最新幂函数的性质、常考题型及对应练习

合集下载

微专题30幂函数15种常考题型总结(解析版)-人教A版2019必修第一册高一数学习题

微专题30幂函数15种常考题型总结(解析版)-人教A版2019必修第一册高一数学习题

微专题30 幂函数15种常考题型总结题型1 幂函数的概念辨析题型2 求幂函数的解析式或值题型3 根据函数是幂函数求参数值题型4 幂函数的定义域问题题型5 幂函数的值域问题题型6 幂函数的图象及应用题型7 幂函数的图象过定点问题题型8 判断幂函数的单调性题型9 判断与幂函数相关的复合函数的单调性题型10 由幂函数的单调性求参数题型11比较幂值的大小题型12 利用幂函数的单调性解不等式题型13 幂函数的奇偶性的应用题型14 幂函数的单调性和奇偶性的综合应用题型15 幂函数性质的综合应用1、幂函数的概念一般地,函数y =x α叫做幂函数,其中x 是自变量,α是常数.幂函数的特征:(1)x α的系数是1;(2)x α的底数x 是自变量;(3)x α的指数α为常数.只有满足这三个条件,才是幂函数.对于形如y =(2x )α,y =2x 5,y =x α+6等的函数都不是幂函数.2、五个幂函数的图象与性质(1)在同一平面直角坐标系内函数(1)y =x ;(2)y =12x;(3)y =x 2;(4)y =x -1;(5)y =x 3的图象如图.注:第一象限一定有幂函数的图象,第四象限一定没有幂函数的图象.(2)五个幂函数的性质y=xy=x 2y =x 3y =12xy =x -1定义域R R R [0,+∞){x |x ≠0}值域R [0,+∞)R [0,+∞){y |y ≠0}奇偶性奇偶奇非奇非偶奇单调性增在[0,+∞)上增,在(-∞,0]上减增增在(0,+∞)上减,在(-∞,0)上减3、一般幂函数的图象特征(1)所有的幂函数在(0,+∞)上都有定义,并且图象都过点(1,1).(2)当α>0时,幂函数的图象通过原点,并且在区间[0,+∞)上单调递增.特别地,当α>1时,幂函数的图象下凸;当0<α<1时,幂函数的图象上凸.(3)当α<0时,幂函数在区间(0,+∞)上单调递减.(4)幂指数互为倒数的幂函数在第一象限内的图象关于直线y =x 对称.(5)在第一象限,作直线x =a (a >1),它同各幂函数图象相交,按交点从下到上的顺序,幂指数按从小到大的顺序排列.4、幂函数的判断及应用(1)判断一个函数是否为幂函数的依据是该函数是否为y =x α(α为常数)的形式,需满足:①指数为常数,②底数为自变量,③x α的系数为1.形如y =(3x )α,y =2x α,y =x α+5…形式的函数都不是幂函数.(2)若一个函数为幂函数,则该函数也必具有y =x α(α为常数)这一形式.5、求幂函数的定义域和值域的方法幂函数的定义域和值域要根据解析式来确定,要保证解析式有意义,值域要在定义域范围内求解.幂函数的定义域由幂指数a 确定:(1)当幂指数a 取正整数时,定义域为R ,当a 为正偶数时,值域为[0,)+¥;当a 为奇数时,值域为R .(2)当幂指数a 取零或负整数时,定义域为(,0)(0,)-¥+¥U ,当0a =时,值域为{}1;当a 为负偶数时,值域为(0,)+¥;当a 为负奇数时,值域为{}0y y ¹.(3)当幂指数a 取分数时,可以先化为根式,再利用根式有意义求定义域和值域.6、幂函数图象的画法①确定幂函数在第一象限内的图象:先根据α的取值,确定幂函数y =x α在第一象限内的图象.②确定幂函数在其他象限内的图象:根据幂函数的定义域及奇偶性确定幂函数f (x )在其他象限内的图象.7、解决与幂函数有关的综合性问题的方法首先要考虑幂函数的概念,对于幂函数y =x α(α是常数),由于α的取值不同,所以相应幂函数的单调性和奇偶性也不同.同时,注意分类讨论思想的应用.8、解决幂函数图象问题应把握的原则(1)依据图象高低判断幂指数的大小,相关结论为:①在(0,1)上,指数越大,幂函数图象越靠近x 轴(简记为指大图低);②在(1,+∞)上,指数越大,幂函数图象越远离x 轴(简记为指大图高).(2)依据图象确定幂指数α与0,1的大小关系,即根据幂函数在第一象限内的图象(类似于y =x -1或y =12y x=或y =x 3)来判断.9、比较幂值大小的方法(1)若两个幂值的指数相同或可化为两个指数相同的幂值时,则可构造函数,利用幂函数的单调性比较大小.(2)若底数、指数均不同,则考虑用中间值法比较大小,这里的中间值可以是“0”或“1”.10、利用幂函数解不等式的步骤利用幂函数解不等式,实质是已知两个函数值的大小,判断自变量的大小,常与幂函数的单调性、奇偶性等综合命题.求解步骤如下:(1)确定可以利用的幂函数;(2)借助相应的幂函数的单调性,将不等式的大小关系,转化为自变量的大小关系;(3)解不等式(组)求参数范围,注意分类讨论思想的应用.题型1 幂函数的概念辨析【例1】下列函数是幂函数的是( )A .31y x =B .2x y =C .22y x =D .1y x -=-【答案】A【解析】由幂函数的定义,形如y x a =,R a Î叫幂函数,对A ,331y x x-==,故A 正确;B ,C ,D 均不符合.故选:A .【变式1】下列函数中幂函数的是( )A .3y x =B .22y x =+C .()21y x =+D .y =【答案】D【分析】根据幂函数的定义直接得出结果.【详解】A :函数3y x =为一次函数,故A 不符合题意;B :函数22y x =+为二次函数,故B 不符合题意;C :函数22(1)21y x x x =+=++为二次函数,故C 不符合题意;D :函数12y x ==为幂函数,故D 符合题意.故选:D【变式2】现有下列函数:①3y x =;②24y x =;③51y x =+;④()21y x =-;⑤y x =,其中幂函数的个数为( )A .4B .3C .2D .1【答案】C【分析】由幂函数的定义即可求解.【详解】由于幂函数的一般表达式为:(),0y x aa =¹;逐一对比可知题述中的幂函数有①3y x =;⑤y x =共两个.故选:C.题型2 求幂函数的解析式或值【例2】已知幂函数()f x 的图象过点æççè,则14f æö=ç÷èø.【答案】8【分析】设出解析式,代入点的坐标,求出()32f x x -=,再代入求值即可.【详解】令()f x x a=,由题意得2a =,即132222222a -==,解得32a =-,故()32f x x -=,则()323212284f --æö===ç÷èø.故答案为:8【变式1】函数()2227y k k x =--是幂函数,则实数k 的值是( )A .4k =B .2k =-C .4k =或2k =-D .4k ¹且2k ¹-【答案】C【解析】由幂函数的定义知2271k k --=,即2280k k --=,解得4k =或2k =-.故选:C【变式2】设函数()121,02,0xx x f x x ìï+>=íï£î,则()(4)f f -= .【答案】54【分析】根据分段函数的知识求得正确答案.【详解】()442f --=,()()()144225(4)221214f f f ----==+=+=.故答案为:54【变式3】已知幂函数()f x 满足(6)4(2)f f =,则13f æöç÷èø的值为( )A .2B .14C .14-D .2-【答案】B【分析】设出幂函数的解析式,根据已知,求出参数的关系式,即可计算作答.【详解】依题意,设()f x x a=,则(6)634(2)2f f aa a ===,所以1111()()3334f a a ===.故选:B【变式4】若函数()log 238a y x =-+(0a >且1a ¹)的图象恒过点P ,且点P 在幂函数()f x 的图象上,则()4f = .【答案】64【分析】先找到定点P 的坐标,通过P 点坐标求解幂函数()f x x a=的解析式,从而可求()4f .【详解】对于函数log 238ay x =-+(),令231x -=,解得2x =,此时8y =,因此函数log 238ay x =-+()的图象恒过定点()2,8P ,设幂函数()f x x a=,P 在幂函数()f x 的图象上,82a \=,解得3a =.()3f x x \=.则()34464==f .故答案为:64题型3 根据函数是幂函数求参数值【例3】已知幂函数()(2)n f x m x =+的图象经过点(4,2),则m n -=( )A .3-B .52-C .2-D .32-【答案】D【分析】根据幂函数的定义求解即可》【详解】依题意可得21m +=,所以1m =-,又()nf x x =的图象经过点()4,2,所以42n =,解得12n =,所以13122m n -=--=-.故选:D.【变式1】己知幂函数()(1)af x k x =-×的图象过点12æççè,则()f k = .【分析】先根据幂函数的定义及所过的点求出函数解析式,进而可得出答案.【详解】因为函数()(1)a f x k x =-×是幂函数,所以11k -=,解得2k =,又幂函数()a f x x =的图象过点12æççè,所以12aæö=ç÷èø12a =,所以12()f x x =,所以()()2f k f ==【变式2】已知幂函数()f x k x a=×的图象过点()3,9,则k a +=( )A .5B .4C .3D .2【答案】C【分析】根据幂函数的定义,求得1k =,再由()39f =,求得2a =,即可求解.【详解】由幂函数的定义,可得1k =,又由()39f =,可得39a =,解得2a =,所以3k a +=.故选:C.【变式3】“4m =”是“()22()33m f x m m x +=--是幂函数”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【答案】A【分析】运用幂函数定义及集合包含关系即可求得结果.【详解】因为()()2233m f x m m x +=--是幂函数,所以2331m m --=,解得4m =或1m =-,故“4m =”是“()()2233m f x m m x +=--是幂函数”的充分不必要条件.故选:A.题型4 幂函数的定义域问题【例4】下列函数中定义域为R 的是( )A .12y x =B .54y x =C .23y x =D .13y x -=【答案】C【分析】将分数指数幂化为根式,再根据幂函数的图像与性质即可得到答案.【详解】12y x ==[0,)+¥,故A 错误;54y x ==[0,)+¥,故B 错误;23y x ==R ,故C 正确;13y x-=={0}x x ¹∣,故D 错误,故选:C.【变式1】函数()0=f x x 的定义域是( )A .(],2-¥B .()0,2C .()(),00,2-¥U D .()(],00,2-¥È【答案】C【分析】根据函数的性质,被开偶次方根的数大于等于0,分母不能为0,0的0次幂没有意义等,列出不等式组,解之即可求解.【详解】要使函数()0=f x x 有意义,则有200x x ->ìí¹î,解得:2x <且0x ¹,所以函数的定义域为(,0)(0,2)-¥U ,故选:C .【变式2】函数()112f x x x -=+的定义域为( )A .(),-¥+¥B .()(),00,¥-+¥UC .[)0,¥+D .()0,¥+【答案】D【分析】化简函数解析式,根据函数解析式有意义可得出关于x 的不等式组,由此可解得原函数的定义域.【详解】因为()1121f x x x x -=+=,则00x x ¹ìí³î,可得0x >,故函数()f x 的定义域为()0,¥+.故选:D.【变式3】已知幂函数()y f x =的图象过点()4,2,则()112f x -的定义域为 .【答案】1(,)2-¥【分析】首先求幂函数的解析式,再求函数的定义域,根据复合函数的形式,求函数的定义域.【详解】∵()y f x x a==的图象过点()4,2,∴()f x =()112f x =-x 应该满足:120x ->,即12x <,∴()112f x -的定义域为1,2æö-¥ç÷èø.故答案为:1,2æö-¥ç÷èø题型5 幂函数的值域问题【例5】下列函数中,值域为()0,¥+的是( )A .()f xB .()1(0)f x x x x=+>C .()f x =D .()11(1)f x x x=->【答案】C【分析】根据函数的定义域、幂函数的性质、以及基本不等式可直接求得选项中各函数的值域进行判断即可.【详解】由已知()f x [)0,¥+,故A 错误;()1021x f x x x x >\=+³== ,,时,等号成立,所以()1(0)f x x x x =+>的值域是[)2,+¥,B 错误;()f x =因为定义域为()1,x ¥Î-+0> ,函数值域为(0,)+¥,故C 正确;1()1(1)f x x x =->,()10,1x Î,()11,0x -Î-,所以()()0,1f x Î,故D 错误.故选:C.【变式1】下列四个幂函数:①3y x -=;②2y x -=;③23y x -=;④32y x =的值域为同一区间的是 .(只需填写正确答案的序号)【答案】②③【解析】对于①,331y x x -==,则其值域为{}0y y ¹;对于②,221y x x-==,则其值域为{}0y y >;对于③,23y x-==,则其值域为{}0y y >,对于④,332y x ==,则其值域为{}0y y ³.综上符合题意的是②③.【变式2】在下列函数中,定义域和值域不同的是( )A .13y x =B .12y x =C .53y x =D .23y x =【答案】D【解析】由13y x ==x R Î,R y Î,定义域、值域相同;由12y x ==[0,)x Î+¥,[0,)y Î+¥,定义域、值域相同;由53y x ==可知,x R Î,,定义域、值域相同R y Î;由23y x ==x R Î,[0,)y Î+¥,定义域、值域不相同.故选:D【变式3】函数213324y x x =++,其中8x -…,则其值域为.【答案】[)3,+¥/()3y y ³【分析】利用换元法将函数化为2224(1)3y t t t =++=++,结合二次函数的性质即可得出结果.【详解】设13t x =,则2224(1)3y t t t =++=++.因为8x -…,所以2t -…. 当1t =-时,min 3y =.所以函数的值域为[3)+¥,.故答案为:[3)+¥,【变式4】已知函数())2()x a f x x x a ì³ï=í<ïî,若函数()f x 的值域为R ,则实数a 的取值范围为( )A .(1,0)-B .(1,0]-C .[1,0)-D .[1,0]-【答案】D【分析】求出分段函数在各段上的函数值集合,再根据给定值域,列出不等式求解作答.【详解】函数y =[,)a +¥上单调递减,其函数值集合为(,-¥,当0a >时,2y x =的取值集合为[0,)+¥,()f x 的值域(,[0,)R -¥È+¥¹,不符合题意,当0a £时,函数2y x =在(,)a -¥上单调递减,其函数值集合为2(,)a +¥,因函数()f x 的值域为R ,则有2a ³,解得10a -££,所以实数a 的取值范围为[1,0]-.故选:D题型6 幂函数的图象及应用【例6】图中1C 、2C 、3C 为三个幂函数y x a =在第一象限内的图象,则解析式中指数a 的值依次可以是( )A .12、3、1-B .1-、3、12C .12、1-、3D .1-、12、3【答案】D【分析】利用特值验证即可区分出三个幂函数图象分别对应的指数a 的值.【详解】在题给坐标系中,作直线12x =,分别交曲线321,,C C C 于A 、B 、C 三点则A B C y y y <<,又1312111122822-æöæöæö=<=<=ç÷ç÷ç÷èøèøèø则点A 在幂函数3y x =图像上,点B 在幂函数12y x =图像上,点C 在幂函数1y x -=图像上,则曲线123,,C C C 对应的指数分别为11,,32-故选:D【变式1】如图的曲线是幂函数n y x =在第一象限内的图象.已知n 分别取112,,,222--四个值,与曲线1234C C C C 、、、相应的n 依次为( )A .112,,,222--B .112,2,,22--C .11,,2,222--D .112,,2,22--【答案】A【解析】由幂函数的单调性可知曲线1234C C C C 、、、相应的n 应为112,,,222--.故选:A【变式2】幂函数2y x -=的大致图象是( )A .B .C .D .【答案】C【分析】首先求出函数的定义域,即可判断函数的奇偶性,再判断函数的单调性,即可得解.【详解】幂函数()221y f x x x -===定义域为{}|0x x ¹,且()()()2211f x f x x x -===-,所以()2y f x x -==为偶函数,函数图象关于y 轴对称,又当()0,x Î+¥时()2y f x x -==单调递减,则()2y f x x -==在(),0¥-上单调递增,故符合题意的只有C.故选:C【变式3】下面给出4个幂函数的图像,则图像与函数大致对应的是( )A .①3y x =,②2y x =,③12y x =,④1y x -=B .①2y x =,②13y x =,③12y x =,④1y x -=C .①2y x =,②3y x =,③12y x =,④1y x -=D .①13y x =,②12y x =,③2y x =,④1y x -=【答案】A【分析】根据幂函数的图像特征,对照四个选项一一验证,即可得到答案.【详解】函数3y x =为奇函数且定义域为R ,该函数图像应与①对应;函数20y x =³,且该函数是偶函数,其图像关于y 轴对称,该函数图像应与②对应;12y x ==[)0,¥+,该函数图像应与③对应;11y x x-==,其图像应与④对应.故选:A .【变式4】函数()54f x x =的图像大致为( )A .B .C .D .【答案】C【解析】()54f x x =的定义域为R ,且()()5544f x x x f x -=-==,故()54f x x =为偶函数,排除AB ,因为514>,故函数在()0,¥+上增长速度越来越快,为下凸函数,C 正确,D 错误.故选:C 【变式5】已知函数()02,0x f x x x³ï=í<ïî,若()()g x f x =-,则函数()g x 的图象是( )A . B .C .D .【答案】C【解析】作出函数()00x f x ³=<的图象如下图所示:因为()()g x f x =-,则将函数()f x 的图象关于x 轴对称,可得出函数()g x 的图象,如下图所示:故选:C.【变式6】【多选】函数()241f x ax x =++与()ag x x =在同一直角坐标系中的图象可能为( )A .B .C .D .【答案】ABC【分析】根据各选项中二次函数图象特征确定a 的正负,再观察幂函数图象判断即得.【详解】对于A ,二次函数开口向上,则0a >,此时存在()ag x x =与图中符合,如2a =,A 可能;对于B ,二次函数开口向下,则0a <,此时存在()ag x x =与图中符合,如1a =-,B 可能;对于C ,二次函数开口向上,则0a >,此时存在()ag x x =与图中符合,如12a =,C 可能;对于D ,二次函数开口向上,则0a >,此时()ag x x =在()0,¥+为增函数,不符合,D 不可能.故选:ABC【变式7】【多选】下列幂函数中满足条件()()()121212022f x f x x x f x x ++æö<<<ç÷èø的函数是( )A .()f x x =B .()2f x x=C .()f x =D .()1f x x=【答案】BD【分析】由题意知,当0x >时,()f x 的图象是凹形曲线,据此分析各选项中的函数图像是否满足题意即可.【详解】由题意知,当0x >时,()f x 的图象是凹形曲线.对于A,函数()f x x =的图象是一条直线,则当120x x <<时,有()()121222f x f x x x f ++æö=ç÷èø,不满足题意;对于B,函数()2f x x =的图象是凹形曲线,则当120x x <<时,有()()121222f x f x x x f ++æö<ç÷èø,满足题意;对于C,函数()f x =,则当120x x <<时,有()()121222f x f x x x f ++æö>ç÷èø,不满足题意;对于D,在第一象限内,函数()1f x x =的图象是一条凹形曲线,则当120x x <<时,有()()121222f x f x x x f ++æö<ç÷èø,满足题意.故选:BD.题型7 幂函数的图象过定点问题【例7】函数()2y x aa =-为常数的图象过定点.【答案】()1,1-【分析】利用11a =求得正确答案.【详解】当1x =时,121y a =-=-,所以定点为()1,1-.故答案为:()1,1-【变式1】【多选】下列四个函数中过相同定点的函数有( )A .2y ax a =+-B .1a y x =+C .11(0,1)x y a a a -=+>¹D .log (2)1(0,1)a y x a a =-+>¹【答案】ABC【分析】根据函数解析式,结合幂指对函数的性质确定各函数所过的定点坐标,即可判断过相同定点的函数.【详解】A :(1)2y a x =-+必过(1,2);B :1a y x =+,由11a =知函数必过(1,2);C :11(0,1)x y a a a -=+>¹,由01a =知函数必过(1,2);D :log (2)1(0,1)a y x a a =-+>¹,由log 10a =知函数必过(1,1);∴A 、B 、C 过相同的定点.故选:ABC.【变式2】已知函数y x a =的图象恒过定点A ,若点A 在一次函数y mx n =+的图象上,其中0m >,0n >,则11m n+的最小值为 .【答案】4【解析】函数y x a =的图象恒过定点(1,1)A ,所以1m n += ,因为,0m n >,所以1111()()224m n m n m n m n n m +=++=++=+=,当12m n ==时,11m n+的最小值为4.【变式3】已知幂函数1()(21)a g x a x +=-的图象过函数1()(0,1)2x bf x mm m -=->¹的图象所经过的定点,则b 的值等于( )A .12±B .C .2D .2±【答案】B【分析】先根据幂函数定义得1a =,再确定()f x 的图像所经过的定点为1,2b æöç÷èø,代入()g x 解得b 的值.【详解】由于1()(21)a g x a x +=-为幂函数,则211a -=,解得:1a =,则2()g x x =;函数1()(0,1)2x bf x m m m -=->¹,当x b = 时,11()22b b f b a -=-=,故()f x 的图像所经过的定点为1,2b æöç÷èø,所以1()2g b =,即212b =,解得:b =,故选:B.【变式4】若函数()y f x =与()y g x =图象关于y x =对称,且()23af x x +=+,则()yg x =必过定点( )A .()4,0B .()4,1C .()4,2D .()4,3【答案】D【解析】()23af x x +=+ ,()()23af x x \=-+,()()33234af \=-+=,所以,函数()y f x =的图象过定点()3,4,又 函数()y f x =与()y g x =图象关于y x =对称,因此,函数()y g x =必过定点()4,3.故选:D.题型8 判断幂函数的单调性【例8】【多选】下列函数中,在区间()0,¥+单调递减的是( )A .21y x =B .()ln 1y x =+C .1y x x=+D .2xy -=【答案】AD【分析】由复合函数的单调性、指数函数、幂函数及对勾函数单调性判断各个选项即可.【详解】对于A 项,由幂函数性质知,221y x x-==在(0,)+¥上单调递减,故A 项正确;对于B 项,令1t x =+(0x >),则ln y t =(1t >),因为1t x =+在(0,)+¥上单调递增,ln y t =在在(1,)+¥上单调递增,所以ln(1)y x =+在(0,)+¥上单调递增,故B 项不成立;对于C 项,由对勾函数性质可知,1y x x=+在(0,1)上单调递减,在(1,)+¥上单调递增,故C 项不成立;对于D 项,因为12(2xx y -==,所以2x y -=在(0,)+¥上单调递减,故D 项正确.故选:AD.【变式1】【多选】下列函数中,满足“x "ÎR ,()()0f x f x --=,且1x ",2(,0)x Î-¥,都有1212()()0f x f x x x ->-”的是( )A .()51f x x =+B .3()f x x=-C .4()f x x=D .2()2022f x x =-+【答案】BD【分析】由题意得函数()f x 是偶函数,()f x 在(),0¥-上单调递增,在(0,+∞)上单调递减,然后逐个分析判断即可.【详解】由()(),0x f x f x "Î--=R ,知函数()f x 是偶函数,由()12,,0x x ¥"Î-,都有()()12120f x f x x x ->-,知()f x 在(),0¥-上单调递增,所以()f x 在(0,+∞)上单调递减.对于A :()51f x x =+不满足为偶函数,故A 错误;对于B:()333,0,0x x f x x x x ì£=-=í->î,符合题意,故B 正确;对于C :4()f x x=不满足为偶函数,故C 错误;对于D:()22022f x x =-+符合题意.故选:BD.题型9 判断与幂函数相关的复合函数的单调性A .[)2,+¥B .[)4,+¥C .(],2-¥D .(],0-¥【答案】B【分析】求出函数的定义域,利用复合函数的单调性即可判断.【详解】令24t x x =-,则y =由240x x -³,解得4x ³或0x £,故函数y ={0x x £或x ≥4}.又函数24t x x =-在(],0-¥上单调递减,在[)4,+¥上单调递增,y 在[)0,+¥上单调递增,则函数y =[)4,+¥上单调递增.故选:B.【变式1】函数y =的单调减区间为 ;【答案】(],5-¥-【分析】先求解原函数的定义域,然后根据复合函数单调性分析求解即可.【详解】解:令245u x x =+-,则y =y =与245u x x =+-复合而成的函数. 令2450u x x =+-³,得5x £-或1x ³.易知245u x x =+-在(],5-¥-上是减函数,在[)1,+¥上是增函数,而y =在[)0,¥+上是增函数,所以y =(],5-¥-.故答案为:(],5-¥-.【变式2】已知幂函数()f x 的图象过点æççè,则函数()22y f x x =+的单调递增区间为( )A .(),2¥--B .(),1¥--C .(0,+∞)D .(1,+∞)【答案】A【分析】利用待定系数法求出幂函数的解析式,然后利用复合函数的单调性得出结果.【详解】设()f x x a=,因为()f x 的图象过点æççè,所以2a=,解得12a =-,即()12f x x -=,可得()f x 在(0,+∞)上单调递减,则函数()()122222y f x x x x -=+=+=,由220x x +>,解得2x <-或0x >,则函数22y x x =+在(),2¥--上单调递减,在(0,+∞)上单调递增,所以函数()22y f x x =+的单调递增区间为(),2¥--.故选:A.【变式3】【多选】已知幂函数()n f x x =的图像经过点(9,3),则下列结论正确的有( )A .()f x 为增函数B .若120x x >>,则()()121222f x f x x x f ++æö>ç÷èøC .()f x 为偶函数D .若1x >,则()1f x >【答案】ABD【分析】根据幂函数经过点(9,3),求出幂函数的解析式,利用幂函数的性质可直接判断选 项A ,C ,D 正误;对于选项B ,根据函数解析式分别表示出()()1212(),22f x f x x x f ++,再利用不等式的性质比较大小即可.【详解】解:由幂函数()n f x x =的图像经过点(9,3),得93n =,所以12n =.12()f x x ==[0,)+¥,对于A 选项:因为102>,由幂函数的性质得A 选项正确;对于B 选项:若120x x >>,则12(2x xf +()()12221212[([]222f x f x x x x x f +++-=21204x x -=>(),所以()()122212[()][]22f x f x x xf ++>,又()()1212()0,022f x f x x x f ++=>=>,所以()()1212(22f x f x x xf ++>,故B 选项正确;对于C 选项:由于定义域不关于数字0对称,故C 选项不正确;对于D 选项:因为()f x 为增函数,若1x >,则()(1)1f x f >=,故D 选项正确;故选:ABD.题型10 由幂函数的单调性求参数【例10】已知幂函数()()12232mf x m m x -=-满足()()23f f <,则m =.【答案】13-【分析】根据幂函数的定义,得2321m m -=,解得1m =或13m =-,分别代入()f x 判断函数单调性即可.【详解】由幂函数的定义可知,2321m m -=,即23210m m --=,解得1m =或13m =-.当1m =时,()12f x x -=在()0,¥+上单调递减,不满足()()23f f <;当13m =-时,()56f x x =在()0,¥+上单调递增,满足()()23f f <.综上,13m =-.故答案为:13-.【变式1】幂函数()()2345m f x m m x -=--在()0,¥+上为减函数,则m 的值为.【答案】2-【分析】根据幂函数定义求出m 的值,再利用单调性进行检验即得.【详解】因()()2345m f x m m x -=--是幂函数,则25=1m m --,解得:3m =或2m =-.当3m =时,5()f x x =,此时函数在()0,¥+上为增函数,舍去;当2m =-时,10()f x x -=,此时函数在()0,¥+上为减函数,符合题意.故答案为:2-.【变式2】已知幂函数()1232k y k k x-=-在区间()0,¥+上是严格增函数,则k = .【答案】1【分析】根据幂函数的定义及性质得到方程(不等式)组,解得即可.【详解】因为幂函数()1232k y k k x-=-在区间()0,¥+上是严格增函数,所以221103k k k ì-=ïí->ïî,解得1k =.故答案为:1【变式3】已知2311,,,,2,33422a ìüÎ---íýîþ,若幂函数()f x x a=在区间(),0¥-上单调递增,且其图像不过坐标原点,则a = .【答案】23-【分析】根据幂函数的性质分析求解.【详解】因为幂函数图像不过坐标原点,则0a £,当23a =-,()23f x x -==在区间(),0¥-上单调递增,符合题意;当34a =-,()34-=f x x ()0,¥+,不合题意;当12a =-,()12f x x -==的定义域为()0,¥+,不合题意;综上所述:23a =-.故答案为:23-.【变式4】已知幂函数()()21mf x m m x =+-在()0,¥+上是减函数,则11mx +<的解集为( )A .()0,1B .()(),01,-¥È+¥C .()2,0-D .()0,2【答案】A【分析】根据()f x 是幂函数且在()0,¥+上是减函数求出m 的值,再将所求不等式两边同时平方求出x 的范围.【详解】 ()()21mf x m m x =+-是幂函数,\211m m +-=,解得1m =或2m =-,当1m =时,()f x x =不满足()f x 在()0,¥+上是减函数,当2m =-时,()2f x x -=满足()f x 在()0,¥+上是减函数,\2m =-,将不等式211x -+<的两边同时平方得,24411x x -+<,解得01x <<,\11mx +<的解集为()0,1.故选:A.【变式5】已知函数2295,1()1,1a x ax x f x x x -ì-+£=í+>î,是R 上的减函数,则a 的取值范围是( )A .92,2éö÷êëøB .94,2éö÷êëøC .[]2,4D .(]9,2,2æù-¥+¥çúèûU 【答案】C【分析】根据函数的单调性列不等式,由此求得a 的取值范围.【详解】依题意,()f x 在R 上单调递减,所以2291229011511a a a a -ì³ïï-<íï-´+³+ïî,解得24a ££,所以a 的取值范围是[]2,4故选:C题型11比较幂值的大小【例11】设232555322555a b c æöæöæö===ç÷ç÷ç÷èøèøèø,,,则,,a b c 大小关系是 .【答案】a c b>>【分析】抓住同底与同指构造函数,利用单调性比较大小.【详解】因为()25f x x =在()0,¥+单调增,所以22553255æöæö>ç÷ç÷èøèø,即a c >,因为()25xg x æö=ç÷èø在(),-¥+¥单调减,所以32552255æöæö<ç÷ç÷èøèø,即,c b >综上,a c b >>.故答案为:a c b >>.【变式1】设 1.3 1.4 1.40.9,0.9,0.7a b c ===,则下列不等式中正确的是( )A .a b c <<B .c b a <<C .b a c <<D .c<a<b【答案】B【分析】利用指数函数和幂函数的性质求解即可.【详解】设()0.9xf x =,则由指数函数()0.9xf x =在R 上单调递减,得()() 1.3 1.41.3 1.40.90.9f f a b >Þ=>=,设() 1.4h x x =,则幂函数() 1.4h x x =在()0,¥+上单调递增,得()()1.41.40.90.90.70.7h b c h ==>==,所以a b c >>.故选:B【变式2】设21log 3a =,1312b æö=ç÷èø,1213c æö=ç÷èø,则( )A .c b a <<B .b a c <<C .a b c <<D .a c b<<【答案】D【分析】由对数函数、指数函数以及幂函数的单调性即可比较大小.【详解】2log x y = 在()0,+¥上是增函数,221log log 103a \=<=,12xy æö=ç÷èø在R 是减函数,12y x =在()0,¥+上是增函数,1113221110223b c æöæöæö=>>=>ç÷ç÷ç÷èøèøèø,a c b \<<.故选:D.题型12 利用幂函数的单调性解不等式【例12】不等式()()2233213x x +<-的解为 .【答案】24,3æö-ç÷èø【分析】根据幂函数的性质确定幂函数()23f x x =的奇偶性与单调性即可解不等式.【详解】解:幂函数()23f x x ==R ,且函数在[)0,¥+上单调递增,又()()f x f x -===,则()f x 为偶函数,所以()f x 在(),0¥-上单调递减,则由不等式()()2233213x x +<-可得213x x +<-,平方后整理得231080x x +-<,即()()3240x x -+<,解得243x -<<,则不等式的解集为24,3æö-ç÷èø.故答案为:24,3æö-ç÷èø.【变式1】实数a 满足3322(21)(1)a a --->+,则实数a 的取值集合为.【答案】1,22æöç÷èø【分析】首先分析出幂函数32y x -=的定义域和单调性,然后可解出不等式.【详解】32x y -=()0+¥,,且在定义域上单调递减,因为3322(21)(1)a a --->+,所以21010211a a a a ->ìï+>íï-<+î,解得122a <<故答案为:1,22æöç÷èø【变式2】已知幂函数14()f x x =,若(102)(1)f a f a -<+,则a 的取值范围是.【答案】(]3,5【解析】因为14()f x x =的定义域为[)0+,¥,且14()f x x =在[)0+,¥上单调递增,所以由(102)(1)f a f a -<+可得:1021102010a a a a -<+ìï-³íï+³î,解得:35a <£【变式3】已知函数21*()(N )m mf x xm +=Î.若该函数图象经过点 ,满足条件(2)(1)f a f a ->-的实数a 的取值范围是.【答案】31,2éö÷êëø【解析】由已知212m m +=22m m +=,又m 是正整数,故解得1m =,即12()f x x =,函数定义域是[0,)+¥,易知12()f x x =是增函数,所以由(2)(1)f a f a ->-得210a a ->-³,解得312a £<.【变式4】设函数1221,0(),0x x f x x x -ì-<ï=íï>î,如果()01f x >,则0x 的取值范围是 .【答案】()(),11,-¥-È+¥【分析】通过分00x <和00x >两种情况进行讨论,从而可求出0x 的取值范围.【详解】因为1221,0(),0x x f x x x -ì-<ï=íï>î,所以000211x x -<ìí->î或012001x x >ìïíï>î,解得01x <-或01x >,所以0x 的取值范围是()(),11,-¥-È+¥.故答案为:()(),11,-¥-È+¥.题型13 幂函数的奇偶性的应用【例13】已知幂函数()()2133a f x a a x +=-+为偶函数,则实数a 的值为.【答案】1【分析】根据幂函数定义和奇偶性直接求解即可.【详解】()f x 为幂函数,2331a a \-+=,解得:1a =或2a =;当1a =时,()2f x x =为偶函数,满足题意;当2a =时,()3f x x =为奇函数,不合题意;综上所述:1a =.故答案为:1.【变式1】若幂函数()()219mf x m m x =+-的图象关于y 轴对称,则m =( )A .5-或4B .5-C .4D .2【答案】C【分析】根据幂函数的定义与性质分析运算.【详解】若幂函数()()219mf x m m x =+-,则2191m m +-=,解得4m =或5m =-,且幂函数()f x 的图象关于y 轴对称,则m 为偶数,故4m =.故选:C .【变式2】幂函数y =223m m x --(m ∈Z )的图象如图所示,则实数m 的值为.【答案】1【分析】根据函数图象可判断单调性,进而可得2230m m --<,m 为整数,由验证是否是偶函数即可求解.【详解】有图象可知:该幂函数在()0+¥,单调递减,所以2230m m --<,解得13m -<<,m Z Î,故m 可取012,,,又因为该函数为偶函数,所以223m m --为偶数,故1m =故答案为:1题型14 幂函数的单调性和奇偶性的综合应用【例14】下列幂函数中,既在区间()0,¥+上递减,又是奇函数的是( ).A .12y x=B .13y x =C .23y x -=D .13y x -=【答案】D【分析】根据幂函数的奇偶性和单调性依次判断选项即可得到答案.【详解】对选项A ,12y x =在()0,¥+为增函数,故A 错误.对选项B ,13y x =在()0,¥+为增函数,故B 错误.对选项C ,23y x -=在()0,¥+为减函数,设()123321f x x x -æö==ç÷èø,定义域为{}|0x x ¹,()()()11332211f x f x x x éùæö-===êúç÷èø-êúëû,所以()f x 为偶函数,故C 错误.对选项D ,13y x -=在()0,¥+为减函数,设()11331f x x x -æö==ç÷èø,定义域为{}|0x x ¹,()()113311f x f x x x æöæö-==-=-ç÷ç÷-èøèø,所以()f x 为奇函数,故D 正确.故选:D【变式1】已知幂函数()223m m y x m N --*=Î的图象关于y 轴对称,且在()0,¥+上单调递减,则满足()()33132mma a --+<-的a 的取值范围为 .【答案】()23,1,32æö-¥-ç÷èøU 【分析】根据幂函数的单调性和奇偶性得到1m =,代入不等式得到()()1133132a a +<-,根据函数的单调性解得答案.【详解】幂函数()223m m y x m N --*=Î在()0,¥+上单调递减,故2230m m --<,解得13m -<<.*m N Î,故0m =,1,2.当0m =时 ,3y x -=不关于y 轴对称,舍去;当1m =时 ,4y x -=关于y 轴对称,满足;当2m =时 ,3y x -=不关于y 轴对称,舍去;故1m =,()()1133132a a --+<-,函数13y x -=在(),0¥-和()0,¥+上单调递减,故1320a a +>->或0132a a >+>-或1032a a +<<-,解得1a <-或2332a <<.故答案为:()23,1,32æö-¥-ç÷èøU 【变式2】若幂函数()22529m m f x x -++=的图象关于y 轴对称,()f x 解析式的幂的指数为整数, ()f x 在(),0¥-上单调递减,则m =( )A .19B .19或499C .13-D .13-或73【答案】D【分析】由题意知()f x 是偶函数,()f x 在(),0¥-上单调递减,可得22529m m -++为正偶数,再根据22529m m -++的范围可得答案.【详解】由题意知()f x 是偶函数,因为()f x 在(),0¥-上单调递减,所以22529m m -++为正偶数,又222534342(1)999m m m -++=--+£,∴234(1)29m --+=,解得73m =或13-.故选:D .【变式3】函数()2223()1(03,)m m f x m m x m m --=-+££ÎZ 同时满足①对于定义域内的任意实数x ,都有()()f x f x -=;②在(0,)+¥上是减函数,则f 的值为( )A .8B .4C .2D .1【答案】B【分析】由m 的值依次求出223m m --的值,然后根据函数的性质确定m ,得函数解析式,计算函数值.【详解】m ÎZ ,03m ££,0,1,2,3m =,代入223m m --分别是3,4,3,0---,在定义域内()()f x f x -=,即()f x 是偶函数,因此223m m --取值4-或0,2230m m --=时,()f x 在(0,)+¥上不是减函数,只有234-=-满足,此时1m =,4()f x x -=,444f -===.故选:B .【变式4】已知函数()333x x f x x -=+-,若2(2)(54)0f a a f a -+-<,则实数a 的取值范围为( )A .(4)(4)-¥-+¥U ,,B .(41)-,C .(1)(4)-¥-+¥U ,,D .(14)-,【答案】B【分析】首先判断()f x 的奇偶性和单调性,由此化简不等式2(2)(54)0f a a f a -+-<,从而求得a 的取值范围.【详解】()f x 的定义域为R ,()()333x x f x x f x --=-+-=-,所以()f x 为奇函数,()3133x xf x x =+-在R 上递增,由2(2)(54)0f a a f a -+-<得()2(2)(54)45f a a f a f a -<--=-,∴2245a a a -<-,2340a a +-<,()()410a a +-<解得41a -<<.故选:B题型15 幂函数性质的综合应用【例15】已知幂函数213()(22)m f x m m x -=-+.(1)求函数()f x 的解析式;(2)求函数()f x 的定义域、值域;(3)判断()f x 的奇偶性.【答案】(1)2()f x x -=(2)定义域为()(),00,¥-+¥U ,值域为(0,)+¥(3)偶函数【分析】(1)根据幂函数的定义运算求解;(2)根据幂函数解析式求定义域和值域;(3)根据偶函数的定义分析证明.【详解】(1)函数213()(22)m f x m m x -=-+为幂函数,则2221m m -+=,解得1m =,则13132m -=-=-,所以函数2()f x x -=;(2)221()f x x x-==,令20x ¹,解得0x ¹故函数2()f x x -=的定义域为(,0)(0,)A =-¥+¥U ,∵20x >,则21()0f x x =>,故函数2()f x x -=的值域为(0,)+¥;(3)任取x A Î,22()()()f x x x f x ---=-==,所以函数()f x 是定义域上的偶函数.【变式1】已知幂函数()22()55m f x m m x -=-+的图像关于点(0,0)对称.(1)求该幂函数()f x 的解析式;(2)设函数()|()|g x f x =,在如图的坐标系中作出函数()g x 的图像;(3)直接写出函数()1g x >的解集.【答案】(1)1()f x x=(2)图像见解析(3)()()1,00,1-U 【分析】(1)利用幂函数的定义求出m 值,再结合其图像性质即可得解.(2)由(1)求出函数()g x ,再借助反比例函数与偶函数的对称性作出()g x 的图像.(3)根据(2)中图像特征写出函数()g x 的单调区间.【详解】(1)因为()22()55m f x m m x -=-+是幂函数,所以2551m m -+=,解得1m =或4m =,当1m =时,函数11()f x x x-==定义域是(,0)(0,)-¥+¥U ,易得()f x 是奇函数,图像关于原点对称,则1m =满足题意;当4m =时,函数2()f x x =,易知()f x 是R 上的偶函数,其图像关于y 轴对称,关于原点不对称;综上:幂函数()f x 的解析式是11()f x x x-==.(2)因为函数()|()1|||g f x x x ==,定义域为(,0)(0,)-¥+¥U ,且()()11g x g x x x-===-,所以()g x 是(,0)(0,)-¥+¥U 上的偶函数,当0x >时,1()g x x=在(0,)+¥上单调递减,其图像是反比例函数1y x =在第一象限的图像,作出函数()g x 在第一象限的图像,再将其关于y 翻折即可得()g x 在定义域上的图像,如图,(3)观察(2)中图像可得,()1g x >的解集为()()1,00,1-U .。

高一幂函数题型练习(全)

高一幂函数题型练习(全)

幂函数 知识梳理一、幂函数的定义与性质1.一般地,函数叫做幂函数.特别提醒:幂函数的表达式有四个特征:①解析式的右边是一个幂;②系数为1;③底数未自变量;④指数为常数.二、幂函数的图象及性质1.幂函数,,,,的性质图象定义域值域奇偶性奇偶奇非奇非偶奇单调性增递减递增增增递减递减定点,图象特点在第一象限内,幂函数的指数越小,其图象越靠近轴2.幂函数的图象及性质(1)当时,①图象都过点,;②在第一象限内,函数值随的增大而增大;③在第一象限内,时,图象是向下凸的,时,图象是向上凸的;④在第一象限内,过点后,图象向右上方无限伸展.(2)当时,①图象都多点;②在第一象限内,函数值随的增大而减小,图象是向下凸的;③在第一象限内,图象向左与轴无限接近,向右与轴无限接近;④在第一象限内,过点后,越大,图象下落的速度越快.三、幂函数的奇偶性对于幂函数,令,其中、互质,、.若为奇数,则的奇偶性取决于是奇数还是偶数,当是奇数时,则是奇函数;当是偶数时,是偶函数;若为偶数,则必定是奇数,此时既不是奇函数,也不是偶函数.四、幂的大小的比较方法比较两个幂值的大小,关键是构造适当的函数.若指数相同而底数不同,则考虑借助幂函数的单调性;若指数不同而底数相同,则考虑借助函数的图象来比较.题型训练题型一幂函数的概念(系数为1)1.若函数为幂函数,则等于?2.已知幂函数的图象经过点,则?3.若函数是幂函数,则?4.若幂函数的图像过点,则该幂函数的解析式为?5.若在幂函数的图象上,则?6.已知幂函数,其图象过原点,则实数的值为?题型二图像问题1.如图所示,曲线与分别是函数和在第一象限内的图象,则下列结论正确的是()A.B.C.D.2.若四个幂函数,,,在同一坐标系中的图象如图,则、、、的大小关系是()A.B.C.D.3.已知幂函数,当时,恒有,则 的取值范围是()A.B.C.D.4.使不等式成立的的取值范围是()A.或B.C.D.5.设时,若函数与则有两个不同的交点,求实数的取值范围?题型三过定点1.函数恒过定点?题型四幂函数单调性与奇偶性1.下列幂函数中是奇函数且在上单调递增的是(填序号).2.已知幂函数在上单调递减,则的值为?3.幂函数在上是减函数,且,则可能等于()A.B.C.D.4.下列函数中,既是偶函数,又在区间上单调递减的函数是()A.B.C.D.5.已知函数是定义在区间上的奇函数,则6.若函数是幂函数且在是递增的,则?7.已知幂函数的图象关于轴对称,且在上是减函数.(1)求的值;(2)求满足不等式的实数a的取值范围.题型五比大小1.比较两个幂的值的大小:,2.若,则实数的取值范围为?3.,;,;4.,,的大小关系是()A.B.C.D.5.设,,,则,,的大小关系是()A.B.C.D.6.当时,,,的大小关系是()A.B.C.D.7.当时,函数,,的大小关系是.题型六解不等式1.若,试求实数的取值范围.2.已知幂函数,若,则的取值范围是?3.已知幂函数,若,则a的取值范围是?4.已知幂函数的图象经过点,且,则实数的取值范围是()A.B.C.D.5.6.若,则实数x的取值范围()A.B.C.D.。

2024年新高一数学初升高衔接《幂函数》含答案解析

2024年新高一数学初升高衔接《幂函数》含答案解析

第12讲 幂函数模块一 思维导图串知识模块二 基础知识全梳理(吃透教材)模块三 核心考点举一反三模块四 小试牛刀过关测1.了解幂函数的概念;2.结合幂函数y =x ,y =x 2,y =x 3,y =x -1,12y x 的图象,掌握它们的性质;3.能利用幂函数的单调性比较幂的大小.知识点 1 幂函数的概念1、幂函数的定义:一般地,函数y =x α叫做幂函数,其中x 是自变量,α是常数.2、幂函数的特征:(1)x α的系数是1;(2)x α的底数x 是自变量;(3)x α的指数α为常数.只有满足这三个条件,才是幂函数.对于形如y =(2x )α,y =2x 5,y =x α+6等的函数都不是幂函数.知识点 2 幂函数的图象与性质1、五个具体幂函数的图象当11,2,312α=-,时,可得到五个幂函数y =x ,y =x 2,y =x 3,y =x -1,12y x =,在同一直角坐标系中,通过秒点发得到五个幂函数的图象,如下图所示.2、五个具体幂函数的性质观察上图,可以得到五个幂函数的性质如下:函数y x=2y x=3y x =12y x=1y x -=定义域R RR [0,)+∞(,0)(0,)-∞+∞ 值域R[0,)+∞R[0,)+∞(,0)(0,)-∞+∞ 奇偶性奇函数偶函数奇函数非奇非偶函数奇函数单调性增函数在(0,)+∞上递增,在(,0]-∞上递减增函数增函数在(,0)-∞和(0,)+∞上递减过定点点(1,1)3、一般幂函数的性质(1)所有的幂函数在(0,+∞)上都有定义,并且图象都过点(1,1);(2)如果α>0,那么幂函数的图象过原点,并且在区间[0,+∞)上单调递增;(3)如果α<0,那么幂函数的图象在区间(0,+∞)上单调递减,在第一象限内,当x 从右边趋向于原点时,图象在y 轴右方无限接近y 轴,当x 从原点趋向于+∞时,图象在x 轴上方无限接近x 轴;(4)在(1,+∞)上,随幂指数的逐渐增大,图象越来越靠近y 轴.知识点 3 作幂函数图象的步骤第一步:画出第一象限的部分。

专题 幂、指数、对数函数(七大题型)(解析版)

专题  幂、指数、对数函数(七大题型)(解析版)

专题幂、指数、对数函数(七大题型)目录:01幂函数的相关概念及图像02幂函数的性质及应用03指数、对数式的运算04指数、对数函数的图像对比分析05比较函数值或参数值的大小06指数、对数(函数)的实际应用07指数、对数函数的图像与性质综合及应用01幂函数的相关概念及图像1(2024高三·全国·专题练习)若幂函数y=f x 的图象经过点2,2,则f16=()A.2B.2C.4D.12【答案】C【分析】利用已知条件求得幂函数解析式,然后代入求解即可.【解析】设幂函数y=f x =xα,因为f x 的图象经过点2,2,所以2α=2,解得α=1 2,所以f x =x 12,所以f16=1612=4.故选:C2(2024高三·全国·专题练习)结合图中的五个函数图象回答问题:(1)哪几个是偶函数,哪几个是奇函数?(2)写出每个函数的定义域、值域;(3)写出每个函数的单调区间;(4)从图中你发现了什么?【答案】(1)答案见解析;(2)答案见解析;(3)答案见解析;(4)答案见解析.【分析】根据已知函数图象,数形结合即可求得结果.【解析】(1)数形结合可知,y =x 2的图象关于y 轴对称,故其为偶函数;y =x ,y =x 3,y =1x的图象关于原点对称,故都为奇函数.(2)数形结合可知:y =x 的定义域是0,+∞ ,值域为0,+∞ ;y =x ,y =x 3的定义域都是R ,值域也是R ;y =1x的定义域为-∞,0 ∪0,+∞ ,值域也为-∞,0 ∪0,+∞ ;y =x 2的定义域为R ,值域为0,+∞ .(3)数形结合可知:y =x 的单调增区间是:0,+∞ ,无单调减区间;y =x ,y =x 3的单调增区间是:R ,无单调减区间;y =1x的单调减区间是:-∞,0 和0,+∞ ,无单调增区间;y =x 2的单调减区间是-∞,0 ,单调增区间是0,+∞ .(4)数形结合可知:幂函数均恒过1,1 点;幂函数在第一象限一定有图象,在第四象限一定没有图象.对幂函数y =x α,当α>0,其一定在0,+∞ 是单调增函数;当α<0,在0,+∞ 是单调减函数.3(2022高一上·全国·专题练习)如图所示是函数y =x mn(m 、n ∈N *且互质)的图象,则()A.m ,n 是奇数且mn<1 B.m 是偶数,n 是奇数,且m n<1C.m 是偶数,n 是奇数,且mn>1 D.m ,n 是偶数,且mn>1【答案】B【分析】根据图象得到函数的奇偶性及0,+∞ 上单调递增,结合m 、n ∈N *且互质,从而得到答案.【解析】由图象可看出y =x mn为偶函数,且在0,+∞ 上单调递增,故m n ∈0,1 且m 为偶数,又m 、n ∈N *且互质,故n 是奇数.故选:B02幂函数的性质及应用4(2023高三上·江苏徐州·学业考试)已知幂函数f x =m 2+2m -2 x m 在0,+∞ 上单调递减,则实数m 的值为()A.-3 B.-1C.3D.1【答案】A【分析】根据幂函数的定义,求得m =-3或m =1,结合幂函数的单调性,即可求解.【解析】由函数f x =m 2+2m -2 x m 为幂函数,可得m 2+2m -2=1,即m 2+2m -3=0,解得m =-3或m =1,当m =-3时,函数f x =x -3在0,+∞ 上单调递减,符合题意;当m =1时,函数f x =x 在0,+∞ 上单调递增,不符合题意.故选:A .5(23-24高三上·安徽·阶段练习)已知幂函数f x =m 2-5m +5 x m -2是R 上的偶函数,且函数g x =f x -2a -6 x 在区间1,3 上单调递增,则实数a 的取值范围是()A.-∞,4B.-∞,4C.6,+∞D.-∞,4 ∪6,+∞【答案】B【分析】根据幂函数的定义与奇偶性求出m 的值,可得出函数f x 的解析式,再利用二次函数的单调性可得出关于实数a 的不等式,即可解得实数a 的取值范围.【解析】因为幂函数f x =m 2-5m +5 x m -2是R 上的偶函数,则m 2-5m +5=1,解得m =1或m =4,当m =1时,f x =x -1,该函数是定义域为x x ≠0 的奇函数,不合乎题意;当m =4时,f x =x 2,该函数是定义域为R 的偶函数,合乎题意.所以,f x =x 2,则g x =x 2-2a -6 x ,其对称轴方程为x =a -3,因为g x 在区间1,3 上单调递增,则a -3≤1,解得a ≤4.故选:B .6(23-24高三上·上海静安·阶段练习)已知a ∈-1,2,12,3,13,若f x =x a为奇函数,且在0,+∞ 上单调递增,则实数a 的取值个数为()A.1个 B.2个C.3个D.4个【答案】B【分析】a =-1时,不满足单调性,a =2或a =12时,不满足奇偶性,当a =3或a =13时,满足要求,得到答案.【解析】当a =-1时,f x =x -1在0,+∞ 上单调递减,不合要求,当a =2时,f -x =-x 2=x 2=f x ,故f x =x 2为偶函数,不合要求,当a =12时,f x =x 12的定义域为0,+∞ ,不是奇函数,不合要求,当a =3时,f -x =-x 3=-x 3=-f x ,f x =x 3为奇函数,且f x =x 3在0,+∞ 上单调递增,满足要求,当a =13时,f -x =-x 13=-x 13=-f x ,故f x =x 13为奇函数,且f x =x 13在0,+∞ 上单调递增,满足要求.故选:B7(22-23高三下·上海·阶段练习)已知函数f x =x 13,则关于t 的表达式f t 2-2t +f 2t 2-1 <0的解集为.【答案】-13,1 【分析】利用幂函数的性质及函数的奇偶性和单调性即可求解.【解析】由题意可知,f x 的定义域为-∞,+∞ ,所以f -x =-x 13=-x 13=-f x ,所以函数f x 是奇函数,由幂函数的性质知,函数f x =x 13在函数-∞,+∞ 上单调递增,由f t 2-2t +f 2t 2-1 <0,得f t 2-2t <-f 2t 2-1 ,即f t 2-2t <f 1-2t 2 ,所以t 2-2t <1-2t 2,即3t 2-2t -1<0,解得-13<t <1,所以关于t 的表达式f t 2-2t +f 2t 2-1 <0的解集为-13,1 .故答案为:-13,1 .8(23-24高三上·河北邢台·期中)已知函数f x =m 2-m -1 x m 2+m -3是幂函数,且在0,+∞ 上单调递减,若a ,b ∈R ,且a <0<b ,a <b ,则f a +f b 的值()A.恒大于0B.恒小于0C.等于0D.无法判断【答案】B【分析】由幂函数的定义与性质求得函数解析式,确定其是奇函数,然后利用单调性与奇偶性可判断.【解析】由m 2-m -1=1得m =2或m =-1,m =2时,f (x )=x 3在R 上是增函数,不合题意,m =-1时,f (x )=x -3,在(0,+∞)上是减函数,满足题意,所以f (x )=x -3,a <0<b ,a <b ,则b >-a >0,f (-a )>f (b ),f (x )=-x 3是奇函数,因此f (-a )=-f (a ),所以-f (a )>f (b ),即f (a )+f (b )<0,故选:B .9(2023·江苏南京·二模)幂函数f x =x a a ∈R 满足:任意x ∈R 有f -x =f x ,且f -1 <f 2 <2,请写出符合上述条件的一个函数f x =.【答案】x 23(答案不唯一)【分析】取f x =x 23,再验证奇偶性和函数值即可.【解析】取f x =x 23,则定义域为R ,且f -x =-x 23=x 23=f x ,f -1 =1,f 2 =223=34,满足f -1 <f 2 <2.故答案为:x 23.10(2022高三·全国·专题练习)已知函数f (x )=x 2,g (x )=12x-m(1)当x ∈[-1,3]时,求f (x )的值域;(2)若对∀x ∈0,2 ,g (x )≥1成立,求实数m 的取值范围;(3)若对∀x 1∈0,2 ,∃x 2∈[-1,3],使得g (x 1)≤f (x 2)成立,求实数m 的取值范围.【答案】(1)[0,9];(2)m ≤-34;(3)m ≥-8.【分析】(1)由二次函数的性质得出值域;(2)将问题转化为求g (x )在0,2 的最小值大于或等于1,再根据指数函数的单调性得出实数m 的取值范围;(3)将问题转化为g (x )在0,2 的最大值小于或等于f (x )在[-1,3]上的最大值9,从而得出实数m 的取值范围.【解析】(1)当x ∈[-1,3]时,函数f (x )=x 2∈[0,9]∴f (x )的值域0,9(2)对∀x ∈0,2 ,g (x )≥1成立,等价于g (x )在0,2 的最小值大于或等于1.而g (x )在0,2 上单调递减,所以12 2-m ≥1,即m ≤-34(3)对∀x 1∈0,2 ,∃x 2∈[-1,3],使得g (x 1)≤f (x 2)成立,等价于g (x )在0,2 的最大值小于或等于f (x )在[-1,3]上的最大值9由1-m ≤9,∴m ≥-803指数、对数式的运算11(23-24高三上·山东泰安·阶段练习)(1)计算14-124ab -1 30.1-1⋅a 3⋅b -312的值;.(2)log 37+log 73 2-log 949log 73-log 73 2; (3)log 39+12lg25+lg2-log 49×log 38+2log 23-1+ln e 【答案】(1)85;(2)2;(3)4【分析】根据指数幂运算公式和对数运算公式计算即可.【解析】(1)原式=412⋅4ab -13210⋅a 32b -32=2⋅8a 32b-3210⋅a 32b-32=85;(2)原式=log 37+log 73 2-log 73 2-log 3272×log 37=log 37×log 37+2log 73 -log 37×log 37=log 37×2log 73=2;(3)原式=log 31232+lg5+lg2-log 2232×log 323+2log 23×2-1+ln e12=4+1-3+32+12=4.12(23-24高一上·湖北恩施·期末)(1)计算:lg 12-lg 58+lg12.5-log 89⋅log 278.(2)已知a 12+a -12=3,求a +a -1+2a 2+a -2-2的值.【答案】(1)13;(2)15【分析】(1)根据对数的运算法则和运算性质,即可求解;(2)根据实数指数幂的运算性质,准确运算,即可求解.【解析】(1)由对数的运算公式,可得原式=-lg2-lg5-3lg2 +3lg5-1-23log 32×log 23=13.(2)因为a 12+a -12=3,所以a +a -1+2=9,可得a +a -1=7,所以a 2+a -2+2=49,可得a 2+a -2=47,所以a +a -1+2a 2+a -2-2=7+247-2=15.04指数、对数函数的图像对比分析13(2024·四川·模拟预测)已知函数y =x a ,y =b x ,y =log c x 在同一平面直角坐标系的图象如图所示,则()A.log 12c <b a <sin bB.log 12c <sin b <b aC.sin b <b a <log 12cD.sin b <log 12c <b a【答案】B【分析】根据幂函数,指数与对数函数的性质可得a ,b ,c 的取值范围,进而根据指对数与三角函数的性质判断即可.【解析】因为y =x a 图象过1,1 ,故由图象可得a <0,又y =b x 图象过0,1 ,故由图象可得0<b <1,又y =log c x 图象过1,0 ,故由图象可得c >1.故log 12c <log 121=0,0<sin b <1,b a >b 0=1,故log 12c <sin b <b a .故选:B14(2024高三·全国·专题练习)在同一平面直角坐标系中,函数y =1a x,y =log a x +12 (a >0,且a ≠1)的图象可能是()A. B.C. D.【答案】D 【解析】略15(2024·陕西·模拟预测)已知函数f x 的部分图象如图所示,则f x 的解析式可能为()A.f x =e x -e -xB.f x =1-2e x+1C.f x =x xD.f x =x ln x 2+2【答案】D【分析】结合指数函数的图象与性质即可判断AB 选项错误,对C 代入x =2判断C 错误,则可得到D 正确.【解析】根据函数f (x )的图象,知f (1)≈1,而对A 选项f 1 =e -e -1>2排除A ;对B 选项f x =1-2e x +1,因为e x +1>1,则2e x +1∈0,2 ,则f x =1-2e x +1∈-1,1 ,但图象中函数值可以大于1,排除B ;根据C 选项的解析式,f (2)=22≈2.8,而根据函数f (x )的图象,知f (2)≈1,排除C . 故选:D .16(23-24高三上·山东潍坊·期中)已知指数函数y =a x ,对数函数y =log b x 的图象如图所示,则下列关系成立的是()A.0<a <b <1B.0<a <1<bC.0<b <1<aD.a <0<1<b【答案】B【分析】根据题意,由指数函数以及对数函数的单调性即可得到a ,b 的范围,从而得到结果.【解析】由图象可得,指数函数y =a x 为减函数,对数函数y =log b x 为增函数,所以0<a <1,b >1,即0<a <1<b .故选:B17(23-24高三上·黑龙江哈尔滨·阶段练习)函数f (x )=x 22x -2-x 的图象大致为()A. B.C. D.【答案】A【分析】利用函数的性质和特值法对不符合题意的选项加以排除,即可得出答案.【解析】因为2x -2-x ≠0,所以x ≠0,定义域为-∞,0 ∪0,+∞ ;因为f (x )=x 22x -2-x ,所以f -x =x 22-x -2x ,故f x =-f -x ,所以f x 为奇函数,排除B ,当x 趋向于正无穷大时,x 2、2x -2-x 均趋向于正无穷大,但随x 变大,2x -2-x 的增速比x 2快,所以f x 趋向于0,排除D ,由f 1 =23,f 12 =24,则f 1 >f 12,排除C .故选:A .05比较函数值或参数值的大小18(2024·全国·模拟预测)已知a =12a,12b=log a b ,a c=log12c ,则实数a ,b ,c 的大小关系为()A.a <b <cB.a <c <bC.c <b <aD.c <a <b【答案】D【分析】由函数单调性,零点存在性定理及画出函数图象,得到a ,b ,c ∈0,1 ,得到log a b <1=log a a ,求出b>a ,根据单调性得到c =12 a c<12a=a ,从而得到答案.【解析】令f x =12x-x ,其在R 上单调递减,又f 0 =1>0,f 1 =12-1=-12<0,由零点存在性定理得a ∈0,1 ,则y =log a x 在0,+∞ 上单调递减,画出y 1=12x与y =log a x 的函数图象,可以得到b ∈0,1 ,又y 2=a x 在R 上单调递减,画出y 2=a x 与y 3=log 12x 的函数图象,可以看出c∈0,1,因为12b<12 0=1,故log a b<1=log a a,故b>a,因为a,c∈0,1,故a c>a1=a,由a c=log12c得,c=12a c<12 a=a.综上,c<a<b.故选:D.【点睛】指数和对数比较大小的方法有:(1)画出函数图象,数形结合得到大小关系;(2)由函数单调性,可选取适当的“媒介”(通常以“0”或“1”为媒介),分别与要比较的数比较大小,从而间接地得出要比较的数的大小关系;(3)作差(商)比较法是比较两个数值大小的常用方法,即对两值作差(商),看其值与0(1)的关系,从而确定所比两值的大小关系.19(2023·江西赣州·二模)若log3x=log4y=log5z<-1,则()A.3x<4y<5zB.4y<3x<5zC.4y<5z<3xD.5z<4y<3x【答案】D【分析】设log3x=log4y=log5z=m<-1,得到x=3m,y=4m,z=5m,画出图象,数形结合得到答案.【解析】令log3x=log4y=log5z=m<-1,则x=3m,y=4m,z=5m,3x=3m+1,4y=4m+1,5z=5m+1,其中m+1<0,在同一坐标系内画出y=3x,y=4x,y=5x,故5z<4y<3x故选:D20(2024高三下·全国·专题练习)已知函数f x =e x,g x =ln x,正实数a,b,c满足f a =ga ,fb g b =g a ,gc +f g a c=0,则()A.b<a<cB.c<a<bC.a<c<bD.c<b<a【答案】B【分析】由f a =g a 可得0<a <1,结合f b g b =g a 可判断b 的范围,再由g c +f g a c =0可得ln c +a c =0,结合e a =1a 可判断a ,c 大小关系,进而可得答案.【解析】由题得,g x =1x ,由f a =g a ,得e a =1a ,即1a>1,所以0<a <1.由f b g b =g a ,得e b ln b =ln a ,因为ln a <0,e b >0,所以ln b <0,又e b >1,所以ln a =e b ln b <ln b ,所以0<a <b <1.由g c +f g a c =0,得ln c +e ln a c=0,即ln c +a c =0.易知a c >0,所以ln c <0,所以0<c <1,故a <a c .又e a =1a,所以a =-ln a ,所以-ln c =a c >a =-ln a ,所以ln c <ln a ,所以c <a ,所以c <a <b .故选:B .【点睛】思路点睛:比较大小常用方法:(1)同构函数,利用单调性比较;(2)取中间值进行比较;(3)利用基本不等式比较大小;(4)利用作差法比较大小.21(2023·浙江绍兴·二模)已知f x 是定义域为R 的偶函数,且在(-∞,0)上单调递减,a =f ln2.04 ,b =f -1.04 ,c =f e 0.04 ,则()A.a <b <cB.a <c <bC.c <b <aD.c <a <b【答案】A【分析】令g x =e x -x -1,利用导数求得g x 在(0,1)单调递增,得到g x >g 0 =0,得到e 0.04>1.04,再由对数函数的性质,得到ln2.04<1.04<e 0.04,再由函数f x 的单调性与奇偶性f ln2.04 <f 1.04 <f e 0.04 ,即可求解.【解析】令g x =e x -x -1,x ∈(0,1),可得g x =e x -1>0,所以g x 在(0,1)单调递增,又由g 0 =0,所以g x >g 0 =0,即g 0.04 >0,可得e 0.04>0.04+1=1.04,又由ln2.04∈(0,1),所以ln2.04<1.04<e 0.04,因为f x 是定义域为R 的偶函数,且在(-∞,0)上单调递减,则f x 在(0,+∞)上单调递增,且b =f -1.04 =f (1.04),所以f ln2.04 <f 1.04 <f e 0.04 ,即f ln2.04 <f -1.04 <f e 0.04 ,所以a <b <c .故选:A .06指数、对数(函数)的实际应用22(2024·安徽合肥·二模)常用放射性物质质量衰减一半所用的时间来描述其衰减情况,这个时间被称做半衰期,记为T (单位:天).铅制容器中有甲、乙两种放射性物质,其半衰期分别为T 1,T 2.开始记录时,这两种物质的质量相等,512天后测量发现乙的质量为甲的质量的14,则T 1,T 2满足的关系式为()A.-2+512T1=512T2B.2+512T1=512T2C.-2+log2512T1=log2512T2D.2+log2512T1=log2512T2【答案】B【分析】设开始记录时,甲乙两种物质的质量均为1,可得512天后甲,乙的质量,根据题意列出等式即可得答案.【解析】设开始记录时,甲乙两种物质的质量均为1,则512天后,甲的质量为:1 2512T1,乙的质量为:12 512T2,由题意可得12512T2=14⋅12 512T1=12 2+512T1,所以2+512T1=512T2.故选:B.23(2024·黑龙江哈尔滨·一模)酒驾是严重危害交通安全的违法行为.为了保障交通安全,根据国家有关规定:100mL血液中酒精含量达到20~79mg的驾驶员即为酒后驾车,80mg及以上认定为醉酒驾车.假设某驾驶员喝了一定量的酒后,其血液中的酒精含量上升到了0.6mg/mL.如果停止喝酒以后,他血液中酒精含量会以每小时30%的速度减少,那么他至少经过几个小时才能驾驶?( )(结果取整数,参考数据:lg3≈0.48,lg7≈0.85)A.1B.2C.3D.4【答案】D【分析】设经过x个小时才能驾驶,则0.6×100×1-30%x<20,再根据指数函数的性质及对数的运算计算可得.【解析】设经过x个小时才能驾驶,则0.6×100×1-30%x<20即0.7x<1 3 .由于y=0.7x在定义域上单调递减,x>log0.713=lg13lg0.7=lg1-lg3lg7-1=-0.480.85-1=0.480.15=3.2.他至少经过4小时才能驾驶.故选:D.07指数、对数函数的图像与性质综合及应用24(2024·山东聊城·二模)已知函数f x 为R上的偶函数,且当x>0时,f x =log4x-1,则f-223=()A.-23B.-13C.13D.23【答案】A【分析】根据偶函数的定义可得f-22 3=f223 ,结合函数解析式和对数的运算性质即可求解.【解析】因为f(x)为偶函数,所以f(-x)=f(x),则f-22 3=f223 =log4223-1=log22223-1=log2213-1=13-1=-23.故选:A25(2023·江西南昌·三模)设函数f x =a x0<a<1,g x =log b x b>1,若存在实数m满足:①f (m )+g (m )=0;②f (n )-g (n )=0,③|m -n |≤1,则12m -n 的取值范围是()A.-12,-14B.-12,-3-54C.-34,-12D.-3+54,-12【答案】D【分析】由①f (m )+g (m )=0,②f (n )-g (n )=0解出0<m <1,n >1,解出12m -n <-12;结合③转化为线性规划问题解出z >-3+54.【解析】函数f x =a x 0<a <1 ,g x =log b x b >1 ,若存在实数m 满足:①f (m )+g (m )=0;②f (n )-g (n )=0,即a m =-log b m ,且a n =log b n ,则a n -a m =log b mn <0,则0<mn <1,且0<m <1,n >1,所以12m -n <-12,又因为③|m -n |≤1,则0<mn <1m -n ≤1 ,令z =12m -n ,不防设x =m ,y =n ,则转化为线性规划问题,在A 点处z 取最小值.由y =1xy =x +1 解得x =-1+52y =5+12,代入解得z >-3+54.故选:D .26(2022高三·全国·专题练习)已知函数f x =log a ax +9-3a (a >0且a ≠1).(1)若f x 在1,3 上单调递增,求实数a 的取值范围;(2)若f 3 >0且存在x 0∈3,+∞ ,使得f x 0 >2log a x 0成立,求a 的最小整数值.【答案】(1)1,92 (2)7【分析】(1)设g x =ax +9-3a ,得到g x 在1,3 上是增函数,且g 1 >0,即可求解;(2)由f 3 >0,的得到a >1,把不等式f x 0 >2log a x 0,转化为a >x 0+3,结合题意,即可求解.【解析】(1)解:由函数f x =log a ax +9-3a ,设g x =ax +9-3a ,由a >0且a ≠1,可得函数g x 在1,3 上是增函数,所以a >1,又由函数定义域可得g 1 =9-2a >0,解得a <92,所以实数a 的取值范围是1,92.(2)解:由f 3 =log a 9>0,可得a >1,又由f x 0 >2log a x 0,可得log a ax 0+9-3a >log a x 20,所以ax 0+9-3a >x 20,即a >x 0+3,因为存在x 0∈3,+∞ ,使得f x 0 >2log a x 0成立,可得a >6,所以实数a 的最小整数值是7.27(23-24高二下·湖南·阶段练习)已知函数f x =x 2+x ,-2≤x ≤14log 12x ,14<x ≤c ,若f (x )的值域是[-2,2],则c 的值为()A.2B.22C.4D.8【答案】C【分析】画出函数图像,由分段函数中定义域的范围分别求出值域的取值范围再结合二次函数和对数运算可得正确结果.【解析】当-2≤x ≤14时,f x =x 2+x =x +12 2-14∈-14,2,因为f x 的值域是-2,2 ,又f x =log 12x 在14,c上单调递减,所以log 12c =-2,∴c =4.故选:C .28(22-23高一上·辽宁本溪·期末)若不等式x -1 2<log a x (a >0,且a ≠1)在x ∈1,2 内恒成立,则实数a 的取值范围为()A.1,2B.1,2C.1,2D.2,2【答案】B【分析】分析出0<a <1时,不成立,当a >1时,画出f x =log a x ,g x =x -1 2的图象,数形结合得到实数a 的取值范围.【解析】若0<a <1,此时x ∈1,2 ,log a x <0,而x -1 2≥0,故x -1 2<log a x 无解;若a >1,此时x ∈1,2 ,log a x >0,而x -1 2≥0,令f x =log a x ,g x =x -1 2,画出两函数图象,如下:故要想x -1 2<log a x 在x ∈1,2 内恒成立,则要log a 2>1,解得:a ∈1,2 .故选:B .29(2022高二下·浙江·学业考试)已知函数f x =3⋅2x +2,对于任意的x 2∈0,1 ,都存在x 1∈0,1 ,使得f x 1 +2f x 2+m =13成立,则实数m 的取值范围为.【答案】log 216,log 213 【分析】双变量问题,转化为取值范围的包含关系,列不等式组求解【解析】∵f x 1 ∈5,8 ∴13-f x 1 2∈52,4,∴f x 2+m =3⋅2x 2+m+2∈3⋅2m +2,3⋅21+m +2 ,由题意得3⋅2m +2≥523⋅2m +1+2≤4⇒2m≥162m +1≤23⇒log 216≤m ≤log 213 故答案为:log 216,log 21330(21-22高三上·湖北·阶段练习)已知函数p (x )=m x -4+1(m >0且m ≠1)经过定点A ,函数-∞,2 且a ≠1)的图象经过点A .(1)求函数y =f (2a -2x )的定义域与值域;(2)若函数g x =f (2x λ)⋅f (x 2)-4在14,4上有两个零点,求λ的取值范围.【答案】(1)定义域为(-∞,2),值域为(-∞,2);(2)[1,+∞)【分析】(1)根据对数函数的性质,求得定点A (4,2),代入函数f x =log a x ,求得a =2,进而求得y =f (2a -2x )=log 2(4-2x ),结合对数函数的性质,求得函数的定义域与值域;(2)由(1)知,化简得到函数g x =2λ(log 2x )2+2log 2x -4,设t =log 2x ,则t ∈[-2,2],转化为h x =2λt 2+2t -4在[-2,2]上有两个零点,结合二次函数的性质,分类讨论,即可求解.【解析】(1)解:令x -4=0,解得x =4,所以p (4)=m 0+1=2,所以函数p (x )过点A (4,2),将点A 的坐标代入函数f x =log a x ,可得log a 4=2,解得a =2,又由函数y =f (2a -2x )=log 2(4-2x ),由4-2x >0,解得x <2,所以函数y =f (2a -2x )的定义域为(-∞,2),又由0<4-2x <4,所以函数y =f (2a -2x )的值域为(-∞,2).(2)解:由(1)知,函数g x =f (2x λ)⋅f (x 2)-4=log 2(2x λ)⋅log 2x 2-4=2λ(log 2x )2+2log 2x -4在14,4上有两个零点,设t =log 2x ,则t ∈[-2,2],因为t 为关于x 的单调递增函数,所以g x 在14,4有两个零点,等价于函数h x =2λt 2+2t -4在[-2,2]上有两个零点,①当λ=0时,由h x =2t -4=0,可得t =2,函数h x 只有一个零点,所以λ=0不合题意;②当λ>0时,由Δ=4+32λ>0-2<-12λ<2h -2 =8λ-8≥0h 2 =8λ≥0,解得λ≥1;③当λ<0时,由Δ=4+32λ>0-2<-12λ<2h -2 =8λ-8≤0h 2 =8λ≤0,此时不等式组的解集为空集,综上可得,实数λ的取值范围是[1,+∞).一、单选题1(2024·黑龙江·二模)已知函数y =a 12|x |+b 的图象经过原点,且无限接近直线y =2,但又不与该直线相交,则ab =()A.-1 B.-2C.-4D.-9【答案】C【分析】由题意可得a +b =0且b =2,求出a ,即可求解.【解析】因为函数y =f (x )=a 12 x +b 图象过原点,所以a 12+b =0,得a +b =0,又该函数图象无限接近直线y =2,且不与该直线相交,所以b =2,则a =-2,所以ab =-4.故选:C2(2024·上海闵行·二模)已知y =f (x ),x ∈R 为奇函数,当x >0时,f (x )=log 2x -1,则集合{x |f (-x )-f (x )<0}可表示为()A.(2,+∞)B.(-∞,-2)C.(-∞,-2)∪(2,+∞)D.(-2,0)∪(2,+∞)【答案】D【分析】利用函数奇偶性可得不等式f (-x )-f (x )<0等价于f (x )>0,再求出函数解析式,利用对数函数单调性解不等式可得结果.【解析】因为y =f (x )为奇函数,所以f (-x )-f (x )<0等价于-2f (x )<0,即f (x )>0;当x >0时,f (x )=log 2x -1,即f (x )=log 2x -1>0,解得x >2;当x <0时,-x >0,可得f (-x )=-f x =log 2-x -1,所以f x =1-log 2-x ,解不等式f x =1-log 2-x >0,可得-2<x <0,综上可得集合{x |f (-x )-f (x )<0}可表示为(-2,0)∪(2,+∞).故选:D3(2024·北京通州·二模)某池塘里原有一块浮萍,浮萍蔓延后的面积S (单位:平方米)与时间t (单位:月)的关系式为S =a t +1(a >0,且a ≠1),图象如图所示.则下列结论正确的个数为()①浮萍每个月增长的面积都相等;②浮萍蔓延4个月后,面积超过30平方米;③浮萍面积每个月的增长率均为50%;④若浮萍蔓延到3平方米、4平方米、12平方米所经过的时间分别是t 1,t 2,t 3,则t 1+t 2=t 3.A.0B.1C.2D.3【答案】B【分析】由已知可得出S =2t +1,计算出萍蔓延1月至2月份增长的面积和2月至3月份增长的面积,可判断①的正误;计算出浮萍蔓延4个月后的面积,可判断②的正误;计算出浮萍蔓延每个月增长率,可判断③的正误;利用指数运算可判断④的正误.【解析】由已知可得a 1=2,则S =2t +1.对于①,浮萍蔓延1月至2月份增长的面积为23-22=4(平方米),浮萍蔓延2月至3月份增长的面积为24-23=8(平方米),①错;对于②,浮萍蔓延4个月后的面积为25=32(平方米),②对;对于③,浮萍蔓延第n 至n +1个月的增长率为2n +2-2n +12n +1=1,所以,浮萍蔓延每个月增长率相同,都是100%,③错;对于④,若浮萍蔓延到3平方米、4平方米、12平方米所经过的时间分别是t 1,t 2,t 3,则2t 1+1=3,2t 2+1=4,2t 3+1=12=3×4=2t 1+1⋅2t 2+1=2t 1+t 2+2,所以t 3=t 1+t 2+1,④错.故选:B .4(2024·天津红桥·二模)若a =2313,b =log 1225,c =3-14,则a ,b ,c 的大小关系为()A.a >b >cB.b >c >aC.b >a >cD.a <b <c【答案】C【分析】根据给定条件,利用幂函数、对数函数性质,并借助媒介数比较大小.【解析】b =log 1225>log 1212=1,a =23 13=23 4 112=1681 112>381 112=1314=c ,而a =2313<1,所以a ,b ,c 的大小关系为b >a >c .故选:C5(2024·全国·模拟预测)已知函数f (x )=log a x 3-ax 2+x -2a (a >0且a ≠1)在区间(1,+∞)上单调递减,则a 的取值范围是()A.0,23 B.23,1C.(1,2]D.[2,+∞)【答案】A【分析】对数函数的单调性与底数有关,分0<a <1和a >1两种情况讨论,此外还要注意对数函数的定义域,即真数为正;复合函数单调性满足“同增异减”,根据对数函数单调性结合题干中“在区间(1,+∞)上单调递减”得到真数部分函数的单调性,从而求得a 的取值范围.【解析】设函数g x =x 3-ax 2+x -2a ,则g x =3x 2-2ax +1.①若0<a <1,则y =log a x 在定义域上单调递减.又f x =log a x 3-ax 2+x -2a 在区间1,+∞ 上单调递减,所以g x 在区间1,+∞ 上单调递增,故gx ≥0对任意的x ∈1,+∞ 恒成立.又g 1 =4-2a ≥0,所以对任意的x ∈1,+∞ ,g x ≥0显然成立.又因为g x >0对任意x ∈1,+∞ 恒成立,所以g 1 =2-3a ≥0,故0<a ≤23.②若a >1,则y =log a x 在定义域上单调递增.又f x =log a x 3-ax 2+x -2a 在区间1,+∞ 上单调递减,所以g x 在区间1,+∞ 上单调递减,故gx ≤0对任意的x ∈1,+∞ 恒成立.因为抛物线y =3x 2-2ax +1的开口向上,所以g x ≤0不可能对任意的x ∈1,+∞ 恒成立.所以a 的取值范围为0,23.故选:A .6(2024·宁夏固原·一模)已知函数f x 的部分图像如图所示,则f x 的解析式可能为()A.f x =e x -e -x 4x -3 B.f x =e x -e -x3-4x C.f x =e x +e -x4x -3D.f x =x x -1【答案】A【分析】利用f x 在1,+∞ 上的值排除B ,利用奇偶性排除排除C ,利用f x 在1,+∞ 上的单调性排除D ,从而得解.【解析】对于B ,当x >1时,f x =e x -e -x 3-4x,易知e x -e -x >0,3-4x <0,则f x <0,不满足图象,故B 错误;对于C ,f x =e x +e -x 4x -3,定义域为-∞,-34 ∪-34,34 ∪34,+∞ ,又f (-x )=e -x +e x 4-x -3=e x +e -x4x -3=f (x ),则f x 的图象关于y 轴对称,故C 错误;对于D ,当x >1时,f x =x x -1=x x -1=1+1x -1,由反比例函数的性质可知,f x 在1,+∞ 上单调递减,故D 错误;检验选项A ,f x =e x -e -x4x -3满足图中性质,故A 正确.故选:A .7(2024·陕西西安·模拟预测)已知函数f x =12x +1,x <01x +2,x ≥0,则不等式f a 2-1 >f 3 的解集为()A.-2,2B.0,+∞C.-∞,0D.-∞,-2 ∪2,+∞【答案】A【分析】判断函数f x 的单调性,再利用单调性解不等式即可.【解析】f x =12x +1,x <01x +2,x ≥0,易知y =12x +1在-∞,0 单调递减,y =1x +2在0,+∞ 单调递减,且f x 在x =0处连续,故f x 在R 上单调递减,由f a 2-1 >f 3 ,则a 2-1<3,解得-2<a <2,故不等式f a 2-1 >f 3 的解集为-2,2 .故选:A8(2024·甘肃兰州·一模)已知y =f x 是定义在R 上的奇函数,且对于任意x 均有f x +1 +f x -1 =0,当0<x ≤1时,f x =2x -1,若f [ln (ea )]>f (ln a )(e 是自然对数的底),则实数a 的取值范围是()A.e -1+2k <a <e 1+2k (k ∈Z )B.e -32+k <a <e 12+2k(k ∈Z )C.e -1+4k <a <e 1+4k (k ∈Z ) D.e-32+4k <a <e 12+4k(k ∈Z )【答案】D【分析】首先分析函数的周期性与对称性,画出函数在-2,2 上的函数图象,结合图象可知在-2,2 内要满足f [ln (ea )]>f (ln a ),只需-32<ln a <12,即可求出a 的范围,再结合周期性即可得解.【解析】因为y =f x 是定义在R 上的奇函数,所以f 0 =0且图象关于原点对称,又f x +1 +f x -1 =0,所以f x +1 =-f x -1 =f 1-x ,所以f x +4 =f 1-x +3 =-f 2+x =-f 1-x +1 =-f -x =f x ,f -1+x =f 3+x =f 1-2+x =f -1-x ,f 2+x =f -2+x =-f 2-x ,所以函数的周期为4且函数图象关于x =1+2k k ∈Z 和2k ,0 k ∈Z 对称,又当0<x ≤1时,f x =2x -1,所以f x 在区间-2,2 上的图象如下所示:由图可知,在-2,2 内要满足f [ln (ea )]=f (1+ln a )>f (ln a ),则-32<ln a <12,即e -32<a <e 12,再根据函数的周期性可知e -32+4k <a <e12+4k(k ∈Z ).故选:D【点睛】关键点点睛:本题关键是由题意分析出函数的周期为4且函数图象关于x =1+2k k ∈Z 和2k ,0 k ∈Z 对称,再结合函数在-2,2 上的图象.二、多选题9(2024·河南洛阳·模拟预测)下列正确的是()A.2-0.01>2-0.001B.log 23>log 2π-1C.log 1.85<log 1.75D.log 33.01>e -0.01【答案】BCD【分析】利用指数函数的性质判断A ;由对数函数的性质判断B ,C ;由对数函数的性质可得log 33.01>1,由指数函数的性质可得e -0.01<1,即可判断.【解析】解:对于A ,因为-0.01<-0.001,所以2-0.01<2-0.001,所以A 错误;对于B ,因为log 23>log 2π2=log 2π-1,所以B 正确;对于C ,因为log 1.85>0,log 1.75>0,所以log 1.85=ln5ln1.8<ln5ln1.7=log 1.75,所以C 正确;对于D ,因为log 33.01>log 33=1,e -0.01<e 0=1,所以log 33.01>e -0.01,所以D 正确.故选:BCD .10(2024·全国·模拟预测)已知实数a ,b 满足log 3a +log b 3=log 3b +log a 4,则下列关系式中可能正确的是()A.∃a ,b ∈(0,+∞),使|a -b |>1B.∃a ,b ∈(0,+∞),使ab =1C.∀a ,b ∈(1,+∞),有b <a <b 2D.∀a ,b ∈(0,1),有b <a <b【答案】ABC【分析】由原方程可得log 3b -1log 3b=log 3a -1log 4a ,构适函数,由函数的单调性得出值域,根据函数的值域判断A ;令ab =1,代入原方程转化为判断(ln b )2=ln3×ln122是否有解即可判断B ;条件变形放缩后构造函数,利用函数的单调性得出a ,b 大小,判断CD .【解析】由log 3a +log b 3=log 3b +log a 4得log 3b -1log 3b=log 3a -1log 4a ,令f (x )=log 3x -1log 3x ,则f (x )分别在(0,1)和(1,+∞)上单调递增,令g (x )=log 3x -1log 4x,则g (x )分别在(0,1)和(1,+∞)上单调递增,当x ∈(0,1)时,f x 的值域为R ,当x ∈(2,+∞)时,g (x )的值域为log 32-2,+∞ ,所以存在b ∈(0,1),a ∈(2,+∞),使得f (b )=g (a );同理可得,存在b ∈(2,+∞),a ∈(0,1),使得f (b )=g (a ),因此∃a ,b ∈(0,+∞),使|a -b |>1,故选项A 正确.令ab =1,则方程log 3a +log b 3=log 3b +log a 4可化为log b 3+log b 4=2log 3b ,由换底公式可得(ln b )2=ln3×ln122>0,显然关于b 的方程在(0,+∞)上有解,所以∃a ,b ∈(0,+∞),使ab =1,故选项B 正确.当a ,b ∈(1,+∞)时,因为log 3b -1log 3b =log 3a -1log 4a <log 3a -1log 3a ,所以f (b )<f (a ).又f x 在(1,+∞)上单调递增,所以b <a .因为log 3b -1log 3b=log 3a -1log 4a >log 4a -1log 4a ,令h (x )=x -1x,则h (x )在(0,+∞)上单调递增.因为h log 3b >h log 4a ,所以log 3b >log 4a ,从而log 3b >log 4a =log 2a >log 3a ,所以b >a .综上所述,b <a <b 2,故选项C 正确.当a ,b ∈(0,1)时,因为log 3b -1log 3b =log 3a -1log 4a >log 3a -1log 3a ,所以f (b )>f (a ).又f x 在(0,1)上单调递增,所以b >a .因为log 3b -1log 3b=log 3a -1log 4a <log 4a -1log 4a .令h (x )=x -1x,则h (x )在(0,+∞)上单调递增,因为h log 3b <h log 4a ,所以log 3b <log 4a ,从而log 3b <log 4a =log 2a <log 3a ,所以b <a .综上所述,b 2<a <b ,故选项D 错误.故选:ABC .【点睛】关键点点睛:本题的关键是根据对数式的运算规则和对数函数的单调性求解.11(2024·重庆·三模)已知函数f x =log 62x +3x ,g x =log 36x -2x .下列选项正确的是()A.f 12<g 12 B.∃x 0∈0,1 ,使得f x 0 =g x 0 =x 0C.对任意x ∈1,+∞ ,都有f x <g xD.对任意x ∈0,+∞ ,都有x -f x ≤g x -x【答案】BCD【分析】根据2+3>6,3>6-2即可判断A ;根据2x 0+3x 0=6x 0,令h x =6x -2x -3x ,结合零点的存在性定理即可判断B ;由f x -x =log 613 x +12 x 、g x -x =log 32x-23 x ,结合复合函数的单调性可得f x -x 和g x -x 的单调性,即可判断C ;由选项BC 的分析可得6f x-6x =3x -3g x,分类讨论当x ∈0,x 0 、x ∈x 0,+∞ 时x -f x 与g x -x 的大小,进而判断D .【解析】A :因为2+3 2=5+26>6 2,所以2+3>6,3>6- 2.因为f 12 =log 62+3 >log 66=12,g 12 =log 36-2 <log 33=12,所以f 12 >g 12,故A 错误;B :若f x 0 =g x 0 =x 0,则f x 0 =log 62x 0+3x 0=x 0=log 66x 0,即2x 0+3x 0=6x,g x 0 =log 36x 0-2x 0 =x 0=log 33x 0,可得6x 0-2x 0=3x 0,令h x =6x -2x -3x ,因为h 0 =-1,h 1 =1,所以∃x 0∈0,1 ,使得h x 0 =0,即2x 0+3x 0=6x 0,故B 正确;C :因为f x -x =log 62x +3x -log 66x =log 62x +3x 6x =log 613 x +12 x ,且y =13 x +12 x 在1,+∞ 上单调递减,所以f x -x 也单调递减,可得f x -x <log 612+13<0,因为g x -x =log 36x -2x -log 33x =log 36x -2x 3x =log 32x -23 x .又y =2x -23 x 在1,+∞ 上单调递增,所以g x -x 也单调递增,得g x -x >log 32-23>0,即f x -x <g x -x ,因此,对于任意的x ∈1,+∞ ,都有f x <g x ,故C 正确;D :由B 可知:∃x 0∈0,1 ,使得h x 0 =0,结合C 的结论,可知当x ∈0,x 0 ,f x >x ,g x <x ,即g x <x <f x ,当x ∈x 0,+∞ 时,f x <x ,g x >x ,即f x <x <g x ,因为6f x =2x +3x ,3g x =6x -2x ,得2x =6f x -3x =6x -3g x ,即6f x -6x =3x -3g x ,当x ∈0,x 0 时,有6x 6f x -x -1 =3g x 3x -g x -1 ,因为6x >3g x ,所以6f x -x -1<3x -g x -1,所以0<f x -x <x -g x ,因此可得g x -x ≤x -f x <0,即x -f x ≤g x -x ,当x ∈x 0,+∞ ,有6f x 6x -f x -1 =3x 3g x -x -1 ,因为6f x >3x ,所以6x -f x -1<3g x -x -1,可得0<x -f x <g x -x ,即x -f x ≤g x -x ,因此,对于任意的x ∈0,+∞ ,都有x -f x ≤g x -x ,故D 正确.故选:BCD .【点睛】方法点睛:证明不等式的恒成立问题的求解策略:形如f x ≥g x 的恒成立的求解策略:1、构造函数法:令F x =f x -g x ,利用导数或基本函数的单调性求得函数F x 的单调性与最小值,只需F x min ≥0恒成立即可;2、参数分离法:转化为a ≥φx 或a ≤φx 恒成立,即a ≥φx max 或a ≤φx min 恒成立,只需利用导数求得函数φx 的单调性与最值即可;3,数形结合法:结合函数y =f x 的图象在y =g x 的图象的上方(或下方),进而得到不等式恒成立.三、填空题12(2023·河南·模拟预测)已知幂函数f x =m 2-6m +9 x m 满足f 1 =2,则f 2 =.【答案】4【分析】由幂函数的定义结合导数求得m ,进而可得答案.【解析】由幂函数的定义可得m 2-6m +9=1,解得m =2或m =4,当m =2时,f x =x 2,f x =2x ,f 1 =2符合题意;当m =4时,f x =x 4,f x =4x 3,f 1 =4,不符合题意.故f x =x 2,f 2 =4.故答案为:4.13(2024·全国·模拟预测)已知函数f x =x x -1,g x =e x -1-e -x +1+1,则f x 与g x 的图象交点的纵坐标之和为.【答案】2【分析】分析函数的奇偶性,由图象的平移变换求解即可.【解析】对于f x =x x -1=1x -1+1,可以把f x 的图象看作:由f 1x =1x -1的图象向上平移1个单位长度得到,而f 1x 的图象可看作由f 2x =1x 的图象向右平移1个单位长度得到;对于g x =e x -1-e -x +1+1=e x -1-1e x -1+1的图象可看作由g 1x =e x -1-1e x -1的图象向上平移1个单位长度得到,而g 1x 的图象可看作由g 2x =e x -1e x 的图象向右平移1个单位长度得到.易知f 2x =1x 与g 2x =e x -1ex 都为奇函数,公众号:慧博高中数学最新试题则易知f 2x 与g 2x 的图象共有两个关于原点对称的交点,且交点的纵坐标之和为0.因为将函数图象向右平移不改变f 1x 与g 1x 两函数图象交点处函数值的大小,所以f 1x 与g 1x 的图象交点的纵坐标之和为0,又将函数图象向上平移1个单位长度会使得原交点处的函数值都增加1,则f x 与g x 的图象的两个交点的纵坐标与f 1x 与g 1x 的图象两个交点的纵坐标相比都增加1,故f x 与g x 的图象交点的纵坐标之和为2.故答案为:214(2024·全国·模拟预测)已知定义在-∞,0 ∪0,+∞ 上的函数f x ,对于定义域内任意的x ,y ,都有f xy =f x +f y ,且f x 在0,+∞ 上单调递减,则不等式f x <log 2x +12的解集为.【答案】x x <-1 或x >1【分析】由f xy =f x +f y ,利用赋值法,得到函数f x 的奇偶性,构造函数F x =f x -log 2x +12,研究其单调性和奇偶性,再由F 1 =0,将不等式f x <log 2x +12转化为F x <F 1 求解.【解析】由f xy =f x +f y ,令x =y =1,得f 1 =f 1 +f 1 ,所以f 1 =0.令x =y =-1,得f -1 =0.令y =-1,得f -x =f x +f -1 =f x ,所以函数f x 为偶函数.构造函数F x =f x -log 2x +12,因为F -x =F x ,所以F x 为偶函数,且在0,+∞ 上为减函数.因为F 1 =f 1 -log 21+12=0,所以不等式f x <log 2x +12等价于F x =f x -log 2x +12<0=F 1 ,所以F x <F 1 ,即x >1,所以x <-1或x >1,故不等式f x <log 2x +12的解集为x |x <-1 或x >1 .故答案为:x |x <-1 或x >1 .。

根据幂指函数知识点及题型归纳总结

根据幂指函数知识点及题型归纳总结

根据幂指函数知识点及题型归纳总结
一、幂函数的性质:
1. 幂函数的定义:幂函数是指以变量 x 为底数,以常数 a 为指
数的函数,一般形式为 f(x) = a^x。

2. 幂函数的图像:幂函数的图像随着底数 a 的取值不同而有所
变化,底数 a 大于 1 时,函数图像上升趋势较为陡峭;底数 a 在 0
和 1 之间,函数图像下降趋势较为陡峭。

3. 幂函数的性质:幂函数具有对称性,即 f(x) = f(-x);a^x 的
值随 x 的变化而变化,当 x 增大时,a^x 增大,当 x 减小时,a^x
减小。

二、指数函数的性质:
1. 指数函数的定义:指数函数是指以变量 x 为指数的函数,一
般形式为 f(x) = a^x(a > 0,且a ≠ 1)。

2. 指数函数的图像:指数函数的图像具有与幂函数相反的特点,当底数 a 大于 1 时,函数图像上升趋势较为平缓;底数 a 在 0 和 1
之间,函数图像下降趋势较为平缓。

3. 指数函数的性质:指数函数的图像经过点 (0, 1);指数函数
具有增长态势,即随着 x 的增大,函数值也增大。

三、幂指函数的题型:
1. 计算幂指函数的值:根据给定的幂指函数和 x 的值,求出函数的值。

2. 求幂指函数的定义域:根据幂指函数的特点,确定该函数的定义域范围。

3. 求幂指函数的变化趋势:根据底数的取值范围和指数的正负性,确定函数的增减性和图像的走势。

4. 解幂指函数的方程:根据幂指函数的性质和方程的条件,求出满足方程的变量值。

以上是根据幂指函数的知识点及题型进行的归纳总结,希望能对您的学习和应试有所帮助。

幂函数练习题

幂函数练习题

幂函数练习题幂函数是数学中的一种基本函数形式,它具有形如f(x) = ax^n的特点,其中a和n为常数,且n为整数。

在本文中,我们将通过一系列练习题来加深我们对幂函数的理解和运用。

练习题一:已知幂函数f(x) = 2x^3,求解以下问题:1. 当x取值为2时,求f(x)的值。

2. 求f(x)的定义域和值域。

3. 求f(x)的图像关于y轴的对称中心。

解答:1. 当x取值为2时,代入幂函数的表达式可得:f(2) = 2 * 2^3 = 2 * 8 = 16。

2. 幂函数的定义域为所有实数,因为x可以取任意实数值。

而幂函数的值域为所有非负实数,因为x的幂次可以是负数或零,当x为非负实数时,f(x)也同样为非负实数。

3. 幂函数的图像关于y轴的对称中心为原点(0, 0),因为当x取相反数时,f(x)取相反数,即f(-x) = -f(x)。

练习题二:已知幂函数f(x) = 4x^(-2),求解以下问题:1. 当x取值为3时,求f(x)的值。

2. 求f(x)的定义域和值域。

3. 求f(x)的图像关于x轴的对称中心。

解答:1. 当x取值为3时,代入幂函数的表达式可得:f(3) = 4 * 3^(-2) = 4 * (1/9) = 4/9。

2. 幂函数的定义域为所有除零以外的实数,因为在幂函数中,x不能为零。

而幂函数的值域为所有正实数,因为x的幂次为负数,当x 为正数时,f(x)为正实数。

3. 幂函数的图像关于x轴的对称中心不存在,因为幂函数的图像在x轴上不会有对称性。

通过以上练习题,我们对幂函数的性质有了更深入的理解。

幂函数在数学中有广泛的应用,例如在物理学中描述运动的速度、加速度,以及经济学中的成本、利润等。

对幂函数的熟悉和掌握将有助于我们更好地理解和解决实际问题。

3.3幂函数11题型分类(学生版) 2024-2025学年高一数学同步知识题型讲义(人教必修第一册)

3.3幂函数11题型分类(学生版) 2024-2025学年高一数学同步知识题型讲义(人教必修第一册)

3.3幂函数11题型分类一、幂函数的概念一般地,函数y=xα叫做幂函数,其中x是自变量,α是常数.注意:幂函数的特征(1)xα的系数是1;(2)xα的底数x是自变量;(3)xα的指数α为常数.只有满足这三个条件,才是幂函数.对于形如y=(2x)α,y=2x5,y=xα+6等的函数都不是幂函数.二、一些常用幂函数的图象同一坐标系中,幂函数y=x,y=x2,y=x3,y=x-1,y=x的图象(如图).三、一些常用幂函数的性质函数特征性质y=x y=x2y=x3y =x y=x-1定义域R R R[0,+∞){x|x≠0}值域R[0,+∞)R[0,+∞){y|y≠0}奇偶性奇函数偶函数奇函数非奇非偶函数奇函数在[0,+∞)上单调递增在(0,+∞)上单调递减单调性在(-∞,+∞)上单调递增在(-∞,0]上单调递减在(-∞,+∞)上单调递增在[0,+∞)上单调递增在(-∞,0)上单调递减注意:幂函数的性质(1)所有的幂函数在(0,+∞)上都有定义,并且图象都过点(1,1);(2)如果α>0,那么幂函数的图象过原点,并且在区间[0,+∞)上单调递增;(3)如果α<0,那么幂函数的图象在区间(0,+∞)上单调递减,在第一象限内,当x从右边趋向于原点时,图象在y轴右方无限接近y轴,当x从原点趋向于+∞时,图象在x轴上方无限接近x轴;(4)在(1,+∞)上,随幂指数的逐渐增大,图象越来越靠近y轴.(一)幂函数的概念判断一个函数是否为幂函数的方法判断一个函数是否为幂函数的依据是该函数是否为y=xα(α为常数)的形式,即函数的解析式为一个幂的形式,且需满足:(1)指数为常数;(2)底数为自变量;(3)系数为1.C .3D .132-4.(2024·浙江·模拟预测)已知()f x 是幂函数,且满足:①()()f x f x -=;②()f x 在()0,+¥上单调递增,请写出符合上述条件的一个函数()f x =.2-5.(2024高一上·安徽合肥·期末)已知幂函数()f x x a = (α是常数)的图象经过点()2,4,那么f (−2)=( )A .4B .-4C .14D .-14题型3:根据幂函数求参数3-1.(24-25高一上·上海·单元测试)函数()12122m y m m x -=+-是幂函数,则m =.3-2.(2024高一上·湖北孝感·阶段练习)函数()2227y k k x =--是幂函数,则实数k 的值是( )A .4k =B .2k =-C .4k =或2k =-D .4k ¹且2k ¹-3-3.(2024高一下·上海杨浦·开学考试)已知幂函数()()22325m m f x m m x--=+-×的图像不经过原点,则实数m =.(二)幂函数的图象及应用依据图象高低判断幂指数大小,相关结论为:在(0,1]上,指数越大,幂函数图象越靠近x 轴(简记为指大图低);在[1,+∞)上,指数越大,幂函数图象越远离x 轴(简记为指大图高).题型4:幂函数过定点问题4-1.(2024高一上·广东东莞·期中)函数()2y x a a =-为常数的图象过定点.4-2.(2024高一上·上海浦东新·阶段练习)幂函数a y x =的图象不可能在第四象限,但所有图象过定点,定点坐标为.题型5:幂函数的图象及应用5-1.(2024·新疆阿勒泰·三模)已知函数则函数2,0,()()()1,0,x xf xg x f xxxì³ï==-í<ïî,则函数()g x的图象大致是()A.B.C.D.5-2.(2024·全国·模拟预测)函数()11 3x xf xx --=的图象大致为()A.B.C.D.5-3.(2024高三·全国·对口高考)已知幂函数p qy x=(,p q ZÎ且p与q互质)的图像如图所示,则()A .p 、q 均为奇数且0p q<B .p 为奇数,q 为偶数且0p q <C .p 为奇数,q 为偶数且0p q>D .p 为偶数,q 为奇数且0p q<5-4.(2024高一上·福建泉州·期中)已知幂函数()()2231mm f x m m x+-=--,其图像与坐标轴无交点,则实数m的值为 .5-5.(2024高一上·黑龙江哈尔滨·期末)若点()4,2P 在幂函数()f x 的图象上,则()f x 的图象大致是( )A .B .C .D .5-6.(2024高三·全国·对口高考)给定一组函数解析式:①34y x =;②23y x =;③32y x -=;④23y x -=;⑤32y x =;⑥13y x -=;⑦13y x =.如图所示一组函数图象.图象对应的解析式号码顺序正确的是( )A .⑥③④②⑦①⑤B .⑥④②③⑦①⑤C .⑥④③②⑦①⑤D .⑥④③②⑦⑤①(三)求幂函数的定义域和值域幂函数的定义域和值域要根据解析式来确定,要保证解析式有意义,值域要在定义域范围内求解.幂函数的定义域由幂指数a 确定:①当幂指数取正整数时,定义域为R ;②当幂指数取零或负整数时,定义域为(一∞,0) U (0,+∞);③当幂指数取分数时,可以先化成根式(在第四章会学到),再根据根式的要求求定义域.题型6:求幂函数的定义域6-1.(2024高一·全国·课后作业)若幂函数()f x 的图象经过点(25,5),求()f x 的定义域.6-2.(2024·上海杨浦·一模)函数()12f x x -=的定义域为.6-3.(2024高一上·浙江·期末)已知幂函数3y x a a =-,则此函数的定义域为.题型7:求幂函数的值域(四)利用幂函数的性质比较大小(1)比较幂大小的三种常用方法:(2)利用幂函数单调性比较大小时要注意的问题:比较大小的两个实数必须在同一函数的同一个单调区间内,否则无法比较大小.(五)幂函数的性质综合应用利用幂函数解不等式的步骤利用幂函数解不等式,实质是已知两个函数值的大小,判断自变量的大小,常与幂函数的单调性、奇偶性等综合命题.求解步骤如下:(1)确定可以利用的幂函数;(2)借助相应的幂函数的单调性,将不等式的大小关系,转化为自变量的大小关系;(3)解不等式(组)求参数范围,注意分类讨论思想的应用.题型10:利用幂函数解不等式10-1.(2024高三上·四川遂宁·阶段练习)若12()f x x =,则不等式()(816)f x f x >-的解集是( )A .162,7éö÷êëøB .(]0,2C .16(,)7-¥D .[2,+∞)10-2.(2024高一上·安徽·期中)已知幂函数()f x 的图象经过点1,93æöç÷èø,且()()12f a f +<,则a 的取值范围为( )A .(),1-¥B .()1,+¥C .()3,1-D .()(),31,-¥-+¥U 10-3.(2024高三上·四川绵阳·阶段练习)“1122(1)(32)a a +<-”是“223a -<<”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件10-4.(2024高一上·上海浦东新·期中)不等式()()3355252x x --+<-的解集为 .10-5.(2024高一上·江苏盐城·阶段练习)函数12()f x x -=,则不等式(21)(1)f x f x ->+的解集为.题型11:利用幂函数的单调性、奇偶性及其应用11-1.(2024高一下·黑龙江齐齐哈尔·开学考试)已知幂函数()()22322mm f x x m ,m --+=-<<ÎΖ在区间()0,¥+上单调递增.请从如下2个条件:①对任意的x ÎR ,都有()()f x f x -=;②对任意的x ÎR ,都有()()0f x f x -+=中任选1个作为已知条件,求解下列问题.(1)求()f x 的解析式;(2)在(1)问的条件下,当[]3,3x Î-时,求()f x 的值域.(注:如果选择多个条件分别解答,按第一个解答计分.)11-2.(2024高一·全国·课后作业)已知函数:①2y x -=,②43y x =,③35y x =,④45y x -=,既是偶函数,又在(,0)-¥上为增函数的是.11-3.(2024高一上·上海杨浦·期末)已知112,1,,,1,2,322a ìüÎ---íýîþ,若幂函数()f x x a =奇函数,且在()0,¥+上为严格减函数,则a =.11-4.(2024高一上·安徽马鞍山·期中)已知幂函数()()()2157R m f x m m xm --=-+Î为奇函数.(1)求12f æöç÷èø的值;(2)若()()21f a f a +>,求实数a 的取值范围.一、单选题1.(2024高一上·四川成都·期末)函数()f x )A .B .C .D .2.(2024高一上·青海西宁·期末)已知点()3,2a 在幂函数()()1b f x a x =-的图象上,则( )A .()1f x x-=B .()122f x x =C .()3f x x=D .()13f x x =3.(2024高一上·内蒙古包头·期末)已知幂函数()f x 的图象过点(,则12f æöç÷èø等于( )A B C D .144.(2024·海南·模拟预测)已知()()25mf x m m x =+-为幂函数,则( ).A .()f x 在(),0-¥上单调递增B .()f x 在(),0-¥上单调递减C .()f x 在()0,¥+上单调递增D .()f x 在()0,¥+上单调递减5.(2024高三下·上海浦东新·阶段练习)设R m Î,若幂函数221m m y x -+=定义域为R ,且其图像关于y 轴成轴对称,则m 的值可以为( )A .1B .4C .7D .106.(2024高二下·陕西咸阳·期末)现有下列函数:①3y x =;②12xy æö=ç÷èø;③24y x =;④51y x =+;⑤()21y x =-;⑥y x =;⑦(1)x y a a =>,其中幂函数的个数为( )A .1B .2C .3D .47.(2024高一·全国·课后作业)已知幂函数()2133m y m m x +=-+的图像关于y 轴对称,则m 等于( )A .1B .2C .1或2D .38.(2024高三上·上海浦东新·阶段练习)如图所示是函数mn y x =(,m n 均为正整数且,m n 互质)的图象,则( )A .,m n 是奇数且1mn<B .m 是偶数,n 是奇数,且1m n<C .m 是偶数,n 是奇数,且1m n>D .,m n 是奇数,且1m n>9.(24-25高二下·福建莆田·期中)如图所示,图中的曲线是幂函数n y x =在第一象限的图象,已知n 取2±,12±四个值,则相应于1C ,2C ,3C ,4C 的n 依次为( )A .2-,12-,12,2B .2,12,12-,2-C .12-,2-,2,12D .2,12,2-,12-10.(2024高一上·安徽·期末)若幂函数()()224122m m f x m m x-+=--在区间()0,¥+上单调递减,则m =( )A .3B .1C .1-或3D .1或3-11.(2024高一上·重庆九龙坡·期末)已知111333332,,555a b c -æöæöæö===ç÷ç÷ç÷èøèøèø,则,,a b c 的大小关系为( )A .a b c <<B .b c a <<C .c a b <<D .a c b<<12.(2024高一·全国·课后作业)已知()21f x x =,若01a b <<<,则下列各式中正确的是( )A .()()11f a f b f f a b æöæö<<<ç÷ç÷èøèøB .()()11f f f b f a a b æöæö<<<ç÷ç÷èøèøC .()()11f a f b f f b a æöæö<<<ç÷ç÷èøèøD .()()11f f a f f b a b æöæö<<<ç÷ç÷èøèø13.(2024高一下·辽宁本溪·阶段练习)若幂函数()()224122m m f x m m x-+=--在区间()0,¥+上单调递增,则m =( )A .1-B .3C .1-或3D .1或3-14.(2024高一上·浙江杭州·期末)已知幂函数()()22222n nf x n n x-=+-×在()0,¥+上是减函数,则n 的值为( )A .3-B .1C .3D .1或3-15.(2024高一上·江西萍乡·期末)已知幂函数()f x 的图像过点()64,4,则()8f 的值为( )A .2B .3C .4D .516.(2024高一上·云南德宏·期末)下列函数既是幂函数又是奇函数的是( )A .y =B .21y x =C .22y x =D .1y x x=+17.(2024高一上·全国·课后作业)如图,下列3个幂函数的图象,则其图象对应的函数可能是( )A .①1y x -=,②12y x =,③13y x =B .①1y x -=,②13y x =,③12y x =C .①13y x =,②12y x =,③1y x-=D .①13y x =,②1y x -=,③12y x =18.(2024高一下·内蒙古呼和浩特·开学考试)已知幂函数()y f x =的图象过()4,32点,则()2f =( ).A .B .4C .D .8二、多选题19.(2024高一下·山西忻州·开学考试)已知幂函数()()23m x m x f =-的图象过点12,4æöç÷èø,则( )A .()f x 是偶函数B .()f x 是奇函数C .()f x 在(),0-¥上为减函数D .()f x 在()0,¥+上为减函数20.(2024高一上·宁夏银川·期末)幂函数()()211m f x m m x --=+-,m ∈N ∗,则下列结论正确的是( )A .1m =B .函数()f x 是偶函数C .()()23f f -<D .函数()f x 的值域为()0,¥+21.(2024高一上·重庆长寿·期末)下列函数既是幂函数,又在(),0-¥上单调递减的是( )A .y x =-B .2y x -=C .1y x -=D .2y x =22.(2024高一上·云南红河·期末)已知幂函数()f x 的图象经过点(8,,则下列说法正确的是( )A .函数()f x 为增函数B .函数()f x 为偶函数C .当4x ³时,()2f x ³D .当120x x <<时,()()121222f x f x x x f ++æö<ç÷èø三、填空题23.(2024高一·全国·课后作业)幂函数()()2732351t t f x t t x+-=-+是偶函数,且在(0,)+¥上为增函数,则函数解析式为 .24.(2024高一上·宁夏吴忠·期中)若()f x 是幂函数,且()124f =,则13f æö=ç÷èø25.(2024高一下·江苏南京·阶段练习)请写出一个满足条件①和②的幂函数()f x ,条件:①()f x 是偶函数;②()f x 为()0,¥+上的减函数.则()f x =.26.(2024高一上·广东肇庆·期中)已知幂函数()f x 的图象过点()3,3和()m,2,则实数m = .27.(2024高一·全国·课后作业)幂函数()21N nn y x n ++=Î的图像一定经过第象限28.(2024高一上·江苏徐州·阶段练习)若幂函数()f x 过点()42,,则满足不等式()()21f a f a ->-的实数a 的取值范围是.29.(2024高一上·陕西咸阳·期末)已知幂函数()()222m f x m m x =--满足()()23f f <,则m = .30.(2024·宁夏银川·二模)已知函数()()22221m m f x m m x--=--是幂函数,且为偶函数,则实数m = .31.(2024高一上·辽宁·期末)已知幂函数()()231m f x m m x =++在第一象限单调递减,则()f m = .32.(2024高三上·河南许昌·期末)已知函数()()21m f x m m x =+-是幂函数,且在()0,¥+上是增函数,则实数m 的值为 .33.(2024高三下·上海杨浦·阶段练习)已知幂函数()y f x =的图像过点(9,3),则(2)f 的值为.34.(2024高一上·江西赣州·期中)幂函数f (x )=(m 2−2m−2)x 2m−1在()0,¥+上为减函数,则m 的值为 .35.(2024高三下·上海·阶段练习)已知函数()13f x x =,则关于t 的表达式()()222210f t t f t -+-<的解集为 .36.(2024高一上·全国·课后作业)已知幂函数1101 ()f x x æö=ç÷èø,若f (a−1)<f (8−2a ),则a 的取值范围是.37.(2024高一上·浙江宁波·期中)已知幂函数()f x 过点,则满足(2)(1)f a f a ->-的实数a 的取值范围是 .38.(2024高二下·陕西宝鸡·期末)幂函数()()226633m m f x m m x-+=-+在()0,¥+上单调递减,则m 的值为 .四、解答题39.(2024高一上·四川眉山·期末)已知幂函数()y f x =的图象经过点1,22æöç÷èø.(1)求()f x 的解析式,并指明函数()f x 的定义域;(2)设函数()()g x x f x =+,用单调性的定义证明()g x 在()1,+¥单调递增.40.(2024高一·全国·课后作业)比较下列各组数的大小:(1)()32--,()32.5--;(2)788--,7819æö-ç÷èø;(3)3412æöç÷èø,3415æöç÷èø,1412æöç÷èø.41.(2024高一·全国·课后作业)求不等式()()2233131x x ->+的解.42.(2024高三·全国·课后作业)已知幂函数()223mm f x x --=(m 为正整数)的图像关于y 轴对称,且在()0,¥+上是严格减函数,求满足()()33132mma a --+>-的实数a 的取值范围.43.(2024高一上·福建龙岩·期末)已知幂函数()21()2910m f x m m x -=-+为偶函数,()()(R)kg x f x k x =+Î.(1)若(2)5g =,求k ;(2)已知2k £,若关于x 的不等式21()02g x k ->在[1,)+¥上恒成立,求k 的取值范围.44.(2024高一下·四川广安·阶段练习)已知幂函数()()()215R m f x m m x m +=+-Î在()0,¥+上单调递增.(1)求m 的值及函数()f x 的解析式;(2)若函数()21g x ax a =+-在[]0,2上的最大值为3,求实数a 的值.45.(2024高一上·辽宁辽阳·期末)已知幂函数()()25af x a a x =+-为奇函数.(1)求()f x 的解析式;(2)若正数,m n 满足31250m n a ++=,若不等式91b m n+³恒成立.求b 的最大值.46.(2024高一上·山东枣庄·期末)已知幂函数()()215m f x m m x -=--的图像关于y 轴对称.(1)求m 的值;(2)若函数()()g x f x =-()g x 的单调递增区间.。

幂函数练习题及答案

幂函数练习题及答案

幂函数练习题及答案幂函数是数学中常见的一类函数,其形式为 f(x) = a^x,其中 a 为常数且a ≠ 0。

幂函数在数学中有广泛的应用,涉及到各个领域的问题。

本文将通过一些幂函数的练习题及其答案,来帮助读者更好地理解和掌握幂函数的性质和运算。

1. 练习题一:简单的幂函数求值计算以下幂函数在给定点上的函数值:(a) f(x) = 2^x,当 x = 3;(b) g(x) = (-3)^x,当 x = -2;(c) h(x) = 0.5^x,当 x = 4。

答案:(a) f(3) = 2^3 = 8;(b) g(-2) = (-3)^(-2) = 1/((-3)^2) = 1/9;(c) h(4) = 0.5^4 = 1/2^4 = 1/16。

这些计算可以通过将给定的 x 值代入幂函数的定义中进行求解。

注意负指数的处理方式。

2. 练习题二:幂函数的图像与性质研究以下幂函数的图像,并回答相应问题:(a) f(x) = 2^x;(b) g(x) = (-2)^x;(c) h(x) = 3^x。

答案:(a) f(x) = 2^x 的图像是一条递增曲线,穿过点 (0, 1)。

当 x 取负值时,函数值逐渐趋近于 0,当 x 取正值时,函数值逐渐增大。

(b) g(x) = (-2)^x 的图像是一条交替变化的曲线。

当 x 为偶数时,函数值为正,当 x 为奇数时,函数值为负。

(c) h(x) = 3^x 的图像是一条递增曲线,穿过点 (0, 1)。

函数值随 x 的增大而迅速增大。

通过观察这些幂函数的图像,我们可以发现幂函数的一些共同性质,如递增或递减性、穿过点 (0, 1)、趋近于 0 等。

3. 练习题三:幂函数的运算计算以下幂函数的运算结果:(a) f(x) = 2^x * 2^3;(b) g(x) = (2^x)^3;(c) h(x) = 2^(x+3)。

答案:(a) f(x) = 2^x * 2^3 = 2^(x+3);(b) g(x) = (2^x)^3 = 2^(3x);(c) h(x) = 2^(x+3) = 2^x * 2^3。

幂函数知识归纳及习题(含答案)

幂函数知识归纳及习题(含答案)

自主梳理1.幂函数的概念形如________的函数叫做幂函数,其中____是自变量,____是常数. 2.幂函数的性质(1)五种常见幂函数的性质,列表如下: 定义域 值域 奇偶性 单调性 过定点 y =x R R 奇 (1,1) y =x 2 R [0,+∞)偶 [0,+∞) (-∞,0]y =x 3R R 奇Y =x 12[0,+∞) [0,+∞) 非奇 非偶 [0,+∞) Y =x -1(-∞,0) ∪(0,+∞)(-∞,0) ∪(0,+∞)奇(-∞,0)(0,+∞)(2)所有幂函数在________上都有定义,并且图象都过点(1,1),且在第____象限无图象. (3)α>0时,幂函数的图象通过点____________,并且在区间(0,+∞)上是________,α<0时,幂函数在(0,+∞)上是减函数,图象______原点.1.已知幂函数y =f (x )的图像经过点⎝⎛⎭⎫4,12,则f (2)=( ) A.14 B .4 C.22D. 22.下列函数中,其定义域与值域不同的函数是( ) A .y =x 12B .y =x -1C .y =x 13D .y =x 23.已知f (x )=x 12,若0<a <b <1,则下列各式中正确的是( )A .f (a )<f (b )<f ⎝⎛⎭⎫1a <f ⎝⎛⎭⎫1b B .f ⎝⎛⎭⎫1a <f ⎝⎛⎭⎫1b <f (b )<f (a ) C .f (a )<f (b )<f ⎝⎛⎭⎫1b <f ⎝⎛⎭⎫1a D .f ⎝⎛⎭⎫1a <f (a )<f ⎝⎛⎭⎫1b <f (b )4.已知f (x )=x 2+bx +c 且f (-1)=f (3),则( ) A .f (-3)<c <f ⎝⎛⎭⎫52 B .f ⎝⎛⎭⎫52<c <f (-3) C .f ⎝⎛⎭⎫52<f (-3)<cD .c <f ⎝⎛⎭⎫52<f (-3)5.(2013·蚌埠二中调研)设二次函数f (x )=ax 2+bx +c ,如果f (x 1)=f (x 2)(x 1≠x 2),则f (x 1+x 2)=( )A .-b2aB .-b aC .cD.4ac -b 24a6.若f (x )=x 2-x +a ,f (-m )<0,则f (m +1)的值( ) A .正数 B .负数 C .非负数D .与m 有关7.对于函数y =x 2,y =x 12有下列说法:①两个函数都是幂函数;②两个函数在第一象限内都单调递增; ③它们的图像关于直线y =x 对称; ④两个函数都是偶函数; ⑤两个函数都经过点(0,0)、(1,1); ⑥两个函数的图像都是抛物线型. 其中正确的有________.8.(2012·北京西城二模)已知函数f (x )=x 2+bx +1是R 上的偶函数,则实数b =________,不等式f (x -1)<x 的解集为________.9.(2012·无锡联考)设函数f (x )=mx 2-mx -1,若f (x )<0的解集为R ,则实数m 的取值范围是________.10.如果幂函数f (x )=x -12p 2+p +32(p ∈Z)是偶函数.且在(0,+∞)上是增函数.求p的值,并写出相应的函数f (x )的解析式.11.已知二次函数f(x)的图像过点A(-1,0)、B(3,0)、C(1,-8).(1)求f(x)的解析式;(2)求f(x)在x∈[0,3]上的最值;(3)求不等式f(x)≥0的解集.12.设f(x)是定义在R上的偶函数,当0≤x≤2时,y=x,当x>2时,y=f(x)的图像是顶点为P(3,4),且过点A(2,2)的抛物线的一部分.(1)求函数f(x)在(-∞,-2)上的解析式;(2)在下面的直角坐标系中直接画出函数f(x)的草图;(3)写出函数f (x )的值域.1.已知y =f (x )是偶函数,当x >0时,f (x )=(x -1)2,若当x ∈⎣⎡⎦⎤-2,-12时,n ≤f (x )≤m 恒成立,则m -n 的最小值为( )A.13 B.12 C.34D .12.(2013·青岛质检)设f (x )与g (x )是定义在同一区间[a ,b ]上的两个函数,若函数y =f (x )-g (x )在x ∈[a ,b ]上有两个不同的零点,则称f (x )和g (x )在[a ,b ]上是“关联函数”,区间[a ,b ]称为“关联区间”.若f (x )=x 2-3x +4与g (x )=2x +m 在[0,3]上是“关联函数”,则m 的取值范围为________.3.(2012·滨州模拟)已知函数f (x )=ax 2+bx +c (a >0,b ∈R ,c ∈R).(1)若函数f (x )的最小值是f (-1)=0,且c =1,F (x )=⎩⎪⎨⎪⎧f (x ),x >0,-f (x ),x <0,求F (2)+F (-2)的值;(2)若a=1,c=0,且|f(x)|≤1在区间(0,1]上恒成立,试求b的取值范围.答 案 课时跟踪检测(九)A 级1.选C 设f (x )=x α,因为图像过点⎝⎛⎭⎫4,12,代入解析式得:α=-12,∴f (2)=2-12=22.2.选D 对A ,定义域、值域均为[0,+∞);对B ,定义域、值域均为(-∞,0)∪(0,+∞);对C ,定义域值域均为R ;对D ,定义域为R ,值域为[0,+∞).3.选C 因为函数f (x )=x 12在(0,+∞)上是增函数,又0<a <b <1b <1a ,故f (a )<f (b )<f ⎝⎛⎭⎫1b <f ⎝⎛⎭⎫1a . 4.选D 由已知可得二次函数图像关于直线x =1对称,又f (-3)=f (5),c =f (0)=f (2),二次函数在区间(1,+∞)上单调递增,故有f (-3)=f (5)>f ⎝⎛⎭⎫52>f (2)=f (0)=c .5.选C 由题意得:a ≠0,x 1+x 22=-b 2a ,x 1+x 2=-b a .得f (x 1+x 2)=f ⎝⎛⎭⎫-b a =a ·b 2a 2-b 2a +c =c .6.选B 法一:∵f (x )=x 2-x +a 的对称轴为x =12,而-m ,m +1关于12对称,∴f (m +1)=f (-m )<0.法二:∵f (-m )<0,∴m 2+m +a <0,∴f (m +1)=(m +1)2-(m +1)+a =m 2+m +a <0.7.①②⑤⑥8.解析:因为f (x )=x 2+bx +1是R 上的偶函数,所以b =0,则f (x )=x 2+1,解不等式(x -1)2+1<x ,即x 2-3x +2<0得1<x <2.答案:0 {x |1<x <2}9.解析:若m =0,显然-1<0恒成立, 若m ≠0,则⎩⎨⎧m <0,Δ<0.∴-4<m <0. 故所求范围为:-4<m ≤0.答案:(-4,0]10.解:∵f (x )在(0,+∞)上是增函数,∴-12p 2+p +32>0,即p 2-2p -3<0. ∴-1<p <3.又∵f (x )是偶函数且p ∈Z , ∴p =1,故f (x )=x 2.11.解:(1)由题意可设f (x )=a (x +1)(x -3), 将C (1,-8)代入得-8=a (1+1)(1-3),得a =2. 即f (x )=2(x +1)(x -3)=2x 2-4x -6. (2)f (x )=2(x -1)2-8,当x ∈[0,3]时,由二次函数图像知, f (x )min =f (1)=-8,f (x )max =f (3)=0. (3)f (x )≥0的解集为{x |x ≤-1,或x ≥3}.12.解:(1)设顶点为P (3,4)且过点A (2,2)的抛物线的方程为y =a (x -3)2+4,将(2,2)代入可得a =-2,则y =-2(x -3)2+4,即x >2时,f (x )=-2x 2+12x -14.当x <-2时,即-x >2.又f (x )为偶函数,f (x )=f (-x )=-2×(-x )2-12x -14, 即f (x )=-2x 2-12x -14.所以函数f (x )在(-∞,-2)上的解析式为f (x )=-2x 2-12x -14. (2)函数f (x )的图像如图,(3)由图像可知,函数f (x )的值域为(-∞,4].B 级1.选D 当x <0时,-x >0,f (x )=f (-x )=(x +1)2, ∵x ∈⎣⎡⎦⎤-2,-12, ∴f (x )min =f (-1)=0,f (x )max =f (-2)=1, ∴m ≥1,n ≤0,m -n ≥1.2.解析:由题意知,y =f (x )-g (x )=x 2-5x +4-m 在[0,3]上有两个不同的零点.在同一坐标系下作出函数y =m 与y =x 2-5x +4(x ∈[0,3])的图像如图所示,结合图像可知,当x ∈[2,3]时,y =x 2-5x +4∈⎣⎡⎦⎤-94,-2,故当m ∈⎝⎛⎦⎤-94,-2时,函数y =m 与y =x 2-5x +4(x ∈[0,3])的图像有两个交点.答案:⎝⎛⎦⎤-94,-2 3.解:(1)由已知c =1,a -b +c =0,且-b2a =-1,解得a =1,b =2.则f (x )=(x +1)2.则F (x )=⎩⎪⎨⎪⎧(x +1)2,x >0,-(x +1)2,x <0.故F (2)+F (-2)=(2+1)2+[-(-2+1)2]=8.(2)由题意得f (x )=x 2+bx ,原命题等价于-1≤x 2+bx ≤1在(0,1]上恒成立,即b ≤1x -x且b ≥-1x-x 在(0,1]上恒成立.又当x ∈(0,1]时,1x -x 的最小值为0,-1x -x 的最大值为-2,故-2≤b ≤0.。

11-幂函数及常考题型总结

11-幂函数及常考题型总结

第 11 讲:幂函数及常考题型总结题型一:幂函数的定义与图象1.已知幂函数y=f(x)的图象过点(8,m)和(9,3),则实数m的值为()A.2B.12C.3D.222.如果幂函数y=(m2-3m+3)x m2-m-1的图象不过原点,则m的值是.3.若幂函数f(x)=(m2-4m+4)x m-2在(0,+∞)上单调递增,则m=()A.3B.1或3C.4D.4或64.已知幂函数f(x)=(n2+2n-2)x n2-3n(n∈Z)的图象关于y轴对称,且在(0,+∞)上是减函数,则n的值为()A.-3B.1C.2D.1或2,若幂函数f(x)=xα为奇函数,且在(0,+∞)上单调递减,则5.已知α∈-2,-1,-12,12,1,2,3α=.6.图中C 1、C 2、C 3为三个幂函数y =x α在第一象限内的图象,则解析式中指数α的值依次可以是()A.12、3、-1 B.-1、3、12C.12、-1、3D.-1、12、37.图中曲线是幂函数y =x n 在第一象限的图象.已知n 取±2,±12四个值,则相应于曲线c 1、c 2、c 3、c 4的n 依次为()A.-2,-12,12,2 B.2,12,-12,-2C.-12,-2,2,12D.2,12,-2,-128.如图,①②③④对应四个幂函数的图像,其中①对应的幂函数是()A.y =x 3B.y =x 2C.y =xD.y =x58Oxy11C 1C 2C 3Oxyc 1c 2c 3c 4Oxy①②③④9.函数y =x 13的图象是()A.Oxy11B.Oxy11C.Oxy11D.Oxy1110.如图所示是函数y =x m n(m ,n 均为正整数且m ,n 互质)的图象,则()A.m ,n 是奇数且mn<1B.m 是偶数,n 是奇数,且m n <1C.m 是偶数,n 是奇数,且mn>1D.m ,n 是奇数,且mn >111.幂函数f (x )=3x -2,则()A.f (x )的图象过点(-1,1)B.f (x )的图象过点8,14C.f (x )为奇函数D.f (x )为偶函数y =xmny =xxy12.已知幂函数f(x)的图像经过点2,22,则下列命题正确的是()A.f(x)为偶函数B.f(x)的值域是(0,+∞)C.若0<x1<x2,则fx1+x22<f(x1)+f(x2)2D.g(x)=f(x+1)-f(x)是(0,+∞)上的增函数题型二:比较大小13.已知(5-2m)12<(m-1)12,则m的取值范围是()A.(2,+∞)B.2,52C.(-∞,2)D.[1,2)14.设a=34 12,b=43 14,c=23 34,则a,b,c的大小顺序是()A.c<a<bB.c<b<aC.a<c<bD.b<c<a15.(2010•安徽)设a=35 25,b=25 35,c=25 25,则a,b,c的大小关系是()A.a>c>bB.a>b>cC.c>a>bD.b>c>a16.(2016•新课标Ⅲ)已知a=243,b=425,c=2513,则()A.b<a<cB.a<b<cC.b<c<aD.c<a<b17.下列比较大小正确的是()A.π-43>3-13>2-23B.3-13>π-43>2-23C.3-13>2-23>π-43D.2-23>3-13>π-4318.已知函数f (x )=(m 2-m -1)x m 3-1是幂函数,对任意的x 1,x 2∈(0,+∞)且x 1≠x 2,满足f (x 1)-f (x 2)x 1-x 2>0,若a ,b ∈R ,a +b <0,则f (a )+f (b )的值()A.恒大于0B.恒小于0C.等于0D.无法判断19.已知幂函数y =x m 2-2m -3(m ∈N *)的图象关于y 轴对称,且在(0,+∞)上是减函数,则满足(a +1)-m 3<(3-2a )-m 3的a 的取值范围为()A.(-∞,-1)∪23,32B.-1,23C.(-∞,-1)∪32,+∞ D.23,+∞巩固强化1.已知幂函数f(x)=(a2-2a-2)⋅x a在区间(0,+∞)上是单调递增函数,则a的值为()A.3B.-1C.-3D.12.设α∈{-1,1,2,12,3},则使函数y=xα为奇函数且在(0,+∞)为增函数的所有α的值为()A.1,3B.-1,1,2C.12,1,3D.-1,1,33.函数y=x32的图象是()A.O xyB.O xyC.O xyD.O xy。

幂函数练习题及答案

幂函数练习题及答案

幂函数练习题及答案一、选择题1. 幂函数\( f(x) = x^a \)中,当\( a \)为负数时,函数的图像在哪个象限?A. 第一象限B. 第二象限C. 第三象限D. 第四象限答案:D2. 幂函数\( y = x^{-1} \)的图像是:A. 一条直线B. 一条曲线C. 两条曲线D. 无法确定答案:C3. 下列哪个幂函数在\( x = 0 \)处有定义?A. \( y = x^{-1} \)B. \( y = x^{-2} \)C. \( y = x^{1/2} \)D. \( y = x^2 \)答案:D二、填空题4. 幂函数\( y = x^n \)的图像,当\( n \)为奇数时,关于____对称。

答案:y轴5. 幂函数\( y = x^3 \)的图像在\( x = 0 \)处的切线斜率为____。

答案:0三、解答题6. 已知幂函数\( f(x) = x^a \),当\( x = 2 \)时,\( f(x) = 4 \),求\( a \)的值。

解:根据题意,\( f(2) = 2^a = 4 \),由于\( 2^2 = 4 \),所以\( a = 2 \)。

7. 幂函数\( y = x^n \)的图像在第一象限内,且在\( x = 1 \)处的导数为2,求\( n \)的值。

解:由于幂函数的导数为\( y' = n \cdot x^{n-1} \),将\( x = 1 \)代入得\( y' = n \)。

由题意知\( n = 2 \)。

四、计算题8. 求幂函数\( y = x^3 - 3x^2 + 2 \)在\( x = 2 \)处的值。

解:将\( x = 2 \)代入幂函数得\( y = 2^3 - 3 \cdot 2^2 + 2= 8 - 12 + 2 = -2 \)。

9. 已知幂函数\( y = x^a \)在\( x = 1 \)处的值为1,求\( a \)的值。

幂函数的性质专题练习题含答案

幂函数的性质专题练习题含答案

幂函数的性质专题练习题含答案学校:__________ 班级:__________ 姓名:__________ 考号:__________1. 幂函数f(x)=(a2−2a−2)x1−a在(0, +∞)上是减函数,则a=()A.−3B.−1C.1D.32. 已知幂函数f(x)=(k∈N∗),则使得f(x)为奇函数,且在(0, +∞)上单调递增的k的个数为()A.0B.1C.2D.无数个3. 已知(5−2m)12<(m−1)12,则m的取值范围是()A.(2, +∞)B.(2,52] C.(−∞, 2) D.[1, 2)4. 已知幂函数f(x)=(m2−m−1)x m2+m−2在(0, +∞)上是减函数,则f(m)的值为()A.3B.−3C.1D.−15. 函数f(x)=(m2−m−1)x m2+m−1是幂函数,且在(0,+∞)上是减函数,则实数m的值为( )A.1B.−1C.2D.−1或26. 幂函数f(x)=(m2+5m−5)x(m∈Z)是偶函数,且在(0, +∞)上是减函数,则m的值为()A.−6B.1C.6D.1或−67. 已知幂函数(n∈Z)在(0, +∞)上是增函数,则n的值为()A.−1B.1C.−3D.1和−38. 已知幂函数f(x)=(m2−2m−2)x在(0, +∞)上是减函数,则f(m)的值为()A.3B.−3C.1D.−19. 已知幂函数f(x)=(t 2−4t −4)x t−2在(0, +∞)上单调递减,则f(4)=( ) A.132 B.164C.32D.6410. 若幂函数在(0, +∞)上是增函数,且在定义域上是偶函数,则p +q =( ) A.0 B.1 C.2D.311. 已知函数f(x)=−x 3,若f(m −2)>f(2m),则m 的取值范围是( ) A.(−1, 1) B.(−2, +∞) C.(−3, 3) D.(−∞, −2)12. 已知函数y =−ax a +b −1是幂函数,直线mx −ny +2=0(m >0,n >0)过点(a,b ),则n+1m+1的取值范围是( )A.(−∞,13)∪(13,3) B.(1,3) C.[13,3]D.(13,3)13. 已知点 P(2,14) 在幂函数 f(x)=x n 的图象上,设 a =f(ln 2),b =f(log 2e), c =f(e 2), d =f(2e ),则a ,b ,c ,d 的大小关系为( ) A.d >c >b >a B.a >b >d >c C.c >d >b >a D.a >b >c >d14. 设12<(12)b <(12)a <1 ,那么( ) A. a a <a b <b a B. a a <b a <a b C.a b <a a <b a D.a b <b a <a a15. 幂函数f (x )=(m 2−3m +3)x m 的图象关于y 轴对称,则实数m =________.16. 若幂函数y =(m 2−3m +3)x m−2的图象关于原点对称,则m 的取值为________.17. 若幂函数在上是减函数,则实数的值为________.18. 幂函数y =(m 2−m −1)⋅x −5m−3在(0, +∞)上为减函数,则实数m 的值为________.19. 已知幂函数f(x)过点(2,√2),若f(10−2a)<f(a+1),则实数a的取值范围是________.20. 给出下列说法:①幂函数的图象一定不过第四象限;②奇函数图象一定过坐标原点;③y=x2−2|x|−3的递增区间为[1, +∞);>0成立,则f(x)在④定义在R上的函数f(x)对任意两个不等实数a、b,总有f(a)−f(b)a−bR上是增函数;的单调减区间是(−∞, 0)∪(0, +∞).⑤f(x)=1x正确的有________.21. 关于函数y=xα(α为常数),下列说法:①当α=√2时,y=xα不是幂函数;②幂函数y=xα的图象都经过点(1, 1);③当α=0或α=1时,幂函数y=xα图象都是直线;④存在幂函数的图象经过第四象限.其中正确的是________.(把你认为正确的序号都填上)22. 已知幂函数g(x)=(m2−3)x m(m∈R)在(0, +∞)为减函数,且对数函数f(x)满足f(−m+1)+f(−m−1)=12(1)求g(x)、f(x)的解析式(2)若实数a满足f(2a−1)<f(5−a),求实数a的取值范围.23. 已知函数y=(a2−3a+2)x a2−5a+5(a为常数).问:(1)a为何值时此函数为幂函数?(2)a为何值时此函数为正比例函数?24. 已知(m2+m)35≤(3−m)35,求实数m的取值范围.25. 已知幂函数f(x)=(m2−5m+7)x m−1为偶函数.(1)求f(x)的解析式;(2)若g(x)=f(x)−ax−3在[1, 3]上不是单调函数,求实数a的取值范围.26. 已知幂函数f(x)=x m2+4m+3(m∈Z)在(0,+∞)上是单调递减函数.(1)求m的值;(2)若g(x)=(x2+a)f(x)≥2在区间[2,3]上恒成立,求实数a的取值范围.27. 若幂函数f(x)=(2m2+m−2)x2m+1在其定义域上是增函数.(1)求f(x)的解析式;(2)若f(2−a)<f(a2−4),求a的取值范围.28. 已知幂函数y=f(x)=x−3m+7,其中m∈N+.①在区间(0,+∞)上是增函数;②对任意x∈R,都有f(−x)=f(x).(1)求同时满足①、②两个条件的幂函数f(x)的解析式;(2)求x∈[0,2]时,f(x)的值域.29. 已知幂函数f(x)=(m−1)2x m2−4m+2在(0,+∞)上单调递增,函数g(x)=2x−k.(1)求m的值;(2)当x∈[1,2)时,记f(x),g(x)的值域分别为集合A,B,且A∩B=B,求实数k的取值范围.30. 已知幂函数f(x)=x m2−2m−3(m∈z)为偶函数,且在区间(0, +∞)上是单调递减函数.(1)求函数f(x)的解析式;的奇偶性.(2)讨论F(x)=a√f(x)−bxf(x)参考答案与试题解析幂函数的性质专题练习题含答案一、选择题(本题共计 14 小题,每题 3 分,共计42分)1.【答案】D【考点】幂函数的概念、解析式、定义域、值域幂函数的性质【解析】此题暂无解析【解答】此题暂无解答2.【答案】B【考点】幂函数的概念、解析式、定义域、值域幂函数的性质【解析】此题暂无解析【解答】此题暂无解答3.【答案】B【考点】幂函数的性质【解析】根据幂函数的单调性得到关于m的不等式组,解出即可.【解答】对于y=x 12是增函数,∵(5−2m)12<(m−1)12,∴{5−2m≥0m−1≥05−2m<m−1,解得:2<m≤52,4.【答案】C【考点】幂函数的性质【解析】由题意利用幂函数的定义和性质可得m2−m−1=1,且m2+m−2<0,由此求得m的值,可得f(x)的解析式,从而求得f(m)的值.【解答】∵幂函数f(x)=(m2−m−1)x m2+m−2在(0, +∞)上是减函数,则m2−m−1=1,且m2+m−2<0,求得m=−1,故f(x)=x−2,故f(m)=f(−1)=1,5.【答案】B【考点】幂函数的性质幂函数的概念、解析式、定义域、值域【解析】此题暂无解析【解答】解:根据题意,要使函数f(x)=(m2−m−1)x m2+m−1是幂函数,则m2−m−1=1,解得m=2或m=−1.当m=2时,m2+m−1=5,y=x5在(0, +∞)上是增函数,不满足题意;当m=−1时,m2+m−1=−1,y=x−1在(0, +∞)上是减函数,满足题意.故选B.6.【答案】B【考点】幂函数的概念、解析式、定义域、值域幂函数的性质【解析】此题暂无解析【解答】此题暂无解答7.【答案】C【考点】幂函数的概念、解析式、定义域、值域幂函数的性质【解析】首先利用幂函数的系数为1求出n的值,进一步利用函数的单调性的应用求出结果.【解答】由于幂函数(n∈Z)所以n2+2n−2=1,解得n=1或−3.当n=1时,f(x)=x−2在(0, +∞)单调递减.当n=−3时,f(x)=x18在(0, +∞)单调递增.8.【答案】C【考点】幂函数的概念、解析式、定义域、值域幂函数的性质【解析】此题暂无解析【解答】此题暂无解答9.【答案】B【考点】幂函数的性质【解析】先利用幂函数的定义得到t2−4t−4=1,求出t的值后,再利用幂函数的单调性进行判断,即可得到答案.【解答】由f(x)=(t2−4t−4)x t−2是幂函数,可知t2−4t−4=1,即t2−4t−5=0,解得t=−1或t=5,所以f(x)=x−3或f(x)=x3,又幂函数f(x)在(0, +∞)上单调递减,所以f(x)=x−3,所以f(4)=4−3=1.6410.【答案】C【考点】幂函数的性质【解析】由题意利用幂函数的定义和性质,求出p、q的值,可得结论.【解答】∵幂函数在(0,且在定义域上是偶函数,∴q=1,且−p6+2p+3为正的偶数,∴p=3.∴p+q=2,11.【答案】B【考点】幂函数的性质【解析】此题暂无解析【解答】此题暂无解答12.【答案】D【考点】幂函数的性质幂函数的概念、解析式、定义域、值域【解析】【解答】解:由y=−ax a+b−1是幂函数,知:a=−1,b=1,又(a,b)在mx−ny+2=0上,∴m+n=2,即n=2−m>0,则n+1m+1=3−mm+1=4m+1−1,且0<m<2,∴n+1m+1∈(13,3) .故选D.13.【答案】B【考点】幂函数的性质【解析】此题暂无解析【解答】解:由于点P(2,14)在f(x)=x n的图象上,解得n=−2,即f(x)=x−2,f(x)在(0,+∞)上单调递减,ln2<log2e<2e<e2,所以a>b>d>c.故选B.14.【答案】C【考点】幂函数的性质指数函数单调性的应用【解析】此题暂无解析【解答】解:由12<(12)b<(12)a<1,得0<a<b<1,由幂函数的性质可知a a<b a,a b<a a<b a.故选C.二、填空题(本题共计 7 小题,每题 3 分,共计21分)15.【答案】2【考点】幂函数的性质【解析】利用幂函数的定义得到m2−3m+3=1,由图象关于y轴对称,可知函数为偶函数,可知m为偶数,求解即可.【解答】解:∵幂函数f(x)=(m2−3m+3)x m的图象关于y轴对称,∴m2−3m+3=1且m为偶数,∴m=2.故答案为:2.16.【答案】1【考点】幂函数的性质【解析】根据幂函数的定义列方程求出m的值,再判断函数的图象是否关于原点对称.【解答】幂函数y=(m2−3m+5)x m−2中,令m2−2m+3=1,解得m=5或m=2;当m=1时,f(x)=x−2,图象关于原点对称;当m=2时,f(x)=x0,图象不关于原点对称;所以m的取值为8.17.【答案】m=2【考点】幂函数的概念、解析式、定义域、值域幂函数的单调性、奇偶性及其应用幂函数的性质【解析】试题分析:由题意得:m2−m−1=1,m2−2m−3<0⇒m=2【解答】此题暂无解答18.【答案】2【考点】幂函数的性质幂函数的概念、解析式、定义域、值域【解析】利用幂函数的定义及幂函数的性质列出不等式组,求出m的值.【解答】解:由题意知{m2−m−1=1,−5m−3<0,∴m=2.故答案为:2.19.【答案】(3, 5]【考点】幂函数的概念、解析式、定义域、值域幂函数的性质【解析】求出函数f(x)的解析式,根据函数的单调性和定义域得到关于a的不等式组,解出即可.【解答】设幂函数的解析式为f(x)=xα,由题意得:2α=√2=212,故α=12,故f(x)=√x,f(x)在[0, +∞)递增,若f(10−2a)<f(a+1),所以{a+1≥010−2a≥010−2a<a+1,解得{a≥−1a≤5a>3,所以3<a≤5,20.【答案】①④【考点】幂函数的性质函数单调性的判断与证明奇函数【解析】根据幂函数的图象的性质,可判断①正确,根据奇函数的定义,可判断②的正误;根据对折变换的图象变化及二次函数的单调性,可判断③的真假;根据单调性的定义,可判断④是正确的;根据单调区间的定义,可以判断⑤的对错.【解答】解:由幂函数的图象的性质,易得幂函数的图象一定不过第四象限,故①正确;若奇函数在x=0时有意义,则图象一定过坐标原点,但奇函数在x=0时无意义时,则图象不过坐标原点,故②错误;y=x2−2|x|−3的递增区间有两个:[−1, 0]和[1, +∞)故③错误;若f(a)−f(b)a−b>0,则f(x)在R上是增函数,故④正确;f(x)=1x 的单调减区间有两个:(−∞, 0)和(0, +∞),但函数f(x)=1x在区间(−∞, 0)∪(0, +∞)上不具备单调性,故⑤错误;故答案为:①④21.【答案】②【考点】幂函数的性质幂函数图象及其与指数的关系【解析】根据幂函数的定义和性质,对各个选项的正确性进行判断,从而得出结论.【解答】解:①当α=√2时,函数y=xα是幂函数,故①不正确;②所有幂函数y=xα的图象都经过点(1, 1),故②正确;③当α=0,幂函数y=xα图象都是直线y=1上去掉了点(0, 1),故③不正确;④对于所有的幂函数y=xα,由于当x>0时,xα>0,故它们的图象都不会经过第四象限,故④不正确.故答案为②.三、解答题(本题共计 9 小题,每题 10 分,共计90分)22.【答案】解:(1)幂函数g(x)=(m2−3)x m(m∈R)在(0, +∞)为减函数,∴{m2−3=1m<0,解得m=−2,∴g(x)=x2;又∵f(x)是对数函数,且f(−m+1)+f(−m−1)=12,∴设f(x)=logax(a>0且a≠1),∴loga (−m+1)+loga(−m−1)=12,即loga (m2−1)=loga3=12,解得a=9,∴f(x)=log9x;(2)∵实数a满足f(2a−1)<f(5−a),且f(x)=log9x在(0, +∞)上单调递增,∴ {2a −1>05−a >02a −1<5−a,解得{a >12a <5a <2;即12<a <2,∴ 实数a 的取值范围是(12, 2).【考点】幂函数的性质【解析】(1)根据幂函数的定义与性质,列出不等式组{m 2−3=1m <0,求出m 的值,得g(x)解析式;由f(x)是对数函数,且f(−m +1)+f(−m −1)=12,利用m 的值求出f(x)的解析式;(2)根据f(x)的单调性,把f(2a −1)<f(5−a)转化,求出解集即可.【解答】解:(1)幂函数g(x)=(m 2−3)x m (m ∈R)在(0, +∞)为减函数,∴ {m 2−3=1m <0, 解得m =−2,∴ g(x)=x 2;又∵ f(x)是对数函数,且f(−m +1)+f(−m −1)=12, ∴ 设f(x)=log a x(a >0且a ≠1),∴ log a (−m +1)+log a (−m −1)=12,即log a (m 2−1)=log a 3=12, 解得a =9,∴ f(x)=log 9x ;(2)∵ 实数a 满足f(2a −1)<f(5−a),且f(x)=log 9x 在(0, +∞)上单调递增,∴ {2a −1>05−a >02a −1<5−a,解得{a >12a <5a <2;即12<a <2,∴ 实数a 的取值范围是(12, 2).23.【答案】∵函数为幂函数,∴a2−3a+2=1,∴解之得a=3±√52,∵函数为正比例函数,∴a2−3a+2≠0或a2−5a+5=1,解得a=4.【考点】幂函数的性质【解析】根据题意知参数的取值.【解答】∵函数为幂函数,∴a2−3a+2=1,∴解之得a=3±√52,∵函数为正比例函数,∴a2−3a+2≠0或a2−5a+5=1,解得a=4.24.【答案】解:(1)设函数y=x 3 5,函数为R上的单调递增函数…得,m2+m≤−m+3…即,m2+2m−3≤0…得,(m−1)(m+3)≤0所以,m的取值范围为:m∈[−3, 1]…【考点】幂函数的性质【解析】根据函数的单调性得到关于m的不等式,解出即可.【解答】解:(1)设函数y=x 3 5,函数为R上的单调递增函数…得,m2+m≤−m+3…即,m2+2m−3≤0…得,(m−1)(m+3)≤0所以,m的取值范围为:m∈[−3, 1]…25.【答案】解:(1)由f(x)为幂函数知m2−5m+7=1,得m=2或m=3,当m=3时,f(x)=x2,符合题意;当m=2时,f(x)=x,不合题意,舍去.∴f(x)=x2.(2)g(x)=f(x)−ax−3=x2−ax−3,g(x)的对称轴是x=a,2若g(x)在[1,3]上不是单调函数,<3,则1<a2解得2<a<6.【考点】幂函数的性质函数奇偶性的性质函数单调性的性质【解析】(1)根据幂函数的性质即可求f(x)的解析式;(2)根据函数y=f(x)−2(a−1)x+1在区间(2, 3)上为单调函数,利用二次函数对称轴和区间之间的关系即可,求实数a的取值范围.【解答】解:(1)由f(x)为幂函数知m2−5m+7=1,得m=2或m=3,当m=3时,f(x)=x2,符合题意;当m=2时,f(x)=x,不合题意,舍去.∴f(x)=x2.(2)g(x)=f(x)−ax−3=x2−ax−3,g(x)的对称轴是x=a,2若g(x)在[1,3]上不是单调函数,<3,则1<a2解得2<a<6.26.【答案】解:(1)f(x)=x m2+4m+3在区间(0,+∞)上是单调递减函数,则m2+4m+3<0,解得−3<m<−1.又m∈Z,所以m=−2 .(2)由(1)知f(x)=x−1,则g(x)=x+a,x≥2在x∈[2,3]上恒成立.所以x+ax则a≥2x−x2=−(x−1)2+1,可知当x=2时,a≥(2x−x2)max=0,所以实数a的取值范围是[0,+∞) .【考点】幂函数的性质一元二次不等式的解法函数恒成立问题二次函数在闭区间上的最值【解析】【解答】解:(1)f(x)=x m2+4m+3在区间(0,+∞)上是单调递减函数,则m2+4m+3<0,解得−3<m<−1.又m∈Z,所以m=−2 .(2)由(1)知f(x)=x−1,则g(x)=x+a,x≥2在x∈[2,3]上恒成立.所以x+ax则a≥2x−x2=−(x−1)2+1,可知当x=2时,a≥(2x−x2)max=0,所以实数a的取值范围是[0,+∞) .27.【答案】由函数f(x)=(2m2+m−2)x2m+1是幂函数,所以2m2+m−2=1,解得m=1或m=-;当m=1时,f(x)=x3,在定义域R上是增函数,满足题意;当m=-时,f(x)=x−2,在定义域(−∞, 0)∪(0, +∞)上不是增函数,不满足题意;所以m=1,f(x)=x3.由f(x)=x3,在定义域R上是增函数,所以不等式f(2−a)<f(a2−4)等价于2−a<a2−4,化简得a2+a−6>0,解得a<−3或a>2,所以a的取值范围是(−∞, −3)∪(2, +∞).【考点】幂函数的性质【解析】(1)根据幂函数的定义列方程求出m的值,再判断m的值是否满足题意;(2)由f(x)在定义域R上是增函数,把不等式f(2−a)<f(a2−4)化为2−a<a2−4,求出解集即可.【解答】由函数f(x)=(2m2+m−2)x2m+1是幂函数,所以2m2+m−2=1,解得m=1或m=-;当m=1时,f(x)=x3,在定义域R上是增函数,满足题意;当m=-时,f(x)=x−2,在定义域(−∞, 0)∪(0, +∞)上不是增函数,不满足题意;所以m=1,f(x)=x3.由f(x)=x3,在定义域R上是增函数,所以不等式f(2−a)<f(a2−4)等价于2−a<a2−4,化简得a2+a−6>0,解得a<−3或a>2,所以a的取值范围是(−∞, −3)∪(2, +∞).28.【答案】解:(1)∵f(x)=x−3m+7 在(0,+∞)上单调递增,∴−3m+7>0,∴m<7.3又∵m∈N+,∴m=1或m=2,当m=1时,y=f(x)=x4,此时符合f(−x)=f(x);当m=2时,y=f(x)=x,此时f(x)为奇函数,f(−x)=−f(x),不合题意,舍去,∴f(x)=x4.(2)∵f(x)在(0,+∞)上单调递增,∴ f(x)在[0,2]上单调递增,∴f(x)min=f(0)=0,f(x)max=f(2)=24=16,∴ f(x)在[0,2]的值域为[0,16].【考点】幂函数的概念、解析式、定义域、值域幂函数的性质【解析】(1)由题意可知,幂函数为偶函数,且在(0,+∞)上单调递增,进而得到−3m+7>0且−3m+7为偶数,结合m∈N+,即可得到答案;(2)f(x)在[0,2]上单调递增,利用函数的单调性求值域即可.【解答】解:(1)∵f(x)=x−3m+7 在(0,+∞)上单调递增,∴−3m+7>0,∴m<7.3又∵m∈N+,∴m=1或m=2,当m =1时, y =f (x )=x 4,此时符合f (−x )=f (x );当m =2时,y =f (x )=x ,此时f (x )为奇函数, f (−x )=−f (x ),不合题意,舍去, ∴ f (x )=x 4.(2)∵ f (x )在(0,+∞)上单调递增,∴ f (x )在[0,2]上单调递增,∴ f (x )min =f (0)=0,f (x )max =f (2)=24=16,∴ f (x )在[0,2]的值域为[0,16].29.【答案】解:(1)由题可得:{(m −1)2=1,m 2−4m +2>0,解得m =0.(2)由(1)得f (x )=x 2对称轴为x =0,又x ∈[1,2),∴ f(x)值域A =[1,4).∵ g (x )=2x −k 在x ∈[1,2)单调递增,∴ g(x)值域B =[2−k,4−k).∵ A ∩B =B ,∴ B ⊆A ,∴ {2−k ≥1,4−k ≤4,解得:0≤k ≤1.【考点】幂函数的性质幂函数的概念、解析式、定义域、值域指数函数的定义、解析式、定义域和值域集合的包含关系判断及应用【解析】【解答】解:(1)由题可得:{(m −1)2=1,m 2−4m +2>0,解得m =0.(2)由(1)得f (x )=x 2对称轴为x =0,又x ∈[1,2),∴ f(x)值域A =[1,4).∵ g (x )=2x −k 在x ∈[1,2)单调递增,∴ g(x)值域B =[2−k,4−k).∵ A ∩B =B ,∴ B ⊆A ,∴{2−k≥1,4−k≤4,解得:0≤k≤1.30.【答案】f(x)=x m2−2m−3=x m(m−2)−3,由题意知m(m−2)为奇数又m∈z 且f(x)在(0, +∞)上递减,∴m=1,f(x)=x−4F(x)=a√x−4−bx⋅x−4=a⋅x−2−b⋅x3(x≠0)∵y=x−2是偶函数,y=x3是奇函数①a≠0且b≠0时,F(x)为非奇非偶函数;②a=0且b≠0时,F(x)为奇函数;③a≠0且b=0时,F(x)为偶函数;④a=b=0时,F(x)为奇且偶函数【考点】幂函数的性质奇偶性与单调性的综合【解析】(1)由幂函数f(x)为(0, +∞)上递减,推知m2−2m−3<0,解得−1<m<3因为m 为整数故m=0,1或2,又通过函数为偶函数,推知m2−2m−3为偶数,进而推知m2−2m为奇数,进而推知m只能是1,把m代入函数,即可得到f(x)的解析式.(2)把f(x)的解析式代入F(x),得到F(x)的解析式.然后分别讨论a≠0且b≠0时,a=0且b≠0时,a≠0且b=0时,a=b=0时,函数的奇偶性.【解答】f(x)=x m2−2m−3=x m(m−2)−3,由题意知m(m−2)为奇数又m∈z且f(x)在(0, +∞)上递减,∴m=1,f(x)=x−4F(x)=a√x−4−bx⋅x−4=a⋅x−2−b⋅x3(x≠0)∵y=x−2是偶函数,y=x3是奇函数①a≠0且b≠0时,F(x)为非奇非偶函数;②a=0且b≠0时,F(x)为奇函数;③a≠0且b=0时,F(x)为偶函数;④a=b=0时,F(x)为奇且偶函数。

幂函数练习题及解析

幂函数练习题及解析

幂函数练习题及解析幂函数是数学中一种重要的函数类型,它可以表示为f(x) = a * x^b的形式,其中a和b是实数常数。

在本篇文章中,我们将提供一些幂函数的练习题,并对解答进行详细的解析。

练习题1:考虑函数f(x) = 2 * x^3,请回答以下问题:1. 当x = 2时,f(x)的值是多少?2. 当f(x) = 16时,x的值是多少?解析1:在函数f(x) = 2 * x^3中,我们只需要将x = 2代入函数中计算即可得到f(x)的值。

f(2) = 2 * 2^3 = 2 * 8 = 16因此,当x = 2时,f(x)的值为16。

解析2:当f(x) = 16时,我们需要求解方程2 * x^3 = 16,即2 * x^3 - 16 = 0。

首先,我们可以将方程进行简化,除以2得到x^3 - 8 = 0。

然后,我们注意到8可以表示为2的立方,因此我们可以将方程进一步简化为(x - 2) * (x^2 + 2x + 4) = 0。

根据因式定理,我们得到两个解:x - 2 = 0和x^2 + 2x + 4 = 0。

对于x - 2 = 0,解得x = 2。

对于x^2 + 2x + 4 = 0,由于判别式小于零,方程没有实数解。

因此,当f(x) = 16时,x的值为2。

练习题2:考虑函数f(x) = 5 * (1/2)^x,请回答以下问题:1. 当x = 3时,f(x)的值是多少?2. 当f(x) = 1/8时,x的值是多少?解析1:在函数f(x) = 5 * (1/2)^x中,我们只需要将x = 3代入函数中计算即可得到f(x)的值。

f(3) = 5 * (1/2)^3 = 5 * (1/8) = 5/8因此,当x = 3时,f(x)的值为5/8。

解析2:当f(x) = 1/8时,我们需要求解方程5 * (1/2)^x = 1/8,即5 * (1/2)^x - 1/8 = 0。

首先,我们可以将方程进行简化,乘以8得到40 * (1/2)^x - 1 = 0。

幂函数的图像与性质(最新)

幂函数的图像与性质(最新)

一般地,y=xα(α为有理数)的函数,即以底数为自变量,幂为因变量,指数为常数的函数称为幂函数。

例如函数y=x0 、y=x1、y=x2、y=x-1(注:y=x-1=1/x、y=x0时x≠0)等都是幂函数。

希望对大家有所帮助,欢迎阅读,仅供参考!幂函数的图像与性质相关内容1、形如y=x α的函数叫做幂函数,其中x 是自变量,α是常数。

2二、基础练习1、判断下列哪些是幂函数(1)y=0. 2 (2)y=x (3)y=3-x (4)y=x -1 (5)y=4x (6)y=x2、画出下列函数的图像(1)y=x (2)y=x(3)y=x (5)y=1-673443x12(4)y=x13x (6)y=x893、若幂函数y=f (x )的图象经过点(9,4、若函数f (x )既是幂函数又是反比例函数, 则这个函数是f (x )=5、幂函数f (x) 的图象过点(,则f (x ) 的解析式是____________6、函数f (x )=(m 2-m -1) x ma21), 则f(25)的值是_________ 3-2m -3是幂函数,且在x ∈(0,+∞) 上是减函数,则实数m=______ 7、已知-1131, y=2x , y=x 2+x , y=( ) 2xA 、1个B 、2个C 、3个D 、4个8、在y=9、已知幂函数y=f (x ) 的图象过点(2,A .1 B. 2 C.10、幂函数y=xm 2-3m -4,则f (4)的值为( ) 21D.8 2A .-12(m ∈Z) 的图象如下图所示,则m 的值为( )B .0或2 C.1或3 D.0,1,2或3x252x11、若y=x , y=() , y=4x , y=x +1, y=(x -1) , y=x , y=a (a >1) 上述函数是幂函数的个数是( )A.0个B.1个C.2个D.3个12、幂函数y=x (α是常数) 的图象( )A、一定经过点(0,0) B.一定经过点(1,1) C.一定经过点(-1,1) D.一定经过点(1,-1) 13、对于幂函数f (x )=x ,若045α12x 1+x 2f (x 1) +f (x 2)) > 22x +x 2f (x 1) +f (x 2))=C . f (1 22A .f (x 1+x 2f (x 1) +f (x 2)) ,大小关系是( ) 22x +x 2f (x 1) +f (x 2))D . 无法确定为了维护职工休息休假权利,调动职工工作积极性,根据劳动法和公务员法,制定本条例。

幂函数与指数函数练习题计算幂函数与指数函数的性质

幂函数与指数函数练习题计算幂函数与指数函数的性质

幂函数与指数函数练习题计算幂函数与指数函数的性质幂函数与指数函数是数学中的基础概念之一,它们在各个领域都有着广泛的应用。

为了更好地理解和掌握幂函数与指数函数的性质,我们可以通过练习题来加深理解并提高解题能力。

本文将为大家提供一些关于幂函数和指数函数的练习题,并给出详细的解答过程。

练习题一:幂函数的性质1. 计算并简化下列幂函数:a) \(2^3\)b) \((-3)^4\)c) \(4^0\)d) \(0^5\)解答:a) \(2^3 = 2 \times 2 \times 2 = 8\)b) \((-3)^4 = (-3) \times (-3) \times (-3) \times (-3) = 81\)c) \(4^0 = 1\) (任何数的零次幂都等于1)d) \(0^5 = 0\) (除了0以外的数的零次幂都等于1)2. 比较下列幂函数的大小:a) \(2^5\) 与 \(3^3\)b) \(4^{-2}\) 与 \(2^{-4}\)解答:a) \(2^5 = 32\),\(3^3 = 27\),因此 \(2^5 > 3^3\)b) \(4^{-2} = \frac{1}{4^2} = \frac{1}{16}\),\(2^{-4} = \frac{1}{2^4} = \frac{1}{16}\),因此 \(4^{-2} = 2^{-4}\)练习题二:指数函数的性质1. 计算并简化下列指数函数:a) \(e^0\)b) \(e^1\)c) \(e^{-2}\)解答:a) \(e^0 = 1\) (e的零次幂等于1)b) \(e^1 = e\) (e的一次幂等于e)c) \(e^{-2} = \frac{1}{e^2}\)2. 求下列指数函数的值:a) \(\log_e 1\)b) \(\log_e e\)c) \(\log_e e^2\)解答:a) \(\log_e 1 = 0\) (由指数函数和对数函数的性质可知,任何数对于底数为自然常数e的自然对数都等于0)b) \(\log_e e = 1\) (e的以e为底的对数等于1)c) \(\log_e e^2 = 2\) (根据幂函数的性质,指数和对数可以相互抵消)练习题三:混合练习1. 若 \(2^x = 4\),求x的值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

幂函数分数指数幂正分数指数幂的意义是:m n m na a =(0a >,m 、n N ∈,且1n >) 负分数指数幂的意义是:1m nnma a-=(0a >,m 、n N ∈,且1n >)一、幂函数的定义一般地,形如y x α=(x ∈R )的函数称为幂孙函数,其中x 是自变量,α是常数.如11234,,y x y x y x -===等都是幂函数,幂函数与指数函数,对数函数一样,都是基本初等函数.二、幂函数的图像幂函数n y x =随着n 的不同,定义域、值域都会发生变化,可以采取按性质和图像分类记忆的方法.熟练掌握n y x =,当112,1,,,323n =±±±的图像和性质,列表如下.从中可以归纳出以下结论:① 它们都过点()1,1,除原点外,任何幂函数图像与坐标轴都不相交,任何幂函数图像都不过第四象限.② 11,,1,2,332a =时,幂函数图像过原点且在[)0,+∞上是增函数.③ 1,1,22a =---时,幂函数图像不过原点且在()0,+∞上是减函数.④ 任何两个幂函数最多有三个公共点.三、幂函数基本性质(1)所有的幂函数在(0,+∞)都有定义,并且图象都过点(1,1); (2)α>0时,幂函数的图象都通过原点,并且在[0,+∞]上,是增函数 (3)α<0时,幂函数的图象在区间(0,+∞)上是减函数. 规律总结1.在研究幂函数的性质时,通常将分式指数幂化为根式形式,负整指数幂化为分式形式再去进行讨论;2.对于幂函数y =αx ,我们首先应该分析函数的定义域、值域和奇偶性,由此确定图象的位置,即所在象限,其次确定曲线的类型,即α<0,0<α<1和α>1三种情况下曲线的基本形状,还要注意α=0,±1三个曲线的形状;对于幂函数在第一象限的图象的大致情况可以用口诀来记忆:“正抛负双,大竖小横”,即α>0(α≠1)时图象是抛物线型;α<0时图象是双曲线型;α>1时图象是竖直抛物线型;0<α<1时图象是横卧抛物线型. 四、幂函数的应用 题型一.幂函数的判断例1.在函数22031,3,,y y x y x x y x x===-=中,幂函数的个数为 ( )A .0B .1C .2D .3练1.下列所给出的函数中,是幂函数的是( )A .3x y -=B .3-=x yC .32x y =D .13-=x y 题型二.幂函数图像问题例 2.幂函数n my x =(m 、n N ∈,且m 、n 互质)的图象在第一,二象限,且不经过原点,则有( ) ()A m 、n 为奇数且1mn <()B m 为偶数,n 为奇数,且1mn > ()C m 为偶数,n 为奇数,且1mn <()D m 奇数,n 为偶数,且1mn>练2.右图为幂函数y x α=在第一象限的图像,则,,,a b c d 的大小关系是( )()A a b c d >>> ()B b a d c >>>()C a b d c >>>()D a d c b >>>解:取12x =, 由图像可知:11112222cdba⎛⎫⎛⎫⎛⎫⎛⎫>>> ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,a b d c ⇒>>>,应选()C . 题型三.幂函数比较大小的问题 例3.比较下列各组数的大小: (1)131.5,131.7,1;(2)(37,(37,(37;(3)232-⎛- ⎝⎭,23107-⎛⎫- ⎪⎝⎭,()431.1--. 解:(1)底数不同,指数相同的数比大小,可以转化为同一幂函数,不同函数值的大小问题.∵13y x =在()0,+∞上单调递增,且1.7 1.51>>,∴11331.7 1.51>>.(2)底数均为负数,可以将其转化为())3377=-,())3377=-,())3377=-.∵37y x =在()0,+∞上单调递增,且>>, ∴)))333777>>,即)))333777-<-<-,∴()()()333777<<.(3)先将指数统一,底数化成正数.2233--⎛= ⎝⎭⎝⎭,2233101077--⎛⎫⎛⎫-= ⎪ ⎪⎝⎭⎝⎭,()()42331.1 1.21---=. ∵23y x -=在()0,+∞上单调递减,且7 1.21102<<,∴()2232337 1.21102---⎛⎛⎫>> ⎪ ⎝⎭⎝⎭,即:()2234337 1.1102---⎛⎛⎫->->- ⎪ ⎝⎭⎝⎭. 点评:比较幂形式的两个数的大小,一般的思路是: (1)若能化为同指数,则用幂函数的单调性; (2)若能化为同底数,则用指数函数的单调性; (3)若既不能化为同指数,也不能化为同底数,则需寻找一个恰当的数作为桥梁来比较大小. 题型四.幂函数含参数问题例4.若()()1133132a a --+<-,求实数a 的取值范围. 分析:若1133xy --<,则有三种情况0x y <<,0y x <<或0y x <<. 解:根据幂函数的性质,有三种可能:10320a a +<⎧⎨->⎩或10320132a a a a +<⎧⎪-<⎨⎪+>-⎩或10320132a a a a+>⎧⎪->⎨⎪+>-⎩,解得:()23,1,32a ⎛⎫-∞- ⎪⎝∈⎭.练4.已知幂函数223m m y x --=(m Z ∈)的图象与x 轴、y 轴都无交点,且关于原点对称,求m的值.解:∵幂函数223mm y x --=(m Z ∈)的图象与x 轴、y 轴都无交点,∴2230m m --≤,∴13m -≤≤;∵m Z ∈,∴2(23)m m Z --∈,又函数图象关于原点对称, ∴223m m --是奇数,∴0m =或2m =.练5.幂函数()3521----=m x m m y ,当x ∈(0,+∞)时为减函数,则实数m 的值为( )A. m =2B. m =-1C. m =-1或m =2D. 251±≠m题型五、幂函数与函数的性质综合题例5、求函数y =52x +2x 51+4(x ≥-32)值域.解析:设t =x 51,∵x ≥-32,∴t ≥-2,则y =t 2+2t +4=(t +1)2+3. 当t =-1时,y min =3.∴函数y =52x +2x 51+4(x ≥-32)的值域为[3,+∞). 点评:这是复合函数求值域的问题,应用换元法.练6.已知f(x)=2x2,(1)判断f(x)在(0,+∞)上的单调性并证明;(2)当x∈[1,+∞)时,求f(x)的最大值.解: 函数f(x)在(0,+∞)上是减函数. 证明如下:任取x 1、x 2∈(0,+∞),且x 1<x 2,f(x 1)-f(x 2)=2x 12-2x 22=2(x 22-x 12)x 12x 22=2(x 2+x 1)(x 2-x 1)x 12x 22∵0<x 1<x 2,∴x 1+x 2>0,x 2-x 1>0,x 12x 22>0. ∴f(x 1)-f(x 2)>0,即f(x 1)>f(x 2). ∴函数f(x)在(0,+∞)上是减函数.(2)由(1)知,f(x)的单调减区间为(0,+∞),∴函数f(x)在[1,+∞)上是减函数, ∴函数f(x)在[1,+∞)上的最大值为f(1)=2.【同步练习】1. 下列函数中不是幂函数的是( )A.y = B.3y x = C.2y x = D.1y x -= 答案:C2. 下列函数在(),0-∞上为减函数的是( )A.13y x = B.2y x = C.3y x = D.2y x -= 答案:B3. 下列幂函数中定义域为{}0x x >的是( )A.23y x = B.32y x = C.23y x -= D.32y x -= 答案:D4.函数y =(x 2-2x )21-的定义域是( )A .{x |x ≠0或x ≠2}B .(-∞,0) (2,+∞)C .(-∞,0)] [2,+∞]D .(0,2)解析:函数可化为根式形式,即可得定义域. 答案:B5.函数y =(1-x 2)21的值域是( )A .[0,+∞]B .(0,1)C .(0,1)D .[0,1] 解析:这是复合函数求值域问题,利用换元法,令t =1-x 2,则y =t . ∵-1≤x ≤1,∴0≤t ≤1,∴0≤y ≤1. 答案:D6.函数y =52x 的单调递减区间为( )A .(-∞,1)B .(-∞,0)C .[0,+∞]D .(-∞,+∞) 解析:函数y =52x 是偶函数,且在[0,+∞)上单调递增,由对称性可知选B . 答案:B 7.若a 21<a21-,则a 的取值范围是( )A .a ≥1B .a >0C .1>a >0D .1≥a ≥0 解析:运用指数函数的性质,选C . 答案:C8.函数y =32)215(x x -+的定义域是 。

解析:由(15+2x -x 2)3≥0.∴15+2x -x <20.∴-3≤x ≤5.答案:A 9.函数y =221m m x--在第二象限内单调递增,则m 的最大负整数是________.解析:m 的取值应该使函数为偶函数.故m =-1.答案:m =-110、讨论函数y =52x 的定义域、值域、奇偶性、单调性,并画出图象的示意图.思路:函数y =52x 是幂函数.(1)要使y =52x =52x 有意义,x 可以取任意实数,故函数定义域为R .(2)∵x ∈R ,∴x 2≥0.∴y ≥0.(3)f (-x )=52)(x -=52x =f (x ), ∴函数y =52x 是偶函数;(4)∵n =52>0, ∴幂函数y =52x 在[0,+∞]上单调递增.由于幂函数y =52x 是偶函数,∴幂函数y =52x 在(-∞,0)上单调递减. (5)其图象如下图所示.12.已知函数y =42215x x --. (1)求函数的定义域、值域; (2)判断函数的奇偶性; (3)求函数的单调区间.解析:这是复合函数问题,利用换元法令t =15-2x -x 2,则y =4t , (1)由15-2x -x 2≥0得函数的定义域为[-5,3], ∴t =16-(x -1)2∈[0,16].∴函数的值域为[0,2].(2)∵函数的定义域为[-5,3]且关于原点不对称,∴函数既不是奇函数也不是偶函数. (3)∵函数的定义域为[-5,3],对称轴为x =1,∴x ∈[-5,1]时,t 随x 的增大而增大;x ∈(1,3)时,t 随x 的增大而减小.又∵函数y =4t 在t ∈[0,16]时,y 随t 的增大而增大,∴函数y =42215x x --的单调增区间为[-5,1],单调减区间为(1,3]. 答案:(1)定义域为[-5,3],值域为[0,2]; (2)函数即不是奇函数,也不是偶函数; (3)(1,3].。

相关文档
最新文档