中考数学—反比例函数的综合压轴题专题复习含详细答案

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

中考数学—反比例函数的综合压轴题专题复习含详细答案

一、反比例函数

1.如图,已知A(﹣4,),B(﹣1,2)是一次函数y=kx+b与反比例函数

(m≠0,m<0)图象的两个交点,AC⊥x轴于C,BD⊥y轴于

D.

(1)根据图象直接回答:在第二象限内,当x取何值时,一次函数大于反比例函数的值?(2)求一次函数解析式及m的值;

(3)P是线段AB上的一点,连接PC,PD,若△PCA和△PDB面积相等,求点P坐标.【答案】(1)解:当﹣4<x<﹣1时,一次函数大于反比例函数的值;

(2)把A(﹣4,),B(﹣1,2)代入y=kx+b得,解得,

所以一次函数解析式为y= x+ ,

把B(﹣1,2)代入y= 得m=﹣1×2=﹣2;

(3)解:如下图所示:

设P点坐标为(t,t+ ),

∵△PCA和△PDB面积相等,

∴• •(t+4)= •1•(2﹣t﹣),即得t=﹣,

∴P点坐标为(﹣,).

【解析】【分析】(1)观察函数图象得到当﹣4<x<﹣1时,一次函数图象都在反比例函数图象上方;(2)先利用待定系数法求一次函数解析式,然后把B点坐标代入y= 可计算出m的值;(3)设P点坐标为(t, t+ ),利用三角形面积公式可得到• •(t+4)= •1•(2﹣ t﹣),解方程得到t=﹣,从而可确定P点坐标.

2.如图,一次函数y1=k1x+b与反比例函数y2= 的图象交于点A(4,m)和B(﹣8,﹣

2),与y轴交于点C.

(1)m=________,k1=________;

(2)当x的取值是________时,k1x+b>;

(3)过点A作AD⊥x轴于点D,点P是反比例函数在第一象限的图象上一点.设直线OP 与线段AD交于点E,当S四边形ODAC:S△ODE=3:1时,求点P的坐标.

【答案】(1)4;

(2)﹣8<x<0或x>4

(3)解:由(1)知,y1= x+2与反比例函数y2= ,∴点C的坐标是(0,2),点A 的坐标是(4,4).

∴CO=2,AD=OD=4.

∴S梯形ODAC= •OD= ×4=12,

∵S四边形ODAC:S△ODE=3:1,

∴S△ODE= S梯形ODAC= ×12=4,

即OD•D E=4,

∴DE=2.

∴点E的坐标为(4,2).

又点E在直线OP上,

∴直线OP的解析式是y= x,

∴直线OP与y2= 的图象在第一象限内的交点P的坐标为(4 ,2 ).

【解析】【解答】解:(1)∵反比例函数y2= 的图象过点B(﹣8,﹣2),∴k2=(﹣8)×(﹣2)=16,

即反比例函数解析式为y2= ,

将点A(4,m)代入y2= ,得:m=4,即点A(4,4),

将点A(4,4)、B(﹣8,﹣2)代入y1=k1x+b,

得:,

解得:,

∴一次函数解析式为y1= x+2,

故答案为:4,;(2)∵一次函数y1=k1x+2与反比例函数y2= 的图象交于点A(4,4)和B(﹣8,﹣2),

∴当y1>y2时,x的取值范围是﹣8<x<0或x>4,

故答案为:﹣8<x<0或x>4;

【分析】(1)由A与B为一次函数与反比例函数的交点,将B坐标代入反比例函数解析式中,求出k2的值,确定出反比例解析式,再将A的坐标代入反比例解析式中求出m的值,确定出A的坐标,将B坐标代入一次函数解析式中即可求出k1的值;(2)由A与B 横坐标分别为4、﹣8,加上0,将x轴分为四个范围,由图象找出一次函数图象在反比例函数图象上方时x的范围即可;(3)先求出四边形ODAC的面积,由S四边形ODAC:S△ODE=3:1得到△ODE的面积,继而求得点E的坐标,从而得出直线OP的解析式,结合反比例函数解析式即可得.

3.如图,反比例函数y1= 的图象与一次函数y2= x的图象交于点A、B,点B的横坐标

是4,点P(1,m)在反比例函数y1= 的图象上.

(1)求反比例函数的表达式;

(2)观察图象回答:当x为何范围时,y1>y2;

(3)求△PAB的面积.

【答案】(1)解:把x=4代入y2= x,得到点B的坐标为(4,1),把点B(4,1)代入y1= ,得k=4.

反比例函数的表达式为y1=

(2)解:∵点A与点B关于原点对称,∴A的坐标为(﹣4,﹣1),

观察图象得,当x<﹣4或0<x<4时,y1>y2

(3)解:过点A作AR⊥y轴于R,过点P作PS⊥y轴于S,连接PO,设AP与y轴交于点C,如图,

∵点A与点B关于原点对称,

∴OA=OB,

∴S△AOP=S△BOP,

∴S△PAB=2S△AOP.

y1= 中,当x=1时,y=4,

∴P(1,4).

设直线AP的函数关系式为y=mx+n,

把点A(﹣4,﹣1)、P(1,4)代入y=mx+n,

则,

解得.

故直线AP的函数关系式为y=x+3,

则点C的坐标(0,3),OC=3,

∴S△AOP=S△AOC+S△POC

= OC•AR+ OC•PS

= ×3×4+ ×3×1

= ,

∴S△PAB=2S△AOP=15.

【解析】【分析】(1)把x=4代入y2= x,得到点B的坐标,再把点B的坐标代入y1=

,求出k的值,即可得到反比例函数的表达式;(2)观察图象可知,反比例函数的图象在一次函数图象上方的部分对应的自变量的取值范围就是不等式y1>y2的解集;(3)过点A作AR⊥y轴于R,过点P作PS⊥y轴于S,连接PO,设AP与y轴交于点C,由点A与点B关于原点对称,得出OA=OB,那么S△AOP=S△BOP,S△PAB=2S△AOP.求出P点坐标,利用待定系数法求出直线AP的函数关系式,得到点C的坐标,根据S△AOP=S△AOC+S△POC求出

S△AOP= ,则S△PAB=2S△AOP=15.

4.如图,已知一次函数y= x+b的图象与反比例函数y= (x<0)的图象交于点A(﹣1,2)和点B,点C在y轴上.

(1)当△ABC的周长最小时,求点C的坐标;

(2)当 x+b<时,请直接写出x的取值范围.

【答案】(1)解:作点A关于y轴的对称点A′,连接A′B交y轴于点C,此时点C即是所求,如图所示.

相关文档
最新文档