焊接变形的控制方法之令狐采学创编
焊接变形的控制与矫正方案
焊接结构生产与管理(焊接应力与变形) 12
焊接残余变形
4)焊缝对称布置的结构,应由偶数焊工对称地施焊。
圆筒体对接焊缝焊接顺序
焊接结构生产与管理(焊接应力与变形) 13
焊接残余变形
• 5)长焊缝(1m以上)焊接时,可采用下图所示的 方向和顺序进行焊接,以减小其焊后的收缩变形。
焊接结构生产与管理(焊接应力与变形) 14
只要允许,多采用型材、 冲压件;焊缝多且密集处,可 以采用铸—焊联合结构,就可 以减少焊缝数量。此外,适当 增加壁板厚度,以减少肋板数 量,或者采用压型结构代替肋 板结构,都对防止薄板结构的 变形有利。
焊接结构生产与管理(焊接应力与变形) 3
焊接残余变形
(3)合理地安排焊缝 的位置
•
安排焊缝尽可能
焊接残余变形
(5)合理地选择焊接方法和焊接工艺参数
非对称截面结构的焊接
焊接结构生产与管理(焊接应力与变形) 15
焊接残余变形
(6)热平衡法
采用热平衡法防止焊接变形
焊接结构生产与管理(焊接应力与变形) 16
焊接残余变形
• (7)散热法
散热法示意图
焊接结构生产与管理(焊接应力与变形) 17
焊接残余变形
焊接结构生产与管理(焊接应力与变形) 1
焊接残余变形
二、控制焊接变形的措施
控制焊接变形的设计措施
控制焊接变形的设计措施在焊接行业中,焊接变形一直是一个非常头痛的问题。
焊接过程中由于高温和热应力的作用,焊件会发生变形,这会影响焊接质量和工件的性能。
为了控制焊接变形,需要采取一些设计措施,下面介绍几种常见的方法。
1.合理选择焊接方法不同的焊接方法对焊接变形的影响不同,因此在选择焊接方法时需要考虑变形因素。
例如,TIG焊接和激光焊接都是低热输入的焊接方法,可以减少焊接变形。
而电弧焊接和气焊则会产生较大的热影响区,容易引起焊接变形。
因此,在选择焊接方法时应根据具体情况进行合理选择。
2.控制焊接热输入焊接热输入是焊接变形的主要原因之一,因此需要控制焊接热输入。
可以通过降低焊接电流和增加焊接速度来减少焊接热输入。
此外,选择合适的焊接电极和焊接材料也可以降低焊接热输入。
3.使用预热和后热处理预热可以降低焊接材料的冷却速度,减少焊接变形。
后热处理可以消除焊接残余应力,进一步减少变形。
因此,在一些对焊接变形要求较高的工件上,可以采用预热和后热处理的方法。
4.采用多道焊接多道焊接可以减少每次焊接的热输入量,从而减少焊接变形。
在多道焊接中,可以采用交叉焊接的方式,即先焊接一侧,然后焊接另一侧,以此类推,从而减少残余应力的积累。
5.使用夹具和支撑物在焊接过程中,夹具和支撑物可以起到固定工件的作用,减少焊接变形。
夹具和支撑物的设计应考虑到焊接变形的方向和程度,以便实现更好的固定效果。
控制焊接变形需要综合考虑多种因素。
以上几种设计措施可以帮助我们减少焊接变形,提高焊接质量和工件的性能。
在实际应用中,需要根据具体情况进行合理选择和调整,以达到最佳的效果。
焊接变形控制措施
焊接变形控制措施1焊接变形的控制措施全面分析各因素对焊接变形的影响,掌握其影响规律,即可采取合理的控制措施。
1.1焊缝截面积的影响焊缝截面积是指熔合线范围内的金属面积。
焊缝面积越大,冷却时收缩引起的塑性变形量越大,焊缝面积对纵向、横向及角变形的影响趋势是一致的,而且是起主要的影响,因此,在板厚相同时,坡口尺寸越大,收缩变形越大。
1.2焊接热输入的影响一般情况下,热输入大时,加热的高温区范围大,冷却速度慢,使接头塑性变形区增大。
1.3焊接方法的影响多种焊接方法的热输入差别较大,在建筑钢结构焊接常用的几种焊接方法中,除电渣以外,埋弧焊热输入最大,在其他条件如焊缝断面积等相同情况下,收缩变形最大,手工电弧焊居中,CO2气体保护焊最小。
1.4接头形式的影响在焊接热输入、焊缝截面积、焊接方面等因素条件相同时,不同的接头形式对纵向、横向、角变形量有不同的影响。
常用的焊缝形式有堆焊、角焊、对接焊。
1)表面堆焊时,焊缝金属的横向变形不但受到纵横向母材的约束,而且加热只限于工件表面一定深度而使焊缝的收缩同时受到板厚、深度、母材方面的约束,因此,变形相对较小。
2) T形角接接头和搭接接头时,其焊缝横向收缩情况与堆焊相似,其横向收缩值与角焊缝面积成正比,与板厚成反比。
3) 对接接头在单道(层)焊的情况下,其焊缝横向收缩比堆焊和角焊大,在单面焊时坡口角度大,板厚上、下收缩量差别大,因而角变形较大。
双面焊时情况有所不同,随着坡口角度和间隙的减小,横向收缩减小,同时角变形也减小。
1.5焊接层数的影响1)横向收缩:在对接接头多层焊接时,第一层焊缝的横向收缩符合对接焊的一般条件和变形规律,第一层以后相当于无间隙对接焊,接近于盖面焊道时与堆焊的条件和变形规律相似,因此,收缩变形相对较小。
2)纵向收缩:多层焊接时,每层焊缝的热输入比一次完成的单层焊时的热输入小得多,加热范围窄,冷却快,产生的收缩变形小得多,而且前层焊缝焊成后都对下层焊缝形成约束,因此,多层焊时的纵向收缩变形比单层焊时小得多,而且焊的层数越多,纵向变形越小。
如何控制焊接变形(5篇材料)
如何控制焊接变形(5篇材料)第一篇:如何控制焊接变形大型复杂结构件焊接工艺措施随着焊接技术的发展,尤其是焊接设备的更新换代,焊接辅材的丰富,焊接母材含碳量的有效控制,合金元素的增多,材料强度级别大幅的提高,使许多低合金高强度钢的可焊性越来越好,大型复杂结构件的制作难度大幅降低,从而为大型结构件的设计,通过合适的焊接工艺措施,把设计模型变为实物而成为现实。
对于大型结构件制作来说,最常见的就是两大问题:一是焊接变形;二是焊接裂纹。
下面从焊接工艺方面说明如何解决上述两大问题。
焊接变形是大型结构件最关键也是最难控制的问题之一,大型结构件一旦产生超出控制量的变形,是很难校正的,不但会造成极大的直接经济损失,同时也极大地影响制作周期,我们通常采取如下工艺措施对变形进行控制:1.母材(钢板)选用控制:选用大钢厂的材料,因为大钢厂设备先进,注重轧制工艺,热处理工艺规范到位,板材平展,内应力小,既能保证机械性能,也能保证化学成分的稳定。
2.备料变形控制:采用对称备料,减少热量集中引起的热应力变形,控制平弯,侧弯,扭曲变形。
对于厚板采用钻孔分段切割,对于由热切割引起的不可避免的变形,则通过机械校平直,为总装作准备。
3.装配方式控制:对于超大型结构件,首先应根据整体结构,分析容易产生变形的焊接应力区,对这些应力区通常采取“化整为零”的方法,也就是将整体细化成相对“独立”的小单元,分单元组装,局部施焊,让整体焊接应力产生在小单元中,这些小单元不但能更容易地进行机械或热校平,还能在总装发挥小单元时进行整体变形的有效控制。
4.施焊方式控制:通过分析大型结构件结构特性,确定中性线,制定合理的焊接工序,能用对称焊的采用对称焊。
对于截面较大的焊缝,采用多层多道多次填满。
对于截面突变的大型结构件,在截面附近的焊缝,要特别注意控制焊接规范,通过控制焊接规范调节工件变形,也就是朝着我们需要控制的方向变,这种方法在横梁类结构件中取得了很好的效果。
焊接变形的控制措施
焊接变形的控制措施
1.1钢结构焊接时,采用的焊接工艺和焊接顺序应能使最终构件的变形和收缩最小。
1.2根据构件上焊缝的布置,可按下列要求采用合理的焊接顺序控制变形:
1对接接头、T形接头和十字接头,在工件放置条件允许或易于翻转的情况下,宜双面对称焊接;有对称截面的构件,宜对称于构件中性轴焊接;有对称连接杆件的节点,宜对称于节点轴线同时对称焊接;
2非对称双面坡口焊缝,宜先在深坡口面完成部分焊缝焊接,然后完成浅坡口面焊缝焊接,最后完成深坡口面焊缝焊接。
特厚板宜增加轮流对称焊接的循环次数;
3长焊缝宜采用分段退焊法或多人对称焊接法;
4宜采用跳焊法,避免工件局部热量集中。
1.3构件装配焊接时,应先焊收缩量较大的接头,后焊收缩量较小的接头,接头应在小的拘束状态下焊接。
1.4对于有较大收缩或角变形的接头,正式焊接前应采用预留焊接收缩裕量或反变形方法控制收缩和变形。
1.5多组件构成的组合构件应采取分部组装焊接,矫正变形后再进行总装焊接。
1.6对于焊缝分布相对于构件的中性轴明显不对称的异形截面的构件,在满足设计要求的条件下,可采用调整填充焊缝熔敷量或补偿加热的方法。
浅议钢结构制造中焊接变形的控制方法
1 3 # 、1 4 # 零件两端连接 缝进行焊接。焊接完成后进行翻转 。在上逑 操作 完成之后 ,对焊渣进行清洗 ,并补焊不合格位置 。
I 璺 I 1 自动 扶 梯 桁 架 结 构 焊 接 意 图
大焊缝 的焊接作 业。同时,焊接过程 中还需要遵循 以下几个方 面的 基本原 则:( 1 )短缝先于长缝进行焊接 ;( 2 )内侧缝 先于外侧 缝进
的参 考 与 帮助 。
图 1所示 ,先针对 l # 、6 # 、1 0 # 零件两端与弦杆 连接缝进行焊接 。
焊 接 完 成 后 进 行 翻 转 ; 进 而针 对 4 # 、8 # 、1 1 # 、1 2 # 零 件 两 端 连 接 缝 进 行 焊 接 。焊 接 完 成 后 同样 进 行 翻 转 ;最 后 针 对 2 # 、3 # 、7 # 、9 # 、
【 关键词 】 钢 结构 ;桁架 ;焊接变形 ; 机理 ; 控 制方法;分析
产生焊接变形的最主要原因在于 :钢 结构在焊接过 程当中的加 热不够 均匀。在当前技术条件支持 下,焊接变形 是各 类钢 结构制造 过程 中 最 为 普 遍 的 问题 。为 尽 可 能 的保 障钢 结 构 产 品 的 制 造 质 量 , 就需要针对钢结构制造过程 中的焊 接变 形问题进行严格且有效的控 制 。本 文 试 针 对 以上 相 关 问题 做 详 细 分 析 与 说 明 。 1钢 结构 制造中焊 接变形的产生机理 在 当 前技 术条 件 支 持 下 , 钢 结 构 在 应 用 过 程 中有 着 施 工 方 便 、 质量轻 、高强度 、以及高塑性等多个方面的应用优势 ,因此被广泛 应用于各类建筑施 工作业当中 。而在钢结构 的制造过程 当中,焊接 的过程 直观 来说就是一个持续性高温加热 的过程 。在 熔点位 置极限 高热温 度的影响作用之下 ,导致熔 点周边金属无法 实现 自由行的膨 胀,最终于焊接过程 中产生塑性变形 。为最 大限度的保障钢结构制 造质量,就需要相关人员针对焊接变形加 以严格且有效的控制。 2钢结构制 造中焊 接变形 的控 制方法 对于钢结构 ,特别 是桁架结构而言 ,焊接作业 中的变形 问题是 不可避免的 。特别是对 于规模 相对较大 、结构相对复杂的桁架结构 制造作业而 言,若 无法在 实际工作中对焊接变形 问题进行严格且有 效的控制 ,则势 必会对 整个钢结构制造工程 的质量 、工期 、成本等 因素产生极 为不 良的影响 。因此 ,如何在钢结构制造 中,针对 焊接 变形加 以严 格且 有效的控制 ,这一 问题就显得 至关 重要的。结合实 践工作经验 来看 ,需要结合工程实 际,选取 并设计 最合理的焊接方 法 以及焊接 顺序 ,同时需要通过增加约 束力 水平的方式,来实现对 焊 接 变 形 的 有 效 控 制 ,且 配 合 对 焊 接 坡 1 : 3的 有 效 控 制 , 确 保 焊 接 质 量稳定可 靠。具体而言 ,可归纳为 以下几点 : 2 . 1 设 计 并 实 施 合 理 的焊 接 方 法 以及 焊 接 顺 序 本 文 现 结 合 工 程 实 例 , 研 究 焊 接 方 法 以及 焊 接 顺 序 的合 理 性 , 对 桁 架 结 构 焊 接 变 形 控 制 质 量 的 影 响 情 况 。例 :某 自动 扶 梯 桁 架 采 取角钢与槽钢相配合 的方式焊接而成 。焊接过程 中的基本 参数 为: 斜拉角钢 ( L 6 3 m m * 6 m m ) ;槽 钢 ( U 8 O m m ) ;弦 杆 ( L 1 2 5 m m * 8 0 m m * 1 0 m m ) 。 在对桁架结 构进 行焊接之后发现 :受到整个桁架结 构跨度 、长度较 长 的因素影 响,导致焊接变形 问题对整个结 构尺 寸产生了极为深远 的影 响。因此 ,为最大限度的消除桁架结构焊接过程中的变形 问题 , 就需要重 点关注 对焊接方法 以及焊接顺序的合理设计 。 自动扶梯桁架结构焊接 过程中所表现 出的焊缝集中 出现在扶梯 两侧 的单片且偏下部位置 。因此,在针对同一单片进行焊接作业 的 过程当中 ,应 当尽量选 取能够 实现热量分散 、以及对称性分布 的焊 接作业方法 。实 际工 作中可以采取 “ 跳焊 ”作业方式 ,防止在焊接 过程中 ,工件呈 现出局部性的加热集 中问题 ,首先完成对 收缩 量较
钢结构制造中焊接变形的控制方法
钢结构制造中焊接变形的控制方法焊接变形是焊件在焊接过程中不均匀加热引起的,是钢结构制造中所遇到的一个普遍问题。
如何控制好焊接变形是钢结构产品制造成功与否的关键之一,也是难点之一。
有的工厂因为控制不好焊接变形而报废整个产品,如行车梁、吊车梁、钢平台等,不仅造成人力、物力的浪费,而且延误工期,影响厂家声誉。
本文结合武船重工公司承建的钢结构产品,针对不同的结构形式,介绍了控制焊接变形的工艺方案。
船舶甲板及上层建筑焊接变形的控制如果船舶甲板及上层建筑焊接变形过大,则将直接影响船舶外观质量,因此众多船舶制造厂均下了很大工夫来克服焊接变形,提升产品的外观质量,但是由于船舶甲板特别是上层建筑往往板厚较薄,结构较多,局部位置焊接热输入量较大,焊接应力使薄板容易产生失稳,因此很容易出现波浪变形。
根据安庆70m趸船、400T浮吊船、双10T 浮吊船、30车/498客海上渡船的成功制造经验,可以采用的工艺方案为:所有纵缝端口要求预先装焊角钢(点固焊)以加强钢板的局部刚性,同时要求采用小线能量的CO2气体保护焊进行焊接,焊接时要求焊工分散、分段退焊,缝口装配质量应在规定范围内,不允许出现大间隙的缝口。
所有的围壁板扶强材只能点固焊,当围壁板与甲板、围壁板与围壁板间的角焊缝焊完后,再采用下行焊条(J426X)焊接扶强材与围壁板间的角焊缝,所有角焊缝都要求严格执行设计要求,不允许随意增大焊角尺寸及间断焊间距和焊缝长度。
这样一般可以较好的控制焊接变形,局部有变形的可以稍稍进行火焰矫正即可达到设计要求和《钢质内河船舶入级与建造规范》或《钢质海船入级与建造规范》的要求。
钢结构T形接头焊接变形的控制T形接头最容易产生角变形,如何控制角变形是保证T形接头制造精度的关键之一,由表可以得到一些反变形的参考数据。
根据此数据,在武汉体育场和芜湖体育场耳板焊接中(如图1)大量采用反变形来控制耳板角变形,取得了良好的效果。
钢箱梁横隔板单元件制造焊接变形的控制许多钢箱梁横隔板的加强肋只布置在一侧,横隔板一般比较薄,部分还有人孔加强圈,大量的焊缝在一侧进行焊接,容易引起横隔板的波浪变形和翘曲变形。
如何控制焊接变形
大型复杂结构件焊接工艺措施随着焊接技术的发展,尤其是焊接设备的更新换代,焊接辅材的丰富,焊接母材含碳量的有效控制,合金元素的增多,材料强度级别大幅的提高,使许多低合金高强度钢的可焊性越来越好,大型复杂结构件的制作难度大幅降低,从而为大型结构件的设计,通过合适的焊接工艺措施,把设计模型变为实物而成为现实。
对于大型结构件制作来说,最常见的就是两大问题:一是焊接变形;二是焊接裂纹。
下面从焊接工艺方面说明如何解决上述两大问题。
焊接变形是大型结构件最关键也是最难控制的问题之一,大型结构件一旦产生超出控制量的变形,是很难校正的,不但会造成极大的直接经济损失,同时也极大地影响制作周期,我们通常采取如下工艺措施对变形进行控制:1.母材(钢板)选用控制:选用大钢厂的材料,因为大钢厂设备先进,注重轧制工艺,热处理工艺规范到位,板材平展,内应力小,既能保证机械性能,也能保证化学成分的稳定。
2.备料变形控制:采用对称备料,减少热量集中引起的热应力变形,控制平弯,侧弯,扭曲变形。
对于厚板采用钻孔分段切割,对于由热切割引起的不可避免的变形,则通过机械校平直,为总装作准备。
3.装配方式控制:对于超大型结构件,首先应根据整体结构,分析容易产生变形的焊接应力区,对这些应力区通常采取“化整为零”的方法,也就是将整体细化成相对“独立”的小单元,分单元组装,局部施焊,让整体焊接应力产生在小单元中,这些小单元不但能更容易地进行机械或热校平,还能在总装发挥小单元时进行整体变形的有效控制。
4.施焊方式控制:通过分析大型结构件结构特性,确定中性线,制定合理的焊接工序,能用对称焊的采用对称焊。
对于截面较大的焊缝,采用多层多道多次填满。
对于截面突变的大型结构件,在截面附近的焊缝,要特别注意控制焊接规范,通过控制焊接规范调节工件变形,也就是朝着我们需要控制的方向变,这种方法在横梁类结构件中取得了很好的效果。
5.反变形法控制:在分析基本应力分布情况及主焊缝位置关系后,对厚板件,尤其是锻造导轨件采用反变形的方法效果显著。
控制焊接变形的方法
控制焊接变形的方法焊接变形(welding deformation)是焊接过程中被焊件受到不均匀温度场的作用而产生形状尺寸变化称为焊接变形。
焊接变形不可避免,但是从设计和工艺两方面措施处理得好,可防止和减少焊接变形,进而避免或减少焊后变形的矫正工作量。
焊接变形分为纵向和横向收缩,角变形,弯曲变形,扭曲变形,波浪变形等。
具体措施有:一,设计措施1,在设计焊接构件时,如尺寸,自重允许的条件下,适当提高构件的刚度,减少焊接引起的变形量。
2,合理选择焊缝尺寸:在保证焊接质量和满足结构承载能力的前提下,尽量减少焊缝尺寸,如:a,V型破口改成U型破口;b,长焊缝改成断续焊缝;c,保证焊透的情况下,尽量减小焊缝间隙。
3,合理选择焊缝数量:对于自重不要求的焊接构件,适当选用较厚材料,可减少筋板数量,从而减少焊缝数量;对于薄板焊接结构,可采用压出可加强筋代替筋板结构,这样就减少了焊缝数量。
4,合理设计焊缝位置:a,焊缝设计成对称于焊接构件截面的中心轴或使缝接近中心轴,这样焊接应力对称互相抵消,大大减少焊接变形(特别是弯曲变形);b,焊缝不要很密;c,尽可能避免交叉焊缝。
二,工艺措施合理装配焊接顺序:5,对于复杂焊接结构来说,装配顺序相当重要,一般截面和焊缝对称的结构,先装配成总体,然后再分部对称焊接。
6,对于不对称的复杂焊接结构,可先将其分成若干简单部件分别施焊,然后再总装焊接。
7,焊接参数的选择:原则是减少热量的输入,即尽量减小焊接参数,以减少变形量。
8,对称焊缝采用对称焊,最好两人同步焊。
9,对于不对称焊缝,应以焊缝少的一侧先焊。
10,对于长焊缝应采取不同的方向和顺序施焊:即分段焊,跳焊,分段退焊,分中对称焊。
11,对于不同焊缝的焊接,应焊对接焊缝,后焊角焊缝及其它焊缝。
12,组成圆筒形焊件,应先焊纵缝,后焊横缝。
13,在平面上的焊缝要保证纵向和横向的焊缝能够自由伸缩,如在焊对接焊缝,焊接方向要指向自由端。
14,对于交叉及十字焊缝,起弧及收弧不要在交叉点上。
焊接变形的分类及控制措施
焊接变形的分类及控制措施焊接变形的分类及控制引言焊接工艺在很多行业中起到关键作用,但是焊接过程中经常会发生变形问题。
焊接变形会对产品的质量和性能产生负面影响,因此需要采取相应措施来进行分类和控制。
1. 焊接变形的分类焊接变形可以根据其产生的原因和形式进行分类。
以下是常见的焊接变形的分类方式:1.1 原因分类•热应力引起的变形:焊接过程中,由于焊接区域受到瞬时加热和冷却的影响,会产生热应力,引起变形。
•冷却引起的变形:焊接完成后,焊接区域由于冷却速度不均匀,引起变形。
•结构应力引起的变形:焊件自身的结构应力会引起变形。
1.2 形式分类•弯曲变形:焊接区域发生弯曲变形,导致工件整体形状不符合要求。
•扭曲变形:焊接区域发生扭曲变形,导致工件整体形状扭曲。
•缩短变形:焊接区域发生缩短变形,导致工件整体长度缩短。
2. 焊接变形的控制措施针对不同类别的焊接变形,需要采取相应的控制措施来减少变形的发生。
2.1 热应力引起的变形控制措施•采用预热和后热处理:通过预热和后热处理,可以减小焊接区域的温度梯度,降低热应力的产生。
•设计焊接工艺:合理设计焊接工艺,控制焊接速度和温度梯度,减少热应力的产生。
2.2 冷却引起的变形控制措施•使用焊接夹具和冷却装置:通过使用夹具来固定焊件,控制冷却速度均匀性;使用冷却装置来加速焊接区域的冷却,减小变形的发生。
•控制焊接顺序:合理控制焊接顺序,先焊接较远的区域,再焊接较近的区域,可以避免较早焊接的部分冷却引起的热应力引起变形。
2.3 结构应力引起的变形控制措施•采用预应力技术:通过施加适当的预应力,可以减小焊件的结构应力,降低变形的发生。
•设计合理的焊接结构:合理设计焊接结构,采用适当的形状和尺寸,可以减小结构应力的产生。
结论焊接变形是焊接过程中常见的问题,分类和控制焊接变形对保证产品质量至关重要。
通过合理的控制措施和工艺设计,可以有效降低焊接变形的发生,提高焊接质量。
3. 其他控制措施除了上述分类和控制措施外,还有一些其他的控制措施可以用于降低焊接变形。
焊接变形的控制
焊接变形的控制手工电弧焊接过程中的变形成因及对策在工业生产中,焊接作业特别是手工电弧焊作业作为制造、修理的一种重要的工艺方法得到越来越广泛的运用。
同时,由于手工电弧焊自身的焊接特点必然引起其焊接变形较大,如不对其变形的原因进行分析并针对其成因提出有效的对策,必将给生产带来极大的危害。
1、手工电弧焊接过程中的变形成因我们知道,手工电弧焊接过程中的焊接电弧由在两个电极之间的气体介质中产生持久的放电现象所产生的。
电弧的产生是先将两电极相互接触而形成短路,由于接触电阻和短路电流产生电流热效应的结果,使两电极间的接触点达到白热状态,然后将两电极拉开,两电极间的空气间隙强烈地受热,空气热作用后形成电离化;与此同时,阴极上有高速度的电子飞出,撞击空气中的分子和原子,将其中的电子撞击出来,产生了离子和自由电子。
在电场的作用下,阳离子向阴极碰撞;阴离子和自由电子向阳极碰撞。
这样碰撞的结果,在两电极间产生了高热,并且放射强光。
电弧是由阴极区(位于阴极)、弧柱(其长度差不多等于电弧长度)和阳极区(位于阳极)三部分所组成。
阴极区和阳极区的温度,主要取决于电极的材料。
一般地,随电极材料而异,阴极区的温度大约为2400K—3500K,而阳极区大约为2600K—4200K,中间弧柱部分的温度最高,约为5000K—8000K。
焊接接头包括焊缝和热影响区两部分金属。
焊缝金属是由熔池中的液态金属迅速冷却、凝固结晶而成,其中心点温度可达2500℃以上。
靠近焊缝的基本金属在电弧的高温作用下,内部组织发生变化,这一区域称为热影响区。
焊缝处的温度很高,而稍稍向外则温度迅速下降,热影响区主要由不完全熔化区、过热区、正火区、不完全正火区、再结晶区和蓝脆区等段组成,热影响区的宽度在8—30mm范围内,其温度从底到高大约在500℃--1500℃之间。
金属结构内部由于焊接时不均匀的加热和冷却产生的内应力叫焊接应力。
由于焊接应力造成的变形叫焊接变形。
焊接变形的原因及控制方法
焊接变形的原因及控制方法摘要:焊接是工业生产中一种最为常见的操作内容。
在焊接过程中,由于焊缝金属和基础材料的冷热循环问题所引发的收缩、膨胀,被称之为是焊接变形问题。
在进行焊接工作的时候,沿着同一边进行焊接,可能会引发变形超过两边交叉焊接,并且由于焊接所引发的冷热循环中,会对金属的收缩性造成影响,并导致变形问题的出现,像金属在受热过程中,其机械、物理性能都会有所变化,当热膨胀增大、热量增大的时候,焊接区域的温度会升高,进而导致焊接区域钢板的弹性、曲强度和热导性能出现降低的情况。
关键词:焊接变形;原因;控制方法引言在焊接过程中,不一样的焊接物因为外形,焊缝数量和尺寸的差异,导致焊接的变形方式也不一样。
采取的控制措施自然也不一样。
由于焊接变形影响工件的外观和成品的质量。
所以,在焊接过程中,技师应有强烈的责任感,并要具备优秀与娴熟的技术,这样才能尽量减少变形的发生,来提高焊接质量。
1焊接变形概述1.1焊接变形焊接构件在焊接及逐渐冷却的过程中,由于焊接构件局部受热且受热不均,同时焊接构件冷却也不均,因此焊接构件不仅会产生焊接应力,还会产生各种变形。
这种焊件产生的变形,被称为焊接变形。
1.2焊接变形种类按焊接残余变形的外观形态分为以下几种变形。
(1)纵向变形—焊接后指的是焊件沿着焊接方向发生收缩。
(2)横向变形—焊接后指的是焊件垂直于焊接方向发生收缩。
(3)挠曲变形—穿过焊缝线并与板件垂直的平面内变形。
(4)角变形—焊接后构件的平面围绕焊缝产生的角位移。
(5)波浪变形—焊接后构件呈现波浪形。
(6)扭转变形—焊接后结构上出现扭曲。
2焊接变形的原因2.1焊接应力的产生焊接工件的大小程度,复杂情况会产生大小数量不等的复杂焊缝。
在处理焊缝的过程中,就有难以预测的复杂应力产生,从而导致焊接变形。
变形度越大那么工件的外观和质量就会受影响。
甚至可能会报废,或发生安全事故,造成经济损失。
2.2受焊接材料的影响焊接材料的质量好坏对焊接变形会产生影响。
焊接变形的控制-2022年学习资料;
锤击法-·该法用锤击来延展焊缝及其周围压缩塑性变形-区域的金属,达到消除焊接变形的目的。-·这种方法比较简 ,经常用来矫正不太厚的板-结构。-·缺点是劳动强度大,表面质量不好。
火焰加热矫正法-·火焰加热矫正法是利用火焰局部加热,在高温处,-材料的热膨胀受到构件本身刚性制约,产生局部 -缩塑性变形,冷却后收缩,抵消了焊后在该部位的-伸长变形,达到矫正变形之目的。-火焰加热可使用普通的气焊焊 ,不需要专用的设-备,操作方便,工艺灵活,适应性强。
扭曲变形-·对于梁式结构或细长构件,由于焊接顺序、焊接方-向或装配原因焊后截面向不同的方向倾斜造成构件-扭 变形。-焊按前-焊接后发生扭曲变形
焊接变形的控制-·控制变形的方法:-1、合理选择焊接方法和焊接规范-2、刚性固定法-3、反变形法-4、散热 -5、-热平衡法-6、采用合理的焊接顺序和方向
采用合理的焊接顺序和方向-合理的焊接顺序和方向:-。先两端,后中间;-。先内部,后外部;-·先焊短焊缝,后 长焊缝-·先焊焊缝少的一侧,再焊焊缝多的一侧;-·对称焊缝保证对称,同向;-·长焊缝分段倒退焊。
·焊接顺序对角变形的控制-a单侧先焊b两侧交替焊-c交替控制焊d同时对称焊
321123-35-246-士4之5言6-长焊缝的几种焊接顺序
角变形-a-b-c-几种接头的角变形-a堆焊b对接接头cT形接头
角变形的影向因素-·1与板厚有关:当热输入一定时,板厚越大,角-变形越大;-·2与热输入有关:板厚一定,热 入增大,角变-形也增;-·3与坡口形式有关:对接接头坡口截面不对称的-焊缝,其角变形大;坡口角度越大,角变 越大-•4与焊接顺序有关:焊接顺序也会影响角变形的-大小。
焊接变形的危害-·1影响焊件的精度及使用性能;-·2降低装配质量,甚至使产品报废;-·3降低结构的承载能力 -·4影响焊件的美观;-·5提高制造成本。
焊接结构件焊接变形控制措施
2.1焊接热过程是一个十分复杂的问题,在实施焊接作业时,焊接工艺选择的合理性与否,可能导致工件整体受热不均匀问题突出,从而造成工件内部应力分布不均匀、工件变形严重,无法正常使用。
(1)焊接热过程的局部性或不均匀性。多数焊接过程,有热量输入,其他区域则存在热量损耗。受热区域金属熔化,形成焊接熔池,这种局部加热正是引起焊接残余应力和焊接变形的根源。
关键词:焊接结构;焊接变形;分析原因
焊接是钢结构件制作的主要方式,然而在钢材焊接的过程中,所产生的焊接变形和焊接应力会对钢结构件的质量造成较大的影响,降低钢结构件的承载能力。因此如何控制钢结构件的焊接变形,减少焊接应力就成为了钢结构件制作和焊接中的一个重要问题。
1焊接结构件变形分类
焊接结构件变形的原因有很多,其中就包括母材的材质导致的变形、填充材料导致的变形、焊接方法不娴熟或者方法不正确导致的变形、焊接参数(WPS文件参数)导致的变形、焊接顺序不正确导致的变形还有冷却时间及焊接过程中是否有约束等问题导致的焊接结构件变形等原因,但是这些原因归根结底是由于焊接残余应力造成的,而焊接结构变形又可以分为以下几类二收缩变形—其包括垂直于焊缝方向引起的横向收缩和焊缝方向引起的纵向收缩;弯曲变形—这个包括由于横向收缩引起的弯曲变形和由于纵向收缩引起的弯曲变形;扭曲变形—构件绕自身轴线的扭曲;波浪边形—波浪变形时由于薄板焊接产生残余压缩应力使得构件出现因为压缩而形成的。
焊接结构件焊接变形控制措施
摘要:焊接作业对生产工艺要求较高,在作业中如果处果不当,极易发生焊接变形的情况发生,一旦发生变形而无法得到正确的处理时,则会给生产带来较严重的影响和危害。本文旨在分析焊接结构件产生变形的原因,和对焊接结构件变形的有力控制,在经过研究和分析以后,笔者将提出预防措施来防止焊接结构的各种类型的变形。
焊接变形的控制方法之令狐采学创编
欧阳索引创编 2021.02.02焊接变形的控制方法欧阳家百(2021.03.07)1 焊接应力与变形焊接是一种局部加热的工艺过程。
焊接过程中以及焊后,构件不可避免地会产生焊接应力和变形。
焊接应力和变形在一定条件下还影响焊接结构的性能,如强度、刚度、尺寸精度和稳定性、受压时的稳定性和抗腐蚀性等。
不仅如此,过大的焊接应力与变形, 还会大大增加制造工艺中的困难和经济消耗, 而且往往因焊接裂纹或变形过大无法矫正而导致产品的报废。
2 焊接应力与变形的形成过程焊接应力与变形是由焊接产生的不均匀温度场而引起的。
假设有一块平板条( 如图所示) , 在他中心堆置一条焊缝。
图1 假定是焊接加热时的情况。
图 2 为焊接以后, 温度恢复到室温时的情况。
与此同时,由于不均匀加热还会产生垂直焊缝方向( 横向) 的盈利和变形, 厚度则还产生板厚度方向的应力。
3 影响焊接应力与变形的主要因素影响焊接应力与变形的因素主要有两个方面,欧阳索引创编 2021.02.02第一个方面是焊缝及其附近不均匀加热的范围和程度, 也就是产生热变形的范围和程度; 第二个方面是焊件本身的刚度以及受到周围拘束的程度; 实际上也就是就是阻止焊缝及其附近加热所产生热变形的程度。
两个方面作用的结果决定了焊缝附近压缩塑性变形区的大小和分布, 也决定了残余应力与残余变形的大小。
焊缝尺寸和焊缝数量及为止, 材料的热物理性能( 导热系数、比热、膨胀系数等) , 焊接工艺方法( 气焊、手工焊、埋弧焊、气体保护焊等) , 焊接参数( 焊接电流、电弧电压、焊接速度等) 以及施焊方法( 直通焊、跳焊、逆向分段汉等)等因素影响到焊缝及其附近区不均加热的范围和程度, 影响到热变形的大小和分布; 焊接构件的尺寸和形状, 胎夹具的应用, 焊缝的布置以及装配焊接顺序等因素影响到焊接构件的刚度和周围的约束程度。
一般来说, 焊接构件在约束小的条件下, 焊接变形达而应力小; 反之, 则焊接变形小而应力大。
焊接构件变形的控制
[摘要] 焊接变形不仅会影响构造的外形尺寸和精度,使矫形工作量增加,提高创造本钱,而且还会降低构造的承载能力。
本文针对焊接变形的种类及产生原因,详尽地阐述了预先防止、控制产生焊接变形的措施,以便在实际工作中将应力和变形控制在最小程度,保证焊接构造的质量,提高生产效率。
[关键词] 焊接变形;预防与控制随着焊接技术的迅猛开展,以焊代铸、以焊代铆的构造逐年增加,在发挥焊接优势的同时,焊接构件也存在自身缺乏,即构件焊后均会产生不同程度的变形,如果变形超过了允许数值,需要发展反复校正,方能到达使用要求,这样浪费了很大工时本钱, 并影响生产进度。
有的构件经反复校正无效报废,从而造成很大损失。
因此在实际生产中,应该首先了解产生焊接变形的原因及影响因素,然后采取必要措施,发展预先防止和有效控制。
1 焊接变形产生的原因焊接变形是由焊接时不均匀加热引起的,热源只集中在焊接部位,且以一定速度向前挪移,局部受热金属的膨胀能引起整个焊件发生平面或者平面外的各种形态的变形。
切当地说是焊件焊后残存于构造中的剩余变形, 它与焊件的形状尺寸、材料的热物理性能及加热条件等因素有关。
2 焊接变形分类2.1 构件焊后在焊缝方向上发生的收缩——纵向收缩变形。
纵向收缩量随焊缝长度的增加而增加,断续焊缝比连续焊缝的收缩量要小。
2.2 构件焊后在垂直焊缝方向发生的收缩——横向收缩变形。
角焊缝的横向收缩比对接焊缝的横向收缩小。
2.3 构件焊后的平面环绕焊缝产生的角位移——角变形,在堆焊、对接、搭接和丁字接头的焊接时,往往会产生角变形。
2.4 构件焊后整体发生的弯曲——弯曲变形,它是在焊接方向上的偏心收缩。
2.5 波浪变形是一种失稳变形,主要浮现在薄板焊接构造中,产生原因是由于焊接产生的压缩剩余应力,使板件浮现因压曲形成的波浪变形。
这非但严重影响了产品的外观,而且降低了构件的承载能力。
2.6 扭曲变形是构件焊后发生的螺旋变形,是因细长杆件纵向焊缝的横向不均匀或者备料与组装质量不良,使构件绕自身轴线扭转而产生的。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
令狐采学创作
焊接变形的控制
方法
令狐采学
1 焊接应力与变形
焊接是一种局部加热的工艺过程。
焊接过程中以及焊后,构件不可避免地会产生焊接应力和变形。
焊接应力和变形在一定条件下还影响焊接结构的性能,如强度、刚度、尺寸精度和稳定性、受压时的稳定性和抗腐蚀性等。
不仅如此,过大的焊接应力与变形, 还会大大增加制造工艺中的困难和经济消耗, 而且往往因焊接裂纹或变形过大无法矫正而导致产品的报废。
2 焊接应力与变形的形成过程
焊接应力与变形是由焊接产生的不均匀温度场而引起的。
假设有一块平板条( 如图所示) , 在他中心堆置一条焊缝。
图1 假定是焊接加热时的情况。
图 2 为焊接以后, 温度恢复到室温时的情况。
与此同时,
由于不均匀加热还会产生垂直焊缝方向( 横向) 的盈利和
变形, 厚度则还产生板厚度方向的应力。
3 影响焊接应力与变形的主要因素
令狐采学创作
影响焊接应力与变形的因素主要有两个方面,第一个方面是焊缝及其附近不均匀加热的范围和程度, 也就是产生热变形的范围和程度; 第二个方面是焊件本身的刚度以及受到周围拘束的程度; 实际上也就是就是阻止焊缝及其附近加热所产生热变形的程度。
两个方面作用的结果决定了焊缝附近压缩塑性变形区的大小和分布, 也决定了残余应力与残余变形的大小。
焊缝尺寸和焊缝数量及为止, 材料的热物理性能( 导热系数、比热、膨胀系数等) , 焊接工艺方法( 气焊、手工焊、埋弧焊、气体保护焊等) , 焊接参数( 焊接电流、电弧电压、焊接速度等) 以及施焊方法( 直通焊、跳焊、逆向分段汉等) 等因素影响到焊缝及其附近区不均加热的范围和程度, 影响到热变形的大小和分布; 焊接构件的尺寸和形状, 胎夹具的应用, 焊缝的布置以及装配焊接顺序等因素影响到焊接构件的刚度和周围的约束程度。
一般来说, 焊接构件在约束小的条件下, 焊接变形达而应力小; 反之, 则焊接变形小而应力大。
4 焊接残余变形的预防和矫正
4.1 设计措施
4.1.1 尽可能减少焊缝的数量
在设计焊接结构时尽可能减少焊缝的数量,避免不必要的焊缝。
尽可能用型钢、冲压件来代替焊接件。
例如,采用压型结构代替筋板结构可以有效防止薄板的变形。
对于自身要求不高的结构间可以适当增加平板的厚度, 这样可以减少筋板数量,从而可以减少焊接和变形的矫正量。
4.1.2 选择合理的焊缝尺寸和形状
1) 对于板厚较大的对接街头偏重取X 型坡口代替
V型坡口,因为对一定厚度的板,X型坡口的熔敷金属
量大约比V型坡口少1/2。
对于更大板厚的对接接
头可采用U型、双U型甚至窄间隙深坡口焊缝,以减
少焊接变形。
2) 在保证结构有足够承载能力的前提下, 应采用
尽可能小的焊缝尺寸。
对于不需要进行强度计算的
T 型焊接接头,选取最小的工艺上合理的焊缝焊脚尺
寸。
在同样最小的焊脚尺寸时,用断续焊缝比用连续
焊缝更能减少变形。
下表为不同厚度低碳钢板的最
小焊缝焊脚尺寸参考表。
低碳钢板的最小焊缝焊脚尺寸参考表
3) 对于受力较大的T 型接头或十字接头, 在保证
相同的强度条件下, 采用开坡口角焊缝比一般角焊缝
可以大大减少焊缝金属, 减少焊接变形。
4) 当按计算确定 T 型接头角焊缝时, 应当采用连续
焊缝,不要采用于连续焊缝等强度的断续焊缝。
并应
采用双面连续焊缝代替等强度的单面连续焊缝,以减
少角焊缝的焊脚尺寸。
5) 设计的结构尽可能使大多数焊缝可采用自动焊,
此时焊接变形比手工焊小。
在薄板结构中采用二氧
化碳保护焊代替手工焊或气焊, 用接触电焊代替熔化
焊缝可减少变形, 建生焊后校正工作。
4.1.3 合理选择结构形式和安排焊缝位置
1) 安排焊缝尽可能对称于截面中心轴, 或者使焊缝
靠近中心轴, 以减少结构总的弯曲变形。
焊缝集中
于中心轴一侧, 弯曲变形大, 所以尽量安排对称。
图 3 位两片半圆瓦对接成圆筒, 焊缝对称布置, 弯
曲变形小。
而图 4 为钢板弯曲后进行对接, 焊缝在
截面上侧圆筒直径较小时, 焊后引起较大的变形。
2) 由于横向收缩通常比纵向收缩显著, 因此应尽可能将焊缝布置在平行于要求焊接变形较小的方向。
3) 当采用分部件装配和焊接时, 设计时应预先考虑结构分部件的可能性, 并应使部件总装成结构时的焊接工作最小, 减少总装时的焊接变形。
4) 在设计薄板结构时, 要考虑不应由于焊接骨架而失
稳。
为了提高薄板结构的稳定性和降低波浪变形, 应当选择合理的平板厚度, 减少骨架间距并降低骨架焊缝的焊脚。
5) 设计结构时应考虑到采用简单装配焊接胎夹具的可能。
尽量避免设计曲线型结构。
采用平面结构可使固定状态下的焊接装备比较简单, 对控制变形比较有利。
4.2 工艺措施
4.2.1 反变形
焊接前将结构或部件装配成具有焊接变形相反方向的预先变形。
反变形的程度应该能抵消焊后形成的变形。
图5 为反变形情况下的应用:
图 5
4.2.2 刚性固定法
对于刚性小的结构, 可以通过采用胎夹具或其他临时支承方法, 增加结构在焊接时的刚性, 达到减小焊接变形的目的。
但构件本身刚性越大, 则刚性固定法效果越弱。
所以对控制大钢度构件的弯曲变形效果较差。
而对角变形和波浪变形较有效。
4.2.3 选用合理的焊接方法的规范
1) 选用能量密度高的焊接方法, 如采用二氧化碳气体保
护焊、等离子弧焊和手工点弧焊进行薄板焊接, 可以减少变形量。
2) 采用较小的焊接线能量可以减少焊接变形量。
但在实际生产中要考虑生产率, 焊接线能量不宜过低。
3) 焊接不对称得构件, 通过选用不同的焊接参数, 可以控制和调节弯曲变形。
如图6 所示的截面不对称得梁,焊缝1和2到中心轴的距离e比焊缝3和 4 到中心轴的距离f 大焊后引起的变形也大。
如果焊缝1和2采用比焊缝3和4小的规范参数分层焊接,可以是上下弯曲变形抵消。
图 6
4.2.4 选择合理的装配焊接顺序
1) 构件在装配过程中, 侧面中心位置不断发生变化, 因而焊接变形也变化。
利用这一特点通过把结构适当的分成部件, 分别装配焊装, 使不对称得焊缝和收缩量较大的焊缝在焊接过程中能比较自由的收缩而不影响整体结构, 然后拼焊成整体。
这样有利于控制变形, 矫正也比较容易。
2) 分布在侧面中心线两侧的焊缝, 一般来说, 先
焊的一侧焊缝产生的弯曲变形比后焊的一侧焊缝
产生的弯曲变形要大。
因此焊接顺序总的规律是
先焊焊缝少的一侧。
对于截面形状对称的结构, 尽
可能采用对称焊接方法。
4.2.5 防止薄板焊接变形的预拉伸法
在薄板焊接骨架时, 采用机械的预拉伸, 加热的
预拉伸, 或者两者同时使用, 使薄板预先得到拉伸或伸长, 然后在张紧薄板上装配焊接骨架, 可以有效防止波浪变形。
4.3 焊接变形的矫正
4.3.1 机械矫正法
采用压力机、矫正机或手工捶击等机械方法产生新的塑性变形, 以使原开缩短的部分得以延伸, 达到矫正变形的目的。
其中多辊平板机适用于薄板拼焊件的矫正。
利用窄轮碾压焊缝及其两侧使之延伸来消除变形, 用于焊缝比较规范的薄壳结构。
机械矫正法对塑性差的高强钢应慎用。
4.3.2 火焰矫正法
利用火焰加热时产生的局部压缩塑性变形, 使较长的金属在冷却后缩短来消除变形。
本法简单, 机动灵活, 适用面广。
在使用时应控制温度和加热位置。
对低碳钢和普通低合金钢常采用600~800℃的加热温度。
由于需再次加热, 对合金钢等慎用。