽固定底面一边后倾斜,水槽中的水形成的几何体始终有两个互相平行的平面,而其余各面都是四边形,并且每相邻两个四边形的公共边互相平行,这符合棱柱的定义.2.(2015·天津高一检测)一个棱柱的底面是正六边形,侧面都是正方形,用至少过该棱柱三个顶点(不在同一侧面或同一底面内)的平面去截这个棱柱,所得截面的形状不可以是( )A.等腰三角形B.等腰梯形C.五边形D.正六边形【解析】选D.如图,由图可知,截面ABC为等腰三角形,选项A可能,截面ABEF为等腰梯形,选项B可能,截面ADE为五边形,选项C有可能,选项D不可能.【补偿训练】(2015·嘉兴高一检测)如图都是正方体的表面展开图,还原成正方体后,其中两个完全一样的是( )A.(1)(2)B.(2)(3)C.(3)(4)D.(1)(4)【解题指南】让其中一个正方形不动,其余各面沿这个正方形的各边折起,进行想象后判断.【解析】选B.在图(2)、(3)中,⑤不动,把图形折起,则②⑤为对面,①④为对面,③⑥为对面,故图(2)、(3)完全一样,而(1)、(4)则不同.二、填空题(每小题5分,共10分)3.(2015·成都高二检测)以三棱台的顶点为三棱锥的顶点,这样可以把一个三棱台分成个三棱锥.【解题指南】在原棱台中适当添加辅助线是正确分割此几何体的关键.【解析】如图所示,在三棱台ABC-A1B1C1中,分别连接A1B,A1C,BC1,则将三棱台分成3个三棱锥,即三棱锥A-A1BC,B1-A1BC1,C-A1BC1.答案:34.(2015·北京高一检测)一个正方体的六个面上分别标有字母A,B,C,D,E,F,如图是此正方体的两种不同放置,则与D面相对的面上的字母是.【解析】由此正方体的两种不同放置可知:与C相对的是F,因此D与B相对. 答案:B三、解答题5.(10分)根据如图所示的几何体的表面展开图,画出立体图形.【解题指南】把图中相同的点重合,沿虚线折叠成立体图形.【解析】图1是以ABCD为底面,P为顶点的四棱锥.图2是以ABCD和A1B1C1D1为底面的棱柱.其图形如图所示.【拓展延伸】解多面体的表面展开图问题的关键解多面体的表面展开图问题的关键是弄清楚展开图与原图的关系.由展开图还原为空间图形时,可以固定其中一个面(如棱柱、棱锥的底面),翻折其他面.另外,动手做模型进行实际操作也是很好的方法.【补偿训练】长方体ABCD-A1B1C1D1中,AB=4,BC=3,BB1=5,一只蚂蚁从点A出发沿表面爬行到点C1,求蚂蚁爬行的最短路线.【解析】沿长方体的一条棱剪开,使A和C1展在同一平面上,求线段AC1的长即可,有如图所示的三种剪法:(1)若将C1D1剪开,使面AB1与面A1C1共面,可求得AC 1==.(2)若将AD剪开,使面AC与面BC1共面,可求得AC 1==.(3)若将CC1剪开,使面BC1与面AB1共面,可求得AC 1==.比较可得蚂蚁爬行的最短路线长为.【拓展延伸】空间几何体中的最短路线问题的解法空间几何体中的最短路线问题通常是以“平面内连接两点的线中,线段最短”为原则引出来的,解题策略通常是用“转化的方法”,应用侧面展开图把空间图形展开成平面图形,从而把空间问题归为平面问题.关闭Word文档返回原板块。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
课时提升作业(一)
棱柱、棱锥、棱台的结构特征
(15分钟30分)
一、选择题(每小题4分,共12分)
1.下列几何体中棱柱有( )
A.5个
B.4个
C.3个
D.2个
【解析】选D.由棱柱的三个结构特征知,①③为棱柱.
2.(2015·吉林高二检测)下列图形经过折叠可以围成一个棱柱的是( )
【解析】选D. A,B,C中底面多边形的边数与侧面数不相等.故符合条件的是D. 【补偿训练】下列图形中,不能折成三棱柱的是( )
【解析】选C.C中,两个底面均在上面,因此不能折成三棱柱.其他各项均能折成三棱柱.
3.(2015·长春高二检测)有两个面平行的多面体不可能是( )
A.棱柱
B.棱锥
C.棱台
D.长方体
【解析】选B.棱锥的任意两个面都相交,不可能有两个面平行,所以不可能是棱锥.
【补偿训练】(2015·青岛高一检测)棱台不具有的性质是( )
A.两底面相似
B.侧面都是梯形
C.侧棱长都相等
D.侧棱延长后交于一点
【解析】选C.棱台是由平行于棱锥底面的平面截棱锥得到的,所以两底面相似,侧棱延长后交于一点,侧面都是梯形,故A,B,D选项都正确.
【拓展延伸】棱台定义的应用
(1)为保证侧棱延长后交于一点,可以先画棱锥再画棱台.
(2)如果解棱台问题遇到困难,可以将它还原为棱锥去看,因为它是由棱锥截来的.
(3)可以利用两底是相似多边形进行有关推算.
二、填空题(每小题4分,共8分)
4.(2015·深圳高一检测)如图,正方形ABCD中,E,F分别为CD,BC的中点,沿AE,AF,EF将其折成一个多面体,则此多面体是.
【解析】此多面体由四个面构成,故为三棱锥,也是四面体.
答案:三棱锥(四面体)
5.一个棱柱有10个顶点,所有的侧棱长的和为60cm,则每条侧棱长为cm. 【解析】是五棱柱,侧棱长相等,为60÷5=12(cm).
答案:12
【补偿训练】多面体最少有几个面,几个顶点,几条棱?
【解析】多面体最少有4个面,4个顶点,6条棱(即三棱锥).
三、解答题
6.(10分)试从正方体ABCD-A1B1C1D1的八个顶点中任取若干,连接后构成以下空间几何体,并且用适当的符号表示出来.
(1)只有一个面是等边三角形的三棱锥.
(2)四个面都是等边三角形的三棱锥.
(3)三棱柱.
【解题指南】(1)根据正方体的棱相等,面对角线都相等,可连对角线得到.(2)根据正方体的特征,只能由对角线连接而成.(3)根据棱柱底面平行可在相邻侧面上画平行线截得.
【解析】(1)如图所示,三棱锥A1-AB1D1(答案不唯一).
(2)如图所示,三棱锥B1-ACD1(答案不唯一).
(3)如图所示,三棱柱A1B1D1-ABD(答案不唯一).
(15分钟30分)
一、选择题(每小题5分,共10分)
1.(2015·日照高一检测)如图,将装有水的长方体水槽固定底面一边后倾斜一个小角度,则倾斜后水槽中的水形成的几何体是( )
A.棱柱
B.棱台
C.棱柱与棱锥的组合体
D.不能确定
【解析】选A.长方体水槽固定底面一边后倾斜,水槽中的水形成的几何体始终有两个互相平行的平面,而其余各面都是四边形,并且每相邻两个四边形的公共边互相平行,这符合棱柱的定义.
2.(2015·天津高一检测)一个棱柱的底面是正六边形,侧面都是正方形,用至少过该棱柱三个顶点(不在同一侧面或同一底面内)的平面去截这个棱柱,所得截面的形状不可以是( )
A.等腰三角形
B.等腰梯形
C.五边形
D.正六边形
【解析】选D.如图,由图可知,截面ABC为等腰三角形,选项A
可能,截面ABEF为等腰梯形,选项B可能,
截面ADE为五边形,选项C有可能,
选项D不可能.
【补偿训练】(2015·嘉兴高一检测)如图都是正方体的表面展开图,还原成正方体后,其中两个完全一样的是( )
A.(1)(2)
B.(2)(3)
C.(3)(4)
D.(1)(4)
【解题指南】让其中一个正方形不动,其余各面沿这个正方形的各边折起,进行想象后判断.
【解析】选B.在图(2)、(3)中,⑤不动,把图形折起,则②⑤为对面,①④为对面,③⑥为对面,故图(2)、(3)完全一样,而(1)、(4)则不同.
二、填空题(每小题5分,共10分)
3.(2015·成都高二检测)以三棱台的顶点为三棱锥的顶点,这样可以把一个三棱台分成个三棱锥.
【解题指南】在原棱台中适当添加辅助线是正确分割此几何体的关键.
【解析】如图所示,在三棱台ABC-A1B1C1中,分别连接A1B,A1C,BC1,则将三棱台分成3个三棱锥,即三棱锥A-A1BC,B1-A1BC1,C-A1BC1.
答案:3
4.(2015·北京高一检测)一个正方体的六个面上分别标有字母A,B,C,D,E,F,如图是此正方体的两种不同放置,则与D面相对的面上的字母是.
【解析】由此正方体的两种不同放置可知:与C相对的是F,因此D与B相对. 答案:B
三、解答题
5.(10分)根据如图所示的几何体的表面展开图,画出立体图形.
【解题指南】把图中相同的点重合,沿虚线折叠成立体图形.
【解析】图1是以ABCD为底面,P为顶点的四棱锥.
图2是以ABCD和A1B1C1D1为底面的棱柱.
其图形如图所示.
【拓展延伸】解多面体的表面展开图问题的关键
解多面体的表面展开图问题的关键是弄清楚展开图与原图的关系.由展开图还原为空间图形时,可以固定其中一个面(如棱柱、棱锥的底面),翻折其他面.另外,动手做模型进行实际操作也是很好的方法.
【补偿训练】长方体ABCD-A1B1C1D1中,AB=4,BC=3,BB1=5,一只蚂蚁从点A出发沿表面爬行到点C1,求蚂蚁爬行的最短路线.
【解析】沿长方体的一条棱剪开,使A和C1展在同一平面上,求线段AC1的长即可,有如图所示的三种剪法:
(1)若将C1D1剪开,使面AB1与面A1C1共面,可求得
AC1=错误!未找到引用源。
=错误!未找到引用源。
.
(2)若将AD剪开,使面AC与面BC1共面,可求得
AC1=错误!未找到引用源。
=错误!未找到引用源。
.
(3)若将CC1剪开,使面BC1与面AB1共面,可求得
AC1=错误!未找到引用源。
=错误!未找到引用源。
.
比较可得蚂蚁爬行的最短路线长为错误!未找到引用源。
.
【拓展延伸】空间几何体中的最短路线问题的解法
空间几何体中的最短路线问题通常是以“平面内连接两点的线中,线段最短”为原则引出来的,解题策略通常是用“转化的方法”,应用侧面展开图把空间图形展开成平面图形,从而把空间问题归为平面问题.。