(完整)小学四年级奥数教程—归一问题和归总问题

合集下载

小学四年级奥数归一问题

小学四年级奥数归一问题

小学四年级奥数归一问题1.小学四年级奥数归一问题【数量关系】总量÷份数=1份数量1份数量×所占份数=所求几份的数量另一总量÷(总量÷份数)=所求份数【解题思路和方法】先求出单一量,以单一量为标准,求出所要求的数量。

1、买5支铅笔要0.6元钱,买同样的铅笔16支,需要多少钱?2、23台拖拉机3天耕地90公顷,照这样计算,5台拖拉机6天耕地多少公顷?3、35辆汽车4次可以运送100吨钢材,如果用同样的7辆汽车运送105吨钢材,需要运几次?2.小学四年级奥数归一问题一只小蜗牛6分钟爬行12分米,照这样速度1小时爬行多少米?分析为了求出蜗牛1小时爬多少米,必须先求出1分钟爬多少分米,即蜗牛的速度,然后以这个数目为依据按要求算出结果。

解:①小蜗牛每分钟爬行多少分米?12÷6=2(分米)②1小时爬几米?1小时=60分。

2×60=120(分米)=12(米)答:小蜗牛1小时爬行12米。

还可以这样想:先求出题目中的两个同类量(如时间与时间)的倍数(即60分是6分的几倍),然后用1倍数(6分钟爬行12分米)乘以倍数,使问题得解。

解:1小时=60分钟12×(60÷6)=12×10=120(分米)=12(米)或12÷(6÷60)=12÷0.1=120(分米)=12(米)答:小蜗牛1小时爬行12米。

3.小学四年级奥数归一问题一个长方体的水槽可容水480吨。

水槽装有一个进水管和一个排水管。

单开进水管8小时可以把空池注满;单开排水管6小时可把满池水排空。

两管齐开需多少小时把满池水排空?分析要求两管齐开需要多少小时把满池水排光,关键在于先求出进水速度和排水速度。

当两管齐开时要把满池水排空,排水速度必须大于进水速度,即单位时间内排出的水等于进水与排水速度差。

解决了这个问题,又知道总水量,就可以求出排空满池水所需时间。

四年级归一、归总、和差、差倍问题

四年级归一、归总、和差、差倍问题

四年级归一、归总、和差、差倍问题四年级:归一、归总问题数量关系:1份数量*份数=总量题型一:归一问题例:修路队要修一条长2000米长的公路,前五天修了1000米,这样计算,修完这条路一共要多少天?练习1:一辆大卡车5天可以拉100吨沙子,现在有2700吨沙子,这辆车几天拉完?练习2:某工厂有150吨煤,前5天烧了30吨,这样计算,剩下的煤还可以烧几天?题型二:归一,求单一量例:15头牛8天赤青草840千克,这样计算,3150千克青草可供30头牛吃多少天?练习1:15匹马4天吃660千克青草,这样计算,饲养场运进1760千克青草,可供20匹马吃几天?练习2:一个运输队开展节油活动,3辆车5天一共可以节约45千克汽油。

这样计算,这个运输队30天节约2160千克汽油,这个运输队共有多少辆汽车?练习3:(归总)工厂用一批纸张装订练习本,如每本40页,可装订30本,如每本25页,可装订多少本?练习4:商店卖出4箱保温瓶,每箱20个,每个15元,现在用卖保温瓶的钱去买6包洗衣粉,每箱100包,每包洗衣粉多少元?题型三:先算总量,在求单位量例:王老师上班每分钟走80米,15分钟能到学校,如他想提前3分钟到达学校,那王老师每分钟要比原来多走多少米?练习1:一辆汽车从甲地开往乙地,每小时行60千米,预计4小时可以到达,如果要提前1小时到达,每小时要比原来惰性多少千米?练习2:用一批纸装订练习本,每本30页,可以订600本,如每本多订10页,这些纸可以订多少本?题型四:例:一个工程队计划用30个人20天修好一条长6000米的公路,实际工作时增加了20个人,且每个人每天比计划多修2米,实际用多少天修完这条路?例2:修一条长1800米的路,计划45人用20天完成,如在增加15个人,可提前几天完成?练习1:一辆汽车每天行6小时,3天可行810千米。

如果每小时比原来多行5千米,每天行8小时,这辆汽车几天可以行4000千米?练习2:3台织布机4小时能织布144米,要在5小时内再多织180米,要增加几台同样的织布机?题型五:例:货物公司用6辆卡车3次可运货108吨,3辆货车8次运货120吨,现在用2辆卡车和3辆货车同时运12次,可以运货多少吨?练习1:甲乙了两个打字员4小时共打字3200个,现两人同时工作,在相同时间内甲打字2765个,乙打字2835个,甲打字6小时,乙打字10小时,可他们共打字多少个?练习2:学校锅炉房运来550吨煤,用4辆大卡车5次运煤160吨,用3辆小卡车8次运煤72吨,如用1辆大卡车和一辆小卡车同时运,要几次?和差问题数量关系:大数=(和+差)/2 小数=(和-差)/2例1:甲乙两班共有学生98人,甲班比乙班多6人,求两班各有多少人?例2:长方形的长和宽之和为18厘米,长比宽多2厘米,求长方形面积。

四年级数学归一问题、归总问题例题思路也练习题

四年级数学归一问题、归总问题例题思路也练习题

四年级数学归一问题、归总问题例题思路也练习题1、归一问题【含义】在解题时,先求出一份是多少(即单一量),然后以单一量为标准,求出所要求的数量。

这类应用题叫做归一问题。

【数量关系】总量÷份数=1份数量1份数量×所占份数=所求几份的数量另一总量÷(总量÷份数)=所求份数【解题思路和方法】先求出单一量,以单一量为标准,求出所要求的数量。

【例1】买5支铅笔要0.6元钱,买同样的铅笔16支,需要多少钱?解:(1)买1支铅笔多少钱?0.6÷5=0.12(元)(2)买16支铅笔需要多少钱?0.12×16=1.92(元)列成综合算式0.6÷5×16=0.12×16=1.92(元)答:需要1.92元。

【例2】3台拖拉机3天耕地90公顷,照这样计算,5台拖拉机6天耕地多少公顷?解:(1)1台拖拉机1天耕地多少公顷?90÷3÷3=10(公顷)(2)5台拖拉机6天耕地多少公顷?10×5×6=300(公顷)列成综合算式90÷3÷3×5×6=10×30=300(公顷)答:5台拖拉机6天耕地300公顷。

【例3】5辆汽车4次可以运送100吨钢材,如果用同样的7辆汽车运送105吨钢材,需要运几次?解:(1)1辆汽车1次能运多少吨钢材?100÷5÷4=5(吨)(2)7辆汽车1次能运多少吨钢材?5×7=35(吨)(3)105吨钢材7辆汽车需要运几次?105÷35=3(次)列成综合算式105÷(100÷5÷4×7)=3(次)答:需要运3次。

2、归总问题【含义】解题时,常常先找出“总数量”,然后再根据其它条件算出所求的问题,叫归总问题。

所谓“总数量”是指货物的总价、几小时(几天)的总工作量、几公亩地上的总产量、几小时行的总路程等。

归一问题、归总问题(全部)

归一问题、归总问题(全部)

归一问题1、某饭店要安装空调240台 已知10名工程技术人员8小时能安装空调64台 现饭店要求安装公司在12小时内装完 需要增派同样工作效率的技术人员多少名2、加工9600套服装 30人10天完成了3600套 又增加了20人 剩下的还需要几天完成3、李庄大队修水渠1800米,计划用75人12天修完,如果增加15人,几天修完?4、某水泥厂计划24天生产1080吨水泥,由于技术改进,平均每天比原计划多生产15吨,可比计划提前几天完成?5、机器厂原来制造50台机器要用钢材150吨,技术革新后,每台机器用的钢材节省了1吨.原来制造50台用的钢材,现在可造多少台.6、花果山上桃树多 6只小猴分180棵.现有小猴72只 如分完后还余90棵 请算出桃树有几棵7、5箱蜜蜂一年可以酿75千克蜂蜜 照这样计算 酿300千克蜂蜜要增加几箱蜜蜂8、4辆汽车行驶300千米需要汽油240公升.现有5辆汽车同时运货到相距800千米的地方 汽油只有1000公升 问是否够用9、5台拖拉机24天耕地12000公亩.要18天耕完54000公亩土地 需要增加同样拖拉机多少台10、某工程队,16个工人9天能挖水沟1872米,27个工人14天能挖多少米归总问题1、服装厂原来做一套衣服用布3米 改进裁剪方法后 每套衣服用布2米。

原来做792套衣服的布 现在可以做多少套2、小华每天读24页书 12天读完了《红岩》一书。

小明每天读36页书 几天可以读完《红岩》3、食堂运来一批蔬菜 原计划每天吃50千克 30天慢慢消费完这批蔬菜。

后来根据大家的意见 每天比原计划多吃10千克 这批蔬菜可以吃多少天4、一项工程 8个人工作15时可以完成 如果12个人工作 那么多少小时可以完成5、一辆汽车从甲地开往乙地 每小时行60千米 5时到达。

若要4时到达 则每小时需要多行多少千米6、修一条公路 原计划60人工作 80天完成。

现在工作20天后 又增加了30人 这样剩下的部分再用多少天可以完成7、平整一块土地 原计划7人平整 每天工作8时 8天可以完成任务。

四年级数学归一问题和归总问题

四年级数学归一问题和归总问题

四年级数学归一与归总应用题知识要点:1、归一问题:日常生活中要计算几个足球多少钱,就必须先知道每个足球的单价是多少钱;要计算几个人几天所做的工作总量,就必须先知道每人每天所做的工作量等等,一系列的这种应用题,归结为一个单位数量的问题叫归一问题。

2、归总问题:与归一问题对应的是归总问题,归一问题是要求出“单一量”,而归总问题是要求出“总量”。

所谓总量是指:总路程,总产量,工作总量,物品的总价等等,这种先求“总量”的应用题叫归总问题。

3、主要的数量关系式:单价×数量=总价总价÷单价=数量总价÷数量=单价工作效率×工作时间=工作总量工作总量÷工作时间=工作效率工作总量÷工作效率=工作时间速度×时间=路程路程÷速度=时间路程÷时间=速度典型例题:例1、小红买了5支圆珠笔共付15元,现在她要退回去2支圆珠笔,售货员应找回多少元?例2、某工厂用9个工人4天能够做360个机器零件,照这样计算,12个人6天能够做多少个同样的机器零件?例3、6辆卡车4次能够运货96吨,2辆汽车8次能够运货48吨,现在用3辆卡车和1辆汽车同时运15次,能够运货多少吨?例4、假设买4个书包和6盒水彩笔需190元,而假设买2个书包和6盒水彩笔需要140元,求一个书包和一盒水彩笔的单价各是多少元?例5、小明上学每分钟走50米,12分钟到学校,假设他想提前4分钟到达学校,则小明每分钟比原来多行多少米?例6、修一条公路,原计划80人,用100天完成,现在这批工人工作30天后,又增加了20人,问剩下的部分再做多少天能够完成任务?例7、有一段公路,预计用30人每天工作8小时,18天能够修完。

后来要求加快速度,每天增加6个人,并且修路时间每天增加4小时,那么能够提前几天修完这条公路?课堂练习:1、一台磨面机5小时可磨玉米250千克,照这样计算,磨1750千克的玉米,需要几小时?2、百货商店卖出4箱暖瓶,每箱20个,每个15元,现在用卖暖瓶的钱能够去买6箱洗衣粉,每箱100包,每包洗衣粉多少元?3、一本书,原来预计共印180页,每页25行,每行30个字,后来改用小号字,每行36个字,每页能排30行。

专题12 归一、归总问题(解析)

专题12 归一、归总问题(解析)

2022-2023学年小学四年级思维拓展举一反三精编讲义专题12 归一、归总问题知识精讲专题简析:解答复合应用题时一般有如下四个步骤:1,弄清题意,找出已知条件和所求问题;2,分析已知条件和所求问题之间的关系,找出解题的途径;3,拟定解答计划,列出算式,算出得数;4,检验解答方法是否合理,结果是否正确,最后写出答案。

典例分析【典例分析01】某发电厂有10200吨煤,前10天每天烧煤300吨,后来改进炉灶,每天烧煤240吨。

这堆煤还能烧多少天?分析与解答:条件摘录前10天每天烧煤300吨10200吨能烧多少天?后来每天烧煤240吨综合法思路:前10天每天烧煤300吨,可以求出10天烧的吨数;已知煤的总吨数和前10天烧的吨数,可以求出还有多少吨没有烧;根据还剩的吨数和后来每天烧煤240吨,可以求出这堆煤还能烧多少天。

分析法思路:要求还能烧多少天,要知道还有的吨数和后来每天烧的吨数(240吨);要求还有多少吨煤,要知道这堆煤有多少吨(10200吨)和已经烧了多少吨。

要求已经烧了多少吨,要知道已经烧了多少天(10天)和每天烧多少吨(300吨)。

(10200-300×10)÷240=30(天)【典例分析02】师傅和徒弟同时开始加工200个零件,师傅每小时加工25个,完成任务时,徒弟还要做2小时才能完成任务。

徒弟每小时加工多少个?分析与解答:由条件可知,师傅完成任务用了200÷25=8小时,徒弟完成任务用了8+2=10小时。

所以,徒弟每小时加工200÷10=20个。

【典例分析03】甲、乙两地相距200千米,汽车行完全程要5小时,步行要40小时。

张强从甲地出发,先步行8小时后改乘汽车,还需要几小时到达乙地?分析与解答:根据题意,汽车5小时行200千米,每小时行200÷5=40千米;步行200千米要40小时,平均每小时行200÷40=5千米,8小时行了5×8=40千米;全程有200千米,乘汽车行了200-40=160千米,所以,还需160÷40=4小时到达乙地。

归一问题与归总问题

归一问题与归总问题

归一问题与归总问题
1、小明买3本笔记本用去18元钱,那
么小明买同样7本同样笔记本得用
多少钱?
2、小明走200步是100米,他按这种走
法从家到学校走了800步,他家到
学校有多少米?
3、梅梅走100 米用了2分钟,按照这种速度步行,从家里到学校用10分钟,那么梅梅家到学校有多少米?
3、小强在操场上步行,5秒走了20米。

他按照这种速度步行:
(1)7秒钟走了多少米?
(2)走了36 米用多少秒?
4、三(3)班沿学校路一边直线栽树,两树间间隔相等,从第1棵顺着同一方向往下栽,栽到第5棵时隔第一棵20米,问:
(1)栽第7棵时隔第1棵有多少米?
(2)当隔第1棵树间隔有45米远时,这时栽第几棵树?
5、亮亮从1楼到3楼用了18秒,照这样步行上楼,从1楼到他家的7楼要用多少秒?。

小学四年级奥数教程—归一问题和归总问题

小学四年级奥数教程—归一问题和归总问题

归一问题与归总问题在解答某些应用题时,常常需要先找出“单一量”,然后以这个“单一量”为标准,根据其它条件求出结果。

用这种解题思路解答的应用题,称为归一问题。

所谓“单一量”是指单位时间的工作量、物品的单价、单位面积的产量、单位时间所走的路程等。

例1 一种钢轨,4根共重1900千克,现在有95000千克钢,可以制造这种钢轨多少根?(损耗忽略不计)分析:以一根钢轨的重量为单一量。

(1)一根钢轨重多少千克?1900÷4=475(千克)。

(2)95000千克能制造多少根钢轨?95000÷475=200(根)。

解:95000÷(1900÷4)=200(根)。

答:可以制造200根钢轨。

例2 王家养了5头奶牛,7天产牛奶630千克,照这样计算,8头奶牛15天可产牛奶多少千克?分析:以1头奶牛1天产的牛奶为单一量。

(1)1头奶牛1天产奶多少千克?630÷5÷7=18(千克)。

(2)8头奶牛15天可产牛奶多少千克?18×8×15=2160(千克)。

解:(630÷5÷7)×8×15=2160(千克)。

答:可产牛奶2160千克。

例3 三台同样的磨面机2.5时可以磨面粉2400千克,8台这样的磨面机磨25600千克面粉需要多少时间?分析与解:以1台磨面机1时磨的面粉为单一量。

(1)1台磨面机1时磨面粉多少千克?2400÷3÷2.5=320(千克)。

(2)8台磨面机磨25600千克面粉需要多少小时?25600÷320÷8=10(时)。

综合列式为25600÷(2400÷3÷2.5)÷8=10(时)。

例4 4辆大卡车运沙土,7趟共运走沙土336吨。

现在有沙土420吨,要求5趟运完。

问:需要增加同样的卡车多少辆?分析与解:以1辆卡车1趟运的沙土为单一量。

归一问题与归总问题

归一问题与归总问题

归一问题与归总问题在解答某些应用题时,常常需要先找出“单一量”,然后以这个“单一量”为标准,根据其它条件求出结果。

用这种解题思路解答的应用题,称为归一问题。

所谓“单一量”是指单位时间的工作量、物品的单价、单位面积的产量、单位时间所走的路程等。

例1 一种钢轨,4根共重1900千克,现在有95000千克钢,可以制造这种钢轨多少根?(损耗忽略不计)分析:以一根钢轨的重量为单一量。

(1)一根钢轨重多少千克?1900÷4=475(千克)。

(2)95000千克能制造多少根钢轨?95000÷475=200(根)。

解:95000÷(1900÷4)=200(根)。

答:可以制造200根钢轨。

例2 王家养了5头奶牛,7天产牛奶630千克,照这样计算,8头奶牛15天可产牛奶多少千克?分析:以1头奶牛1天产的牛奶为单一量。

(1)1头奶牛1天产奶多少千克?630÷5÷7=18(千克)。

(2)8头奶牛15天可产牛奶多少千克?18×8×15=2160(千克)。

解:(630÷5÷7)×8×15=2160(千克)。

答:可产牛奶2160千克。

例3 三台同样的磨面机2.5时可以磨面粉2400千克,8台这样的磨面机磨25600千克面粉需要多少时间?分析与解:以1台磨面机1时磨的面粉为单一量。

(1)1台磨面机1时磨面粉多少千克?2400÷3÷2.5=320(千克)。

(2)8台磨面机磨25600千克面粉需要多少小时?25600÷320÷8=10(时)。

综合列式为25600÷(2400÷3÷2.5)÷8=10(时)。

例4 4辆大卡车运沙土,7趟共运走沙土336吨。

现在有沙土420吨,要求5趟运完。

问:需要增加同样的卡车多少辆?分析与解:以1辆卡车1趟运的沙土为单一量。

小学数学“归一问题”与“归总问题”总结+解题思路+例题整理(经典应用题1收藏!)

小学数学“归一问题”与“归总问题”总结+解题思路+例题整理(经典应用题1收藏!)

小学数学“归一问题”与“归总问题”总结+解题思路+例题整理一、归一问题【含义】在解题时,先求出一份是多少(即单一量),然后以单一量为标准,求出所要求的数量。

这类应用题叫做归一问题。

【数量关系】总量÷份数=1份数量1份数量×所占份数=所求几份的数量另一总量÷(总量÷份数)=所求份数【解题思路和方法】先求出单一量,以单一量为标准,求出所要求的数量。

例1买5支铅笔要0.6元钱,买同样的铅笔16支,需要多少钱?解:(1)买1支铅笔多少钱?0.6÷5=0.12(元)(2)买16支铅笔需要多少钱?0.12×16=1.92(元)列成综合算式0.6÷5×16=0.12×16=1.92(元)答:需要1.92元。

例23台拖拉机3天耕地90公顷,照这样计算,5台拖拉机6天耕地多少公顷?解:(1)1台拖拉机1天耕地多少公顷?90÷3÷3=10(公顷)(2)5台拖拉机6天耕地多少公顷?10×5×6=300(公顷)列成综合算式90÷3÷3×5×6=10×30=300(公顷)答:5台拖拉机6天耕地300公顷。

例3:5辆汽车4次可以运送100吨钢材,如果用同样的7辆汽车运送105吨钢材,需要运几次?解:(1)1辆汽车1次能运多少吨钢材?100÷5÷4=5(吨)(2)7辆汽车1次能运多少吨钢材?5×7=35(吨)(3)105吨钢材7辆汽车需要运几次?105÷35=3(次)列成综合算式105÷(100÷5÷4×7)=3(次)答:需要运3次。

二、归总问题【含义】解题时,常常先找出“总数量”,然后再根据其它条件算出所求的问题,叫归总问题。

所谓“总数量”是指货物的总价、几小时(几天)的总工作量、几公亩地上的总产量、几小时行的总路程等。

(2021年整理)奥数:归一问题与归总问题

(2021年整理)奥数:归一问题与归总问题

奥数:归一问题与归总问题(推荐完整)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(奥数:归一问题与归总问题(推荐完整))的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为奥数:归一问题与归总问题(推荐完整)的全部内容。

奥数:归一问题与归总问题(推荐完整)编辑整理:张嬗雒老师尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布到文库,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是我们任然希望奥数:归一问题与归总问题(推荐完整) 这篇文档能够给您的工作和学习带来便利。

同时我们也真诚的希望收到您的建议和反馈到下面的留言区,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请下载收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为〈奥数:归一问题与归总问题(推荐完整)> 这篇文档的全部内容。

归一问题与归总问题【基础再现】在解答某些应用题时,常常需要先找出“单一量",然后以这个“单一量"为标准,根据其它条件求出结果。

用这种解题思路解答的应用题,称为归一问题.所谓“单一量”是指单位时间的工作量、物品的单价、单位面积的产量、单位时间所走的路程等。

与归一问题类似的是归总问题,归一问题是找出“单一量”,而归总问题是找出“总量”,再根据其它条件求出结果。

所谓“总量”是指总路程、总产量、工作总量、物品的总价等。

【重难点】找到问题中的单一量或总量。

【典型例题】例1、一种钢轨,4根共重1900千克,现在有95000千克钢,可以制造这种钢轨多少根?(损耗忽略不计)例2、王家养了5头奶牛,7天产牛奶630千克,照这样计算,8头奶牛15天可产牛奶多少千克?例3、三台同样的磨面机2.5时可以磨面粉2400千克,8台这样的磨面机磨25600千克面粉需要多少时间?例4、4辆大卡车运沙土,7趟共运走沙土336吨。

归一问题与归总问题

归一问题与归总问题

归一问题与归总问题在解答某些应用题时,常常需要先找出“单一量”,然后以这个“单一量”为标准,据其它条件求出结果。

用这种解题思路解答的应用题,称为归一问题。

所谓“单一是指量单位时间的工作量、物品的单价、单位面积的产量、单位时间所走的路程等。

分析:以一根钢轨的重量为单一量。

(1)一根钢轨重多少千克?1900- 4= 475 (千克)。

(2)95000 千克能制造多少根钢轨?95000十 475= 200 (根)。

解:95000-( 1900- 4)= 200 (根)。

答:可以制造 200根钢轨。

分析:以 1 头奶牛 1 天产的牛奶为单一量。

( 1 ) 1 头奶牛 1 天产奶多少千克?630- 5- 7= 18(千克)。

( 2) 8 头奶牛 15 天可产牛奶多少千克?18X 8X 15 = 2160 (千克)。

解:(630- 5-7)X 8X 15=2160 (千克)。

答:可产牛奶 2160千克。

分析与解:以 1 台磨面机 1 时磨的面粉为单一量。

( 1 ) 1 台磨面机 1 时磨面粉多少千克?2400- 3- 2.5=320(千克)。

(2) 8 台磨面机磨 25600千克面粉需要多少小时?25600十 320- 8=10 (时)综合列式为25600-( 2400- 3-2.5 )- 8=10 (时)。

分析与解:以 1 辆卡车 1 趟运的沙土为单一量。

( 1 ) 1 辆卡车 1 趟运沙土多少吨?336- 4- 7=12(吨)。

( 2) 5 趟运走 420 吨沙土需卡车多少辆?420- 12- 5= 7 (辆)。

( 3)需要增加多少辆卡车?7-4=3(辆)。

综合列式为420- (336-4-7) -5-4=3 (辆)。

与归一问题类似的是归总问题,归一问题是找出“单一量”,而归总问题是找出“总量再根据其它条件求出结果。

所谓“总量”是指总路程、总产量、工作总量、物品的总价等。

分析:( 1 )工程总量相当于 1 个人工作多少小时?15X 8= 120 (时)。

(四年级数学教案)归一问题与归总问题

(四年级数学教案)归一问题与归总问题

归一问题与归总问题四年级数学教案在解答某些应用题时,常常需要先找出“单一量”,然后以这个“单一量”为标准,根据其它条件求出结果。

用这种解题思路解答的应用题,称为归一问题。

所谓“单一量”是指单位时间的工作量、物品的单价、单位面积的产量、单位时间所走的路程等。

例1 一种钢轨,4根共重1900千克,现在有95000千克钢,可以制造这种钢轨多少根?(损耗忽略不计)分析:以一根钢轨的重量为单一量。

(1)一根钢轨重多少千克?1900÷4=475(千克)。

(2)95000千克能制造多少根钢轨?95000÷475=200(根)。

解:95000÷(1900÷4)=200(根)。

答:可以制造200根钢轨。

例2 王家养了5头奶牛,7天产牛奶630千克,照这样计算,8头奶牛15天可产牛奶多少千克?分析:以1头奶牛1天产的牛奶为单一量。

(1)1头奶牛1天产奶多少千克?630÷5÷7=18(千克)。

(2)8头奶牛15天可产牛奶多少千克?18×8×15=2160(千克)。

解:(630÷5÷7)×8×15=2160(千克)。

答:可产牛奶2160千克。

例3 三台同样的磨面机2.5时可以磨面粉2400千克,8台这样的磨面机磨25600千克面粉需要多少时间?分析与解:以1台磨面机1时磨的面粉为单一量。

(1)1台磨面机1时磨面粉多少千克?2400÷3÷2.5=320(千克)。

(2)8台磨面机磨25600千克面粉需要多少小时?25600÷320÷8=10(时)。

综合列式为25600÷(2400÷3÷2.5)÷8=10(时)。

(完整word版)四年级奥数讲义之:归一问题(2)

(完整word版)四年级奥数讲义之:归一问题(2)

归一问题(一)知识揭示1、归一法的来历我国珠算除法中有一种方法,称为归除法.除数是几,就称几归;除数是8,就称为8归.而归一的意思,就是用除法求出单一量,这大概就是归一说法的来历吧!2、归一法的分类归一问题有两种基本类型.一种是正归一,也称为直进归一.如:一辆汽车3小时行150千米,照这样,7小时行驶多少千米?另一种是反归一,也称为返回归一.如:修路队6小时修路180千米,照这样,修路240千米需几小时?3、正、反归一问题的相同点是:一般情况下第一步先求出单一量;不同点在第二步.正归一问题是求几个单一量是多少,反归一是求包含多少个单一量。

(二)例题讲解例1. 一只小蜗牛6分钟爬行12分米,照这样速度1小时爬行多少米?例2. 一个粮食加工厂要磨面粉20000千克.3小时磨了6000千克.照这样计算,磨完剩下的面粉还要几小时?例3. 学校买来一些足球和篮球.已知买3个足球和5个篮球共花了281元;买3个足球和7个篮球共花了355元.现在要买5个足球、4个篮球共花多少元?例4. 一个长方体的水槽可容水480吨.水槽装有一个进水管和一个排水管.单开进水管8小时可以把空池注满;单开排水管6小时可把满池水排空.两管齐开需多少小时把满池水排空?例5. 7辆“黄河牌”卡车6趟运走336吨沙土.现有沙土560吨,要求5趟运完,求需要增加同样的卡车多少辆?教学练习1、一批产品,28人25天可以生产完,生产5天后,此项任务要提前10天完成,应增加_____人.2、某食堂存有16人可吃15天的米,16人吃了5天后,走了6人,余下的可吃_____天.3、小明3小时走6千米路,照这样计算他7小时走了多少千米?4、5辆载重量相同的卡车6趟运走粮食300吨,照这样计算,7辆这样的卡车8趟运粮食多少吨?如果仓库有粮食1200吨,要求5次运完,则须增加多少辆车?5、妈妈买水果,如果她买了3斤苹果和5斤荔枝,那么需要41元,如果买了6斤苹果和5斤荔枝那么需要47元。

四年级下册数学奥数试题—第五讲归一和归总沪教版(含答案)

四年级下册数学奥数试题—第五讲归一和归总沪教版(含答案)

精讲精练四年级思维数学 第五讲归一和归总思维目标:运用正确的方法求出归一和归总类型的应用题。

数学目标:掌握减法性质和除法的性质思维:归一问题:先算出一份是多少。

归总问题:先算出总数是多少。

数学:1、减法的性质:一个数连续减去两个数,可以先把两个减数加起来,再从被减数里减去。

2、除法的性质:一个数连续除以两个数,可以先把两个除数乘起来,再去除被除数。

【例1】学校买3只同样的足球用去240元,照这样计算,买8只同样的足球需要多少元? 金钥匙:知道3只同样的足球用去240元,那么我们就可以求出1只足球的价格,知道1只足球的价格,就可以求出8只的价钱了:240÷3=80(元)…………归一 80×8=640(元)…………归总 答:买8只同样的足球需要640元。

试金石:1、 一台幻灯机,第一次放映50张幻灯片用了7秒钟,照这样计算,第二次用同样的幻灯机放映150张幻灯片要多少时间?2、某商场在进行促销活动,3包同样的餐巾纸售价7元,这天售货员卖这种餐巾纸共收款 2170元,那么这天共卖出多少包这样的餐巾纸?学习目标 知识梳理3.6个工人5天能生产360个的玩具,照这样计算,10个工人7天可以生产多少个同样玩具?【例2】小杰用相同的速度4分钟走了280米的路,那么照这样的速度,走490米路需要多少时间?金钥匙:这题我们要运用“速度=路程÷时间”来求出速度。

知道速度后,再运用“时间=路程÷速度”来求出最终的解:280÷4=70米/分490÷70=7分钟答:走490米路需要7分钟。

试金石:1、一列动车从甲地开往乙地,每小时行200千米,5小时到达,动车提速后,4小时可以到达乙地,动车提速后每小时可以行多少千米?2、某车间要完成一批零件,计划平均每天生产420个零件,30天可以完成,如果每天比计划多生产30个,那么几天可以完成?3、5辆相同的卡车7次共运水果140吨,照这样计算,如果要求6次就运走192吨,要用同样的卡车多少辆?数学园地:减法性质和除法性质学习导航运用减法运算性质和除法运算性质进行简便运算时同样要注意去(添)括号要变号。

小学数学归一、归总问题

小学数学归一、归总问题

小学数学归一、归总问题一、归一问题【含义】在解题时,先求出一份是多少(即单一量),然后以单一量为标准,求出所要求的数量。

这类应用题叫做归一问题。

【数量关系】总量÷份数=1份数量1份数量X所占份数=所求几份的数量另一总量÷(总量÷份数)=所求份数【解题思路和方法】先求出单一量,以单一量为标准,求出所要求的数量。

例:买5支铅笔要0.6元钱,买同样的铅笔16支,需要多少钱?解: (1)买1支铅笔多少钱?0.6÷5=0.12(元)(2)买16支铅笔需要多少钱?0.12X16=1.92(元)列成综合算式0.6÷5X16=0.12X16=1.92(元)答:需要1.92元。

练习1、李叔叔制作8个零件需要30分钟,李叔叔2小时能制作多少个零件?2、一辆公共汽车4小时行280千米,照这样计算,7小时行多少千米?3、妈妈买5个橘子,用了25元,如果买7个同样的橘子,需要多少元?4、选果机4小时选果400斤,照这样计算,6台选果机可以选果多少斤?5、一个修路队,4天修路180米,照这样计算,7天可以修多少米?6、小明家5天吃完30千克苹果,照这样计算,8天要吃多少千克?7、小王买7本笔记本用了56元,买9本同样的笔记本需要多少元?8、买5支钢笔要90元钱,买同样的8支铅笔需要多少元?9、小王看一本童话书,3天看了54页,12天能看多少页?11、一玩具厂4小时可生产玩具524个.照这样计算,生产1572个玩具,要多少小时?12、某水泥厂计划24天完成一批任务,每天应生产45吨水泥.改进技术后,每天比原计划多生产15吨,这样提前几天完成?二、归总问题【含义】解题时,常常先找出“总数量”,然后再根据其它条件算出所求的问题,叫归总问题。

所谓“总数量”是指货物的总价、几小时(几天)的总工作量、几公亩地上的总产量、几小时行的总路程等。

【数量关系】1份数量X份数=总量总量÷1份数量=份数总量÷另一份数=另一每份数量【解题思路和方法】先求出总数量,再根据题意得出所求的数量。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

归一问题与归总问题
在解答某些应用题时,常常需要先找出“单一量”,然后以这个“单一量”为标准,根据其它条件求出结果。

用这种解题思路解答的应用题,称为归一问题。

所谓“单一量”是指单位时间的工作量、物品的单价、单位面积的产量、单位时间所走的路程等。

例1 一种钢轨,4根共重1900千克,现在有95000千克钢,可以制造这种钢轨多少根?(损耗忽略不计)
分析:以一根钢轨的重量为单一量。

(1)一根钢轨重多少千克?
1900÷4=475(千克)。

(2)95000千克能制造多少根钢轨?
95000÷475=200(根)。

解:95000÷(1900÷4)=200(根)。

答:可以制造200根钢轨。

例2 王家养了5头奶牛,7天产牛奶630千克,照这样计算,8头奶牛15天可产牛奶多少千克?
分析:以1头奶牛1天产的牛奶为单一量。

(1)1头奶牛1天产奶多少千克?
630÷5÷7=18(千克)。

(2)8头奶牛15天可产牛奶多少千克?
18×8×15=2160(千克)。

解:(630÷5÷7)×8×15=2160(千克)。

答:可产牛奶2160千克。

例3 三台同样的磨面机2.5时可以磨面粉2400千克,8台这样的磨面机磨25600千克面粉需要多少时间?
分析与解:以1台磨面机1时磨的面粉为单一量。

(1)1台磨面机1时磨面粉多少千克?
2400÷3÷2.5=320(千克)。

(2)8台磨面机磨25600千克面粉需要多少小时?
25600÷320÷8=10(时)。

综合列式为
25600÷(2400÷3÷2.5)÷8=10(时)。

例4 4辆大卡车运沙土,7趟共运走沙土336吨。

现在有沙土420吨,要求5趟运完。

问:需要增加同样的卡车多少辆?
分析与解:以1辆卡车1趟运的沙土为单一量。

(1)1辆卡车1趟运沙土多少吨?
336÷4÷7=12(吨)。

(2)5趟运走420吨沙土需卡车多少辆?
420÷12÷5=7(辆)。

(3)需要增加多少辆卡车?
7-4=3(辆)。

综合列式为
420÷(336÷4÷7)÷5-4=3(辆)。

与归一问题类似的是归总问题,归一问题是找出“单一量”,而归总问题是找出“总量”,再根据其它条件求出结果。

所谓“总量”是指总路程、总产量、工作总量、物品的总价等。

例5 一项工程,8个人工作15时可以完成,如果12个人工作,那么多少小时可以完成?
分析:(1)工程总量相当于1个人工作多少小时?
15×8=120(时)。

(2)12个人完成这项工程需要多少小时?
120÷12=10(时)。

解:15×8÷12=10(时)。

答:12人需10时完成。

例6 一辆汽车从甲地开往乙地,每小时行60千米,5时到达。

若要4时到达,则每小时需要多行多少千米?
分析:从甲地到乙地的路程是一定的,以路程为总量。

(1)从甲地到乙地的路程是多少千米?
60×5=300(千米)。

(2)4时到达,每小时需要行多少千米?
300÷4=75(千米)。

(3)每小时多行多少千米?
75-60=15(千米)。

解:(60×5)÷4——60=15(千米)。

答:每小时需要多行15千米。

例7 修一条公路,原计划60人工作,80天完成。

现在工作20天后,又增加了30人,这样剩下的部分再用多少天可以完成?
分析:(1)修这条公路共需要多少个劳动日(总量)?
60×80=4800(劳动日)。

(2)60人工作20天后,还剩下多少劳动日?
4800-60×20=3600(劳动日)。

(3)剩下的工程增加30人后还需多少天完成?
3600÷(60+30)=40(天)。

解:(60×80-60×20)÷(60+30)=40(天)。

答:再用40天可以完成。

练习11
1.2台拖拉机4时耕地20公顷,照这样速度,5台拖拉机6时可耕地多少公顷?
2.4台织布机5时可以织布2600米,24台织布机几小时才能织布24960米?
3.一种幻灯机,5秒钟可以放映80张片子。

问:48秒钟可以放映多少张片子?
4.3台抽水机8时灌溉水田48公顷,照这样的速度,5台同样的抽水机6时可以灌溉水田多小公顷?
5.平整一块土地,原计划8人平整,每天工作7.5时,6天可以完成任务。

由于急需播种,要求5天完成,并且增加1人。

问:每天要工作几小时?
6.食堂管理员去农贸市场买鸡蛋,原计划按每千克3.00元买35千克。

结果鸡蛋价格下调了,他用这笔钱多买了2.5千克鸡蛋。

问:鸡蛋价格下调后是每千克多少元?
7.锅炉房按照每天4.5吨的用量储备了120天的供暖煤。

供暖40天后,由于进行了技术改造,每天能节约0.9吨煤。

问:这些煤共可以供暖多少天?。

相关文档
最新文档