材料力学第3章-最简单的材料力学问题讲解
材料力学第三章
![材料力学第三章](https://img.taocdn.com/s3/m/10eac98d6529647d272852ed.png)
33
G=
M el0 ϕI p
= M el0 ϕ ⋅ πd 4
=
150 × 0.1× 32 0.012π × 204 ×10−12
= 79.6 GPa
3-8 设有 1 圆截面传动轴,轴的转速 n = 300 r/min,传递功率 P = 80 kW,轴材料的 许用切应力[τ ] = 80 MPa,单位长度许用扭转角[θ ] = 1.0° / m ,切变模量 G = 80 GPa。试
τ max
= Tmax Wp
≤ [τ ]
3-6 金属材料圆轴扭转破坏有几种形式? 答 塑性金属材料和脆性金属材料扭转破坏形式不完全相同。塑性材料试件在外力偶作 用下,先出现屈服,最后沿横截面被剪断,如图 a 所示;脆性材料试件受扭时,变形很小, 最后沿与轴线约 45°方向的螺旋面断裂,如图 b 所示。
(2)用简化公式
τ max
=
8FD πd 3
=
8 ×1.5 ×103 × 50 ×10−3 π × 83 ×10−9
= 373 MPa
< [τ ],安全。
讨论:由于 c = D d = 50 8 = 6.25 < 10 ,故应用解(1)中修正公式计算((1)(2)计算
值相差较大)。
3-7 一圆截面等直杆试样,直径 d = 20 mm,两端承受外力偶矩 M e = 150 N⋅ m 作用。 设由试验测得标距 l0 = 100 mm 内轴的相对扭转角ϕ = 0.012 rad,试确定切变模量 G 。
设计轴的直径。
解 T = 9549 × P = 9549 × 80 = 2546 N ⋅ m
n
300
材料力学第3章 轴向拉压变形
![材料力学第3章 轴向拉压变形](https://img.taocdn.com/s3/m/40a46e82a0116c175f0e488b.png)
(2) 变形协调方程
Δl2 Δl1 Δl3 Δl2 tan30 sin 30 sin 30 tan30
秦飞 编著《材料力学》 第3章 轴向拉压变形
31
3.4 拉压杆静不定问题的解法
例题3-5
(3) 利用物性关系,用力表示变形协调方程
切
B点水平位移:
线 代
圆
Fa
弧
Bx BB1 l1 EA ()
B点铅垂位移:
By
BB'
l2 sin 45
l1
tan
45
(1
2
2) Fa EA
()
秦飞 编著《材料力学》 第3章 轴向拉压变形
19
3.3 桁架的节点位移
例题3-3
图示托架,由横梁AB与斜撑杆CD所组成,并承受集中载荷
2
3.1拉压杆的轴向变形与横向变形
轴向应变: l 胡克定律: FN
l
E EA
所以得到: l FNl EA
(拉压杆胡克定律)
l FNl EA
EA为拉压刚度,只与材料和横截面面积有关。
秦飞 编著《材料力学》 第3章 轴向拉压变形
3
3.1拉压杆的轴向变形与横向变形
(2)补充方程-变形协调方程(compatibility equation)
l1
tan
l2
sin
l3
秦飞 编著《材料力学》 第3章 轴向拉压变形
25
3.4 拉压杆静不定问题 解法
(3)物性(物理)关系
l1
FN1l1 E1 A1
材料力学第3章扭转
![材料力学第3章扭转](https://img.taocdn.com/s3/m/3291925b312b3169a451a449.png)
τ ρ = Gγ ρ
=G
ρdϕ
dx
22
C)静力平衡关系 C)静力平衡关系
T = ∫ A dA ⋅ τ ρ ⋅ ρ
2 dϕ = ∫ A Gρ dA dx
τ ρ = Gγ ρ
=G
dA
ρdϕ
dx
ρ
O
=G
dϕ ∫ A ρ 2dA dx
令
dϕ T = GI p dx
dϕ T = dx GIp
I p = ∫ A ρ 2dA
由公式
Pk/n
11
§3-2、外力偶矩 扭矩和扭矩图
(2)计算扭矩 (2)计算扭矩
(3) 扭矩图
12
§3-3、纯剪切
1、薄壁圆筒扭转:壁厚 、薄壁圆筒扭转:
t≤
1 r0 10
为平均半径) (r0:为平均半径)
A)观察实验: )观察实验:
实验前: 实验前: ①绘纵向线,圆周线; 绘纵向线,圆周线; ②施加一对外力偶 m。 。
16
纯剪切的概念: 纯剪切的概念:
当单元体的侧面上只有剪应力而无正应力时, 当单元体的侧面上只有剪应力而无正应力时, 就称为纯剪切。 就称为纯剪切。
3、剪应变与扭转角
设轴长为L,半径为R 设轴长为L 半径为R Φ称为扭转角,是用来表示轴变形的量; 称为扭转角,是用来表示轴变形的量; 且的剪应变 γ Φ的关系如下: 与 的关系如下:
∑ mz = 0
a dy
γ τ´
dx
τ´
b
τ ⋅ t ⋅ dxdy = τ ′ ⋅ t ⋅ dxdy
故
τ
c z
τ
d t
τ =τ′
上式称为剪应力互等定理。 上式称为剪应力互等定理。 为剪应力互等定理
《材料力学》第3章 扭转 习题解
![《材料力学》第3章 扭转 习题解](https://img.taocdn.com/s3/m/bfd95e705901020207409c69.png)
第三章扭转 习题解[习题3-1] 一传动轴作匀速转动,转速min /200r n =,轴上装有五个轮子,主动轮II 输入的功率为60kW ,从动轮,I ,III ,IV ,V 依次输出18kW ,12kW ,22kW 和8kW 。
试作轴的扭图。
解:(1)计算各轮的力偶矩(外力偶矩) nN T ke 55.9= 外力偶矩计算(kW 换算成kN.m)题目编号 轮子编号轮子作用 功率(kW) 转速r/minTe (kN.m ) 习题3-1I 从动轮 18 200 0.859 II 主动轮 60 200 2.865 III 从动轮 12 200 0.573 IV 从动轮 22 200 1.051 V从动轮82000.382(2) 作扭矩图[习题3-2] 一钻探机的功率为10kW ,转速min /180r n =。
钻杆钻入土层的深度m l 40=。
如土壤对钻杆的阻力可看作是均匀分布的力偶,试求分布力偶的集度m ,并作钻杆的扭矩图。
解:(1)求分布力偶的集度m)(5305.018010549.9549.9m kN n N M k e ⋅=⨯== 设钻杆轴为x 轴,则:0=∑xMe M ml =)/(0133.0405305.0m kN l M m e ===(2)作钻杆的扭矩图T 图(kN.m)x x lM mx x T e0133.0)(-=-=-=。
]40,0[∈x 0)0(=T ; )(5305.0)40(m kN M T e ⋅-==扭矩图如图所示。
[习题3-3] 圆轴的直径mm d 50=,转速为120r/min 。
若该轴横截面上的最大切应力等于60MPa ,试问所传递的功率为多大? 解:(1)计算圆形截面的抗扭截面模量:)(245445014159.3161161333mm d W p =⨯⨯==π (2)计算扭矩2max /60mm N W Tp==τ )(473.1147264024544/6032m kN mm N mm mm N T ⋅=⋅=⨯=(3)计算所传递的功率 )(473.1549.9m kN nN M T ke ⋅=== )(5.18549.9/120473.1kW N k =⨯=[习题3-4] 空心钢轴的外径mm D 100=,内径mm d 50=。
材料力学笔记(第三章)
![材料力学笔记(第三章)](https://img.taocdn.com/s3/m/85e4e4d0e518964bcf847ca1.png)
材料力学(土)笔记第三章 扭 转1.概 述等直杆承受作用在垂直于杆轴线的平面内的力偶时,杆将发生扭转变形 若构件的变形时以扭转为主,其他变形为次而可忽略不计的,则可按扭转变形对其进行强度和刚度计算等直杆发生扭转变形的受力特征是杆受其作用面垂直于杆件轴线的外力偶系作用其变形特征是杆的相邻横截面将绕杆轴线发生相对转动,杆表面的纵向线将变成螺旋线 当发生扭转的杆是等直圆杆时,由于杆的物性和横截面几何形状的极对称性,就可用材料力学的方法求解对于非圆截面杆,由于横截面不存在极对称性,其变形和横截面上的应力都比较复杂,就不能用材料力学的方法来求解2.薄壁圆筒的扭转设一薄壁圆筒的壁厚δ远小于其平均半径0r (10r ≤δ),其两端承受产生扭转变形的外力偶矩e M ,由截面法可知,圆筒任一横截面n-n 上的内力将是作用在该截面上的力偶 该内力偶矩称为扭矩,并用T 表示由横截面上的应力与微面积dA 之乘积的合成等于截面上的扭矩可知,横截面上的应力只能是切应力考察沿横截面圆周上各点处切应力的变化规律,预先在圆筒表面上画上等间距的圆周线和纵向线,从而形成一系列的正方格子在圆筒两端施加外力偶矩e M 后,发现圆周线保持不变,纵向线发生倾斜,在小变形时仍保持直线薄壁圆筒扭转变形后,横截面保持为形状、大小均无改变的平面,知识相互间绕圆筒轴线发生相对转动,因此横截面上各点处切应力的方向必与圆周相切。
相对扭转角:圆筒两端截面之间相对转动的角位移,用ϕ来表示圆筒表面上每个格子的指教都改变了相同的角度γ,这种直角的该变量γ称为切应变 这个切应变和横截面上沿沿圆周切线方向的切应力是相对应的 由于圆筒的极对称性,因此沿圆周各点处切应力的数值相等由于壁厚δ远小于其平均半径0r ,故可近似地认为沿壁厚方向各点处切应力的数值无变化 薄壁圆筒扭转时,横截面上任意一点处的切应力τ值均相等,其方向与圆周相切 由横截面上内力与应力间的静力学关系,从而得⎰=⨯AT r dA τ由于τ为常量,且对于薄壁圆筒,r 可以用其平均半径0r 代替,积分⎰==Ar A dA δπ02为圆筒横截面面积,引进π200r A =,从而得到δτ02A T=由几何关系,可得薄壁圆筒表面上的切应变γ和相距为l 的两端面间相对扭转角ϕ之间的关系式,式子中r 为薄壁圆筒的外半径γϕγsin /==l r 当外力偶矩在某一范围内时,相对扭转角ϕ与外力偶矩e M (在数值上等于T )之间成正比可得τ和r 间的线性关系为γτG =上式称为材料的剪切胡克定律,式子中的比例常数G 称为材料的切变模量,其量纲和单位与弹性模量相同,钢材的切边模量的约值为GPa G 80=剪切胡克定律只有在切应力不超过某材料的某极限值时才适用该极限称为材料的剪切比例极限p τ,适用于切应力不超过材料剪切比例极限的线弹性范围3.传动轴的外力偶矩·扭矩及扭矩图 3.1 传动轴的外力偶矩设一传动轴,其转速为n (r/min ),轴传递的功率由主动轮输入,然后通过从动轮分配出去 设通过某一轮所传递的功率为P ,常用单位为kW 1 kW=1000 W ;1 W=1 J/s ; 1 J=1 N ·m当轴在稳定转动时,外力偶在t 秒内所做的功等于其矩e M 与轮在t 秒内的转角α之乘积 因此,外力偶每秒钟所作的功即功率P 为310}{}{}{}{-⋅⨯=sradmN e kW t M P α 3/10}{}{-⋅⨯=s rad m N e M ω3min/1060}{2}{-⋅⨯⨯⨯=r m N e n M π 即得到作用在该轮上的外力偶矩为min/3min /3}{}{1055.9}{26010}{}{r kWr kW mN e n P n P M ⨯=⨯⨯=⋅π 外力偶的转向,主动轮上的外力偶的转向与轴的转动方向相同,从动轮上的外力偶的转向则与轴的转动方向相反3.2 扭矩及扭矩图可用截面法计算轴横截面上的扭矩为使从两段杆所求得的同一横截面上扭矩的正负号一致按杆的变化情况,规定杆因扭转而使其纵向线在某段内有变成右手螺旋线的趋势时 则该段杆横截面上的扭矩为正,反之为负 若将扭矩按右手螺旋法则用力偶矢表示,则当力偶矢的指向离开截面时扭矩为正,反之为负 为了表明沿杆轴线各横截面上扭矩的变化情况,从而确定最大扭矩及其所在横截面的位置 可仿照轴力图的作法绘制扭矩图4.等直圆杆扭转时的应力·强度条件 4.1 横截面上的应力与薄壁圆筒相仿,在小变形下,等直圆杆在扭转时横截面上也只有切应力 ①几何方面为研究横截面上任意一点处切应变随点的位置而变化的规律 在等直圆杆的表面上作出任意两个相邻的圆周线和纵向线 当杆的两端施加一对其矩为e M 的外力偶后,可以发现:两圆周线绕杆轴线相对旋转了一个角度,圆周线的大小和形状均为改变在变形微小的情况下,圆周线的间距也未变化 纵向线则倾斜了一个角度γ假设横截面如同刚性平面般绕杆的轴线转动,即平面假设 上述假设只适用于圆杆为确定横截面上任一点处的切应变随点的位置而变化的规律 假想地截取长为dx 的杆段进行分析由平面假设可知,截面b-b 相对于截面a-a 绕杆轴转动了一个微小的角度ϕd 因此其上的任意半径也转动了同一角度ϕd由于截面转动,杆表面上的纵向线倾斜了一个角度γ纵向线的倾斜角γ就是横截面周边上任一点A 处的切应变同时经过半径上任意一点的纵向线在杆变形后也倾斜了一个角度ργρ为圆心到半径上点的距离即为横截面半径上任意一点处的且应变 由几何关系可得dxd ϕργγρρ=≈tan即dxd ϕργρ=上式表示等直接圆杆横截面上任一点处的切应变随该点在横截面上的位置而变化的规律②物理方面由剪切胡可定律可知,在线弹性范围内,切应力与切应变成正比 令相应点处的切应力为ρτ,即得横截面上切应力变化规律表达式dxd G G ϕργτρρ== 由上式可知,在同一半径ρ的圆周上各点处的切应力ρτ 值均相等,其值与ρ成正比因ργ为垂直于半径平面内的切应变,故ρτ的方向垂直于半径③静力学方面由于在横截面任一直径上距圆心等远的两点处的内力元素dA ρτ等值且反向则整个截面上的内力元素dA ρτ的合力必等于零,并组成一个力偶,即为横截面上的扭矩T 因为ρτ的方向垂直于半径,故内力元素dA ρτ对圆心的力矩为dA ρρτ 由静力学中的合力矩原理可得⎰=AT dA ρρτ经整理后得⎰=A T dA dxd G2ρϕ上式中的积分⎰AdA 2ρ仅与横截面的几何量有关,称为极惯性矩,用p I 表示⎰=Ap dA I 2ρ其单位为4m ,整理得pGI Tdx d =ϕ 可得pI T ρτρ=上式即等直圆杆在扭转时横截面上任一点处切应力的计算公式当ρ等于横截面的半径r 时,即在横截面周边上的各点处,切应力将达到其最大值p I Tr =max τ 在上式中若用p W 代表r I p /,则有pW T =m ax τ 式中,p W 称为扭转截面系数,单位为3m推导切应力计算公式的主要依据为平面假设,且材料符合胡克定律 因此公式仅适用于在线弹性范围内的等直圆杆 为计算极惯性矩和扭转截面系数在圆截面上距圆心为ρ处取厚度为ρd 的环形面积作为面积因素 可得圆截面的极惯性矩为⎰⎰===Ad p d d dA I 32242032πρπρρ圆截面的扭转截面系数为162/3d d I rI W p p p π===由于平面假设同样适用于空心截面杆件,上述切应力公式也适用于空心圆截面杆 设空心圆截面杆的内、外直径分别为d 和D ,其比值Dd =α 则可得空心圆截面的极惯性矩为⎰⎰-===AD d p d D d dA I )(322442232πρπρρ所以)1(3244απ-=D I p扭转截面系数为)1(1616)(2/4344αππ-=-==D Dd D D I W p p4.2 斜截面上的应力在圆杆的表面处用横截面、径向截面及与表面相切的面截取一单元体在其左右两侧(即杆的横截面)上只有切应力τ,其方向与y 轴平行 在其前后两平面(即与杆表面相切的面)上无任何应力 由于单元体处于平衡状态,故由平衡方程0=∑yF可知单元体在左右两侧面上的内力元素dydz τ应是大小相等,指向相反的一对力并组成一个力偶,其矩为dx dydz )(τ 为满足令两个平衡方程,0=∑xF和0=∑z M在单元体上、下两个平面上将有大小相等、指向相反的一对内力元素dxdz 'τ 并组成其矩为dy dxdz )('τ的力偶该力偶与前一力偶矩数值相等而转向相反,从而可得ττ='上式表明,两相互垂直平面上的切应力τ和'τ数值相等,且均指向(或背离)该两平面的交线,称为切应力互等定理 该定理具有普遍意义纯剪切应力状态:单元体在其两对互相垂直的平面上只有切应力而无正应力的状态 等直圆杆和薄壁圆筒在发生扭转时,其中的单元体均处于纯剪切应力状态现分析在单元体内垂直于前、后量平面的任意斜截面上的应力 斜截面外法线n 与x 轴的夹角为α规定从x 轴至截面外法向逆时针转动时α为正,反之为负 应用截面法,研究其左边部分的平衡设斜截面ef 的面积为dA ,则eb 面和bf 面的面积分别为αcos dA 和αsin dA 选择参考轴ξ和η分别于斜截面ef 平行和垂直 由平衡方程∑=0ηF 和∑=0ξF即0cos )sin (sin )cos ('=++ααταατσαdA dA dA0sin )sin (cos )cos ('=+-ααταατταdA dA dA利用切应力互等定理公式,整理后即得任意一斜截面ef 上的正应力和切应力的计算公式ατσα2sin -= αττα2cos =单元体的四个侧面(ο0=α和ο90=α)上的切应力绝对值最大,均等于το45-=α和ο45=α两截面上正应力分别为τσσ+==max 45οτσσ-==min 45ο即该两截面上的正应力分别为ασ中的最大值和最小值,即一为拉应力,另一为压应力 其绝对值均等于τ,且最大、最小正应力的作用面与最大切应力的作用面之间互成45° 这些结论是纯剪切应力状态的特点,不限于等直圆杆在圆杆的扭转试验中,对于剪切强度低于拉伸强度的材料(如低碳钢),破坏是由横截面上的最大切应力引起,并从杆的最外层沿与杆轴线约成45°倾角的螺旋形曲面发生拉断而产生的在最大切应力相等的情况下,空心圆轴的自重较实心圆轴为轻,比较节省材料4.3 强度条件强度条件是最大工作切应力不超过材料的许用切应力,即][max ττ≤等直圆杆的最大工作应力存在于最大扭矩所在横截面即危险截面的周边上任一点,即危险点 上述强度条件可写为][maxτ≤pW T5.等直圆杆扭转时的变形·刚度条件 5.1 扭转时的变形 等直杆的扭转变形是用两横截面绕杆轴相对转动的相对角位移,即相对扭转角ϕ来度量的ϕd 为相距dx 的两横截面间的相对扭转角 因此,长为l 的一段杆两端面间的相对扭转角 长为l 的一段杆两端间的相对扭转角ϕ为⎰⎰==lpldx GI Td 0ϕϕ 当等直圆杆仅在两端受一对外力偶作用时,则所有横截面上的扭矩T 均相同 且等于杆端的外力偶矩e M对于由同一材料制成的等直圆杆,G 及p I 亦为常量,则可得pe GI l M =ϕ或p GI Tl =ϕϕ的单位为rad ,其正负号随扭矩T 而定由上式可见,相对扭转角ϕ与p GI 成反比,p GI 称为等直圆杆的扭转刚度由于杆在扭转时各横截面上的扭矩可能并不相同,且杆的长度也各不相同因此在工程中,对于扭转杆的刚度通常用相对扭转角沿杆长度的变化率dx d /ϕ来度量,称为单位长度扭转角,并用'ϕ表示pGI T dx d ==ϕϕ' 公式只适用于材料在线弹性范围内的等直圆杆例题3-5截面C 相对于截面B 的扭转角,应等于截面A 相对于B 的扭转角与截面C 相对于A 的扭转角之和AC BA BC ϕϕϕ+=5.2 刚度条件等直杆扭转时,除需满足强度条件外,有时还需满足刚度条件刚度要求通常是限制器单位长度扭转角'ϕ中最大值不超过某一规定的允许值]['ϕ,即][''max ϕϕ≤上式即为等直圆杆在扭转时的刚度条件式中,]['ϕ称为许可单位长度扭转角,其常用单位是m /)(ο需要将单位换算,于是可得][180'max ϕπ≤⨯p GI T 许可单位长度扭转角是根据作用在轴上的荷载性质以及轴的工作条件等因素决定的6.等直圆杆扭转时的应变能当圆杆扭转变形时,杆内将积蓄应变能计算杆内应变能,需先计算杆内任一点处的应变能密度,再计算全杆内所积蓄的应变能 受扭圆杆的任一点处于纯剪切应力状态设其左侧面固定,则单元体在变形后右侧面将向下移动dx ⋅γ当材料处于线弹性范围内,切应力与切应变成正比,且切应变值很小 因此在变形过程中,上、下两面上的外力将不作功只有右侧面上的外力dydz ⋅τ对相应的位移dx ⋅γ做功,其值为)(21))((21dxdydz dx dydz dW τγγτ=⋅⋅=单元体内所积蓄的应变能εdV 数值上等于dW 于是可得单位体积内的应变能即应变能密度εv 为τγεε21===dxdydz dW dV dV v 根据剪切胡克定律,上式可改写为Gv 22τε=或22γεG v =求得受扭圆杆任一点处的应变能密度εv 后,全杆的应变能εV 可由积分计算dAdx v dV v V Vl A⎰⎰⎰==εεεV 为杆的体积,A 为杆的横截面积,l 为杆长若等直杆仅在两端受外力偶矩e M 作用,则任一横截面的扭矩T 和极惯性矩p I 均相同可得杆内得应变能为222222222)(22ϕρτεlGI GI l M GI l T dA I T G l dAdx G V p p e A p p l A =====⎰⎰⎰以上应变能表达式也可利用外力功与应变能数值上相等的关系,直接从作用在杆端的外力偶矩e M 在杆发生扭转过程中所做的功W 算得7.等直非圆杆自由扭转时的应力和变形对于非等直圆杆,在杆扭转后横截面不在保持为平面取一矩形截面杆,事先在其表面绘出横截面的周线,则在杆扭转后,这些周线变成了曲线 从而可以推知,其横截面在杆变形后将发生翘曲而不再保持平面 对于此类问题,只能用弹性的理论方法求解 等直非圆杆在扭转时横截面发生翘曲,但当等直杆在两端受外力偶作用,且端面可以自由翘曲时,称为纯扭转或自由扭转这时,杆相邻两横截面的翘曲程度完全相同,横截面上仍然是只有切应力没有正应力若杆的两端受到约束而不能自由翘曲,称为约束扭转,则其相邻两横截面的翘曲程度不同,将在横截面上引起附加的正应力8.开口和闭口薄壁截面杆自由扭转时的应力和变形 8.1 开口薄壁截面杆薄壁截面的壁厚中线是一条不封闭的折线或曲线,责成开口薄壁截面如各种轧制型钢(工字钢、槽钢、角钢等)或工字形、槽形、T 字型截面等8.2 闭口薄壁截面杆薄壁截面的壁厚中线是一条封闭的折线或曲线,这类截面称为闭口薄壁截面 讨论这类杆件在自由扭转时的应力和变形计算设一横截面为任意形状、变厚度的闭口薄壁截面等直杆 在两自由端承受一对扭转外力偶作用杆横截面上的内力为扭矩,因此其横街满上将只有切应力 假设切应力沿壁厚无变化,且其方向与壁厚的中线相切在杆的壁厚远小于其横截面尺寸时,又假设引起的误差在工程计算中是允许的 取dx 的杆段,用两个与壁厚中线正交的纵截面从杆壁中取出小块ABCD 设横截面上C 和D 两点处的切应力分别为1τ和2τ,而壁厚分别为1δ和2δ 根据切应力互等定理,在上、下两纵截面上应分别有切应力2τ和1τ 由平衡方程0=∑xF,dx dx 2211δτδτ=可得2211δτδτ=由于所取的两纵截面是任意的,上式表明横截面沿其周边任一点处的切应力τ与该点处的壁厚δ乘积为一常数常数=τδ沿壁厚中线取出长为ds 的一段,在该段上的内力元素为ds ⋅τδ 其方向与壁厚中线相切,其对横截面内任意一点O 的矩为r ds dT )(⋅=τδr 是从矩心O 到内力元素ds ⋅τδ作用线的垂直距离由力矩合成原理可知,截面上扭矩应为dT 沿壁厚中线全长s 的积分,即得⎰⎰⎰===sssrds rds dT T τδτδrds 为图中阴影三角形面积2倍故其沿壁厚中线全长s 的积分应是该中线所围面积0A 的2倍,于是可得02A T ⨯=τδ或者δτ02A T=上式即为闭口薄壁截面等直杆在自由扭转时横截面上任一点处切应力的计算公式 可得杆截面上最大切应力为min0max 2δτA T =式子中,min δ为薄壁截面的最小壁厚闭口薄壁截面等直杆的单位长度扭转角可按功能原理来求得22022028)2(212δδτεGA T A T G G v === 根据应变能密度计算扭转时杆内应变能的表达式,得单位长度杆内得应变能为⎰⎰==V V dVGA T dV v V 22028δεε 式子中,V 为单位长度杆壁的体积,ds ds dV ⨯=⨯⨯=δδ1,代入上式⎰=s dsGA T V δε2028 计算单位长度杆两端截面上的扭矩对杆段的相对扭转角'ϕ所做的功,杆在线弹性范围内2'ϕT W =因为W V =ε,则可解得⎰=sdsGA T δϕ20'4即所要求得单位长度扭转角式子中的积分取决于杆的壁厚δ沿壁厚中线s 的变化规律,当壁厚δ为常数时,得到δϕ20'4GA Ts=式子中,s 为壁厚中线的全长如有侵权请联系告知删除,感谢你们的配合!。
材料力学课件-第三章-轴向拉压变形
![材料力学课件-第三章-轴向拉压变形](https://img.taocdn.com/s3/m/abda08cec8d376eeafaa3126.png)
Δ
F
f
o
d
A
d
•弹性体功能原理:Vε W ,
f df
• 拉压杆应变能
2 FN l V ε 2 EA
Page28
BUAA
MECHANICS OF MATERIALS
*非线性弹性材料
F
f
•外力功计算
W fd
0
F W 2
•功能原理是否成立? •应变能如何计算计算?
dx
dz
dy
x
•单向受力体应变能
V v dxdydz dxdydz 2E
2
z
单向受力
Page30
BUAA
MECHANICS OF MATERIALS
2 dxdydz •单向受力体应变能 V v dxdydz 2E FN ( x ) •拉压杆 (x)= , dydz A A 2 FN ( x ) V dx (变力变截面杆) y 2 EA( x ) l 2 FN l dx (常应力等直杆) V dz 2 EA •纯剪应变能密度 dy dxdz dy dxdydz dVε 2 2 2 1 2 z v G 纯剪切
BUAA
MECHANICS OF MATERIALS
第三章
§3-1 §3-2 §3-3 §3-4
§3-5 §3-6
轴向拉压变形
引言 拉压杆的变形与叠加原理 桁架的节点位移 拉压与剪切应变能
简单拉压静不定问题 热应力与预应力
Page1
BUAA
MECHANICS OF MATERIALS
本章主要研究:
Page7
材料力学习题解答[第三章]
![材料力学习题解答[第三章]](https://img.taocdn.com/s3/m/9aaf97500c22590103029d47.png)
解:危险点在B截面的最上和最下面的两点上。
3-27图3-68为某精密磨床砂轮轴的示意图。已知电动机功率 ,转子转速 ,转子重量 。砂轮直径 ,砂轮重量 。磨削力 ,砂轮轴直径 ,材料为轴承钢。试表示危险点的应力方向,并求出危险点的应力大小。
解:矩形截面扭转
其中b=50mm,h/b=100/50=2,
3-18圆柱形密圈螺旋弹簧,簧丝横截面直径为 ,弹簧平均直径为 。如弹簧所受拉力 ,试求簧丝的最大切应力。
3-19试求图3-60中 杆横截面上的最大正应力。已知
, 。
扭弯组合
3-20矩形截面折杆 ,受图3-61所示的力F作用。已知 , 。试求竖杆内横截面上的最大正应力,并作危险截面上的正应力分布图。
解:(1)约束反力:
(2)各杆轴力
题3-3图
(3)各杆的正应力
3-4钢杆 直径为20mm,用来拉住刚性梁 。已知F=10kN,求钢杆横截面上的正应力。
解:
题3-4图
3-5图示结构中,1、2两杆的横截面直径分别为10mm和20mm,试求两杆内的应力。设结构的横梁为刚体。
解:取BC段分析, 题3-5图
取AB段分析:
题3-21图
所以:
最大压应力在槽底上各点:
(3)如果在左侧也开槽,则为轴心受压:
3-22图示短柱受载荷 和 作用,试求固定端角点A、B、C及D的正应力,并确定其中性轴的位置。
题3-22图
解:在ABCD平面上的内力:
横截面的几何特性:
应力计算:
中性轴方程为:
3-23图3-64所示为一简易悬臂式吊车架。横梁AB由两根10号槽钢组成。电葫芦可在梁上来回移动。设电动葫芦连同起吊重物的重量共重 。材料的 。试求在下列两种情况下,横梁的最大正应力值:(1)、只考虑由重量W所引起的弯矩影响;(2)、考虑弯矩和轴力的共同影响。
材料力学-第三章
![材料力学-第三章](https://img.taocdn.com/s3/m/0f94cf62ddccda38376bafbf.png)
21
第三章 扭转
3.5 圆轴扭转强度计算
22
扭转失效与扭转极限应力
扭转屈服应力:s 扭转强度极限:b 扭转强度极限:b 扭转屈服应力(s )和扭转强度极限(b ),统 称为材料的扭转极限应力u。
23
圆轴扭转强度条件
材料的扭转许用应力为:
u
n
n为安全系数。
强度条件为:
max
(2) 若将轮1与轮2的位置对调,试求轴内的最大扭矩。
(3) 若将轮1与轮3的位置对调,试求轴内的最大扭矩。
33
提高圆轴扭转时强度和刚度的措施
• 提高轴的转速 • 合理布局主动轮和被动轮的位置 • 采用空心轴 • 选用优质材料,提高剪切模量
34
例3-8:图示圆柱形密圈螺旋弹簧,承受轴向载荷F作用。 所谓密圈螺旋弹簧,是指螺旋升角α很小(例如小于5º )的 弹簧。设弹簧的平均直径D,弹簧丝的直径d,试分析弹簧 丝横截面上的应力并建立相应的强度条件。
第三章 扭转
3.1 扭转的概念
1
扭转的概念
以横截面绕轴 线作相对旋转为 主要特征的变形 形式,称为扭转。
2
受力特点: 变形特点:
受到垂直于构件轴线的外力偶 矩的作用。
构件的轴线保持不变,各横截面绕 轴线相对转动 截面间绕轴线的相对角位移,称为扭转角
使杆发生扭转变形的外力偶,称为扭力偶,其矩 称为扭力偶矩。 凡是以扭转为主要变形的直杆,称为轴。
公式的适用条件:以平面假设为基础;适用胡克定律。
18
圆轴截面的极惯性矩和抗扭截面模量
IP
d4
32
WP
d3
16
19
空心圆截面的极惯性矩和抗扭截面模量
第三章 材料力学课件
![第三章 材料力学课件](https://img.taocdn.com/s3/m/905861e8e009581b6bd9eb24.png)
例题
3.5
一内径d=100mm的空心圆轴如图示,已知圆轴受扭 矩T=5kN·m,许用切应力[τ]=80MPa,试确定空心圆轴 的壁厚。
因不知道壁厚,所以不知道是不是薄壁圆筒。分别按薄壁圆筒 和空心圆轴设计 薄壁圆筒设计 2T T 2 τ= d ≤ δ δ τ +δ τ= 设平均半径 R0=(d+δ)/2 2 2πR0 δ πτ
例题
3.1
=500kW, =150kW, =150kW, P1=500kW,从动轮输出 P2=150kW,P3=150kW, =200kW,试绘制扭矩图。 P4=200kW,试绘制扭矩图。
m2
解:①计算外力偶矩
1
m3
2
m1
3
m4
P 500 3 m = 9.55 1 = 9.55⋅ 1 2 n 1 300 n A B C = 15.9(kN ⋅ m ) P P 2 m4 = 9.55 4 = 9.55 m2 = m3 = 9.55 = n n 200 150 ⋅ = 6.37 (kN⋅ m ) = 4.78 (kN⋅ m ) 9.55⋅ 300 300
τ −45 = 0
0
τ
τ τ
α = 450
σ45 = σmin = −τ
0
σmin
τ
τ 45 = 0
0
σmax
扭转破坏试验
低碳钢试件: 沿横截面断开。 先发生屈服,试件表面横向和纵 向出现滑移。 铸铁试件: 沿与轴线约成45°的螺旋线 断开。
强度条件
τ max ≤ [τ ]
强度计算的三类问题 :
D
②求扭矩(扭矩按正方向设) 求扭矩(扭矩按正方向设)
∑mC = 0 , T + m2 = 0 1 T = −m2 = −4.78kN⋅ m 1 T2 + m2 + m3 = 0 , T2 = −m2 − m3 = −(4.78 + 4.78) = −9.56kN⋅ m T3 − m4 = 0 , T3 = m4 = 6.37kN⋅ m
《材料力学性能》第三章塑性变形
![《材料力学性能》第三章塑性变形](https://img.taocdn.com/s3/m/9bc3a91f0740be1e650e9ae5.png)
3.4.3 弯曲试验
1、弯曲试验分为三点弯曲和四点弯曲,试样主要有矩形 截面和圆形截面。
《材料力学性能》 第三章 塑性变形
试验时,在试件跨距的中心测定绕度,绘成P~fmax关系 曲线,即弯曲图。
由左图可知,塑性材料的 力学性能由拉伸试验测定, 而不采用弯曲试验;脆性 材料根据弯曲图求得:
Mb bb ; M b Pb L 4 , Pb K 2 W 3 W d 0 32, bh2 6
生产上用得最多的是A级、B级和C级,即HRA(金钢石圆锥压头、 60kgf负荷),HRB(1/16"钢球压头、100kgf负荷)和HRC(金钢石圆 锥压头、150kgf负荷),而其中又以HRC用得最普遍。
《材料力学性能》 第三章 塑性变形
洛氏硬度的测量方法
洛氏硬度试验过程示意图
《材料力学性能》 第三章 塑性变形
2、洛氏硬度 洛氏硬度的测量原理 洛氏硬度是以压痕陷凹深度作为计量硬度值的指标。
洛氏硬度的压头分硬质和软质两种。硬质的由顶角为120°的金 钢石圆锥体制成,适于测定淬火钢材等较硬的金属材料;软质的 为直径1/16“(1.5875mm)或1/8”(3.175mm)的钢球,适于退火钢、 有色金属等较软材料硬度值的测定。洛氏硬度所加负荷根据被试 金属本身硬软不等作不同规定,随不同压头和所加不同负荷的搭 配出现了各种称号的洛氏硬度级。
《材料力学性能》 第三章 塑性变形
维氏硬度
维氏硬度试验法开始于1925年。 维氏硬度的测定原理和布氏硬 度相同,也是根据单位压痕陷凹 面积上承受的负荷,即应力值 作为硬度值的计量指标。
所不同的是维氏硬度采用锥面夹角为136°的四方 角锥体,由金钢石制成。
《材料力学性能》 第三章 塑性变形
材料力学第3章-连接件的剪切与挤压假定计算
![材料力学第3章-连接件的剪切与挤压假定计算](https://img.taocdn.com/s3/m/9b7778432e60ddccda38376baf1ffc4ffe47e2d7.png)
第3章 连接件强度的工程假定计算
01
03
02
挤压接触面上的应力分布同样也是比较复杂的。因此在工程计算中,也是采用简化方法,即假定挤压应力在有效挤压面上均匀分布。有效挤压面简称挤压面(bearing surface),它是指挤压面面积在垂直于总挤压力作用线平面上的投影。若连接件直径为d,连接板厚度为,则有效挤压面面积为d。
剪切假定计算
返回总目录
第3章 连接件强度的工程假定计算
01.
返回
02.
第3章 连接件强度的工程假定计算
一个剪切面 剪切面 剪切假定计算
第3章 连接件强度的工程假定计算
剪切面 二个剪切面 剪切假定计算
第3章 连接件强度的工程假定计算
设计准则
剪切假定计算
挤压假定计算
挤压假定计算
第3章 连接件强度的工程假定计算
01
03
02
有效挤压面 连接件直径为d,连接板厚度为,则有效挤压面面积为d。 挤压假定计算 第3章 连接件强度的工程假定计算
第3章 连接件强度的工程假定计算
设计准则 挤压假定计算
焊缝假定计算
返回总目录
01
第3章 连接件强度的工程假定计算
第3章 连接件强度的工程假定计算
第3章 连接件强度的工程假定计算
Grand Canyon
大自然的剪切效应
第3章 连接件强度的工程假定计算
第3章 连接件强度的工程假定计算
第3章 连接件强度的工程假定计算
大自然的剪切效应
Grand Canyon
第3章 连接件强度的工程假定计算
结论与讨论
注意综合应用基本概念与基本理论 处理工程构件的强度问题
材料力学第三章知识点总结
![材料力学第三章知识点总结](https://img.taocdn.com/s3/m/b57bc0185f0e7cd18425367c.png)
直升机的旋转轴
电机每秒输入功:外力偶作功完成:
×
=P W
M W
e
⋅
=
形状、大小、间距不变,各圆周线只是绕轴线转动了一个角度。
倾斜了同一个角度,小方格变成了平行四边形。
τdα
τ
l
ϕ
做薄壁圆筒的扭转试验可得
l
是材料的一个弹性常数,称为剪切弹性模量,G的量纲各向同性材料,三个弹性常数之间的关系:
ρργγtg ≈x
d d d ′=x d d ϕρ⋅=O 1O 2ABCD 为研究对象
D’
微段扭转变形d dx Rd dx DD tg ϕγγ==≈'d ϕ/ d x -扭转角沿x 轴的变化率
扭转变形计算式
O d A ρTρ⋅
(实心截面)
1、横截面上角点处,切应力为零;
2、横截面边缘各点处,切应力
3、切应力沿横截面周边形成与
4、横截面周边长边中点处,切应力最大。
有关,见教材P93 之表3.2。
材料力学教案 第3章 扭转
![材料力学教案 第3章 扭转](https://img.taocdn.com/s3/m/e08ea45af01dc281e53af066.png)
第3章扭转教学目的:理解圆轴扭转的受力和变形特点,剪应力互等定理;掌握圆轴受扭时的内力、应力、变形的计算;熟练掌握圆轴受扭时的强度、刚度计算。
教学重点:外力偶矩的计算、扭矩图的画法;纯剪切的切应力;圆杆扭转时应力和变形;扭转的应变能。
教学难点:圆杆扭转时截面上切应力的分布规律;切应力互等定理,横截面上切应力公式的推导,扭转变形与剪切变形的区别;掌握扭转时的强度条件和刚度条件,能熟练运用强度和刚度计算。
教具:多媒体。
通过工程实例建立扭转概念,利用幻灯片演示和实物演示表示扭转时的变形。
教学方法:采用启发式教学,通过提问,引导学生思考,让学生回答问题。
通过例题、练习和作业熟练掌握强度和刚度计算。
本章中给出了具体情形下具体量的计算公式,记住并会使用这些公式,强调单位的统一,要求学生在学习和作业中体会。
教学内容:扭转的概念;扭转杆件的内力(扭矩)计算和画扭矩图;切应力互等定理及其应用,剪切胡克定律与剪切弹性模量;扭转时的切应力和变形,圆杆扭转时截面上切应力的分布规律;扭转杆件横截面上的切应力计算方法和扭转强度计算方法;扭转杆件变形(扭转角)计算方法和扭转刚度计算方法。
教学学时:6学时。
教学提纲:3.1 扭转的概念和实例工程实际中,有很多构件,如车床的光杆、搅拌机轴、汽车传动轴等,都是受扭构件。
还有一些轴类零件,如电动机主轴、水轮机主轴、机床传动轴等,除扭转变形外还有弯曲变形,属于组合变形。
例如,汽车方向盘下的转向轴,攻螺纹用丝锥的锥杆(图3-1)等,其受力特点是:在杆件两端作用大小相等、方向相反、且作用面垂直于杆件轴线的力偶。
在这样一对力偶的作用下,杆件的变形特点是:杆件的任意两个横截面围绕其轴线作相对转动,杆件的这种变形形式称为扭转。
扭转时杆件两个横截面相对转动的角度,称为扭转角,一般用φ表示(图3-2)。
以扭转变形为主的杆件通常称为轴。
截面形状为圆形的轴称为圆轴,圆轴在工程上是常见的一种受扭转的杆件。
材料力学第三章知识点总结
![材料力学第三章知识点总结](https://img.taocdn.com/s3/m/2dee576feefdc8d377ee3220.png)
直升机的旋转轴
电机每秒输入功:外力偶作功完成:
×
=P W
M W
e
⋅
=
形状、大小、间距不变,各圆周线只是绕轴线转动了一个角度。
倾斜了同一个角度,小方格变成了平行四边形。
τdα
τ
l
ϕ
做薄壁圆筒的扭转试验可得
l
是材料的一个弹性常数,称为剪切弹性模量,G的量纲各向同性材料,三个弹性常数之间的关系:
ρργγtg ≈x
d d d ′=x d d ϕρ⋅=O 1O 2ABCD 为研究对象
D’
微段扭转变形d dx Rd dx DD tg ϕγγ==≈'d ϕ/ d x -扭转角沿x 轴的变化率
扭转变形计算式
O d A ρTρ⋅
(实心截面)
1、横截面上角点处,切应力为零;
2、横截面边缘各点处,切应力
3、切应力沿横截面周边形成与
4、横截面周边长边中点处,切应力最大。
有关,见教材P93 之表3.2。
材料力学第三章
![材料力学第三章](https://img.taocdn.com/s3/m/d9dd9a4569eae009581becd1.png)
等直圆杆扭转时的应力·强度条件 §3-4 等直圆杆扭转时的应力 强度条件
3.理论分析 3.理论分析 变形几何关系: (1) 变形几何关系: G1G′ ρ ⋅ dϕ γ ρ ≈ tanγ ρ = =
dϕ γρ = ρ dx dϕ :扭转角 沿x轴的变化 轴的变化 ϕ dx 率。对给定截面上的各 它是常量。 点,它是常量。
28
等直圆杆扭转时的应力·强度条件 §3-4 等直圆杆扭转时的应力 强度条件
5
§3-2 薄壁圆筒的扭转
1 为平均半径) 薄壁圆筒: 薄壁圆筒:壁厚 δ ≤ r0 (r0:为平均半径) 10
实验: 实验:
实验前:绘纵向线,圆周线; 实验前:绘纵向线,圆周线;
然后施加一对外力偶 Me。
6
§3-2 薄壁圆筒的扭转
当其两端面上作用有外力 偶矩时,任一横截面上的 内力偶矩——扭矩(torque) T = Me
4
§3.1 概述
工程实际中,有很多构件,如车床的光杆、 工程实际中,有很多构件,如车床的光杆、搅拌机 轴、汽车传动轴等,都是受扭构件。 汽车传动轴等,都是受扭构件。 还有一些轴类零件,如电动机主轴、水轮机主轴、 还有一些轴类零件,如电动机主轴、水轮机主轴、 机床传动轴等,除扭转变形外还有弯曲变形, 机床传动轴等,除扭转变形外还有弯曲变形,属于组合 变形。 变形。 本章研究杆件发生除扭转变形外,其它变形可忽略 的情况,并且以圆截面(实心圆截面或空心圆截面)杆为 主要研究对象。此外,所研究的问题限于杆在线弹性范 围内工作的情况。
Ⅰ. 横截面上的应力 表面 变形 情况 横截面 上应力 变化规 律 内力与应力的关系 横截面上应 力的计算公 式
23
横截 推断 面的 变形 情况
横截面 上应变 应力-应变关系 的变化 规律
材料力学第3章-扭转
![材料力学第3章-扭转](https://img.taocdn.com/s3/m/7717626aaf45b307e87197cf.png)
第3章 扭转1、扭转的概念:杆件的两端个作用一个力偶,其力偶矩大小相等、转向相反且作用平面垂直于杆件轴线,致使杆件的任意两个横截面都发生绕轴线的相对转动,即为扭转变形。
2、外力偶矩的计算{}{}{}min /95491000602r KW m N e e n P M P M n=⇒⨯=⨯⨯⋅π 式中,e M 为外力偶矩。
又由截面法:e e M T M T =⇒=-0 T 称为n n -截面上的扭矩。
规定:若按右手螺旋法则把T 表示为矢量,当矢量方向与研究部分中截面的外法线的方向一致时,T 为正;反之为负。
3、纯剪切(1)薄壁圆筒扭转时的切应力 δπττδπ222r M r r M ee =⇒••=(2)切应力互等定理:在单元体相互垂直的两个平面上,切应力必然成对存在,且数值相等;两者都垂直于平面的交线,方向则共同指向或背离这一交线。
(3)切应变 剪切胡克定律:当切应力不超过材料的剪切比例极限时,切应变γ与切应力τ成正比。
γτG = G 为比例常数,称为材料的切变模量。
弹性模量E 、泊松比μ和切变模量G 存在关系:)1(2μ+=EG 4、圆轴扭转时的应力(1)变形几何关系:距圆心为ρ处的切应变为dxd ϕργρ=(2)物理关系:ρτ为横截面上距圆心为ρ处的切应力。
dxd G G ϕρτγτρρρ=⇒= (3)静力关系:内力系对圆心的力矩就是横截面的扭矩:dA d d GdA T AxA⎰⎰==2ρρτϕρ 以p I 表示上式右端的积分式:dA I Ap ⎰=2ρ p I 称为横截面对圆心O 点的极惯性矩(截面二次极矩)横截面上距圆心为ρ的任意点的切应力:pI T ρτρ=ρ最大时为R ,得最大切应力:pI TR =max τ引用记号RI W p t =t W 称为抗扭截面系数。
则tW T =max τp I 和t W 的计算(1)实心轴:3224420032D R d d dA I RAp ππθρρρπ====⎰⎰⎰16233D R RI W p t ππ===(2)空心轴:)1(32)(324444202/2/32αππθρρρπ-=-===⎰⎰⎰D d D d d dA I D d Ap)1(16)(164344αππ-=-==D d D DRI W p t5、圆轴扭转时的变形pGI Tl =ϕ ϕ为扭转角,l 为两横截面间的距离。
材料力学性能第三章
![材料力学性能第三章](https://img.taocdn.com/s3/m/f6c2346a58fafab069dc02e5.png)
弹性变形以介质中的声速传播。 ●弹性变形以介质中的声速传播。而普通机械
冲击时的绝对变形速率在10 / 以下 以下。 冲击时的绝对变形速率在 3m/s以下。在弹 性变形速率高于加载变形速率时, 性变形速率高于加载变形速率时,则加载速率 对金属的弹性性能没有影响。 对金属的弹性性能没有影响。
●塑性变形发展缓慢,若加载速率较大,则塑 塑性变形发展缓慢,若加载速率较大, 性变形不能充分进行。 性变形不能充分进行。 ●静载: 受的应力取决于载荷和零件的最小断面 静载: 积。 ●冲击载荷具有能量特性,与零件的断面积、 冲击载荷具有能量特性,与零件的断面积、 形状和体积有关。
3.3 低温脆性
1.低温脆性概述 1.低温脆性概述 金属材料的强度 强度一般均随温度的降低而升 强度 高,而塑性 塑性则相反。 塑性 一些具有体心立方晶格的金属及合金或某 些密排六方晶体金属及合金,当温度降低到某 一温度Tk时,由韧性状态变为脆性状态。这种 现象称为低温脆性 低温脆性。转变温度Tk称为韧脆转变 低温脆性 韧脆转变 温度,又称冷脆转变温度 冷脆转变温度。 温度 冷脆转变温度 Tk δ ψ Ak和NSR 被称为材料的安全性指标 NSR 而σs σb δ Ψ和Ak被称为材料常规力学性能的五大指标
低温脆性从现象上看,是屈服强度和断裂强度 屈服强度和断裂强度 随温度降低而变化的速率问题。 随温度降低而变化的速率问题 倘若屈服强度随温度的下降而升高较快, 而断裂强度升高较慢,则在某一温度Tk以下, σs>σc,金属在没有塑性变形的情况下发生断 裂,即表现为脆性的; 而在Tk以上,σs<σc,金属在断裂前发生塑 性变形,故表现为塑性的。
③将高阶能开始降低的温 度定义为韧-脆转化温度。 记为FTP ( Fracture Transition Plastic).当温 度高于FTP,试件的断口 为100%的纤维状断口。
材料力学课件第3章扭转
![材料力学课件第3章扭转](https://img.taocdn.com/s3/m/b9020f9f650e52ea551898c1.png)
杆件受到大小相等,方向相反且作用平 面垂直于杆件轴线的力偶作用, 杆件的横截 面绕轴线产生相对转动。
受扭转变形杆件通常为轴类零件,其横 截面大都是圆形的。所以本章主要介绍圆轴 扭转。
第3章-扭 转
圆轴扭转的内力
3-2 圆轴扭转的内力
1.外力偶矩 直接计算
3-2 圆轴扭转的内力
dx
也发生在垂直于
半径的平面内。
3-3 圆轴扭转横截面上的切应力
2.物理关系
根据剪切胡克定律
G
距圆心为
处的切应力:
G
G
d
dx
垂直于半径
横截面上任意点的切应力 与该点到圆心的距离 成正比。
3-3 圆轴扭转横截面上的切应力
3.静力学关系
T A dA
T A dA
令
Wt
Ip R
抗扭截面系数
在圆截面边缘上,有最 大切应力
3-3 圆轴扭转横截面上的切应力
I
与
p
Wt
的计算
实心轴
T
Ip
max
T Wt
Wt I p / R 1 D3
16
3-3 圆轴扭转横截面上的切应力
空心轴
则
令
Wt I p /(D / 2)
3-3 圆轴扭转横截面上的切应力
实心轴与空心轴 I p 与 Wt 对比
m1=1000Nm,m2=600Nm,m3=200Nm,m4=200Nm,G=79GPa,试求:
(1)各段轴内的最大切应力 (2)若将外力偶m1和m2的位置互换一下,问轴的直径可否减小
3-4 圆轴扭转的强度条件和强度计算
4.强度条件及应用
B
C
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
材料力学
解:1.计算各段杆横截面上的 轴力
因为杆各段的轴力不等,而且 横截面面积也不完全相同,因而, 首先必须分段计算各段杆横截面
上的轴力。分别对AB、BC、CD
段杆应用截面法,由平衡条件求 得各段的轴力分别为
AB段: BC段:
FNAB 400 N FNBC 100 N
Fk/kN 400
最简单的材料力学问题
材料力学
第1章 基本概念 第2章 杆件的内力与内力图
第3章 最简单的 材料力学
问题
第4章 弹性杆件 横截面上的 正应力分析
第5章 弹性杆件 横截面上的 切应力分析
第6章 应力状态分析
第7章 一般应力状态下的 强度失效分析与设计准则
第9章 弹性杆件 的位移分析 与刚度设计
第10章 压杆的弹性 稳定性分析 与稳定性
max [ ]
上式称为轴向作用下杆件的强度设计准则,又称强度条件。 其中,[σ]称为许用应力,由下式确定:
[ ] 0
n
式中:σ0为材料的极限应力或危险应力,由材料的拉伸实验确定;
你为安全因数,对于不同的机器或结构,在相应的设计规范中都有不 同的规定。
材料力学
三类强度问题
●强度校核——已知杆件的几何尺寸、受力大小以及许用应力,校核 杆件或结构的强度是否安全。
材料力学
拉压杆
材料力学
斜拉桥承受拉力的钢缆
材料力学
长江二桥
材料力学
轴向载荷作用下杆件横截面上的应力
ห้องสมุดไป่ตู้
材料力学
当外力沿着杆件的轴线作用时,其横截面上只有轴力一 个内力分量。与轴力相对应,杆件横截面上将只有正应 力。
很多情形下,杆件在轴力作用下产生均匀的伸长或缩短 变形,因此,根据材料均匀性的假定,杆件横截面上的 应力均匀分布,这时横截面上的正应力为
其中负号表示压力。
材料力学
2.计算各杆的应力
应用拉、压杆件横截面上的正应力公 式,BD杆与CD杆横截面上的正应力分 别如下。
BD杆 CD杆
x
FNBD ABD
FNBD π d12
4 31.4 103 π 25.42 106
62.0 106 Pa 62.0MPa
4
x
FN
A
其中,FN——横截面上的轴力,由截面法求得;A——横
截面面积。
材料力学
例题1
已知:阶梯形直杆受力如图
示。材料的弹性模量E=200GPa; 杆 各 段 的 横 截 面 面 积 分 别 为 A1 =A2=2 500mm2,A3=1 000mm2;
杆各段的长度标在图中。
试求:
杆AB、BC、CD段横截面上的正
在给定杆件截面尺寸和材料的情形下,怎 样确定三角架结构所能承受的最大载荷?
为了回答上述问题,仅仅计算应力是不够的, 还必须通过实验研究材料在拉伸与压缩载荷作 用下的力学性能;在此基础上,建立杆件在轴 向载荷作用下的强度设计准则。
设计
第8章 复杂情况下的强度设计
材料力学
拉伸和压缩是杆件基本受力与变形形式中最简单的一种。 它所涉及的一些基本原理与方法比较简单,但在材料力学 中却有一定的普遍意义。
本章主要介绍杆件承受拉伸和压缩的基本问题,包括:内 力、应力、变形;材料在拉伸和压缩时的力学性能以及强 度设计,目的是使读者对材料力学有一个初步的、比较全 面了解。关于拉伸和压缩的进一步的问题,将在以后有关 章节中陆续加以介绍。
3
FNCD ACD
200103 1000106
200106
200MPa
材料力学
例题2
已知:三角架结构尺寸及 受力如图所示。其中,FP= 22.2 kN;钢杆BD的直径dl= 25.4 mm;钢梁CD的横截面面 积A2=2.32×103 mm。
试求: 杆BD与梁CD的横
截面上的正应力。
max [ ]
●尺寸设计——已知杆件的受力大小以及许用应力,根据设计准则, 计算所需的杆件截面面积,进而设计出合理的横截面尺寸。
max [ ]
FN A
[ ]
A FN
[ ]
●确定杆件或结构所承受的许用载荷——根据设计准则,确定杆件或 结构所能承受的最大轴力,进而求得所能承受的外加载荷。
FNCD ACD
FNCD A2
22.2 103 2.32 103 106
9.75 106 Pa
9.75MPa-
其中负号表示压应力。
材料力学
最简单的强度问题
材料力学
前面的两节分析了轴向载荷作用下构件中的应 力,以后的几章中还将对其它复杂载荷作用下 的构件作应力分析。但是,在工程应用中,确 定应力很少是最终目的,而只是工程师借助于 完成下列主要任务的中间过程:
分析已有的或设想中的机器或结构,确定它 们在特定载荷条件下的性态;
设计新的机器或新的结构,使之安全而经 济地实现特定的功能。
材料力学
强度设计准则、安全因数与许用应力
所谓的强度设计是指将杆件中的最大应力限制在允许的范围内, 以保证杆件正常工作,不仅不能发生强度失效,而且还要具有 一定的安全裕度。对于拉伸与压缩杆件,也就是杆件中的最大 正应力满足:
max [ ]
FN A
[ ] FN
[ ]A [FP ]
材料力学
例如,对于三角架结构,前面已经计算出 拉杆BD和压杆CD横截面上的正应力。现在可能 有以下几方面的问题:
在这样的应力水平下,二杆分别选用什么 材料,才能保证三角架结构可以安全可靠地工 作?
在给定载荷和材料的情形下,怎样判断三 角架结构能否安全可靠的工作?
FP
材料力学
解:1.受力分析,确定各杆的轴力
首先,对组成三角架结构的构件作
受力分析,画出受力图。因为B、C、D
三处均为销钉连接,故BD与CD杆均为 二力构件
由平衡方程
解得二者的轴力分别为
Fx 0 Fy 0
FNBD 2FP 2 22.2 10N 31.40kN
FNCD FP 22.2 10N 31.40kN-
CD段:
FNCD 200 N
200
+
O
+
x
-
100
材料力学
2.计算各段杆横截面上的正应力
AB段: BC段: CD段:
1
FNAB AAB
400103 2500106
160106
160MPa
2
FNBC ABC
100103 2500106
40106
40MPa